1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "classfile/vmIntrinsics.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "gc/shared/barrierSetNMethod.hpp" 32 #include "gc/shared/gc_globals.hpp" 33 #include "memory/universe.hpp" 34 #include "prims/jvmtiExport.hpp" 35 #include "prims/upcallLinker.hpp" 36 #include "runtime/arguments.hpp" 37 #include "runtime/continuationEntry.hpp" 38 #include "runtime/javaThread.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "stubGenerator_x86_64.hpp" 42 #ifdef COMPILER2 43 #include "opto/runtime.hpp" 44 #include "opto/c2_globals.hpp" 45 #endif 46 #if INCLUDE_JVMCI 47 #include "jvmci/jvmci_globals.hpp" 48 #endif 49 50 // For a more detailed description of the stub routine structure 51 // see the comment in stubRoutines.hpp 52 53 #define __ _masm-> 54 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 55 56 #ifdef PRODUCT 57 #define BLOCK_COMMENT(str) /* nothing */ 58 #else 59 #define BLOCK_COMMENT(str) __ block_comment(str) 60 #endif // PRODUCT 61 62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 63 64 // 65 // Linux Arguments: 66 // c_rarg0: call wrapper address address 67 // c_rarg1: result address 68 // c_rarg2: result type BasicType 69 // c_rarg3: method Method* 70 // c_rarg4: (interpreter) entry point address 71 // c_rarg5: parameters intptr_t* 72 // 16(rbp): parameter size (in words) int 73 // 24(rbp): thread Thread* 74 // 75 // [ return_from_Java ] <--- rsp 76 // [ argument word n ] 77 // ... 78 // -12 [ argument word 1 ] 79 // -11 [ saved r15 ] <--- rsp_after_call 80 // -10 [ saved r14 ] 81 // -9 [ saved r13 ] 82 // -8 [ saved r12 ] 83 // -7 [ saved rbx ] 84 // -6 [ call wrapper ] 85 // -5 [ result ] 86 // -4 [ result type ] 87 // -3 [ method ] 88 // -2 [ entry point ] 89 // -1 [ parameters ] 90 // 0 [ saved rbp ] <--- rbp 91 // 1 [ return address ] 92 // 2 [ parameter size ] 93 // 3 [ thread ] 94 // 95 // Windows Arguments: 96 // c_rarg0: call wrapper address address 97 // c_rarg1: result address 98 // c_rarg2: result type BasicType 99 // c_rarg3: method Method* 100 // 48(rbp): (interpreter) entry point address 101 // 56(rbp): parameters intptr_t* 102 // 64(rbp): parameter size (in words) int 103 // 72(rbp): thread Thread* 104 // 105 // [ return_from_Java ] <--- rsp 106 // [ argument word n ] 107 // ... 108 // -28 [ argument word 1 ] 109 // -27 [ saved xmm15 ] <--- rsp after_call 110 // [ saved xmm7-xmm14 ] 111 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 112 // -7 [ saved r15 ] 113 // -6 [ saved r14 ] 114 // -5 [ saved r13 ] 115 // -4 [ saved r12 ] 116 // -3 [ saved rdi ] 117 // -2 [ saved rsi ] 118 // -1 [ saved rbx ] 119 // 0 [ saved rbp ] <--- rbp 120 // 1 [ return address ] 121 // 2 [ call wrapper ] 122 // 3 [ result ] 123 // 4 [ result type ] 124 // 5 [ method ] 125 // 6 [ entry point ] 126 // 7 [ parameters ] 127 // 8 [ parameter size ] 128 // 9 [ thread ] 129 // 130 // Windows reserves the callers stack space for arguments 1-4. 131 // We spill c_rarg0-c_rarg3 to this space. 132 133 // Call stub stack layout word offsets from rbp 134 #ifdef _WIN64 135 enum call_stub_layout { 136 xmm_save_first = 6, // save from xmm6 137 xmm_save_last = 15, // to xmm15 138 xmm_save_base = -9, 139 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 140 r15_off = -7, 141 r14_off = -6, 142 r13_off = -5, 143 r12_off = -4, 144 rdi_off = -3, 145 rsi_off = -2, 146 rbx_off = -1, 147 rbp_off = 0, 148 retaddr_off = 1, 149 call_wrapper_off = 2, 150 result_off = 3, 151 result_type_off = 4, 152 method_off = 5, 153 entry_point_off = 6, 154 parameters_off = 7, 155 parameter_size_off = 8, 156 thread_off = 9 157 }; 158 159 static Address xmm_save(int reg) { 160 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 161 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 162 } 163 #else // !_WIN64 164 enum call_stub_layout { 165 rsp_after_call_off = -12, 166 mxcsr_off = rsp_after_call_off, 167 r15_off = -11, 168 r14_off = -10, 169 r13_off = -9, 170 r12_off = -8, 171 rbx_off = -7, 172 call_wrapper_off = -6, 173 result_off = -5, 174 result_type_off = -4, 175 method_off = -3, 176 entry_point_off = -2, 177 parameters_off = -1, 178 rbp_off = 0, 179 retaddr_off = 1, 180 parameter_size_off = 2, 181 thread_off = 3 182 }; 183 #endif // _WIN64 184 185 address StubGenerator::generate_call_stub(address& return_address) { 186 187 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 188 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 189 "adjust this code"); 190 StubGenStubId stub_id = StubGenStubId::call_stub_id; 191 StubCodeMark mark(this, stub_id); 192 address start = __ pc(); 193 194 // same as in generate_catch_exception()! 195 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 196 197 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 198 const Address result (rbp, result_off * wordSize); 199 const Address result_type (rbp, result_type_off * wordSize); 200 const Address method (rbp, method_off * wordSize); 201 const Address entry_point (rbp, entry_point_off * wordSize); 202 const Address parameters (rbp, parameters_off * wordSize); 203 const Address parameter_size(rbp, parameter_size_off * wordSize); 204 205 // same as in generate_catch_exception()! 206 const Address thread (rbp, thread_off * wordSize); 207 208 const Address r15_save(rbp, r15_off * wordSize); 209 const Address r14_save(rbp, r14_off * wordSize); 210 const Address r13_save(rbp, r13_off * wordSize); 211 const Address r12_save(rbp, r12_off * wordSize); 212 const Address rbx_save(rbp, rbx_off * wordSize); 213 214 // stub code 215 __ enter(); 216 __ subptr(rsp, -rsp_after_call_off * wordSize); 217 218 // save register parameters 219 #ifndef _WIN64 220 __ movptr(parameters, c_rarg5); // parameters 221 __ movptr(entry_point, c_rarg4); // entry_point 222 #endif 223 224 __ movptr(method, c_rarg3); // method 225 __ movl(result_type, c_rarg2); // result type 226 __ movptr(result, c_rarg1); // result 227 __ movptr(call_wrapper, c_rarg0); // call wrapper 228 229 // save regs belonging to calling function 230 __ movptr(rbx_save, rbx); 231 __ movptr(r12_save, r12); 232 __ movptr(r13_save, r13); 233 __ movptr(r14_save, r14); 234 __ movptr(r15_save, r15); 235 236 #ifdef _WIN64 237 int last_reg = 15; 238 for (int i = xmm_save_first; i <= last_reg; i++) { 239 __ movdqu(xmm_save(i), as_XMMRegister(i)); 240 } 241 242 const Address rdi_save(rbp, rdi_off * wordSize); 243 const Address rsi_save(rbp, rsi_off * wordSize); 244 245 __ movptr(rsi_save, rsi); 246 __ movptr(rdi_save, rdi); 247 #else 248 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 249 { 250 Label skip_ldmx; 251 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1); 252 __ jcc(Assembler::equal, skip_ldmx); 253 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 254 __ ldmxcsr(mxcsr_std, rscratch1); 255 __ bind(skip_ldmx); 256 } 257 #endif 258 259 // Load up thread register 260 __ movptr(r15_thread, thread); 261 __ reinit_heapbase(); 262 263 #ifdef ASSERT 264 // make sure we have no pending exceptions 265 { 266 Label L; 267 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 268 __ jcc(Assembler::equal, L); 269 __ stop("StubRoutines::call_stub: entered with pending exception"); 270 __ bind(L); 271 } 272 #endif 273 274 // pass parameters if any 275 BLOCK_COMMENT("pass parameters if any"); 276 Label parameters_done; 277 __ movl(c_rarg3, parameter_size); 278 __ testl(c_rarg3, c_rarg3); 279 __ jcc(Assembler::zero, parameters_done); 280 281 Label loop; 282 __ movptr(c_rarg2, parameters); // parameter pointer 283 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 284 __ BIND(loop); 285 __ movptr(rax, Address(c_rarg2, 0));// get parameter 286 __ addptr(c_rarg2, wordSize); // advance to next parameter 287 __ decrementl(c_rarg1); // decrement counter 288 __ push(rax); // pass parameter 289 __ jcc(Assembler::notZero, loop); 290 291 // call Java function 292 __ BIND(parameters_done); 293 __ movptr(rbx, method); // get Method* 294 __ movptr(c_rarg1, entry_point); // get entry_point 295 __ mov(r13, rsp); // set sender sp 296 BLOCK_COMMENT("call Java function"); 297 __ call(c_rarg1); 298 299 BLOCK_COMMENT("call_stub_return_address:"); 300 return_address = __ pc(); 301 302 // store result depending on type (everything that is not 303 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 304 __ movptr(c_rarg0, result); 305 Label is_long, is_float, is_double, exit; 306 __ movl(c_rarg1, result_type); 307 __ cmpl(c_rarg1, T_OBJECT); 308 __ jcc(Assembler::equal, is_long); 309 __ cmpl(c_rarg1, T_LONG); 310 __ jcc(Assembler::equal, is_long); 311 __ cmpl(c_rarg1, T_FLOAT); 312 __ jcc(Assembler::equal, is_float); 313 __ cmpl(c_rarg1, T_DOUBLE); 314 __ jcc(Assembler::equal, is_double); 315 #ifdef ASSERT 316 // make sure the type is INT 317 { 318 Label L; 319 __ cmpl(c_rarg1, T_INT); 320 __ jcc(Assembler::equal, L); 321 __ stop("StubRoutines::call_stub: unexpected result type"); 322 __ bind(L); 323 } 324 #endif 325 326 // handle T_INT case 327 __ movl(Address(c_rarg0, 0), rax); 328 329 __ BIND(exit); 330 331 // pop parameters 332 __ lea(rsp, rsp_after_call); 333 334 #ifdef ASSERT 335 // verify that threads correspond 336 { 337 Label L1, L2, L3; 338 __ cmpptr(r15_thread, thread); 339 __ jcc(Assembler::equal, L1); 340 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 341 __ bind(L1); 342 __ get_thread(rbx); 343 __ cmpptr(r15_thread, thread); 344 __ jcc(Assembler::equal, L2); 345 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 346 __ bind(L2); 347 __ cmpptr(r15_thread, rbx); 348 __ jcc(Assembler::equal, L3); 349 __ stop("StubRoutines::call_stub: threads must correspond"); 350 __ bind(L3); 351 } 352 #endif 353 354 __ pop_cont_fastpath(); 355 356 // restore regs belonging to calling function 357 #ifdef _WIN64 358 // emit the restores for xmm regs 359 for (int i = xmm_save_first; i <= last_reg; i++) { 360 __ movdqu(as_XMMRegister(i), xmm_save(i)); 361 } 362 #endif 363 __ movptr(r15, r15_save); 364 __ movptr(r14, r14_save); 365 __ movptr(r13, r13_save); 366 __ movptr(r12, r12_save); 367 __ movptr(rbx, rbx_save); 368 369 #ifdef _WIN64 370 __ movptr(rdi, rdi_save); 371 __ movptr(rsi, rsi_save); 372 #else 373 __ ldmxcsr(mxcsr_save); 374 #endif 375 376 // restore rsp 377 __ addptr(rsp, -rsp_after_call_off * wordSize); 378 379 // return 380 __ vzeroupper(); 381 __ pop(rbp); 382 __ ret(0); 383 384 // handle return types different from T_INT 385 __ BIND(is_long); 386 __ movq(Address(c_rarg0, 0), rax); 387 __ jmp(exit); 388 389 __ BIND(is_float); 390 __ movflt(Address(c_rarg0, 0), xmm0); 391 __ jmp(exit); 392 393 __ BIND(is_double); 394 __ movdbl(Address(c_rarg0, 0), xmm0); 395 __ jmp(exit); 396 397 return start; 398 } 399 400 // Return point for a Java call if there's an exception thrown in 401 // Java code. The exception is caught and transformed into a 402 // pending exception stored in JavaThread that can be tested from 403 // within the VM. 404 // 405 // Note: Usually the parameters are removed by the callee. In case 406 // of an exception crossing an activation frame boundary, that is 407 // not the case if the callee is compiled code => need to setup the 408 // rsp. 409 // 410 // rax: exception oop 411 412 address StubGenerator::generate_catch_exception() { 413 StubGenStubId stub_id = StubGenStubId::catch_exception_id; 414 StubCodeMark mark(this, stub_id); 415 address start = __ pc(); 416 417 // same as in generate_call_stub(): 418 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 419 const Address thread (rbp, thread_off * wordSize); 420 421 #ifdef ASSERT 422 // verify that threads correspond 423 { 424 Label L1, L2, L3; 425 __ cmpptr(r15_thread, thread); 426 __ jcc(Assembler::equal, L1); 427 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 428 __ bind(L1); 429 __ get_thread(rbx); 430 __ cmpptr(r15_thread, thread); 431 __ jcc(Assembler::equal, L2); 432 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 433 __ bind(L2); 434 __ cmpptr(r15_thread, rbx); 435 __ jcc(Assembler::equal, L3); 436 __ stop("StubRoutines::catch_exception: threads must correspond"); 437 __ bind(L3); 438 } 439 #endif 440 441 // set pending exception 442 __ verify_oop(rax); 443 444 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 445 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 446 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 447 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 448 449 // complete return to VM 450 assert(StubRoutines::_call_stub_return_address != nullptr, 451 "_call_stub_return_address must have been generated before"); 452 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 453 454 return start; 455 } 456 457 // Continuation point for runtime calls returning with a pending 458 // exception. The pending exception check happened in the runtime 459 // or native call stub. The pending exception in Thread is 460 // converted into a Java-level exception. 461 // 462 // Contract with Java-level exception handlers: 463 // rax: exception 464 // rdx: throwing pc 465 // 466 // NOTE: At entry of this stub, exception-pc must be on stack !! 467 468 address StubGenerator::generate_forward_exception() { 469 StubGenStubId stub_id = StubGenStubId::forward_exception_id; 470 StubCodeMark mark(this, stub_id); 471 address start = __ pc(); 472 473 // Upon entry, the sp points to the return address returning into 474 // Java (interpreted or compiled) code; i.e., the return address 475 // becomes the throwing pc. 476 // 477 // Arguments pushed before the runtime call are still on the stack 478 // but the exception handler will reset the stack pointer -> 479 // ignore them. A potential result in registers can be ignored as 480 // well. 481 482 #ifdef ASSERT 483 // make sure this code is only executed if there is a pending exception 484 { 485 Label L; 486 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 487 __ jcc(Assembler::notEqual, L); 488 __ stop("StubRoutines::forward exception: no pending exception (1)"); 489 __ bind(L); 490 } 491 #endif 492 493 // compute exception handler into rbx 494 __ movptr(c_rarg0, Address(rsp, 0)); 495 BLOCK_COMMENT("call exception_handler_for_return_address"); 496 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 497 SharedRuntime::exception_handler_for_return_address), 498 r15_thread, c_rarg0); 499 __ mov(rbx, rax); 500 501 // setup rax & rdx, remove return address & clear pending exception 502 __ pop(rdx); 503 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 504 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 505 506 #ifdef ASSERT 507 // make sure exception is set 508 { 509 Label L; 510 __ testptr(rax, rax); 511 __ jcc(Assembler::notEqual, L); 512 __ stop("StubRoutines::forward exception: no pending exception (2)"); 513 __ bind(L); 514 } 515 #endif 516 517 // continue at exception handler (return address removed) 518 // rax: exception 519 // rbx: exception handler 520 // rdx: throwing pc 521 __ verify_oop(rax); 522 __ jmp(rbx); 523 524 return start; 525 } 526 527 // Support for intptr_t OrderAccess::fence() 528 // 529 // Arguments : 530 // 531 // Result: 532 address StubGenerator::generate_orderaccess_fence() { 533 StubGenStubId stub_id = StubGenStubId::fence_id; 534 StubCodeMark mark(this, stub_id); 535 address start = __ pc(); 536 537 __ membar(Assembler::StoreLoad); 538 __ ret(0); 539 540 return start; 541 } 542 543 544 // Support for intptr_t get_previous_sp() 545 // 546 // This routine is used to find the previous stack pointer for the 547 // caller. 548 address StubGenerator::generate_get_previous_sp() { 549 StubGenStubId stub_id = StubGenStubId::get_previous_sp_id; 550 StubCodeMark mark(this, stub_id); 551 address start = __ pc(); 552 553 __ movptr(rax, rsp); 554 __ addptr(rax, 8); // return address is at the top of the stack. 555 __ ret(0); 556 557 return start; 558 } 559 560 //---------------------------------------------------------------------------------------------------- 561 // Support for void verify_mxcsr() 562 // 563 // This routine is used with -Xcheck:jni to verify that native 564 // JNI code does not return to Java code without restoring the 565 // MXCSR register to our expected state. 566 567 address StubGenerator::generate_verify_mxcsr() { 568 StubGenStubId stub_id = StubGenStubId::verify_mxcsr_id; 569 StubCodeMark mark(this, stub_id); 570 address start = __ pc(); 571 572 const Address mxcsr_save(rsp, 0); 573 574 if (CheckJNICalls) { 575 Label ok_ret; 576 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 577 __ push(rax); 578 __ subptr(rsp, wordSize); // allocate a temp location 579 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1); 580 __ jcc(Assembler::equal, ok_ret); 581 582 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 583 584 __ ldmxcsr(mxcsr_std, rscratch1); 585 586 __ bind(ok_ret); 587 __ addptr(rsp, wordSize); 588 __ pop(rax); 589 } 590 591 __ ret(0); 592 593 return start; 594 } 595 596 address StubGenerator::generate_f2i_fixup() { 597 StubGenStubId stub_id = StubGenStubId::f2i_fixup_id; 598 StubCodeMark mark(this, stub_id); 599 Address inout(rsp, 5 * wordSize); // return address + 4 saves 600 601 address start = __ pc(); 602 603 Label L; 604 605 __ push(rax); 606 __ push(c_rarg3); 607 __ push(c_rarg2); 608 __ push(c_rarg1); 609 610 __ movl(rax, 0x7f800000); 611 __ xorl(c_rarg3, c_rarg3); 612 __ movl(c_rarg2, inout); 613 __ movl(c_rarg1, c_rarg2); 614 __ andl(c_rarg1, 0x7fffffff); 615 __ cmpl(rax, c_rarg1); // NaN? -> 0 616 __ jcc(Assembler::negative, L); 617 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 618 __ movl(c_rarg3, 0x80000000); 619 __ movl(rax, 0x7fffffff); 620 __ cmovl(Assembler::positive, c_rarg3, rax); 621 622 __ bind(L); 623 __ movptr(inout, c_rarg3); 624 625 __ pop(c_rarg1); 626 __ pop(c_rarg2); 627 __ pop(c_rarg3); 628 __ pop(rax); 629 630 __ ret(0); 631 632 return start; 633 } 634 635 address StubGenerator::generate_f2l_fixup() { 636 StubGenStubId stub_id = StubGenStubId::f2l_fixup_id; 637 StubCodeMark mark(this, stub_id); 638 Address inout(rsp, 5 * wordSize); // return address + 4 saves 639 address start = __ pc(); 640 641 Label L; 642 643 __ push(rax); 644 __ push(c_rarg3); 645 __ push(c_rarg2); 646 __ push(c_rarg1); 647 648 __ movl(rax, 0x7f800000); 649 __ xorl(c_rarg3, c_rarg3); 650 __ movl(c_rarg2, inout); 651 __ movl(c_rarg1, c_rarg2); 652 __ andl(c_rarg1, 0x7fffffff); 653 __ cmpl(rax, c_rarg1); // NaN? -> 0 654 __ jcc(Assembler::negative, L); 655 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 656 __ mov64(c_rarg3, 0x8000000000000000); 657 __ mov64(rax, 0x7fffffffffffffff); 658 __ cmov(Assembler::positive, c_rarg3, rax); 659 660 __ bind(L); 661 __ movptr(inout, c_rarg3); 662 663 __ pop(c_rarg1); 664 __ pop(c_rarg2); 665 __ pop(c_rarg3); 666 __ pop(rax); 667 668 __ ret(0); 669 670 return start; 671 } 672 673 address StubGenerator::generate_d2i_fixup() { 674 StubGenStubId stub_id = StubGenStubId::d2i_fixup_id; 675 StubCodeMark mark(this, stub_id); 676 Address inout(rsp, 6 * wordSize); // return address + 5 saves 677 678 address start = __ pc(); 679 680 Label L; 681 682 __ push(rax); 683 __ push(c_rarg3); 684 __ push(c_rarg2); 685 __ push(c_rarg1); 686 __ push(c_rarg0); 687 688 __ movl(rax, 0x7ff00000); 689 __ movq(c_rarg2, inout); 690 __ movl(c_rarg3, c_rarg2); 691 __ mov(c_rarg1, c_rarg2); 692 __ mov(c_rarg0, c_rarg2); 693 __ negl(c_rarg3); 694 __ shrptr(c_rarg1, 0x20); 695 __ orl(c_rarg3, c_rarg2); 696 __ andl(c_rarg1, 0x7fffffff); 697 __ xorl(c_rarg2, c_rarg2); 698 __ shrl(c_rarg3, 0x1f); 699 __ orl(c_rarg1, c_rarg3); 700 __ cmpl(rax, c_rarg1); 701 __ jcc(Assembler::negative, L); // NaN -> 0 702 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 703 __ movl(c_rarg2, 0x80000000); 704 __ movl(rax, 0x7fffffff); 705 __ cmov(Assembler::positive, c_rarg2, rax); 706 707 __ bind(L); 708 __ movptr(inout, c_rarg2); 709 710 __ pop(c_rarg0); 711 __ pop(c_rarg1); 712 __ pop(c_rarg2); 713 __ pop(c_rarg3); 714 __ pop(rax); 715 716 __ ret(0); 717 718 return start; 719 } 720 721 address StubGenerator::generate_d2l_fixup() { 722 StubGenStubId stub_id = StubGenStubId::d2l_fixup_id; 723 StubCodeMark mark(this, stub_id); 724 Address inout(rsp, 6 * wordSize); // return address + 5 saves 725 726 address start = __ pc(); 727 728 Label L; 729 730 __ push(rax); 731 __ push(c_rarg3); 732 __ push(c_rarg2); 733 __ push(c_rarg1); 734 __ push(c_rarg0); 735 736 __ movl(rax, 0x7ff00000); 737 __ movq(c_rarg2, inout); 738 __ movl(c_rarg3, c_rarg2); 739 __ mov(c_rarg1, c_rarg2); 740 __ mov(c_rarg0, c_rarg2); 741 __ negl(c_rarg3); 742 __ shrptr(c_rarg1, 0x20); 743 __ orl(c_rarg3, c_rarg2); 744 __ andl(c_rarg1, 0x7fffffff); 745 __ xorl(c_rarg2, c_rarg2); 746 __ shrl(c_rarg3, 0x1f); 747 __ orl(c_rarg1, c_rarg3); 748 __ cmpl(rax, c_rarg1); 749 __ jcc(Assembler::negative, L); // NaN -> 0 750 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 751 __ mov64(c_rarg2, 0x8000000000000000); 752 __ mov64(rax, 0x7fffffffffffffff); 753 __ cmovq(Assembler::positive, c_rarg2, rax); 754 755 __ bind(L); 756 __ movq(inout, c_rarg2); 757 758 __ pop(c_rarg0); 759 __ pop(c_rarg1); 760 __ pop(c_rarg2); 761 __ pop(c_rarg3); 762 __ pop(rax); 763 764 __ ret(0); 765 766 return start; 767 } 768 769 address StubGenerator::generate_count_leading_zeros_lut() { 770 __ align64(); 771 StubGenStubId stub_id = StubGenStubId::vector_count_leading_zeros_lut_id; 772 StubCodeMark mark(this, stub_id); 773 address start = __ pc(); 774 775 __ emit_data64(0x0101010102020304, relocInfo::none); 776 __ emit_data64(0x0000000000000000, relocInfo::none); 777 __ emit_data64(0x0101010102020304, relocInfo::none); 778 __ emit_data64(0x0000000000000000, relocInfo::none); 779 __ emit_data64(0x0101010102020304, relocInfo::none); 780 __ emit_data64(0x0000000000000000, relocInfo::none); 781 __ emit_data64(0x0101010102020304, relocInfo::none); 782 __ emit_data64(0x0000000000000000, relocInfo::none); 783 784 return start; 785 } 786 787 address StubGenerator::generate_popcount_avx_lut() { 788 __ align64(); 789 StubGenStubId stub_id = StubGenStubId::vector_popcount_lut_id; 790 StubCodeMark mark(this, stub_id); 791 address start = __ pc(); 792 793 __ emit_data64(0x0302020102010100, relocInfo::none); 794 __ emit_data64(0x0403030203020201, relocInfo::none); 795 __ emit_data64(0x0302020102010100, relocInfo::none); 796 __ emit_data64(0x0403030203020201, relocInfo::none); 797 __ emit_data64(0x0302020102010100, relocInfo::none); 798 __ emit_data64(0x0403030203020201, relocInfo::none); 799 __ emit_data64(0x0302020102010100, relocInfo::none); 800 __ emit_data64(0x0403030203020201, relocInfo::none); 801 802 return start; 803 } 804 805 address StubGenerator::generate_iota_indices() { 806 __ align(CodeEntryAlignment); 807 StubGenStubId stub_id = StubGenStubId::vector_iota_indices_id; 808 StubCodeMark mark(this, stub_id); 809 address start = __ pc(); 810 // B 811 __ emit_data64(0x0706050403020100, relocInfo::none); 812 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 813 __ emit_data64(0x1716151413121110, relocInfo::none); 814 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 815 __ emit_data64(0x2726252423222120, relocInfo::none); 816 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 817 __ emit_data64(0x3736353433323130, relocInfo::none); 818 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 819 // W 820 __ emit_data64(0x0003000200010000, relocInfo::none); 821 __ emit_data64(0x0007000600050004, relocInfo::none); 822 __ emit_data64(0x000B000A00090008, relocInfo::none); 823 __ emit_data64(0x000F000E000D000C, relocInfo::none); 824 __ emit_data64(0x0013001200110010, relocInfo::none); 825 __ emit_data64(0x0017001600150014, relocInfo::none); 826 __ emit_data64(0x001B001A00190018, relocInfo::none); 827 __ emit_data64(0x001F001E001D001C, relocInfo::none); 828 // D 829 __ emit_data64(0x0000000100000000, relocInfo::none); 830 __ emit_data64(0x0000000300000002, relocInfo::none); 831 __ emit_data64(0x0000000500000004, relocInfo::none); 832 __ emit_data64(0x0000000700000006, relocInfo::none); 833 __ emit_data64(0x0000000900000008, relocInfo::none); 834 __ emit_data64(0x0000000B0000000A, relocInfo::none); 835 __ emit_data64(0x0000000D0000000C, relocInfo::none); 836 __ emit_data64(0x0000000F0000000E, relocInfo::none); 837 // Q 838 __ emit_data64(0x0000000000000000, relocInfo::none); 839 __ emit_data64(0x0000000000000001, relocInfo::none); 840 __ emit_data64(0x0000000000000002, relocInfo::none); 841 __ emit_data64(0x0000000000000003, relocInfo::none); 842 __ emit_data64(0x0000000000000004, relocInfo::none); 843 __ emit_data64(0x0000000000000005, relocInfo::none); 844 __ emit_data64(0x0000000000000006, relocInfo::none); 845 __ emit_data64(0x0000000000000007, relocInfo::none); 846 // D - FP 847 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 848 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 849 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 850 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 851 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 852 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 853 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 854 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 855 // Q - FP 856 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 857 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 858 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 859 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 860 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 861 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 862 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 863 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 864 return start; 865 } 866 867 address StubGenerator::generate_vector_reverse_bit_lut() { 868 __ align(CodeEntryAlignment); 869 StubGenStubId stub_id = StubGenStubId::vector_reverse_bit_lut_id; 870 StubCodeMark mark(this, stub_id); 871 address start = __ pc(); 872 873 __ emit_data64(0x0E060A020C040800, relocInfo::none); 874 __ emit_data64(0x0F070B030D050901, relocInfo::none); 875 __ emit_data64(0x0E060A020C040800, relocInfo::none); 876 __ emit_data64(0x0F070B030D050901, relocInfo::none); 877 __ emit_data64(0x0E060A020C040800, relocInfo::none); 878 __ emit_data64(0x0F070B030D050901, relocInfo::none); 879 __ emit_data64(0x0E060A020C040800, relocInfo::none); 880 __ emit_data64(0x0F070B030D050901, relocInfo::none); 881 882 return start; 883 } 884 885 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() { 886 __ align(CodeEntryAlignment); 887 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_long_id; 888 StubCodeMark mark(this, stub_id); 889 address start = __ pc(); 890 891 __ emit_data64(0x0001020304050607, relocInfo::none); 892 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 893 __ emit_data64(0x0001020304050607, relocInfo::none); 894 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 895 __ emit_data64(0x0001020304050607, relocInfo::none); 896 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 897 __ emit_data64(0x0001020304050607, relocInfo::none); 898 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 899 900 return start; 901 } 902 903 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() { 904 __ align(CodeEntryAlignment); 905 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_int_id; 906 StubCodeMark mark(this, stub_id); 907 address start = __ pc(); 908 909 __ emit_data64(0x0405060700010203, relocInfo::none); 910 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 911 __ emit_data64(0x0405060700010203, relocInfo::none); 912 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 913 __ emit_data64(0x0405060700010203, relocInfo::none); 914 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 915 __ emit_data64(0x0405060700010203, relocInfo::none); 916 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 917 918 return start; 919 } 920 921 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() { 922 __ align(CodeEntryAlignment); 923 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_short_id; 924 StubCodeMark mark(this, stub_id); 925 address start = __ pc(); 926 927 __ emit_data64(0x0607040502030001, relocInfo::none); 928 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 929 __ emit_data64(0x0607040502030001, relocInfo::none); 930 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 931 __ emit_data64(0x0607040502030001, relocInfo::none); 932 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 933 __ emit_data64(0x0607040502030001, relocInfo::none); 934 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 935 936 return start; 937 } 938 939 address StubGenerator::generate_vector_byte_shuffle_mask() { 940 __ align(CodeEntryAlignment); 941 StubGenStubId stub_id = StubGenStubId::vector_byte_shuffle_mask_id; 942 StubCodeMark mark(this, stub_id); 943 address start = __ pc(); 944 945 __ emit_data64(0x7070707070707070, relocInfo::none); 946 __ emit_data64(0x7070707070707070, relocInfo::none); 947 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 948 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 949 950 return start; 951 } 952 953 address StubGenerator::generate_fp_mask(StubGenStubId stub_id, int64_t mask) { 954 __ align(CodeEntryAlignment); 955 StubCodeMark mark(this, stub_id); 956 address start = __ pc(); 957 958 __ emit_data64( mask, relocInfo::none ); 959 __ emit_data64( mask, relocInfo::none ); 960 961 return start; 962 } 963 964 address StubGenerator::generate_compress_perm_table(StubGenStubId stub_id) { 965 int esize; 966 switch (stub_id) { 967 case compress_perm_table32_id: 968 esize = 32; 969 break; 970 case compress_perm_table64_id: 971 esize = 64; 972 break; 973 default: 974 ShouldNotReachHere(); 975 } 976 __ align(CodeEntryAlignment); 977 StubCodeMark mark(this, stub_id); 978 address start = __ pc(); 979 if (esize == 32) { 980 // Loop to generate 256 x 8 int compression permute index table. A row is 981 // accessed using 8 bit index computed using vector mask. An entry in 982 // a row holds either a valid permute index corresponding to set bit position 983 // or a -1 (default) value. 984 for (int mask = 0; mask < 256; mask++) { 985 int ctr = 0; 986 for (int j = 0; j < 8; j++) { 987 if (mask & (1 << j)) { 988 __ emit_data(j, relocInfo::none); 989 ctr++; 990 } 991 } 992 for (; ctr < 8; ctr++) { 993 __ emit_data(-1, relocInfo::none); 994 } 995 } 996 } else { 997 assert(esize == 64, ""); 998 // Loop to generate 16 x 4 long compression permute index table. A row is 999 // accessed using 4 bit index computed using vector mask. An entry in 1000 // a row holds either a valid permute index pair for a quadword corresponding 1001 // to set bit position or a -1 (default) value. 1002 for (int mask = 0; mask < 16; mask++) { 1003 int ctr = 0; 1004 for (int j = 0; j < 4; j++) { 1005 if (mask & (1 << j)) { 1006 __ emit_data(2 * j, relocInfo::none); 1007 __ emit_data(2 * j + 1, relocInfo::none); 1008 ctr++; 1009 } 1010 } 1011 for (; ctr < 4; ctr++) { 1012 __ emit_data64(-1L, relocInfo::none); 1013 } 1014 } 1015 } 1016 return start; 1017 } 1018 1019 address StubGenerator::generate_expand_perm_table(StubGenStubId stub_id) { 1020 int esize; 1021 switch (stub_id) { 1022 case expand_perm_table32_id: 1023 esize = 32; 1024 break; 1025 case expand_perm_table64_id: 1026 esize = 64; 1027 break; 1028 default: 1029 ShouldNotReachHere(); 1030 } 1031 __ align(CodeEntryAlignment); 1032 StubCodeMark mark(this, stub_id); 1033 address start = __ pc(); 1034 if (esize == 32) { 1035 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1036 // using 8 bit index computed using vector mask. An entry in a row holds either 1037 // a valid permute index (starting from least significant lane) placed at poisition 1038 // corresponding to set bit position or a -1 (default) value. 1039 for (int mask = 0; mask < 256; mask++) { 1040 int ctr = 0; 1041 for (int j = 0; j < 8; j++) { 1042 if (mask & (1 << j)) { 1043 __ emit_data(ctr++, relocInfo::none); 1044 } else { 1045 __ emit_data(-1, relocInfo::none); 1046 } 1047 } 1048 } 1049 } else { 1050 assert(esize == 64, ""); 1051 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1052 // using 4 bit index computed using vector mask. An entry in a row holds either 1053 // a valid doubleword permute index pair representing a quadword index (starting 1054 // from least significant lane) placed at poisition corresponding to set bit 1055 // position or a -1 (default) value. 1056 for (int mask = 0; mask < 16; mask++) { 1057 int ctr = 0; 1058 for (int j = 0; j < 4; j++) { 1059 if (mask & (1 << j)) { 1060 __ emit_data(2 * ctr, relocInfo::none); 1061 __ emit_data(2 * ctr + 1, relocInfo::none); 1062 ctr++; 1063 } else { 1064 __ emit_data64(-1L, relocInfo::none); 1065 } 1066 } 1067 } 1068 } 1069 return start; 1070 } 1071 1072 address StubGenerator::generate_vector_mask(StubGenStubId stub_id, int64_t mask) { 1073 __ align(CodeEntryAlignment); 1074 StubCodeMark mark(this, stub_id); 1075 address start = __ pc(); 1076 1077 __ emit_data64(mask, relocInfo::none); 1078 __ emit_data64(mask, relocInfo::none); 1079 __ emit_data64(mask, relocInfo::none); 1080 __ emit_data64(mask, relocInfo::none); 1081 __ emit_data64(mask, relocInfo::none); 1082 __ emit_data64(mask, relocInfo::none); 1083 __ emit_data64(mask, relocInfo::none); 1084 __ emit_data64(mask, relocInfo::none); 1085 1086 return start; 1087 } 1088 1089 address StubGenerator::generate_vector_byte_perm_mask() { 1090 __ align(CodeEntryAlignment); 1091 StubGenStubId stub_id = StubGenStubId::vector_byte_perm_mask_id; 1092 StubCodeMark mark(this, stub_id); 1093 address start = __ pc(); 1094 1095 __ emit_data64(0x0000000000000001, relocInfo::none); 1096 __ emit_data64(0x0000000000000003, relocInfo::none); 1097 __ emit_data64(0x0000000000000005, relocInfo::none); 1098 __ emit_data64(0x0000000000000007, relocInfo::none); 1099 __ emit_data64(0x0000000000000000, relocInfo::none); 1100 __ emit_data64(0x0000000000000002, relocInfo::none); 1101 __ emit_data64(0x0000000000000004, relocInfo::none); 1102 __ emit_data64(0x0000000000000006, relocInfo::none); 1103 1104 return start; 1105 } 1106 1107 address StubGenerator::generate_vector_fp_mask(StubGenStubId stub_id, int64_t mask) { 1108 __ align(CodeEntryAlignment); 1109 StubCodeMark mark(this, stub_id); 1110 address start = __ pc(); 1111 1112 __ emit_data64(mask, relocInfo::none); 1113 __ emit_data64(mask, relocInfo::none); 1114 __ emit_data64(mask, relocInfo::none); 1115 __ emit_data64(mask, relocInfo::none); 1116 __ emit_data64(mask, relocInfo::none); 1117 __ emit_data64(mask, relocInfo::none); 1118 __ emit_data64(mask, relocInfo::none); 1119 __ emit_data64(mask, relocInfo::none); 1120 1121 return start; 1122 } 1123 1124 address StubGenerator::generate_vector_custom_i32(StubGenStubId stub_id, Assembler::AvxVectorLen len, 1125 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1126 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1127 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1128 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1129 __ align(CodeEntryAlignment); 1130 StubCodeMark mark(this, stub_id); 1131 address start = __ pc(); 1132 1133 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1134 __ emit_data(val0, relocInfo::none, 0); 1135 __ emit_data(val1, relocInfo::none, 0); 1136 __ emit_data(val2, relocInfo::none, 0); 1137 __ emit_data(val3, relocInfo::none, 0); 1138 if (len >= Assembler::AVX_256bit) { 1139 __ emit_data(val4, relocInfo::none, 0); 1140 __ emit_data(val5, relocInfo::none, 0); 1141 __ emit_data(val6, relocInfo::none, 0); 1142 __ emit_data(val7, relocInfo::none, 0); 1143 if (len >= Assembler::AVX_512bit) { 1144 __ emit_data(val8, relocInfo::none, 0); 1145 __ emit_data(val9, relocInfo::none, 0); 1146 __ emit_data(val10, relocInfo::none, 0); 1147 __ emit_data(val11, relocInfo::none, 0); 1148 __ emit_data(val12, relocInfo::none, 0); 1149 __ emit_data(val13, relocInfo::none, 0); 1150 __ emit_data(val14, relocInfo::none, 0); 1151 __ emit_data(val15, relocInfo::none, 0); 1152 } 1153 } 1154 return start; 1155 } 1156 1157 // Non-destructive plausibility checks for oops 1158 // 1159 // Arguments: 1160 // all args on stack! 1161 // 1162 // Stack after saving c_rarg3: 1163 // [tos + 0]: saved c_rarg3 1164 // [tos + 1]: saved c_rarg2 1165 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1166 // [tos + 3]: saved flags 1167 // [tos + 4]: return address 1168 // * [tos + 5]: error message (char*) 1169 // * [tos + 6]: object to verify (oop) 1170 // * [tos + 7]: saved rax - saved by caller and bashed 1171 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1172 // * = popped on exit 1173 address StubGenerator::generate_verify_oop() { 1174 StubGenStubId stub_id = StubGenStubId::verify_oop_id; 1175 StubCodeMark mark(this, stub_id); 1176 address start = __ pc(); 1177 1178 Label exit, error; 1179 1180 __ pushf(); 1181 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1182 1183 __ push(r12); 1184 1185 // save c_rarg2 and c_rarg3 1186 __ push(c_rarg2); 1187 __ push(c_rarg3); 1188 1189 enum { 1190 // After previous pushes. 1191 oop_to_verify = 6 * wordSize, 1192 saved_rax = 7 * wordSize, 1193 saved_r10 = 8 * wordSize, 1194 1195 // Before the call to MacroAssembler::debug(), see below. 1196 return_addr = 16 * wordSize, 1197 error_msg = 17 * wordSize 1198 }; 1199 1200 // get object 1201 __ movptr(rax, Address(rsp, oop_to_verify)); 1202 1203 // make sure object is 'reasonable' 1204 __ testptr(rax, rax); 1205 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1206 1207 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1208 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1209 1210 // return if everything seems ok 1211 __ bind(exit); 1212 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1213 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1214 __ pop(c_rarg3); // restore c_rarg3 1215 __ pop(c_rarg2); // restore c_rarg2 1216 __ pop(r12); // restore r12 1217 __ popf(); // restore flags 1218 __ ret(4 * wordSize); // pop caller saved stuff 1219 1220 // handle errors 1221 __ bind(error); 1222 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1223 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1224 __ pop(c_rarg3); // get saved c_rarg3 back 1225 __ pop(c_rarg2); // get saved c_rarg2 back 1226 __ pop(r12); // get saved r12 back 1227 __ popf(); // get saved flags off stack -- 1228 // will be ignored 1229 1230 __ pusha(); // push registers 1231 // (rip is already 1232 // already pushed) 1233 // debug(char* msg, int64_t pc, int64_t regs[]) 1234 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1235 // pushed all the registers, so now the stack looks like: 1236 // [tos + 0] 16 saved registers 1237 // [tos + 16] return address 1238 // * [tos + 17] error message (char*) 1239 // * [tos + 18] object to verify (oop) 1240 // * [tos + 19] saved rax - saved by caller and bashed 1241 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1242 // * = popped on exit 1243 1244 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1245 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1246 __ movq(c_rarg2, rsp); // pass address of regs on stack 1247 __ mov(r12, rsp); // remember rsp 1248 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1249 __ andptr(rsp, -16); // align stack as required by ABI 1250 BLOCK_COMMENT("call MacroAssembler::debug"); 1251 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1252 __ hlt(); 1253 1254 return start; 1255 } 1256 1257 1258 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1259 // 1260 // Outputs: 1261 // rdi - rcx 1262 // rsi - rdx 1263 // rdx - r8 1264 // rcx - r9 1265 // 1266 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1267 // are non-volatile. r9 and r10 should not be used by the caller. 1268 // 1269 void StubGenerator::setup_arg_regs(int nargs) { 1270 const Register saved_rdi = r9; 1271 const Register saved_rsi = r10; 1272 assert(nargs == 3 || nargs == 4, "else fix"); 1273 #ifdef _WIN64 1274 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1275 "unexpected argument registers"); 1276 if (nargs == 4) { 1277 __ mov(rax, r9); // r9 is also saved_rdi 1278 } 1279 __ movptr(saved_rdi, rdi); 1280 __ movptr(saved_rsi, rsi); 1281 __ mov(rdi, rcx); // c_rarg0 1282 __ mov(rsi, rdx); // c_rarg1 1283 __ mov(rdx, r8); // c_rarg2 1284 if (nargs == 4) { 1285 __ mov(rcx, rax); // c_rarg3 (via rax) 1286 } 1287 #else 1288 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1289 "unexpected argument registers"); 1290 #endif 1291 DEBUG_ONLY(_regs_in_thread = false;) 1292 } 1293 1294 1295 void StubGenerator::restore_arg_regs() { 1296 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1297 const Register saved_rdi = r9; 1298 const Register saved_rsi = r10; 1299 #ifdef _WIN64 1300 __ movptr(rdi, saved_rdi); 1301 __ movptr(rsi, saved_rsi); 1302 #endif 1303 } 1304 1305 1306 // This is used in places where r10 is a scratch register, and can 1307 // be adapted if r9 is needed also. 1308 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1309 const Register saved_r15 = r9; 1310 assert(nargs == 3 || nargs == 4, "else fix"); 1311 #ifdef _WIN64 1312 if (nargs == 4) { 1313 __ mov(rax, r9); // r9 is also saved_r15 1314 } 1315 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1316 __ get_thread(r15_thread); 1317 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1318 "unexpected argument registers"); 1319 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1320 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1321 1322 __ mov(rdi, rcx); // c_rarg0 1323 __ mov(rsi, rdx); // c_rarg1 1324 __ mov(rdx, r8); // c_rarg2 1325 if (nargs == 4) { 1326 __ mov(rcx, rax); // c_rarg3 (via rax) 1327 } 1328 #else 1329 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1330 "unexpected argument registers"); 1331 #endif 1332 DEBUG_ONLY(_regs_in_thread = true;) 1333 } 1334 1335 1336 void StubGenerator::restore_arg_regs_using_thread() { 1337 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1338 const Register saved_r15 = r9; 1339 #ifdef _WIN64 1340 __ get_thread(r15_thread); 1341 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1342 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1343 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1344 #endif 1345 } 1346 1347 1348 void StubGenerator::setup_argument_regs(BasicType type) { 1349 if (type == T_BYTE || type == T_SHORT) { 1350 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1351 // r9 and r10 may be used to save non-volatile registers 1352 } else { 1353 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1354 // r9 is used to save r15_thread 1355 } 1356 } 1357 1358 1359 void StubGenerator::restore_argument_regs(BasicType type) { 1360 if (type == T_BYTE || type == T_SHORT) { 1361 restore_arg_regs(); 1362 } else { 1363 restore_arg_regs_using_thread(); 1364 } 1365 } 1366 1367 address StubGenerator::generate_data_cache_writeback() { 1368 const Register src = c_rarg0; // source address 1369 1370 __ align(CodeEntryAlignment); 1371 1372 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_id; 1373 StubCodeMark mark(this, stub_id); 1374 1375 address start = __ pc(); 1376 1377 __ enter(); 1378 __ cache_wb(Address(src, 0)); 1379 __ leave(); 1380 __ ret(0); 1381 1382 return start; 1383 } 1384 1385 address StubGenerator::generate_data_cache_writeback_sync() { 1386 const Register is_pre = c_rarg0; // pre or post sync 1387 1388 __ align(CodeEntryAlignment); 1389 1390 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_sync_id; 1391 StubCodeMark mark(this, stub_id); 1392 1393 // pre wbsync is a no-op 1394 // post wbsync translates to an sfence 1395 1396 Label skip; 1397 address start = __ pc(); 1398 1399 __ enter(); 1400 __ cmpl(is_pre, 0); 1401 __ jcc(Assembler::notEqual, skip); 1402 __ cache_wbsync(false); 1403 __ bind(skip); 1404 __ leave(); 1405 __ ret(0); 1406 1407 return start; 1408 } 1409 1410 // ofs and limit are use for multi-block byte array. 1411 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1412 address StubGenerator::generate_md5_implCompress(StubGenStubId stub_id) { 1413 bool multi_block; 1414 switch (stub_id) { 1415 case md5_implCompress_id: 1416 multi_block = false; 1417 break; 1418 case md5_implCompressMB_id: 1419 multi_block = true; 1420 break; 1421 default: 1422 ShouldNotReachHere(); 1423 } 1424 __ align(CodeEntryAlignment); 1425 StubCodeMark mark(this, stub_id); 1426 address start = __ pc(); 1427 1428 const Register buf_param = r15; 1429 const Address state_param(rsp, 0 * wordSize); 1430 const Address ofs_param (rsp, 1 * wordSize ); 1431 const Address limit_param(rsp, 1 * wordSize + 4); 1432 1433 __ enter(); 1434 __ push(rbx); 1435 __ push(rdi); 1436 __ push(rsi); 1437 __ push(r15); 1438 __ subptr(rsp, 2 * wordSize); 1439 1440 __ movptr(buf_param, c_rarg0); 1441 __ movptr(state_param, c_rarg1); 1442 if (multi_block) { 1443 __ movl(ofs_param, c_rarg2); 1444 __ movl(limit_param, c_rarg3); 1445 } 1446 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1447 1448 __ addptr(rsp, 2 * wordSize); 1449 __ pop(r15); 1450 __ pop(rsi); 1451 __ pop(rdi); 1452 __ pop(rbx); 1453 __ leave(); 1454 __ ret(0); 1455 1456 return start; 1457 } 1458 1459 address StubGenerator::generate_upper_word_mask() { 1460 __ align64(); 1461 StubGenStubId stub_id = StubGenStubId::upper_word_mask_id; 1462 StubCodeMark mark(this, stub_id); 1463 address start = __ pc(); 1464 1465 __ emit_data64(0x0000000000000000, relocInfo::none); 1466 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1467 1468 return start; 1469 } 1470 1471 address StubGenerator::generate_shuffle_byte_flip_mask() { 1472 __ align64(); 1473 StubGenStubId stub_id = StubGenStubId::shuffle_byte_flip_mask_id; 1474 StubCodeMark mark(this, stub_id); 1475 address start = __ pc(); 1476 1477 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1478 __ emit_data64(0x0001020304050607, relocInfo::none); 1479 1480 return start; 1481 } 1482 1483 // ofs and limit are use for multi-block byte array. 1484 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1485 address StubGenerator::generate_sha1_implCompress(StubGenStubId stub_id) { 1486 bool multi_block; 1487 switch (stub_id) { 1488 case sha1_implCompress_id: 1489 multi_block = false; 1490 break; 1491 case sha1_implCompressMB_id: 1492 multi_block = true; 1493 break; 1494 default: 1495 ShouldNotReachHere(); 1496 } 1497 __ align(CodeEntryAlignment); 1498 StubCodeMark mark(this, stub_id); 1499 address start = __ pc(); 1500 1501 Register buf = c_rarg0; 1502 Register state = c_rarg1; 1503 Register ofs = c_rarg2; 1504 Register limit = c_rarg3; 1505 1506 const XMMRegister abcd = xmm0; 1507 const XMMRegister e0 = xmm1; 1508 const XMMRegister e1 = xmm2; 1509 const XMMRegister msg0 = xmm3; 1510 1511 const XMMRegister msg1 = xmm4; 1512 const XMMRegister msg2 = xmm5; 1513 const XMMRegister msg3 = xmm6; 1514 const XMMRegister shuf_mask = xmm7; 1515 1516 __ enter(); 1517 1518 __ subptr(rsp, 4 * wordSize); 1519 1520 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1521 buf, state, ofs, limit, rsp, multi_block); 1522 1523 __ addptr(rsp, 4 * wordSize); 1524 1525 __ leave(); 1526 __ ret(0); 1527 1528 return start; 1529 } 1530 1531 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1532 __ align64(); 1533 StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_id; 1534 StubCodeMark mark(this, stub_id); 1535 address start = __ pc(); 1536 1537 __ emit_data64(0x0405060700010203, relocInfo::none); 1538 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1539 1540 if (VM_Version::supports_avx2()) { 1541 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1542 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1543 // _SHUF_00BA 1544 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1545 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1546 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1547 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1548 // _SHUF_DC00 1549 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1550 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1551 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1552 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1553 } 1554 1555 return start; 1556 } 1557 1558 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1559 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1560 __ align32(); 1561 StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_sha512_id; 1562 StubCodeMark mark(this, stub_id); 1563 address start = __ pc(); 1564 1565 if (VM_Version::supports_avx2()) { 1566 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1567 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1568 __ emit_data64(0x1011121314151617, relocInfo::none); 1569 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1570 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1571 __ emit_data64(0x0000000000000000, relocInfo::none); 1572 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1573 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1574 } 1575 1576 return start; 1577 } 1578 1579 // ofs and limit are use for multi-block byte array. 1580 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1581 address StubGenerator::generate_sha256_implCompress(StubGenStubId stub_id) { 1582 bool multi_block; 1583 switch (stub_id) { 1584 case sha256_implCompress_id: 1585 multi_block = false; 1586 break; 1587 case sha256_implCompressMB_id: 1588 multi_block = true; 1589 break; 1590 default: 1591 ShouldNotReachHere(); 1592 } 1593 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1594 __ align(CodeEntryAlignment); 1595 StubCodeMark mark(this, stub_id); 1596 address start = __ pc(); 1597 1598 Register buf = c_rarg0; 1599 Register state = c_rarg1; 1600 Register ofs = c_rarg2; 1601 Register limit = c_rarg3; 1602 1603 const XMMRegister msg = xmm0; 1604 const XMMRegister state0 = xmm1; 1605 const XMMRegister state1 = xmm2; 1606 const XMMRegister msgtmp0 = xmm3; 1607 1608 const XMMRegister msgtmp1 = xmm4; 1609 const XMMRegister msgtmp2 = xmm5; 1610 const XMMRegister msgtmp3 = xmm6; 1611 const XMMRegister msgtmp4 = xmm7; 1612 1613 const XMMRegister shuf_mask = xmm8; 1614 1615 __ enter(); 1616 1617 __ subptr(rsp, 4 * wordSize); 1618 1619 if (VM_Version::supports_sha()) { 1620 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1621 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1622 } else if (VM_Version::supports_avx2()) { 1623 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1624 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1625 } 1626 __ addptr(rsp, 4 * wordSize); 1627 __ vzeroupper(); 1628 __ leave(); 1629 __ ret(0); 1630 1631 return start; 1632 } 1633 1634 address StubGenerator::generate_sha512_implCompress(StubGenStubId stub_id) { 1635 bool multi_block; 1636 switch (stub_id) { 1637 case sha512_implCompress_id: 1638 multi_block = false; 1639 break; 1640 case sha512_implCompressMB_id: 1641 multi_block = true; 1642 break; 1643 default: 1644 ShouldNotReachHere(); 1645 } 1646 assert(VM_Version::supports_avx2(), ""); 1647 assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), ""); 1648 __ align(CodeEntryAlignment); 1649 StubCodeMark mark(this, stub_id); 1650 address start = __ pc(); 1651 1652 Register buf = c_rarg0; 1653 Register state = c_rarg1; 1654 Register ofs = c_rarg2; 1655 Register limit = c_rarg3; 1656 1657 __ enter(); 1658 1659 if (VM_Version::supports_sha512()) { 1660 __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block); 1661 } else { 1662 const XMMRegister msg = xmm0; 1663 const XMMRegister state0 = xmm1; 1664 const XMMRegister state1 = xmm2; 1665 const XMMRegister msgtmp0 = xmm3; 1666 const XMMRegister msgtmp1 = xmm4; 1667 const XMMRegister msgtmp2 = xmm5; 1668 const XMMRegister msgtmp3 = xmm6; 1669 const XMMRegister msgtmp4 = xmm7; 1670 1671 const XMMRegister shuf_mask = xmm8; 1672 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1673 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1674 } 1675 __ vzeroupper(); 1676 __ leave(); 1677 __ ret(0); 1678 1679 return start; 1680 } 1681 1682 address StubGenerator::base64_shuffle_addr() { 1683 __ align64(); 1684 StubGenStubId stub_id = StubGenStubId::shuffle_base64_id; 1685 StubCodeMark mark(this, stub_id); 1686 address start = __ pc(); 1687 1688 assert(((unsigned long long)start & 0x3f) == 0, 1689 "Alignment problem (0x%08llx)", (unsigned long long)start); 1690 __ emit_data64(0x0405030401020001, relocInfo::none); 1691 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1692 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1693 __ emit_data64(0x1617151613141213, relocInfo::none); 1694 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1695 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1696 __ emit_data64(0x2829272825262425, relocInfo::none); 1697 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1698 1699 return start; 1700 } 1701 1702 address StubGenerator::base64_avx2_shuffle_addr() { 1703 __ align32(); 1704 StubGenStubId stub_id = StubGenStubId::avx2_shuffle_base64_id; 1705 StubCodeMark mark(this, stub_id); 1706 address start = __ pc(); 1707 1708 __ emit_data64(0x0809070805060405, relocInfo::none); 1709 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1710 __ emit_data64(0x0405030401020001, relocInfo::none); 1711 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1712 1713 return start; 1714 } 1715 1716 address StubGenerator::base64_avx2_input_mask_addr() { 1717 __ align32(); 1718 StubGenStubId stub_id = StubGenStubId::avx2_input_mask_base64_id; 1719 StubCodeMark mark(this, stub_id); 1720 address start = __ pc(); 1721 1722 __ emit_data64(0x8000000000000000, relocInfo::none); 1723 __ emit_data64(0x8000000080000000, relocInfo::none); 1724 __ emit_data64(0x8000000080000000, relocInfo::none); 1725 __ emit_data64(0x8000000080000000, relocInfo::none); 1726 1727 return start; 1728 } 1729 1730 address StubGenerator::base64_avx2_lut_addr() { 1731 __ align32(); 1732 StubGenStubId stub_id = StubGenStubId::avx2_lut_base64_id; 1733 StubCodeMark mark(this, stub_id); 1734 address start = __ pc(); 1735 1736 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1737 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1738 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1739 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1740 1741 // URL LUT 1742 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1743 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1744 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1745 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1746 1747 return start; 1748 } 1749 1750 address StubGenerator::base64_encoding_table_addr() { 1751 __ align64(); 1752 StubGenStubId stub_id = StubGenStubId::encoding_table_base64_id; 1753 StubCodeMark mark(this, stub_id); 1754 address start = __ pc(); 1755 1756 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1757 __ emit_data64(0x4847464544434241, relocInfo::none); 1758 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1759 __ emit_data64(0x5857565554535251, relocInfo::none); 1760 __ emit_data64(0x6665646362615a59, relocInfo::none); 1761 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1762 __ emit_data64(0x767574737271706f, relocInfo::none); 1763 __ emit_data64(0x333231307a797877, relocInfo::none); 1764 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1765 1766 // URL table 1767 __ emit_data64(0x4847464544434241, relocInfo::none); 1768 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1769 __ emit_data64(0x5857565554535251, relocInfo::none); 1770 __ emit_data64(0x6665646362615a59, relocInfo::none); 1771 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1772 __ emit_data64(0x767574737271706f, relocInfo::none); 1773 __ emit_data64(0x333231307a797877, relocInfo::none); 1774 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1775 1776 return start; 1777 } 1778 1779 // Code for generating Base64 encoding. 1780 // Intrinsic function prototype in Base64.java: 1781 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1782 // boolean isURL) { 1783 address StubGenerator::generate_base64_encodeBlock() 1784 { 1785 __ align(CodeEntryAlignment); 1786 StubGenStubId stub_id = StubGenStubId::base64_encodeBlock_id; 1787 StubCodeMark mark(this, stub_id); 1788 address start = __ pc(); 1789 1790 __ enter(); 1791 1792 // Save callee-saved registers before using them 1793 __ push(r12); 1794 __ push(r13); 1795 __ push(r14); 1796 __ push(r15); 1797 1798 // arguments 1799 const Register source = c_rarg0; // Source Array 1800 const Register start_offset = c_rarg1; // start offset 1801 const Register end_offset = c_rarg2; // end offset 1802 const Register dest = c_rarg3; // destination array 1803 1804 #ifndef _WIN64 1805 const Register dp = c_rarg4; // Position for writing to dest array 1806 const Register isURL = c_rarg5; // Base64 or URL character set 1807 #else 1808 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1809 const Address isURL_mem(rbp, 7 * wordSize); 1810 const Register isURL = r10; // pick the volatile windows register 1811 const Register dp = r12; 1812 __ movl(dp, dp_mem); 1813 __ movl(isURL, isURL_mem); 1814 #endif 1815 1816 const Register length = r14; 1817 const Register encode_table = r13; 1818 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1819 1820 // calculate length from offsets 1821 __ movl(length, end_offset); 1822 __ subl(length, start_offset); 1823 __ jcc(Assembler::lessEqual, L_exit); 1824 1825 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1826 // output bytes. We read 64 input bytes and ignore the last 16, so be 1827 // sure not to read past the end of the input buffer. 1828 if (VM_Version::supports_avx512_vbmi()) { 1829 __ cmpl(length, 64); // Do not overrun input buffer. 1830 __ jcc(Assembler::below, L_not512); 1831 1832 __ shll(isURL, 6); // index into decode table based on isURL 1833 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1834 __ addptr(encode_table, isURL); 1835 __ shrl(isURL, 6); // restore isURL 1836 1837 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1838 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1839 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1840 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1841 1842 __ align32(); 1843 __ BIND(L_vbmiLoop); 1844 1845 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1846 __ subl(length, 48); 1847 1848 // Put the input bytes into the proper lanes for writing, then 1849 // encode them. 1850 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1851 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1852 1853 // Write to destination 1854 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1855 1856 __ addptr(dest, 64); 1857 __ addptr(source, 48); 1858 __ cmpl(length, 64); 1859 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1860 1861 __ vzeroupper(); 1862 } 1863 1864 __ BIND(L_not512); 1865 if (VM_Version::supports_avx2()) { 1866 /* 1867 ** This AVX2 encoder is based off the paper at: 1868 ** https://dl.acm.org/doi/10.1145/3132709 1869 ** 1870 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1871 ** output bytes. 1872 ** 1873 */ 1874 // Lengths under 32 bytes are done with scalar routine 1875 __ cmpl(length, 31); 1876 __ jcc(Assembler::belowEqual, L_process3); 1877 1878 // Set up supporting constant table data 1879 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1880 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1881 __ movl(rax, 0x0fc0fc00); 1882 __ movdl(xmm8, rax); 1883 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1884 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1885 1886 // Multiplication constant for "shifting" right by 6 and 10 1887 // bits 1888 __ movl(rax, 0x04000040); 1889 1890 __ subl(length, 24); 1891 __ movdl(xmm7, rax); 1892 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1893 1894 // For the first load, we mask off reading of the first 4 1895 // bytes into the register. This is so we can get 4 3-byte 1896 // chunks into each lane of the register, avoiding having to 1897 // handle end conditions. We then shuffle these bytes into a 1898 // specific order so that manipulation is easier. 1899 // 1900 // The initial read loads the XMM register like this: 1901 // 1902 // Lower 128-bit lane: 1903 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1904 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1905 // | C2 | D0 | D1 | D2 | 1906 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1907 // 1908 // Upper 128-bit lane: 1909 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1910 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1911 // | XX | XX | XX | XX | 1912 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1913 // 1914 // Where A0 is the first input byte, B0 is the fourth, etc. 1915 // The alphabetical significance denotes the 3 bytes to be 1916 // consumed and encoded into 4 bytes. 1917 // 1918 // We then shuffle the register so each 32-bit word contains 1919 // the sequence: 1920 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1921 // Each of these byte sequences are then manipulated into 4 1922 // 6-bit values ready for encoding. 1923 // 1924 // If we focus on one set of 3-byte chunks, changing the 1925 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1926 // shuffle such that each 24-bit chunk contains: 1927 // 1928 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1929 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1930 // Explain this step. 1931 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1932 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1933 // 1934 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1935 // a5..a0) and shift them using a vector multiplication 1936 // operation (vpmulhuw) which effectively shifts c right by 6 1937 // bits and a right by 10 bits. We similarly mask bits 10-15 1938 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1939 // bits respectively. This is done using vpmullw. We end up 1940 // with 4 6-bit values, thus splitting the 3 input bytes, 1941 // ready for encoding: 1942 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1943 // 1944 // For translation, we recognize that there are 5 distinct 1945 // ranges of legal Base64 characters as below: 1946 // 1947 // +-------------+-------------+------------+ 1948 // | 6-bit value | ASCII range | offset | 1949 // +-------------+-------------+------------+ 1950 // | 0..25 | A..Z | 65 | 1951 // | 26..51 | a..z | 71 | 1952 // | 52..61 | 0..9 | -4 | 1953 // | 62 | + or - | -19 or -17 | 1954 // | 63 | / or _ | -16 or 32 | 1955 // +-------------+-------------+------------+ 1956 // 1957 // We note that vpshufb does a parallel lookup in a 1958 // destination register using the lower 4 bits of bytes from a 1959 // source register. If we use a saturated subtraction and 1960 // subtract 51 from each 6-bit value, bytes from [0,51] 1961 // saturate to 0, and [52,63] map to a range of [1,12]. We 1962 // distinguish the [0,25] and [26,51] ranges by assigning a 1963 // value of 13 for all 6-bit values less than 26. We end up 1964 // with: 1965 // 1966 // +-------------+-------------+------------+ 1967 // | 6-bit value | Reduced | offset | 1968 // +-------------+-------------+------------+ 1969 // | 0..25 | 13 | 65 | 1970 // | 26..51 | 0 | 71 | 1971 // | 52..61 | 0..9 | -4 | 1972 // | 62 | 11 | -19 or -17 | 1973 // | 63 | 12 | -16 or 32 | 1974 // +-------------+-------------+------------+ 1975 // 1976 // We then use a final vpshufb to add the appropriate offset, 1977 // translating the bytes. 1978 // 1979 // Load input bytes - only 28 bytes. Mask the first load to 1980 // not load into the full register. 1981 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1982 1983 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1984 // ordering by: 1985 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1986 // for easy masking 1987 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1988 1989 __ addl(start_offset, 24); 1990 1991 // Load masking register for first and third (and multiples) 1992 // 6-bit values. 1993 __ movl(rax, 0x003f03f0); 1994 __ movdl(xmm6, rax); 1995 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1996 // Multiplication constant for "shifting" left by 4 and 8 bits 1997 __ movl(rax, 0x01000010); 1998 __ movdl(xmm5, rax); 1999 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 2000 2001 // Isolate 6-bit chunks of interest 2002 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 2003 2004 // Load constants for encoding 2005 __ movl(rax, 0x19191919); 2006 __ movdl(xmm3, rax); 2007 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 2008 __ movl(rax, 0x33333333); 2009 __ movdl(xmm4, rax); 2010 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 2011 2012 // Shift output bytes 0 and 2 into proper lanes 2013 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 2014 2015 // Mask and shift output bytes 1 and 3 into proper lanes and 2016 // combine 2017 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 2018 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 2019 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2020 2021 // Find out which are 0..25. This indicates which input 2022 // values fall in the range of 'A'-'Z', which require an 2023 // additional offset (see comments above) 2024 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 2025 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 2026 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 2027 2028 // Load the proper lookup table 2029 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 2030 __ movl(r15, isURL); 2031 __ shll(r15, 5); 2032 __ vmovdqu(xmm2, Address(r11, r15)); 2033 2034 // Shuffle the offsets based on the range calculation done 2035 // above. This allows us to add the correct offset to the 2036 // 6-bit value corresponding to the range documented above. 2037 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 2038 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 2039 2040 // Store the encoded bytes 2041 __ vmovdqu(Address(dest, dp), xmm0); 2042 __ addl(dp, 32); 2043 2044 __ cmpl(length, 31); 2045 __ jcc(Assembler::belowEqual, L_process3); 2046 2047 __ align32(); 2048 __ BIND(L_32byteLoop); 2049 2050 // Get next 32 bytes 2051 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 2052 2053 __ subl(length, 24); 2054 __ addl(start_offset, 24); 2055 2056 // This logic is identical to the above, with only constant 2057 // register loads removed. Shuffle the input, mask off 6-bit 2058 // chunks, shift them into place, then add the offset to 2059 // encode. 2060 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 2061 2062 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 2063 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 2064 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 2065 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 2066 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2067 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 2068 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 2069 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 2070 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 2071 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 2072 2073 // Store the encoded bytes 2074 __ vmovdqu(Address(dest, dp), xmm0); 2075 __ addl(dp, 32); 2076 2077 __ cmpl(length, 31); 2078 __ jcc(Assembler::above, L_32byteLoop); 2079 2080 __ BIND(L_process3); 2081 __ vzeroupper(); 2082 } else { 2083 __ BIND(L_process3); 2084 } 2085 2086 __ cmpl(length, 3); 2087 __ jcc(Assembler::below, L_exit); 2088 2089 // Load the encoding table based on isURL 2090 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 2091 __ movl(r15, isURL); 2092 __ shll(r15, 6); 2093 __ addptr(r11, r15); 2094 2095 __ BIND(L_processdata); 2096 2097 // Load 3 bytes 2098 __ load_unsigned_byte(r15, Address(source, start_offset)); 2099 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2100 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2101 2102 // Build a 32-bit word with bytes 1, 2, 0, 1 2103 __ movl(rax, r10); 2104 __ shll(r10, 24); 2105 __ orl(rax, r10); 2106 2107 __ subl(length, 3); 2108 2109 __ shll(r15, 8); 2110 __ shll(r13, 16); 2111 __ orl(rax, r15); 2112 2113 __ addl(start_offset, 3); 2114 2115 __ orl(rax, r13); 2116 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2117 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2118 // This translated byte is the fourth output byte. 2119 __ shrl(r13, 16); 2120 __ andl(r13, 0x3f); 2121 2122 // The high-order 6 bits of r15 (byte0) is translated. 2123 // The translated byte is the first output byte. 2124 __ shrl(r15, 10); 2125 2126 __ load_unsigned_byte(r13, Address(r11, r13)); 2127 __ load_unsigned_byte(r15, Address(r11, r15)); 2128 2129 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2130 2131 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2132 // This translated byte is the second output byte. 2133 __ shrl(rax, 4); 2134 __ movl(r10, rax); 2135 __ andl(rax, 0x3f); 2136 2137 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2138 2139 __ load_unsigned_byte(rax, Address(r11, rax)); 2140 2141 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2142 // This translated byte is the third output byte. 2143 __ shrl(r10, 18); 2144 __ andl(r10, 0x3f); 2145 2146 __ load_unsigned_byte(r10, Address(r11, r10)); 2147 2148 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2149 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2150 2151 __ addl(dp, 4); 2152 __ cmpl(length, 3); 2153 __ jcc(Assembler::aboveEqual, L_processdata); 2154 2155 __ BIND(L_exit); 2156 __ pop(r15); 2157 __ pop(r14); 2158 __ pop(r13); 2159 __ pop(r12); 2160 __ leave(); 2161 __ ret(0); 2162 2163 return start; 2164 } 2165 2166 // base64 AVX512vbmi tables 2167 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2168 __ align64(); 2169 StubGenStubId stub_id = StubGenStubId::lookup_lo_base64_id; 2170 StubCodeMark mark(this, stub_id); 2171 address start = __ pc(); 2172 2173 assert(((unsigned long long)start & 0x3f) == 0, 2174 "Alignment problem (0x%08llx)", (unsigned long long)start); 2175 __ emit_data64(0x8080808080808080, relocInfo::none); 2176 __ emit_data64(0x8080808080808080, relocInfo::none); 2177 __ emit_data64(0x8080808080808080, relocInfo::none); 2178 __ emit_data64(0x8080808080808080, relocInfo::none); 2179 __ emit_data64(0x8080808080808080, relocInfo::none); 2180 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2181 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2182 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2183 2184 return start; 2185 } 2186 2187 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2188 __ align64(); 2189 StubGenStubId stub_id = StubGenStubId::lookup_hi_base64_id; 2190 StubCodeMark mark(this, stub_id); 2191 address start = __ pc(); 2192 2193 assert(((unsigned long long)start & 0x3f) == 0, 2194 "Alignment problem (0x%08llx)", (unsigned long long)start); 2195 __ emit_data64(0x0605040302010080, relocInfo::none); 2196 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2197 __ emit_data64(0x161514131211100f, relocInfo::none); 2198 __ emit_data64(0x8080808080191817, relocInfo::none); 2199 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2200 __ emit_data64(0x2827262524232221, relocInfo::none); 2201 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2202 __ emit_data64(0x8080808080333231, relocInfo::none); 2203 2204 return start; 2205 } 2206 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2207 __ align64(); 2208 StubGenStubId stub_id = StubGenStubId::lookup_lo_base64url_id; 2209 StubCodeMark mark(this, stub_id); 2210 address start = __ pc(); 2211 2212 assert(((unsigned long long)start & 0x3f) == 0, 2213 "Alignment problem (0x%08llx)", (unsigned long long)start); 2214 __ emit_data64(0x8080808080808080, relocInfo::none); 2215 __ emit_data64(0x8080808080808080, relocInfo::none); 2216 __ emit_data64(0x8080808080808080, relocInfo::none); 2217 __ emit_data64(0x8080808080808080, relocInfo::none); 2218 __ emit_data64(0x8080808080808080, relocInfo::none); 2219 __ emit_data64(0x80803e8080808080, relocInfo::none); 2220 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2221 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2222 2223 return start; 2224 } 2225 2226 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2227 __ align64(); 2228 StubGenStubId stub_id = StubGenStubId::lookup_hi_base64url_id; 2229 StubCodeMark mark(this, stub_id); 2230 address start = __ pc(); 2231 2232 assert(((unsigned long long)start & 0x3f) == 0, 2233 "Alignment problem (0x%08llx)", (unsigned long long)start); 2234 __ emit_data64(0x0605040302010080, relocInfo::none); 2235 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2236 __ emit_data64(0x161514131211100f, relocInfo::none); 2237 __ emit_data64(0x3f80808080191817, relocInfo::none); 2238 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2239 __ emit_data64(0x2827262524232221, relocInfo::none); 2240 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2241 __ emit_data64(0x8080808080333231, relocInfo::none); 2242 2243 return start; 2244 } 2245 2246 address StubGenerator::base64_vbmi_pack_vec_addr() { 2247 __ align64(); 2248 StubGenStubId stub_id = StubGenStubId::pack_vec_base64_id; 2249 StubCodeMark mark(this, stub_id); 2250 address start = __ pc(); 2251 2252 assert(((unsigned long long)start & 0x3f) == 0, 2253 "Alignment problem (0x%08llx)", (unsigned long long)start); 2254 __ emit_data64(0x090a040506000102, relocInfo::none); 2255 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2256 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2257 __ emit_data64(0x292a242526202122, relocInfo::none); 2258 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2259 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2260 __ emit_data64(0x0000000000000000, relocInfo::none); 2261 __ emit_data64(0x0000000000000000, relocInfo::none); 2262 2263 return start; 2264 } 2265 2266 address StubGenerator::base64_vbmi_join_0_1_addr() { 2267 __ align64(); 2268 StubGenStubId stub_id = StubGenStubId::join_0_1_base64_id; 2269 StubCodeMark mark(this, stub_id); 2270 address start = __ pc(); 2271 2272 assert(((unsigned long long)start & 0x3f) == 0, 2273 "Alignment problem (0x%08llx)", (unsigned long long)start); 2274 __ emit_data64(0x090a040506000102, relocInfo::none); 2275 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2276 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2277 __ emit_data64(0x292a242526202122, relocInfo::none); 2278 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2279 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2280 __ emit_data64(0x494a444546404142, relocInfo::none); 2281 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2282 2283 return start; 2284 } 2285 2286 address StubGenerator::base64_vbmi_join_1_2_addr() { 2287 __ align64(); 2288 StubGenStubId stub_id = StubGenStubId::join_1_2_base64_id; 2289 StubCodeMark mark(this, stub_id); 2290 address start = __ pc(); 2291 2292 assert(((unsigned long long)start & 0x3f) == 0, 2293 "Alignment problem (0x%08llx)", (unsigned long long)start); 2294 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2295 __ emit_data64(0x292a242526202122, relocInfo::none); 2296 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2297 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2298 __ emit_data64(0x494a444546404142, relocInfo::none); 2299 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2300 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2301 __ emit_data64(0x696a646566606162, relocInfo::none); 2302 2303 return start; 2304 } 2305 2306 address StubGenerator::base64_vbmi_join_2_3_addr() { 2307 __ align64(); 2308 StubGenStubId stub_id = StubGenStubId::join_2_3_base64_id; 2309 StubCodeMark mark(this, stub_id); 2310 address start = __ pc(); 2311 2312 assert(((unsigned long long)start & 0x3f) == 0, 2313 "Alignment problem (0x%08llx)", (unsigned long long)start); 2314 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2315 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2316 __ emit_data64(0x494a444546404142, relocInfo::none); 2317 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2318 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2319 __ emit_data64(0x696a646566606162, relocInfo::none); 2320 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2321 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2322 2323 return start; 2324 } 2325 2326 address StubGenerator::base64_AVX2_decode_tables_addr() { 2327 __ align64(); 2328 StubGenStubId stub_id = StubGenStubId::avx2_decode_tables_base64_id; 2329 StubCodeMark mark(this, stub_id); 2330 address start = __ pc(); 2331 2332 assert(((unsigned long long)start & 0x3f) == 0, 2333 "Alignment problem (0x%08llx)", (unsigned long long)start); 2334 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2335 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2336 2337 __ emit_data(0xffffffff, relocInfo::none, 0); 2338 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2339 2340 // Permute table 2341 __ emit_data64(0x0000000100000000, relocInfo::none); 2342 __ emit_data64(0x0000000400000002, relocInfo::none); 2343 __ emit_data64(0x0000000600000005, relocInfo::none); 2344 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2345 2346 // Shuffle table 2347 __ emit_data64(0x090a040506000102, relocInfo::none); 2348 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2349 __ emit_data64(0x090a040506000102, relocInfo::none); 2350 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2351 2352 // merge table 2353 __ emit_data(0x01400140, relocInfo::none, 0); 2354 2355 // merge multiplier 2356 __ emit_data(0x00011000, relocInfo::none, 0); 2357 2358 return start; 2359 } 2360 2361 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2362 __ align64(); 2363 StubGenStubId stub_id = StubGenStubId::avx2_decode_lut_tables_base64_id; 2364 StubCodeMark mark(this, stub_id); 2365 address start = __ pc(); 2366 2367 assert(((unsigned long long)start & 0x3f) == 0, 2368 "Alignment problem (0x%08llx)", (unsigned long long)start); 2369 // lut_lo 2370 __ emit_data64(0x1111111111111115, relocInfo::none); 2371 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2372 __ emit_data64(0x1111111111111115, relocInfo::none); 2373 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2374 2375 // lut_roll 2376 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2377 __ emit_data64(0x0000000000000000, relocInfo::none); 2378 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2379 __ emit_data64(0x0000000000000000, relocInfo::none); 2380 2381 // lut_lo URL 2382 __ emit_data64(0x1111111111111115, relocInfo::none); 2383 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2384 __ emit_data64(0x1111111111111115, relocInfo::none); 2385 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2386 2387 // lut_roll URL 2388 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2389 __ emit_data64(0x0000000000000000, relocInfo::none); 2390 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2391 __ emit_data64(0x0000000000000000, relocInfo::none); 2392 2393 // lut_hi 2394 __ emit_data64(0x0804080402011010, relocInfo::none); 2395 __ emit_data64(0x1010101010101010, relocInfo::none); 2396 __ emit_data64(0x0804080402011010, relocInfo::none); 2397 __ emit_data64(0x1010101010101010, relocInfo::none); 2398 2399 return start; 2400 } 2401 2402 address StubGenerator::base64_decoding_table_addr() { 2403 StubGenStubId stub_id = StubGenStubId::decoding_table_base64_id; 2404 StubCodeMark mark(this, stub_id); 2405 address start = __ pc(); 2406 2407 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2408 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2409 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2410 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2411 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2412 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2413 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2414 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2415 __ emit_data64(0x06050403020100ff, relocInfo::none); 2416 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2417 __ emit_data64(0x161514131211100f, relocInfo::none); 2418 __ emit_data64(0xffffffffff191817, relocInfo::none); 2419 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2420 __ emit_data64(0x2827262524232221, relocInfo::none); 2421 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2422 __ emit_data64(0xffffffffff333231, relocInfo::none); 2423 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2424 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2425 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2426 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2427 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2428 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2429 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2430 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2431 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2432 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2433 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2434 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2435 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2436 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2437 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2438 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2439 2440 // URL table 2441 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2442 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2443 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2444 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2445 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2446 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2447 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2448 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2449 __ emit_data64(0x06050403020100ff, relocInfo::none); 2450 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2451 __ emit_data64(0x161514131211100f, relocInfo::none); 2452 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2453 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2454 __ emit_data64(0x2827262524232221, relocInfo::none); 2455 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2456 __ emit_data64(0xffffffffff333231, relocInfo::none); 2457 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2458 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2459 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2460 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2461 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2462 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2463 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2464 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2465 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2466 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2467 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2468 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2469 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2470 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2471 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2472 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2473 2474 return start; 2475 } 2476 2477 2478 // Code for generating Base64 decoding. 2479 // 2480 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2481 // 2482 // Intrinsic function prototype in Base64.java: 2483 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2484 address StubGenerator::generate_base64_decodeBlock() { 2485 __ align(CodeEntryAlignment); 2486 StubGenStubId stub_id = StubGenStubId::base64_decodeBlock_id; 2487 StubCodeMark mark(this, stub_id); 2488 address start = __ pc(); 2489 2490 __ enter(); 2491 2492 // Save callee-saved registers before using them 2493 __ push(r12); 2494 __ push(r13); 2495 __ push(r14); 2496 __ push(r15); 2497 __ push(rbx); 2498 2499 // arguments 2500 const Register source = c_rarg0; // Source Array 2501 const Register start_offset = c_rarg1; // start offset 2502 const Register end_offset = c_rarg2; // end offset 2503 const Register dest = c_rarg3; // destination array 2504 const Register isMIME = rbx; 2505 2506 #ifndef _WIN64 2507 const Register dp = c_rarg4; // Position for writing to dest array 2508 const Register isURL = c_rarg5;// Base64 or URL character set 2509 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2510 #else 2511 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2512 const Address isURL_mem(rbp, 7 * wordSize); 2513 const Register isURL = r10; // pick the volatile windows register 2514 const Register dp = r12; 2515 __ movl(dp, dp_mem); 2516 __ movl(isURL, isURL_mem); 2517 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2518 #endif 2519 2520 const XMMRegister lookup_lo = xmm5; 2521 const XMMRegister lookup_hi = xmm6; 2522 const XMMRegister errorvec = xmm7; 2523 const XMMRegister pack16_op = xmm9; 2524 const XMMRegister pack32_op = xmm8; 2525 const XMMRegister input0 = xmm3; 2526 const XMMRegister input1 = xmm20; 2527 const XMMRegister input2 = xmm21; 2528 const XMMRegister input3 = xmm19; 2529 const XMMRegister join01 = xmm12; 2530 const XMMRegister join12 = xmm11; 2531 const XMMRegister join23 = xmm10; 2532 const XMMRegister translated0 = xmm2; 2533 const XMMRegister translated1 = xmm1; 2534 const XMMRegister translated2 = xmm0; 2535 const XMMRegister translated3 = xmm4; 2536 2537 const XMMRegister merged0 = xmm2; 2538 const XMMRegister merged1 = xmm1; 2539 const XMMRegister merged2 = xmm0; 2540 const XMMRegister merged3 = xmm4; 2541 const XMMRegister merge_ab_bc0 = xmm2; 2542 const XMMRegister merge_ab_bc1 = xmm1; 2543 const XMMRegister merge_ab_bc2 = xmm0; 2544 const XMMRegister merge_ab_bc3 = xmm4; 2545 2546 const XMMRegister pack24bits = xmm4; 2547 2548 const Register length = r14; 2549 const Register output_size = r13; 2550 const Register output_mask = r15; 2551 const KRegister input_mask = k1; 2552 2553 const XMMRegister input_initial_valid_b64 = xmm0; 2554 const XMMRegister tmp = xmm10; 2555 const XMMRegister mask = xmm0; 2556 const XMMRegister invalid_b64 = xmm1; 2557 2558 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2559 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2560 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2561 2562 // calculate length from offsets 2563 __ movl(length, end_offset); 2564 __ subl(length, start_offset); 2565 __ push(dest); // Save for return value calc 2566 2567 // If AVX512 VBMI not supported, just compile non-AVX code 2568 if(VM_Version::supports_avx512_vbmi() && 2569 VM_Version::supports_avx512bw()) { 2570 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2571 __ jcc(Assembler::lessEqual, L_lastChunk); 2572 2573 __ cmpl(isMIME, 0); 2574 __ jcc(Assembler::notEqual, L_lastChunk); 2575 2576 // Load lookup tables based on isURL 2577 __ cmpl(isURL, 0); 2578 __ jcc(Assembler::notZero, L_loadURL); 2579 2580 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2581 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2582 2583 __ BIND(L_continue); 2584 2585 __ movl(r15, 0x01400140); 2586 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2587 2588 __ movl(r15, 0x00011000); 2589 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2590 2591 __ cmpl(length, 0xff); 2592 __ jcc(Assembler::lessEqual, L_process64); 2593 2594 // load masks required for decoding data 2595 __ BIND(L_processdata); 2596 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2597 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2598 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2599 2600 __ align32(); 2601 __ BIND(L_process256); 2602 // Grab input data 2603 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2604 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2605 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2606 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2607 2608 // Copy the low part of the lookup table into the destination of the permutation 2609 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2610 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2611 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2612 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2613 2614 // Translate the base64 input into "decoded" bytes 2615 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2616 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2617 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2618 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2619 2620 // OR all of the translations together to check for errors (high-order bit of byte set) 2621 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2622 2623 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2624 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2625 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2626 2627 // Check if there was an error - if so, try 64-byte chunks 2628 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2629 __ kortestql(k3, k3); 2630 __ jcc(Assembler::notZero, L_process64); 2631 2632 // The merging and shuffling happens here 2633 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2634 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2635 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2636 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2637 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2638 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2639 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2640 2641 // Now do the same with packed 16-bit values. 2642 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2643 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2644 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2645 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2646 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2647 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2648 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2649 2650 // The join vectors specify which byte from which vector goes into the outputs 2651 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2652 // final positions in the register for storing (256 bytes in, 192 bytes out) 2653 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2654 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2655 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2656 2657 // Store result 2658 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2659 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2660 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2661 2662 __ addptr(source, 0x100); 2663 __ addptr(dest, 0xc0); 2664 __ subl(length, 0x100); 2665 __ cmpl(length, 64 * 4); 2666 __ jcc(Assembler::greaterEqual, L_process256); 2667 2668 // At this point, we've decoded 64 * 4 * n bytes. 2669 // The remaining length will be <= 64 * 4 - 1. 2670 // UNLESS there was an error decoding the first 256-byte chunk. In this 2671 // case, the length will be arbitrarily long. 2672 // 2673 // Note that this will be the path for MIME-encoded strings. 2674 2675 __ BIND(L_process64); 2676 2677 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2678 2679 __ cmpl(length, 63); 2680 __ jcc(Assembler::lessEqual, L_finalBit); 2681 2682 __ mov64(rax, 0x0000ffffffffffff); 2683 __ kmovql(k2, rax); 2684 2685 __ align32(); 2686 __ BIND(L_process64Loop); 2687 2688 // Handle first 64-byte block 2689 2690 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2691 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2692 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2693 2694 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2695 2696 // Check for error and bomb out before updating dest 2697 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2698 __ kortestql(k3, k3); 2699 __ jcc(Assembler::notZero, L_exit); 2700 2701 // Pack output register, selecting correct byte ordering 2702 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2703 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2704 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2705 2706 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2707 2708 __ subl(length, 64); 2709 __ addptr(source, 64); 2710 __ addptr(dest, 48); 2711 2712 __ cmpl(length, 64); 2713 __ jcc(Assembler::greaterEqual, L_process64Loop); 2714 2715 __ cmpl(length, 0); 2716 __ jcc(Assembler::lessEqual, L_exit); 2717 2718 __ BIND(L_finalBit); 2719 // Now have 1 to 63 bytes left to decode 2720 2721 // I was going to let Java take care of the final fragment 2722 // however it will repeatedly call this routine for every 4 bytes 2723 // of input data, so handle the rest here. 2724 __ movq(rax, -1); 2725 __ bzhiq(rax, rax, length); // Input mask in rax 2726 2727 __ movl(output_size, length); 2728 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2729 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2730 // output_size in r13 2731 2732 // Strip pad characters, if any, and adjust length and mask 2733 __ addq(length, start_offset); 2734 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2735 __ jcc(Assembler::equal, L_padding); 2736 2737 __ BIND(L_donePadding); 2738 __ subq(length, start_offset); 2739 2740 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2741 __ kmovql(input_mask, rax); 2742 __ movq(output_mask, -1); 2743 __ bzhiq(output_mask, output_mask, output_size); 2744 2745 // Load initial input with all valid base64 characters. Will be used 2746 // in merging source bytes to avoid masking when determining if an error occurred. 2747 __ movl(rax, 0x61616161); 2748 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2749 2750 // A register containing all invalid base64 decoded values 2751 __ movl(rax, 0x80808080); 2752 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2753 2754 // input_mask is in k1 2755 // output_size is in r13 2756 // output_mask is in r15 2757 // zmm0 - free 2758 // zmm1 - 0x00011000 2759 // zmm2 - 0x01400140 2760 // zmm3 - errorvec 2761 // zmm4 - pack vector 2762 // zmm5 - lookup_lo 2763 // zmm6 - lookup_hi 2764 // zmm7 - errorvec 2765 // zmm8 - 0x61616161 2766 // zmm9 - 0x80808080 2767 2768 // Load only the bytes from source, merging into our "fully-valid" register 2769 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2770 2771 // Decode all bytes within our merged input 2772 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2773 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2774 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2775 2776 // Check for error. Compare (decoded | initial) to all invalid. 2777 // If any bytes have their high-order bit set, then we have an error. 2778 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2779 __ kortestql(k2, k2); 2780 2781 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2782 __ jcc(Assembler::notZero, L_bruteForce); 2783 2784 // Shuffle output bytes 2785 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2786 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2787 2788 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2789 __ kmovql(k1, output_mask); 2790 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2791 2792 __ addptr(dest, output_size); 2793 2794 __ BIND(L_exit); 2795 __ vzeroupper(); 2796 __ pop(rax); // Get original dest value 2797 __ subptr(dest, rax); // Number of bytes converted 2798 __ movptr(rax, dest); 2799 __ pop(rbx); 2800 __ pop(r15); 2801 __ pop(r14); 2802 __ pop(r13); 2803 __ pop(r12); 2804 __ leave(); 2805 __ ret(0); 2806 2807 __ BIND(L_loadURL); 2808 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2809 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2810 __ jmp(L_continue); 2811 2812 __ BIND(L_padding); 2813 __ decrementq(output_size, 1); 2814 __ shrq(rax, 1); 2815 2816 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2817 __ jcc(Assembler::notEqual, L_donePadding); 2818 2819 __ decrementq(output_size, 1); 2820 __ shrq(rax, 1); 2821 __ jmp(L_donePadding); 2822 2823 __ align32(); 2824 __ BIND(L_bruteForce); 2825 } // End of if(avx512_vbmi) 2826 2827 if (VM_Version::supports_avx2()) { 2828 Label L_tailProc, L_topLoop, L_enterLoop; 2829 2830 __ cmpl(isMIME, 0); 2831 __ jcc(Assembler::notEqual, L_lastChunk); 2832 2833 // Check for buffer too small (for algorithm) 2834 __ subl(length, 0x2c); 2835 __ jcc(Assembler::less, L_tailProc); 2836 2837 __ shll(isURL, 2); 2838 2839 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2840 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2841 2842 // Set up constants 2843 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2844 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2845 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2846 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2847 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2848 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2849 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2850 2851 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2852 __ shll(isURL, 4); 2853 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2854 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2855 __ shrl(isURL, 6); // restore isURL 2856 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2857 __ jmp(L_enterLoop); 2858 2859 __ align32(); 2860 __ bind(L_topLoop); 2861 // Add in the offset value (roll) to get 6-bit out values 2862 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2863 // Merge and permute the output bits into appropriate output byte lanes 2864 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2865 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2866 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2867 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2868 // Store the output bytes 2869 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2870 __ addptr(source, 0x20); 2871 __ addptr(dest, 0x18); 2872 __ subl(length, 0x20); 2873 __ jcc(Assembler::less, L_tailProc); 2874 2875 __ bind(L_enterLoop); 2876 2877 // Load in encoded string (32 bytes) 2878 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2879 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2880 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2881 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2882 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2883 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2884 // Check for special-case (0x2F or 0x5F (URL)) 2885 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2886 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2887 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2888 // Get the bit value of the high nibble 2889 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2890 // Make sure 2F / 5F shows as valid 2891 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2892 // Make adjustment for roll index. For non-URL, this is a no-op, 2893 // for URL, this adjusts by -4. This is to properly index the 2894 // roll value for 2F / 5F. 2895 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2896 // If the and of the two is non-zero, we have an invalid input character 2897 __ vptest(xmm3, xmm5); 2898 // Extract the "roll" value - value to add to the input to get 6-bit out value 2899 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2900 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2901 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2902 2903 __ bind(L_tailProc); 2904 2905 __ addl(length, 0x2c); 2906 2907 __ vzeroupper(); 2908 } 2909 2910 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2911 2912 // Register state (Linux): 2913 // r12-15 - saved on stack 2914 // rdi - src 2915 // rsi - sp 2916 // rdx - sl 2917 // rcx - dst 2918 // r8 - dp 2919 // r9 - isURL 2920 2921 // Register state (Windows): 2922 // r12-15 - saved on stack 2923 // rcx - src 2924 // rdx - sp 2925 // r8 - sl 2926 // r9 - dst 2927 // r12 - dp 2928 // r10 - isURL 2929 2930 // Registers (common): 2931 // length (r14) - bytes in src 2932 2933 const Register decode_table = r11; 2934 const Register out_byte_count = rbx; 2935 const Register byte1 = r13; 2936 const Register byte2 = r15; 2937 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2938 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2939 2940 __ bind(L_lastChunk); 2941 2942 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2943 __ cmpl(length, 0); 2944 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2945 2946 __ shll(isURL, 8); // index into decode table based on isURL 2947 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2948 __ addptr(decode_table, isURL); 2949 2950 __ jmp(L_bottomLoop); 2951 2952 __ align32(); 2953 __ BIND(L_forceLoop); 2954 __ shll(byte1, 18); 2955 __ shll(byte2, 12); 2956 __ shll(byte3, 6); 2957 __ orl(byte1, byte2); 2958 __ orl(byte1, byte3); 2959 __ orl(byte1, byte4); 2960 2961 __ addptr(source, 4); 2962 2963 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2964 __ shrl(byte1, 8); 2965 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2966 __ shrl(byte1, 8); 2967 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2968 2969 __ addptr(dest, 3); 2970 __ decrementl(length, 1); 2971 __ jcc(Assembler::zero, L_exit_no_vzero); 2972 2973 __ BIND(L_bottomLoop); 2974 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2975 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2976 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2977 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2978 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2979 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2980 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2981 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2982 2983 __ mov(rax, byte1); 2984 __ orl(rax, byte2); 2985 __ orl(rax, byte3); 2986 __ orl(rax, byte4); 2987 __ jcc(Assembler::positive, L_forceLoop); 2988 2989 __ BIND(L_exit_no_vzero); 2990 __ pop(rax); // Get original dest value 2991 __ subptr(dest, rax); // Number of bytes converted 2992 __ movptr(rax, dest); 2993 __ pop(rbx); 2994 __ pop(r15); 2995 __ pop(r14); 2996 __ pop(r13); 2997 __ pop(r12); 2998 __ leave(); 2999 __ ret(0); 3000 3001 return start; 3002 } 3003 3004 3005 /** 3006 * Arguments: 3007 * 3008 * Inputs: 3009 * c_rarg0 - int crc 3010 * c_rarg1 - byte* buf 3011 * c_rarg2 - int length 3012 * 3013 * Output: 3014 * rax - int crc result 3015 */ 3016 address StubGenerator::generate_updateBytesCRC32() { 3017 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 3018 3019 __ align(CodeEntryAlignment); 3020 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32_id; 3021 StubCodeMark mark(this, stub_id); 3022 3023 address start = __ pc(); 3024 3025 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3026 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3027 // rscratch1: r10 3028 const Register crc = c_rarg0; // crc 3029 const Register buf = c_rarg1; // source java byte array address 3030 const Register len = c_rarg2; // length 3031 const Register table = c_rarg3; // crc_table address (reuse register) 3032 const Register tmp1 = r11; 3033 const Register tmp2 = r10; 3034 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 3035 3036 BLOCK_COMMENT("Entry:"); 3037 __ enter(); // required for proper stackwalking of RuntimeStub frame 3038 3039 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3040 VM_Version::supports_avx512bw() && 3041 VM_Version::supports_avx512vl()) { 3042 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 3043 // However, the constant table for CRC32-C assumes the original crc value. Account for this 3044 // difference before calling and after returning. 3045 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 3046 __ notl(crc); 3047 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 3048 __ notl(crc); 3049 } else { 3050 __ kernel_crc32(crc, buf, len, table, tmp1); 3051 } 3052 3053 __ movl(rax, crc); 3054 __ vzeroupper(); 3055 __ leave(); // required for proper stackwalking of RuntimeStub frame 3056 __ ret(0); 3057 3058 return start; 3059 } 3060 3061 /** 3062 * Arguments: 3063 * 3064 * Inputs: 3065 * c_rarg0 - int crc 3066 * c_rarg1 - byte* buf 3067 * c_rarg2 - long length 3068 * c_rarg3 - table_start - optional (present only when doing a library_call, 3069 * not used by x86 algorithm) 3070 * 3071 * Output: 3072 * rax - int crc result 3073 */ 3074 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 3075 assert(UseCRC32CIntrinsics, "need SSE4_2"); 3076 __ align(CodeEntryAlignment); 3077 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32C_id; 3078 StubCodeMark mark(this, stub_id); 3079 address start = __ pc(); 3080 3081 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 3082 //Windows RCX RDX R8 R9 none none XMM0..XMM3 3083 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 3084 const Register crc = c_rarg0; // crc 3085 const Register buf = c_rarg1; // source java byte array address 3086 const Register len = c_rarg2; // length 3087 const Register a = rax; 3088 const Register j = r9; 3089 const Register k = r10; 3090 const Register l = r11; 3091 #ifdef _WIN64 3092 const Register y = rdi; 3093 const Register z = rsi; 3094 #else 3095 const Register y = rcx; 3096 const Register z = r8; 3097 #endif 3098 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 3099 3100 BLOCK_COMMENT("Entry:"); 3101 __ enter(); // required for proper stackwalking of RuntimeStub frame 3102 Label L_continue; 3103 3104 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3105 VM_Version::supports_avx512bw() && 3106 VM_Version::supports_avx512vl()) { 3107 Label L_doSmall; 3108 3109 __ cmpl(len, 384); 3110 __ jcc(Assembler::lessEqual, L_doSmall); 3111 3112 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3113 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3114 3115 __ jmp(L_continue); 3116 3117 __ bind(L_doSmall); 3118 } 3119 #ifdef _WIN64 3120 __ push(y); 3121 __ push(z); 3122 #endif 3123 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3124 a, j, k, 3125 l, y, z, 3126 c_farg0, c_farg1, c_farg2, 3127 is_pclmulqdq_supported); 3128 #ifdef _WIN64 3129 __ pop(z); 3130 __ pop(y); 3131 #endif 3132 3133 __ bind(L_continue); 3134 __ movl(rax, crc); 3135 __ vzeroupper(); 3136 __ leave(); // required for proper stackwalking of RuntimeStub frame 3137 __ ret(0); 3138 3139 return start; 3140 } 3141 3142 3143 /** 3144 * Arguments: 3145 * 3146 * Input: 3147 * c_rarg0 - x address 3148 * c_rarg1 - x length 3149 * c_rarg2 - y address 3150 * c_rarg3 - y length 3151 * not Win64 3152 * c_rarg4 - z address 3153 * Win64 3154 * rsp+40 - z address 3155 */ 3156 address StubGenerator::generate_multiplyToLen() { 3157 __ align(CodeEntryAlignment); 3158 StubGenStubId stub_id = StubGenStubId::multiplyToLen_id; 3159 StubCodeMark mark(this, stub_id); 3160 address start = __ pc(); 3161 3162 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3163 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3164 const Register x = rdi; 3165 const Register xlen = rax; 3166 const Register y = rsi; 3167 const Register ylen = rcx; 3168 const Register z = r8; 3169 3170 // Next registers will be saved on stack in multiply_to_len(). 3171 const Register tmp0 = r11; 3172 const Register tmp1 = r12; 3173 const Register tmp2 = r13; 3174 const Register tmp3 = r14; 3175 const Register tmp4 = r15; 3176 const Register tmp5 = rbx; 3177 3178 BLOCK_COMMENT("Entry:"); 3179 __ enter(); // required for proper stackwalking of RuntimeStub frame 3180 3181 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3182 // ylen => rcx, z => r8 3183 // r9 and r10 may be used to save non-volatile registers 3184 #ifdef _WIN64 3185 // last argument (#4) is on stack on Win64 3186 __ movptr(z, Address(rsp, 6 * wordSize)); 3187 #endif 3188 3189 __ movptr(xlen, rsi); 3190 __ movptr(y, rdx); 3191 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3192 3193 restore_arg_regs(); 3194 3195 __ leave(); // required for proper stackwalking of RuntimeStub frame 3196 __ ret(0); 3197 3198 return start; 3199 } 3200 3201 /** 3202 * Arguments: 3203 * 3204 * Input: 3205 * c_rarg0 - obja address 3206 * c_rarg1 - objb address 3207 * c_rarg3 - length length 3208 * c_rarg4 - scale log2_array_indxscale 3209 * 3210 * Output: 3211 * rax - int >= mismatched index, < 0 bitwise complement of tail 3212 */ 3213 address StubGenerator::generate_vectorizedMismatch() { 3214 __ align(CodeEntryAlignment); 3215 StubGenStubId stub_id = StubGenStubId::vectorizedMismatch_id; 3216 StubCodeMark mark(this, stub_id); 3217 address start = __ pc(); 3218 3219 BLOCK_COMMENT("Entry:"); 3220 __ enter(); 3221 3222 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3223 const Register scale = c_rarg0; //rcx, will exchange with r9 3224 const Register objb = c_rarg1; //rdx 3225 const Register length = c_rarg2; //r8 3226 const Register obja = c_rarg3; //r9 3227 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3228 3229 const Register tmp1 = r10; 3230 const Register tmp2 = r11; 3231 #endif 3232 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3233 const Register obja = c_rarg0; //U:rdi 3234 const Register objb = c_rarg1; //U:rsi 3235 const Register length = c_rarg2; //U:rdx 3236 const Register scale = c_rarg3; //U:rcx 3237 const Register tmp1 = r8; 3238 const Register tmp2 = r9; 3239 #endif 3240 const Register result = rax; //return value 3241 const XMMRegister vec0 = xmm0; 3242 const XMMRegister vec1 = xmm1; 3243 const XMMRegister vec2 = xmm2; 3244 3245 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3246 3247 __ vzeroupper(); 3248 __ leave(); 3249 __ ret(0); 3250 3251 return start; 3252 } 3253 3254 /** 3255 * Arguments: 3256 * 3257 // Input: 3258 // c_rarg0 - x address 3259 // c_rarg1 - x length 3260 // c_rarg2 - z address 3261 // c_rarg3 - z length 3262 * 3263 */ 3264 address StubGenerator::generate_squareToLen() { 3265 3266 __ align(CodeEntryAlignment); 3267 StubGenStubId stub_id = StubGenStubId::squareToLen_id; 3268 StubCodeMark mark(this, stub_id); 3269 address start = __ pc(); 3270 3271 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3272 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3273 const Register x = rdi; 3274 const Register len = rsi; 3275 const Register z = r8; 3276 const Register zlen = rcx; 3277 3278 const Register tmp1 = r12; 3279 const Register tmp2 = r13; 3280 const Register tmp3 = r14; 3281 const Register tmp4 = r15; 3282 const Register tmp5 = rbx; 3283 3284 BLOCK_COMMENT("Entry:"); 3285 __ enter(); // required for proper stackwalking of RuntimeStub frame 3286 3287 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3288 // zlen => rcx 3289 // r9 and r10 may be used to save non-volatile registers 3290 __ movptr(r8, rdx); 3291 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3292 3293 restore_arg_regs(); 3294 3295 __ leave(); // required for proper stackwalking of RuntimeStub frame 3296 __ ret(0); 3297 3298 return start; 3299 } 3300 3301 address StubGenerator::generate_method_entry_barrier() { 3302 __ align(CodeEntryAlignment); 3303 StubGenStubId stub_id = StubGenStubId::method_entry_barrier_id; 3304 StubCodeMark mark(this, stub_id); 3305 address start = __ pc(); 3306 3307 Label deoptimize_label; 3308 3309 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3310 3311 BLOCK_COMMENT("Entry:"); 3312 __ enter(); // save rbp 3313 3314 // save c_rarg0, because we want to use that value. 3315 // We could do without it but then we depend on the number of slots used by pusha 3316 __ push(c_rarg0); 3317 3318 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3319 3320 __ pusha(); 3321 3322 // The method may have floats as arguments, and we must spill them before calling 3323 // the VM runtime. 3324 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3325 const int xmm_size = wordSize * 2; 3326 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3327 __ subptr(rsp, xmm_spill_size); 3328 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3329 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3330 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3331 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3332 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3333 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3334 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3335 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3336 3337 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3338 3339 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3340 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3341 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3342 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3343 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3344 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3345 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3346 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3347 __ addptr(rsp, xmm_spill_size); 3348 3349 __ cmpl(rax, 1); // 1 means deoptimize 3350 __ jcc(Assembler::equal, deoptimize_label); 3351 3352 __ popa(); 3353 __ pop(c_rarg0); 3354 3355 __ leave(); 3356 3357 __ addptr(rsp, 1 * wordSize); // cookie 3358 __ ret(0); 3359 3360 3361 __ BIND(deoptimize_label); 3362 3363 __ popa(); 3364 __ pop(c_rarg0); 3365 3366 __ leave(); 3367 3368 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3369 // here while still having a correct stack is valuable 3370 __ testptr(rsp, Address(rsp, 0)); 3371 3372 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3373 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3374 3375 return start; 3376 } 3377 3378 /** 3379 * Arguments: 3380 * 3381 * Input: 3382 * c_rarg0 - out address 3383 * c_rarg1 - in address 3384 * c_rarg2 - offset 3385 * c_rarg3 - len 3386 * not Win64 3387 * c_rarg4 - k 3388 * Win64 3389 * rsp+40 - k 3390 */ 3391 address StubGenerator::generate_mulAdd() { 3392 __ align(CodeEntryAlignment); 3393 StubGenStubId stub_id = StubGenStubId::mulAdd_id; 3394 StubCodeMark mark(this, stub_id); 3395 address start = __ pc(); 3396 3397 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3398 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3399 const Register out = rdi; 3400 const Register in = rsi; 3401 const Register offset = r11; 3402 const Register len = rcx; 3403 const Register k = r8; 3404 3405 // Next registers will be saved on stack in mul_add(). 3406 const Register tmp1 = r12; 3407 const Register tmp2 = r13; 3408 const Register tmp3 = r14; 3409 const Register tmp4 = r15; 3410 const Register tmp5 = rbx; 3411 3412 BLOCK_COMMENT("Entry:"); 3413 __ enter(); // required for proper stackwalking of RuntimeStub frame 3414 3415 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3416 // len => rcx, k => r8 3417 // r9 and r10 may be used to save non-volatile registers 3418 #ifdef _WIN64 3419 // last argument is on stack on Win64 3420 __ movl(k, Address(rsp, 6 * wordSize)); 3421 #endif 3422 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3423 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3424 3425 restore_arg_regs(); 3426 3427 __ leave(); // required for proper stackwalking of RuntimeStub frame 3428 __ ret(0); 3429 3430 return start; 3431 } 3432 3433 address StubGenerator::generate_bigIntegerRightShift() { 3434 __ align(CodeEntryAlignment); 3435 StubGenStubId stub_id = StubGenStubId::bigIntegerRightShiftWorker_id; 3436 StubCodeMark mark(this, stub_id); 3437 address start = __ pc(); 3438 3439 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3440 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3441 const Register newArr = rdi; 3442 const Register oldArr = rsi; 3443 const Register newIdx = rdx; 3444 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3445 const Register totalNumIter = r8; 3446 3447 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3448 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3449 const Register tmp1 = r11; // Caller save. 3450 const Register tmp2 = rax; // Caller save. 3451 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3452 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3453 const Register tmp5 = r14; // Callee save. 3454 const Register tmp6 = r15; 3455 3456 const XMMRegister x0 = xmm0; 3457 const XMMRegister x1 = xmm1; 3458 const XMMRegister x2 = xmm2; 3459 3460 BLOCK_COMMENT("Entry:"); 3461 __ enter(); // required for proper stackwalking of RuntimeStub frame 3462 3463 #ifdef _WIN64 3464 setup_arg_regs(4); 3465 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3466 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3467 // Save callee save registers. 3468 __ push(tmp3); 3469 __ push(tmp4); 3470 #endif 3471 __ push(tmp5); 3472 3473 // Rename temps used throughout the code. 3474 const Register idx = tmp1; 3475 const Register nIdx = tmp2; 3476 3477 __ xorl(idx, idx); 3478 3479 // Start right shift from end of the array. 3480 // For example, if #iteration = 4 and newIdx = 1 3481 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3482 // if #iteration = 4 and newIdx = 0 3483 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3484 __ movl(idx, totalNumIter); 3485 __ movl(nIdx, idx); 3486 __ addl(nIdx, newIdx); 3487 3488 // If vectorization is enabled, check if the number of iterations is at least 64 3489 // If not, then go to ShifTwo processing 2 iterations 3490 if (VM_Version::supports_avx512_vbmi2()) { 3491 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3492 __ jcc(Assembler::less, ShiftTwo); 3493 3494 if (AVX3Threshold < 16 * 64) { 3495 __ cmpl(totalNumIter, 16); 3496 __ jcc(Assembler::less, ShiftTwo); 3497 } 3498 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3499 __ subl(idx, 16); 3500 __ subl(nIdx, 16); 3501 __ BIND(Shift512Loop); 3502 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3503 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3504 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3505 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3506 __ subl(nIdx, 16); 3507 __ subl(idx, 16); 3508 __ jcc(Assembler::greaterEqual, Shift512Loop); 3509 __ addl(idx, 16); 3510 __ addl(nIdx, 16); 3511 } 3512 __ BIND(ShiftTwo); 3513 __ cmpl(idx, 2); 3514 __ jcc(Assembler::less, ShiftOne); 3515 __ subl(idx, 2); 3516 __ subl(nIdx, 2); 3517 __ BIND(ShiftTwoLoop); 3518 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3519 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3520 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3521 __ shrdl(tmp5, tmp4); 3522 __ shrdl(tmp4, tmp3); 3523 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3524 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3525 __ subl(nIdx, 2); 3526 __ subl(idx, 2); 3527 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3528 __ addl(idx, 2); 3529 __ addl(nIdx, 2); 3530 3531 // Do the last iteration 3532 __ BIND(ShiftOne); 3533 __ cmpl(idx, 1); 3534 __ jcc(Assembler::less, Exit); 3535 __ subl(idx, 1); 3536 __ subl(nIdx, 1); 3537 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3538 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3539 __ shrdl(tmp4, tmp3); 3540 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3541 __ BIND(Exit); 3542 __ vzeroupper(); 3543 // Restore callee save registers. 3544 __ pop(tmp5); 3545 #ifdef _WIN64 3546 __ pop(tmp4); 3547 __ pop(tmp3); 3548 restore_arg_regs(); 3549 #endif 3550 __ leave(); // required for proper stackwalking of RuntimeStub frame 3551 __ ret(0); 3552 3553 return start; 3554 } 3555 3556 /** 3557 * Arguments: 3558 * 3559 * Input: 3560 * c_rarg0 - newArr address 3561 * c_rarg1 - oldArr address 3562 * c_rarg2 - newIdx 3563 * c_rarg3 - shiftCount 3564 * not Win64 3565 * c_rarg4 - numIter 3566 * Win64 3567 * rsp40 - numIter 3568 */ 3569 address StubGenerator::generate_bigIntegerLeftShift() { 3570 __ align(CodeEntryAlignment); 3571 StubGenStubId stub_id = StubGenStubId::bigIntegerLeftShiftWorker_id; 3572 StubCodeMark mark(this, stub_id); 3573 address start = __ pc(); 3574 3575 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3576 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3577 const Register newArr = rdi; 3578 const Register oldArr = rsi; 3579 const Register newIdx = rdx; 3580 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3581 const Register totalNumIter = r8; 3582 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3583 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3584 const Register tmp1 = r11; // Caller save. 3585 const Register tmp2 = rax; // Caller save. 3586 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3587 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3588 const Register tmp5 = r14; // Callee save. 3589 3590 const XMMRegister x0 = xmm0; 3591 const XMMRegister x1 = xmm1; 3592 const XMMRegister x2 = xmm2; 3593 BLOCK_COMMENT("Entry:"); 3594 __ enter(); // required for proper stackwalking of RuntimeStub frame 3595 3596 #ifdef _WIN64 3597 setup_arg_regs(4); 3598 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3599 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3600 // Save callee save registers. 3601 __ push(tmp3); 3602 __ push(tmp4); 3603 #endif 3604 __ push(tmp5); 3605 3606 // Rename temps used throughout the code 3607 const Register idx = tmp1; 3608 const Register numIterTmp = tmp2; 3609 3610 // Start idx from zero. 3611 __ xorl(idx, idx); 3612 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3613 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3614 __ movl(numIterTmp, totalNumIter); 3615 3616 // If vectorization is enabled, check if the number of iterations is at least 64 3617 // If not, then go to ShiftTwo shifting two numbers at a time 3618 if (VM_Version::supports_avx512_vbmi2()) { 3619 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3620 __ jcc(Assembler::less, ShiftTwo); 3621 3622 if (AVX3Threshold < 16 * 64) { 3623 __ cmpl(totalNumIter, 16); 3624 __ jcc(Assembler::less, ShiftTwo); 3625 } 3626 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3627 __ subl(numIterTmp, 16); 3628 __ BIND(Shift512Loop); 3629 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3630 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3631 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3632 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3633 __ addl(idx, 16); 3634 __ subl(numIterTmp, 16); 3635 __ jcc(Assembler::greaterEqual, Shift512Loop); 3636 __ addl(numIterTmp, 16); 3637 } 3638 __ BIND(ShiftTwo); 3639 __ cmpl(totalNumIter, 1); 3640 __ jcc(Assembler::less, Exit); 3641 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3642 __ subl(numIterTmp, 2); 3643 __ jcc(Assembler::less, ShiftOne); 3644 3645 __ BIND(ShiftTwoLoop); 3646 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3647 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3648 __ shldl(tmp3, tmp4); 3649 __ shldl(tmp4, tmp5); 3650 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3651 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3652 __ movl(tmp3, tmp5); 3653 __ addl(idx, 2); 3654 __ subl(numIterTmp, 2); 3655 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3656 3657 // Do the last iteration 3658 __ BIND(ShiftOne); 3659 __ addl(numIterTmp, 2); 3660 __ cmpl(numIterTmp, 1); 3661 __ jcc(Assembler::less, Exit); 3662 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3663 __ shldl(tmp3, tmp4); 3664 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3665 3666 __ BIND(Exit); 3667 __ vzeroupper(); 3668 // Restore callee save registers. 3669 __ pop(tmp5); 3670 #ifdef _WIN64 3671 __ pop(tmp4); 3672 __ pop(tmp3); 3673 restore_arg_regs(); 3674 #endif 3675 __ leave(); // required for proper stackwalking of RuntimeStub frame 3676 __ ret(0); 3677 3678 return start; 3679 } 3680 3681 void StubGenerator::generate_libm_stubs() { 3682 if (UseLibmIntrinsic && InlineIntrinsics) { 3683 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3684 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3685 } 3686 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3687 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3688 } 3689 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3690 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3691 } 3692 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) { 3693 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp 3694 } 3695 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3696 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3697 } 3698 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3699 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3700 } 3701 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3702 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3703 } 3704 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3705 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3706 } 3707 } 3708 } 3709 3710 /** 3711 * Arguments: 3712 * 3713 * Input: 3714 * c_rarg0 - float16 jshort 3715 * 3716 * Output: 3717 * xmm0 - float 3718 */ 3719 address StubGenerator::generate_float16ToFloat() { 3720 StubGenStubId stub_id = StubGenStubId::hf2f_id; 3721 StubCodeMark mark(this, stub_id); 3722 3723 address start = __ pc(); 3724 3725 BLOCK_COMMENT("Entry:"); 3726 // No need for RuntimeStub frame since it is called only during JIT compilation 3727 3728 // Load value into xmm0 and convert 3729 __ flt16_to_flt(xmm0, c_rarg0); 3730 3731 __ ret(0); 3732 3733 return start; 3734 } 3735 3736 /** 3737 * Arguments: 3738 * 3739 * Input: 3740 * xmm0 - float 3741 * 3742 * Output: 3743 * rax - float16 jshort 3744 */ 3745 address StubGenerator::generate_floatToFloat16() { 3746 StubGenStubId stub_id = StubGenStubId::f2hf_id; 3747 StubCodeMark mark(this, stub_id); 3748 3749 address start = __ pc(); 3750 3751 BLOCK_COMMENT("Entry:"); 3752 // No need for RuntimeStub frame since it is called only during JIT compilation 3753 3754 // Convert and put result into rax 3755 __ flt_to_flt16(rax, xmm0, xmm1); 3756 3757 __ ret(0); 3758 3759 return start; 3760 } 3761 3762 address StubGenerator::generate_cont_thaw(StubGenStubId stub_id) { 3763 if (!Continuations::enabled()) return nullptr; 3764 3765 bool return_barrier; 3766 bool return_barrier_exception; 3767 Continuation::thaw_kind kind; 3768 3769 switch (stub_id) { 3770 case cont_thaw_id: 3771 return_barrier = false; 3772 return_barrier_exception = false; 3773 kind = Continuation::thaw_top; 3774 break; 3775 case cont_returnBarrier_id: 3776 return_barrier = true; 3777 return_barrier_exception = false; 3778 kind = Continuation::thaw_return_barrier; 3779 break; 3780 case cont_returnBarrierExc_id: 3781 return_barrier = true; 3782 return_barrier_exception = true; 3783 kind = Continuation::thaw_return_barrier_exception; 3784 break; 3785 default: 3786 ShouldNotReachHere(); 3787 } 3788 StubCodeMark mark(this, stub_id); 3789 address start = __ pc(); 3790 3791 // TODO: Handle Valhalla return types. May require generating different return barriers. 3792 3793 if (!return_barrier) { 3794 // Pop return address. If we don't do this, we get a drift, 3795 // where the bottom-most frozen frame continuously grows. 3796 __ pop(c_rarg3); 3797 } else { 3798 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3799 } 3800 3801 #ifdef ASSERT 3802 { 3803 Label L_good_sp; 3804 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3805 __ jcc(Assembler::equal, L_good_sp); 3806 __ stop("Incorrect rsp at thaw entry"); 3807 __ BIND(L_good_sp); 3808 } 3809 #endif // ASSERT 3810 3811 if (return_barrier) { 3812 // Preserve possible return value from a method returning to the return barrier. 3813 __ push(rax); 3814 __ push_d(xmm0); 3815 } 3816 3817 __ movptr(c_rarg0, r15_thread); 3818 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3819 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3820 __ movptr(rbx, rax); 3821 3822 if (return_barrier) { 3823 // Restore return value from a method returning to the return barrier. 3824 // No safepoint in the call to thaw, so even an oop return value should be OK. 3825 __ pop_d(xmm0); 3826 __ pop(rax); 3827 } 3828 3829 #ifdef ASSERT 3830 { 3831 Label L_good_sp; 3832 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3833 __ jcc(Assembler::equal, L_good_sp); 3834 __ stop("Incorrect rsp after prepare thaw"); 3835 __ BIND(L_good_sp); 3836 } 3837 #endif // ASSERT 3838 3839 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3840 Label L_thaw_success; 3841 __ testptr(rbx, rbx); 3842 __ jccb(Assembler::notZero, L_thaw_success); 3843 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 3844 __ bind(L_thaw_success); 3845 3846 // Make room for the thawed frames and align the stack. 3847 __ subptr(rsp, rbx); 3848 __ andptr(rsp, -StackAlignmentInBytes); 3849 3850 if (return_barrier) { 3851 // Preserve possible return value from a method returning to the return barrier. (Again.) 3852 __ push(rax); 3853 __ push_d(xmm0); 3854 } 3855 3856 // If we want, we can templatize thaw by kind, and have three different entries. 3857 __ movptr(c_rarg0, r15_thread); 3858 __ movptr(c_rarg1, kind); 3859 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3860 __ movptr(rbx, rax); 3861 3862 if (return_barrier) { 3863 // Restore return value from a method returning to the return barrier. (Again.) 3864 // No safepoint in the call to thaw, so even an oop return value should be OK. 3865 __ pop_d(xmm0); 3866 __ pop(rax); 3867 } else { 3868 // Return 0 (success) from doYield. 3869 __ xorptr(rax, rax); 3870 } 3871 3872 // After thawing, rbx is the SP of the yielding frame. 3873 // Move there, and then to saved RBP slot. 3874 __ movptr(rsp, rbx); 3875 __ subptr(rsp, 2*wordSize); 3876 3877 if (return_barrier_exception) { 3878 __ movptr(c_rarg0, r15_thread); 3879 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3880 3881 // rax still holds the original exception oop, save it before the call 3882 __ push(rax); 3883 3884 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3885 __ movptr(rbx, rax); 3886 3887 // Continue at exception handler: 3888 // rax: exception oop 3889 // rbx: exception handler 3890 // rdx: exception pc 3891 __ pop(rax); 3892 __ verify_oop(rax); 3893 __ pop(rbp); // pop out RBP here too 3894 __ pop(rdx); 3895 __ jmp(rbx); 3896 } else { 3897 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3898 __ pop(rbp); 3899 __ ret(0); 3900 } 3901 3902 return start; 3903 } 3904 3905 address StubGenerator::generate_cont_thaw() { 3906 return generate_cont_thaw(StubGenStubId::cont_thaw_id); 3907 } 3908 3909 // TODO: will probably need multiple return barriers depending on return type 3910 3911 address StubGenerator::generate_cont_returnBarrier() { 3912 return generate_cont_thaw(StubGenStubId::cont_returnBarrier_id); 3913 } 3914 3915 address StubGenerator::generate_cont_returnBarrier_exception() { 3916 return generate_cont_thaw(StubGenStubId::cont_returnBarrierExc_id); 3917 } 3918 3919 address StubGenerator::generate_cont_preempt_stub() { 3920 if (!Continuations::enabled()) return nullptr; 3921 StubGenStubId stub_id = StubGenStubId::cont_preempt_id; 3922 StubCodeMark mark(this, stub_id); 3923 address start = __ pc(); 3924 3925 __ reset_last_Java_frame(true); 3926 3927 // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap. 3928 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3929 3930 Label preemption_cancelled; 3931 __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset())); 3932 __ testbool(rscratch1); 3933 __ jcc(Assembler::notZero, preemption_cancelled); 3934 3935 // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount. 3936 SharedRuntime::continuation_enter_cleanup(_masm); 3937 __ pop(rbp); 3938 __ ret(0); 3939 3940 // We acquired the monitor after freezing the frames so call thaw to continue execution. 3941 __ bind(preemption_cancelled); 3942 __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false); 3943 __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size()))); 3944 __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address())); 3945 __ jmp(rscratch1); 3946 3947 return start; 3948 } 3949 3950 // exception handler for upcall stubs 3951 address StubGenerator::generate_upcall_stub_exception_handler() { 3952 StubGenStubId stub_id = StubGenStubId::upcall_stub_exception_handler_id; 3953 StubCodeMark mark(this, stub_id); 3954 address start = __ pc(); 3955 3956 // native caller has no idea how to handle exceptions 3957 // we just crash here. Up to callee to catch exceptions. 3958 __ verify_oop(rax); 3959 __ vzeroupper(); 3960 __ mov(c_rarg0, rax); 3961 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3962 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3963 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3964 __ should_not_reach_here(); 3965 3966 return start; 3967 } 3968 3969 // load Method* target of MethodHandle 3970 // j_rarg0 = jobject receiver 3971 // rbx = result 3972 address StubGenerator::generate_upcall_stub_load_target() { 3973 StubGenStubId stub_id = StubGenStubId::upcall_stub_load_target_id; 3974 StubCodeMark mark(this, stub_id); 3975 address start = __ pc(); 3976 3977 __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1); 3978 // Load target method from receiver 3979 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1); 3980 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1); 3981 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1); 3982 __ access_load_at(T_ADDRESS, IN_HEAP, rbx, 3983 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()), 3984 noreg, noreg); 3985 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized 3986 3987 __ ret(0); 3988 3989 return start; 3990 } 3991 3992 void StubGenerator::generate_lookup_secondary_supers_table_stub() { 3993 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_id; 3994 StubCodeMark mark(this, stub_id); 3995 3996 const Register 3997 r_super_klass = rax, 3998 r_sub_klass = rsi, 3999 result = rdi; 4000 4001 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4002 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc(); 4003 __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass, 4004 rdx, rcx, rbx, r11, // temps 4005 result, 4006 slot); 4007 __ ret(0); 4008 } 4009 } 4010 4011 // Slow path implementation for UseSecondarySupersTable. 4012 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 4013 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_slow_path_id; 4014 StubCodeMark mark(this, stub_id); 4015 4016 address start = __ pc(); 4017 4018 const Register 4019 r_super_klass = rax, 4020 r_array_base = rbx, 4021 r_array_index = rdx, 4022 r_sub_klass = rsi, 4023 r_bitmap = r11, 4024 result = rdi; 4025 4026 Label L_success; 4027 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 4028 rcx, rdi, // temps 4029 &L_success); 4030 // bind(L_failure); 4031 __ movl(result, 1); 4032 __ ret(0); 4033 4034 __ bind(L_success); 4035 __ movl(result, 0); 4036 __ ret(0); 4037 4038 return start; 4039 } 4040 4041 void StubGenerator::create_control_words() { 4042 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 4043 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 4044 // Round to zero, 64-bit mode, exceptions masked, flags specialized 4045 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 4046 } 4047 4048 // Initialization 4049 void StubGenerator::generate_initial_stubs() { 4050 // Generates all stubs and initializes the entry points 4051 4052 // This platform-specific settings are needed by generate_call_stub() 4053 create_control_words(); 4054 4055 // Initialize table for unsafe copy memeory check. 4056 if (UnsafeMemoryAccess::_table == nullptr) { 4057 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 4058 } 4059 4060 // entry points that exist in all platforms Note: This is code 4061 // that could be shared among different platforms - however the 4062 // benefit seems to be smaller than the disadvantage of having a 4063 // much more complicated generator structure. See also comment in 4064 // stubRoutines.hpp. 4065 4066 StubRoutines::_forward_exception_entry = generate_forward_exception(); 4067 4068 StubRoutines::_call_stub_entry = 4069 generate_call_stub(StubRoutines::_call_stub_return_address); 4070 4071 // is referenced by megamorphic call 4072 StubRoutines::_catch_exception_entry = generate_catch_exception(); 4073 4074 // atomic calls 4075 StubRoutines::_fence_entry = generate_orderaccess_fence(); 4076 4077 // platform dependent 4078 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 4079 4080 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 4081 4082 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 4083 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 4084 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 4085 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 4086 4087 StubRoutines::x86::_float_sign_mask = generate_fp_mask(StubGenStubId::float_sign_mask_id, 0x7FFFFFFF7FFFFFFF); 4088 StubRoutines::x86::_float_sign_flip = generate_fp_mask(StubGenStubId::float_sign_flip_id, 0x8000000080000000); 4089 StubRoutines::x86::_double_sign_mask = generate_fp_mask(StubGenStubId::double_sign_mask_id, 0x7FFFFFFFFFFFFFFF); 4090 StubRoutines::x86::_double_sign_flip = generate_fp_mask(StubGenStubId::double_sign_flip_id, 0x8000000000000000); 4091 4092 if (UseCRC32Intrinsics) { 4093 // set table address before stub generation which use it 4094 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 4095 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 4096 } 4097 4098 if (UseCRC32CIntrinsics) { 4099 bool supports_clmul = VM_Version::supports_clmul(); 4100 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 4101 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 4102 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 4103 } 4104 4105 if (VM_Version::supports_float16()) { 4106 // For results consistency both intrinsics should be enabled. 4107 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 4108 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 4109 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 4110 StubRoutines::_hf2f = generate_float16ToFloat(); 4111 StubRoutines::_f2hf = generate_floatToFloat16(); 4112 } 4113 } 4114 4115 generate_libm_stubs(); 4116 4117 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 4118 } 4119 4120 void StubGenerator::generate_continuation_stubs() { 4121 // Continuation stubs: 4122 StubRoutines::_cont_thaw = generate_cont_thaw(); 4123 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 4124 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 4125 StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub(); 4126 } 4127 4128 void StubGenerator::generate_final_stubs() { 4129 // Generates the rest of stubs and initializes the entry points 4130 4131 // support for verify_oop (must happen after universe_init) 4132 if (VerifyOops) { 4133 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 4134 } 4135 4136 // arraycopy stubs used by compilers 4137 generate_arraycopy_stubs(); 4138 4139 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 4140 if (bs_nm != nullptr) { 4141 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 4142 } 4143 4144 #ifdef COMPILER2 4145 if (UseSecondarySupersTable) { 4146 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4147 if (! InlineSecondarySupersTest) { 4148 generate_lookup_secondary_supers_table_stub(); 4149 } 4150 } 4151 #endif // COMPILER2 4152 4153 if (UseVectorizedMismatchIntrinsic) { 4154 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 4155 } 4156 4157 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 4158 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target(); 4159 } 4160 4161 void StubGenerator::generate_compiler_stubs() { 4162 #if COMPILER2_OR_JVMCI 4163 4164 // Entry points that are C2 compiler specific. 4165 4166 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubGenStubId::vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF); 4167 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubGenStubId::vector_float_sign_flip_id, 0x8000000080000000); 4168 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubGenStubId::vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF); 4169 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubGenStubId::vector_double_sign_flip_id, 0x8000000000000000); 4170 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubGenStubId::vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF); 4171 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubGenStubId::vector_int_mask_cmp_bits_id, 0x0000000100000001); 4172 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubGenStubId::vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff); 4173 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask(); 4174 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubGenStubId::vector_int_to_byte_mask_id, 0x000000ff000000ff); 4175 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubGenStubId::vector_int_to_short_mask_id, 0x0000ffff0000ffff); 4176 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_32_bit_mask_id, Assembler::AVX_512bit, 4177 0xFFFFFFFF, 0, 0, 0); 4178 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_64_bit_mask_id, Assembler::AVX_512bit, 4179 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4180 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubGenStubId::vector_int_shuffle_mask_id, 0x0302010003020100); 4181 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask(); 4182 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubGenStubId::vector_short_shuffle_mask_id, 0x0100010001000100); 4183 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubGenStubId::vector_long_shuffle_mask_id, 0x0000000100000000); 4184 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubGenStubId::vector_long_sign_mask_id, 0x8000000000000000); 4185 StubRoutines::x86::_vector_iota_indices = generate_iota_indices(); 4186 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut(); 4187 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut(); 4188 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long(); 4189 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int(); 4190 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short(); 4191 4192 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4193 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubGenStubId::compress_perm_table32_id); 4194 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubGenStubId::compress_perm_table64_id); 4195 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubGenStubId::expand_perm_table32_id); 4196 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubGenStubId::expand_perm_table64_id); 4197 } 4198 4199 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4200 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4201 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut(); 4202 } 4203 4204 generate_aes_stubs(); 4205 4206 generate_ghash_stubs(); 4207 4208 generate_chacha_stubs(); 4209 4210 generate_sha3_stubs(); 4211 4212 // data cache line writeback 4213 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 4214 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 4215 4216 #ifdef COMPILER2 4217 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4218 generate_string_indexof(StubRoutines::_string_indexof_array); 4219 } 4220 #endif 4221 4222 if (UseAdler32Intrinsics) { 4223 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4224 } 4225 4226 if (UsePoly1305Intrinsics) { 4227 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4228 } 4229 4230 if (UseIntPolyIntrinsics) { 4231 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4232 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4233 } 4234 4235 if (UseMD5Intrinsics) { 4236 StubRoutines::_md5_implCompress = generate_md5_implCompress(StubGenStubId::md5_implCompress_id); 4237 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubGenStubId::md5_implCompressMB_id); 4238 } 4239 4240 if (UseSHA1Intrinsics) { 4241 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4242 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4243 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubGenStubId::sha1_implCompress_id); 4244 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubGenStubId::sha1_implCompressMB_id); 4245 } 4246 4247 if (UseSHA256Intrinsics) { 4248 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4249 char* dst = (char*)StubRoutines::x86::_k256_W; 4250 char* src = (char*)StubRoutines::x86::_k256; 4251 for (int ii = 0; ii < 16; ++ii) { 4252 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4253 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4254 } 4255 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4256 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4257 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubGenStubId::sha256_implCompress_id); 4258 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubGenStubId::sha256_implCompressMB_id); 4259 } 4260 4261 if (UseSHA512Intrinsics) { 4262 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4263 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4264 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubGenStubId::sha512_implCompress_id); 4265 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubGenStubId::sha512_implCompressMB_id); 4266 } 4267 4268 if (UseBASE64Intrinsics) { 4269 if(VM_Version::supports_avx2()) { 4270 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4271 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4272 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4273 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4274 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4275 } 4276 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4277 if (VM_Version::supports_avx512_vbmi()) { 4278 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4279 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4280 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4281 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4282 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4283 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4284 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4285 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4286 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4287 } 4288 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4289 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4290 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4291 } 4292 4293 #ifdef COMPILER2 4294 if (UseMultiplyToLenIntrinsic) { 4295 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4296 } 4297 if (UseSquareToLenIntrinsic) { 4298 StubRoutines::_squareToLen = generate_squareToLen(); 4299 } 4300 if (UseMulAddIntrinsic) { 4301 StubRoutines::_mulAdd = generate_mulAdd(); 4302 } 4303 if (VM_Version::supports_avx512_vbmi2()) { 4304 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4305 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4306 } 4307 if (UseMontgomeryMultiplyIntrinsic) { 4308 StubRoutines::_montgomeryMultiply 4309 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4310 } 4311 if (UseMontgomerySquareIntrinsic) { 4312 StubRoutines::_montgomerySquare 4313 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4314 } 4315 4316 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4317 4318 if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) { 4319 void *libsimdsort = nullptr; 4320 char ebuf_[1024]; 4321 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4322 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4323 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4324 } 4325 // Get addresses for SIMD sort and partition routines 4326 if (libsimdsort != nullptr) { 4327 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4328 4329 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort"); 4330 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4331 4332 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition"); 4333 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4334 } 4335 } 4336 4337 // Get svml stub routine addresses 4338 void *libjsvml = nullptr; 4339 char ebuf[1024]; 4340 char dll_name[JVM_MAXPATHLEN]; 4341 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4342 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4343 } 4344 if (libjsvml != nullptr) { 4345 // SVML method naming convention 4346 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4347 // Where: 4348 // ha stands for high accuracy 4349 // <T> is optional to indicate float/double 4350 // Set to f for vector float operation 4351 // Omitted for vector double operation 4352 // <N> is the number of elements in the vector 4353 // 1, 2, 4, 8, 16 4354 // e.g. 128 bit float vector has 4 float elements 4355 // <VV> indicates the avx/sse level: 4356 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4357 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4358 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4359 4360 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4361 if (UseAVX > 2) { 4362 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4363 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4364 if ((!VM_Version::supports_avx512dq()) && 4365 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4366 continue; 4367 } 4368 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]); 4369 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4370 4371 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]); 4372 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4373 } 4374 } 4375 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4376 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4377 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4378 if (vop == VectorSupport::VECTOR_OP_POW) { 4379 continue; 4380 } 4381 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4382 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4383 4384 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4385 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4386 4387 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4388 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4389 4390 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4391 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4392 4393 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4394 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4395 4396 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4397 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4398 } 4399 } 4400 4401 #endif // COMPILER2 4402 #endif // COMPILER2_OR_JVMCI 4403 } 4404 4405 StubGenerator::StubGenerator(CodeBuffer* code, StubGenBlobId blob_id) : StubCodeGenerator(code, blob_id) { 4406 switch(blob_id) { 4407 case initial_id: 4408 generate_initial_stubs(); 4409 break; 4410 case continuation_id: 4411 generate_continuation_stubs(); 4412 break; 4413 case compiler_id: 4414 generate_compiler_stubs(); 4415 break; 4416 case final_id: 4417 generate_final_stubs(); 4418 break; 4419 default: 4420 fatal("unexpected blob id: %d", blob_id); 4421 break; 4422 }; 4423 } 4424 4425 void StubGenerator_generate(CodeBuffer* code, StubGenBlobId blob_id) { 4426 StubGenerator g(code, blob_id); 4427 } 4428 4429 #undef __