1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/vmIntrinsics.hpp"
  28 #include "compiler/oopMap.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "gc/shared/barrierSetNMethod.hpp"
  32 #include "gc/shared/gc_globals.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/upcallLinker.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/continuationEntry.hpp"
  38 #include "runtime/javaThread.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "stubGenerator_x86_64.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #include "opto/c2_globals.hpp"
  45 #endif
  46 #if INCLUDE_JVMCI
  47 #include "jvmci/jvmci_globals.hpp"
  48 #endif
  49 
  50 // For a more detailed description of the stub routine structure
  51 // see the comment in stubRoutines.hpp
  52 
  53 #define __ _masm->
  54 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #else
  59 #define BLOCK_COMMENT(str) __ block_comment(str)
  60 #endif // PRODUCT
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 //
  65 // Linux Arguments:
  66 //    c_rarg0:   call wrapper address                   address
  67 //    c_rarg1:   result                                 address
  68 //    c_rarg2:   result type                            BasicType
  69 //    c_rarg3:   method                                 Method*
  70 //    c_rarg4:   (interpreter) entry point              address
  71 //    c_rarg5:   parameters                             intptr_t*
  72 //    16(rbp): parameter size (in words)              int
  73 //    24(rbp): thread                                 Thread*
  74 //
  75 //     [ return_from_Java     ] <--- rsp
  76 //     [ argument word n      ]
  77 //      ...
  78 // -12 [ argument word 1      ]
  79 // -11 [ saved r15            ] <--- rsp_after_call
  80 // -10 [ saved r14            ]
  81 //  -9 [ saved r13            ]
  82 //  -8 [ saved r12            ]
  83 //  -7 [ saved rbx            ]
  84 //  -6 [ call wrapper         ]
  85 //  -5 [ result               ]
  86 //  -4 [ result type          ]
  87 //  -3 [ method               ]
  88 //  -2 [ entry point          ]
  89 //  -1 [ parameters           ]
  90 //   0 [ saved rbp            ] <--- rbp
  91 //   1 [ return address       ]
  92 //   2 [ parameter size       ]
  93 //   3 [ thread               ]
  94 //
  95 // Windows Arguments:
  96 //    c_rarg0:   call wrapper address                   address
  97 //    c_rarg1:   result                                 address
  98 //    c_rarg2:   result type                            BasicType
  99 //    c_rarg3:   method                                 Method*
 100 //    48(rbp): (interpreter) entry point              address
 101 //    56(rbp): parameters                             intptr_t*
 102 //    64(rbp): parameter size (in words)              int
 103 //    72(rbp): thread                                 Thread*
 104 //
 105 //     [ return_from_Java     ] <--- rsp
 106 //     [ argument word n      ]
 107 //      ...
 108 // -28 [ argument word 1      ]
 109 // -27 [ saved xmm15          ] <--- rsp after_call
 110 //     [ saved xmm7-xmm14     ]
 111 //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 112 //  -7 [ saved r15            ]
 113 //  -6 [ saved r14            ]
 114 //  -5 [ saved r13            ]
 115 //  -4 [ saved r12            ]
 116 //  -3 [ saved rdi            ]
 117 //  -2 [ saved rsi            ]
 118 //  -1 [ saved rbx            ]
 119 //   0 [ saved rbp            ] <--- rbp
 120 //   1 [ return address       ]
 121 //   2 [ call wrapper         ]
 122 //   3 [ result               ]
 123 //   4 [ result type          ]
 124 //   5 [ method               ]
 125 //   6 [ entry point          ]
 126 //   7 [ parameters           ]
 127 //   8 [ parameter size       ]
 128 //   9 [ thread               ]
 129 //
 130 //    Windows reserves the callers stack space for arguments 1-4.
 131 //    We spill c_rarg0-c_rarg3 to this space.
 132 
 133 // Call stub stack layout word offsets from rbp
 134 #ifdef _WIN64
 135 enum call_stub_layout {
 136   xmm_save_first     = 6,  // save from xmm6
 137   xmm_save_last      = 15, // to xmm15
 138   xmm_save_base      = -9,
 139   rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 140   r15_off            = -7,
 141   r14_off            = -6,
 142   r13_off            = -5,
 143   r12_off            = -4,
 144   rdi_off            = -3,
 145   rsi_off            = -2,
 146   rbx_off            = -1,
 147   rbp_off            =  0,
 148   retaddr_off        =  1,
 149   call_wrapper_off   =  2,
 150   result_off         =  3,
 151   result_type_off    =  4,
 152   method_off         =  5,
 153   entry_point_off    =  6,
 154   parameters_off     =  7,
 155   parameter_size_off =  8,
 156   thread_off         =  9
 157 };
 158 
 159 static Address xmm_save(int reg) {
 160   assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 161   return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 162 }
 163 #else // !_WIN64
 164 enum call_stub_layout {
 165   rsp_after_call_off = -12,
 166   mxcsr_off          = rsp_after_call_off,
 167   r15_off            = -11,
 168   r14_off            = -10,
 169   r13_off            = -9,
 170   r12_off            = -8,
 171   rbx_off            = -7,
 172   call_wrapper_off   = -6,
 173   result_off         = -5,
 174   result_type_off    = -4,
 175   method_off         = -3,
 176   entry_point_off    = -2,
 177   parameters_off     = -1,
 178   rbp_off            =  0,
 179   retaddr_off        =  1,
 180   parameter_size_off =  2,
 181   thread_off         =  3
 182 };
 183 #endif // _WIN64
 184 
 185 address StubGenerator::generate_call_stub(address& return_address) {
 186 
 187   assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 188          (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 189          "adjust this code");
 190   StubGenStubId stub_id = StubGenStubId::call_stub_id;
 191   StubCodeMark mark(this, stub_id);
 192   address start = __ pc();
 193 
 194   // same as in generate_catch_exception()!
 195   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 196 
 197   const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 198   const Address result        (rbp, result_off         * wordSize);
 199   const Address result_type   (rbp, result_type_off    * wordSize);
 200   const Address method        (rbp, method_off         * wordSize);
 201   const Address entry_point   (rbp, entry_point_off    * wordSize);
 202   const Address parameters    (rbp, parameters_off     * wordSize);
 203   const Address parameter_size(rbp, parameter_size_off * wordSize);
 204 
 205   // same as in generate_catch_exception()!
 206   const Address thread        (rbp, thread_off         * wordSize);
 207 
 208   const Address r15_save(rbp, r15_off * wordSize);
 209   const Address r14_save(rbp, r14_off * wordSize);
 210   const Address r13_save(rbp, r13_off * wordSize);
 211   const Address r12_save(rbp, r12_off * wordSize);
 212   const Address rbx_save(rbp, rbx_off * wordSize);
 213 
 214   // stub code
 215   __ enter();
 216   __ subptr(rsp, -rsp_after_call_off * wordSize);
 217 
 218   // save register parameters
 219 #ifndef _WIN64
 220   __ movptr(parameters,   c_rarg5); // parameters
 221   __ movptr(entry_point,  c_rarg4); // entry_point
 222 #endif
 223 
 224   __ movptr(method,       c_rarg3); // method
 225   __ movl(result_type,  c_rarg2);   // result type
 226   __ movptr(result,       c_rarg1); // result
 227   __ movptr(call_wrapper, c_rarg0); // call wrapper
 228 
 229   // save regs belonging to calling function
 230   __ movptr(rbx_save, rbx);
 231   __ movptr(r12_save, r12);
 232   __ movptr(r13_save, r13);
 233   __ movptr(r14_save, r14);
 234   __ movptr(r15_save, r15);
 235 
 236 #ifdef _WIN64
 237   int last_reg = 15;
 238   for (int i = xmm_save_first; i <= last_reg; i++) {
 239     __ movdqu(xmm_save(i), as_XMMRegister(i));
 240   }
 241 
 242   const Address rdi_save(rbp, rdi_off * wordSize);
 243   const Address rsi_save(rbp, rsi_off * wordSize);
 244 
 245   __ movptr(rsi_save, rsi);
 246   __ movptr(rdi_save, rdi);
 247 #else
 248   const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 249   {
 250     Label skip_ldmx;
 251     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 252     __ jcc(Assembler::equal, skip_ldmx);
 253     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 254     __ ldmxcsr(mxcsr_std, rscratch1);
 255     __ bind(skip_ldmx);
 256   }
 257 #endif
 258 
 259   // Load up thread register
 260   __ movptr(r15_thread, thread);
 261   __ reinit_heapbase();
 262 
 263 #ifdef ASSERT
 264   // make sure we have no pending exceptions
 265   {
 266     Label L;
 267     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 268     __ jcc(Assembler::equal, L);
 269     __ stop("StubRoutines::call_stub: entered with pending exception");
 270     __ bind(L);
 271   }
 272 #endif
 273 
 274   // pass parameters if any
 275   BLOCK_COMMENT("pass parameters if any");
 276   Label parameters_done;
 277   __ movl(c_rarg3, parameter_size);
 278   __ testl(c_rarg3, c_rarg3);
 279   __ jcc(Assembler::zero, parameters_done);
 280 
 281   Label loop;
 282   __ movptr(c_rarg2, parameters);       // parameter pointer
 283   __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 284   __ BIND(loop);
 285   __ movptr(rax, Address(c_rarg2, 0));// get parameter
 286   __ addptr(c_rarg2, wordSize);       // advance to next parameter
 287   __ decrementl(c_rarg1);             // decrement counter
 288   __ push(rax);                       // pass parameter
 289   __ jcc(Assembler::notZero, loop);
 290 
 291   // call Java function
 292   __ BIND(parameters_done);
 293   __ movptr(rbx, method);             // get Method*
 294   __ movptr(c_rarg1, entry_point);    // get entry_point
 295   __ mov(r13, rsp);                   // set sender sp
 296   BLOCK_COMMENT("call Java function");
 297   __ call(c_rarg1);
 298 
 299   BLOCK_COMMENT("call_stub_return_address:");
 300   return_address = __ pc();
 301 
 302   // store result depending on type (everything that is not
 303   // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 304   __ movptr(c_rarg0, result);
 305   Label is_long, is_float, is_double, exit;
 306   __ movl(c_rarg1, result_type);
 307   __ cmpl(c_rarg1, T_OBJECT);
 308   __ jcc(Assembler::equal, is_long);
 309   __ cmpl(c_rarg1, T_LONG);
 310   __ jcc(Assembler::equal, is_long);
 311   __ cmpl(c_rarg1, T_FLOAT);
 312   __ jcc(Assembler::equal, is_float);
 313   __ cmpl(c_rarg1, T_DOUBLE);
 314   __ jcc(Assembler::equal, is_double);
 315 #ifdef ASSERT
 316   // make sure the type is INT
 317   {
 318     Label L;
 319     __ cmpl(c_rarg1, T_INT);
 320     __ jcc(Assembler::equal, L);
 321     __ stop("StubRoutines::call_stub: unexpected result type");
 322     __ bind(L);
 323   }
 324 #endif
 325 
 326   // handle T_INT case
 327   __ movl(Address(c_rarg0, 0), rax);
 328 
 329   __ BIND(exit);
 330 
 331   // pop parameters
 332   __ lea(rsp, rsp_after_call);
 333 
 334 #ifdef ASSERT
 335   // verify that threads correspond
 336   {
 337    Label L1, L2, L3;
 338     __ cmpptr(r15_thread, thread);
 339     __ jcc(Assembler::equal, L1);
 340     __ stop("StubRoutines::call_stub: r15_thread is corrupted");
 341     __ bind(L1);
 342     __ get_thread(rbx);
 343     __ cmpptr(r15_thread, thread);
 344     __ jcc(Assembler::equal, L2);
 345     __ stop("StubRoutines::call_stub: r15_thread is modified by call");
 346     __ bind(L2);
 347     __ cmpptr(r15_thread, rbx);
 348     __ jcc(Assembler::equal, L3);
 349     __ stop("StubRoutines::call_stub: threads must correspond");
 350     __ bind(L3);
 351   }
 352 #endif
 353 
 354   __ pop_cont_fastpath();
 355 
 356   // restore regs belonging to calling function
 357 #ifdef _WIN64
 358   // emit the restores for xmm regs
 359   for (int i = xmm_save_first; i <= last_reg; i++) {
 360     __ movdqu(as_XMMRegister(i), xmm_save(i));
 361   }
 362 #endif
 363   __ movptr(r15, r15_save);
 364   __ movptr(r14, r14_save);
 365   __ movptr(r13, r13_save);
 366   __ movptr(r12, r12_save);
 367   __ movptr(rbx, rbx_save);
 368 
 369 #ifdef _WIN64
 370   __ movptr(rdi, rdi_save);
 371   __ movptr(rsi, rsi_save);
 372 #else
 373   __ ldmxcsr(mxcsr_save);
 374 #endif
 375 
 376   // restore rsp
 377   __ addptr(rsp, -rsp_after_call_off * wordSize);
 378 
 379   // return
 380   __ vzeroupper();
 381   __ pop(rbp);
 382   __ ret(0);
 383 
 384   // handle return types different from T_INT
 385   __ BIND(is_long);
 386   __ movq(Address(c_rarg0, 0), rax);
 387   __ jmp(exit);
 388 
 389   __ BIND(is_float);
 390   __ movflt(Address(c_rarg0, 0), xmm0);
 391   __ jmp(exit);
 392 
 393   __ BIND(is_double);
 394   __ movdbl(Address(c_rarg0, 0), xmm0);
 395   __ jmp(exit);
 396 
 397   return start;
 398 }
 399 
 400 // Return point for a Java call if there's an exception thrown in
 401 // Java code.  The exception is caught and transformed into a
 402 // pending exception stored in JavaThread that can be tested from
 403 // within the VM.
 404 //
 405 // Note: Usually the parameters are removed by the callee. In case
 406 // of an exception crossing an activation frame boundary, that is
 407 // not the case if the callee is compiled code => need to setup the
 408 // rsp.
 409 //
 410 // rax: exception oop
 411 
 412 address StubGenerator::generate_catch_exception() {
 413   StubGenStubId stub_id = StubGenStubId::catch_exception_id;
 414   StubCodeMark mark(this, stub_id);
 415   address start = __ pc();
 416 
 417   // same as in generate_call_stub():
 418   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 419   const Address thread        (rbp, thread_off         * wordSize);
 420 
 421 #ifdef ASSERT
 422   // verify that threads correspond
 423   {
 424     Label L1, L2, L3;
 425     __ cmpptr(r15_thread, thread);
 426     __ jcc(Assembler::equal, L1);
 427     __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
 428     __ bind(L1);
 429     __ get_thread(rbx);
 430     __ cmpptr(r15_thread, thread);
 431     __ jcc(Assembler::equal, L2);
 432     __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
 433     __ bind(L2);
 434     __ cmpptr(r15_thread, rbx);
 435     __ jcc(Assembler::equal, L3);
 436     __ stop("StubRoutines::catch_exception: threads must correspond");
 437     __ bind(L3);
 438   }
 439 #endif
 440 
 441   // set pending exception
 442   __ verify_oop(rax);
 443 
 444   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 445   __ lea(rscratch1, ExternalAddress((address)__FILE__));
 446   __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 447   __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 448 
 449   // complete return to VM
 450   assert(StubRoutines::_call_stub_return_address != nullptr,
 451          "_call_stub_return_address must have been generated before");
 452   __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 453 
 454   return start;
 455 }
 456 
 457 // Continuation point for runtime calls returning with a pending
 458 // exception.  The pending exception check happened in the runtime
 459 // or native call stub.  The pending exception in Thread is
 460 // converted into a Java-level exception.
 461 //
 462 // Contract with Java-level exception handlers:
 463 // rax: exception
 464 // rdx: throwing pc
 465 //
 466 // NOTE: At entry of this stub, exception-pc must be on stack !!
 467 
 468 address StubGenerator::generate_forward_exception() {
 469   StubGenStubId stub_id = StubGenStubId::forward_exception_id;
 470   StubCodeMark mark(this, stub_id);
 471   address start = __ pc();
 472 
 473   // Upon entry, the sp points to the return address returning into
 474   // Java (interpreted or compiled) code; i.e., the return address
 475   // becomes the throwing pc.
 476   //
 477   // Arguments pushed before the runtime call are still on the stack
 478   // but the exception handler will reset the stack pointer ->
 479   // ignore them.  A potential result in registers can be ignored as
 480   // well.
 481 
 482 #ifdef ASSERT
 483   // make sure this code is only executed if there is a pending exception
 484   {
 485     Label L;
 486     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 487     __ jcc(Assembler::notEqual, L);
 488     __ stop("StubRoutines::forward exception: no pending exception (1)");
 489     __ bind(L);
 490   }
 491 #endif
 492 
 493   // compute exception handler into rbx
 494   __ movptr(c_rarg0, Address(rsp, 0));
 495   BLOCK_COMMENT("call exception_handler_for_return_address");
 496   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 497                        SharedRuntime::exception_handler_for_return_address),
 498                   r15_thread, c_rarg0);
 499   __ mov(rbx, rax);
 500 
 501   // setup rax & rdx, remove return address & clear pending exception
 502   __ pop(rdx);
 503   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 504   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 505 
 506 #ifdef ASSERT
 507   // make sure exception is set
 508   {
 509     Label L;
 510     __ testptr(rax, rax);
 511     __ jcc(Assembler::notEqual, L);
 512     __ stop("StubRoutines::forward exception: no pending exception (2)");
 513     __ bind(L);
 514   }
 515 #endif
 516 
 517   // continue at exception handler (return address removed)
 518   // rax: exception
 519   // rbx: exception handler
 520   // rdx: throwing pc
 521   __ verify_oop(rax);
 522   __ jmp(rbx);
 523 
 524   return start;
 525 }
 526 
 527 // Support for intptr_t OrderAccess::fence()
 528 //
 529 // Arguments :
 530 //
 531 // Result:
 532 address StubGenerator::generate_orderaccess_fence() {
 533   StubGenStubId stub_id = StubGenStubId::fence_id;
 534   StubCodeMark mark(this, stub_id);
 535   address start = __ pc();
 536 
 537   __ membar(Assembler::StoreLoad);
 538   __ ret(0);
 539 
 540   return start;
 541 }
 542 
 543 
 544 // Support for intptr_t get_previous_sp()
 545 //
 546 // This routine is used to find the previous stack pointer for the
 547 // caller.
 548 address StubGenerator::generate_get_previous_sp() {
 549   StubGenStubId stub_id = StubGenStubId::get_previous_sp_id;
 550   StubCodeMark mark(this, stub_id);
 551   address start = __ pc();
 552 
 553   __ movptr(rax, rsp);
 554   __ addptr(rax, 8); // return address is at the top of the stack.
 555   __ ret(0);
 556 
 557   return start;
 558 }
 559 
 560 //----------------------------------------------------------------------------------------------------
 561 // Support for void verify_mxcsr()
 562 //
 563 // This routine is used with -Xcheck:jni to verify that native
 564 // JNI code does not return to Java code without restoring the
 565 // MXCSR register to our expected state.
 566 
 567 address StubGenerator::generate_verify_mxcsr() {
 568   StubGenStubId stub_id = StubGenStubId::verify_mxcsr_id;
 569   StubCodeMark mark(this, stub_id);
 570   address start = __ pc();
 571 
 572   const Address mxcsr_save(rsp, 0);
 573 
 574   if (CheckJNICalls) {
 575     Label ok_ret;
 576     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 577     __ push(rax);
 578     __ subptr(rsp, wordSize);      // allocate a temp location
 579     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 580     __ jcc(Assembler::equal, ok_ret);
 581 
 582     __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 583 
 584     __ ldmxcsr(mxcsr_std, rscratch1);
 585 
 586     __ bind(ok_ret);
 587     __ addptr(rsp, wordSize);
 588     __ pop(rax);
 589   }
 590 
 591   __ ret(0);
 592 
 593   return start;
 594 }
 595 
 596 address StubGenerator::generate_f2i_fixup() {
 597   StubGenStubId stub_id = StubGenStubId::f2i_fixup_id;
 598   StubCodeMark mark(this, stub_id);
 599   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 600 
 601   address start = __ pc();
 602 
 603   Label L;
 604 
 605   __ push(rax);
 606   __ push(c_rarg3);
 607   __ push(c_rarg2);
 608   __ push(c_rarg1);
 609 
 610   __ movl(rax, 0x7f800000);
 611   __ xorl(c_rarg3, c_rarg3);
 612   __ movl(c_rarg2, inout);
 613   __ movl(c_rarg1, c_rarg2);
 614   __ andl(c_rarg1, 0x7fffffff);
 615   __ cmpl(rax, c_rarg1); // NaN? -> 0
 616   __ jcc(Assembler::negative, L);
 617   __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 618   __ movl(c_rarg3, 0x80000000);
 619   __ movl(rax, 0x7fffffff);
 620   __ cmovl(Assembler::positive, c_rarg3, rax);
 621 
 622   __ bind(L);
 623   __ movptr(inout, c_rarg3);
 624 
 625   __ pop(c_rarg1);
 626   __ pop(c_rarg2);
 627   __ pop(c_rarg3);
 628   __ pop(rax);
 629 
 630   __ ret(0);
 631 
 632   return start;
 633 }
 634 
 635 address StubGenerator::generate_f2l_fixup() {
 636   StubGenStubId stub_id = StubGenStubId::f2l_fixup_id;
 637   StubCodeMark mark(this, stub_id);
 638   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 639   address start = __ pc();
 640 
 641   Label L;
 642 
 643   __ push(rax);
 644   __ push(c_rarg3);
 645   __ push(c_rarg2);
 646   __ push(c_rarg1);
 647 
 648   __ movl(rax, 0x7f800000);
 649   __ xorl(c_rarg3, c_rarg3);
 650   __ movl(c_rarg2, inout);
 651   __ movl(c_rarg1, c_rarg2);
 652   __ andl(c_rarg1, 0x7fffffff);
 653   __ cmpl(rax, c_rarg1); // NaN? -> 0
 654   __ jcc(Assembler::negative, L);
 655   __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 656   __ mov64(c_rarg3, 0x8000000000000000);
 657   __ mov64(rax, 0x7fffffffffffffff);
 658   __ cmov(Assembler::positive, c_rarg3, rax);
 659 
 660   __ bind(L);
 661   __ movptr(inout, c_rarg3);
 662 
 663   __ pop(c_rarg1);
 664   __ pop(c_rarg2);
 665   __ pop(c_rarg3);
 666   __ pop(rax);
 667 
 668   __ ret(0);
 669 
 670   return start;
 671 }
 672 
 673 address StubGenerator::generate_d2i_fixup() {
 674   StubGenStubId stub_id = StubGenStubId::d2i_fixup_id;
 675   StubCodeMark mark(this, stub_id);
 676   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 677 
 678   address start = __ pc();
 679 
 680   Label L;
 681 
 682   __ push(rax);
 683   __ push(c_rarg3);
 684   __ push(c_rarg2);
 685   __ push(c_rarg1);
 686   __ push(c_rarg0);
 687 
 688   __ movl(rax, 0x7ff00000);
 689   __ movq(c_rarg2, inout);
 690   __ movl(c_rarg3, c_rarg2);
 691   __ mov(c_rarg1, c_rarg2);
 692   __ mov(c_rarg0, c_rarg2);
 693   __ negl(c_rarg3);
 694   __ shrptr(c_rarg1, 0x20);
 695   __ orl(c_rarg3, c_rarg2);
 696   __ andl(c_rarg1, 0x7fffffff);
 697   __ xorl(c_rarg2, c_rarg2);
 698   __ shrl(c_rarg3, 0x1f);
 699   __ orl(c_rarg1, c_rarg3);
 700   __ cmpl(rax, c_rarg1);
 701   __ jcc(Assembler::negative, L); // NaN -> 0
 702   __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 703   __ movl(c_rarg2, 0x80000000);
 704   __ movl(rax, 0x7fffffff);
 705   __ cmov(Assembler::positive, c_rarg2, rax);
 706 
 707   __ bind(L);
 708   __ movptr(inout, c_rarg2);
 709 
 710   __ pop(c_rarg0);
 711   __ pop(c_rarg1);
 712   __ pop(c_rarg2);
 713   __ pop(c_rarg3);
 714   __ pop(rax);
 715 
 716   __ ret(0);
 717 
 718   return start;
 719 }
 720 
 721 address StubGenerator::generate_d2l_fixup() {
 722   StubGenStubId stub_id = StubGenStubId::d2l_fixup_id;
 723   StubCodeMark mark(this, stub_id);
 724   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 725 
 726   address start = __ pc();
 727 
 728   Label L;
 729 
 730   __ push(rax);
 731   __ push(c_rarg3);
 732   __ push(c_rarg2);
 733   __ push(c_rarg1);
 734   __ push(c_rarg0);
 735 
 736   __ movl(rax, 0x7ff00000);
 737   __ movq(c_rarg2, inout);
 738   __ movl(c_rarg3, c_rarg2);
 739   __ mov(c_rarg1, c_rarg2);
 740   __ mov(c_rarg0, c_rarg2);
 741   __ negl(c_rarg3);
 742   __ shrptr(c_rarg1, 0x20);
 743   __ orl(c_rarg3, c_rarg2);
 744   __ andl(c_rarg1, 0x7fffffff);
 745   __ xorl(c_rarg2, c_rarg2);
 746   __ shrl(c_rarg3, 0x1f);
 747   __ orl(c_rarg1, c_rarg3);
 748   __ cmpl(rax, c_rarg1);
 749   __ jcc(Assembler::negative, L); // NaN -> 0
 750   __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 751   __ mov64(c_rarg2, 0x8000000000000000);
 752   __ mov64(rax, 0x7fffffffffffffff);
 753   __ cmovq(Assembler::positive, c_rarg2, rax);
 754 
 755   __ bind(L);
 756   __ movq(inout, c_rarg2);
 757 
 758   __ pop(c_rarg0);
 759   __ pop(c_rarg1);
 760   __ pop(c_rarg2);
 761   __ pop(c_rarg3);
 762   __ pop(rax);
 763 
 764   __ ret(0);
 765 
 766   return start;
 767 }
 768 
 769 address StubGenerator::generate_count_leading_zeros_lut() {
 770   __ align64();
 771   StubGenStubId stub_id = StubGenStubId::vector_count_leading_zeros_lut_id;
 772   StubCodeMark mark(this, stub_id);
 773   address start = __ pc();
 774 
 775   __ emit_data64(0x0101010102020304, relocInfo::none);
 776   __ emit_data64(0x0000000000000000, relocInfo::none);
 777   __ emit_data64(0x0101010102020304, relocInfo::none);
 778   __ emit_data64(0x0000000000000000, relocInfo::none);
 779   __ emit_data64(0x0101010102020304, relocInfo::none);
 780   __ emit_data64(0x0000000000000000, relocInfo::none);
 781   __ emit_data64(0x0101010102020304, relocInfo::none);
 782   __ emit_data64(0x0000000000000000, relocInfo::none);
 783 
 784   return start;
 785 }
 786 
 787 address StubGenerator::generate_popcount_avx_lut() {
 788   __ align64();
 789   StubGenStubId stub_id = StubGenStubId::vector_popcount_lut_id;
 790   StubCodeMark mark(this, stub_id);
 791   address start = __ pc();
 792 
 793   __ emit_data64(0x0302020102010100, relocInfo::none);
 794   __ emit_data64(0x0403030203020201, relocInfo::none);
 795   __ emit_data64(0x0302020102010100, relocInfo::none);
 796   __ emit_data64(0x0403030203020201, relocInfo::none);
 797   __ emit_data64(0x0302020102010100, relocInfo::none);
 798   __ emit_data64(0x0403030203020201, relocInfo::none);
 799   __ emit_data64(0x0302020102010100, relocInfo::none);
 800   __ emit_data64(0x0403030203020201, relocInfo::none);
 801 
 802   return start;
 803 }
 804 
 805 address StubGenerator::generate_iota_indices() {
 806   __ align(CodeEntryAlignment);
 807   StubGenStubId stub_id = StubGenStubId::vector_iota_indices_id;
 808   StubCodeMark mark(this, stub_id);
 809   address start = __ pc();
 810   // B
 811   __ emit_data64(0x0706050403020100, relocInfo::none);
 812   __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
 813   __ emit_data64(0x1716151413121110, relocInfo::none);
 814   __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
 815   __ emit_data64(0x2726252423222120, relocInfo::none);
 816   __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
 817   __ emit_data64(0x3736353433323130, relocInfo::none);
 818   __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
 819   // W
 820   __ emit_data64(0x0003000200010000, relocInfo::none);
 821   __ emit_data64(0x0007000600050004, relocInfo::none);
 822   __ emit_data64(0x000B000A00090008, relocInfo::none);
 823   __ emit_data64(0x000F000E000D000C, relocInfo::none);
 824   __ emit_data64(0x0013001200110010, relocInfo::none);
 825   __ emit_data64(0x0017001600150014, relocInfo::none);
 826   __ emit_data64(0x001B001A00190018, relocInfo::none);
 827   __ emit_data64(0x001F001E001D001C, relocInfo::none);
 828   // D
 829   __ emit_data64(0x0000000100000000, relocInfo::none);
 830   __ emit_data64(0x0000000300000002, relocInfo::none);
 831   __ emit_data64(0x0000000500000004, relocInfo::none);
 832   __ emit_data64(0x0000000700000006, relocInfo::none);
 833   __ emit_data64(0x0000000900000008, relocInfo::none);
 834   __ emit_data64(0x0000000B0000000A, relocInfo::none);
 835   __ emit_data64(0x0000000D0000000C, relocInfo::none);
 836   __ emit_data64(0x0000000F0000000E, relocInfo::none);
 837   // Q
 838   __ emit_data64(0x0000000000000000, relocInfo::none);
 839   __ emit_data64(0x0000000000000001, relocInfo::none);
 840   __ emit_data64(0x0000000000000002, relocInfo::none);
 841   __ emit_data64(0x0000000000000003, relocInfo::none);
 842   __ emit_data64(0x0000000000000004, relocInfo::none);
 843   __ emit_data64(0x0000000000000005, relocInfo::none);
 844   __ emit_data64(0x0000000000000006, relocInfo::none);
 845   __ emit_data64(0x0000000000000007, relocInfo::none);
 846   // D - FP
 847   __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
 848   __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
 849   __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
 850   __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
 851   __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
 852   __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
 853   __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
 854   __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
 855   // Q - FP
 856   __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
 857   __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
 858   __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
 859   __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
 860   __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
 861   __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
 862   __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
 863   __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
 864   return start;
 865 }
 866 
 867 address StubGenerator::generate_vector_reverse_bit_lut() {
 868   __ align(CodeEntryAlignment);
 869   StubGenStubId stub_id = StubGenStubId::vector_reverse_bit_lut_id;
 870   StubCodeMark mark(this, stub_id);
 871   address start = __ pc();
 872 
 873   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 874   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 875   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 876   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 877   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 878   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 879   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 880   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 881 
 882   return start;
 883 }
 884 
 885 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() {
 886   __ align(CodeEntryAlignment);
 887   StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_long_id;
 888   StubCodeMark mark(this, stub_id);
 889   address start = __ pc();
 890 
 891   __ emit_data64(0x0001020304050607, relocInfo::none);
 892   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 893   __ emit_data64(0x0001020304050607, relocInfo::none);
 894   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 895   __ emit_data64(0x0001020304050607, relocInfo::none);
 896   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 897   __ emit_data64(0x0001020304050607, relocInfo::none);
 898   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 899 
 900   return start;
 901 }
 902 
 903 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() {
 904   __ align(CodeEntryAlignment);
 905   StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_int_id;
 906   StubCodeMark mark(this, stub_id);
 907   address start = __ pc();
 908 
 909   __ emit_data64(0x0405060700010203, relocInfo::none);
 910   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 911   __ emit_data64(0x0405060700010203, relocInfo::none);
 912   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 913   __ emit_data64(0x0405060700010203, relocInfo::none);
 914   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 915   __ emit_data64(0x0405060700010203, relocInfo::none);
 916   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 917 
 918   return start;
 919 }
 920 
 921 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() {
 922   __ align(CodeEntryAlignment);
 923   StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_short_id;
 924   StubCodeMark mark(this, stub_id);
 925   address start = __ pc();
 926 
 927   __ emit_data64(0x0607040502030001, relocInfo::none);
 928   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 929   __ emit_data64(0x0607040502030001, relocInfo::none);
 930   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 931   __ emit_data64(0x0607040502030001, relocInfo::none);
 932   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 933   __ emit_data64(0x0607040502030001, relocInfo::none);
 934   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 935 
 936   return start;
 937 }
 938 
 939 address StubGenerator::generate_vector_byte_shuffle_mask() {
 940   __ align(CodeEntryAlignment);
 941   StubGenStubId stub_id = StubGenStubId::vector_byte_shuffle_mask_id;
 942   StubCodeMark mark(this, stub_id);
 943   address start = __ pc();
 944 
 945   __ emit_data64(0x7070707070707070, relocInfo::none);
 946   __ emit_data64(0x7070707070707070, relocInfo::none);
 947   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 948   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 949 
 950   return start;
 951 }
 952 
 953 address StubGenerator::generate_fp_mask(StubGenStubId stub_id, int64_t mask) {
 954   __ align(CodeEntryAlignment);
 955   StubCodeMark mark(this, stub_id);
 956   address start = __ pc();
 957 
 958   __ emit_data64( mask, relocInfo::none );
 959   __ emit_data64( mask, relocInfo::none );
 960 
 961   return start;
 962 }
 963 
 964 address StubGenerator::generate_compress_perm_table(StubGenStubId stub_id) {
 965   int esize;
 966   switch (stub_id) {
 967   case compress_perm_table32_id:
 968     esize = 32;
 969     break;
 970   case compress_perm_table64_id:
 971     esize = 64;
 972     break;
 973   default:
 974     ShouldNotReachHere();
 975   }
 976   __ align(CodeEntryAlignment);
 977   StubCodeMark mark(this, stub_id);
 978   address start = __ pc();
 979   if (esize == 32) {
 980     // Loop to generate 256 x 8 int compression permute index table. A row is
 981     // accessed using 8 bit index computed using vector mask. An entry in
 982     // a row holds either a valid permute index corresponding to set bit position
 983     // or a -1 (default) value.
 984     for (int mask = 0; mask < 256; mask++) {
 985       int ctr = 0;
 986       for (int j = 0; j < 8; j++) {
 987         if (mask & (1 << j)) {
 988           __ emit_data(j, relocInfo::none);
 989           ctr++;
 990         }
 991       }
 992       for (; ctr < 8; ctr++) {
 993         __ emit_data(-1, relocInfo::none);
 994       }
 995     }
 996   } else {
 997     assert(esize == 64, "");
 998     // Loop to generate 16 x 4 long compression permute index table. A row is
 999     // accessed using 4 bit index computed using vector mask. An entry in
1000     // a row holds either a valid permute index pair for a quadword corresponding
1001     // to set bit position or a -1 (default) value.
1002     for (int mask = 0; mask < 16; mask++) {
1003       int ctr = 0;
1004       for (int j = 0; j < 4; j++) {
1005         if (mask & (1 << j)) {
1006           __ emit_data(2 * j, relocInfo::none);
1007           __ emit_data(2 * j + 1, relocInfo::none);
1008           ctr++;
1009         }
1010       }
1011       for (; ctr < 4; ctr++) {
1012         __ emit_data64(-1L, relocInfo::none);
1013       }
1014     }
1015   }
1016   return start;
1017 }
1018 
1019 address StubGenerator::generate_expand_perm_table(StubGenStubId stub_id) {
1020   int esize;
1021   switch (stub_id) {
1022   case expand_perm_table32_id:
1023     esize = 32;
1024     break;
1025   case expand_perm_table64_id:
1026     esize = 64;
1027     break;
1028   default:
1029     ShouldNotReachHere();
1030   }
1031   __ align(CodeEntryAlignment);
1032   StubCodeMark mark(this, stub_id);
1033   address start = __ pc();
1034   if (esize == 32) {
1035     // Loop to generate 256 x 8 int expand permute index table. A row is accessed
1036     // using 8 bit index computed using vector mask. An entry in a row holds either
1037     // a valid permute index (starting from least significant lane) placed at poisition
1038     // corresponding to set bit position or a -1 (default) value.
1039     for (int mask = 0; mask < 256; mask++) {
1040       int ctr = 0;
1041       for (int j = 0; j < 8; j++) {
1042         if (mask & (1 << j)) {
1043           __ emit_data(ctr++, relocInfo::none);
1044         } else {
1045           __ emit_data(-1, relocInfo::none);
1046         }
1047       }
1048     }
1049   } else {
1050     assert(esize == 64, "");
1051     // Loop to generate 16 x 4 long expand permute index table. A row is accessed
1052     // using 4 bit index computed using vector mask. An entry in a row holds either
1053     // a valid doubleword permute index pair representing a quadword index (starting
1054     // from least significant lane) placed at poisition corresponding to set bit
1055     // position or a -1 (default) value.
1056     for (int mask = 0; mask < 16; mask++) {
1057       int ctr = 0;
1058       for (int j = 0; j < 4; j++) {
1059         if (mask & (1 << j)) {
1060           __ emit_data(2 * ctr, relocInfo::none);
1061           __ emit_data(2 * ctr + 1, relocInfo::none);
1062           ctr++;
1063         } else {
1064           __ emit_data64(-1L, relocInfo::none);
1065         }
1066       }
1067     }
1068   }
1069   return start;
1070 }
1071 
1072 address StubGenerator::generate_vector_mask(StubGenStubId stub_id, int64_t mask) {
1073   __ align(CodeEntryAlignment);
1074   StubCodeMark mark(this, stub_id);
1075   address start = __ pc();
1076 
1077   __ emit_data64(mask, relocInfo::none);
1078   __ emit_data64(mask, relocInfo::none);
1079   __ emit_data64(mask, relocInfo::none);
1080   __ emit_data64(mask, relocInfo::none);
1081   __ emit_data64(mask, relocInfo::none);
1082   __ emit_data64(mask, relocInfo::none);
1083   __ emit_data64(mask, relocInfo::none);
1084   __ emit_data64(mask, relocInfo::none);
1085 
1086   return start;
1087 }
1088 
1089 address StubGenerator::generate_vector_byte_perm_mask() {
1090   __ align(CodeEntryAlignment);
1091   StubGenStubId stub_id = StubGenStubId::vector_byte_perm_mask_id;
1092   StubCodeMark mark(this, stub_id);
1093   address start = __ pc();
1094 
1095   __ emit_data64(0x0000000000000001, relocInfo::none);
1096   __ emit_data64(0x0000000000000003, relocInfo::none);
1097   __ emit_data64(0x0000000000000005, relocInfo::none);
1098   __ emit_data64(0x0000000000000007, relocInfo::none);
1099   __ emit_data64(0x0000000000000000, relocInfo::none);
1100   __ emit_data64(0x0000000000000002, relocInfo::none);
1101   __ emit_data64(0x0000000000000004, relocInfo::none);
1102   __ emit_data64(0x0000000000000006, relocInfo::none);
1103 
1104   return start;
1105 }
1106 
1107 address StubGenerator::generate_vector_fp_mask(StubGenStubId stub_id, int64_t mask) {
1108   __ align(CodeEntryAlignment);
1109   StubCodeMark mark(this, stub_id);
1110   address start = __ pc();
1111 
1112   __ emit_data64(mask, relocInfo::none);
1113   __ emit_data64(mask, relocInfo::none);
1114   __ emit_data64(mask, relocInfo::none);
1115   __ emit_data64(mask, relocInfo::none);
1116   __ emit_data64(mask, relocInfo::none);
1117   __ emit_data64(mask, relocInfo::none);
1118   __ emit_data64(mask, relocInfo::none);
1119   __ emit_data64(mask, relocInfo::none);
1120 
1121   return start;
1122 }
1123 
1124 address StubGenerator::generate_vector_custom_i32(StubGenStubId stub_id, Assembler::AvxVectorLen len,
1125                                    int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1126                                    int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1127                                    int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1128                                    int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1129   __ align(CodeEntryAlignment);
1130   StubCodeMark mark(this, stub_id);
1131   address start = __ pc();
1132 
1133   assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1134   __ emit_data(val0, relocInfo::none, 0);
1135   __ emit_data(val1, relocInfo::none, 0);
1136   __ emit_data(val2, relocInfo::none, 0);
1137   __ emit_data(val3, relocInfo::none, 0);
1138   if (len >= Assembler::AVX_256bit) {
1139     __ emit_data(val4, relocInfo::none, 0);
1140     __ emit_data(val5, relocInfo::none, 0);
1141     __ emit_data(val6, relocInfo::none, 0);
1142     __ emit_data(val7, relocInfo::none, 0);
1143     if (len >= Assembler::AVX_512bit) {
1144       __ emit_data(val8, relocInfo::none, 0);
1145       __ emit_data(val9, relocInfo::none, 0);
1146       __ emit_data(val10, relocInfo::none, 0);
1147       __ emit_data(val11, relocInfo::none, 0);
1148       __ emit_data(val12, relocInfo::none, 0);
1149       __ emit_data(val13, relocInfo::none, 0);
1150       __ emit_data(val14, relocInfo::none, 0);
1151       __ emit_data(val15, relocInfo::none, 0);
1152     }
1153   }
1154   return start;
1155 }
1156 
1157 // Non-destructive plausibility checks for oops
1158 //
1159 // Arguments:
1160 //    all args on stack!
1161 //
1162 // Stack after saving c_rarg3:
1163 //    [tos + 0]: saved c_rarg3
1164 //    [tos + 1]: saved c_rarg2
1165 //    [tos + 2]: saved r12 (several TemplateTable methods use it)
1166 //    [tos + 3]: saved flags
1167 //    [tos + 4]: return address
1168 //  * [tos + 5]: error message (char*)
1169 //  * [tos + 6]: object to verify (oop)
1170 //  * [tos + 7]: saved rax - saved by caller and bashed
1171 //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
1172 //  * = popped on exit
1173 address StubGenerator::generate_verify_oop() {
1174   StubGenStubId stub_id = StubGenStubId::verify_oop_id;
1175   StubCodeMark mark(this, stub_id);
1176   address start = __ pc();
1177 
1178   Label exit, error;
1179 
1180   __ pushf();
1181   __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1182 
1183   __ push(r12);
1184 
1185   // save c_rarg2 and c_rarg3
1186   __ push(c_rarg2);
1187   __ push(c_rarg3);
1188 
1189   enum {
1190     // After previous pushes.
1191     oop_to_verify = 6 * wordSize,
1192     saved_rax     = 7 * wordSize,
1193     saved_r10     = 8 * wordSize,
1194 
1195     // Before the call to MacroAssembler::debug(), see below.
1196     return_addr   = 16 * wordSize,
1197     error_msg     = 17 * wordSize
1198   };
1199 
1200   // get object
1201   __ movptr(rax, Address(rsp, oop_to_verify));
1202 
1203   // make sure object is 'reasonable'
1204   __ testptr(rax, rax);
1205   __ jcc(Assembler::zero, exit); // if obj is null it is OK
1206 
1207    BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler();
1208    bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error);
1209 
1210   // return if everything seems ok
1211   __ bind(exit);
1212   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1213   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1214   __ pop(c_rarg3);                             // restore c_rarg3
1215   __ pop(c_rarg2);                             // restore c_rarg2
1216   __ pop(r12);                                 // restore r12
1217   __ popf();                                   // restore flags
1218   __ ret(4 * wordSize);                        // pop caller saved stuff
1219 
1220   // handle errors
1221   __ bind(error);
1222   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1223   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1224   __ pop(c_rarg3);                             // get saved c_rarg3 back
1225   __ pop(c_rarg2);                             // get saved c_rarg2 back
1226   __ pop(r12);                                 // get saved r12 back
1227   __ popf();                                   // get saved flags off stack --
1228                                                // will be ignored
1229 
1230   __ pusha();                                  // push registers
1231                                                // (rip is already
1232                                                // already pushed)
1233   // debug(char* msg, int64_t pc, int64_t regs[])
1234   // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1235   // pushed all the registers, so now the stack looks like:
1236   //     [tos +  0] 16 saved registers
1237   //     [tos + 16] return address
1238   //   * [tos + 17] error message (char*)
1239   //   * [tos + 18] object to verify (oop)
1240   //   * [tos + 19] saved rax - saved by caller and bashed
1241   //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1242   //   * = popped on exit
1243 
1244   __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1245   __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1246   __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1247   __ mov(r12, rsp);                               // remember rsp
1248   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1249   __ andptr(rsp, -16);                            // align stack as required by ABI
1250   BLOCK_COMMENT("call MacroAssembler::debug");
1251   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1252   __ hlt();
1253 
1254   return start;
1255 }
1256 
1257 
1258 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1259 //
1260 // Outputs:
1261 //    rdi - rcx
1262 //    rsi - rdx
1263 //    rdx - r8
1264 //    rcx - r9
1265 //
1266 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1267 // are non-volatile.  r9 and r10 should not be used by the caller.
1268 //
1269 void StubGenerator::setup_arg_regs(int nargs) {
1270   const Register saved_rdi = r9;
1271   const Register saved_rsi = r10;
1272   assert(nargs == 3 || nargs == 4, "else fix");
1273 #ifdef _WIN64
1274   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1275          "unexpected argument registers");
1276   if (nargs == 4) {
1277     __ mov(rax, r9);  // r9 is also saved_rdi
1278   }
1279   __ movptr(saved_rdi, rdi);
1280   __ movptr(saved_rsi, rsi);
1281   __ mov(rdi, rcx); // c_rarg0
1282   __ mov(rsi, rdx); // c_rarg1
1283   __ mov(rdx, r8);  // c_rarg2
1284   if (nargs == 4) {
1285     __ mov(rcx, rax); // c_rarg3 (via rax)
1286   }
1287 #else
1288   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1289          "unexpected argument registers");
1290 #endif
1291   DEBUG_ONLY(_regs_in_thread = false;)
1292 }
1293 
1294 
1295 void StubGenerator::restore_arg_regs() {
1296   assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1297   const Register saved_rdi = r9;
1298   const Register saved_rsi = r10;
1299 #ifdef _WIN64
1300   __ movptr(rdi, saved_rdi);
1301   __ movptr(rsi, saved_rsi);
1302 #endif
1303 }
1304 
1305 
1306 // This is used in places where r10 is a scratch register, and can
1307 // be adapted if r9 is needed also.
1308 void StubGenerator::setup_arg_regs_using_thread(int nargs) {
1309   const Register saved_r15 = r9;
1310   assert(nargs == 3 || nargs == 4, "else fix");
1311 #ifdef _WIN64
1312   if (nargs == 4) {
1313     __ mov(rax, r9);       // r9 is also saved_r15
1314   }
1315   __ mov(saved_r15, r15);  // r15 is callee saved and needs to be restored
1316   __ get_thread(r15_thread);
1317   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1318          "unexpected argument registers");
1319   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1320   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1321 
1322   __ mov(rdi, rcx); // c_rarg0
1323   __ mov(rsi, rdx); // c_rarg1
1324   __ mov(rdx, r8);  // c_rarg2
1325   if (nargs == 4) {
1326     __ mov(rcx, rax); // c_rarg3 (via rax)
1327   }
1328 #else
1329   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1330          "unexpected argument registers");
1331 #endif
1332   DEBUG_ONLY(_regs_in_thread = true;)
1333 }
1334 
1335 
1336 void StubGenerator::restore_arg_regs_using_thread() {
1337   assert(_regs_in_thread, "wrong call to restore_arg_regs");
1338   const Register saved_r15 = r9;
1339 #ifdef _WIN64
1340   __ get_thread(r15_thread);
1341   __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1342   __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1343   __ mov(r15, saved_r15);  // r15 is callee saved and needs to be restored
1344 #endif
1345 }
1346 
1347 
1348 void StubGenerator::setup_argument_regs(BasicType type) {
1349   if (type == T_BYTE || type == T_SHORT) {
1350     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1351                       // r9 and r10 may be used to save non-volatile registers
1352   } else {
1353     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1354                                    // r9 is used to save r15_thread
1355   }
1356 }
1357 
1358 
1359 void StubGenerator::restore_argument_regs(BasicType type) {
1360   if (type == T_BYTE || type == T_SHORT) {
1361     restore_arg_regs();
1362   } else {
1363     restore_arg_regs_using_thread();
1364   }
1365 }
1366 
1367 address StubGenerator::generate_data_cache_writeback() {
1368   const Register src        = c_rarg0;  // source address
1369 
1370   __ align(CodeEntryAlignment);
1371 
1372   StubGenStubId stub_id = StubGenStubId::data_cache_writeback_id;
1373   StubCodeMark mark(this, stub_id);
1374 
1375   address start = __ pc();
1376 
1377   __ enter();
1378   __ cache_wb(Address(src, 0));
1379   __ leave();
1380   __ ret(0);
1381 
1382   return start;
1383 }
1384 
1385 address StubGenerator::generate_data_cache_writeback_sync() {
1386   const Register is_pre    = c_rarg0;  // pre or post sync
1387 
1388   __ align(CodeEntryAlignment);
1389 
1390   StubGenStubId stub_id = StubGenStubId::data_cache_writeback_sync_id;
1391   StubCodeMark mark(this, stub_id);
1392 
1393   // pre wbsync is a no-op
1394   // post wbsync translates to an sfence
1395 
1396   Label skip;
1397   address start = __ pc();
1398 
1399   __ enter();
1400   __ cmpl(is_pre, 0);
1401   __ jcc(Assembler::notEqual, skip);
1402   __ cache_wbsync(false);
1403   __ bind(skip);
1404   __ leave();
1405   __ ret(0);
1406 
1407   return start;
1408 }
1409 
1410 // ofs and limit are use for multi-block byte array.
1411 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1412 address StubGenerator::generate_md5_implCompress(StubGenStubId stub_id) {
1413   bool multi_block;
1414   switch (stub_id) {
1415   case md5_implCompress_id:
1416     multi_block = false;
1417     break;
1418   case md5_implCompressMB_id:
1419     multi_block = true;
1420     break;
1421   default:
1422     ShouldNotReachHere();
1423   }
1424   __ align(CodeEntryAlignment);
1425   StubCodeMark mark(this, stub_id);
1426   address start = __ pc();
1427 
1428   const Register buf_param = r15;
1429   const Address state_param(rsp, 0 * wordSize);
1430   const Address ofs_param  (rsp, 1 * wordSize    );
1431   const Address limit_param(rsp, 1 * wordSize + 4);
1432 
1433   __ enter();
1434   __ push(rbx);
1435   __ push(rdi);
1436   __ push(rsi);
1437   __ push(r15);
1438   __ subptr(rsp, 2 * wordSize);
1439 
1440   __ movptr(buf_param, c_rarg0);
1441   __ movptr(state_param, c_rarg1);
1442   if (multi_block) {
1443     __ movl(ofs_param, c_rarg2);
1444     __ movl(limit_param, c_rarg3);
1445   }
1446   __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1447 
1448   __ addptr(rsp, 2 * wordSize);
1449   __ pop(r15);
1450   __ pop(rsi);
1451   __ pop(rdi);
1452   __ pop(rbx);
1453   __ leave();
1454   __ ret(0);
1455 
1456   return start;
1457 }
1458 
1459 address StubGenerator::generate_upper_word_mask() {
1460   __ align64();
1461   StubGenStubId stub_id = StubGenStubId::upper_word_mask_id;
1462   StubCodeMark mark(this, stub_id);
1463   address start = __ pc();
1464 
1465   __ emit_data64(0x0000000000000000, relocInfo::none);
1466   __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1467 
1468   return start;
1469 }
1470 
1471 address StubGenerator::generate_shuffle_byte_flip_mask() {
1472   __ align64();
1473   StubGenStubId stub_id = StubGenStubId::shuffle_byte_flip_mask_id;
1474   StubCodeMark mark(this, stub_id);
1475   address start = __ pc();
1476 
1477   __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1478   __ emit_data64(0x0001020304050607, relocInfo::none);
1479 
1480   return start;
1481 }
1482 
1483 // ofs and limit are use for multi-block byte array.
1484 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1485 address StubGenerator::generate_sha1_implCompress(StubGenStubId stub_id) {
1486   bool multi_block;
1487   switch (stub_id) {
1488   case sha1_implCompress_id:
1489     multi_block = false;
1490     break;
1491   case sha1_implCompressMB_id:
1492     multi_block = true;
1493     break;
1494   default:
1495     ShouldNotReachHere();
1496   }
1497   __ align(CodeEntryAlignment);
1498   StubCodeMark mark(this, stub_id);
1499   address start = __ pc();
1500 
1501   Register buf = c_rarg0;
1502   Register state = c_rarg1;
1503   Register ofs = c_rarg2;
1504   Register limit = c_rarg3;
1505 
1506   const XMMRegister abcd = xmm0;
1507   const XMMRegister e0 = xmm1;
1508   const XMMRegister e1 = xmm2;
1509   const XMMRegister msg0 = xmm3;
1510 
1511   const XMMRegister msg1 = xmm4;
1512   const XMMRegister msg2 = xmm5;
1513   const XMMRegister msg3 = xmm6;
1514   const XMMRegister shuf_mask = xmm7;
1515 
1516   __ enter();
1517 
1518   __ subptr(rsp, 4 * wordSize);
1519 
1520   __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1521     buf, state, ofs, limit, rsp, multi_block);
1522 
1523   __ addptr(rsp, 4 * wordSize);
1524 
1525   __ leave();
1526   __ ret(0);
1527 
1528   return start;
1529 }
1530 
1531 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1532   __ align64();
1533   StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_id;
1534   StubCodeMark mark(this, stub_id);
1535   address start = __ pc();
1536 
1537   __ emit_data64(0x0405060700010203, relocInfo::none);
1538   __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1539 
1540   if (VM_Version::supports_avx2()) {
1541     __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1542     __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1543     // _SHUF_00BA
1544     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1545     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1546     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1547     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1548     // _SHUF_DC00
1549     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1550     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1551     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1552     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1553   }
1554 
1555   return start;
1556 }
1557 
1558 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1559 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1560   __ align32();
1561   StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_sha512_id;
1562   StubCodeMark mark(this, stub_id);
1563   address start = __ pc();
1564 
1565   if (VM_Version::supports_avx2()) {
1566     __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1567     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1568     __ emit_data64(0x1011121314151617, relocInfo::none);
1569     __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1570     __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1571     __ emit_data64(0x0000000000000000, relocInfo::none);
1572     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1573     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1574   }
1575 
1576   return start;
1577 }
1578 
1579 // ofs and limit are use for multi-block byte array.
1580 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1581 address StubGenerator::generate_sha256_implCompress(StubGenStubId stub_id) {
1582   bool multi_block;
1583   switch (stub_id) {
1584   case sha256_implCompress_id:
1585     multi_block = false;
1586     break;
1587   case sha256_implCompressMB_id:
1588     multi_block = true;
1589     break;
1590   default:
1591     ShouldNotReachHere();
1592   }
1593   assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1594   __ align(CodeEntryAlignment);
1595   StubCodeMark mark(this, stub_id);
1596   address start = __ pc();
1597 
1598   Register buf = c_rarg0;
1599   Register state = c_rarg1;
1600   Register ofs = c_rarg2;
1601   Register limit = c_rarg3;
1602 
1603   const XMMRegister msg = xmm0;
1604   const XMMRegister state0 = xmm1;
1605   const XMMRegister state1 = xmm2;
1606   const XMMRegister msgtmp0 = xmm3;
1607 
1608   const XMMRegister msgtmp1 = xmm4;
1609   const XMMRegister msgtmp2 = xmm5;
1610   const XMMRegister msgtmp3 = xmm6;
1611   const XMMRegister msgtmp4 = xmm7;
1612 
1613   const XMMRegister shuf_mask = xmm8;
1614 
1615   __ enter();
1616 
1617   __ subptr(rsp, 4 * wordSize);
1618 
1619   if (VM_Version::supports_sha()) {
1620     __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1621       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1622   } else if (VM_Version::supports_avx2()) {
1623     __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1624       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1625   }
1626   __ addptr(rsp, 4 * wordSize);
1627   __ vzeroupper();
1628   __ leave();
1629   __ ret(0);
1630 
1631   return start;
1632 }
1633 
1634 address StubGenerator::generate_sha512_implCompress(StubGenStubId stub_id) {
1635   bool multi_block;
1636   switch (stub_id) {
1637   case sha512_implCompress_id:
1638     multi_block = false;
1639     break;
1640   case sha512_implCompressMB_id:
1641     multi_block = true;
1642     break;
1643   default:
1644     ShouldNotReachHere();
1645   }
1646   assert(VM_Version::supports_avx2(), "");
1647   assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), "");
1648   __ align(CodeEntryAlignment);
1649   StubCodeMark mark(this, stub_id);
1650   address start = __ pc();
1651 
1652   Register buf = c_rarg0;
1653   Register state = c_rarg1;
1654   Register ofs = c_rarg2;
1655   Register limit = c_rarg3;
1656 
1657   __ enter();
1658 
1659   if (VM_Version::supports_sha512()) {
1660       __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block);
1661   } else {
1662     const XMMRegister msg = xmm0;
1663     const XMMRegister state0 = xmm1;
1664     const XMMRegister state1 = xmm2;
1665     const XMMRegister msgtmp0 = xmm3;
1666     const XMMRegister msgtmp1 = xmm4;
1667     const XMMRegister msgtmp2 = xmm5;
1668     const XMMRegister msgtmp3 = xmm6;
1669     const XMMRegister msgtmp4 = xmm7;
1670 
1671     const XMMRegister shuf_mask = xmm8;
1672     __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1673       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1674   }
1675   __ vzeroupper();
1676   __ leave();
1677   __ ret(0);
1678 
1679   return start;
1680 }
1681 
1682 address StubGenerator::base64_shuffle_addr() {
1683   __ align64();
1684   StubGenStubId stub_id = StubGenStubId::shuffle_base64_id;
1685   StubCodeMark mark(this, stub_id);
1686   address start = __ pc();
1687 
1688   assert(((unsigned long long)start & 0x3f) == 0,
1689          "Alignment problem (0x%08llx)", (unsigned long long)start);
1690   __ emit_data64(0x0405030401020001, relocInfo::none);
1691   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1692   __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1693   __ emit_data64(0x1617151613141213, relocInfo::none);
1694   __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1695   __ emit_data64(0x222321221f201e1f, relocInfo::none);
1696   __ emit_data64(0x2829272825262425, relocInfo::none);
1697   __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1698 
1699   return start;
1700 }
1701 
1702 address StubGenerator::base64_avx2_shuffle_addr() {
1703   __ align32();
1704   StubGenStubId stub_id = StubGenStubId::avx2_shuffle_base64_id;
1705   StubCodeMark mark(this, stub_id);
1706   address start = __ pc();
1707 
1708   __ emit_data64(0x0809070805060405, relocInfo::none);
1709   __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1710   __ emit_data64(0x0405030401020001, relocInfo::none);
1711   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1712 
1713   return start;
1714 }
1715 
1716 address StubGenerator::base64_avx2_input_mask_addr() {
1717   __ align32();
1718   StubGenStubId stub_id = StubGenStubId::avx2_input_mask_base64_id;
1719   StubCodeMark mark(this, stub_id);
1720   address start = __ pc();
1721 
1722   __ emit_data64(0x8000000000000000, relocInfo::none);
1723   __ emit_data64(0x8000000080000000, relocInfo::none);
1724   __ emit_data64(0x8000000080000000, relocInfo::none);
1725   __ emit_data64(0x8000000080000000, relocInfo::none);
1726 
1727   return start;
1728 }
1729 
1730 address StubGenerator::base64_avx2_lut_addr() {
1731   __ align32();
1732   StubGenStubId stub_id = StubGenStubId::avx2_lut_base64_id;
1733   StubCodeMark mark(this, stub_id);
1734   address start = __ pc();
1735 
1736   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1737   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1738   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1739   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1740 
1741   // URL LUT
1742   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1743   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1744   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1745   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1746 
1747   return start;
1748 }
1749 
1750 address StubGenerator::base64_encoding_table_addr() {
1751   __ align64();
1752   StubGenStubId stub_id = StubGenStubId::encoding_table_base64_id;
1753   StubCodeMark mark(this, stub_id);
1754   address start = __ pc();
1755 
1756   assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1757   __ emit_data64(0x4847464544434241, relocInfo::none);
1758   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1759   __ emit_data64(0x5857565554535251, relocInfo::none);
1760   __ emit_data64(0x6665646362615a59, relocInfo::none);
1761   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1762   __ emit_data64(0x767574737271706f, relocInfo::none);
1763   __ emit_data64(0x333231307a797877, relocInfo::none);
1764   __ emit_data64(0x2f2b393837363534, relocInfo::none);
1765 
1766   // URL table
1767   __ emit_data64(0x4847464544434241, relocInfo::none);
1768   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1769   __ emit_data64(0x5857565554535251, relocInfo::none);
1770   __ emit_data64(0x6665646362615a59, relocInfo::none);
1771   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1772   __ emit_data64(0x767574737271706f, relocInfo::none);
1773   __ emit_data64(0x333231307a797877, relocInfo::none);
1774   __ emit_data64(0x5f2d393837363534, relocInfo::none);
1775 
1776   return start;
1777 }
1778 
1779 // Code for generating Base64 encoding.
1780 // Intrinsic function prototype in Base64.java:
1781 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1782 // boolean isURL) {
1783 address StubGenerator::generate_base64_encodeBlock()
1784 {
1785   __ align(CodeEntryAlignment);
1786   StubGenStubId stub_id = StubGenStubId::base64_encodeBlock_id;
1787   StubCodeMark mark(this, stub_id);
1788   address start = __ pc();
1789 
1790   __ enter();
1791 
1792   // Save callee-saved registers before using them
1793   __ push(r12);
1794   __ push(r13);
1795   __ push(r14);
1796   __ push(r15);
1797 
1798   // arguments
1799   const Register source = c_rarg0;       // Source Array
1800   const Register start_offset = c_rarg1; // start offset
1801   const Register end_offset = c_rarg2;   // end offset
1802   const Register dest = c_rarg3;   // destination array
1803 
1804 #ifndef _WIN64
1805   const Register dp = c_rarg4;    // Position for writing to dest array
1806   const Register isURL = c_rarg5; // Base64 or URL character set
1807 #else
1808   const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1809   const Address isURL_mem(rbp, 7 * wordSize);
1810   const Register isURL = r10; // pick the volatile windows register
1811   const Register dp = r12;
1812   __ movl(dp, dp_mem);
1813   __ movl(isURL, isURL_mem);
1814 #endif
1815 
1816   const Register length = r14;
1817   const Register encode_table = r13;
1818   Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1819 
1820   // calculate length from offsets
1821   __ movl(length, end_offset);
1822   __ subl(length, start_offset);
1823   __ jcc(Assembler::lessEqual, L_exit);
1824 
1825   // Code for 512-bit VBMI encoding.  Encodes 48 input bytes into 64
1826   // output bytes. We read 64 input bytes and ignore the last 16, so be
1827   // sure not to read past the end of the input buffer.
1828   if (VM_Version::supports_avx512_vbmi()) {
1829     __ cmpl(length, 64); // Do not overrun input buffer.
1830     __ jcc(Assembler::below, L_not512);
1831 
1832     __ shll(isURL, 6); // index into decode table based on isURL
1833     __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1834     __ addptr(encode_table, isURL);
1835     __ shrl(isURL, 6); // restore isURL
1836 
1837     __ mov64(rax, 0x3036242a1016040aull); // Shifts
1838     __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1839     __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1840     __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1841 
1842     __ align32();
1843     __ BIND(L_vbmiLoop);
1844 
1845     __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1846     __ subl(length, 48);
1847 
1848     // Put the input bytes into the proper lanes for writing, then
1849     // encode them.
1850     __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1851     __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1852 
1853     // Write to destination
1854     __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1855 
1856     __ addptr(dest, 64);
1857     __ addptr(source, 48);
1858     __ cmpl(length, 64);
1859     __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1860 
1861     __ vzeroupper();
1862   }
1863 
1864   __ BIND(L_not512);
1865   if (VM_Version::supports_avx2()) {
1866     /*
1867     ** This AVX2 encoder is based off the paper at:
1868     **      https://dl.acm.org/doi/10.1145/3132709
1869     **
1870     ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1871     ** output bytes.
1872     **
1873     */
1874     // Lengths under 32 bytes are done with scalar routine
1875     __ cmpl(length, 31);
1876     __ jcc(Assembler::belowEqual, L_process3);
1877 
1878     // Set up supporting constant table data
1879     __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1880     // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1881     __ movl(rax, 0x0fc0fc00);
1882     __ movdl(xmm8, rax);
1883     __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1884     __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit);
1885 
1886     // Multiplication constant for "shifting" right by 6 and 10
1887     // bits
1888     __ movl(rax, 0x04000040);
1889 
1890     __ subl(length, 24);
1891     __ movdl(xmm7, rax);
1892     __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit);
1893 
1894     // For the first load, we mask off reading of the first 4
1895     // bytes into the register. This is so we can get 4 3-byte
1896     // chunks into each lane of the register, avoiding having to
1897     // handle end conditions.  We then shuffle these bytes into a
1898     // specific order so that manipulation is easier.
1899     //
1900     // The initial read loads the XMM register like this:
1901     //
1902     // Lower 128-bit lane:
1903     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1904     // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1905     // | C2 | D0 | D1 | D2 |
1906     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1907     //
1908     // Upper 128-bit lane:
1909     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1910     // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1911     // | XX | XX | XX | XX |
1912     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1913     //
1914     // Where A0 is the first input byte, B0 is the fourth, etc.
1915     // The alphabetical significance denotes the 3 bytes to be
1916     // consumed and encoded into 4 bytes.
1917     //
1918     // We then shuffle the register so each 32-bit word contains
1919     // the sequence:
1920     //    A1 A0 A2 A1, B1, B0, B2, B1, etc.
1921     // Each of these byte sequences are then manipulated into 4
1922     // 6-bit values ready for encoding.
1923     //
1924     // If we focus on one set of 3-byte chunks, changing the
1925     // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1926     // shuffle such that each 24-bit chunk contains:
1927     //
1928     // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1929     // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1930     // Explain this step.
1931     // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1932     // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1933     //
1934     // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1935     // a5..a0) and shift them using a vector multiplication
1936     // operation (vpmulhuw) which effectively shifts c right by 6
1937     // bits and a right by 10 bits.  We similarly mask bits 10-15
1938     // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1939     // bits respectively.  This is done using vpmullw.  We end up
1940     // with 4 6-bit values, thus splitting the 3 input bytes,
1941     // ready for encoding:
1942     //    0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1943     //
1944     // For translation, we recognize that there are 5 distinct
1945     // ranges of legal Base64 characters as below:
1946     //
1947     //   +-------------+-------------+------------+
1948     //   | 6-bit value | ASCII range |   offset   |
1949     //   +-------------+-------------+------------+
1950     //   |    0..25    |    A..Z     |     65     |
1951     //   |   26..51    |    a..z     |     71     |
1952     //   |   52..61    |    0..9     |     -4     |
1953     //   |     62      |   + or -    | -19 or -17 |
1954     //   |     63      |   / or _    | -16 or 32  |
1955     //   +-------------+-------------+------------+
1956     //
1957     // We note that vpshufb does a parallel lookup in a
1958     // destination register using the lower 4 bits of bytes from a
1959     // source register.  If we use a saturated subtraction and
1960     // subtract 51 from each 6-bit value, bytes from [0,51]
1961     // saturate to 0, and [52,63] map to a range of [1,12].  We
1962     // distinguish the [0,25] and [26,51] ranges by assigning a
1963     // value of 13 for all 6-bit values less than 26.  We end up
1964     // with:
1965     //
1966     //   +-------------+-------------+------------+
1967     //   | 6-bit value |   Reduced   |   offset   |
1968     //   +-------------+-------------+------------+
1969     //   |    0..25    |     13      |     65     |
1970     //   |   26..51    |      0      |     71     |
1971     //   |   52..61    |    0..9     |     -4     |
1972     //   |     62      |     11      | -19 or -17 |
1973     //   |     63      |     12      | -16 or 32  |
1974     //   +-------------+-------------+------------+
1975     //
1976     // We then use a final vpshufb to add the appropriate offset,
1977     // translating the bytes.
1978     //
1979     // Load input bytes - only 28 bytes.  Mask the first load to
1980     // not load into the full register.
1981     __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1982 
1983     // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1984     // ordering by:
1985     //   1, 0, 2, 1; 4, 3, 5, 4; etc.  This groups 6-bit chunks
1986     //   for easy masking
1987     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1988 
1989     __ addl(start_offset, 24);
1990 
1991     // Load masking register for first and third (and multiples)
1992     // 6-bit values.
1993     __ movl(rax, 0x003f03f0);
1994     __ movdl(xmm6, rax);
1995     __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit);
1996     // Multiplication constant for "shifting" left by 4 and 8 bits
1997     __ movl(rax, 0x01000010);
1998     __ movdl(xmm5, rax);
1999     __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit);
2000 
2001     // Isolate 6-bit chunks of interest
2002     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2003 
2004     // Load constants for encoding
2005     __ movl(rax, 0x19191919);
2006     __ movdl(xmm3, rax);
2007     __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit);
2008     __ movl(rax, 0x33333333);
2009     __ movdl(xmm4, rax);
2010     __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit);
2011 
2012     // Shift output bytes 0 and 2 into proper lanes
2013     __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
2014 
2015     // Mask and shift output bytes 1 and 3 into proper lanes and
2016     // combine
2017     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2018     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2019     __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2020 
2021     // Find out which are 0..25.  This indicates which input
2022     // values fall in the range of 'A'-'Z', which require an
2023     // additional offset (see comments above)
2024     __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
2025     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2026     __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
2027 
2028     // Load the proper lookup table
2029     __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
2030     __ movl(r15, isURL);
2031     __ shll(r15, 5);
2032     __ vmovdqu(xmm2, Address(r11, r15));
2033 
2034     // Shuffle the offsets based on the range calculation done
2035     // above. This allows us to add the correct offset to the
2036     // 6-bit value corresponding to the range documented above.
2037     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2038     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2039 
2040     // Store the encoded bytes
2041     __ vmovdqu(Address(dest, dp), xmm0);
2042     __ addl(dp, 32);
2043 
2044     __ cmpl(length, 31);
2045     __ jcc(Assembler::belowEqual, L_process3);
2046 
2047     __ align32();
2048     __ BIND(L_32byteLoop);
2049 
2050     // Get next 32 bytes
2051     __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
2052 
2053     __ subl(length, 24);
2054     __ addl(start_offset, 24);
2055 
2056     // This logic is identical to the above, with only constant
2057     // register loads removed.  Shuffle the input, mask off 6-bit
2058     // chunks, shift them into place, then add the offset to
2059     // encode.
2060     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
2061 
2062     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2063     __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
2064     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2065     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2066     __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2067     __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
2068     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2069     __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
2070     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2071     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2072 
2073     // Store the encoded bytes
2074     __ vmovdqu(Address(dest, dp), xmm0);
2075     __ addl(dp, 32);
2076 
2077     __ cmpl(length, 31);
2078     __ jcc(Assembler::above, L_32byteLoop);
2079 
2080     __ BIND(L_process3);
2081     __ vzeroupper();
2082   } else {
2083     __ BIND(L_process3);
2084   }
2085 
2086   __ cmpl(length, 3);
2087   __ jcc(Assembler::below, L_exit);
2088 
2089   // Load the encoding table based on isURL
2090   __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
2091   __ movl(r15, isURL);
2092   __ shll(r15, 6);
2093   __ addptr(r11, r15);
2094 
2095   __ BIND(L_processdata);
2096 
2097   // Load 3 bytes
2098   __ load_unsigned_byte(r15, Address(source, start_offset));
2099   __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
2100   __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
2101 
2102   // Build a 32-bit word with bytes 1, 2, 0, 1
2103   __ movl(rax, r10);
2104   __ shll(r10, 24);
2105   __ orl(rax, r10);
2106 
2107   __ subl(length, 3);
2108 
2109   __ shll(r15, 8);
2110   __ shll(r13, 16);
2111   __ orl(rax, r15);
2112 
2113   __ addl(start_offset, 3);
2114 
2115   __ orl(rax, r13);
2116   // At this point, rax contains | byte1 | byte2 | byte0 | byte1
2117   // r13 has byte2 << 16 - need low-order 6 bits to translate.
2118   // This translated byte is the fourth output byte.
2119   __ shrl(r13, 16);
2120   __ andl(r13, 0x3f);
2121 
2122   // The high-order 6 bits of r15 (byte0) is translated.
2123   // The translated byte is the first output byte.
2124   __ shrl(r15, 10);
2125 
2126   __ load_unsigned_byte(r13, Address(r11, r13));
2127   __ load_unsigned_byte(r15, Address(r11, r15));
2128 
2129   __ movb(Address(dest, dp, Address::times_1, 3), r13);
2130 
2131   // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
2132   // This translated byte is the second output byte.
2133   __ shrl(rax, 4);
2134   __ movl(r10, rax);
2135   __ andl(rax, 0x3f);
2136 
2137   __ movb(Address(dest, dp, Address::times_1, 0), r15);
2138 
2139   __ load_unsigned_byte(rax, Address(r11, rax));
2140 
2141   // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
2142   // This translated byte is the third output byte.
2143   __ shrl(r10, 18);
2144   __ andl(r10, 0x3f);
2145 
2146   __ load_unsigned_byte(r10, Address(r11, r10));
2147 
2148   __ movb(Address(dest, dp, Address::times_1, 1), rax);
2149   __ movb(Address(dest, dp, Address::times_1, 2), r10);
2150 
2151   __ addl(dp, 4);
2152   __ cmpl(length, 3);
2153   __ jcc(Assembler::aboveEqual, L_processdata);
2154 
2155   __ BIND(L_exit);
2156   __ pop(r15);
2157   __ pop(r14);
2158   __ pop(r13);
2159   __ pop(r12);
2160   __ leave();
2161   __ ret(0);
2162 
2163   return start;
2164 }
2165 
2166 // base64 AVX512vbmi tables
2167 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2168   __ align64();
2169   StubGenStubId stub_id = StubGenStubId::lookup_lo_base64_id;
2170   StubCodeMark mark(this, stub_id);
2171   address start = __ pc();
2172 
2173   assert(((unsigned long long)start & 0x3f) == 0,
2174          "Alignment problem (0x%08llx)", (unsigned long long)start);
2175   __ emit_data64(0x8080808080808080, relocInfo::none);
2176   __ emit_data64(0x8080808080808080, relocInfo::none);
2177   __ emit_data64(0x8080808080808080, relocInfo::none);
2178   __ emit_data64(0x8080808080808080, relocInfo::none);
2179   __ emit_data64(0x8080808080808080, relocInfo::none);
2180   __ emit_data64(0x3f8080803e808080, relocInfo::none);
2181   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2182   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2183 
2184   return start;
2185 }
2186 
2187 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2188   __ align64();
2189   StubGenStubId stub_id = StubGenStubId::lookup_hi_base64_id;
2190   StubCodeMark mark(this, stub_id);
2191   address start = __ pc();
2192 
2193   assert(((unsigned long long)start & 0x3f) == 0,
2194          "Alignment problem (0x%08llx)", (unsigned long long)start);
2195   __ emit_data64(0x0605040302010080, relocInfo::none);
2196   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2197   __ emit_data64(0x161514131211100f, relocInfo::none);
2198   __ emit_data64(0x8080808080191817, relocInfo::none);
2199   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2200   __ emit_data64(0x2827262524232221, relocInfo::none);
2201   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2202   __ emit_data64(0x8080808080333231, relocInfo::none);
2203 
2204   return start;
2205 }
2206 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2207   __ align64();
2208   StubGenStubId stub_id = StubGenStubId::lookup_lo_base64url_id;
2209   StubCodeMark mark(this, stub_id);
2210   address start = __ pc();
2211 
2212   assert(((unsigned long long)start & 0x3f) == 0,
2213          "Alignment problem (0x%08llx)", (unsigned long long)start);
2214   __ emit_data64(0x8080808080808080, relocInfo::none);
2215   __ emit_data64(0x8080808080808080, relocInfo::none);
2216   __ emit_data64(0x8080808080808080, relocInfo::none);
2217   __ emit_data64(0x8080808080808080, relocInfo::none);
2218   __ emit_data64(0x8080808080808080, relocInfo::none);
2219   __ emit_data64(0x80803e8080808080, relocInfo::none);
2220   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2221   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2222 
2223   return start;
2224 }
2225 
2226 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2227   __ align64();
2228   StubGenStubId stub_id = StubGenStubId::lookup_hi_base64url_id;
2229   StubCodeMark mark(this, stub_id);
2230   address start = __ pc();
2231 
2232   assert(((unsigned long long)start & 0x3f) == 0,
2233          "Alignment problem (0x%08llx)", (unsigned long long)start);
2234   __ emit_data64(0x0605040302010080, relocInfo::none);
2235   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2236   __ emit_data64(0x161514131211100f, relocInfo::none);
2237   __ emit_data64(0x3f80808080191817, relocInfo::none);
2238   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2239   __ emit_data64(0x2827262524232221, relocInfo::none);
2240   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2241   __ emit_data64(0x8080808080333231, relocInfo::none);
2242 
2243   return start;
2244 }
2245 
2246 address StubGenerator::base64_vbmi_pack_vec_addr() {
2247   __ align64();
2248   StubGenStubId stub_id = StubGenStubId::pack_vec_base64_id;
2249   StubCodeMark mark(this, stub_id);
2250   address start = __ pc();
2251 
2252   assert(((unsigned long long)start & 0x3f) == 0,
2253          "Alignment problem (0x%08llx)", (unsigned long long)start);
2254   __ emit_data64(0x090a040506000102, relocInfo::none);
2255   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2256   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2257   __ emit_data64(0x292a242526202122, relocInfo::none);
2258   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2259   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2260   __ emit_data64(0x0000000000000000, relocInfo::none);
2261   __ emit_data64(0x0000000000000000, relocInfo::none);
2262 
2263   return start;
2264 }
2265 
2266 address StubGenerator::base64_vbmi_join_0_1_addr() {
2267   __ align64();
2268   StubGenStubId stub_id = StubGenStubId::join_0_1_base64_id;
2269   StubCodeMark mark(this, stub_id);
2270   address start = __ pc();
2271 
2272   assert(((unsigned long long)start & 0x3f) == 0,
2273          "Alignment problem (0x%08llx)", (unsigned long long)start);
2274   __ emit_data64(0x090a040506000102, relocInfo::none);
2275   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2276   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2277   __ emit_data64(0x292a242526202122, relocInfo::none);
2278   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2279   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2280   __ emit_data64(0x494a444546404142, relocInfo::none);
2281   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2282 
2283   return start;
2284 }
2285 
2286 address StubGenerator::base64_vbmi_join_1_2_addr() {
2287   __ align64();
2288   StubGenStubId stub_id = StubGenStubId::join_1_2_base64_id;
2289   StubCodeMark mark(this, stub_id);
2290   address start = __ pc();
2291 
2292   assert(((unsigned long long)start & 0x3f) == 0,
2293          "Alignment problem (0x%08llx)", (unsigned long long)start);
2294   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2295   __ emit_data64(0x292a242526202122, relocInfo::none);
2296   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2297   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2298   __ emit_data64(0x494a444546404142, relocInfo::none);
2299   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2300   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2301   __ emit_data64(0x696a646566606162, relocInfo::none);
2302 
2303   return start;
2304 }
2305 
2306 address StubGenerator::base64_vbmi_join_2_3_addr() {
2307   __ align64();
2308   StubGenStubId stub_id = StubGenStubId::join_2_3_base64_id;
2309   StubCodeMark mark(this, stub_id);
2310   address start = __ pc();
2311 
2312   assert(((unsigned long long)start & 0x3f) == 0,
2313          "Alignment problem (0x%08llx)", (unsigned long long)start);
2314   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2315   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2316   __ emit_data64(0x494a444546404142, relocInfo::none);
2317   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2318   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2319   __ emit_data64(0x696a646566606162, relocInfo::none);
2320   __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2321   __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2322 
2323   return start;
2324 }
2325 
2326 address StubGenerator::base64_AVX2_decode_tables_addr() {
2327   __ align64();
2328   StubGenStubId stub_id = StubGenStubId::avx2_decode_tables_base64_id;
2329   StubCodeMark mark(this, stub_id);
2330   address start = __ pc();
2331 
2332   assert(((unsigned long long)start & 0x3f) == 0,
2333          "Alignment problem (0x%08llx)", (unsigned long long)start);
2334   __ emit_data(0x2f2f2f2f, relocInfo::none, 0);
2335   __ emit_data(0x5f5f5f5f, relocInfo::none, 0);  // for URL
2336 
2337   __ emit_data(0xffffffff, relocInfo::none, 0);
2338   __ emit_data(0xfcfcfcfc, relocInfo::none, 0);  // for URL
2339 
2340   // Permute table
2341   __ emit_data64(0x0000000100000000, relocInfo::none);
2342   __ emit_data64(0x0000000400000002, relocInfo::none);
2343   __ emit_data64(0x0000000600000005, relocInfo::none);
2344   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2345 
2346   // Shuffle table
2347   __ emit_data64(0x090a040506000102, relocInfo::none);
2348   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2349   __ emit_data64(0x090a040506000102, relocInfo::none);
2350   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2351 
2352   // merge table
2353   __ emit_data(0x01400140, relocInfo::none, 0);
2354 
2355   // merge multiplier
2356   __ emit_data(0x00011000, relocInfo::none, 0);
2357 
2358   return start;
2359 }
2360 
2361 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() {
2362   __ align64();
2363   StubGenStubId stub_id = StubGenStubId::avx2_decode_lut_tables_base64_id;
2364   StubCodeMark mark(this, stub_id);
2365   address start = __ pc();
2366 
2367   assert(((unsigned long long)start & 0x3f) == 0,
2368          "Alignment problem (0x%08llx)", (unsigned long long)start);
2369   // lut_lo
2370   __ emit_data64(0x1111111111111115, relocInfo::none);
2371   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2372   __ emit_data64(0x1111111111111115, relocInfo::none);
2373   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2374 
2375   // lut_roll
2376   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2377   __ emit_data64(0x0000000000000000, relocInfo::none);
2378   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2379   __ emit_data64(0x0000000000000000, relocInfo::none);
2380 
2381   // lut_lo URL
2382   __ emit_data64(0x1111111111111115, relocInfo::none);
2383   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2384   __ emit_data64(0x1111111111111115, relocInfo::none);
2385   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2386 
2387   // lut_roll URL
2388   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2389   __ emit_data64(0x0000000000000000, relocInfo::none);
2390   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2391   __ emit_data64(0x0000000000000000, relocInfo::none);
2392 
2393   // lut_hi
2394   __ emit_data64(0x0804080402011010, relocInfo::none);
2395   __ emit_data64(0x1010101010101010, relocInfo::none);
2396   __ emit_data64(0x0804080402011010, relocInfo::none);
2397   __ emit_data64(0x1010101010101010, relocInfo::none);
2398 
2399   return start;
2400 }
2401 
2402 address StubGenerator::base64_decoding_table_addr() {
2403   StubGenStubId stub_id = StubGenStubId::decoding_table_base64_id;
2404   StubCodeMark mark(this, stub_id);
2405   address start = __ pc();
2406 
2407   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2408   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2409   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2410   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2411   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2412   __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2413   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2414   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2415   __ emit_data64(0x06050403020100ff, relocInfo::none);
2416   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2417   __ emit_data64(0x161514131211100f, relocInfo::none);
2418   __ emit_data64(0xffffffffff191817, relocInfo::none);
2419   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2420   __ emit_data64(0x2827262524232221, relocInfo::none);
2421   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2422   __ emit_data64(0xffffffffff333231, relocInfo::none);
2423   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2424   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2425   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2426   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2427   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2428   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2429   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2430   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2431   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2432   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2433   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2434   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2435   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2436   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2437   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2438   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2439 
2440   // URL table
2441   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2442   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2443   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2444   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2445   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2446   __ emit_data64(0xffff3effffffffff, relocInfo::none);
2447   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2448   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2449   __ emit_data64(0x06050403020100ff, relocInfo::none);
2450   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2451   __ emit_data64(0x161514131211100f, relocInfo::none);
2452   __ emit_data64(0x3fffffffff191817, relocInfo::none);
2453   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2454   __ emit_data64(0x2827262524232221, relocInfo::none);
2455   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2456   __ emit_data64(0xffffffffff333231, relocInfo::none);
2457   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2458   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2459   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2460   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2461   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2462   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2463   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2464   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2465   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2466   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2467   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2468   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2469   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2470   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2471   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2472   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2473 
2474   return start;
2475 }
2476 
2477 
2478 // Code for generating Base64 decoding.
2479 //
2480 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2481 //
2482 // Intrinsic function prototype in Base64.java:
2483 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2484 address StubGenerator::generate_base64_decodeBlock() {
2485   __ align(CodeEntryAlignment);
2486   StubGenStubId stub_id = StubGenStubId::base64_decodeBlock_id;
2487   StubCodeMark mark(this, stub_id);
2488   address start = __ pc();
2489 
2490   __ enter();
2491 
2492   // Save callee-saved registers before using them
2493   __ push(r12);
2494   __ push(r13);
2495   __ push(r14);
2496   __ push(r15);
2497   __ push(rbx);
2498 
2499   // arguments
2500   const Register source = c_rarg0; // Source Array
2501   const Register start_offset = c_rarg1; // start offset
2502   const Register end_offset = c_rarg2; // end offset
2503   const Register dest = c_rarg3; // destination array
2504   const Register isMIME = rbx;
2505 
2506 #ifndef _WIN64
2507   const Register dp = c_rarg4;  // Position for writing to dest array
2508   const Register isURL = c_rarg5;// Base64 or URL character set
2509   __ movl(isMIME, Address(rbp, 2 * wordSize));
2510 #else
2511   const Address dp_mem(rbp, 6 * wordSize);  // length is on stack on Win64
2512   const Address isURL_mem(rbp, 7 * wordSize);
2513   const Register isURL = r10;      // pick the volatile windows register
2514   const Register dp = r12;
2515   __ movl(dp, dp_mem);
2516   __ movl(isURL, isURL_mem);
2517   __ movl(isMIME, Address(rbp, 8 * wordSize));
2518 #endif
2519 
2520   const XMMRegister lookup_lo = xmm5;
2521   const XMMRegister lookup_hi = xmm6;
2522   const XMMRegister errorvec = xmm7;
2523   const XMMRegister pack16_op = xmm9;
2524   const XMMRegister pack32_op = xmm8;
2525   const XMMRegister input0 = xmm3;
2526   const XMMRegister input1 = xmm20;
2527   const XMMRegister input2 = xmm21;
2528   const XMMRegister input3 = xmm19;
2529   const XMMRegister join01 = xmm12;
2530   const XMMRegister join12 = xmm11;
2531   const XMMRegister join23 = xmm10;
2532   const XMMRegister translated0 = xmm2;
2533   const XMMRegister translated1 = xmm1;
2534   const XMMRegister translated2 = xmm0;
2535   const XMMRegister translated3 = xmm4;
2536 
2537   const XMMRegister merged0 = xmm2;
2538   const XMMRegister merged1 = xmm1;
2539   const XMMRegister merged2 = xmm0;
2540   const XMMRegister merged3 = xmm4;
2541   const XMMRegister merge_ab_bc0 = xmm2;
2542   const XMMRegister merge_ab_bc1 = xmm1;
2543   const XMMRegister merge_ab_bc2 = xmm0;
2544   const XMMRegister merge_ab_bc3 = xmm4;
2545 
2546   const XMMRegister pack24bits = xmm4;
2547 
2548   const Register length = r14;
2549   const Register output_size = r13;
2550   const Register output_mask = r15;
2551   const KRegister input_mask = k1;
2552 
2553   const XMMRegister input_initial_valid_b64 = xmm0;
2554   const XMMRegister tmp = xmm10;
2555   const XMMRegister mask = xmm0;
2556   const XMMRegister invalid_b64 = xmm1;
2557 
2558   Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2559   Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2560   Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk;
2561 
2562   // calculate length from offsets
2563   __ movl(length, end_offset);
2564   __ subl(length, start_offset);
2565   __ push(dest);          // Save for return value calc
2566 
2567   // If AVX512 VBMI not supported, just compile non-AVX code
2568   if(VM_Version::supports_avx512_vbmi() &&
2569      VM_Version::supports_avx512bw()) {
2570     __ cmpl(length, 31);     // 32-bytes is break-even for AVX-512
2571     __ jcc(Assembler::lessEqual, L_lastChunk);
2572 
2573     __ cmpl(isMIME, 0);
2574     __ jcc(Assembler::notEqual, L_lastChunk);
2575 
2576     // Load lookup tables based on isURL
2577     __ cmpl(isURL, 0);
2578     __ jcc(Assembler::notZero, L_loadURL);
2579 
2580     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2581     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2582 
2583     __ BIND(L_continue);
2584 
2585     __ movl(r15, 0x01400140);
2586     __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2587 
2588     __ movl(r15, 0x00011000);
2589     __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2590 
2591     __ cmpl(length, 0xff);
2592     __ jcc(Assembler::lessEqual, L_process64);
2593 
2594     // load masks required for decoding data
2595     __ BIND(L_processdata);
2596     __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2597     __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2598     __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2599 
2600     __ align32();
2601     __ BIND(L_process256);
2602     // Grab input data
2603     __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2604     __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2605     __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2606     __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2607 
2608     // Copy the low part of the lookup table into the destination of the permutation
2609     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2610     __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2611     __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2612     __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2613 
2614     // Translate the base64 input into "decoded" bytes
2615     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2616     __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2617     __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2618     __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2619 
2620     // OR all of the translations together to check for errors (high-order bit of byte set)
2621     __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2622 
2623     __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2624     __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2625     __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2626 
2627     // Check if there was an error - if so, try 64-byte chunks
2628     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2629     __ kortestql(k3, k3);
2630     __ jcc(Assembler::notZero, L_process64);
2631 
2632     // The merging and shuffling happens here
2633     // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2634     // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2635     // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2636     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2637     __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2638     __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2639     __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2640 
2641     // Now do the same with packed 16-bit values.
2642     // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2643     // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2644     // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2645     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2646     __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2647     __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2648     __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2649 
2650     // The join vectors specify which byte from which vector goes into the outputs
2651     // One of every 4 bytes in the extended vector is zero, so we pack them into their
2652     // final positions in the register for storing (256 bytes in, 192 bytes out)
2653     __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2654     __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2655     __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2656 
2657     // Store result
2658     __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2659     __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2660     __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2661 
2662     __ addptr(source, 0x100);
2663     __ addptr(dest, 0xc0);
2664     __ subl(length, 0x100);
2665     __ cmpl(length, 64 * 4);
2666     __ jcc(Assembler::greaterEqual, L_process256);
2667 
2668     // At this point, we've decoded 64 * 4 * n bytes.
2669     // The remaining length will be <= 64 * 4 - 1.
2670     // UNLESS there was an error decoding the first 256-byte chunk.  In this
2671     // case, the length will be arbitrarily long.
2672     //
2673     // Note that this will be the path for MIME-encoded strings.
2674 
2675     __ BIND(L_process64);
2676 
2677     __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2678 
2679     __ cmpl(length, 63);
2680     __ jcc(Assembler::lessEqual, L_finalBit);
2681 
2682     __ mov64(rax, 0x0000ffffffffffff);
2683     __ kmovql(k2, rax);
2684 
2685     __ align32();
2686     __ BIND(L_process64Loop);
2687 
2688     // Handle first 64-byte block
2689 
2690     __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2691     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2692     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2693 
2694     __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2695 
2696     // Check for error and bomb out before updating dest
2697     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2698     __ kortestql(k3, k3);
2699     __ jcc(Assembler::notZero, L_exit);
2700 
2701     // Pack output register, selecting correct byte ordering
2702     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2703     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2704     __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2705 
2706     __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2707 
2708     __ subl(length, 64);
2709     __ addptr(source, 64);
2710     __ addptr(dest, 48);
2711 
2712     __ cmpl(length, 64);
2713     __ jcc(Assembler::greaterEqual, L_process64Loop);
2714 
2715     __ cmpl(length, 0);
2716     __ jcc(Assembler::lessEqual, L_exit);
2717 
2718     __ BIND(L_finalBit);
2719     // Now have 1 to 63 bytes left to decode
2720 
2721     // I was going to let Java take care of the final fragment
2722     // however it will repeatedly call this routine for every 4 bytes
2723     // of input data, so handle the rest here.
2724     __ movq(rax, -1);
2725     __ bzhiq(rax, rax, length);    // Input mask in rax
2726 
2727     __ movl(output_size, length);
2728     __ shrl(output_size, 2);   // Find (len / 4) * 3 (output length)
2729     __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2730     // output_size in r13
2731 
2732     // Strip pad characters, if any, and adjust length and mask
2733     __ addq(length, start_offset);
2734     __ cmpb(Address(source, length, Address::times_1, -1), '=');
2735     __ jcc(Assembler::equal, L_padding);
2736 
2737     __ BIND(L_donePadding);
2738     __ subq(length, start_offset);
2739 
2740     // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2741     __ kmovql(input_mask, rax);
2742     __ movq(output_mask, -1);
2743     __ bzhiq(output_mask, output_mask, output_size);
2744 
2745     // Load initial input with all valid base64 characters.  Will be used
2746     // in merging source bytes to avoid masking when determining if an error occurred.
2747     __ movl(rax, 0x61616161);
2748     __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2749 
2750     // A register containing all invalid base64 decoded values
2751     __ movl(rax, 0x80808080);
2752     __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2753 
2754     // input_mask is in k1
2755     // output_size is in r13
2756     // output_mask is in r15
2757     // zmm0 - free
2758     // zmm1 - 0x00011000
2759     // zmm2 - 0x01400140
2760     // zmm3 - errorvec
2761     // zmm4 - pack vector
2762     // zmm5 - lookup_lo
2763     // zmm6 - lookup_hi
2764     // zmm7 - errorvec
2765     // zmm8 - 0x61616161
2766     // zmm9 - 0x80808080
2767 
2768     // Load only the bytes from source, merging into our "fully-valid" register
2769     __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2770 
2771     // Decode all bytes within our merged input
2772     __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2773     __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2774     __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2775 
2776     // Check for error.  Compare (decoded | initial) to all invalid.
2777     // If any bytes have their high-order bit set, then we have an error.
2778     __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2779     __ kortestql(k2, k2);
2780 
2781     // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2782     __ jcc(Assembler::notZero, L_bruteForce);
2783 
2784     // Shuffle output bytes
2785     __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2786     __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2787 
2788     __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2789     __ kmovql(k1, output_mask);
2790     __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2791 
2792     __ addptr(dest, output_size);
2793 
2794     __ BIND(L_exit);
2795     __ vzeroupper();
2796     __ pop(rax);             // Get original dest value
2797     __ subptr(dest, rax);      // Number of bytes converted
2798     __ movptr(rax, dest);
2799     __ pop(rbx);
2800     __ pop(r15);
2801     __ pop(r14);
2802     __ pop(r13);
2803     __ pop(r12);
2804     __ leave();
2805     __ ret(0);
2806 
2807     __ BIND(L_loadURL);
2808     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2809     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2810     __ jmp(L_continue);
2811 
2812     __ BIND(L_padding);
2813     __ decrementq(output_size, 1);
2814     __ shrq(rax, 1);
2815 
2816     __ cmpb(Address(source, length, Address::times_1, -2), '=');
2817     __ jcc(Assembler::notEqual, L_donePadding);
2818 
2819     __ decrementq(output_size, 1);
2820     __ shrq(rax, 1);
2821     __ jmp(L_donePadding);
2822 
2823     __ align32();
2824     __ BIND(L_bruteForce);
2825   }   // End of if(avx512_vbmi)
2826 
2827   if (VM_Version::supports_avx2()) {
2828     Label L_tailProc, L_topLoop, L_enterLoop;
2829 
2830     __ cmpl(isMIME, 0);
2831     __ jcc(Assembler::notEqual, L_lastChunk);
2832 
2833     // Check for buffer too small (for algorithm)
2834     __ subl(length, 0x2c);
2835     __ jcc(Assembler::less, L_tailProc);
2836 
2837     __ shll(isURL, 2);
2838 
2839     // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64
2840     // Encoding and Decoding using AVX2 Instructions".  URL modifications added.
2841 
2842     // Set up constants
2843     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr()));
2844     __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit);  // 2F or 5F
2845     __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit);  // -1 or -4
2846     __ vmovdqu(xmm12, Address(r13, 0x10));  // permute
2847     __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle
2848     __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit);  // merge
2849     __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit);  // merge mult
2850 
2851     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr()));
2852     __ shll(isURL, 4);
2853     __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00));  // lut_lo
2854     __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll
2855     __ shrl(isURL, 6);  // restore isURL
2856     __ vmovdqu(xmm9, Address(r13, 0x80));  // lut_hi
2857     __ jmp(L_enterLoop);
2858 
2859     __ align32();
2860     __ bind(L_topLoop);
2861     // Add in the offset value (roll) to get 6-bit out values
2862     __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2863     // Merge and permute the output bits into appropriate output byte lanes
2864     __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit);
2865     __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit);
2866     __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit);
2867     __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit);
2868     // Store the output bytes
2869     __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0);
2870     __ addptr(source, 0x20);
2871     __ addptr(dest, 0x18);
2872     __ subl(length, 0x20);
2873     __ jcc(Assembler::less, L_tailProc);
2874 
2875     __ bind(L_enterLoop);
2876 
2877     // Load in encoded string (32 bytes)
2878     __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0));
2879     // Extract the high nibble for indexing into the lut tables.  High 4 bits are don't care.
2880     __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit);
2881     __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit);
2882     // Extract the low nibble. 5F/2F will isolate the low-order 4 bits.  High 4 bits are don't care.
2883     __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit);
2884     // Check for special-case (0x2F or 0x5F (URL))
2885     __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit);
2886     // Get the bitset based on the low nibble.  vpshufb uses low-order 4 bits only.
2887     __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit);
2888     // Get the bit value of the high nibble
2889     __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit);
2890     // Make sure 2F / 5F shows as valid
2891     __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit);
2892     // Make adjustment for roll index.  For non-URL, this is a no-op,
2893     // for URL, this adjusts by -4.  This is to properly index the
2894     // roll value for 2F / 5F.
2895     __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2896     // If the and of the two is non-zero, we have an invalid input character
2897     __ vptest(xmm3, xmm5);
2898     // Extract the "roll" value - value to add to the input to get 6-bit out value
2899     __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F
2900     __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit);
2901     __ jcc(Assembler::equal, L_topLoop);  // Fall through on error
2902 
2903     __ bind(L_tailProc);
2904 
2905     __ addl(length, 0x2c);
2906 
2907     __ vzeroupper();
2908   }
2909 
2910   // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2911 
2912   // Register state (Linux):
2913   // r12-15 - saved on stack
2914   // rdi - src
2915   // rsi - sp
2916   // rdx - sl
2917   // rcx - dst
2918   // r8 - dp
2919   // r9 - isURL
2920 
2921   // Register state (Windows):
2922   // r12-15 - saved on stack
2923   // rcx - src
2924   // rdx - sp
2925   // r8 - sl
2926   // r9 - dst
2927   // r12 - dp
2928   // r10 - isURL
2929 
2930   // Registers (common):
2931   // length (r14) - bytes in src
2932 
2933   const Register decode_table = r11;
2934   const Register out_byte_count = rbx;
2935   const Register byte1 = r13;
2936   const Register byte2 = r15;
2937   const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2938   const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2939 
2940   __ bind(L_lastChunk);
2941 
2942   __ shrl(length, 2);    // Multiple of 4 bytes only - length is # 4-byte chunks
2943   __ cmpl(length, 0);
2944   __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2945 
2946   __ shll(isURL, 8);    // index into decode table based on isURL
2947   __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2948   __ addptr(decode_table, isURL);
2949 
2950   __ jmp(L_bottomLoop);
2951 
2952   __ align32();
2953   __ BIND(L_forceLoop);
2954   __ shll(byte1, 18);
2955   __ shll(byte2, 12);
2956   __ shll(byte3, 6);
2957   __ orl(byte1, byte2);
2958   __ orl(byte1, byte3);
2959   __ orl(byte1, byte4);
2960 
2961   __ addptr(source, 4);
2962 
2963   __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2964   __ shrl(byte1, 8);
2965   __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2966   __ shrl(byte1, 8);
2967   __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2968 
2969   __ addptr(dest, 3);
2970   __ decrementl(length, 1);
2971   __ jcc(Assembler::zero, L_exit_no_vzero);
2972 
2973   __ BIND(L_bottomLoop);
2974   __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2975   __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2976   __ load_signed_byte(byte1, Address(decode_table, byte1));
2977   __ load_signed_byte(byte2, Address(decode_table, byte2));
2978   __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2979   __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2980   __ load_signed_byte(byte3, Address(decode_table, byte3));
2981   __ load_signed_byte(byte4, Address(decode_table, byte4));
2982 
2983   __ mov(rax, byte1);
2984   __ orl(rax, byte2);
2985   __ orl(rax, byte3);
2986   __ orl(rax, byte4);
2987   __ jcc(Assembler::positive, L_forceLoop);
2988 
2989   __ BIND(L_exit_no_vzero);
2990   __ pop(rax);             // Get original dest value
2991   __ subptr(dest, rax);      // Number of bytes converted
2992   __ movptr(rax, dest);
2993   __ pop(rbx);
2994   __ pop(r15);
2995   __ pop(r14);
2996   __ pop(r13);
2997   __ pop(r12);
2998   __ leave();
2999   __ ret(0);
3000 
3001   return start;
3002 }
3003 
3004 
3005 /**
3006  *  Arguments:
3007  *
3008  * Inputs:
3009  *   c_rarg0   - int crc
3010  *   c_rarg1   - byte* buf
3011  *   c_rarg2   - int length
3012  *
3013  * Output:
3014  *       rax   - int crc result
3015  */
3016 address StubGenerator::generate_updateBytesCRC32() {
3017   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3018 
3019   __ align(CodeEntryAlignment);
3020   StubGenStubId stub_id = StubGenStubId::updateBytesCRC32_id;
3021   StubCodeMark mark(this, stub_id);
3022 
3023   address start = __ pc();
3024 
3025   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3026   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3027   // rscratch1: r10
3028   const Register crc   = c_rarg0;  // crc
3029   const Register buf   = c_rarg1;  // source java byte array address
3030   const Register len   = c_rarg2;  // length
3031   const Register table = c_rarg3;  // crc_table address (reuse register)
3032   const Register tmp1   = r11;
3033   const Register tmp2   = r10;
3034   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
3035 
3036   BLOCK_COMMENT("Entry:");
3037   __ enter(); // required for proper stackwalking of RuntimeStub frame
3038 
3039   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3040       VM_Version::supports_avx512bw() &&
3041       VM_Version::supports_avx512vl()) {
3042       // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
3043       // However, the constant table for CRC32-C assumes the original crc value.  Account for this
3044       // difference before calling and after returning.
3045     __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
3046     __ notl(crc);
3047     __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
3048     __ notl(crc);
3049   } else {
3050     __ kernel_crc32(crc, buf, len, table, tmp1);
3051   }
3052 
3053   __ movl(rax, crc);
3054   __ vzeroupper();
3055   __ leave(); // required for proper stackwalking of RuntimeStub frame
3056   __ ret(0);
3057 
3058   return start;
3059 }
3060 
3061 /**
3062 *  Arguments:
3063 *
3064 * Inputs:
3065 *   c_rarg0   - int crc
3066 *   c_rarg1   - byte* buf
3067 *   c_rarg2   - long length
3068 *   c_rarg3   - table_start - optional (present only when doing a library_call,
3069 *              not used by x86 algorithm)
3070 *
3071 * Output:
3072 *       rax   - int crc result
3073 */
3074 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3075   assert(UseCRC32CIntrinsics, "need SSE4_2");
3076   __ align(CodeEntryAlignment);
3077   StubGenStubId stub_id = StubGenStubId::updateBytesCRC32C_id;
3078   StubCodeMark mark(this, stub_id);
3079   address start = __ pc();
3080 
3081   //reg.arg        int#0        int#1        int#2        int#3        int#4        int#5        float regs
3082   //Windows        RCX          RDX          R8           R9           none         none         XMM0..XMM3
3083   //Lin / Sol      RDI          RSI          RDX          RCX          R8           R9           XMM0..XMM7
3084   const Register crc = c_rarg0;  // crc
3085   const Register buf = c_rarg1;  // source java byte array address
3086   const Register len = c_rarg2;  // length
3087   const Register a = rax;
3088   const Register j = r9;
3089   const Register k = r10;
3090   const Register l = r11;
3091 #ifdef _WIN64
3092   const Register y = rdi;
3093   const Register z = rsi;
3094 #else
3095   const Register y = rcx;
3096   const Register z = r8;
3097 #endif
3098   assert_different_registers(crc, buf, len, a, j, k, l, y, z);
3099 
3100   BLOCK_COMMENT("Entry:");
3101   __ enter(); // required for proper stackwalking of RuntimeStub frame
3102   Label L_continue;
3103 
3104   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3105       VM_Version::supports_avx512bw() &&
3106       VM_Version::supports_avx512vl()) {
3107     Label L_doSmall;
3108 
3109     __ cmpl(len, 384);
3110     __ jcc(Assembler::lessEqual, L_doSmall);
3111 
3112     __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
3113     __ kernel_crc32_avx512(crc, buf, len, j, l, k);
3114 
3115     __ jmp(L_continue);
3116 
3117     __ bind(L_doSmall);
3118   }
3119 #ifdef _WIN64
3120   __ push(y);
3121   __ push(z);
3122 #endif
3123   __ crc32c_ipl_alg2_alt2(crc, buf, len,
3124                           a, j, k,
3125                           l, y, z,
3126                           c_farg0, c_farg1, c_farg2,
3127                           is_pclmulqdq_supported);
3128 #ifdef _WIN64
3129   __ pop(z);
3130   __ pop(y);
3131 #endif
3132 
3133   __ bind(L_continue);
3134   __ movl(rax, crc);
3135   __ vzeroupper();
3136   __ leave(); // required for proper stackwalking of RuntimeStub frame
3137   __ ret(0);
3138 
3139   return start;
3140 }
3141 
3142 
3143 /**
3144  *  Arguments:
3145  *
3146  *  Input:
3147  *    c_rarg0   - x address
3148  *    c_rarg1   - x length
3149  *    c_rarg2   - y address
3150  *    c_rarg3   - y length
3151  * not Win64
3152  *    c_rarg4   - z address
3153  * Win64
3154  *    rsp+40    - z address
3155  */
3156 address StubGenerator::generate_multiplyToLen() {
3157   __ align(CodeEntryAlignment);
3158   StubGenStubId stub_id = StubGenStubId::multiplyToLen_id;
3159   StubCodeMark mark(this, stub_id);
3160   address start = __ pc();
3161 
3162   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3163   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3164   const Register x     = rdi;
3165   const Register xlen  = rax;
3166   const Register y     = rsi;
3167   const Register ylen  = rcx;
3168   const Register z     = r8;
3169 
3170   // Next registers will be saved on stack in multiply_to_len().
3171   const Register tmp0  = r11;
3172   const Register tmp1  = r12;
3173   const Register tmp2  = r13;
3174   const Register tmp3  = r14;
3175   const Register tmp4  = r15;
3176   const Register tmp5  = rbx;
3177 
3178   BLOCK_COMMENT("Entry:");
3179   __ enter(); // required for proper stackwalking of RuntimeStub frame
3180 
3181   setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3182                      // ylen => rcx, z => r8
3183                      // r9 and r10 may be used to save non-volatile registers
3184 #ifdef _WIN64
3185   // last argument (#4) is on stack on Win64
3186   __ movptr(z, Address(rsp, 6 * wordSize));
3187 #endif
3188 
3189   __ movptr(xlen, rsi);
3190   __ movptr(y,    rdx);
3191   __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3192 
3193   restore_arg_regs();
3194 
3195   __ leave(); // required for proper stackwalking of RuntimeStub frame
3196   __ ret(0);
3197 
3198   return start;
3199 }
3200 
3201 /**
3202 *  Arguments:
3203 *
3204 *  Input:
3205 *    c_rarg0   - obja     address
3206 *    c_rarg1   - objb     address
3207 *    c_rarg3   - length   length
3208 *    c_rarg4   - scale    log2_array_indxscale
3209 *
3210 *  Output:
3211 *        rax   - int >= mismatched index, < 0 bitwise complement of tail
3212 */
3213 address StubGenerator::generate_vectorizedMismatch() {
3214   __ align(CodeEntryAlignment);
3215   StubGenStubId stub_id = StubGenStubId::vectorizedMismatch_id;
3216   StubCodeMark mark(this, stub_id);
3217   address start = __ pc();
3218 
3219   BLOCK_COMMENT("Entry:");
3220   __ enter();
3221 
3222 #ifdef _WIN64  // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3223   const Register scale = c_rarg0;  //rcx, will exchange with r9
3224   const Register objb = c_rarg1;   //rdx
3225   const Register length = c_rarg2; //r8
3226   const Register obja = c_rarg3;   //r9
3227   __ xchgq(obja, scale);  //now obja and scale contains the correct contents
3228 
3229   const Register tmp1 = r10;
3230   const Register tmp2 = r11;
3231 #endif
3232 #ifndef _WIN64 // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3233   const Register obja = c_rarg0;   //U:rdi
3234   const Register objb = c_rarg1;   //U:rsi
3235   const Register length = c_rarg2; //U:rdx
3236   const Register scale = c_rarg3;  //U:rcx
3237   const Register tmp1 = r8;
3238   const Register tmp2 = r9;
3239 #endif
3240   const Register result = rax; //return value
3241   const XMMRegister vec0 = xmm0;
3242   const XMMRegister vec1 = xmm1;
3243   const XMMRegister vec2 = xmm2;
3244 
3245   __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
3246 
3247   __ vzeroupper();
3248   __ leave();
3249   __ ret(0);
3250 
3251   return start;
3252 }
3253 
3254 /**
3255  *  Arguments:
3256  *
3257 //  Input:
3258 //    c_rarg0   - x address
3259 //    c_rarg1   - x length
3260 //    c_rarg2   - z address
3261 //    c_rarg3   - z length
3262  *
3263  */
3264 address StubGenerator::generate_squareToLen() {
3265 
3266   __ align(CodeEntryAlignment);
3267   StubGenStubId stub_id = StubGenStubId::squareToLen_id;
3268   StubCodeMark mark(this, stub_id);
3269   address start = __ pc();
3270 
3271   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3272   // Unix:  rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
3273   const Register x      = rdi;
3274   const Register len    = rsi;
3275   const Register z      = r8;
3276   const Register zlen   = rcx;
3277 
3278  const Register tmp1      = r12;
3279  const Register tmp2      = r13;
3280  const Register tmp3      = r14;
3281  const Register tmp4      = r15;
3282  const Register tmp5      = rbx;
3283 
3284   BLOCK_COMMENT("Entry:");
3285   __ enter(); // required for proper stackwalking of RuntimeStub frame
3286 
3287   setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
3288                      // zlen => rcx
3289                      // r9 and r10 may be used to save non-volatile registers
3290   __ movptr(r8, rdx);
3291   __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3292 
3293   restore_arg_regs();
3294 
3295   __ leave(); // required for proper stackwalking of RuntimeStub frame
3296   __ ret(0);
3297 
3298   return start;
3299 }
3300 
3301 address StubGenerator::generate_method_entry_barrier() {
3302   __ align(CodeEntryAlignment);
3303   StubGenStubId stub_id = StubGenStubId::method_entry_barrier_id;
3304   StubCodeMark mark(this, stub_id);
3305   address start = __ pc();
3306 
3307   Label deoptimize_label;
3308 
3309   __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
3310 
3311   BLOCK_COMMENT("Entry:");
3312   __ enter(); // save rbp
3313 
3314   // save c_rarg0, because we want to use that value.
3315   // We could do without it but then we depend on the number of slots used by pusha
3316   __ push(c_rarg0);
3317 
3318   __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
3319 
3320   __ pusha();
3321 
3322   // The method may have floats as arguments, and we must spill them before calling
3323   // the VM runtime.
3324   assert(Argument::n_float_register_parameters_j == 8, "Assumption");
3325   const int xmm_size = wordSize * 2;
3326   const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
3327   __ subptr(rsp, xmm_spill_size);
3328   __ movdqu(Address(rsp, xmm_size * 7), xmm7);
3329   __ movdqu(Address(rsp, xmm_size * 6), xmm6);
3330   __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3331   __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3332   __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3333   __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3334   __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3335   __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3336 
3337   __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3338 
3339   __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3340   __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3341   __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3342   __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3343   __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3344   __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3345   __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3346   __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3347   __ addptr(rsp, xmm_spill_size);
3348 
3349   __ cmpl(rax, 1); // 1 means deoptimize
3350   __ jcc(Assembler::equal, deoptimize_label);
3351 
3352   __ popa();
3353   __ pop(c_rarg0);
3354 
3355   __ leave();
3356 
3357   __ addptr(rsp, 1 * wordSize); // cookie
3358   __ ret(0);
3359 
3360 
3361   __ BIND(deoptimize_label);
3362 
3363   __ popa();
3364   __ pop(c_rarg0);
3365 
3366   __ leave();
3367 
3368   // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3369   // here while still having a correct stack is valuable
3370   __ testptr(rsp, Address(rsp, 0));
3371 
3372   __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3373   __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3374 
3375   return start;
3376 }
3377 
3378  /**
3379  *  Arguments:
3380  *
3381  *  Input:
3382  *    c_rarg0   - out address
3383  *    c_rarg1   - in address
3384  *    c_rarg2   - offset
3385  *    c_rarg3   - len
3386  * not Win64
3387  *    c_rarg4   - k
3388  * Win64
3389  *    rsp+40    - k
3390  */
3391 address StubGenerator::generate_mulAdd() {
3392   __ align(CodeEntryAlignment);
3393   StubGenStubId stub_id = StubGenStubId::mulAdd_id;
3394   StubCodeMark mark(this, stub_id);
3395   address start = __ pc();
3396 
3397   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3398   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3399   const Register out     = rdi;
3400   const Register in      = rsi;
3401   const Register offset  = r11;
3402   const Register len     = rcx;
3403   const Register k       = r8;
3404 
3405   // Next registers will be saved on stack in mul_add().
3406   const Register tmp1  = r12;
3407   const Register tmp2  = r13;
3408   const Register tmp3  = r14;
3409   const Register tmp4  = r15;
3410   const Register tmp5  = rbx;
3411 
3412   BLOCK_COMMENT("Entry:");
3413   __ enter(); // required for proper stackwalking of RuntimeStub frame
3414 
3415   setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3416                      // len => rcx, k => r8
3417                      // r9 and r10 may be used to save non-volatile registers
3418 #ifdef _WIN64
3419   // last argument is on stack on Win64
3420   __ movl(k, Address(rsp, 6 * wordSize));
3421 #endif
3422   __ movptr(r11, rdx);  // move offset in rdx to offset(r11)
3423   __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3424 
3425   restore_arg_regs();
3426 
3427   __ leave(); // required for proper stackwalking of RuntimeStub frame
3428   __ ret(0);
3429 
3430   return start;
3431 }
3432 
3433 address StubGenerator::generate_bigIntegerRightShift() {
3434   __ align(CodeEntryAlignment);
3435   StubGenStubId stub_id = StubGenStubId::bigIntegerRightShiftWorker_id;
3436   StubCodeMark mark(this, stub_id);
3437   address start = __ pc();
3438 
3439   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3440   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3441   const Register newArr = rdi;
3442   const Register oldArr = rsi;
3443   const Register newIdx = rdx;
3444   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3445   const Register totalNumIter = r8;
3446 
3447   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3448   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3449   const Register tmp1 = r11;                    // Caller save.
3450   const Register tmp2 = rax;                    // Caller save.
3451   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3452   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3453   const Register tmp5 = r14;                    // Callee save.
3454   const Register tmp6 = r15;
3455 
3456   const XMMRegister x0 = xmm0;
3457   const XMMRegister x1 = xmm1;
3458   const XMMRegister x2 = xmm2;
3459 
3460   BLOCK_COMMENT("Entry:");
3461   __ enter(); // required for proper stackwalking of RuntimeStub frame
3462 
3463 #ifdef _WIN64
3464   setup_arg_regs(4);
3465   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3466   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3467   // Save callee save registers.
3468   __ push(tmp3);
3469   __ push(tmp4);
3470 #endif
3471   __ push(tmp5);
3472 
3473   // Rename temps used throughout the code.
3474   const Register idx = tmp1;
3475   const Register nIdx = tmp2;
3476 
3477   __ xorl(idx, idx);
3478 
3479   // Start right shift from end of the array.
3480   // For example, if #iteration = 4 and newIdx = 1
3481   // then dest[4] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3482   // if #iteration = 4 and newIdx = 0
3483   // then dest[3] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3484   __ movl(idx, totalNumIter);
3485   __ movl(nIdx, idx);
3486   __ addl(nIdx, newIdx);
3487 
3488   // If vectorization is enabled, check if the number of iterations is at least 64
3489   // If not, then go to ShifTwo processing 2 iterations
3490   if (VM_Version::supports_avx512_vbmi2()) {
3491     __ cmpptr(totalNumIter, (AVX3Threshold/64));
3492     __ jcc(Assembler::less, ShiftTwo);
3493 
3494     if (AVX3Threshold < 16 * 64) {
3495       __ cmpl(totalNumIter, 16);
3496       __ jcc(Assembler::less, ShiftTwo);
3497     }
3498     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3499     __ subl(idx, 16);
3500     __ subl(nIdx, 16);
3501     __ BIND(Shift512Loop);
3502     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3503     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3504     __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3505     __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3506     __ subl(nIdx, 16);
3507     __ subl(idx, 16);
3508     __ jcc(Assembler::greaterEqual, Shift512Loop);
3509     __ addl(idx, 16);
3510     __ addl(nIdx, 16);
3511   }
3512   __ BIND(ShiftTwo);
3513   __ cmpl(idx, 2);
3514   __ jcc(Assembler::less, ShiftOne);
3515   __ subl(idx, 2);
3516   __ subl(nIdx, 2);
3517   __ BIND(ShiftTwoLoop);
3518   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3519   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3520   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3521   __ shrdl(tmp5, tmp4);
3522   __ shrdl(tmp4, tmp3);
3523   __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3524   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3525   __ subl(nIdx, 2);
3526   __ subl(idx, 2);
3527   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3528   __ addl(idx, 2);
3529   __ addl(nIdx, 2);
3530 
3531   // Do the last iteration
3532   __ BIND(ShiftOne);
3533   __ cmpl(idx, 1);
3534   __ jcc(Assembler::less, Exit);
3535   __ subl(idx, 1);
3536   __ subl(nIdx, 1);
3537   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3538   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3539   __ shrdl(tmp4, tmp3);
3540   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3541   __ BIND(Exit);
3542   __ vzeroupper();
3543   // Restore callee save registers.
3544   __ pop(tmp5);
3545 #ifdef _WIN64
3546   __ pop(tmp4);
3547   __ pop(tmp3);
3548   restore_arg_regs();
3549 #endif
3550   __ leave(); // required for proper stackwalking of RuntimeStub frame
3551   __ ret(0);
3552 
3553   return start;
3554 }
3555 
3556  /**
3557  *  Arguments:
3558  *
3559  *  Input:
3560  *    c_rarg0   - newArr address
3561  *    c_rarg1   - oldArr address
3562  *    c_rarg2   - newIdx
3563  *    c_rarg3   - shiftCount
3564  * not Win64
3565  *    c_rarg4   - numIter
3566  * Win64
3567  *    rsp40    - numIter
3568  */
3569 address StubGenerator::generate_bigIntegerLeftShift() {
3570   __ align(CodeEntryAlignment);
3571   StubGenStubId stub_id = StubGenStubId::bigIntegerLeftShiftWorker_id;
3572   StubCodeMark mark(this, stub_id);
3573   address start = __ pc();
3574 
3575   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3576   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3577   const Register newArr = rdi;
3578   const Register oldArr = rsi;
3579   const Register newIdx = rdx;
3580   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3581   const Register totalNumIter = r8;
3582   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3583   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3584   const Register tmp1 = r11;                    // Caller save.
3585   const Register tmp2 = rax;                    // Caller save.
3586   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3587   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3588   const Register tmp5 = r14;                    // Callee save.
3589 
3590   const XMMRegister x0 = xmm0;
3591   const XMMRegister x1 = xmm1;
3592   const XMMRegister x2 = xmm2;
3593   BLOCK_COMMENT("Entry:");
3594   __ enter(); // required for proper stackwalking of RuntimeStub frame
3595 
3596 #ifdef _WIN64
3597   setup_arg_regs(4);
3598   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3599   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3600   // Save callee save registers.
3601   __ push(tmp3);
3602   __ push(tmp4);
3603 #endif
3604   __ push(tmp5);
3605 
3606   // Rename temps used throughout the code
3607   const Register idx = tmp1;
3608   const Register numIterTmp = tmp2;
3609 
3610   // Start idx from zero.
3611   __ xorl(idx, idx);
3612   // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3613   __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3614   __ movl(numIterTmp, totalNumIter);
3615 
3616   // If vectorization is enabled, check if the number of iterations is at least 64
3617   // If not, then go to ShiftTwo shifting two numbers at a time
3618   if (VM_Version::supports_avx512_vbmi2()) {
3619     __ cmpl(totalNumIter, (AVX3Threshold/64));
3620     __ jcc(Assembler::less, ShiftTwo);
3621 
3622     if (AVX3Threshold < 16 * 64) {
3623       __ cmpl(totalNumIter, 16);
3624       __ jcc(Assembler::less, ShiftTwo);
3625     }
3626     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3627     __ subl(numIterTmp, 16);
3628     __ BIND(Shift512Loop);
3629     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3630     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3631     __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3632     __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3633     __ addl(idx, 16);
3634     __ subl(numIterTmp, 16);
3635     __ jcc(Assembler::greaterEqual, Shift512Loop);
3636     __ addl(numIterTmp, 16);
3637   }
3638   __ BIND(ShiftTwo);
3639   __ cmpl(totalNumIter, 1);
3640   __ jcc(Assembler::less, Exit);
3641   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3642   __ subl(numIterTmp, 2);
3643   __ jcc(Assembler::less, ShiftOne);
3644 
3645   __ BIND(ShiftTwoLoop);
3646   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3647   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3648   __ shldl(tmp3, tmp4);
3649   __ shldl(tmp4, tmp5);
3650   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3651   __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3652   __ movl(tmp3, tmp5);
3653   __ addl(idx, 2);
3654   __ subl(numIterTmp, 2);
3655   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3656 
3657   // Do the last iteration
3658   __ BIND(ShiftOne);
3659   __ addl(numIterTmp, 2);
3660   __ cmpl(numIterTmp, 1);
3661   __ jcc(Assembler::less, Exit);
3662   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3663   __ shldl(tmp3, tmp4);
3664   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3665 
3666   __ BIND(Exit);
3667   __ vzeroupper();
3668   // Restore callee save registers.
3669   __ pop(tmp5);
3670 #ifdef _WIN64
3671   __ pop(tmp4);
3672   __ pop(tmp3);
3673   restore_arg_regs();
3674 #endif
3675   __ leave(); // required for proper stackwalking of RuntimeStub frame
3676   __ ret(0);
3677 
3678   return start;
3679 }
3680 
3681 void StubGenerator::generate_libm_stubs() {
3682   if (UseLibmIntrinsic && InlineIntrinsics) {
3683     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3684       StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3685     }
3686     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3687       StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3688     }
3689     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3690       StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3691     }
3692     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) {
3693       StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp
3694     }
3695     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3696       StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3697     }
3698     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3699       StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3700     }
3701     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3702       StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3703     }
3704     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3705       StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3706     }
3707   }
3708 }
3709 
3710 /**
3711 *  Arguments:
3712 *
3713 *  Input:
3714 *    c_rarg0   - float16  jshort
3715 *
3716 *  Output:
3717 *       xmm0   - float
3718 */
3719 address StubGenerator::generate_float16ToFloat() {
3720   StubGenStubId stub_id = StubGenStubId::hf2f_id;
3721   StubCodeMark mark(this, stub_id);
3722 
3723   address start = __ pc();
3724 
3725   BLOCK_COMMENT("Entry:");
3726   // No need for RuntimeStub frame since it is called only during JIT compilation
3727 
3728   // Load value into xmm0 and convert
3729   __ flt16_to_flt(xmm0, c_rarg0);
3730 
3731   __ ret(0);
3732 
3733   return start;
3734 }
3735 
3736 /**
3737 *  Arguments:
3738 *
3739 *  Input:
3740 *       xmm0   - float
3741 *
3742 *  Output:
3743 *        rax   - float16  jshort
3744 */
3745 address StubGenerator::generate_floatToFloat16() {
3746   StubGenStubId stub_id = StubGenStubId::f2hf_id;
3747   StubCodeMark mark(this, stub_id);
3748 
3749   address start = __ pc();
3750 
3751   BLOCK_COMMENT("Entry:");
3752   // No need for RuntimeStub frame since it is called only during JIT compilation
3753 
3754   // Convert and put result into rax
3755   __ flt_to_flt16(rax, xmm0, xmm1);
3756 
3757   __ ret(0);
3758 
3759   return start;
3760 }
3761 
3762 address StubGenerator::generate_cont_thaw(StubGenStubId stub_id) {
3763   if (!Continuations::enabled()) return nullptr;
3764 
3765   bool return_barrier;
3766   bool return_barrier_exception;
3767   Continuation::thaw_kind kind;
3768 
3769   switch (stub_id) {
3770   case cont_thaw_id:
3771     return_barrier = false;
3772     return_barrier_exception = false;
3773     kind = Continuation::thaw_top;
3774     break;
3775   case cont_returnBarrier_id:
3776     return_barrier = true;
3777     return_barrier_exception = false;
3778     kind = Continuation::thaw_return_barrier;
3779     break;
3780   case cont_returnBarrierExc_id:
3781     return_barrier = true;
3782     return_barrier_exception = true;
3783     kind = Continuation::thaw_return_barrier_exception;
3784     break;
3785   default:
3786     ShouldNotReachHere();
3787   }
3788   StubCodeMark mark(this, stub_id);
3789   address start = __ pc();
3790 
3791   // TODO: Handle Valhalla return types. May require generating different return barriers.
3792 
3793   if (!return_barrier) {
3794     // Pop return address. If we don't do this, we get a drift,
3795     // where the bottom-most frozen frame continuously grows.
3796     __ pop(c_rarg3);
3797   } else {
3798     __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3799   }
3800 
3801 #ifdef ASSERT
3802   {
3803     Label L_good_sp;
3804     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3805     __ jcc(Assembler::equal, L_good_sp);
3806     __ stop("Incorrect rsp at thaw entry");
3807     __ BIND(L_good_sp);
3808   }
3809 #endif // ASSERT
3810 
3811   if (return_barrier) {
3812     // Preserve possible return value from a method returning to the return barrier.
3813     __ push(rax);
3814     __ push_d(xmm0);
3815   }
3816 
3817   __ movptr(c_rarg0, r15_thread);
3818   __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3819   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3820   __ movptr(rbx, rax);
3821 
3822   if (return_barrier) {
3823     // Restore return value from a method returning to the return barrier.
3824     // No safepoint in the call to thaw, so even an oop return value should be OK.
3825     __ pop_d(xmm0);
3826     __ pop(rax);
3827   }
3828 
3829 #ifdef ASSERT
3830   {
3831     Label L_good_sp;
3832     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3833     __ jcc(Assembler::equal, L_good_sp);
3834     __ stop("Incorrect rsp after prepare thaw");
3835     __ BIND(L_good_sp);
3836   }
3837 #endif // ASSERT
3838 
3839   // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3840   Label L_thaw_success;
3841   __ testptr(rbx, rbx);
3842   __ jccb(Assembler::notZero, L_thaw_success);
3843   __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
3844   __ bind(L_thaw_success);
3845 
3846   // Make room for the thawed frames and align the stack.
3847   __ subptr(rsp, rbx);
3848   __ andptr(rsp, -StackAlignmentInBytes);
3849 
3850   if (return_barrier) {
3851     // Preserve possible return value from a method returning to the return barrier. (Again.)
3852     __ push(rax);
3853     __ push_d(xmm0);
3854   }
3855 
3856   // If we want, we can templatize thaw by kind, and have three different entries.
3857   __ movptr(c_rarg0, r15_thread);
3858   __ movptr(c_rarg1, kind);
3859   __ call_VM_leaf(Continuation::thaw_entry(), 2);
3860   __ movptr(rbx, rax);
3861 
3862   if (return_barrier) {
3863     // Restore return value from a method returning to the return barrier. (Again.)
3864     // No safepoint in the call to thaw, so even an oop return value should be OK.
3865     __ pop_d(xmm0);
3866     __ pop(rax);
3867   } else {
3868     // Return 0 (success) from doYield.
3869     __ xorptr(rax, rax);
3870   }
3871 
3872   // After thawing, rbx is the SP of the yielding frame.
3873   // Move there, and then to saved RBP slot.
3874   __ movptr(rsp, rbx);
3875   __ subptr(rsp, 2*wordSize);
3876 
3877   if (return_barrier_exception) {
3878     __ movptr(c_rarg0, r15_thread);
3879     __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3880 
3881     // rax still holds the original exception oop, save it before the call
3882     __ push(rax);
3883 
3884     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3885     __ movptr(rbx, rax);
3886 
3887     // Continue at exception handler:
3888     //   rax: exception oop
3889     //   rbx: exception handler
3890     //   rdx: exception pc
3891     __ pop(rax);
3892     __ verify_oop(rax);
3893     __ pop(rbp); // pop out RBP here too
3894     __ pop(rdx);
3895     __ jmp(rbx);
3896   } else {
3897     // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3898     __ pop(rbp);
3899     __ ret(0);
3900   }
3901 
3902   return start;
3903 }
3904 
3905 address StubGenerator::generate_cont_thaw() {
3906   return generate_cont_thaw(StubGenStubId::cont_thaw_id);
3907 }
3908 
3909 // TODO: will probably need multiple return barriers depending on return type
3910 
3911 address StubGenerator::generate_cont_returnBarrier() {
3912   return generate_cont_thaw(StubGenStubId::cont_returnBarrier_id);
3913 }
3914 
3915 address StubGenerator::generate_cont_returnBarrier_exception() {
3916   return generate_cont_thaw(StubGenStubId::cont_returnBarrierExc_id);
3917 }
3918 
3919 address StubGenerator::generate_cont_preempt_stub() {
3920   if (!Continuations::enabled()) return nullptr;
3921   StubGenStubId stub_id = StubGenStubId::cont_preempt_id;
3922   StubCodeMark mark(this, stub_id);
3923   address start = __ pc();
3924 
3925   __ reset_last_Java_frame(true);
3926 
3927   // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap.
3928   __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3929 
3930   Label preemption_cancelled;
3931   __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset()));
3932   __ testbool(rscratch1);
3933   __ jcc(Assembler::notZero, preemption_cancelled);
3934 
3935   // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount.
3936   SharedRuntime::continuation_enter_cleanup(_masm);
3937   __ pop(rbp);
3938   __ ret(0);
3939 
3940   // We acquired the monitor after freezing the frames so call thaw to continue execution.
3941   __ bind(preemption_cancelled);
3942   __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false);
3943   __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size())));
3944   __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address()));
3945   __ jmp(rscratch1);
3946 
3947   return start;
3948 }
3949 
3950 // exception handler for upcall stubs
3951 address StubGenerator::generate_upcall_stub_exception_handler() {
3952   StubGenStubId stub_id = StubGenStubId::upcall_stub_exception_handler_id;
3953   StubCodeMark mark(this, stub_id);
3954   address start = __ pc();
3955 
3956   // native caller has no idea how to handle exceptions
3957   // we just crash here. Up to callee to catch exceptions.
3958   __ verify_oop(rax);
3959   __ vzeroupper();
3960   __ mov(c_rarg0, rax);
3961   __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI
3962   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3963   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception)));
3964   __ should_not_reach_here();
3965 
3966   return start;
3967 }
3968 
3969 // load Method* target of MethodHandle
3970 // j_rarg0 = jobject receiver
3971 // rbx = result
3972 address StubGenerator::generate_upcall_stub_load_target() {
3973   StubGenStubId stub_id = StubGenStubId::upcall_stub_load_target_id;
3974   StubCodeMark mark(this, stub_id);
3975   address start = __ pc();
3976 
3977   __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1);
3978     // Load target method from receiver
3979   __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1);
3980   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1);
3981   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1);
3982   __ access_load_at(T_ADDRESS, IN_HEAP, rbx,
3983                     Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()),
3984                     noreg, noreg);
3985   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized
3986 
3987   __ ret(0);
3988 
3989   return start;
3990 }
3991 
3992 void StubGenerator::generate_lookup_secondary_supers_table_stub() {
3993   StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_id;
3994   StubCodeMark mark(this, stub_id);
3995 
3996   const Register
3997       r_super_klass = rax,
3998       r_sub_klass   = rsi,
3999       result        = rdi;
4000 
4001   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
4002     StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc();
4003     __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass,
4004                                            rdx, rcx, rbx, r11, // temps
4005                                            result,
4006                                            slot);
4007     __ ret(0);
4008   }
4009 }
4010 
4011 // Slow path implementation for UseSecondarySupersTable.
4012 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() {
4013   StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_slow_path_id;
4014   StubCodeMark mark(this, stub_id);
4015 
4016   address start = __ pc();
4017 
4018   const Register
4019       r_super_klass  = rax,
4020       r_array_base   = rbx,
4021       r_array_index  = rdx,
4022       r_sub_klass    = rsi,
4023       r_bitmap       = r11,
4024       result         = rdi;
4025 
4026   Label L_success;
4027   __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap,
4028                                              rcx, rdi, // temps
4029                                              &L_success);
4030   // bind(L_failure);
4031   __ movl(result, 1);
4032   __ ret(0);
4033 
4034   __ bind(L_success);
4035   __ movl(result, 0);
4036   __ ret(0);
4037 
4038   return start;
4039 }
4040 
4041 void StubGenerator::create_control_words() {
4042   // Round to nearest, 64-bit mode, exceptions masked, flags specialized
4043   StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80;
4044   // Round to zero, 64-bit mode, exceptions masked, flags specialized
4045   StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80;
4046 }
4047 
4048 // Initialization
4049 void StubGenerator::generate_initial_stubs() {
4050   // Generates all stubs and initializes the entry points
4051 
4052   // This platform-specific settings are needed by generate_call_stub()
4053   create_control_words();
4054 
4055   // Initialize table for unsafe copy memeory check.
4056   if (UnsafeMemoryAccess::_table == nullptr) {
4057     UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory
4058   }
4059 
4060   // entry points that exist in all platforms Note: This is code
4061   // that could be shared among different platforms - however the
4062   // benefit seems to be smaller than the disadvantage of having a
4063   // much more complicated generator structure. See also comment in
4064   // stubRoutines.hpp.
4065 
4066   StubRoutines::_forward_exception_entry = generate_forward_exception();
4067 
4068   StubRoutines::_call_stub_entry =
4069     generate_call_stub(StubRoutines::_call_stub_return_address);
4070 
4071   // is referenced by megamorphic call
4072   StubRoutines::_catch_exception_entry = generate_catch_exception();
4073 
4074   // atomic calls
4075   StubRoutines::_fence_entry                = generate_orderaccess_fence();
4076 
4077   // platform dependent
4078   StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
4079 
4080   StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
4081 
4082   StubRoutines::x86::_f2i_fixup             = generate_f2i_fixup();
4083   StubRoutines::x86::_f2l_fixup             = generate_f2l_fixup();
4084   StubRoutines::x86::_d2i_fixup             = generate_d2i_fixup();
4085   StubRoutines::x86::_d2l_fixup             = generate_d2l_fixup();
4086 
4087   StubRoutines::x86::_float_sign_mask       = generate_fp_mask(StubGenStubId::float_sign_mask_id,  0x7FFFFFFF7FFFFFFF);
4088   StubRoutines::x86::_float_sign_flip       = generate_fp_mask(StubGenStubId::float_sign_flip_id,  0x8000000080000000);
4089   StubRoutines::x86::_double_sign_mask      = generate_fp_mask(StubGenStubId::double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4090   StubRoutines::x86::_double_sign_flip      = generate_fp_mask(StubGenStubId::double_sign_flip_id, 0x8000000000000000);
4091 
4092   if (UseCRC32Intrinsics) {
4093     // set table address before stub generation which use it
4094     StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
4095     StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
4096   }
4097 
4098   if (UseCRC32CIntrinsics) {
4099     bool supports_clmul = VM_Version::supports_clmul();
4100     StubRoutines::x86::generate_CRC32C_table(supports_clmul);
4101     StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
4102     StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
4103   }
4104 
4105   if (VM_Version::supports_float16()) {
4106     // For results consistency both intrinsics should be enabled.
4107     // vmIntrinsics checks InlineIntrinsics flag, no need to check it here.
4108     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) &&
4109         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) {
4110       StubRoutines::_hf2f = generate_float16ToFloat();
4111       StubRoutines::_f2hf = generate_floatToFloat16();
4112     }
4113   }
4114 
4115   generate_libm_stubs();
4116 
4117   StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp
4118 }
4119 
4120 void StubGenerator::generate_continuation_stubs() {
4121   // Continuation stubs:
4122   StubRoutines::_cont_thaw          = generate_cont_thaw();
4123   StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
4124   StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
4125   StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub();
4126 }
4127 
4128 void StubGenerator::generate_final_stubs() {
4129   // Generates the rest of stubs and initializes the entry points
4130 
4131   // support for verify_oop (must happen after universe_init)
4132   if (VerifyOops) {
4133     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
4134   }
4135 
4136   // arraycopy stubs used by compilers
4137   generate_arraycopy_stubs();
4138 
4139   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
4140   if (bs_nm != nullptr) {
4141     StubRoutines::_method_entry_barrier = generate_method_entry_barrier();
4142   }
4143 
4144 #ifdef COMPILER2
4145   if (UseSecondarySupersTable) {
4146     StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub();
4147     if (! InlineSecondarySupersTest) {
4148       generate_lookup_secondary_supers_table_stub();
4149     }
4150   }
4151 #endif // COMPILER2
4152 
4153   if (UseVectorizedMismatchIntrinsic) {
4154     StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4155   }
4156 
4157   StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler();
4158   StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target();
4159 }
4160 
4161 void StubGenerator::generate_compiler_stubs() {
4162 #if COMPILER2_OR_JVMCI
4163 
4164   // Entry points that are C2 compiler specific.
4165 
4166   StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubGenStubId::vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4167   StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubGenStubId::vector_float_sign_flip_id, 0x8000000080000000);
4168   StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubGenStubId::vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4169   StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubGenStubId::vector_double_sign_flip_id, 0x8000000000000000);
4170   StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubGenStubId::vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF);
4171   StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubGenStubId::vector_int_mask_cmp_bits_id, 0x0000000100000001);
4172   StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubGenStubId::vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff);
4173   StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask();
4174   StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubGenStubId::vector_int_to_byte_mask_id, 0x000000ff000000ff);
4175   StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubGenStubId::vector_int_to_short_mask_id, 0x0000ffff0000ffff);
4176   StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_32_bit_mask_id, Assembler::AVX_512bit,
4177                                                                       0xFFFFFFFF, 0, 0, 0);
4178   StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_64_bit_mask_id, Assembler::AVX_512bit,
4179                                                                       0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
4180   StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubGenStubId::vector_int_shuffle_mask_id, 0x0302010003020100);
4181   StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask();
4182   StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubGenStubId::vector_short_shuffle_mask_id, 0x0100010001000100);
4183   StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubGenStubId::vector_long_shuffle_mask_id, 0x0000000100000000);
4184   StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubGenStubId::vector_long_sign_mask_id, 0x8000000000000000);
4185   StubRoutines::x86::_vector_iota_indices = generate_iota_indices();
4186   StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut();
4187   StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut();
4188   StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long();
4189   StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int();
4190   StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short();
4191 
4192   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) {
4193     StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubGenStubId::compress_perm_table32_id);
4194     StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubGenStubId::compress_perm_table64_id);
4195     StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubGenStubId::expand_perm_table32_id);
4196     StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubGenStubId::expand_perm_table64_id);
4197   }
4198 
4199   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
4200     // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
4201     StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut();
4202   }
4203 
4204   generate_aes_stubs();
4205 
4206   generate_ghash_stubs();
4207 
4208   generate_chacha_stubs();
4209 
4210   generate_sha3_stubs();
4211 
4212   // data cache line writeback
4213   StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
4214   StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
4215 
4216 #ifdef COMPILER2
4217   if ((UseAVX == 2) && EnableX86ECoreOpts) {
4218     generate_string_indexof(StubRoutines::_string_indexof_array);
4219   }
4220 #endif
4221 
4222   if (UseAdler32Intrinsics) {
4223      StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
4224   }
4225 
4226   if (UsePoly1305Intrinsics) {
4227     StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
4228   }
4229 
4230   if (UseIntPolyIntrinsics) {
4231     StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256();
4232     StubRoutines::_intpoly_assign = generate_intpoly_assign();
4233   }
4234 
4235   if (UseMD5Intrinsics) {
4236     StubRoutines::_md5_implCompress = generate_md5_implCompress(StubGenStubId::md5_implCompress_id);
4237     StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubGenStubId::md5_implCompressMB_id);
4238   }
4239 
4240   if (UseSHA1Intrinsics) {
4241     StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
4242     StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
4243     StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubGenStubId::sha1_implCompress_id);
4244     StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubGenStubId::sha1_implCompressMB_id);
4245   }
4246 
4247   if (UseSHA256Intrinsics) {
4248     StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
4249     char* dst = (char*)StubRoutines::x86::_k256_W;
4250     char* src = (char*)StubRoutines::x86::_k256;
4251     for (int ii = 0; ii < 16; ++ii) {
4252       memcpy(dst + 32 * ii,      src + 16 * ii, 16);
4253       memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4254     }
4255     StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4256     StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4257     StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubGenStubId::sha256_implCompress_id);
4258     StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubGenStubId::sha256_implCompressMB_id);
4259   }
4260 
4261   if (UseSHA512Intrinsics) {
4262     StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4263     StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4264     StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubGenStubId::sha512_implCompress_id);
4265     StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubGenStubId::sha512_implCompressMB_id);
4266   }
4267 
4268   if (UseBASE64Intrinsics) {
4269     if(VM_Version::supports_avx2()) {
4270       StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4271       StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4272       StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4273       StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr();
4274       StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr();
4275     }
4276     StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4277     if (VM_Version::supports_avx512_vbmi()) {
4278       StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4279       StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4280       StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4281       StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4282       StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4283       StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4284       StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4285       StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4286       StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4287     }
4288     StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4289     StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4290     StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4291   }
4292 
4293 #ifdef COMPILER2
4294   if (UseMultiplyToLenIntrinsic) {
4295     StubRoutines::_multiplyToLen = generate_multiplyToLen();
4296   }
4297   if (UseSquareToLenIntrinsic) {
4298     StubRoutines::_squareToLen = generate_squareToLen();
4299   }
4300   if (UseMulAddIntrinsic) {
4301     StubRoutines::_mulAdd = generate_mulAdd();
4302   }
4303   if (VM_Version::supports_avx512_vbmi2()) {
4304     StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4305     StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4306   }
4307   if (UseMontgomeryMultiplyIntrinsic) {
4308     StubRoutines::_montgomeryMultiply
4309       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4310   }
4311   if (UseMontgomerySquareIntrinsic) {
4312     StubRoutines::_montgomerySquare
4313       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4314   }
4315 
4316   // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics
4317 
4318   if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) {
4319     void *libsimdsort = nullptr;
4320     char ebuf_[1024];
4321     char dll_name_simd_sort[JVM_MAXPATHLEN];
4322     if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) {
4323       libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_);
4324     }
4325     // Get addresses for SIMD sort and partition routines
4326     if (libsimdsort != nullptr) {
4327       log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort));
4328 
4329       snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort");
4330       StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_);
4331 
4332       snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition");
4333       StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_);
4334     }
4335   }
4336 
4337   // Get svml stub routine addresses
4338   void *libjsvml = nullptr;
4339   char ebuf[1024];
4340   char dll_name[JVM_MAXPATHLEN];
4341   if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) {
4342     libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf);
4343   }
4344   if (libjsvml != nullptr) {
4345     // SVML method naming convention
4346     //   All the methods are named as __jsvml_op<T><N>_ha_<VV>
4347     //   Where:
4348     //      ha stands for high accuracy
4349     //      <T> is optional to indicate float/double
4350     //              Set to f for vector float operation
4351     //              Omitted for vector double operation
4352     //      <N> is the number of elements in the vector
4353     //              1, 2, 4, 8, 16
4354     //              e.g. 128 bit float vector has 4 float elements
4355     //      <VV> indicates the avx/sse level:
4356     //              z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2
4357     //      e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns
4358     //           __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns
4359 
4360     log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml));
4361     if (UseAVX > 2) {
4362       for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) {
4363         int vop = VectorSupport::VECTOR_OP_MATH_START + op;
4364         if ((!VM_Version::supports_avx512dq()) &&
4365             (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) {
4366           continue;
4367         }
4368         snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]);
4369         StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4370 
4371         snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]);
4372         StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4373       }
4374     }
4375     const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex");
4376     for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) {
4377       int vop = VectorSupport::VECTOR_OP_MATH_START + op;
4378       if (vop == VectorSupport::VECTOR_OP_POW) {
4379         continue;
4380       }
4381       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4382       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4383 
4384       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4385       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4386 
4387       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4388       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4389 
4390       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4391       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4392 
4393       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4394       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4395 
4396       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4397       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4398     }
4399   }
4400 
4401 #endif // COMPILER2
4402 #endif // COMPILER2_OR_JVMCI
4403 }
4404 
4405 StubGenerator::StubGenerator(CodeBuffer* code, StubGenBlobId blob_id) : StubCodeGenerator(code, blob_id) {
4406   switch(blob_id) {
4407   case initial_id:
4408     generate_initial_stubs();
4409     break;
4410   case continuation_id:
4411     generate_continuation_stubs();
4412     break;
4413   case compiler_id:
4414     generate_compiler_stubs();
4415     break;
4416   case final_id:
4417     generate_final_stubs();
4418     break;
4419   default:
4420     fatal("unexpected blob id: %d", blob_id);
4421     break;
4422   };
4423 }
4424 
4425 void StubGenerator_generate(CodeBuffer* code, StubGenBlobId blob_id) {
4426   StubGenerator g(code, blob_id);
4427 }
4428 
4429 #undef __