1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/oopMap.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "gc/shared/barrierSetNMethod.hpp" 33 #include "gc/shared/gc_globals.hpp" 34 #include "memory/universe.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/upcallLinker.hpp" 37 #include "runtime/arguments.hpp" 38 #include "runtime/continuationEntry.hpp" 39 #include "runtime/javaThread.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "stubGenerator_x86_64.hpp" 43 #ifdef COMPILER2 44 #include "opto/runtime.hpp" 45 #include "opto/c2_globals.hpp" 46 #endif 47 #if INCLUDE_JVMCI 48 #include "jvmci/jvmci_globals.hpp" 49 #endif 50 51 // For a more detailed description of the stub routine structure 52 // see the comment in stubRoutines.hpp 53 54 #define __ _masm-> 55 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 56 57 #ifdef PRODUCT 58 #define BLOCK_COMMENT(str) /* nothing */ 59 #else 60 #define BLOCK_COMMENT(str) __ block_comment(str) 61 #endif // PRODUCT 62 63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 64 65 // 66 // Linux Arguments: 67 // c_rarg0: call wrapper address address 68 // c_rarg1: result address 69 // c_rarg2: result type BasicType 70 // c_rarg3: method Method* 71 // c_rarg4: (interpreter) entry point address 72 // c_rarg5: parameters intptr_t* 73 // 16(rbp): parameter size (in words) int 74 // 24(rbp): thread Thread* 75 // 76 // [ return_from_Java ] <--- rsp 77 // [ argument word n ] 78 // ... 79 // -12 [ argument word 1 ] 80 // -11 [ saved r15 ] <--- rsp_after_call 81 // -10 [ saved r14 ] 82 // -9 [ saved r13 ] 83 // -8 [ saved r12 ] 84 // -7 [ saved rbx ] 85 // -6 [ call wrapper ] 86 // -5 [ result ] 87 // -4 [ result type ] 88 // -3 [ method ] 89 // -2 [ entry point ] 90 // -1 [ parameters ] 91 // 0 [ saved rbp ] <--- rbp 92 // 1 [ return address ] 93 // 2 [ parameter size ] 94 // 3 [ thread ] 95 // 96 // Windows Arguments: 97 // c_rarg0: call wrapper address address 98 // c_rarg1: result address 99 // c_rarg2: result type BasicType 100 // c_rarg3: method Method* 101 // 48(rbp): (interpreter) entry point address 102 // 56(rbp): parameters intptr_t* 103 // 64(rbp): parameter size (in words) int 104 // 72(rbp): thread Thread* 105 // 106 // [ return_from_Java ] <--- rsp 107 // [ argument word n ] 108 // ... 109 // -28 [ argument word 1 ] 110 // -27 [ saved xmm15 ] <--- rsp after_call 111 // [ saved xmm7-xmm14 ] 112 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 113 // -7 [ saved r15 ] 114 // -6 [ saved r14 ] 115 // -5 [ saved r13 ] 116 // -4 [ saved r12 ] 117 // -3 [ saved rdi ] 118 // -2 [ saved rsi ] 119 // -1 [ saved rbx ] 120 // 0 [ saved rbp ] <--- rbp 121 // 1 [ return address ] 122 // 2 [ call wrapper ] 123 // 3 [ result ] 124 // 4 [ result type ] 125 // 5 [ method ] 126 // 6 [ entry point ] 127 // 7 [ parameters ] 128 // 8 [ parameter size ] 129 // 9 [ thread ] 130 // 131 // Windows reserves the callers stack space for arguments 1-4. 132 // We spill c_rarg0-c_rarg3 to this space. 133 134 // Call stub stack layout word offsets from rbp 135 #ifdef _WIN64 136 enum call_stub_layout { 137 xmm_save_first = 6, // save from xmm6 138 xmm_save_last = 15, // to xmm15 139 xmm_save_base = -9, 140 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 141 r15_off = -7, 142 r14_off = -6, 143 r13_off = -5, 144 r12_off = -4, 145 rdi_off = -3, 146 rsi_off = -2, 147 rbx_off = -1, 148 rbp_off = 0, 149 retaddr_off = 1, 150 call_wrapper_off = 2, 151 result_off = 3, 152 result_type_off = 4, 153 method_off = 5, 154 entry_point_off = 6, 155 parameters_off = 7, 156 parameter_size_off = 8, 157 thread_off = 9 158 }; 159 160 static Address xmm_save(int reg) { 161 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 162 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 163 } 164 #else // !_WIN64 165 enum call_stub_layout { 166 rsp_after_call_off = -12, 167 mxcsr_off = rsp_after_call_off, 168 r15_off = -11, 169 r14_off = -10, 170 r13_off = -9, 171 r12_off = -8, 172 rbx_off = -7, 173 call_wrapper_off = -6, 174 result_off = -5, 175 result_type_off = -4, 176 method_off = -3, 177 entry_point_off = -2, 178 parameters_off = -1, 179 rbp_off = 0, 180 retaddr_off = 1, 181 parameter_size_off = 2, 182 thread_off = 3 183 }; 184 #endif // _WIN64 185 186 address StubGenerator::generate_call_stub(address& return_address) { 187 188 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 189 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 190 "adjust this code"); 191 StubCodeMark mark(this, "StubRoutines", "call_stub"); 192 address start = __ pc(); 193 194 // same as in generate_catch_exception()! 195 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 196 197 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 198 const Address result (rbp, result_off * wordSize); 199 const Address result_type (rbp, result_type_off * wordSize); 200 const Address method (rbp, method_off * wordSize); 201 const Address entry_point (rbp, entry_point_off * wordSize); 202 const Address parameters (rbp, parameters_off * wordSize); 203 const Address parameter_size(rbp, parameter_size_off * wordSize); 204 205 // same as in generate_catch_exception()! 206 const Address thread (rbp, thread_off * wordSize); 207 208 const Address r15_save(rbp, r15_off * wordSize); 209 const Address r14_save(rbp, r14_off * wordSize); 210 const Address r13_save(rbp, r13_off * wordSize); 211 const Address r12_save(rbp, r12_off * wordSize); 212 const Address rbx_save(rbp, rbx_off * wordSize); 213 214 // stub code 215 __ enter(); 216 __ subptr(rsp, -rsp_after_call_off * wordSize); 217 218 // save register parameters 219 #ifndef _WIN64 220 __ movptr(parameters, c_rarg5); // parameters 221 __ movptr(entry_point, c_rarg4); // entry_point 222 #endif 223 224 __ movptr(method, c_rarg3); // method 225 __ movl(result_type, c_rarg2); // result type 226 __ movptr(result, c_rarg1); // result 227 __ movptr(call_wrapper, c_rarg0); // call wrapper 228 229 // save regs belonging to calling function 230 __ movptr(rbx_save, rbx); 231 __ movptr(r12_save, r12); 232 __ movptr(r13_save, r13); 233 __ movptr(r14_save, r14); 234 __ movptr(r15_save, r15); 235 236 #ifdef _WIN64 237 int last_reg = 15; 238 for (int i = xmm_save_first; i <= last_reg; i++) { 239 __ movdqu(xmm_save(i), as_XMMRegister(i)); 240 } 241 242 const Address rdi_save(rbp, rdi_off * wordSize); 243 const Address rsi_save(rbp, rsi_off * wordSize); 244 245 __ movptr(rsi_save, rsi); 246 __ movptr(rdi_save, rdi); 247 #else 248 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 249 { 250 Label skip_ldmx; 251 __ stmxcsr(mxcsr_save); 252 __ movl(rax, mxcsr_save); 253 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 254 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 255 __ cmp32(rax, mxcsr_std, rscratch1); 256 __ jcc(Assembler::equal, skip_ldmx); 257 __ ldmxcsr(mxcsr_std, rscratch1); 258 __ bind(skip_ldmx); 259 } 260 #endif 261 262 // Load up thread register 263 __ movptr(r15_thread, thread); 264 __ reinit_heapbase(); 265 266 #ifdef ASSERT 267 // make sure we have no pending exceptions 268 { 269 Label L; 270 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 271 __ jcc(Assembler::equal, L); 272 __ stop("StubRoutines::call_stub: entered with pending exception"); 273 __ bind(L); 274 } 275 #endif 276 277 // pass parameters if any 278 BLOCK_COMMENT("pass parameters if any"); 279 Label parameters_done; 280 __ movl(c_rarg3, parameter_size); 281 __ testl(c_rarg3, c_rarg3); 282 __ jcc(Assembler::zero, parameters_done); 283 284 Label loop; 285 __ movptr(c_rarg2, parameters); // parameter pointer 286 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 287 __ BIND(loop); 288 __ movptr(rax, Address(c_rarg2, 0));// get parameter 289 __ addptr(c_rarg2, wordSize); // advance to next parameter 290 __ decrementl(c_rarg1); // decrement counter 291 __ push(rax); // pass parameter 292 __ jcc(Assembler::notZero, loop); 293 294 // call Java function 295 __ BIND(parameters_done); 296 __ movptr(rbx, method); // get Method* 297 __ movptr(c_rarg1, entry_point); // get entry_point 298 __ mov(r13, rsp); // set sender sp 299 BLOCK_COMMENT("call Java function"); 300 __ call(c_rarg1); 301 302 BLOCK_COMMENT("call_stub_return_address:"); 303 return_address = __ pc(); 304 305 // store result depending on type (everything that is not 306 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 307 __ movptr(c_rarg0, result); 308 Label is_long, is_float, is_double, exit; 309 __ movl(c_rarg1, result_type); 310 __ cmpl(c_rarg1, T_OBJECT); 311 __ jcc(Assembler::equal, is_long); 312 __ cmpl(c_rarg1, T_LONG); 313 __ jcc(Assembler::equal, is_long); 314 __ cmpl(c_rarg1, T_FLOAT); 315 __ jcc(Assembler::equal, is_float); 316 __ cmpl(c_rarg1, T_DOUBLE); 317 __ jcc(Assembler::equal, is_double); 318 #ifdef ASSERT 319 // make sure the type is INT 320 { 321 Label L; 322 __ cmpl(c_rarg1, T_INT); 323 __ jcc(Assembler::equal, L); 324 __ stop("StubRoutines::call_stub: unexpected result type"); 325 __ bind(L); 326 } 327 #endif 328 329 // handle T_INT case 330 __ movl(Address(c_rarg0, 0), rax); 331 332 __ BIND(exit); 333 334 // pop parameters 335 __ lea(rsp, rsp_after_call); 336 337 #ifdef ASSERT 338 // verify that threads correspond 339 { 340 Label L1, L2, L3; 341 __ cmpptr(r15_thread, thread); 342 __ jcc(Assembler::equal, L1); 343 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 344 __ bind(L1); 345 __ get_thread(rbx); 346 __ cmpptr(r15_thread, thread); 347 __ jcc(Assembler::equal, L2); 348 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 349 __ bind(L2); 350 __ cmpptr(r15_thread, rbx); 351 __ jcc(Assembler::equal, L3); 352 __ stop("StubRoutines::call_stub: threads must correspond"); 353 __ bind(L3); 354 } 355 #endif 356 357 __ pop_cont_fastpath(); 358 359 // restore regs belonging to calling function 360 #ifdef _WIN64 361 // emit the restores for xmm regs 362 for (int i = xmm_save_first; i <= last_reg; i++) { 363 __ movdqu(as_XMMRegister(i), xmm_save(i)); 364 } 365 #endif 366 __ movptr(r15, r15_save); 367 __ movptr(r14, r14_save); 368 __ movptr(r13, r13_save); 369 __ movptr(r12, r12_save); 370 __ movptr(rbx, rbx_save); 371 372 #ifdef _WIN64 373 __ movptr(rdi, rdi_save); 374 __ movptr(rsi, rsi_save); 375 #else 376 __ ldmxcsr(mxcsr_save); 377 #endif 378 379 // restore rsp 380 __ addptr(rsp, -rsp_after_call_off * wordSize); 381 382 // return 383 __ vzeroupper(); 384 __ pop(rbp); 385 __ ret(0); 386 387 // handle return types different from T_INT 388 __ BIND(is_long); 389 __ movq(Address(c_rarg0, 0), rax); 390 __ jmp(exit); 391 392 __ BIND(is_float); 393 __ movflt(Address(c_rarg0, 0), xmm0); 394 __ jmp(exit); 395 396 __ BIND(is_double); 397 __ movdbl(Address(c_rarg0, 0), xmm0); 398 __ jmp(exit); 399 400 return start; 401 } 402 403 // Return point for a Java call if there's an exception thrown in 404 // Java code. The exception is caught and transformed into a 405 // pending exception stored in JavaThread that can be tested from 406 // within the VM. 407 // 408 // Note: Usually the parameters are removed by the callee. In case 409 // of an exception crossing an activation frame boundary, that is 410 // not the case if the callee is compiled code => need to setup the 411 // rsp. 412 // 413 // rax: exception oop 414 415 address StubGenerator::generate_catch_exception() { 416 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 417 address start = __ pc(); 418 419 // same as in generate_call_stub(): 420 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 421 const Address thread (rbp, thread_off * wordSize); 422 423 #ifdef ASSERT 424 // verify that threads correspond 425 { 426 Label L1, L2, L3; 427 __ cmpptr(r15_thread, thread); 428 __ jcc(Assembler::equal, L1); 429 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 430 __ bind(L1); 431 __ get_thread(rbx); 432 __ cmpptr(r15_thread, thread); 433 __ jcc(Assembler::equal, L2); 434 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 435 __ bind(L2); 436 __ cmpptr(r15_thread, rbx); 437 __ jcc(Assembler::equal, L3); 438 __ stop("StubRoutines::catch_exception: threads must correspond"); 439 __ bind(L3); 440 } 441 #endif 442 443 // set pending exception 444 __ verify_oop(rax); 445 446 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 447 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 448 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 449 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 450 451 // complete return to VM 452 assert(StubRoutines::_call_stub_return_address != nullptr, 453 "_call_stub_return_address must have been generated before"); 454 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 455 456 return start; 457 } 458 459 // Continuation point for runtime calls returning with a pending 460 // exception. The pending exception check happened in the runtime 461 // or native call stub. The pending exception in Thread is 462 // converted into a Java-level exception. 463 // 464 // Contract with Java-level exception handlers: 465 // rax: exception 466 // rdx: throwing pc 467 // 468 // NOTE: At entry of this stub, exception-pc must be on stack !! 469 470 address StubGenerator::generate_forward_exception() { 471 StubCodeMark mark(this, "StubRoutines", "forward exception"); 472 address start = __ pc(); 473 474 // Upon entry, the sp points to the return address returning into 475 // Java (interpreted or compiled) code; i.e., the return address 476 // becomes the throwing pc. 477 // 478 // Arguments pushed before the runtime call are still on the stack 479 // but the exception handler will reset the stack pointer -> 480 // ignore them. A potential result in registers can be ignored as 481 // well. 482 483 #ifdef ASSERT 484 // make sure this code is only executed if there is a pending exception 485 { 486 Label L; 487 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 488 __ jcc(Assembler::notEqual, L); 489 __ stop("StubRoutines::forward exception: no pending exception (1)"); 490 __ bind(L); 491 } 492 #endif 493 494 // compute exception handler into rbx 495 __ movptr(c_rarg0, Address(rsp, 0)); 496 BLOCK_COMMENT("call exception_handler_for_return_address"); 497 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 498 SharedRuntime::exception_handler_for_return_address), 499 r15_thread, c_rarg0); 500 __ mov(rbx, rax); 501 502 // setup rax & rdx, remove return address & clear pending exception 503 __ pop(rdx); 504 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 505 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 506 507 #ifdef ASSERT 508 // make sure exception is set 509 { 510 Label L; 511 __ testptr(rax, rax); 512 __ jcc(Assembler::notEqual, L); 513 __ stop("StubRoutines::forward exception: no pending exception (2)"); 514 __ bind(L); 515 } 516 #endif 517 518 // continue at exception handler (return address removed) 519 // rax: exception 520 // rbx: exception handler 521 // rdx: throwing pc 522 __ verify_oop(rax); 523 __ jmp(rbx); 524 525 return start; 526 } 527 528 // Support for intptr_t OrderAccess::fence() 529 // 530 // Arguments : 531 // 532 // Result: 533 address StubGenerator::generate_orderaccess_fence() { 534 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 535 address start = __ pc(); 536 537 __ membar(Assembler::StoreLoad); 538 __ ret(0); 539 540 return start; 541 } 542 543 544 // Support for intptr_t get_previous_sp() 545 // 546 // This routine is used to find the previous stack pointer for the 547 // caller. 548 address StubGenerator::generate_get_previous_sp() { 549 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 550 address start = __ pc(); 551 552 __ movptr(rax, rsp); 553 __ addptr(rax, 8); // return address is at the top of the stack. 554 __ ret(0); 555 556 return start; 557 } 558 559 //---------------------------------------------------------------------------------------------------- 560 // Support for void verify_mxcsr() 561 // 562 // This routine is used with -Xcheck:jni to verify that native 563 // JNI code does not return to Java code without restoring the 564 // MXCSR register to our expected state. 565 566 address StubGenerator::generate_verify_mxcsr() { 567 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 568 address start = __ pc(); 569 570 const Address mxcsr_save(rsp, 0); 571 572 if (CheckJNICalls) { 573 Label ok_ret; 574 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 575 __ push(rax); 576 __ subptr(rsp, wordSize); // allocate a temp location 577 __ stmxcsr(mxcsr_save); 578 __ movl(rax, mxcsr_save); 579 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 580 __ cmp32(rax, mxcsr_std, rscratch1); 581 __ jcc(Assembler::equal, ok_ret); 582 583 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 584 585 __ ldmxcsr(mxcsr_std, rscratch1); 586 587 __ bind(ok_ret); 588 __ addptr(rsp, wordSize); 589 __ pop(rax); 590 } 591 592 __ ret(0); 593 594 return start; 595 } 596 597 address StubGenerator::generate_f2i_fixup() { 598 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 599 Address inout(rsp, 5 * wordSize); // return address + 4 saves 600 601 address start = __ pc(); 602 603 Label L; 604 605 __ push(rax); 606 __ push(c_rarg3); 607 __ push(c_rarg2); 608 __ push(c_rarg1); 609 610 __ movl(rax, 0x7f800000); 611 __ xorl(c_rarg3, c_rarg3); 612 __ movl(c_rarg2, inout); 613 __ movl(c_rarg1, c_rarg2); 614 __ andl(c_rarg1, 0x7fffffff); 615 __ cmpl(rax, c_rarg1); // NaN? -> 0 616 __ jcc(Assembler::negative, L); 617 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 618 __ movl(c_rarg3, 0x80000000); 619 __ movl(rax, 0x7fffffff); 620 __ cmovl(Assembler::positive, c_rarg3, rax); 621 622 __ bind(L); 623 __ movptr(inout, c_rarg3); 624 625 __ pop(c_rarg1); 626 __ pop(c_rarg2); 627 __ pop(c_rarg3); 628 __ pop(rax); 629 630 __ ret(0); 631 632 return start; 633 } 634 635 address StubGenerator::generate_f2l_fixup() { 636 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 637 Address inout(rsp, 5 * wordSize); // return address + 4 saves 638 address start = __ pc(); 639 640 Label L; 641 642 __ push(rax); 643 __ push(c_rarg3); 644 __ push(c_rarg2); 645 __ push(c_rarg1); 646 647 __ movl(rax, 0x7f800000); 648 __ xorl(c_rarg3, c_rarg3); 649 __ movl(c_rarg2, inout); 650 __ movl(c_rarg1, c_rarg2); 651 __ andl(c_rarg1, 0x7fffffff); 652 __ cmpl(rax, c_rarg1); // NaN? -> 0 653 __ jcc(Assembler::negative, L); 654 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 655 __ mov64(c_rarg3, 0x8000000000000000); 656 __ mov64(rax, 0x7fffffffffffffff); 657 __ cmov(Assembler::positive, c_rarg3, rax); 658 659 __ bind(L); 660 __ movptr(inout, c_rarg3); 661 662 __ pop(c_rarg1); 663 __ pop(c_rarg2); 664 __ pop(c_rarg3); 665 __ pop(rax); 666 667 __ ret(0); 668 669 return start; 670 } 671 672 address StubGenerator::generate_d2i_fixup() { 673 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 674 Address inout(rsp, 6 * wordSize); // return address + 5 saves 675 676 address start = __ pc(); 677 678 Label L; 679 680 __ push(rax); 681 __ push(c_rarg3); 682 __ push(c_rarg2); 683 __ push(c_rarg1); 684 __ push(c_rarg0); 685 686 __ movl(rax, 0x7ff00000); 687 __ movq(c_rarg2, inout); 688 __ movl(c_rarg3, c_rarg2); 689 __ mov(c_rarg1, c_rarg2); 690 __ mov(c_rarg0, c_rarg2); 691 __ negl(c_rarg3); 692 __ shrptr(c_rarg1, 0x20); 693 __ orl(c_rarg3, c_rarg2); 694 __ andl(c_rarg1, 0x7fffffff); 695 __ xorl(c_rarg2, c_rarg2); 696 __ shrl(c_rarg3, 0x1f); 697 __ orl(c_rarg1, c_rarg3); 698 __ cmpl(rax, c_rarg1); 699 __ jcc(Assembler::negative, L); // NaN -> 0 700 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 701 __ movl(c_rarg2, 0x80000000); 702 __ movl(rax, 0x7fffffff); 703 __ cmov(Assembler::positive, c_rarg2, rax); 704 705 __ bind(L); 706 __ movptr(inout, c_rarg2); 707 708 __ pop(c_rarg0); 709 __ pop(c_rarg1); 710 __ pop(c_rarg2); 711 __ pop(c_rarg3); 712 __ pop(rax); 713 714 __ ret(0); 715 716 return start; 717 } 718 719 address StubGenerator::generate_d2l_fixup() { 720 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 721 Address inout(rsp, 6 * wordSize); // return address + 5 saves 722 723 address start = __ pc(); 724 725 Label L; 726 727 __ push(rax); 728 __ push(c_rarg3); 729 __ push(c_rarg2); 730 __ push(c_rarg1); 731 __ push(c_rarg0); 732 733 __ movl(rax, 0x7ff00000); 734 __ movq(c_rarg2, inout); 735 __ movl(c_rarg3, c_rarg2); 736 __ mov(c_rarg1, c_rarg2); 737 __ mov(c_rarg0, c_rarg2); 738 __ negl(c_rarg3); 739 __ shrptr(c_rarg1, 0x20); 740 __ orl(c_rarg3, c_rarg2); 741 __ andl(c_rarg1, 0x7fffffff); 742 __ xorl(c_rarg2, c_rarg2); 743 __ shrl(c_rarg3, 0x1f); 744 __ orl(c_rarg1, c_rarg3); 745 __ cmpl(rax, c_rarg1); 746 __ jcc(Assembler::negative, L); // NaN -> 0 747 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 748 __ mov64(c_rarg2, 0x8000000000000000); 749 __ mov64(rax, 0x7fffffffffffffff); 750 __ cmovq(Assembler::positive, c_rarg2, rax); 751 752 __ bind(L); 753 __ movq(inout, c_rarg2); 754 755 __ pop(c_rarg0); 756 __ pop(c_rarg1); 757 __ pop(c_rarg2); 758 __ pop(c_rarg3); 759 __ pop(rax); 760 761 __ ret(0); 762 763 return start; 764 } 765 766 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) { 767 __ align64(); 768 StubCodeMark mark(this, "StubRoutines", stub_name); 769 address start = __ pc(); 770 771 __ emit_data64(0x0101010102020304, relocInfo::none); 772 __ emit_data64(0x0000000000000000, relocInfo::none); 773 __ emit_data64(0x0101010102020304, relocInfo::none); 774 __ emit_data64(0x0000000000000000, relocInfo::none); 775 __ emit_data64(0x0101010102020304, relocInfo::none); 776 __ emit_data64(0x0000000000000000, relocInfo::none); 777 __ emit_data64(0x0101010102020304, relocInfo::none); 778 __ emit_data64(0x0000000000000000, relocInfo::none); 779 780 return start; 781 } 782 783 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) { 784 __ align64(); 785 StubCodeMark mark(this, "StubRoutines", stub_name); 786 address start = __ pc(); 787 788 __ emit_data64(0x0302020102010100, relocInfo::none); 789 __ emit_data64(0x0403030203020201, relocInfo::none); 790 __ emit_data64(0x0302020102010100, relocInfo::none); 791 __ emit_data64(0x0403030203020201, relocInfo::none); 792 __ emit_data64(0x0302020102010100, relocInfo::none); 793 __ emit_data64(0x0403030203020201, relocInfo::none); 794 __ emit_data64(0x0302020102010100, relocInfo::none); 795 __ emit_data64(0x0403030203020201, relocInfo::none); 796 797 return start; 798 } 799 800 address StubGenerator::generate_iota_indices(const char *stub_name) { 801 __ align(CodeEntryAlignment); 802 StubCodeMark mark(this, "StubRoutines", stub_name); 803 address start = __ pc(); 804 // B 805 __ emit_data64(0x0706050403020100, relocInfo::none); 806 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 807 __ emit_data64(0x1716151413121110, relocInfo::none); 808 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 809 __ emit_data64(0x2726252423222120, relocInfo::none); 810 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 811 __ emit_data64(0x3736353433323130, relocInfo::none); 812 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 813 // W 814 __ emit_data64(0x0003000200010000, relocInfo::none); 815 __ emit_data64(0x0007000600050004, relocInfo::none); 816 __ emit_data64(0x000B000A00090008, relocInfo::none); 817 __ emit_data64(0x000F000E000D000C, relocInfo::none); 818 __ emit_data64(0x0013001200110010, relocInfo::none); 819 __ emit_data64(0x0017001600150014, relocInfo::none); 820 __ emit_data64(0x001B001A00190018, relocInfo::none); 821 __ emit_data64(0x001F001E001D001C, relocInfo::none); 822 // D 823 __ emit_data64(0x0000000100000000, relocInfo::none); 824 __ emit_data64(0x0000000300000002, relocInfo::none); 825 __ emit_data64(0x0000000500000004, relocInfo::none); 826 __ emit_data64(0x0000000700000006, relocInfo::none); 827 __ emit_data64(0x0000000900000008, relocInfo::none); 828 __ emit_data64(0x0000000B0000000A, relocInfo::none); 829 __ emit_data64(0x0000000D0000000C, relocInfo::none); 830 __ emit_data64(0x0000000F0000000E, relocInfo::none); 831 // Q 832 __ emit_data64(0x0000000000000000, relocInfo::none); 833 __ emit_data64(0x0000000000000001, relocInfo::none); 834 __ emit_data64(0x0000000000000002, relocInfo::none); 835 __ emit_data64(0x0000000000000003, relocInfo::none); 836 __ emit_data64(0x0000000000000004, relocInfo::none); 837 __ emit_data64(0x0000000000000005, relocInfo::none); 838 __ emit_data64(0x0000000000000006, relocInfo::none); 839 __ emit_data64(0x0000000000000007, relocInfo::none); 840 // D - FP 841 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 842 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 843 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 844 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 845 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 846 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 847 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 848 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 849 // Q - FP 850 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 851 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 852 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 853 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 854 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 855 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 856 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 857 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 858 return start; 859 } 860 861 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) { 862 __ align(CodeEntryAlignment); 863 StubCodeMark mark(this, "StubRoutines", stub_name); 864 address start = __ pc(); 865 866 __ emit_data64(0x0E060A020C040800, relocInfo::none); 867 __ emit_data64(0x0F070B030D050901, relocInfo::none); 868 __ emit_data64(0x0E060A020C040800, relocInfo::none); 869 __ emit_data64(0x0F070B030D050901, relocInfo::none); 870 __ emit_data64(0x0E060A020C040800, relocInfo::none); 871 __ emit_data64(0x0F070B030D050901, relocInfo::none); 872 __ emit_data64(0x0E060A020C040800, relocInfo::none); 873 __ emit_data64(0x0F070B030D050901, relocInfo::none); 874 875 return start; 876 } 877 878 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) { 879 __ align(CodeEntryAlignment); 880 StubCodeMark mark(this, "StubRoutines", stub_name); 881 address start = __ pc(); 882 883 __ emit_data64(0x0001020304050607, relocInfo::none); 884 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 885 __ emit_data64(0x0001020304050607, relocInfo::none); 886 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 887 __ emit_data64(0x0001020304050607, relocInfo::none); 888 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 889 __ emit_data64(0x0001020304050607, relocInfo::none); 890 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 891 892 return start; 893 } 894 895 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) { 896 __ align(CodeEntryAlignment); 897 StubCodeMark mark(this, "StubRoutines", stub_name); 898 address start = __ pc(); 899 900 __ emit_data64(0x0405060700010203, relocInfo::none); 901 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 902 __ emit_data64(0x0405060700010203, relocInfo::none); 903 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 904 __ emit_data64(0x0405060700010203, relocInfo::none); 905 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 906 __ emit_data64(0x0405060700010203, relocInfo::none); 907 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 908 909 return start; 910 } 911 912 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) { 913 __ align(CodeEntryAlignment); 914 StubCodeMark mark(this, "StubRoutines", stub_name); 915 address start = __ pc(); 916 917 __ emit_data64(0x0607040502030001, relocInfo::none); 918 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 919 __ emit_data64(0x0607040502030001, relocInfo::none); 920 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 921 __ emit_data64(0x0607040502030001, relocInfo::none); 922 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 923 __ emit_data64(0x0607040502030001, relocInfo::none); 924 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 925 926 return start; 927 } 928 929 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) { 930 __ align(CodeEntryAlignment); 931 StubCodeMark mark(this, "StubRoutines", stub_name); 932 address start = __ pc(); 933 934 __ emit_data64(0x7070707070707070, relocInfo::none); 935 __ emit_data64(0x7070707070707070, relocInfo::none); 936 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 937 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 938 939 return start; 940 } 941 942 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) { 943 __ align(CodeEntryAlignment); 944 StubCodeMark mark(this, "StubRoutines", stub_name); 945 address start = __ pc(); 946 947 __ emit_data64( mask, relocInfo::none ); 948 __ emit_data64( mask, relocInfo::none ); 949 950 return start; 951 } 952 953 address StubGenerator::generate_compress_perm_table(const char *stub_name, int32_t esize) { 954 __ align(CodeEntryAlignment); 955 StubCodeMark mark(this, "StubRoutines", stub_name); 956 address start = __ pc(); 957 if (esize == 32) { 958 // Loop to generate 256 x 8 int compression permute index table. A row is 959 // accessed using 8 bit index computed using vector mask. An entry in 960 // a row holds either a valid permute index corresponding to set bit position 961 // or a -1 (default) value. 962 for (int mask = 0; mask < 256; mask++) { 963 int ctr = 0; 964 for (int j = 0; j < 8; j++) { 965 if (mask & (1 << j)) { 966 __ emit_data(j, relocInfo::none); 967 ctr++; 968 } 969 } 970 for (; ctr < 8; ctr++) { 971 __ emit_data(-1, relocInfo::none); 972 } 973 } 974 } else { 975 assert(esize == 64, ""); 976 // Loop to generate 16 x 4 long compression permute index table. A row is 977 // accessed using 4 bit index computed using vector mask. An entry in 978 // a row holds either a valid permute index pair for a quadword corresponding 979 // to set bit position or a -1 (default) value. 980 for (int mask = 0; mask < 16; mask++) { 981 int ctr = 0; 982 for (int j = 0; j < 4; j++) { 983 if (mask & (1 << j)) { 984 __ emit_data(2 * j, relocInfo::none); 985 __ emit_data(2 * j + 1, relocInfo::none); 986 ctr++; 987 } 988 } 989 for (; ctr < 4; ctr++) { 990 __ emit_data64(-1L, relocInfo::none); 991 } 992 } 993 } 994 return start; 995 } 996 997 address StubGenerator::generate_expand_perm_table(const char *stub_name, int32_t esize) { 998 __ align(CodeEntryAlignment); 999 StubCodeMark mark(this, "StubRoutines", stub_name); 1000 address start = __ pc(); 1001 if (esize == 32) { 1002 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1003 // using 8 bit index computed using vector mask. An entry in a row holds either 1004 // a valid permute index (starting from least significant lane) placed at poisition 1005 // corresponding to set bit position or a -1 (default) value. 1006 for (int mask = 0; mask < 256; mask++) { 1007 int ctr = 0; 1008 for (int j = 0; j < 8; j++) { 1009 if (mask & (1 << j)) { 1010 __ emit_data(ctr++, relocInfo::none); 1011 } else { 1012 __ emit_data(-1, relocInfo::none); 1013 } 1014 } 1015 } 1016 } else { 1017 assert(esize == 64, ""); 1018 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1019 // using 4 bit index computed using vector mask. An entry in a row holds either 1020 // a valid doubleword permute index pair representing a quadword index (starting 1021 // from least significant lane) placed at poisition corresponding to set bit 1022 // position or a -1 (default) value. 1023 for (int mask = 0; mask < 16; mask++) { 1024 int ctr = 0; 1025 for (int j = 0; j < 4; j++) { 1026 if (mask & (1 << j)) { 1027 __ emit_data(2 * ctr, relocInfo::none); 1028 __ emit_data(2 * ctr + 1, relocInfo::none); 1029 ctr++; 1030 } else { 1031 __ emit_data64(-1L, relocInfo::none); 1032 } 1033 } 1034 } 1035 } 1036 return start; 1037 } 1038 1039 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) { 1040 __ align(CodeEntryAlignment); 1041 StubCodeMark mark(this, "StubRoutines", stub_name); 1042 address start = __ pc(); 1043 1044 __ emit_data64(mask, relocInfo::none); 1045 __ emit_data64(mask, relocInfo::none); 1046 __ emit_data64(mask, relocInfo::none); 1047 __ emit_data64(mask, relocInfo::none); 1048 __ emit_data64(mask, relocInfo::none); 1049 __ emit_data64(mask, relocInfo::none); 1050 __ emit_data64(mask, relocInfo::none); 1051 __ emit_data64(mask, relocInfo::none); 1052 1053 return start; 1054 } 1055 1056 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) { 1057 __ align(CodeEntryAlignment); 1058 StubCodeMark mark(this, "StubRoutines", stub_name); 1059 address start = __ pc(); 1060 1061 __ emit_data64(0x0000000000000001, relocInfo::none); 1062 __ emit_data64(0x0000000000000003, relocInfo::none); 1063 __ emit_data64(0x0000000000000005, relocInfo::none); 1064 __ emit_data64(0x0000000000000007, relocInfo::none); 1065 __ emit_data64(0x0000000000000000, relocInfo::none); 1066 __ emit_data64(0x0000000000000002, relocInfo::none); 1067 __ emit_data64(0x0000000000000004, relocInfo::none); 1068 __ emit_data64(0x0000000000000006, relocInfo::none); 1069 1070 return start; 1071 } 1072 1073 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) { 1074 __ align(CodeEntryAlignment); 1075 StubCodeMark mark(this, "StubRoutines", stub_name); 1076 address start = __ pc(); 1077 1078 __ emit_data64(mask, relocInfo::none); 1079 __ emit_data64(mask, relocInfo::none); 1080 __ emit_data64(mask, relocInfo::none); 1081 __ emit_data64(mask, relocInfo::none); 1082 __ emit_data64(mask, relocInfo::none); 1083 __ emit_data64(mask, relocInfo::none); 1084 __ emit_data64(mask, relocInfo::none); 1085 __ emit_data64(mask, relocInfo::none); 1086 1087 return start; 1088 } 1089 1090 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, 1091 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1092 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1093 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1094 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1095 __ align(CodeEntryAlignment); 1096 StubCodeMark mark(this, "StubRoutines", stub_name); 1097 address start = __ pc(); 1098 1099 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1100 __ emit_data(val0, relocInfo::none, 0); 1101 __ emit_data(val1, relocInfo::none, 0); 1102 __ emit_data(val2, relocInfo::none, 0); 1103 __ emit_data(val3, relocInfo::none, 0); 1104 if (len >= Assembler::AVX_256bit) { 1105 __ emit_data(val4, relocInfo::none, 0); 1106 __ emit_data(val5, relocInfo::none, 0); 1107 __ emit_data(val6, relocInfo::none, 0); 1108 __ emit_data(val7, relocInfo::none, 0); 1109 if (len >= Assembler::AVX_512bit) { 1110 __ emit_data(val8, relocInfo::none, 0); 1111 __ emit_data(val9, relocInfo::none, 0); 1112 __ emit_data(val10, relocInfo::none, 0); 1113 __ emit_data(val11, relocInfo::none, 0); 1114 __ emit_data(val12, relocInfo::none, 0); 1115 __ emit_data(val13, relocInfo::none, 0); 1116 __ emit_data(val14, relocInfo::none, 0); 1117 __ emit_data(val15, relocInfo::none, 0); 1118 } 1119 } 1120 return start; 1121 } 1122 1123 // Non-destructive plausibility checks for oops 1124 // 1125 // Arguments: 1126 // all args on stack! 1127 // 1128 // Stack after saving c_rarg3: 1129 // [tos + 0]: saved c_rarg3 1130 // [tos + 1]: saved c_rarg2 1131 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1132 // [tos + 3]: saved flags 1133 // [tos + 4]: return address 1134 // * [tos + 5]: error message (char*) 1135 // * [tos + 6]: object to verify (oop) 1136 // * [tos + 7]: saved rax - saved by caller and bashed 1137 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1138 // * = popped on exit 1139 address StubGenerator::generate_verify_oop() { 1140 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 1141 address start = __ pc(); 1142 1143 Label exit, error; 1144 1145 __ pushf(); 1146 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1147 1148 __ push(r12); 1149 1150 // save c_rarg2 and c_rarg3 1151 __ push(c_rarg2); 1152 __ push(c_rarg3); 1153 1154 enum { 1155 // After previous pushes. 1156 oop_to_verify = 6 * wordSize, 1157 saved_rax = 7 * wordSize, 1158 saved_r10 = 8 * wordSize, 1159 1160 // Before the call to MacroAssembler::debug(), see below. 1161 return_addr = 16 * wordSize, 1162 error_msg = 17 * wordSize 1163 }; 1164 1165 // get object 1166 __ movptr(rax, Address(rsp, oop_to_verify)); 1167 1168 // make sure object is 'reasonable' 1169 __ testptr(rax, rax); 1170 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1171 1172 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1173 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1174 1175 // return if everything seems ok 1176 __ bind(exit); 1177 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1178 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1179 __ pop(c_rarg3); // restore c_rarg3 1180 __ pop(c_rarg2); // restore c_rarg2 1181 __ pop(r12); // restore r12 1182 __ popf(); // restore flags 1183 __ ret(4 * wordSize); // pop caller saved stuff 1184 1185 // handle errors 1186 __ bind(error); 1187 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1188 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1189 __ pop(c_rarg3); // get saved c_rarg3 back 1190 __ pop(c_rarg2); // get saved c_rarg2 back 1191 __ pop(r12); // get saved r12 back 1192 __ popf(); // get saved flags off stack -- 1193 // will be ignored 1194 1195 __ pusha(); // push registers 1196 // (rip is already 1197 // already pushed) 1198 // debug(char* msg, int64_t pc, int64_t regs[]) 1199 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1200 // pushed all the registers, so now the stack looks like: 1201 // [tos + 0] 16 saved registers 1202 // [tos + 16] return address 1203 // * [tos + 17] error message (char*) 1204 // * [tos + 18] object to verify (oop) 1205 // * [tos + 19] saved rax - saved by caller and bashed 1206 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1207 // * = popped on exit 1208 1209 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1210 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1211 __ movq(c_rarg2, rsp); // pass address of regs on stack 1212 __ mov(r12, rsp); // remember rsp 1213 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1214 __ andptr(rsp, -16); // align stack as required by ABI 1215 BLOCK_COMMENT("call MacroAssembler::debug"); 1216 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1217 __ hlt(); 1218 1219 return start; 1220 } 1221 1222 1223 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1224 // 1225 // Outputs: 1226 // rdi - rcx 1227 // rsi - rdx 1228 // rdx - r8 1229 // rcx - r9 1230 // 1231 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1232 // are non-volatile. r9 and r10 should not be used by the caller. 1233 // 1234 void StubGenerator::setup_arg_regs(int nargs) { 1235 const Register saved_rdi = r9; 1236 const Register saved_rsi = r10; 1237 assert(nargs == 3 || nargs == 4, "else fix"); 1238 #ifdef _WIN64 1239 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1240 "unexpected argument registers"); 1241 if (nargs == 4) { 1242 __ mov(rax, r9); // r9 is also saved_rdi 1243 } 1244 __ movptr(saved_rdi, rdi); 1245 __ movptr(saved_rsi, rsi); 1246 __ mov(rdi, rcx); // c_rarg0 1247 __ mov(rsi, rdx); // c_rarg1 1248 __ mov(rdx, r8); // c_rarg2 1249 if (nargs == 4) { 1250 __ mov(rcx, rax); // c_rarg3 (via rax) 1251 } 1252 #else 1253 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1254 "unexpected argument registers"); 1255 #endif 1256 DEBUG_ONLY(_regs_in_thread = false;) 1257 } 1258 1259 1260 void StubGenerator::restore_arg_regs() { 1261 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1262 const Register saved_rdi = r9; 1263 const Register saved_rsi = r10; 1264 #ifdef _WIN64 1265 __ movptr(rdi, saved_rdi); 1266 __ movptr(rsi, saved_rsi); 1267 #endif 1268 } 1269 1270 1271 // This is used in places where r10 is a scratch register, and can 1272 // be adapted if r9 is needed also. 1273 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1274 const Register saved_r15 = r9; 1275 assert(nargs == 3 || nargs == 4, "else fix"); 1276 #ifdef _WIN64 1277 if (nargs == 4) { 1278 __ mov(rax, r9); // r9 is also saved_r15 1279 } 1280 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1281 __ get_thread(r15_thread); 1282 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1283 "unexpected argument registers"); 1284 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1285 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1286 1287 __ mov(rdi, rcx); // c_rarg0 1288 __ mov(rsi, rdx); // c_rarg1 1289 __ mov(rdx, r8); // c_rarg2 1290 if (nargs == 4) { 1291 __ mov(rcx, rax); // c_rarg3 (via rax) 1292 } 1293 #else 1294 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1295 "unexpected argument registers"); 1296 #endif 1297 DEBUG_ONLY(_regs_in_thread = true;) 1298 } 1299 1300 1301 void StubGenerator::restore_arg_regs_using_thread() { 1302 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1303 const Register saved_r15 = r9; 1304 #ifdef _WIN64 1305 __ get_thread(r15_thread); 1306 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1307 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1308 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1309 #endif 1310 } 1311 1312 1313 void StubGenerator::setup_argument_regs(BasicType type) { 1314 if (type == T_BYTE || type == T_SHORT) { 1315 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1316 // r9 and r10 may be used to save non-volatile registers 1317 } else { 1318 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1319 // r9 is used to save r15_thread 1320 } 1321 } 1322 1323 1324 void StubGenerator::restore_argument_regs(BasicType type) { 1325 if (type == T_BYTE || type == T_SHORT) { 1326 restore_arg_regs(); 1327 } else { 1328 restore_arg_regs_using_thread(); 1329 } 1330 } 1331 1332 address StubGenerator::generate_data_cache_writeback() { 1333 const Register src = c_rarg0; // source address 1334 1335 __ align(CodeEntryAlignment); 1336 1337 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); 1338 1339 address start = __ pc(); 1340 1341 __ enter(); 1342 __ cache_wb(Address(src, 0)); 1343 __ leave(); 1344 __ ret(0); 1345 1346 return start; 1347 } 1348 1349 address StubGenerator::generate_data_cache_writeback_sync() { 1350 const Register is_pre = c_rarg0; // pre or post sync 1351 1352 __ align(CodeEntryAlignment); 1353 1354 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); 1355 1356 // pre wbsync is a no-op 1357 // post wbsync translates to an sfence 1358 1359 Label skip; 1360 address start = __ pc(); 1361 1362 __ enter(); 1363 __ cmpl(is_pre, 0); 1364 __ jcc(Assembler::notEqual, skip); 1365 __ cache_wbsync(false); 1366 __ bind(skip); 1367 __ leave(); 1368 __ ret(0); 1369 1370 return start; 1371 } 1372 1373 // ofs and limit are use for multi-block byte array. 1374 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1375 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) { 1376 __ align(CodeEntryAlignment); 1377 StubCodeMark mark(this, "StubRoutines", name); 1378 address start = __ pc(); 1379 1380 const Register buf_param = r15; 1381 const Address state_param(rsp, 0 * wordSize); 1382 const Address ofs_param (rsp, 1 * wordSize ); 1383 const Address limit_param(rsp, 1 * wordSize + 4); 1384 1385 __ enter(); 1386 __ push(rbx); 1387 __ push(rdi); 1388 __ push(rsi); 1389 __ push(r15); 1390 __ subptr(rsp, 2 * wordSize); 1391 1392 __ movptr(buf_param, c_rarg0); 1393 __ movptr(state_param, c_rarg1); 1394 if (multi_block) { 1395 __ movl(ofs_param, c_rarg2); 1396 __ movl(limit_param, c_rarg3); 1397 } 1398 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1399 1400 __ addptr(rsp, 2 * wordSize); 1401 __ pop(r15); 1402 __ pop(rsi); 1403 __ pop(rdi); 1404 __ pop(rbx); 1405 __ leave(); 1406 __ ret(0); 1407 1408 return start; 1409 } 1410 1411 address StubGenerator::generate_upper_word_mask() { 1412 __ align64(); 1413 StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); 1414 address start = __ pc(); 1415 1416 __ emit_data64(0x0000000000000000, relocInfo::none); 1417 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1418 1419 return start; 1420 } 1421 1422 address StubGenerator::generate_shuffle_byte_flip_mask() { 1423 __ align64(); 1424 StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); 1425 address start = __ pc(); 1426 1427 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1428 __ emit_data64(0x0001020304050607, relocInfo::none); 1429 1430 return start; 1431 } 1432 1433 // ofs and limit are use for multi-block byte array. 1434 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1435 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) { 1436 __ align(CodeEntryAlignment); 1437 StubCodeMark mark(this, "StubRoutines", name); 1438 address start = __ pc(); 1439 1440 Register buf = c_rarg0; 1441 Register state = c_rarg1; 1442 Register ofs = c_rarg2; 1443 Register limit = c_rarg3; 1444 1445 const XMMRegister abcd = xmm0; 1446 const XMMRegister e0 = xmm1; 1447 const XMMRegister e1 = xmm2; 1448 const XMMRegister msg0 = xmm3; 1449 1450 const XMMRegister msg1 = xmm4; 1451 const XMMRegister msg2 = xmm5; 1452 const XMMRegister msg3 = xmm6; 1453 const XMMRegister shuf_mask = xmm7; 1454 1455 __ enter(); 1456 1457 __ subptr(rsp, 4 * wordSize); 1458 1459 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1460 buf, state, ofs, limit, rsp, multi_block); 1461 1462 __ addptr(rsp, 4 * wordSize); 1463 1464 __ leave(); 1465 __ ret(0); 1466 1467 return start; 1468 } 1469 1470 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1471 __ align64(); 1472 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); 1473 address start = __ pc(); 1474 1475 __ emit_data64(0x0405060700010203, relocInfo::none); 1476 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1477 1478 if (VM_Version::supports_avx2()) { 1479 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1480 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1481 // _SHUF_00BA 1482 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1483 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1484 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1485 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1486 // _SHUF_DC00 1487 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1488 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1489 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1490 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1491 } 1492 1493 return start; 1494 } 1495 1496 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1497 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1498 __ align32(); 1499 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); 1500 address start = __ pc(); 1501 1502 if (VM_Version::supports_avx2()) { 1503 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1504 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1505 __ emit_data64(0x1011121314151617, relocInfo::none); 1506 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1507 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1508 __ emit_data64(0x0000000000000000, relocInfo::none); 1509 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1510 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1511 } 1512 1513 return start; 1514 } 1515 1516 // ofs and limit are use for multi-block byte array. 1517 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1518 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) { 1519 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1520 __ align(CodeEntryAlignment); 1521 StubCodeMark mark(this, "StubRoutines", name); 1522 address start = __ pc(); 1523 1524 Register buf = c_rarg0; 1525 Register state = c_rarg1; 1526 Register ofs = c_rarg2; 1527 Register limit = c_rarg3; 1528 1529 const XMMRegister msg = xmm0; 1530 const XMMRegister state0 = xmm1; 1531 const XMMRegister state1 = xmm2; 1532 const XMMRegister msgtmp0 = xmm3; 1533 1534 const XMMRegister msgtmp1 = xmm4; 1535 const XMMRegister msgtmp2 = xmm5; 1536 const XMMRegister msgtmp3 = xmm6; 1537 const XMMRegister msgtmp4 = xmm7; 1538 1539 const XMMRegister shuf_mask = xmm8; 1540 1541 __ enter(); 1542 1543 __ subptr(rsp, 4 * wordSize); 1544 1545 if (VM_Version::supports_sha()) { 1546 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1547 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1548 } else if (VM_Version::supports_avx2()) { 1549 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1550 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1551 } 1552 __ addptr(rsp, 4 * wordSize); 1553 __ vzeroupper(); 1554 __ leave(); 1555 __ ret(0); 1556 1557 return start; 1558 } 1559 1560 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) { 1561 assert(VM_Version::supports_avx2(), ""); 1562 assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), ""); 1563 __ align(CodeEntryAlignment); 1564 StubCodeMark mark(this, "StubRoutines", name); 1565 address start = __ pc(); 1566 1567 Register buf = c_rarg0; 1568 Register state = c_rarg1; 1569 Register ofs = c_rarg2; 1570 Register limit = c_rarg3; 1571 1572 __ enter(); 1573 1574 if (VM_Version::supports_sha512()) { 1575 __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block); 1576 } else { 1577 const XMMRegister msg = xmm0; 1578 const XMMRegister state0 = xmm1; 1579 const XMMRegister state1 = xmm2; 1580 const XMMRegister msgtmp0 = xmm3; 1581 const XMMRegister msgtmp1 = xmm4; 1582 const XMMRegister msgtmp2 = xmm5; 1583 const XMMRegister msgtmp3 = xmm6; 1584 const XMMRegister msgtmp4 = xmm7; 1585 1586 const XMMRegister shuf_mask = xmm8; 1587 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1588 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1589 } 1590 __ vzeroupper(); 1591 __ leave(); 1592 __ ret(0); 1593 1594 return start; 1595 } 1596 1597 address StubGenerator::base64_shuffle_addr() { 1598 __ align64(); 1599 StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); 1600 address start = __ pc(); 1601 1602 assert(((unsigned long long)start & 0x3f) == 0, 1603 "Alignment problem (0x%08llx)", (unsigned long long)start); 1604 __ emit_data64(0x0405030401020001, relocInfo::none); 1605 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1606 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1607 __ emit_data64(0x1617151613141213, relocInfo::none); 1608 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1609 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1610 __ emit_data64(0x2829272825262425, relocInfo::none); 1611 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1612 1613 return start; 1614 } 1615 1616 address StubGenerator::base64_avx2_shuffle_addr() { 1617 __ align32(); 1618 StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); 1619 address start = __ pc(); 1620 1621 __ emit_data64(0x0809070805060405, relocInfo::none); 1622 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1623 __ emit_data64(0x0405030401020001, relocInfo::none); 1624 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1625 1626 return start; 1627 } 1628 1629 address StubGenerator::base64_avx2_input_mask_addr() { 1630 __ align32(); 1631 StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); 1632 address start = __ pc(); 1633 1634 __ emit_data64(0x8000000000000000, relocInfo::none); 1635 __ emit_data64(0x8000000080000000, relocInfo::none); 1636 __ emit_data64(0x8000000080000000, relocInfo::none); 1637 __ emit_data64(0x8000000080000000, relocInfo::none); 1638 1639 return start; 1640 } 1641 1642 address StubGenerator::base64_avx2_lut_addr() { 1643 __ align32(); 1644 StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); 1645 address start = __ pc(); 1646 1647 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1648 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1649 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1650 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1651 1652 // URL LUT 1653 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1654 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1655 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1656 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1657 1658 return start; 1659 } 1660 1661 address StubGenerator::base64_encoding_table_addr() { 1662 __ align64(); 1663 StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); 1664 address start = __ pc(); 1665 1666 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1667 __ emit_data64(0x4847464544434241, relocInfo::none); 1668 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1669 __ emit_data64(0x5857565554535251, relocInfo::none); 1670 __ emit_data64(0x6665646362615a59, relocInfo::none); 1671 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1672 __ emit_data64(0x767574737271706f, relocInfo::none); 1673 __ emit_data64(0x333231307a797877, relocInfo::none); 1674 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1675 1676 // URL table 1677 __ emit_data64(0x4847464544434241, relocInfo::none); 1678 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1679 __ emit_data64(0x5857565554535251, relocInfo::none); 1680 __ emit_data64(0x6665646362615a59, relocInfo::none); 1681 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1682 __ emit_data64(0x767574737271706f, relocInfo::none); 1683 __ emit_data64(0x333231307a797877, relocInfo::none); 1684 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1685 1686 return start; 1687 } 1688 1689 // Code for generating Base64 encoding. 1690 // Intrinsic function prototype in Base64.java: 1691 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1692 // boolean isURL) { 1693 address StubGenerator::generate_base64_encodeBlock() 1694 { 1695 __ align(CodeEntryAlignment); 1696 StubCodeMark mark(this, "StubRoutines", "implEncode"); 1697 address start = __ pc(); 1698 1699 __ enter(); 1700 1701 // Save callee-saved registers before using them 1702 __ push(r12); 1703 __ push(r13); 1704 __ push(r14); 1705 __ push(r15); 1706 1707 // arguments 1708 const Register source = c_rarg0; // Source Array 1709 const Register start_offset = c_rarg1; // start offset 1710 const Register end_offset = c_rarg2; // end offset 1711 const Register dest = c_rarg3; // destination array 1712 1713 #ifndef _WIN64 1714 const Register dp = c_rarg4; // Position for writing to dest array 1715 const Register isURL = c_rarg5; // Base64 or URL character set 1716 #else 1717 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1718 const Address isURL_mem(rbp, 7 * wordSize); 1719 const Register isURL = r10; // pick the volatile windows register 1720 const Register dp = r12; 1721 __ movl(dp, dp_mem); 1722 __ movl(isURL, isURL_mem); 1723 #endif 1724 1725 const Register length = r14; 1726 const Register encode_table = r13; 1727 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1728 1729 // calculate length from offsets 1730 __ movl(length, end_offset); 1731 __ subl(length, start_offset); 1732 __ jcc(Assembler::lessEqual, L_exit); 1733 1734 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1735 // output bytes. We read 64 input bytes and ignore the last 16, so be 1736 // sure not to read past the end of the input buffer. 1737 if (VM_Version::supports_avx512_vbmi()) { 1738 __ cmpl(length, 64); // Do not overrun input buffer. 1739 __ jcc(Assembler::below, L_not512); 1740 1741 __ shll(isURL, 6); // index into decode table based on isURL 1742 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1743 __ addptr(encode_table, isURL); 1744 __ shrl(isURL, 6); // restore isURL 1745 1746 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1747 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1748 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1749 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1750 1751 __ align32(); 1752 __ BIND(L_vbmiLoop); 1753 1754 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1755 __ subl(length, 48); 1756 1757 // Put the input bytes into the proper lanes for writing, then 1758 // encode them. 1759 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1760 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1761 1762 // Write to destination 1763 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1764 1765 __ addptr(dest, 64); 1766 __ addptr(source, 48); 1767 __ cmpl(length, 64); 1768 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1769 1770 __ vzeroupper(); 1771 } 1772 1773 __ BIND(L_not512); 1774 if (VM_Version::supports_avx2()) { 1775 /* 1776 ** This AVX2 encoder is based off the paper at: 1777 ** https://dl.acm.org/doi/10.1145/3132709 1778 ** 1779 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1780 ** output bytes. 1781 ** 1782 */ 1783 // Lengths under 32 bytes are done with scalar routine 1784 __ cmpl(length, 31); 1785 __ jcc(Assembler::belowEqual, L_process3); 1786 1787 // Set up supporting constant table data 1788 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1789 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1790 __ movl(rax, 0x0fc0fc00); 1791 __ movdl(xmm8, rax); 1792 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1793 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1794 1795 // Multiplication constant for "shifting" right by 6 and 10 1796 // bits 1797 __ movl(rax, 0x04000040); 1798 1799 __ subl(length, 24); 1800 __ movdl(xmm7, rax); 1801 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1802 1803 // For the first load, we mask off reading of the first 4 1804 // bytes into the register. This is so we can get 4 3-byte 1805 // chunks into each lane of the register, avoiding having to 1806 // handle end conditions. We then shuffle these bytes into a 1807 // specific order so that manipulation is easier. 1808 // 1809 // The initial read loads the XMM register like this: 1810 // 1811 // Lower 128-bit lane: 1812 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1813 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1814 // | C2 | D0 | D1 | D2 | 1815 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1816 // 1817 // Upper 128-bit lane: 1818 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1819 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1820 // | XX | XX | XX | XX | 1821 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1822 // 1823 // Where A0 is the first input byte, B0 is the fourth, etc. 1824 // The alphabetical significance denotes the 3 bytes to be 1825 // consumed and encoded into 4 bytes. 1826 // 1827 // We then shuffle the register so each 32-bit word contains 1828 // the sequence: 1829 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1830 // Each of these byte sequences are then manipulated into 4 1831 // 6-bit values ready for encoding. 1832 // 1833 // If we focus on one set of 3-byte chunks, changing the 1834 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1835 // shuffle such that each 24-bit chunk contains: 1836 // 1837 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1838 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1839 // Explain this step. 1840 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1841 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1842 // 1843 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1844 // a5..a0) and shift them using a vector multiplication 1845 // operation (vpmulhuw) which effectively shifts c right by 6 1846 // bits and a right by 10 bits. We similarly mask bits 10-15 1847 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1848 // bits respectively. This is done using vpmullw. We end up 1849 // with 4 6-bit values, thus splitting the 3 input bytes, 1850 // ready for encoding: 1851 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1852 // 1853 // For translation, we recognize that there are 5 distinct 1854 // ranges of legal Base64 characters as below: 1855 // 1856 // +-------------+-------------+------------+ 1857 // | 6-bit value | ASCII range | offset | 1858 // +-------------+-------------+------------+ 1859 // | 0..25 | A..Z | 65 | 1860 // | 26..51 | a..z | 71 | 1861 // | 52..61 | 0..9 | -4 | 1862 // | 62 | + or - | -19 or -17 | 1863 // | 63 | / or _ | -16 or 32 | 1864 // +-------------+-------------+------------+ 1865 // 1866 // We note that vpshufb does a parallel lookup in a 1867 // destination register using the lower 4 bits of bytes from a 1868 // source register. If we use a saturated subtraction and 1869 // subtract 51 from each 6-bit value, bytes from [0,51] 1870 // saturate to 0, and [52,63] map to a range of [1,12]. We 1871 // distinguish the [0,25] and [26,51] ranges by assigning a 1872 // value of 13 for all 6-bit values less than 26. We end up 1873 // with: 1874 // 1875 // +-------------+-------------+------------+ 1876 // | 6-bit value | Reduced | offset | 1877 // +-------------+-------------+------------+ 1878 // | 0..25 | 13 | 65 | 1879 // | 26..51 | 0 | 71 | 1880 // | 52..61 | 0..9 | -4 | 1881 // | 62 | 11 | -19 or -17 | 1882 // | 63 | 12 | -16 or 32 | 1883 // +-------------+-------------+------------+ 1884 // 1885 // We then use a final vpshufb to add the appropriate offset, 1886 // translating the bytes. 1887 // 1888 // Load input bytes - only 28 bytes. Mask the first load to 1889 // not load into the full register. 1890 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1891 1892 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1893 // ordering by: 1894 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1895 // for easy masking 1896 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1897 1898 __ addl(start_offset, 24); 1899 1900 // Load masking register for first and third (and multiples) 1901 // 6-bit values. 1902 __ movl(rax, 0x003f03f0); 1903 __ movdl(xmm6, rax); 1904 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1905 // Multiplication constant for "shifting" left by 4 and 8 bits 1906 __ movl(rax, 0x01000010); 1907 __ movdl(xmm5, rax); 1908 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 1909 1910 // Isolate 6-bit chunks of interest 1911 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1912 1913 // Load constants for encoding 1914 __ movl(rax, 0x19191919); 1915 __ movdl(xmm3, rax); 1916 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 1917 __ movl(rax, 0x33333333); 1918 __ movdl(xmm4, rax); 1919 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 1920 1921 // Shift output bytes 0 and 2 into proper lanes 1922 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 1923 1924 // Mask and shift output bytes 1 and 3 into proper lanes and 1925 // combine 1926 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1927 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1928 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 1929 1930 // Find out which are 0..25. This indicates which input 1931 // values fall in the range of 'A'-'Z', which require an 1932 // additional offset (see comments above) 1933 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 1934 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1935 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 1936 1937 // Load the proper lookup table 1938 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 1939 __ movl(r15, isURL); 1940 __ shll(r15, 5); 1941 __ vmovdqu(xmm2, Address(r11, r15)); 1942 1943 // Shuffle the offsets based on the range calculation done 1944 // above. This allows us to add the correct offset to the 1945 // 6-bit value corresponding to the range documented above. 1946 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1947 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1948 1949 // Store the encoded bytes 1950 __ vmovdqu(Address(dest, dp), xmm0); 1951 __ addl(dp, 32); 1952 1953 __ cmpl(length, 31); 1954 __ jcc(Assembler::belowEqual, L_process3); 1955 1956 __ align32(); 1957 __ BIND(L_32byteLoop); 1958 1959 // Get next 32 bytes 1960 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 1961 1962 __ subl(length, 24); 1963 __ addl(start_offset, 24); 1964 1965 // This logic is identical to the above, with only constant 1966 // register loads removed. Shuffle the input, mask off 6-bit 1967 // chunks, shift them into place, then add the offset to 1968 // encode. 1969 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1970 1971 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1972 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 1973 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1974 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1975 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 1976 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 1977 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1978 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 1979 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1980 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1981 1982 // Store the encoded bytes 1983 __ vmovdqu(Address(dest, dp), xmm0); 1984 __ addl(dp, 32); 1985 1986 __ cmpl(length, 31); 1987 __ jcc(Assembler::above, L_32byteLoop); 1988 1989 __ BIND(L_process3); 1990 __ vzeroupper(); 1991 } else { 1992 __ BIND(L_process3); 1993 } 1994 1995 __ cmpl(length, 3); 1996 __ jcc(Assembler::below, L_exit); 1997 1998 // Load the encoding table based on isURL 1999 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 2000 __ movl(r15, isURL); 2001 __ shll(r15, 6); 2002 __ addptr(r11, r15); 2003 2004 __ BIND(L_processdata); 2005 2006 // Load 3 bytes 2007 __ load_unsigned_byte(r15, Address(source, start_offset)); 2008 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2009 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2010 2011 // Build a 32-bit word with bytes 1, 2, 0, 1 2012 __ movl(rax, r10); 2013 __ shll(r10, 24); 2014 __ orl(rax, r10); 2015 2016 __ subl(length, 3); 2017 2018 __ shll(r15, 8); 2019 __ shll(r13, 16); 2020 __ orl(rax, r15); 2021 2022 __ addl(start_offset, 3); 2023 2024 __ orl(rax, r13); 2025 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2026 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2027 // This translated byte is the fourth output byte. 2028 __ shrl(r13, 16); 2029 __ andl(r13, 0x3f); 2030 2031 // The high-order 6 bits of r15 (byte0) is translated. 2032 // The translated byte is the first output byte. 2033 __ shrl(r15, 10); 2034 2035 __ load_unsigned_byte(r13, Address(r11, r13)); 2036 __ load_unsigned_byte(r15, Address(r11, r15)); 2037 2038 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2039 2040 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2041 // This translated byte is the second output byte. 2042 __ shrl(rax, 4); 2043 __ movl(r10, rax); 2044 __ andl(rax, 0x3f); 2045 2046 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2047 2048 __ load_unsigned_byte(rax, Address(r11, rax)); 2049 2050 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2051 // This translated byte is the third output byte. 2052 __ shrl(r10, 18); 2053 __ andl(r10, 0x3f); 2054 2055 __ load_unsigned_byte(r10, Address(r11, r10)); 2056 2057 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2058 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2059 2060 __ addl(dp, 4); 2061 __ cmpl(length, 3); 2062 __ jcc(Assembler::aboveEqual, L_processdata); 2063 2064 __ BIND(L_exit); 2065 __ pop(r15); 2066 __ pop(r14); 2067 __ pop(r13); 2068 __ pop(r12); 2069 __ leave(); 2070 __ ret(0); 2071 2072 return start; 2073 } 2074 2075 // base64 AVX512vbmi tables 2076 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2077 __ align64(); 2078 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); 2079 address start = __ pc(); 2080 2081 assert(((unsigned long long)start & 0x3f) == 0, 2082 "Alignment problem (0x%08llx)", (unsigned long long)start); 2083 __ emit_data64(0x8080808080808080, relocInfo::none); 2084 __ emit_data64(0x8080808080808080, relocInfo::none); 2085 __ emit_data64(0x8080808080808080, relocInfo::none); 2086 __ emit_data64(0x8080808080808080, relocInfo::none); 2087 __ emit_data64(0x8080808080808080, relocInfo::none); 2088 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2089 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2090 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2091 2092 return start; 2093 } 2094 2095 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2096 __ align64(); 2097 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); 2098 address start = __ pc(); 2099 2100 assert(((unsigned long long)start & 0x3f) == 0, 2101 "Alignment problem (0x%08llx)", (unsigned long long)start); 2102 __ emit_data64(0x0605040302010080, relocInfo::none); 2103 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2104 __ emit_data64(0x161514131211100f, relocInfo::none); 2105 __ emit_data64(0x8080808080191817, relocInfo::none); 2106 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2107 __ emit_data64(0x2827262524232221, relocInfo::none); 2108 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2109 __ emit_data64(0x8080808080333231, relocInfo::none); 2110 2111 return start; 2112 } 2113 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2114 __ align64(); 2115 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); 2116 address start = __ pc(); 2117 2118 assert(((unsigned long long)start & 0x3f) == 0, 2119 "Alignment problem (0x%08llx)", (unsigned long long)start); 2120 __ emit_data64(0x8080808080808080, relocInfo::none); 2121 __ emit_data64(0x8080808080808080, relocInfo::none); 2122 __ emit_data64(0x8080808080808080, relocInfo::none); 2123 __ emit_data64(0x8080808080808080, relocInfo::none); 2124 __ emit_data64(0x8080808080808080, relocInfo::none); 2125 __ emit_data64(0x80803e8080808080, relocInfo::none); 2126 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2127 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2128 2129 return start; 2130 } 2131 2132 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2133 __ align64(); 2134 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); 2135 address start = __ pc(); 2136 2137 assert(((unsigned long long)start & 0x3f) == 0, 2138 "Alignment problem (0x%08llx)", (unsigned long long)start); 2139 __ emit_data64(0x0605040302010080, relocInfo::none); 2140 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2141 __ emit_data64(0x161514131211100f, relocInfo::none); 2142 __ emit_data64(0x3f80808080191817, relocInfo::none); 2143 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2144 __ emit_data64(0x2827262524232221, relocInfo::none); 2145 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2146 __ emit_data64(0x8080808080333231, relocInfo::none); 2147 2148 return start; 2149 } 2150 2151 address StubGenerator::base64_vbmi_pack_vec_addr() { 2152 __ align64(); 2153 StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); 2154 address start = __ pc(); 2155 2156 assert(((unsigned long long)start & 0x3f) == 0, 2157 "Alignment problem (0x%08llx)", (unsigned long long)start); 2158 __ emit_data64(0x090a040506000102, relocInfo::none); 2159 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2160 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2161 __ emit_data64(0x292a242526202122, relocInfo::none); 2162 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2163 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2164 __ emit_data64(0x0000000000000000, relocInfo::none); 2165 __ emit_data64(0x0000000000000000, relocInfo::none); 2166 2167 return start; 2168 } 2169 2170 address StubGenerator::base64_vbmi_join_0_1_addr() { 2171 __ align64(); 2172 StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); 2173 address start = __ pc(); 2174 2175 assert(((unsigned long long)start & 0x3f) == 0, 2176 "Alignment problem (0x%08llx)", (unsigned long long)start); 2177 __ emit_data64(0x090a040506000102, relocInfo::none); 2178 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2179 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2180 __ emit_data64(0x292a242526202122, relocInfo::none); 2181 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2182 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2183 __ emit_data64(0x494a444546404142, relocInfo::none); 2184 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2185 2186 return start; 2187 } 2188 2189 address StubGenerator::base64_vbmi_join_1_2_addr() { 2190 __ align64(); 2191 StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); 2192 address start = __ pc(); 2193 2194 assert(((unsigned long long)start & 0x3f) == 0, 2195 "Alignment problem (0x%08llx)", (unsigned long long)start); 2196 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2197 __ emit_data64(0x292a242526202122, relocInfo::none); 2198 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2199 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2200 __ emit_data64(0x494a444546404142, relocInfo::none); 2201 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2202 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2203 __ emit_data64(0x696a646566606162, relocInfo::none); 2204 2205 return start; 2206 } 2207 2208 address StubGenerator::base64_vbmi_join_2_3_addr() { 2209 __ align64(); 2210 StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); 2211 address start = __ pc(); 2212 2213 assert(((unsigned long long)start & 0x3f) == 0, 2214 "Alignment problem (0x%08llx)", (unsigned long long)start); 2215 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2216 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2217 __ emit_data64(0x494a444546404142, relocInfo::none); 2218 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2219 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2220 __ emit_data64(0x696a646566606162, relocInfo::none); 2221 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2222 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2223 2224 return start; 2225 } 2226 2227 address StubGenerator::base64_AVX2_decode_tables_addr() { 2228 __ align64(); 2229 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_base64"); 2230 address start = __ pc(); 2231 2232 assert(((unsigned long long)start & 0x3f) == 0, 2233 "Alignment problem (0x%08llx)", (unsigned long long)start); 2234 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2235 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2236 2237 __ emit_data(0xffffffff, relocInfo::none, 0); 2238 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2239 2240 // Permute table 2241 __ emit_data64(0x0000000100000000, relocInfo::none); 2242 __ emit_data64(0x0000000400000002, relocInfo::none); 2243 __ emit_data64(0x0000000600000005, relocInfo::none); 2244 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2245 2246 // Shuffle table 2247 __ emit_data64(0x090a040506000102, relocInfo::none); 2248 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2249 __ emit_data64(0x090a040506000102, relocInfo::none); 2250 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2251 2252 // merge table 2253 __ emit_data(0x01400140, relocInfo::none, 0); 2254 2255 // merge multiplier 2256 __ emit_data(0x00011000, relocInfo::none, 0); 2257 2258 return start; 2259 } 2260 2261 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2262 __ align64(); 2263 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_URL_base64"); 2264 address start = __ pc(); 2265 2266 assert(((unsigned long long)start & 0x3f) == 0, 2267 "Alignment problem (0x%08llx)", (unsigned long long)start); 2268 // lut_lo 2269 __ emit_data64(0x1111111111111115, relocInfo::none); 2270 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2271 __ emit_data64(0x1111111111111115, relocInfo::none); 2272 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2273 2274 // lut_roll 2275 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2276 __ emit_data64(0x0000000000000000, relocInfo::none); 2277 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2278 __ emit_data64(0x0000000000000000, relocInfo::none); 2279 2280 // lut_lo URL 2281 __ emit_data64(0x1111111111111115, relocInfo::none); 2282 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2283 __ emit_data64(0x1111111111111115, relocInfo::none); 2284 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2285 2286 // lut_roll URL 2287 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2288 __ emit_data64(0x0000000000000000, relocInfo::none); 2289 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2290 __ emit_data64(0x0000000000000000, relocInfo::none); 2291 2292 // lut_hi 2293 __ emit_data64(0x0804080402011010, relocInfo::none); 2294 __ emit_data64(0x1010101010101010, relocInfo::none); 2295 __ emit_data64(0x0804080402011010, relocInfo::none); 2296 __ emit_data64(0x1010101010101010, relocInfo::none); 2297 2298 return start; 2299 } 2300 2301 address StubGenerator::base64_decoding_table_addr() { 2302 StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); 2303 address start = __ pc(); 2304 2305 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2306 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2307 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2308 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2309 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2310 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2311 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2312 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2313 __ emit_data64(0x06050403020100ff, relocInfo::none); 2314 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2315 __ emit_data64(0x161514131211100f, relocInfo::none); 2316 __ emit_data64(0xffffffffff191817, relocInfo::none); 2317 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2318 __ emit_data64(0x2827262524232221, relocInfo::none); 2319 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2320 __ emit_data64(0xffffffffff333231, relocInfo::none); 2321 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2322 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2323 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2324 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2325 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2326 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2327 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2328 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2329 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2330 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2331 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2332 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2333 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2334 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2335 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2336 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2337 2338 // URL table 2339 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2340 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2341 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2342 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2343 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2344 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2345 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2346 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2347 __ emit_data64(0x06050403020100ff, relocInfo::none); 2348 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2349 __ emit_data64(0x161514131211100f, relocInfo::none); 2350 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2351 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2352 __ emit_data64(0x2827262524232221, relocInfo::none); 2353 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2354 __ emit_data64(0xffffffffff333231, relocInfo::none); 2355 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2356 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2357 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2358 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2359 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2360 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2361 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2362 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2363 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2364 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2365 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2366 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2367 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2368 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2369 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2370 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2371 2372 return start; 2373 } 2374 2375 2376 // Code for generating Base64 decoding. 2377 // 2378 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2379 // 2380 // Intrinsic function prototype in Base64.java: 2381 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2382 address StubGenerator::generate_base64_decodeBlock() { 2383 __ align(CodeEntryAlignment); 2384 StubCodeMark mark(this, "StubRoutines", "implDecode"); 2385 address start = __ pc(); 2386 2387 __ enter(); 2388 2389 // Save callee-saved registers before using them 2390 __ push(r12); 2391 __ push(r13); 2392 __ push(r14); 2393 __ push(r15); 2394 __ push(rbx); 2395 2396 // arguments 2397 const Register source = c_rarg0; // Source Array 2398 const Register start_offset = c_rarg1; // start offset 2399 const Register end_offset = c_rarg2; // end offset 2400 const Register dest = c_rarg3; // destination array 2401 const Register isMIME = rbx; 2402 2403 #ifndef _WIN64 2404 const Register dp = c_rarg4; // Position for writing to dest array 2405 const Register isURL = c_rarg5;// Base64 or URL character set 2406 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2407 #else 2408 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2409 const Address isURL_mem(rbp, 7 * wordSize); 2410 const Register isURL = r10; // pick the volatile windows register 2411 const Register dp = r12; 2412 __ movl(dp, dp_mem); 2413 __ movl(isURL, isURL_mem); 2414 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2415 #endif 2416 2417 const XMMRegister lookup_lo = xmm5; 2418 const XMMRegister lookup_hi = xmm6; 2419 const XMMRegister errorvec = xmm7; 2420 const XMMRegister pack16_op = xmm9; 2421 const XMMRegister pack32_op = xmm8; 2422 const XMMRegister input0 = xmm3; 2423 const XMMRegister input1 = xmm20; 2424 const XMMRegister input2 = xmm21; 2425 const XMMRegister input3 = xmm19; 2426 const XMMRegister join01 = xmm12; 2427 const XMMRegister join12 = xmm11; 2428 const XMMRegister join23 = xmm10; 2429 const XMMRegister translated0 = xmm2; 2430 const XMMRegister translated1 = xmm1; 2431 const XMMRegister translated2 = xmm0; 2432 const XMMRegister translated3 = xmm4; 2433 2434 const XMMRegister merged0 = xmm2; 2435 const XMMRegister merged1 = xmm1; 2436 const XMMRegister merged2 = xmm0; 2437 const XMMRegister merged3 = xmm4; 2438 const XMMRegister merge_ab_bc0 = xmm2; 2439 const XMMRegister merge_ab_bc1 = xmm1; 2440 const XMMRegister merge_ab_bc2 = xmm0; 2441 const XMMRegister merge_ab_bc3 = xmm4; 2442 2443 const XMMRegister pack24bits = xmm4; 2444 2445 const Register length = r14; 2446 const Register output_size = r13; 2447 const Register output_mask = r15; 2448 const KRegister input_mask = k1; 2449 2450 const XMMRegister input_initial_valid_b64 = xmm0; 2451 const XMMRegister tmp = xmm10; 2452 const XMMRegister mask = xmm0; 2453 const XMMRegister invalid_b64 = xmm1; 2454 2455 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2456 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2457 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2458 2459 // calculate length from offsets 2460 __ movl(length, end_offset); 2461 __ subl(length, start_offset); 2462 __ push(dest); // Save for return value calc 2463 2464 // If AVX512 VBMI not supported, just compile non-AVX code 2465 if(VM_Version::supports_avx512_vbmi() && 2466 VM_Version::supports_avx512bw()) { 2467 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2468 __ jcc(Assembler::lessEqual, L_lastChunk); 2469 2470 __ cmpl(isMIME, 0); 2471 __ jcc(Assembler::notEqual, L_lastChunk); 2472 2473 // Load lookup tables based on isURL 2474 __ cmpl(isURL, 0); 2475 __ jcc(Assembler::notZero, L_loadURL); 2476 2477 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2478 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2479 2480 __ BIND(L_continue); 2481 2482 __ movl(r15, 0x01400140); 2483 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2484 2485 __ movl(r15, 0x00011000); 2486 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2487 2488 __ cmpl(length, 0xff); 2489 __ jcc(Assembler::lessEqual, L_process64); 2490 2491 // load masks required for decoding data 2492 __ BIND(L_processdata); 2493 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2494 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2495 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2496 2497 __ align32(); 2498 __ BIND(L_process256); 2499 // Grab input data 2500 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2501 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2502 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2503 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2504 2505 // Copy the low part of the lookup table into the destination of the permutation 2506 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2507 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2508 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2509 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2510 2511 // Translate the base64 input into "decoded" bytes 2512 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2513 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2514 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2515 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2516 2517 // OR all of the translations together to check for errors (high-order bit of byte set) 2518 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2519 2520 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2521 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2522 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2523 2524 // Check if there was an error - if so, try 64-byte chunks 2525 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2526 __ kortestql(k3, k3); 2527 __ jcc(Assembler::notZero, L_process64); 2528 2529 // The merging and shuffling happens here 2530 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2531 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2532 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2533 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2534 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2535 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2536 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2537 2538 // Now do the same with packed 16-bit values. 2539 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2540 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2541 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2542 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2543 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2544 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2545 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2546 2547 // The join vectors specify which byte from which vector goes into the outputs 2548 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2549 // final positions in the register for storing (256 bytes in, 192 bytes out) 2550 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2551 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2552 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2553 2554 // Store result 2555 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2556 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2557 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2558 2559 __ addptr(source, 0x100); 2560 __ addptr(dest, 0xc0); 2561 __ subl(length, 0x100); 2562 __ cmpl(length, 64 * 4); 2563 __ jcc(Assembler::greaterEqual, L_process256); 2564 2565 // At this point, we've decoded 64 * 4 * n bytes. 2566 // The remaining length will be <= 64 * 4 - 1. 2567 // UNLESS there was an error decoding the first 256-byte chunk. In this 2568 // case, the length will be arbitrarily long. 2569 // 2570 // Note that this will be the path for MIME-encoded strings. 2571 2572 __ BIND(L_process64); 2573 2574 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2575 2576 __ cmpl(length, 63); 2577 __ jcc(Assembler::lessEqual, L_finalBit); 2578 2579 __ mov64(rax, 0x0000ffffffffffff); 2580 __ kmovql(k2, rax); 2581 2582 __ align32(); 2583 __ BIND(L_process64Loop); 2584 2585 // Handle first 64-byte block 2586 2587 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2588 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2589 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2590 2591 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2592 2593 // Check for error and bomb out before updating dest 2594 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2595 __ kortestql(k3, k3); 2596 __ jcc(Assembler::notZero, L_exit); 2597 2598 // Pack output register, selecting correct byte ordering 2599 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2600 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2601 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2602 2603 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2604 2605 __ subl(length, 64); 2606 __ addptr(source, 64); 2607 __ addptr(dest, 48); 2608 2609 __ cmpl(length, 64); 2610 __ jcc(Assembler::greaterEqual, L_process64Loop); 2611 2612 __ cmpl(length, 0); 2613 __ jcc(Assembler::lessEqual, L_exit); 2614 2615 __ BIND(L_finalBit); 2616 // Now have 1 to 63 bytes left to decode 2617 2618 // I was going to let Java take care of the final fragment 2619 // however it will repeatedly call this routine for every 4 bytes 2620 // of input data, so handle the rest here. 2621 __ movq(rax, -1); 2622 __ bzhiq(rax, rax, length); // Input mask in rax 2623 2624 __ movl(output_size, length); 2625 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2626 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2627 // output_size in r13 2628 2629 // Strip pad characters, if any, and adjust length and mask 2630 __ addq(length, start_offset); 2631 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2632 __ jcc(Assembler::equal, L_padding); 2633 2634 __ BIND(L_donePadding); 2635 __ subq(length, start_offset); 2636 2637 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2638 __ kmovql(input_mask, rax); 2639 __ movq(output_mask, -1); 2640 __ bzhiq(output_mask, output_mask, output_size); 2641 2642 // Load initial input with all valid base64 characters. Will be used 2643 // in merging source bytes to avoid masking when determining if an error occurred. 2644 __ movl(rax, 0x61616161); 2645 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2646 2647 // A register containing all invalid base64 decoded values 2648 __ movl(rax, 0x80808080); 2649 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2650 2651 // input_mask is in k1 2652 // output_size is in r13 2653 // output_mask is in r15 2654 // zmm0 - free 2655 // zmm1 - 0x00011000 2656 // zmm2 - 0x01400140 2657 // zmm3 - errorvec 2658 // zmm4 - pack vector 2659 // zmm5 - lookup_lo 2660 // zmm6 - lookup_hi 2661 // zmm7 - errorvec 2662 // zmm8 - 0x61616161 2663 // zmm9 - 0x80808080 2664 2665 // Load only the bytes from source, merging into our "fully-valid" register 2666 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2667 2668 // Decode all bytes within our merged input 2669 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2670 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2671 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2672 2673 // Check for error. Compare (decoded | initial) to all invalid. 2674 // If any bytes have their high-order bit set, then we have an error. 2675 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2676 __ kortestql(k2, k2); 2677 2678 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2679 __ jcc(Assembler::notZero, L_bruteForce); 2680 2681 // Shuffle output bytes 2682 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2683 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2684 2685 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2686 __ kmovql(k1, output_mask); 2687 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2688 2689 __ addptr(dest, output_size); 2690 2691 __ BIND(L_exit); 2692 __ vzeroupper(); 2693 __ pop(rax); // Get original dest value 2694 __ subptr(dest, rax); // Number of bytes converted 2695 __ movptr(rax, dest); 2696 __ pop(rbx); 2697 __ pop(r15); 2698 __ pop(r14); 2699 __ pop(r13); 2700 __ pop(r12); 2701 __ leave(); 2702 __ ret(0); 2703 2704 __ BIND(L_loadURL); 2705 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2706 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2707 __ jmp(L_continue); 2708 2709 __ BIND(L_padding); 2710 __ decrementq(output_size, 1); 2711 __ shrq(rax, 1); 2712 2713 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2714 __ jcc(Assembler::notEqual, L_donePadding); 2715 2716 __ decrementq(output_size, 1); 2717 __ shrq(rax, 1); 2718 __ jmp(L_donePadding); 2719 2720 __ align32(); 2721 __ BIND(L_bruteForce); 2722 } // End of if(avx512_vbmi) 2723 2724 if (VM_Version::supports_avx2()) { 2725 Label L_tailProc, L_topLoop, L_enterLoop; 2726 2727 __ cmpl(isMIME, 0); 2728 __ jcc(Assembler::notEqual, L_lastChunk); 2729 2730 // Check for buffer too small (for algorithm) 2731 __ subl(length, 0x2c); 2732 __ jcc(Assembler::less, L_tailProc); 2733 2734 __ shll(isURL, 2); 2735 2736 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2737 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2738 2739 // Set up constants 2740 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2741 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2742 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2743 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2744 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2745 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2746 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2747 2748 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2749 __ shll(isURL, 4); 2750 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2751 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2752 __ shrl(isURL, 6); // restore isURL 2753 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2754 __ jmp(L_enterLoop); 2755 2756 __ align32(); 2757 __ bind(L_topLoop); 2758 // Add in the offset value (roll) to get 6-bit out values 2759 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2760 // Merge and permute the output bits into appropriate output byte lanes 2761 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2762 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2763 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2764 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2765 // Store the output bytes 2766 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2767 __ addptr(source, 0x20); 2768 __ addptr(dest, 0x18); 2769 __ subl(length, 0x20); 2770 __ jcc(Assembler::less, L_tailProc); 2771 2772 __ bind(L_enterLoop); 2773 2774 // Load in encoded string (32 bytes) 2775 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2776 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2777 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2778 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2779 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2780 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2781 // Check for special-case (0x2F or 0x5F (URL)) 2782 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2783 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2784 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2785 // Get the bit value of the high nibble 2786 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2787 // Make sure 2F / 5F shows as valid 2788 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2789 // Make adjustment for roll index. For non-URL, this is a no-op, 2790 // for URL, this adjusts by -4. This is to properly index the 2791 // roll value for 2F / 5F. 2792 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2793 // If the and of the two is non-zero, we have an invalid input character 2794 __ vptest(xmm3, xmm5); 2795 // Extract the "roll" value - value to add to the input to get 6-bit out value 2796 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2797 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2798 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2799 2800 __ bind(L_tailProc); 2801 2802 __ addl(length, 0x2c); 2803 2804 __ vzeroupper(); 2805 } 2806 2807 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2808 2809 // Register state (Linux): 2810 // r12-15 - saved on stack 2811 // rdi - src 2812 // rsi - sp 2813 // rdx - sl 2814 // rcx - dst 2815 // r8 - dp 2816 // r9 - isURL 2817 2818 // Register state (Windows): 2819 // r12-15 - saved on stack 2820 // rcx - src 2821 // rdx - sp 2822 // r8 - sl 2823 // r9 - dst 2824 // r12 - dp 2825 // r10 - isURL 2826 2827 // Registers (common): 2828 // length (r14) - bytes in src 2829 2830 const Register decode_table = r11; 2831 const Register out_byte_count = rbx; 2832 const Register byte1 = r13; 2833 const Register byte2 = r15; 2834 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2835 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2836 2837 __ bind(L_lastChunk); 2838 2839 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2840 __ cmpl(length, 0); 2841 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2842 2843 __ shll(isURL, 8); // index into decode table based on isURL 2844 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2845 __ addptr(decode_table, isURL); 2846 2847 __ jmp(L_bottomLoop); 2848 2849 __ align32(); 2850 __ BIND(L_forceLoop); 2851 __ shll(byte1, 18); 2852 __ shll(byte2, 12); 2853 __ shll(byte3, 6); 2854 __ orl(byte1, byte2); 2855 __ orl(byte1, byte3); 2856 __ orl(byte1, byte4); 2857 2858 __ addptr(source, 4); 2859 2860 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2861 __ shrl(byte1, 8); 2862 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2863 __ shrl(byte1, 8); 2864 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2865 2866 __ addptr(dest, 3); 2867 __ decrementl(length, 1); 2868 __ jcc(Assembler::zero, L_exit_no_vzero); 2869 2870 __ BIND(L_bottomLoop); 2871 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2872 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2873 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2874 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2875 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2876 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2877 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2878 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2879 2880 __ mov(rax, byte1); 2881 __ orl(rax, byte2); 2882 __ orl(rax, byte3); 2883 __ orl(rax, byte4); 2884 __ jcc(Assembler::positive, L_forceLoop); 2885 2886 __ BIND(L_exit_no_vzero); 2887 __ pop(rax); // Get original dest value 2888 __ subptr(dest, rax); // Number of bytes converted 2889 __ movptr(rax, dest); 2890 __ pop(rbx); 2891 __ pop(r15); 2892 __ pop(r14); 2893 __ pop(r13); 2894 __ pop(r12); 2895 __ leave(); 2896 __ ret(0); 2897 2898 return start; 2899 } 2900 2901 2902 /** 2903 * Arguments: 2904 * 2905 * Inputs: 2906 * c_rarg0 - int crc 2907 * c_rarg1 - byte* buf 2908 * c_rarg2 - int length 2909 * 2910 * Output: 2911 * rax - int crc result 2912 */ 2913 address StubGenerator::generate_updateBytesCRC32() { 2914 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 2915 2916 __ align(CodeEntryAlignment); 2917 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 2918 2919 address start = __ pc(); 2920 2921 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 2922 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 2923 // rscratch1: r10 2924 const Register crc = c_rarg0; // crc 2925 const Register buf = c_rarg1; // source java byte array address 2926 const Register len = c_rarg2; // length 2927 const Register table = c_rarg3; // crc_table address (reuse register) 2928 const Register tmp1 = r11; 2929 const Register tmp2 = r10; 2930 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 2931 2932 BLOCK_COMMENT("Entry:"); 2933 __ enter(); // required for proper stackwalking of RuntimeStub frame 2934 2935 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2936 VM_Version::supports_avx512bw() && 2937 VM_Version::supports_avx512vl()) { 2938 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 2939 // However, the constant table for CRC32-C assumes the original crc value. Account for this 2940 // difference before calling and after returning. 2941 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 2942 __ notl(crc); 2943 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 2944 __ notl(crc); 2945 } else { 2946 __ kernel_crc32(crc, buf, len, table, tmp1); 2947 } 2948 2949 __ movl(rax, crc); 2950 __ vzeroupper(); 2951 __ leave(); // required for proper stackwalking of RuntimeStub frame 2952 __ ret(0); 2953 2954 return start; 2955 } 2956 2957 /** 2958 * Arguments: 2959 * 2960 * Inputs: 2961 * c_rarg0 - int crc 2962 * c_rarg1 - byte* buf 2963 * c_rarg2 - long length 2964 * c_rarg3 - table_start - optional (present only when doing a library_call, 2965 * not used by x86 algorithm) 2966 * 2967 * Output: 2968 * rax - int crc result 2969 */ 2970 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 2971 assert(UseCRC32CIntrinsics, "need SSE4_2"); 2972 __ align(CodeEntryAlignment); 2973 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); 2974 address start = __ pc(); 2975 2976 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 2977 //Windows RCX RDX R8 R9 none none XMM0..XMM3 2978 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 2979 const Register crc = c_rarg0; // crc 2980 const Register buf = c_rarg1; // source java byte array address 2981 const Register len = c_rarg2; // length 2982 const Register a = rax; 2983 const Register j = r9; 2984 const Register k = r10; 2985 const Register l = r11; 2986 #ifdef _WIN64 2987 const Register y = rdi; 2988 const Register z = rsi; 2989 #else 2990 const Register y = rcx; 2991 const Register z = r8; 2992 #endif 2993 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 2994 2995 BLOCK_COMMENT("Entry:"); 2996 __ enter(); // required for proper stackwalking of RuntimeStub frame 2997 Label L_continue; 2998 2999 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3000 VM_Version::supports_avx512bw() && 3001 VM_Version::supports_avx512vl()) { 3002 Label L_doSmall; 3003 3004 __ cmpl(len, 384); 3005 __ jcc(Assembler::lessEqual, L_doSmall); 3006 3007 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3008 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3009 3010 __ jmp(L_continue); 3011 3012 __ bind(L_doSmall); 3013 } 3014 #ifdef _WIN64 3015 __ push(y); 3016 __ push(z); 3017 #endif 3018 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3019 a, j, k, 3020 l, y, z, 3021 c_farg0, c_farg1, c_farg2, 3022 is_pclmulqdq_supported); 3023 #ifdef _WIN64 3024 __ pop(z); 3025 __ pop(y); 3026 #endif 3027 3028 __ bind(L_continue); 3029 __ movl(rax, crc); 3030 __ vzeroupper(); 3031 __ leave(); // required for proper stackwalking of RuntimeStub frame 3032 __ ret(0); 3033 3034 return start; 3035 } 3036 3037 3038 /** 3039 * Arguments: 3040 * 3041 * Input: 3042 * c_rarg0 - x address 3043 * c_rarg1 - x length 3044 * c_rarg2 - y address 3045 * c_rarg3 - y length 3046 * not Win64 3047 * c_rarg4 - z address 3048 * Win64 3049 * rsp+40 - z address 3050 */ 3051 address StubGenerator::generate_multiplyToLen() { 3052 __ align(CodeEntryAlignment); 3053 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 3054 address start = __ pc(); 3055 3056 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3057 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3058 const Register x = rdi; 3059 const Register xlen = rax; 3060 const Register y = rsi; 3061 const Register ylen = rcx; 3062 const Register z = r8; 3063 3064 // Next registers will be saved on stack in multiply_to_len(). 3065 const Register tmp0 = r11; 3066 const Register tmp1 = r12; 3067 const Register tmp2 = r13; 3068 const Register tmp3 = r14; 3069 const Register tmp4 = r15; 3070 const Register tmp5 = rbx; 3071 3072 BLOCK_COMMENT("Entry:"); 3073 __ enter(); // required for proper stackwalking of RuntimeStub frame 3074 3075 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3076 // ylen => rcx, z => r8 3077 // r9 and r10 may be used to save non-volatile registers 3078 #ifdef _WIN64 3079 // last argument (#4) is on stack on Win64 3080 __ movptr(z, Address(rsp, 6 * wordSize)); 3081 #endif 3082 3083 __ movptr(xlen, rsi); 3084 __ movptr(y, rdx); 3085 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3086 3087 restore_arg_regs(); 3088 3089 __ leave(); // required for proper stackwalking of RuntimeStub frame 3090 __ ret(0); 3091 3092 return start; 3093 } 3094 3095 /** 3096 * Arguments: 3097 * 3098 * Input: 3099 * c_rarg0 - obja address 3100 * c_rarg1 - objb address 3101 * c_rarg3 - length length 3102 * c_rarg4 - scale log2_array_indxscale 3103 * 3104 * Output: 3105 * rax - int >= mismatched index, < 0 bitwise complement of tail 3106 */ 3107 address StubGenerator::generate_vectorizedMismatch() { 3108 __ align(CodeEntryAlignment); 3109 StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); 3110 address start = __ pc(); 3111 3112 BLOCK_COMMENT("Entry:"); 3113 __ enter(); 3114 3115 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3116 const Register scale = c_rarg0; //rcx, will exchange with r9 3117 const Register objb = c_rarg1; //rdx 3118 const Register length = c_rarg2; //r8 3119 const Register obja = c_rarg3; //r9 3120 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3121 3122 const Register tmp1 = r10; 3123 const Register tmp2 = r11; 3124 #endif 3125 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3126 const Register obja = c_rarg0; //U:rdi 3127 const Register objb = c_rarg1; //U:rsi 3128 const Register length = c_rarg2; //U:rdx 3129 const Register scale = c_rarg3; //U:rcx 3130 const Register tmp1 = r8; 3131 const Register tmp2 = r9; 3132 #endif 3133 const Register result = rax; //return value 3134 const XMMRegister vec0 = xmm0; 3135 const XMMRegister vec1 = xmm1; 3136 const XMMRegister vec2 = xmm2; 3137 3138 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3139 3140 __ vzeroupper(); 3141 __ leave(); 3142 __ ret(0); 3143 3144 return start; 3145 } 3146 3147 /** 3148 * Arguments: 3149 * 3150 // Input: 3151 // c_rarg0 - x address 3152 // c_rarg1 - x length 3153 // c_rarg2 - z address 3154 // c_rarg3 - z length 3155 * 3156 */ 3157 address StubGenerator::generate_squareToLen() { 3158 3159 __ align(CodeEntryAlignment); 3160 StubCodeMark mark(this, "StubRoutines", "squareToLen"); 3161 address start = __ pc(); 3162 3163 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3164 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3165 const Register x = rdi; 3166 const Register len = rsi; 3167 const Register z = r8; 3168 const Register zlen = rcx; 3169 3170 const Register tmp1 = r12; 3171 const Register tmp2 = r13; 3172 const Register tmp3 = r14; 3173 const Register tmp4 = r15; 3174 const Register tmp5 = rbx; 3175 3176 BLOCK_COMMENT("Entry:"); 3177 __ enter(); // required for proper stackwalking of RuntimeStub frame 3178 3179 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3180 // zlen => rcx 3181 // r9 and r10 may be used to save non-volatile registers 3182 __ movptr(r8, rdx); 3183 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3184 3185 restore_arg_regs(); 3186 3187 __ leave(); // required for proper stackwalking of RuntimeStub frame 3188 __ ret(0); 3189 3190 return start; 3191 } 3192 3193 address StubGenerator::generate_method_entry_barrier() { 3194 __ align(CodeEntryAlignment); 3195 StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); 3196 address start = __ pc(); 3197 3198 Label deoptimize_label; 3199 3200 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3201 3202 BLOCK_COMMENT("Entry:"); 3203 __ enter(); // save rbp 3204 3205 // save c_rarg0, because we want to use that value. 3206 // We could do without it but then we depend on the number of slots used by pusha 3207 __ push(c_rarg0); 3208 3209 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3210 3211 __ pusha(); 3212 3213 // The method may have floats as arguments, and we must spill them before calling 3214 // the VM runtime. 3215 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3216 const int xmm_size = wordSize * 2; 3217 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3218 __ subptr(rsp, xmm_spill_size); 3219 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3220 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3221 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3222 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3223 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3224 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3225 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3226 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3227 3228 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3229 3230 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3231 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3232 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3233 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3234 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3235 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3236 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3237 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3238 __ addptr(rsp, xmm_spill_size); 3239 3240 __ cmpl(rax, 1); // 1 means deoptimize 3241 __ jcc(Assembler::equal, deoptimize_label); 3242 3243 __ popa(); 3244 __ pop(c_rarg0); 3245 3246 __ leave(); 3247 3248 __ addptr(rsp, 1 * wordSize); // cookie 3249 __ ret(0); 3250 3251 3252 __ BIND(deoptimize_label); 3253 3254 __ popa(); 3255 __ pop(c_rarg0); 3256 3257 __ leave(); 3258 3259 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3260 // here while still having a correct stack is valuable 3261 __ testptr(rsp, Address(rsp, 0)); 3262 3263 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3264 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3265 3266 return start; 3267 } 3268 3269 /** 3270 * Arguments: 3271 * 3272 * Input: 3273 * c_rarg0 - out address 3274 * c_rarg1 - in address 3275 * c_rarg2 - offset 3276 * c_rarg3 - len 3277 * not Win64 3278 * c_rarg4 - k 3279 * Win64 3280 * rsp+40 - k 3281 */ 3282 address StubGenerator::generate_mulAdd() { 3283 __ align(CodeEntryAlignment); 3284 StubCodeMark mark(this, "StubRoutines", "mulAdd"); 3285 address start = __ pc(); 3286 3287 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3288 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3289 const Register out = rdi; 3290 const Register in = rsi; 3291 const Register offset = r11; 3292 const Register len = rcx; 3293 const Register k = r8; 3294 3295 // Next registers will be saved on stack in mul_add(). 3296 const Register tmp1 = r12; 3297 const Register tmp2 = r13; 3298 const Register tmp3 = r14; 3299 const Register tmp4 = r15; 3300 const Register tmp5 = rbx; 3301 3302 BLOCK_COMMENT("Entry:"); 3303 __ enter(); // required for proper stackwalking of RuntimeStub frame 3304 3305 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3306 // len => rcx, k => r8 3307 // r9 and r10 may be used to save non-volatile registers 3308 #ifdef _WIN64 3309 // last argument is on stack on Win64 3310 __ movl(k, Address(rsp, 6 * wordSize)); 3311 #endif 3312 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3313 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3314 3315 restore_arg_regs(); 3316 3317 __ leave(); // required for proper stackwalking of RuntimeStub frame 3318 __ ret(0); 3319 3320 return start; 3321 } 3322 3323 address StubGenerator::generate_bigIntegerRightShift() { 3324 __ align(CodeEntryAlignment); 3325 StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); 3326 address start = __ pc(); 3327 3328 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3329 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3330 const Register newArr = rdi; 3331 const Register oldArr = rsi; 3332 const Register newIdx = rdx; 3333 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3334 const Register totalNumIter = r8; 3335 3336 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3337 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3338 const Register tmp1 = r11; // Caller save. 3339 const Register tmp2 = rax; // Caller save. 3340 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3341 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3342 const Register tmp5 = r14; // Callee save. 3343 const Register tmp6 = r15; 3344 3345 const XMMRegister x0 = xmm0; 3346 const XMMRegister x1 = xmm1; 3347 const XMMRegister x2 = xmm2; 3348 3349 BLOCK_COMMENT("Entry:"); 3350 __ enter(); // required for proper stackwalking of RuntimeStub frame 3351 3352 #ifdef _WIN64 3353 setup_arg_regs(4); 3354 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3355 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3356 // Save callee save registers. 3357 __ push(tmp3); 3358 __ push(tmp4); 3359 #endif 3360 __ push(tmp5); 3361 3362 // Rename temps used throughout the code. 3363 const Register idx = tmp1; 3364 const Register nIdx = tmp2; 3365 3366 __ xorl(idx, idx); 3367 3368 // Start right shift from end of the array. 3369 // For example, if #iteration = 4 and newIdx = 1 3370 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3371 // if #iteration = 4 and newIdx = 0 3372 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3373 __ movl(idx, totalNumIter); 3374 __ movl(nIdx, idx); 3375 __ addl(nIdx, newIdx); 3376 3377 // If vectorization is enabled, check if the number of iterations is at least 64 3378 // If not, then go to ShifTwo processing 2 iterations 3379 if (VM_Version::supports_avx512_vbmi2()) { 3380 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3381 __ jcc(Assembler::less, ShiftTwo); 3382 3383 if (AVX3Threshold < 16 * 64) { 3384 __ cmpl(totalNumIter, 16); 3385 __ jcc(Assembler::less, ShiftTwo); 3386 } 3387 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3388 __ subl(idx, 16); 3389 __ subl(nIdx, 16); 3390 __ BIND(Shift512Loop); 3391 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3392 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3393 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3394 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3395 __ subl(nIdx, 16); 3396 __ subl(idx, 16); 3397 __ jcc(Assembler::greaterEqual, Shift512Loop); 3398 __ addl(idx, 16); 3399 __ addl(nIdx, 16); 3400 } 3401 __ BIND(ShiftTwo); 3402 __ cmpl(idx, 2); 3403 __ jcc(Assembler::less, ShiftOne); 3404 __ subl(idx, 2); 3405 __ subl(nIdx, 2); 3406 __ BIND(ShiftTwoLoop); 3407 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3408 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3409 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3410 __ shrdl(tmp5, tmp4); 3411 __ shrdl(tmp4, tmp3); 3412 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3413 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3414 __ subl(nIdx, 2); 3415 __ subl(idx, 2); 3416 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3417 __ addl(idx, 2); 3418 __ addl(nIdx, 2); 3419 3420 // Do the last iteration 3421 __ BIND(ShiftOne); 3422 __ cmpl(idx, 1); 3423 __ jcc(Assembler::less, Exit); 3424 __ subl(idx, 1); 3425 __ subl(nIdx, 1); 3426 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3427 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3428 __ shrdl(tmp4, tmp3); 3429 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3430 __ BIND(Exit); 3431 __ vzeroupper(); 3432 // Restore callee save registers. 3433 __ pop(tmp5); 3434 #ifdef _WIN64 3435 __ pop(tmp4); 3436 __ pop(tmp3); 3437 restore_arg_regs(); 3438 #endif 3439 __ leave(); // required for proper stackwalking of RuntimeStub frame 3440 __ ret(0); 3441 3442 return start; 3443 } 3444 3445 /** 3446 * Arguments: 3447 * 3448 * Input: 3449 * c_rarg0 - newArr address 3450 * c_rarg1 - oldArr address 3451 * c_rarg2 - newIdx 3452 * c_rarg3 - shiftCount 3453 * not Win64 3454 * c_rarg4 - numIter 3455 * Win64 3456 * rsp40 - numIter 3457 */ 3458 address StubGenerator::generate_bigIntegerLeftShift() { 3459 __ align(CodeEntryAlignment); 3460 StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); 3461 address start = __ pc(); 3462 3463 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3464 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3465 const Register newArr = rdi; 3466 const Register oldArr = rsi; 3467 const Register newIdx = rdx; 3468 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3469 const Register totalNumIter = r8; 3470 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3471 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3472 const Register tmp1 = r11; // Caller save. 3473 const Register tmp2 = rax; // Caller save. 3474 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3475 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3476 const Register tmp5 = r14; // Callee save. 3477 3478 const XMMRegister x0 = xmm0; 3479 const XMMRegister x1 = xmm1; 3480 const XMMRegister x2 = xmm2; 3481 BLOCK_COMMENT("Entry:"); 3482 __ enter(); // required for proper stackwalking of RuntimeStub frame 3483 3484 #ifdef _WIN64 3485 setup_arg_regs(4); 3486 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3487 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3488 // Save callee save registers. 3489 __ push(tmp3); 3490 __ push(tmp4); 3491 #endif 3492 __ push(tmp5); 3493 3494 // Rename temps used throughout the code 3495 const Register idx = tmp1; 3496 const Register numIterTmp = tmp2; 3497 3498 // Start idx from zero. 3499 __ xorl(idx, idx); 3500 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3501 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3502 __ movl(numIterTmp, totalNumIter); 3503 3504 // If vectorization is enabled, check if the number of iterations is at least 64 3505 // If not, then go to ShiftTwo shifting two numbers at a time 3506 if (VM_Version::supports_avx512_vbmi2()) { 3507 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3508 __ jcc(Assembler::less, ShiftTwo); 3509 3510 if (AVX3Threshold < 16 * 64) { 3511 __ cmpl(totalNumIter, 16); 3512 __ jcc(Assembler::less, ShiftTwo); 3513 } 3514 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3515 __ subl(numIterTmp, 16); 3516 __ BIND(Shift512Loop); 3517 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3518 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3519 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3520 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3521 __ addl(idx, 16); 3522 __ subl(numIterTmp, 16); 3523 __ jcc(Assembler::greaterEqual, Shift512Loop); 3524 __ addl(numIterTmp, 16); 3525 } 3526 __ BIND(ShiftTwo); 3527 __ cmpl(totalNumIter, 1); 3528 __ jcc(Assembler::less, Exit); 3529 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3530 __ subl(numIterTmp, 2); 3531 __ jcc(Assembler::less, ShiftOne); 3532 3533 __ BIND(ShiftTwoLoop); 3534 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3535 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3536 __ shldl(tmp3, tmp4); 3537 __ shldl(tmp4, tmp5); 3538 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3539 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3540 __ movl(tmp3, tmp5); 3541 __ addl(idx, 2); 3542 __ subl(numIterTmp, 2); 3543 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3544 3545 // Do the last iteration 3546 __ BIND(ShiftOne); 3547 __ addl(numIterTmp, 2); 3548 __ cmpl(numIterTmp, 1); 3549 __ jcc(Assembler::less, Exit); 3550 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3551 __ shldl(tmp3, tmp4); 3552 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3553 3554 __ BIND(Exit); 3555 __ vzeroupper(); 3556 // Restore callee save registers. 3557 __ pop(tmp5); 3558 #ifdef _WIN64 3559 __ pop(tmp4); 3560 __ pop(tmp3); 3561 restore_arg_regs(); 3562 #endif 3563 __ leave(); // required for proper stackwalking of RuntimeStub frame 3564 __ ret(0); 3565 3566 return start; 3567 } 3568 3569 void StubGenerator::generate_libm_stubs() { 3570 if (UseLibmIntrinsic && InlineIntrinsics) { 3571 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3572 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3573 } 3574 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3575 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3576 } 3577 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3578 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3579 } 3580 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) { 3581 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp 3582 } 3583 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3584 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3585 } 3586 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3587 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3588 } 3589 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3590 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3591 } 3592 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3593 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3594 } 3595 } 3596 } 3597 3598 /** 3599 * Arguments: 3600 * 3601 * Input: 3602 * c_rarg0 - float16 jshort 3603 * 3604 * Output: 3605 * xmm0 - float 3606 */ 3607 address StubGenerator::generate_float16ToFloat() { 3608 StubCodeMark mark(this, "StubRoutines", "float16ToFloat"); 3609 3610 address start = __ pc(); 3611 3612 BLOCK_COMMENT("Entry:"); 3613 // No need for RuntimeStub frame since it is called only during JIT compilation 3614 3615 // Load value into xmm0 and convert 3616 __ flt16_to_flt(xmm0, c_rarg0); 3617 3618 __ ret(0); 3619 3620 return start; 3621 } 3622 3623 /** 3624 * Arguments: 3625 * 3626 * Input: 3627 * xmm0 - float 3628 * 3629 * Output: 3630 * rax - float16 jshort 3631 */ 3632 address StubGenerator::generate_floatToFloat16() { 3633 StubCodeMark mark(this, "StubRoutines", "floatToFloat16"); 3634 3635 address start = __ pc(); 3636 3637 BLOCK_COMMENT("Entry:"); 3638 // No need for RuntimeStub frame since it is called only during JIT compilation 3639 3640 // Convert and put result into rax 3641 __ flt_to_flt16(rax, xmm0, xmm1); 3642 3643 __ ret(0); 3644 3645 return start; 3646 } 3647 3648 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) { 3649 if (!Continuations::enabled()) return nullptr; 3650 3651 bool return_barrier = Continuation::is_thaw_return_barrier(kind); 3652 bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind); 3653 3654 StubCodeMark mark(this, "StubRoutines", label); 3655 address start = __ pc(); 3656 3657 // TODO: Handle Valhalla return types. May require generating different return barriers. 3658 3659 if (!return_barrier) { 3660 // Pop return address. If we don't do this, we get a drift, 3661 // where the bottom-most frozen frame continuously grows. 3662 __ pop(c_rarg3); 3663 } else { 3664 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3665 } 3666 3667 #ifdef ASSERT 3668 { 3669 Label L_good_sp; 3670 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3671 __ jcc(Assembler::equal, L_good_sp); 3672 __ stop("Incorrect rsp at thaw entry"); 3673 __ BIND(L_good_sp); 3674 } 3675 #endif // ASSERT 3676 3677 if (return_barrier) { 3678 // Preserve possible return value from a method returning to the return barrier. 3679 __ push(rax); 3680 __ push_d(xmm0); 3681 } 3682 3683 __ movptr(c_rarg0, r15_thread); 3684 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3685 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3686 __ movptr(rbx, rax); 3687 3688 if (return_barrier) { 3689 // Restore return value from a method returning to the return barrier. 3690 // No safepoint in the call to thaw, so even an oop return value should be OK. 3691 __ pop_d(xmm0); 3692 __ pop(rax); 3693 } 3694 3695 #ifdef ASSERT 3696 { 3697 Label L_good_sp; 3698 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3699 __ jcc(Assembler::equal, L_good_sp); 3700 __ stop("Incorrect rsp after prepare thaw"); 3701 __ BIND(L_good_sp); 3702 } 3703 #endif // ASSERT 3704 3705 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3706 Label L_thaw_success; 3707 __ testptr(rbx, rbx); 3708 __ jccb(Assembler::notZero, L_thaw_success); 3709 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 3710 __ bind(L_thaw_success); 3711 3712 // Make room for the thawed frames and align the stack. 3713 __ subptr(rsp, rbx); 3714 __ andptr(rsp, -StackAlignmentInBytes); 3715 3716 if (return_barrier) { 3717 // Preserve possible return value from a method returning to the return barrier. (Again.) 3718 __ push(rax); 3719 __ push_d(xmm0); 3720 } 3721 3722 // If we want, we can templatize thaw by kind, and have three different entries. 3723 __ movptr(c_rarg0, r15_thread); 3724 __ movptr(c_rarg1, kind); 3725 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3726 __ movptr(rbx, rax); 3727 3728 if (return_barrier) { 3729 // Restore return value from a method returning to the return barrier. (Again.) 3730 // No safepoint in the call to thaw, so even an oop return value should be OK. 3731 __ pop_d(xmm0); 3732 __ pop(rax); 3733 } else { 3734 // Return 0 (success) from doYield. 3735 __ xorptr(rax, rax); 3736 } 3737 3738 // After thawing, rbx is the SP of the yielding frame. 3739 // Move there, and then to saved RBP slot. 3740 __ movptr(rsp, rbx); 3741 __ subptr(rsp, 2*wordSize); 3742 3743 if (return_barrier_exception) { 3744 __ movptr(c_rarg0, r15_thread); 3745 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3746 3747 // rax still holds the original exception oop, save it before the call 3748 __ push(rax); 3749 3750 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3751 __ movptr(rbx, rax); 3752 3753 // Continue at exception handler: 3754 // rax: exception oop 3755 // rbx: exception handler 3756 // rdx: exception pc 3757 __ pop(rax); 3758 __ verify_oop(rax); 3759 __ pop(rbp); // pop out RBP here too 3760 __ pop(rdx); 3761 __ jmp(rbx); 3762 } else { 3763 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3764 __ pop(rbp); 3765 __ ret(0); 3766 } 3767 3768 return start; 3769 } 3770 3771 address StubGenerator::generate_cont_thaw() { 3772 return generate_cont_thaw("Cont thaw", Continuation::thaw_top); 3773 } 3774 3775 // TODO: will probably need multiple return barriers depending on return type 3776 3777 address StubGenerator::generate_cont_returnBarrier() { 3778 return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier); 3779 } 3780 3781 address StubGenerator::generate_cont_returnBarrier_exception() { 3782 return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception); 3783 } 3784 3785 address StubGenerator::generate_cont_preempt_stub() { 3786 if (!Continuations::enabled()) return nullptr; 3787 StubCodeMark mark(this, "StubRoutines","Continuation preempt stub"); 3788 address start = __ pc(); 3789 3790 __ reset_last_Java_frame(true); 3791 3792 // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap. 3793 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3794 3795 Label preemption_cancelled; 3796 __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset())); 3797 __ testbool(rscratch1); 3798 __ jcc(Assembler::notZero, preemption_cancelled); 3799 3800 // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount. 3801 SharedRuntime::continuation_enter_cleanup(_masm); 3802 __ pop(rbp); 3803 __ ret(0); 3804 3805 // We acquired the monitor after freezing the frames so call thaw to continue execution. 3806 __ bind(preemption_cancelled); 3807 __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false); 3808 __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size()))); 3809 __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address())); 3810 __ jmp(rscratch1); 3811 3812 return start; 3813 } 3814 3815 // exception handler for upcall stubs 3816 address StubGenerator::generate_upcall_stub_exception_handler() { 3817 StubCodeMark mark(this, "StubRoutines", "upcall stub exception handler"); 3818 address start = __ pc(); 3819 3820 // native caller has no idea how to handle exceptions 3821 // we just crash here. Up to callee to catch exceptions. 3822 __ verify_oop(rax); 3823 __ vzeroupper(); 3824 __ mov(c_rarg0, rax); 3825 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3826 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3827 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3828 __ should_not_reach_here(); 3829 3830 return start; 3831 } 3832 3833 // load Method* target of MethodHandle 3834 // j_rarg0 = jobject receiver 3835 // rbx = result 3836 address StubGenerator::generate_upcall_stub_load_target() { 3837 StubCodeMark mark(this, "StubRoutines", "upcall_stub_load_target"); 3838 address start = __ pc(); 3839 3840 __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1); 3841 // Load target method from receiver 3842 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1); 3843 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1); 3844 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1); 3845 __ access_load_at(T_ADDRESS, IN_HEAP, rbx, 3846 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()), 3847 noreg, noreg); 3848 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized 3849 3850 __ ret(0); 3851 3852 return start; 3853 } 3854 3855 address StubGenerator::generate_lookup_secondary_supers_table_stub(u1 super_klass_index) { 3856 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3857 3858 address start = __ pc(); 3859 3860 const Register 3861 r_super_klass = rax, 3862 r_sub_klass = rsi, 3863 result = rdi; 3864 3865 __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass, 3866 rdx, rcx, rbx, r11, // temps 3867 result, 3868 super_klass_index); 3869 __ ret(0); 3870 3871 return start; 3872 } 3873 3874 // Slow path implementation for UseSecondarySupersTable. 3875 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 3876 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3877 3878 address start = __ pc(); 3879 3880 const Register 3881 r_super_klass = rax, 3882 r_array_base = rbx, 3883 r_array_index = rdx, 3884 r_sub_klass = rsi, 3885 r_bitmap = r11, 3886 result = rdi; 3887 3888 Label L_success; 3889 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 3890 rcx, rdi, // temps 3891 &L_success); 3892 // bind(L_failure); 3893 __ movl(result, 1); 3894 __ ret(0); 3895 3896 __ bind(L_success); 3897 __ movl(result, 0); 3898 __ ret(0); 3899 3900 return start; 3901 } 3902 3903 void StubGenerator::create_control_words() { 3904 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 3905 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 3906 // Round to zero, 64-bit mode, exceptions masked, flags specialized 3907 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 3908 } 3909 3910 // Initialization 3911 void StubGenerator::generate_initial_stubs() { 3912 // Generates all stubs and initializes the entry points 3913 3914 // This platform-specific settings are needed by generate_call_stub() 3915 create_control_words(); 3916 3917 // Initialize table for unsafe copy memeory check. 3918 if (UnsafeMemoryAccess::_table == nullptr) { 3919 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 3920 } 3921 3922 // entry points that exist in all platforms Note: This is code 3923 // that could be shared among different platforms - however the 3924 // benefit seems to be smaller than the disadvantage of having a 3925 // much more complicated generator structure. See also comment in 3926 // stubRoutines.hpp. 3927 3928 StubRoutines::_forward_exception_entry = generate_forward_exception(); 3929 3930 StubRoutines::_call_stub_entry = 3931 generate_call_stub(StubRoutines::_call_stub_return_address); 3932 3933 // is referenced by megamorphic call 3934 StubRoutines::_catch_exception_entry = generate_catch_exception(); 3935 3936 // atomic calls 3937 StubRoutines::_fence_entry = generate_orderaccess_fence(); 3938 3939 // platform dependent 3940 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 3941 3942 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 3943 3944 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 3945 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 3946 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 3947 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 3948 3949 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 3950 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 3951 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 3952 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 3953 3954 if (UseCRC32Intrinsics) { 3955 // set table address before stub generation which use it 3956 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 3957 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 3958 } 3959 3960 if (UseCRC32CIntrinsics) { 3961 bool supports_clmul = VM_Version::supports_clmul(); 3962 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 3963 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 3964 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 3965 } 3966 3967 if (VM_Version::supports_float16()) { 3968 // For results consistency both intrinsics should be enabled. 3969 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 3970 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 3971 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 3972 StubRoutines::_hf2f = generate_float16ToFloat(); 3973 StubRoutines::_f2hf = generate_floatToFloat16(); 3974 } 3975 } 3976 3977 generate_libm_stubs(); 3978 3979 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 3980 } 3981 3982 void StubGenerator::generate_continuation_stubs() { 3983 // Continuation stubs: 3984 StubRoutines::_cont_thaw = generate_cont_thaw(); 3985 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 3986 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 3987 StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub(); 3988 } 3989 3990 void StubGenerator::generate_final_stubs() { 3991 // Generates the rest of stubs and initializes the entry points 3992 3993 // support for verify_oop (must happen after universe_init) 3994 if (VerifyOops) { 3995 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 3996 } 3997 3998 // data cache line writeback 3999 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 4000 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 4001 4002 // arraycopy stubs used by compilers 4003 generate_arraycopy_stubs(); 4004 4005 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 4006 if (bs_nm != nullptr) { 4007 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 4008 } 4009 4010 if (UseVectorizedMismatchIntrinsic) { 4011 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 4012 } 4013 4014 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 4015 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target(); 4016 } 4017 4018 void StubGenerator::generate_compiler_stubs() { 4019 #if COMPILER2_OR_JVMCI 4020 4021 // Entry points that are C2 compiler specific. 4022 4023 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); 4024 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); 4025 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); 4026 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); 4027 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); 4028 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001); 4029 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); 4030 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); 4031 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); 4032 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); 4033 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, 4034 0xFFFFFFFF, 0, 0, 0); 4035 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, 4036 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4037 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); 4038 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); 4039 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); 4040 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); 4041 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); 4042 StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); 4043 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut"); 4044 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut"); 4045 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long"); 4046 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int"); 4047 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short"); 4048 4049 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4050 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table("compress_perm_table32", 32); 4051 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table("compress_perm_table64", 64); 4052 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table("expand_perm_table32", 32); 4053 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table("expand_perm_table64", 64); 4054 } 4055 4056 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4057 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4058 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut"); 4059 } 4060 4061 generate_aes_stubs(); 4062 4063 generate_ghash_stubs(); 4064 4065 generate_chacha_stubs(); 4066 4067 generate_sha3_stubs(); 4068 4069 #ifdef COMPILER2 4070 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4071 generate_string_indexof(StubRoutines::_string_indexof_array); 4072 } 4073 #endif 4074 4075 if (UseAdler32Intrinsics) { 4076 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4077 } 4078 4079 if (UsePoly1305Intrinsics) { 4080 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4081 } 4082 4083 if (UseIntPolyIntrinsics) { 4084 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4085 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4086 } 4087 4088 if (UseMD5Intrinsics) { 4089 StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); 4090 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); 4091 } 4092 4093 if (UseSHA1Intrinsics) { 4094 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4095 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4096 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); 4097 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); 4098 } 4099 4100 if (UseSHA256Intrinsics) { 4101 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4102 char* dst = (char*)StubRoutines::x86::_k256_W; 4103 char* src = (char*)StubRoutines::x86::_k256; 4104 for (int ii = 0; ii < 16; ++ii) { 4105 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4106 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4107 } 4108 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4109 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4110 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); 4111 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); 4112 } 4113 4114 if (UseSHA512Intrinsics) { 4115 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4116 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4117 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); 4118 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); 4119 } 4120 4121 if (UseBASE64Intrinsics) { 4122 if(VM_Version::supports_avx2()) { 4123 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4124 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4125 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4126 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4127 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4128 } 4129 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4130 if (VM_Version::supports_avx512_vbmi()) { 4131 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4132 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4133 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4134 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4135 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4136 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4137 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4138 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4139 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4140 } 4141 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4142 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4143 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4144 } 4145 4146 #ifdef COMPILER2 4147 if (UseMultiplyToLenIntrinsic) { 4148 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4149 } 4150 if (UseSquareToLenIntrinsic) { 4151 StubRoutines::_squareToLen = generate_squareToLen(); 4152 } 4153 if (UseMulAddIntrinsic) { 4154 StubRoutines::_mulAdd = generate_mulAdd(); 4155 } 4156 if (VM_Version::supports_avx512_vbmi2()) { 4157 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4158 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4159 } 4160 if (UseSecondarySupersTable) { 4161 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4162 if (! InlineSecondarySupersTest) { 4163 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4164 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = generate_lookup_secondary_supers_table_stub(slot); 4165 } 4166 } 4167 } 4168 if (UseMontgomeryMultiplyIntrinsic) { 4169 StubRoutines::_montgomeryMultiply 4170 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4171 } 4172 if (UseMontgomerySquareIntrinsic) { 4173 StubRoutines::_montgomerySquare 4174 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4175 } 4176 4177 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4178 4179 if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) { 4180 void *libsimdsort = nullptr; 4181 char ebuf_[1024]; 4182 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4183 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4184 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4185 } 4186 // Get addresses for SIMD sort and partition routines 4187 if (libsimdsort != nullptr) { 4188 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4189 4190 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort"); 4191 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4192 4193 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition"); 4194 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4195 } 4196 } 4197 4198 // Get svml stub routine addresses 4199 void *libjsvml = nullptr; 4200 char ebuf[1024]; 4201 char dll_name[JVM_MAXPATHLEN]; 4202 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4203 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4204 } 4205 if (libjsvml != nullptr) { 4206 // SVML method naming convention 4207 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4208 // Where: 4209 // ha stands for high accuracy 4210 // <T> is optional to indicate float/double 4211 // Set to f for vector float operation 4212 // Omitted for vector double operation 4213 // <N> is the number of elements in the vector 4214 // 1, 2, 4, 8, 16 4215 // e.g. 128 bit float vector has 4 float elements 4216 // <VV> indicates the avx/sse level: 4217 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4218 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4219 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4220 4221 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4222 if (UseAVX > 2) { 4223 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4224 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4225 if ((!VM_Version::supports_avx512dq()) && 4226 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4227 continue; 4228 } 4229 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]); 4230 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4231 4232 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]); 4233 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4234 } 4235 } 4236 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4237 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4238 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4239 if (vop == VectorSupport::VECTOR_OP_POW) { 4240 continue; 4241 } 4242 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4243 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4244 4245 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4246 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4247 4248 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4249 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4250 4251 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4252 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4253 4254 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4255 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4256 4257 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4258 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4259 } 4260 } 4261 4262 #endif // COMPILER2 4263 #endif // COMPILER2_OR_JVMCI 4264 } 4265 4266 StubGenerator::StubGenerator(CodeBuffer* code, StubsKind kind) : StubCodeGenerator(code) { 4267 DEBUG_ONLY( _regs_in_thread = false; ) 4268 switch(kind) { 4269 case Initial_stubs: 4270 generate_initial_stubs(); 4271 break; 4272 case Continuation_stubs: 4273 generate_continuation_stubs(); 4274 break; 4275 case Compiler_stubs: 4276 generate_compiler_stubs(); 4277 break; 4278 case Final_stubs: 4279 generate_final_stubs(); 4280 break; 4281 default: 4282 fatal("unexpected stubs kind: %d", kind); 4283 break; 4284 }; 4285 } 4286 4287 void StubGenerator_generate(CodeBuffer* code, StubCodeGenerator::StubsKind kind) { 4288 StubGenerator g(code, kind); 4289 } 4290 4291 #undef __