1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "classfile/vmIntrinsics.hpp" 28 #include "code/SCCache.hpp" 29 #include "compiler/oopMap.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "gc/shared/barrierSetNMethod.hpp" 33 #include "gc/shared/gc_globals.hpp" 34 #include "memory/universe.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/upcallLinker.hpp" 37 #include "runtime/arguments.hpp" 38 #include "runtime/continuationEntry.hpp" 39 #include "runtime/javaThread.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "stubGenerator_x86_64.hpp" 43 #ifdef COMPILER2 44 #include "opto/runtime.hpp" 45 #include "opto/c2_globals.hpp" 46 #endif 47 #if INCLUDE_JVMCI 48 #include "jvmci/jvmci_globals.hpp" 49 #endif 50 51 // For a more detailed description of the stub routine structure 52 // see the comment in stubRoutines.hpp 53 54 #define __ _masm-> 55 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 56 57 #ifdef PRODUCT 58 #define BLOCK_COMMENT(str) /* nothing */ 59 #else 60 #define BLOCK_COMMENT(str) __ block_comment(str) 61 #endif // PRODUCT 62 63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 64 65 // 66 // Linux Arguments: 67 // c_rarg0: call wrapper address address 68 // c_rarg1: result address 69 // c_rarg2: result type BasicType 70 // c_rarg3: method Method* 71 // c_rarg4: (interpreter) entry point address 72 // c_rarg5: parameters intptr_t* 73 // 16(rbp): parameter size (in words) int 74 // 24(rbp): thread Thread* 75 // 76 // [ return_from_Java ] <--- rsp 77 // [ argument word n ] 78 // ... 79 // -12 [ argument word 1 ] 80 // -11 [ saved r15 ] <--- rsp_after_call 81 // -10 [ saved r14 ] 82 // -9 [ saved r13 ] 83 // -8 [ saved r12 ] 84 // -7 [ saved rbx ] 85 // -6 [ call wrapper ] 86 // -5 [ result ] 87 // -4 [ result type ] 88 // -3 [ method ] 89 // -2 [ entry point ] 90 // -1 [ parameters ] 91 // 0 [ saved rbp ] <--- rbp 92 // 1 [ return address ] 93 // 2 [ parameter size ] 94 // 3 [ thread ] 95 // 96 // Windows Arguments: 97 // c_rarg0: call wrapper address address 98 // c_rarg1: result address 99 // c_rarg2: result type BasicType 100 // c_rarg3: method Method* 101 // 48(rbp): (interpreter) entry point address 102 // 56(rbp): parameters intptr_t* 103 // 64(rbp): parameter size (in words) int 104 // 72(rbp): thread Thread* 105 // 106 // [ return_from_Java ] <--- rsp 107 // [ argument word n ] 108 // ... 109 // -28 [ argument word 1 ] 110 // -27 [ saved xmm15 ] <--- rsp after_call 111 // [ saved xmm7-xmm14 ] 112 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 113 // -7 [ saved r15 ] 114 // -6 [ saved r14 ] 115 // -5 [ saved r13 ] 116 // -4 [ saved r12 ] 117 // -3 [ saved rdi ] 118 // -2 [ saved rsi ] 119 // -1 [ saved rbx ] 120 // 0 [ saved rbp ] <--- rbp 121 // 1 [ return address ] 122 // 2 [ call wrapper ] 123 // 3 [ result ] 124 // 4 [ result type ] 125 // 5 [ method ] 126 // 6 [ entry point ] 127 // 7 [ parameters ] 128 // 8 [ parameter size ] 129 // 9 [ thread ] 130 // 131 // Windows reserves the callers stack space for arguments 1-4. 132 // We spill c_rarg0-c_rarg3 to this space. 133 134 // Call stub stack layout word offsets from rbp 135 #ifdef _WIN64 136 enum call_stub_layout { 137 xmm_save_first = 6, // save from xmm6 138 xmm_save_last = 15, // to xmm15 139 xmm_save_base = -9, 140 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 141 r15_off = -7, 142 r14_off = -6, 143 r13_off = -5, 144 r12_off = -4, 145 rdi_off = -3, 146 rsi_off = -2, 147 rbx_off = -1, 148 rbp_off = 0, 149 retaddr_off = 1, 150 call_wrapper_off = 2, 151 result_off = 3, 152 result_type_off = 4, 153 method_off = 5, 154 entry_point_off = 6, 155 parameters_off = 7, 156 parameter_size_off = 8, 157 thread_off = 9 158 }; 159 160 static Address xmm_save(int reg) { 161 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 162 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 163 } 164 #else // !_WIN64 165 enum call_stub_layout { 166 rsp_after_call_off = -12, 167 mxcsr_off = rsp_after_call_off, 168 r15_off = -11, 169 r14_off = -10, 170 r13_off = -9, 171 r12_off = -8, 172 rbx_off = -7, 173 call_wrapper_off = -6, 174 result_off = -5, 175 result_type_off = -4, 176 method_off = -3, 177 entry_point_off = -2, 178 parameters_off = -1, 179 rbp_off = 0, 180 retaddr_off = 1, 181 parameter_size_off = 2, 182 thread_off = 3 183 }; 184 #endif // _WIN64 185 186 address StubGenerator::generate_call_stub(address& return_address) { 187 188 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 189 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 190 "adjust this code"); 191 StubGenStubId stub_id = StubGenStubId::call_stub_id; 192 StubCodeMark mark(this, stub_id); 193 address start = __ pc(); 194 195 // same as in generate_catch_exception()! 196 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 197 198 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 199 const Address result (rbp, result_off * wordSize); 200 const Address result_type (rbp, result_type_off * wordSize); 201 const Address method (rbp, method_off * wordSize); 202 const Address entry_point (rbp, entry_point_off * wordSize); 203 const Address parameters (rbp, parameters_off * wordSize); 204 const Address parameter_size(rbp, parameter_size_off * wordSize); 205 206 // same as in generate_catch_exception()! 207 const Address thread (rbp, thread_off * wordSize); 208 209 const Address r15_save(rbp, r15_off * wordSize); 210 const Address r14_save(rbp, r14_off * wordSize); 211 const Address r13_save(rbp, r13_off * wordSize); 212 const Address r12_save(rbp, r12_off * wordSize); 213 const Address rbx_save(rbp, rbx_off * wordSize); 214 215 // stub code 216 __ enter(); 217 __ subptr(rsp, -rsp_after_call_off * wordSize); 218 219 // save register parameters 220 #ifndef _WIN64 221 __ movptr(parameters, c_rarg5); // parameters 222 __ movptr(entry_point, c_rarg4); // entry_point 223 #endif 224 225 __ movptr(method, c_rarg3); // method 226 __ movl(result_type, c_rarg2); // result type 227 __ movptr(result, c_rarg1); // result 228 __ movptr(call_wrapper, c_rarg0); // call wrapper 229 230 // save regs belonging to calling function 231 __ movptr(rbx_save, rbx); 232 __ movptr(r12_save, r12); 233 __ movptr(r13_save, r13); 234 __ movptr(r14_save, r14); 235 __ movptr(r15_save, r15); 236 237 #ifdef _WIN64 238 int last_reg = 15; 239 for (int i = xmm_save_first; i <= last_reg; i++) { 240 __ movdqu(xmm_save(i), as_XMMRegister(i)); 241 } 242 243 const Address rdi_save(rbp, rdi_off * wordSize); 244 const Address rsi_save(rbp, rsi_off * wordSize); 245 246 __ movptr(rsi_save, rsi); 247 __ movptr(rdi_save, rdi); 248 #else 249 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 250 { 251 Label skip_ldmx; 252 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1); 253 __ jcc(Assembler::equal, skip_ldmx); 254 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 255 __ ldmxcsr(mxcsr_std, rscratch1); 256 __ bind(skip_ldmx); 257 } 258 #endif 259 260 // Load up thread register 261 __ movptr(r15_thread, thread); 262 __ reinit_heapbase(); 263 264 #ifdef ASSERT 265 // make sure we have no pending exceptions 266 { 267 Label L; 268 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 269 __ jcc(Assembler::equal, L); 270 __ stop("StubRoutines::call_stub: entered with pending exception"); 271 __ bind(L); 272 } 273 #endif 274 275 // pass parameters if any 276 BLOCK_COMMENT("pass parameters if any"); 277 Label parameters_done; 278 __ movl(c_rarg3, parameter_size); 279 __ testl(c_rarg3, c_rarg3); 280 __ jcc(Assembler::zero, parameters_done); 281 282 Label loop; 283 __ movptr(c_rarg2, parameters); // parameter pointer 284 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 285 __ BIND(loop); 286 __ movptr(rax, Address(c_rarg2, 0));// get parameter 287 __ addptr(c_rarg2, wordSize); // advance to next parameter 288 __ decrementl(c_rarg1); // decrement counter 289 __ push(rax); // pass parameter 290 __ jcc(Assembler::notZero, loop); 291 292 // call Java function 293 __ BIND(parameters_done); 294 __ movptr(rbx, method); // get Method* 295 __ movptr(c_rarg1, entry_point); // get entry_point 296 __ mov(r13, rsp); // set sender sp 297 BLOCK_COMMENT("call Java function"); 298 __ call(c_rarg1); 299 300 BLOCK_COMMENT("call_stub_return_address:"); 301 return_address = __ pc(); 302 303 // store result depending on type (everything that is not 304 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 305 __ movptr(c_rarg0, result); 306 Label is_long, is_float, is_double, exit; 307 __ movl(c_rarg1, result_type); 308 __ cmpl(c_rarg1, T_OBJECT); 309 __ jcc(Assembler::equal, is_long); 310 __ cmpl(c_rarg1, T_LONG); 311 __ jcc(Assembler::equal, is_long); 312 __ cmpl(c_rarg1, T_FLOAT); 313 __ jcc(Assembler::equal, is_float); 314 __ cmpl(c_rarg1, T_DOUBLE); 315 __ jcc(Assembler::equal, is_double); 316 #ifdef ASSERT 317 // make sure the type is INT 318 { 319 Label L; 320 __ cmpl(c_rarg1, T_INT); 321 __ jcc(Assembler::equal, L); 322 __ stop("StubRoutines::call_stub: unexpected result type"); 323 __ bind(L); 324 } 325 #endif 326 327 // handle T_INT case 328 __ movl(Address(c_rarg0, 0), rax); 329 330 __ BIND(exit); 331 332 // pop parameters 333 __ lea(rsp, rsp_after_call); 334 335 #ifdef ASSERT 336 // verify that threads correspond 337 { 338 Label L1, L2, L3; 339 __ cmpptr(r15_thread, thread); 340 __ jcc(Assembler::equal, L1); 341 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 342 __ bind(L1); 343 __ get_thread(rbx); 344 __ cmpptr(r15_thread, thread); 345 __ jcc(Assembler::equal, L2); 346 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 347 __ bind(L2); 348 __ cmpptr(r15_thread, rbx); 349 __ jcc(Assembler::equal, L3); 350 __ stop("StubRoutines::call_stub: threads must correspond"); 351 __ bind(L3); 352 } 353 #endif 354 355 __ pop_cont_fastpath(); 356 357 // restore regs belonging to calling function 358 #ifdef _WIN64 359 // emit the restores for xmm regs 360 for (int i = xmm_save_first; i <= last_reg; i++) { 361 __ movdqu(as_XMMRegister(i), xmm_save(i)); 362 } 363 #endif 364 __ movptr(r15, r15_save); 365 __ movptr(r14, r14_save); 366 __ movptr(r13, r13_save); 367 __ movptr(r12, r12_save); 368 __ movptr(rbx, rbx_save); 369 370 #ifdef _WIN64 371 __ movptr(rdi, rdi_save); 372 __ movptr(rsi, rsi_save); 373 #else 374 __ ldmxcsr(mxcsr_save); 375 #endif 376 377 // restore rsp 378 __ addptr(rsp, -rsp_after_call_off * wordSize); 379 380 // return 381 __ vzeroupper(); 382 __ pop(rbp); 383 __ ret(0); 384 385 // handle return types different from T_INT 386 __ BIND(is_long); 387 __ movq(Address(c_rarg0, 0), rax); 388 __ jmp(exit); 389 390 __ BIND(is_float); 391 __ movflt(Address(c_rarg0, 0), xmm0); 392 __ jmp(exit); 393 394 __ BIND(is_double); 395 __ movdbl(Address(c_rarg0, 0), xmm0); 396 __ jmp(exit); 397 398 return start; 399 } 400 401 // Return point for a Java call if there's an exception thrown in 402 // Java code. The exception is caught and transformed into a 403 // pending exception stored in JavaThread that can be tested from 404 // within the VM. 405 // 406 // Note: Usually the parameters are removed by the callee. In case 407 // of an exception crossing an activation frame boundary, that is 408 // not the case if the callee is compiled code => need to setup the 409 // rsp. 410 // 411 // rax: exception oop 412 413 address StubGenerator::generate_catch_exception() { 414 StubGenStubId stub_id = StubGenStubId::catch_exception_id; 415 StubCodeMark mark(this, stub_id); 416 address start = __ pc(); 417 418 // same as in generate_call_stub(): 419 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 420 const Address thread (rbp, thread_off * wordSize); 421 422 #ifdef ASSERT 423 // verify that threads correspond 424 { 425 Label L1, L2, L3; 426 __ cmpptr(r15_thread, thread); 427 __ jcc(Assembler::equal, L1); 428 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 429 __ bind(L1); 430 __ get_thread(rbx); 431 __ cmpptr(r15_thread, thread); 432 __ jcc(Assembler::equal, L2); 433 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 434 __ bind(L2); 435 __ cmpptr(r15_thread, rbx); 436 __ jcc(Assembler::equal, L3); 437 __ stop("StubRoutines::catch_exception: threads must correspond"); 438 __ bind(L3); 439 } 440 #endif 441 442 // set pending exception 443 __ verify_oop(rax); 444 445 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 446 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 447 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 448 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 449 450 // complete return to VM 451 assert(StubRoutines::_call_stub_return_address != nullptr, 452 "_call_stub_return_address must have been generated before"); 453 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 454 455 return start; 456 } 457 458 // Continuation point for runtime calls returning with a pending 459 // exception. The pending exception check happened in the runtime 460 // or native call stub. The pending exception in Thread is 461 // converted into a Java-level exception. 462 // 463 // Contract with Java-level exception handlers: 464 // rax: exception 465 // rdx: throwing pc 466 // 467 // NOTE: At entry of this stub, exception-pc must be on stack !! 468 469 address StubGenerator::generate_forward_exception() { 470 StubGenStubId stub_id = StubGenStubId::forward_exception_id; 471 StubCodeMark mark(this, stub_id); 472 address start = __ pc(); 473 474 // Upon entry, the sp points to the return address returning into 475 // Java (interpreted or compiled) code; i.e., the return address 476 // becomes the throwing pc. 477 // 478 // Arguments pushed before the runtime call are still on the stack 479 // but the exception handler will reset the stack pointer -> 480 // ignore them. A potential result in registers can be ignored as 481 // well. 482 483 #ifdef ASSERT 484 // make sure this code is only executed if there is a pending exception 485 { 486 Label L; 487 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 488 __ jcc(Assembler::notEqual, L); 489 __ stop("StubRoutines::forward exception: no pending exception (1)"); 490 __ bind(L); 491 } 492 #endif 493 494 // compute exception handler into rbx 495 __ movptr(c_rarg0, Address(rsp, 0)); 496 BLOCK_COMMENT("call exception_handler_for_return_address"); 497 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 498 SharedRuntime::exception_handler_for_return_address), 499 r15_thread, c_rarg0); 500 __ mov(rbx, rax); 501 502 // setup rax & rdx, remove return address & clear pending exception 503 __ pop(rdx); 504 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 505 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 506 507 #ifdef ASSERT 508 // make sure exception is set 509 { 510 Label L; 511 __ testptr(rax, rax); 512 __ jcc(Assembler::notEqual, L); 513 __ stop("StubRoutines::forward exception: no pending exception (2)"); 514 __ bind(L); 515 } 516 #endif 517 518 // continue at exception handler (return address removed) 519 // rax: exception 520 // rbx: exception handler 521 // rdx: throwing pc 522 __ verify_oop(rax); 523 __ jmp(rbx); 524 525 return start; 526 } 527 528 // Support for intptr_t OrderAccess::fence() 529 // 530 // Arguments : 531 // 532 // Result: 533 address StubGenerator::generate_orderaccess_fence() { 534 StubGenStubId stub_id = StubGenStubId::fence_id; 535 StubCodeMark mark(this, stub_id); 536 address start = __ pc(); 537 538 __ membar(Assembler::StoreLoad); 539 __ ret(0); 540 541 return start; 542 } 543 544 545 // Support for intptr_t get_previous_sp() 546 // 547 // This routine is used to find the previous stack pointer for the 548 // caller. 549 address StubGenerator::generate_get_previous_sp() { 550 StubGenStubId stub_id = StubGenStubId::get_previous_sp_id; 551 StubCodeMark mark(this, stub_id); 552 address start = __ pc(); 553 554 __ movptr(rax, rsp); 555 __ addptr(rax, 8); // return address is at the top of the stack. 556 __ ret(0); 557 558 return start; 559 } 560 561 //---------------------------------------------------------------------------------------------------- 562 // Support for void verify_mxcsr() 563 // 564 // This routine is used with -Xcheck:jni to verify that native 565 // JNI code does not return to Java code without restoring the 566 // MXCSR register to our expected state. 567 568 address StubGenerator::generate_verify_mxcsr() { 569 StubGenStubId stub_id = StubGenStubId::verify_mxcsr_id; 570 StubCodeMark mark(this, stub_id); 571 address start = __ pc(); 572 573 const Address mxcsr_save(rsp, 0); 574 575 if (CheckJNICalls) { 576 Label ok_ret; 577 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 578 __ push(rax); 579 __ subptr(rsp, wordSize); // allocate a temp location 580 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1); 581 __ jcc(Assembler::equal, ok_ret); 582 583 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 584 585 __ ldmxcsr(mxcsr_std, rscratch1); 586 587 __ bind(ok_ret); 588 __ addptr(rsp, wordSize); 589 __ pop(rax); 590 } 591 592 __ ret(0); 593 594 return start; 595 } 596 597 address StubGenerator::generate_f2i_fixup() { 598 StubGenStubId stub_id = StubGenStubId::f2i_fixup_id; 599 StubCodeMark mark(this, stub_id); 600 Address inout(rsp, 5 * wordSize); // return address + 4 saves 601 602 address start = __ pc(); 603 604 Label L; 605 606 __ push(rax); 607 __ push(c_rarg3); 608 __ push(c_rarg2); 609 __ push(c_rarg1); 610 611 __ movl(rax, 0x7f800000); 612 __ xorl(c_rarg3, c_rarg3); 613 __ movl(c_rarg2, inout); 614 __ movl(c_rarg1, c_rarg2); 615 __ andl(c_rarg1, 0x7fffffff); 616 __ cmpl(rax, c_rarg1); // NaN? -> 0 617 __ jcc(Assembler::negative, L); 618 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 619 __ movl(c_rarg3, 0x80000000); 620 __ movl(rax, 0x7fffffff); 621 __ cmovl(Assembler::positive, c_rarg3, rax); 622 623 __ bind(L); 624 __ movptr(inout, c_rarg3); 625 626 __ pop(c_rarg1); 627 __ pop(c_rarg2); 628 __ pop(c_rarg3); 629 __ pop(rax); 630 631 __ ret(0); 632 633 return start; 634 } 635 636 address StubGenerator::generate_f2l_fixup() { 637 StubGenStubId stub_id = StubGenStubId::f2l_fixup_id; 638 StubCodeMark mark(this, stub_id); 639 Address inout(rsp, 5 * wordSize); // return address + 4 saves 640 address start = __ pc(); 641 642 Label L; 643 644 __ push(rax); 645 __ push(c_rarg3); 646 __ push(c_rarg2); 647 __ push(c_rarg1); 648 649 __ movl(rax, 0x7f800000); 650 __ xorl(c_rarg3, c_rarg3); 651 __ movl(c_rarg2, inout); 652 __ movl(c_rarg1, c_rarg2); 653 __ andl(c_rarg1, 0x7fffffff); 654 __ cmpl(rax, c_rarg1); // NaN? -> 0 655 __ jcc(Assembler::negative, L); 656 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 657 __ mov64(c_rarg3, 0x8000000000000000); 658 __ mov64(rax, 0x7fffffffffffffff); 659 __ cmov(Assembler::positive, c_rarg3, rax); 660 661 __ bind(L); 662 __ movptr(inout, c_rarg3); 663 664 __ pop(c_rarg1); 665 __ pop(c_rarg2); 666 __ pop(c_rarg3); 667 __ pop(rax); 668 669 __ ret(0); 670 671 return start; 672 } 673 674 address StubGenerator::generate_d2i_fixup() { 675 StubGenStubId stub_id = StubGenStubId::d2i_fixup_id; 676 StubCodeMark mark(this, stub_id); 677 Address inout(rsp, 6 * wordSize); // return address + 5 saves 678 679 address start = __ pc(); 680 681 Label L; 682 683 __ push(rax); 684 __ push(c_rarg3); 685 __ push(c_rarg2); 686 __ push(c_rarg1); 687 __ push(c_rarg0); 688 689 __ movl(rax, 0x7ff00000); 690 __ movq(c_rarg2, inout); 691 __ movl(c_rarg3, c_rarg2); 692 __ mov(c_rarg1, c_rarg2); 693 __ mov(c_rarg0, c_rarg2); 694 __ negl(c_rarg3); 695 __ shrptr(c_rarg1, 0x20); 696 __ orl(c_rarg3, c_rarg2); 697 __ andl(c_rarg1, 0x7fffffff); 698 __ xorl(c_rarg2, c_rarg2); 699 __ shrl(c_rarg3, 0x1f); 700 __ orl(c_rarg1, c_rarg3); 701 __ cmpl(rax, c_rarg1); 702 __ jcc(Assembler::negative, L); // NaN -> 0 703 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 704 __ movl(c_rarg2, 0x80000000); 705 __ movl(rax, 0x7fffffff); 706 __ cmov(Assembler::positive, c_rarg2, rax); 707 708 __ bind(L); 709 __ movptr(inout, c_rarg2); 710 711 __ pop(c_rarg0); 712 __ pop(c_rarg1); 713 __ pop(c_rarg2); 714 __ pop(c_rarg3); 715 __ pop(rax); 716 717 __ ret(0); 718 719 return start; 720 } 721 722 address StubGenerator::generate_d2l_fixup() { 723 StubGenStubId stub_id = StubGenStubId::d2l_fixup_id; 724 StubCodeMark mark(this, stub_id); 725 Address inout(rsp, 6 * wordSize); // return address + 5 saves 726 727 address start = __ pc(); 728 729 Label L; 730 731 __ push(rax); 732 __ push(c_rarg3); 733 __ push(c_rarg2); 734 __ push(c_rarg1); 735 __ push(c_rarg0); 736 737 __ movl(rax, 0x7ff00000); 738 __ movq(c_rarg2, inout); 739 __ movl(c_rarg3, c_rarg2); 740 __ mov(c_rarg1, c_rarg2); 741 __ mov(c_rarg0, c_rarg2); 742 __ negl(c_rarg3); 743 __ shrptr(c_rarg1, 0x20); 744 __ orl(c_rarg3, c_rarg2); 745 __ andl(c_rarg1, 0x7fffffff); 746 __ xorl(c_rarg2, c_rarg2); 747 __ shrl(c_rarg3, 0x1f); 748 __ orl(c_rarg1, c_rarg3); 749 __ cmpl(rax, c_rarg1); 750 __ jcc(Assembler::negative, L); // NaN -> 0 751 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 752 __ mov64(c_rarg2, 0x8000000000000000); 753 __ mov64(rax, 0x7fffffffffffffff); 754 __ cmovq(Assembler::positive, c_rarg2, rax); 755 756 __ bind(L); 757 __ movq(inout, c_rarg2); 758 759 __ pop(c_rarg0); 760 __ pop(c_rarg1); 761 __ pop(c_rarg2); 762 __ pop(c_rarg3); 763 __ pop(rax); 764 765 __ ret(0); 766 767 return start; 768 } 769 770 address StubGenerator::generate_count_leading_zeros_lut() { 771 __ align64(); 772 StubGenStubId stub_id = StubGenStubId::vector_count_leading_zeros_lut_id; 773 StubCodeMark mark(this, stub_id); 774 address start = __ pc(); 775 776 __ emit_data64(0x0101010102020304, relocInfo::none); 777 __ emit_data64(0x0000000000000000, relocInfo::none); 778 __ emit_data64(0x0101010102020304, relocInfo::none); 779 __ emit_data64(0x0000000000000000, relocInfo::none); 780 __ emit_data64(0x0101010102020304, relocInfo::none); 781 __ emit_data64(0x0000000000000000, relocInfo::none); 782 __ emit_data64(0x0101010102020304, relocInfo::none); 783 __ emit_data64(0x0000000000000000, relocInfo::none); 784 785 return start; 786 } 787 788 address StubGenerator::generate_popcount_avx_lut() { 789 __ align64(); 790 StubGenStubId stub_id = StubGenStubId::vector_popcount_lut_id; 791 StubCodeMark mark(this, stub_id); 792 address start = __ pc(); 793 794 __ emit_data64(0x0302020102010100, relocInfo::none); 795 __ emit_data64(0x0403030203020201, relocInfo::none); 796 __ emit_data64(0x0302020102010100, relocInfo::none); 797 __ emit_data64(0x0403030203020201, relocInfo::none); 798 __ emit_data64(0x0302020102010100, relocInfo::none); 799 __ emit_data64(0x0403030203020201, relocInfo::none); 800 __ emit_data64(0x0302020102010100, relocInfo::none); 801 __ emit_data64(0x0403030203020201, relocInfo::none); 802 803 return start; 804 } 805 806 address StubGenerator::generate_iota_indices() { 807 __ align(CodeEntryAlignment); 808 StubGenStubId stub_id = StubGenStubId::vector_iota_indices_id; 809 StubCodeMark mark(this, stub_id); 810 address start = __ pc(); 811 // B 812 __ emit_data64(0x0706050403020100, relocInfo::none); 813 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 814 __ emit_data64(0x1716151413121110, relocInfo::none); 815 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 816 __ emit_data64(0x2726252423222120, relocInfo::none); 817 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 818 __ emit_data64(0x3736353433323130, relocInfo::none); 819 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 820 // W 821 __ emit_data64(0x0003000200010000, relocInfo::none); 822 __ emit_data64(0x0007000600050004, relocInfo::none); 823 __ emit_data64(0x000B000A00090008, relocInfo::none); 824 __ emit_data64(0x000F000E000D000C, relocInfo::none); 825 __ emit_data64(0x0013001200110010, relocInfo::none); 826 __ emit_data64(0x0017001600150014, relocInfo::none); 827 __ emit_data64(0x001B001A00190018, relocInfo::none); 828 __ emit_data64(0x001F001E001D001C, relocInfo::none); 829 // D 830 __ emit_data64(0x0000000100000000, relocInfo::none); 831 __ emit_data64(0x0000000300000002, relocInfo::none); 832 __ emit_data64(0x0000000500000004, relocInfo::none); 833 __ emit_data64(0x0000000700000006, relocInfo::none); 834 __ emit_data64(0x0000000900000008, relocInfo::none); 835 __ emit_data64(0x0000000B0000000A, relocInfo::none); 836 __ emit_data64(0x0000000D0000000C, relocInfo::none); 837 __ emit_data64(0x0000000F0000000E, relocInfo::none); 838 // Q 839 __ emit_data64(0x0000000000000000, relocInfo::none); 840 __ emit_data64(0x0000000000000001, relocInfo::none); 841 __ emit_data64(0x0000000000000002, relocInfo::none); 842 __ emit_data64(0x0000000000000003, relocInfo::none); 843 __ emit_data64(0x0000000000000004, relocInfo::none); 844 __ emit_data64(0x0000000000000005, relocInfo::none); 845 __ emit_data64(0x0000000000000006, relocInfo::none); 846 __ emit_data64(0x0000000000000007, relocInfo::none); 847 // D - FP 848 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 849 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 850 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 851 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 852 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 853 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 854 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 855 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 856 // Q - FP 857 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 858 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 859 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 860 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 861 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 862 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 863 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 864 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 865 return start; 866 } 867 868 address StubGenerator::generate_vector_reverse_bit_lut() { 869 __ align(CodeEntryAlignment); 870 StubGenStubId stub_id = StubGenStubId::vector_reverse_bit_lut_id; 871 StubCodeMark mark(this, stub_id); 872 address start = __ pc(); 873 874 __ emit_data64(0x0E060A020C040800, relocInfo::none); 875 __ emit_data64(0x0F070B030D050901, relocInfo::none); 876 __ emit_data64(0x0E060A020C040800, relocInfo::none); 877 __ emit_data64(0x0F070B030D050901, relocInfo::none); 878 __ emit_data64(0x0E060A020C040800, relocInfo::none); 879 __ emit_data64(0x0F070B030D050901, relocInfo::none); 880 __ emit_data64(0x0E060A020C040800, relocInfo::none); 881 __ emit_data64(0x0F070B030D050901, relocInfo::none); 882 883 return start; 884 } 885 886 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() { 887 __ align(CodeEntryAlignment); 888 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_long_id; 889 StubCodeMark mark(this, stub_id); 890 address start = __ pc(); 891 892 __ emit_data64(0x0001020304050607, relocInfo::none); 893 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 894 __ emit_data64(0x0001020304050607, relocInfo::none); 895 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 896 __ emit_data64(0x0001020304050607, relocInfo::none); 897 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 898 __ emit_data64(0x0001020304050607, relocInfo::none); 899 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 900 901 return start; 902 } 903 904 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() { 905 __ align(CodeEntryAlignment); 906 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_int_id; 907 StubCodeMark mark(this, stub_id); 908 address start = __ pc(); 909 910 __ emit_data64(0x0405060700010203, relocInfo::none); 911 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 912 __ emit_data64(0x0405060700010203, relocInfo::none); 913 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 914 __ emit_data64(0x0405060700010203, relocInfo::none); 915 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 916 __ emit_data64(0x0405060700010203, relocInfo::none); 917 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 918 919 return start; 920 } 921 922 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() { 923 __ align(CodeEntryAlignment); 924 StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_short_id; 925 StubCodeMark mark(this, stub_id); 926 address start = __ pc(); 927 928 __ emit_data64(0x0607040502030001, relocInfo::none); 929 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 930 __ emit_data64(0x0607040502030001, relocInfo::none); 931 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 932 __ emit_data64(0x0607040502030001, relocInfo::none); 933 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 934 __ emit_data64(0x0607040502030001, relocInfo::none); 935 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 936 937 return start; 938 } 939 940 address StubGenerator::generate_vector_byte_shuffle_mask() { 941 __ align(CodeEntryAlignment); 942 StubGenStubId stub_id = StubGenStubId::vector_byte_shuffle_mask_id; 943 StubCodeMark mark(this, stub_id); 944 address start = __ pc(); 945 946 __ emit_data64(0x7070707070707070, relocInfo::none); 947 __ emit_data64(0x7070707070707070, relocInfo::none); 948 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 949 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 950 951 return start; 952 } 953 954 address StubGenerator::generate_fp_mask(StubGenStubId stub_id, int64_t mask) { 955 __ align(CodeEntryAlignment); 956 StubCodeMark mark(this, stub_id); 957 address start = __ pc(); 958 959 __ emit_data64( mask, relocInfo::none ); 960 __ emit_data64( mask, relocInfo::none ); 961 962 return start; 963 } 964 965 address StubGenerator::generate_compress_perm_table(StubGenStubId stub_id) { 966 int esize; 967 switch (stub_id) { 968 case compress_perm_table32_id: 969 esize = 32; 970 break; 971 case compress_perm_table64_id: 972 esize = 64; 973 break; 974 default: 975 ShouldNotReachHere(); 976 } 977 __ align(CodeEntryAlignment); 978 StubCodeMark mark(this, stub_id); 979 address start = __ pc(); 980 if (esize == 32) { 981 // Loop to generate 256 x 8 int compression permute index table. A row is 982 // accessed using 8 bit index computed using vector mask. An entry in 983 // a row holds either a valid permute index corresponding to set bit position 984 // or a -1 (default) value. 985 for (int mask = 0; mask < 256; mask++) { 986 int ctr = 0; 987 for (int j = 0; j < 8; j++) { 988 if (mask & (1 << j)) { 989 __ emit_data(j, relocInfo::none); 990 ctr++; 991 } 992 } 993 for (; ctr < 8; ctr++) { 994 __ emit_data(-1, relocInfo::none); 995 } 996 } 997 } else { 998 assert(esize == 64, ""); 999 // Loop to generate 16 x 4 long compression permute index table. A row is 1000 // accessed using 4 bit index computed using vector mask. An entry in 1001 // a row holds either a valid permute index pair for a quadword corresponding 1002 // to set bit position or a -1 (default) value. 1003 for (int mask = 0; mask < 16; mask++) { 1004 int ctr = 0; 1005 for (int j = 0; j < 4; j++) { 1006 if (mask & (1 << j)) { 1007 __ emit_data(2 * j, relocInfo::none); 1008 __ emit_data(2 * j + 1, relocInfo::none); 1009 ctr++; 1010 } 1011 } 1012 for (; ctr < 4; ctr++) { 1013 __ emit_data64(-1L, relocInfo::none); 1014 } 1015 } 1016 } 1017 return start; 1018 } 1019 1020 address StubGenerator::generate_expand_perm_table(StubGenStubId stub_id) { 1021 int esize; 1022 switch (stub_id) { 1023 case expand_perm_table32_id: 1024 esize = 32; 1025 break; 1026 case expand_perm_table64_id: 1027 esize = 64; 1028 break; 1029 default: 1030 ShouldNotReachHere(); 1031 } 1032 __ align(CodeEntryAlignment); 1033 StubCodeMark mark(this, stub_id); 1034 address start = __ pc(); 1035 if (esize == 32) { 1036 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1037 // using 8 bit index computed using vector mask. An entry in a row holds either 1038 // a valid permute index (starting from least significant lane) placed at poisition 1039 // corresponding to set bit position or a -1 (default) value. 1040 for (int mask = 0; mask < 256; mask++) { 1041 int ctr = 0; 1042 for (int j = 0; j < 8; j++) { 1043 if (mask & (1 << j)) { 1044 __ emit_data(ctr++, relocInfo::none); 1045 } else { 1046 __ emit_data(-1, relocInfo::none); 1047 } 1048 } 1049 } 1050 } else { 1051 assert(esize == 64, ""); 1052 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1053 // using 4 bit index computed using vector mask. An entry in a row holds either 1054 // a valid doubleword permute index pair representing a quadword index (starting 1055 // from least significant lane) placed at poisition corresponding to set bit 1056 // position or a -1 (default) value. 1057 for (int mask = 0; mask < 16; mask++) { 1058 int ctr = 0; 1059 for (int j = 0; j < 4; j++) { 1060 if (mask & (1 << j)) { 1061 __ emit_data(2 * ctr, relocInfo::none); 1062 __ emit_data(2 * ctr + 1, relocInfo::none); 1063 ctr++; 1064 } else { 1065 __ emit_data64(-1L, relocInfo::none); 1066 } 1067 } 1068 } 1069 } 1070 return start; 1071 } 1072 1073 address StubGenerator::generate_vector_mask(StubGenStubId stub_id, int64_t mask) { 1074 __ align(CodeEntryAlignment); 1075 StubCodeMark mark(this, stub_id); 1076 address start = __ pc(); 1077 1078 __ emit_data64(mask, relocInfo::none); 1079 __ emit_data64(mask, relocInfo::none); 1080 __ emit_data64(mask, relocInfo::none); 1081 __ emit_data64(mask, relocInfo::none); 1082 __ emit_data64(mask, relocInfo::none); 1083 __ emit_data64(mask, relocInfo::none); 1084 __ emit_data64(mask, relocInfo::none); 1085 __ emit_data64(mask, relocInfo::none); 1086 1087 return start; 1088 } 1089 1090 address StubGenerator::generate_vector_byte_perm_mask() { 1091 __ align(CodeEntryAlignment); 1092 StubGenStubId stub_id = StubGenStubId::vector_byte_perm_mask_id; 1093 StubCodeMark mark(this, stub_id); 1094 address start = __ pc(); 1095 1096 __ emit_data64(0x0000000000000001, relocInfo::none); 1097 __ emit_data64(0x0000000000000003, relocInfo::none); 1098 __ emit_data64(0x0000000000000005, relocInfo::none); 1099 __ emit_data64(0x0000000000000007, relocInfo::none); 1100 __ emit_data64(0x0000000000000000, relocInfo::none); 1101 __ emit_data64(0x0000000000000002, relocInfo::none); 1102 __ emit_data64(0x0000000000000004, relocInfo::none); 1103 __ emit_data64(0x0000000000000006, relocInfo::none); 1104 1105 return start; 1106 } 1107 1108 address StubGenerator::generate_vector_fp_mask(StubGenStubId stub_id, int64_t mask) { 1109 __ align(CodeEntryAlignment); 1110 StubCodeMark mark(this, stub_id); 1111 address start = __ pc(); 1112 1113 __ emit_data64(mask, relocInfo::none); 1114 __ emit_data64(mask, relocInfo::none); 1115 __ emit_data64(mask, relocInfo::none); 1116 __ emit_data64(mask, relocInfo::none); 1117 __ emit_data64(mask, relocInfo::none); 1118 __ emit_data64(mask, relocInfo::none); 1119 __ emit_data64(mask, relocInfo::none); 1120 __ emit_data64(mask, relocInfo::none); 1121 1122 return start; 1123 } 1124 1125 address StubGenerator::generate_vector_custom_i32(StubGenStubId stub_id, Assembler::AvxVectorLen len, 1126 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1127 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1128 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1129 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1130 __ align(CodeEntryAlignment); 1131 StubCodeMark mark(this, stub_id); 1132 address start = __ pc(); 1133 1134 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1135 __ emit_data(val0, relocInfo::none, 0); 1136 __ emit_data(val1, relocInfo::none, 0); 1137 __ emit_data(val2, relocInfo::none, 0); 1138 __ emit_data(val3, relocInfo::none, 0); 1139 if (len >= Assembler::AVX_256bit) { 1140 __ emit_data(val4, relocInfo::none, 0); 1141 __ emit_data(val5, relocInfo::none, 0); 1142 __ emit_data(val6, relocInfo::none, 0); 1143 __ emit_data(val7, relocInfo::none, 0); 1144 if (len >= Assembler::AVX_512bit) { 1145 __ emit_data(val8, relocInfo::none, 0); 1146 __ emit_data(val9, relocInfo::none, 0); 1147 __ emit_data(val10, relocInfo::none, 0); 1148 __ emit_data(val11, relocInfo::none, 0); 1149 __ emit_data(val12, relocInfo::none, 0); 1150 __ emit_data(val13, relocInfo::none, 0); 1151 __ emit_data(val14, relocInfo::none, 0); 1152 __ emit_data(val15, relocInfo::none, 0); 1153 } 1154 } 1155 return start; 1156 } 1157 1158 // Non-destructive plausibility checks for oops 1159 // 1160 // Arguments: 1161 // all args on stack! 1162 // 1163 // Stack after saving c_rarg3: 1164 // [tos + 0]: saved c_rarg3 1165 // [tos + 1]: saved c_rarg2 1166 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1167 // [tos + 3]: saved flags 1168 // [tos + 4]: return address 1169 // * [tos + 5]: error message (char*) 1170 // * [tos + 6]: object to verify (oop) 1171 // * [tos + 7]: saved rax - saved by caller and bashed 1172 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1173 // * = popped on exit 1174 address StubGenerator::generate_verify_oop() { 1175 StubGenStubId stub_id = StubGenStubId::verify_oop_id; 1176 StubCodeMark mark(this, stub_id); 1177 address start = __ pc(); 1178 1179 Label exit, error; 1180 1181 __ pushf(); 1182 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1183 1184 __ push(r12); 1185 1186 // save c_rarg2 and c_rarg3 1187 __ push(c_rarg2); 1188 __ push(c_rarg3); 1189 1190 enum { 1191 // After previous pushes. 1192 oop_to_verify = 6 * wordSize, 1193 saved_rax = 7 * wordSize, 1194 saved_r10 = 8 * wordSize, 1195 1196 // Before the call to MacroAssembler::debug(), see below. 1197 return_addr = 16 * wordSize, 1198 error_msg = 17 * wordSize 1199 }; 1200 1201 // get object 1202 __ movptr(rax, Address(rsp, oop_to_verify)); 1203 1204 // make sure object is 'reasonable' 1205 __ testptr(rax, rax); 1206 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1207 1208 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1209 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1210 1211 // return if everything seems ok 1212 __ bind(exit); 1213 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1214 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1215 __ pop(c_rarg3); // restore c_rarg3 1216 __ pop(c_rarg2); // restore c_rarg2 1217 __ pop(r12); // restore r12 1218 __ popf(); // restore flags 1219 __ ret(4 * wordSize); // pop caller saved stuff 1220 1221 // handle errors 1222 __ bind(error); 1223 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1224 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1225 __ pop(c_rarg3); // get saved c_rarg3 back 1226 __ pop(c_rarg2); // get saved c_rarg2 back 1227 __ pop(r12); // get saved r12 back 1228 __ popf(); // get saved flags off stack -- 1229 // will be ignored 1230 1231 __ pusha(); // push registers 1232 // (rip is already 1233 // already pushed) 1234 // debug(char* msg, int64_t pc, int64_t regs[]) 1235 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1236 // pushed all the registers, so now the stack looks like: 1237 // [tos + 0] 16 saved registers 1238 // [tos + 16] return address 1239 // * [tos + 17] error message (char*) 1240 // * [tos + 18] object to verify (oop) 1241 // * [tos + 19] saved rax - saved by caller and bashed 1242 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1243 // * = popped on exit 1244 1245 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1246 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1247 __ movq(c_rarg2, rsp); // pass address of regs on stack 1248 __ mov(r12, rsp); // remember rsp 1249 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1250 __ andptr(rsp, -16); // align stack as required by ABI 1251 BLOCK_COMMENT("call MacroAssembler::debug"); 1252 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1253 __ hlt(); 1254 1255 return start; 1256 } 1257 1258 1259 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1260 // 1261 // Outputs: 1262 // rdi - rcx 1263 // rsi - rdx 1264 // rdx - r8 1265 // rcx - r9 1266 // 1267 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1268 // are non-volatile. r9 and r10 should not be used by the caller. 1269 // 1270 void StubGenerator::setup_arg_regs(int nargs) { 1271 const Register saved_rdi = r9; 1272 const Register saved_rsi = r10; 1273 assert(nargs == 3 || nargs == 4, "else fix"); 1274 #ifdef _WIN64 1275 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1276 "unexpected argument registers"); 1277 if (nargs == 4) { 1278 __ mov(rax, r9); // r9 is also saved_rdi 1279 } 1280 __ movptr(saved_rdi, rdi); 1281 __ movptr(saved_rsi, rsi); 1282 __ mov(rdi, rcx); // c_rarg0 1283 __ mov(rsi, rdx); // c_rarg1 1284 __ mov(rdx, r8); // c_rarg2 1285 if (nargs == 4) { 1286 __ mov(rcx, rax); // c_rarg3 (via rax) 1287 } 1288 #else 1289 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1290 "unexpected argument registers"); 1291 #endif 1292 DEBUG_ONLY(_regs_in_thread = false;) 1293 } 1294 1295 1296 void StubGenerator::restore_arg_regs() { 1297 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1298 const Register saved_rdi = r9; 1299 const Register saved_rsi = r10; 1300 #ifdef _WIN64 1301 __ movptr(rdi, saved_rdi); 1302 __ movptr(rsi, saved_rsi); 1303 #endif 1304 } 1305 1306 1307 // This is used in places where r10 is a scratch register, and can 1308 // be adapted if r9 is needed also. 1309 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1310 const Register saved_r15 = r9; 1311 assert(nargs == 3 || nargs == 4, "else fix"); 1312 #ifdef _WIN64 1313 if (nargs == 4) { 1314 __ mov(rax, r9); // r9 is also saved_r15 1315 } 1316 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1317 __ get_thread(r15_thread); 1318 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1319 "unexpected argument registers"); 1320 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1321 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1322 1323 __ mov(rdi, rcx); // c_rarg0 1324 __ mov(rsi, rdx); // c_rarg1 1325 __ mov(rdx, r8); // c_rarg2 1326 if (nargs == 4) { 1327 __ mov(rcx, rax); // c_rarg3 (via rax) 1328 } 1329 #else 1330 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1331 "unexpected argument registers"); 1332 #endif 1333 DEBUG_ONLY(_regs_in_thread = true;) 1334 } 1335 1336 1337 void StubGenerator::restore_arg_regs_using_thread() { 1338 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1339 const Register saved_r15 = r9; 1340 #ifdef _WIN64 1341 __ get_thread(r15_thread); 1342 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1343 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1344 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1345 #endif 1346 } 1347 1348 1349 void StubGenerator::setup_argument_regs(BasicType type) { 1350 if (type == T_BYTE || type == T_SHORT) { 1351 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1352 // r9 and r10 may be used to save non-volatile registers 1353 } else { 1354 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1355 // r9 is used to save r15_thread 1356 } 1357 } 1358 1359 1360 void StubGenerator::restore_argument_regs(BasicType type) { 1361 if (type == T_BYTE || type == T_SHORT) { 1362 restore_arg_regs(); 1363 } else { 1364 restore_arg_regs_using_thread(); 1365 } 1366 } 1367 1368 address StubGenerator::generate_data_cache_writeback() { 1369 const Register src = c_rarg0; // source address 1370 1371 __ align(CodeEntryAlignment); 1372 1373 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_id; 1374 StubCodeMark mark(this, stub_id); 1375 1376 address start = __ pc(); 1377 1378 __ enter(); 1379 __ cache_wb(Address(src, 0)); 1380 __ leave(); 1381 __ ret(0); 1382 1383 return start; 1384 } 1385 1386 address StubGenerator::generate_data_cache_writeback_sync() { 1387 const Register is_pre = c_rarg0; // pre or post sync 1388 1389 __ align(CodeEntryAlignment); 1390 1391 StubGenStubId stub_id = StubGenStubId::data_cache_writeback_sync_id; 1392 StubCodeMark mark(this, stub_id); 1393 1394 // pre wbsync is a no-op 1395 // post wbsync translates to an sfence 1396 1397 Label skip; 1398 address start = __ pc(); 1399 1400 __ enter(); 1401 __ cmpl(is_pre, 0); 1402 __ jcc(Assembler::notEqual, skip); 1403 __ cache_wbsync(false); 1404 __ bind(skip); 1405 __ leave(); 1406 __ ret(0); 1407 1408 return start; 1409 } 1410 1411 // ofs and limit are use for multi-block byte array. 1412 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1413 address StubGenerator::generate_md5_implCompress(StubGenStubId stub_id) { 1414 bool multi_block; 1415 switch (stub_id) { 1416 case md5_implCompress_id: 1417 multi_block = false; 1418 break; 1419 case md5_implCompressMB_id: 1420 multi_block = true; 1421 break; 1422 default: 1423 ShouldNotReachHere(); 1424 } 1425 __ align(CodeEntryAlignment); 1426 StubCodeMark mark(this, stub_id); 1427 address start = __ pc(); 1428 1429 const Register buf_param = r15; 1430 const Address state_param(rsp, 0 * wordSize); 1431 const Address ofs_param (rsp, 1 * wordSize ); 1432 const Address limit_param(rsp, 1 * wordSize + 4); 1433 1434 __ enter(); 1435 __ push(rbx); 1436 __ push(rdi); 1437 __ push(rsi); 1438 __ push(r15); 1439 __ subptr(rsp, 2 * wordSize); 1440 1441 __ movptr(buf_param, c_rarg0); 1442 __ movptr(state_param, c_rarg1); 1443 if (multi_block) { 1444 __ movl(ofs_param, c_rarg2); 1445 __ movl(limit_param, c_rarg3); 1446 } 1447 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1448 1449 __ addptr(rsp, 2 * wordSize); 1450 __ pop(r15); 1451 __ pop(rsi); 1452 __ pop(rdi); 1453 __ pop(rbx); 1454 __ leave(); 1455 __ ret(0); 1456 1457 return start; 1458 } 1459 1460 address StubGenerator::generate_upper_word_mask() { 1461 __ align64(); 1462 StubGenStubId stub_id = StubGenStubId::upper_word_mask_id; 1463 StubCodeMark mark(this, stub_id); 1464 address start = __ pc(); 1465 1466 __ emit_data64(0x0000000000000000, relocInfo::none); 1467 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1468 1469 return start; 1470 } 1471 1472 address StubGenerator::generate_shuffle_byte_flip_mask() { 1473 __ align64(); 1474 StubGenStubId stub_id = StubGenStubId::shuffle_byte_flip_mask_id; 1475 StubCodeMark mark(this, stub_id); 1476 address start = __ pc(); 1477 1478 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1479 __ emit_data64(0x0001020304050607, relocInfo::none); 1480 1481 return start; 1482 } 1483 1484 // ofs and limit are use for multi-block byte array. 1485 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1486 address StubGenerator::generate_sha1_implCompress(StubGenStubId stub_id) { 1487 bool multi_block; 1488 switch (stub_id) { 1489 case sha1_implCompress_id: 1490 multi_block = false; 1491 break; 1492 case sha1_implCompressMB_id: 1493 multi_block = true; 1494 break; 1495 default: 1496 ShouldNotReachHere(); 1497 } 1498 __ align(CodeEntryAlignment); 1499 StubCodeMark mark(this, stub_id); 1500 address start = __ pc(); 1501 1502 Register buf = c_rarg0; 1503 Register state = c_rarg1; 1504 Register ofs = c_rarg2; 1505 Register limit = c_rarg3; 1506 1507 const XMMRegister abcd = xmm0; 1508 const XMMRegister e0 = xmm1; 1509 const XMMRegister e1 = xmm2; 1510 const XMMRegister msg0 = xmm3; 1511 1512 const XMMRegister msg1 = xmm4; 1513 const XMMRegister msg2 = xmm5; 1514 const XMMRegister msg3 = xmm6; 1515 const XMMRegister shuf_mask = xmm7; 1516 1517 __ enter(); 1518 1519 __ subptr(rsp, 4 * wordSize); 1520 1521 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1522 buf, state, ofs, limit, rsp, multi_block); 1523 1524 __ addptr(rsp, 4 * wordSize); 1525 1526 __ leave(); 1527 __ ret(0); 1528 1529 return start; 1530 } 1531 1532 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1533 __ align64(); 1534 StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_id; 1535 StubCodeMark mark(this, stub_id); 1536 address start = __ pc(); 1537 1538 __ emit_data64(0x0405060700010203, relocInfo::none); 1539 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1540 1541 if (VM_Version::supports_avx2()) { 1542 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1543 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1544 // _SHUF_00BA 1545 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1546 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1547 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1548 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1549 // _SHUF_DC00 1550 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1551 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1552 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1553 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1554 } 1555 1556 return start; 1557 } 1558 1559 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1560 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1561 __ align32(); 1562 StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_sha512_id; 1563 StubCodeMark mark(this, stub_id); 1564 address start = __ pc(); 1565 1566 if (VM_Version::supports_avx2()) { 1567 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1568 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1569 __ emit_data64(0x1011121314151617, relocInfo::none); 1570 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1571 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1572 __ emit_data64(0x0000000000000000, relocInfo::none); 1573 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1574 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1575 } 1576 1577 return start; 1578 } 1579 1580 // ofs and limit are use for multi-block byte array. 1581 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1582 address StubGenerator::generate_sha256_implCompress(StubGenStubId stub_id) { 1583 bool multi_block; 1584 switch (stub_id) { 1585 case sha256_implCompress_id: 1586 multi_block = false; 1587 break; 1588 case sha256_implCompressMB_id: 1589 multi_block = true; 1590 break; 1591 default: 1592 ShouldNotReachHere(); 1593 } 1594 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1595 __ align(CodeEntryAlignment); 1596 StubCodeMark mark(this, stub_id); 1597 address start = __ pc(); 1598 1599 Register buf = c_rarg0; 1600 Register state = c_rarg1; 1601 Register ofs = c_rarg2; 1602 Register limit = c_rarg3; 1603 1604 const XMMRegister msg = xmm0; 1605 const XMMRegister state0 = xmm1; 1606 const XMMRegister state1 = xmm2; 1607 const XMMRegister msgtmp0 = xmm3; 1608 1609 const XMMRegister msgtmp1 = xmm4; 1610 const XMMRegister msgtmp2 = xmm5; 1611 const XMMRegister msgtmp3 = xmm6; 1612 const XMMRegister msgtmp4 = xmm7; 1613 1614 const XMMRegister shuf_mask = xmm8; 1615 1616 __ enter(); 1617 1618 __ subptr(rsp, 4 * wordSize); 1619 1620 if (VM_Version::supports_sha()) { 1621 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1622 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1623 } else if (VM_Version::supports_avx2()) { 1624 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1625 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1626 } 1627 __ addptr(rsp, 4 * wordSize); 1628 __ vzeroupper(); 1629 __ leave(); 1630 __ ret(0); 1631 1632 return start; 1633 } 1634 1635 address StubGenerator::generate_sha512_implCompress(StubGenStubId stub_id) { 1636 bool multi_block; 1637 switch (stub_id) { 1638 case sha512_implCompress_id: 1639 multi_block = false; 1640 break; 1641 case sha512_implCompressMB_id: 1642 multi_block = true; 1643 break; 1644 default: 1645 ShouldNotReachHere(); 1646 } 1647 assert(VM_Version::supports_avx2(), ""); 1648 assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), ""); 1649 __ align(CodeEntryAlignment); 1650 StubCodeMark mark(this, stub_id); 1651 address start = __ pc(); 1652 1653 Register buf = c_rarg0; 1654 Register state = c_rarg1; 1655 Register ofs = c_rarg2; 1656 Register limit = c_rarg3; 1657 1658 __ enter(); 1659 1660 if (VM_Version::supports_sha512()) { 1661 __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block); 1662 } else { 1663 const XMMRegister msg = xmm0; 1664 const XMMRegister state0 = xmm1; 1665 const XMMRegister state1 = xmm2; 1666 const XMMRegister msgtmp0 = xmm3; 1667 const XMMRegister msgtmp1 = xmm4; 1668 const XMMRegister msgtmp2 = xmm5; 1669 const XMMRegister msgtmp3 = xmm6; 1670 const XMMRegister msgtmp4 = xmm7; 1671 1672 const XMMRegister shuf_mask = xmm8; 1673 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1674 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1675 } 1676 __ vzeroupper(); 1677 __ leave(); 1678 __ ret(0); 1679 1680 return start; 1681 } 1682 1683 address StubGenerator::base64_shuffle_addr() { 1684 __ align64(); 1685 StubGenStubId stub_id = StubGenStubId::shuffle_base64_id; 1686 StubCodeMark mark(this, stub_id); 1687 address start = __ pc(); 1688 1689 assert(((unsigned long long)start & 0x3f) == 0, 1690 "Alignment problem (0x%08llx)", (unsigned long long)start); 1691 __ emit_data64(0x0405030401020001, relocInfo::none); 1692 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1693 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1694 __ emit_data64(0x1617151613141213, relocInfo::none); 1695 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1696 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1697 __ emit_data64(0x2829272825262425, relocInfo::none); 1698 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1699 1700 return start; 1701 } 1702 1703 address StubGenerator::base64_avx2_shuffle_addr() { 1704 __ align32(); 1705 StubGenStubId stub_id = StubGenStubId::avx2_shuffle_base64_id; 1706 StubCodeMark mark(this, stub_id); 1707 address start = __ pc(); 1708 1709 __ emit_data64(0x0809070805060405, relocInfo::none); 1710 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1711 __ emit_data64(0x0405030401020001, relocInfo::none); 1712 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1713 1714 return start; 1715 } 1716 1717 address StubGenerator::base64_avx2_input_mask_addr() { 1718 __ align32(); 1719 StubGenStubId stub_id = StubGenStubId::avx2_input_mask_base64_id; 1720 StubCodeMark mark(this, stub_id); 1721 address start = __ pc(); 1722 1723 __ emit_data64(0x8000000000000000, relocInfo::none); 1724 __ emit_data64(0x8000000080000000, relocInfo::none); 1725 __ emit_data64(0x8000000080000000, relocInfo::none); 1726 __ emit_data64(0x8000000080000000, relocInfo::none); 1727 1728 return start; 1729 } 1730 1731 address StubGenerator::base64_avx2_lut_addr() { 1732 __ align32(); 1733 StubGenStubId stub_id = StubGenStubId::avx2_lut_base64_id; 1734 StubCodeMark mark(this, stub_id); 1735 address start = __ pc(); 1736 1737 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1738 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1739 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1740 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1741 1742 // URL LUT 1743 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1744 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1745 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1746 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1747 1748 return start; 1749 } 1750 1751 address StubGenerator::base64_encoding_table_addr() { 1752 __ align64(); 1753 StubGenStubId stub_id = StubGenStubId::encoding_table_base64_id; 1754 StubCodeMark mark(this, stub_id); 1755 address start = __ pc(); 1756 1757 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1758 __ emit_data64(0x4847464544434241, relocInfo::none); 1759 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1760 __ emit_data64(0x5857565554535251, relocInfo::none); 1761 __ emit_data64(0x6665646362615a59, relocInfo::none); 1762 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1763 __ emit_data64(0x767574737271706f, relocInfo::none); 1764 __ emit_data64(0x333231307a797877, relocInfo::none); 1765 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1766 1767 // URL table 1768 __ emit_data64(0x4847464544434241, relocInfo::none); 1769 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1770 __ emit_data64(0x5857565554535251, relocInfo::none); 1771 __ emit_data64(0x6665646362615a59, relocInfo::none); 1772 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1773 __ emit_data64(0x767574737271706f, relocInfo::none); 1774 __ emit_data64(0x333231307a797877, relocInfo::none); 1775 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1776 1777 return start; 1778 } 1779 1780 // Code for generating Base64 encoding. 1781 // Intrinsic function prototype in Base64.java: 1782 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1783 // boolean isURL) { 1784 address StubGenerator::generate_base64_encodeBlock() 1785 { 1786 __ align(CodeEntryAlignment); 1787 StubGenStubId stub_id = StubGenStubId::base64_encodeBlock_id; 1788 StubCodeMark mark(this, stub_id); 1789 address start = __ pc(); 1790 1791 __ enter(); 1792 1793 // Save callee-saved registers before using them 1794 __ push(r12); 1795 __ push(r13); 1796 __ push(r14); 1797 __ push(r15); 1798 1799 // arguments 1800 const Register source = c_rarg0; // Source Array 1801 const Register start_offset = c_rarg1; // start offset 1802 const Register end_offset = c_rarg2; // end offset 1803 const Register dest = c_rarg3; // destination array 1804 1805 #ifndef _WIN64 1806 const Register dp = c_rarg4; // Position for writing to dest array 1807 const Register isURL = c_rarg5; // Base64 or URL character set 1808 #else 1809 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1810 const Address isURL_mem(rbp, 7 * wordSize); 1811 const Register isURL = r10; // pick the volatile windows register 1812 const Register dp = r12; 1813 __ movl(dp, dp_mem); 1814 __ movl(isURL, isURL_mem); 1815 #endif 1816 1817 const Register length = r14; 1818 const Register encode_table = r13; 1819 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1820 1821 // calculate length from offsets 1822 __ movl(length, end_offset); 1823 __ subl(length, start_offset); 1824 __ jcc(Assembler::lessEqual, L_exit); 1825 1826 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1827 // output bytes. We read 64 input bytes and ignore the last 16, so be 1828 // sure not to read past the end of the input buffer. 1829 if (VM_Version::supports_avx512_vbmi()) { 1830 __ cmpl(length, 64); // Do not overrun input buffer. 1831 __ jcc(Assembler::below, L_not512); 1832 1833 __ shll(isURL, 6); // index into decode table based on isURL 1834 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1835 __ addptr(encode_table, isURL); 1836 __ shrl(isURL, 6); // restore isURL 1837 1838 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1839 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1840 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1841 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1842 1843 __ align32(); 1844 __ BIND(L_vbmiLoop); 1845 1846 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1847 __ subl(length, 48); 1848 1849 // Put the input bytes into the proper lanes for writing, then 1850 // encode them. 1851 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1852 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1853 1854 // Write to destination 1855 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1856 1857 __ addptr(dest, 64); 1858 __ addptr(source, 48); 1859 __ cmpl(length, 64); 1860 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1861 1862 __ vzeroupper(); 1863 } 1864 1865 __ BIND(L_not512); 1866 if (VM_Version::supports_avx2()) { 1867 /* 1868 ** This AVX2 encoder is based off the paper at: 1869 ** https://dl.acm.org/doi/10.1145/3132709 1870 ** 1871 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1872 ** output bytes. 1873 ** 1874 */ 1875 // Lengths under 32 bytes are done with scalar routine 1876 __ cmpl(length, 31); 1877 __ jcc(Assembler::belowEqual, L_process3); 1878 1879 // Set up supporting constant table data 1880 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1881 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1882 __ movl(rax, 0x0fc0fc00); 1883 __ movdl(xmm8, rax); 1884 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1885 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1886 1887 // Multiplication constant for "shifting" right by 6 and 10 1888 // bits 1889 __ movl(rax, 0x04000040); 1890 1891 __ subl(length, 24); 1892 __ movdl(xmm7, rax); 1893 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1894 1895 // For the first load, we mask off reading of the first 4 1896 // bytes into the register. This is so we can get 4 3-byte 1897 // chunks into each lane of the register, avoiding having to 1898 // handle end conditions. We then shuffle these bytes into a 1899 // specific order so that manipulation is easier. 1900 // 1901 // The initial read loads the XMM register like this: 1902 // 1903 // Lower 128-bit lane: 1904 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1905 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1906 // | C2 | D0 | D1 | D2 | 1907 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1908 // 1909 // Upper 128-bit lane: 1910 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1911 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1912 // | XX | XX | XX | XX | 1913 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1914 // 1915 // Where A0 is the first input byte, B0 is the fourth, etc. 1916 // The alphabetical significance denotes the 3 bytes to be 1917 // consumed and encoded into 4 bytes. 1918 // 1919 // We then shuffle the register so each 32-bit word contains 1920 // the sequence: 1921 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1922 // Each of these byte sequences are then manipulated into 4 1923 // 6-bit values ready for encoding. 1924 // 1925 // If we focus on one set of 3-byte chunks, changing the 1926 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1927 // shuffle such that each 24-bit chunk contains: 1928 // 1929 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1930 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1931 // Explain this step. 1932 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1933 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1934 // 1935 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1936 // a5..a0) and shift them using a vector multiplication 1937 // operation (vpmulhuw) which effectively shifts c right by 6 1938 // bits and a right by 10 bits. We similarly mask bits 10-15 1939 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1940 // bits respectively. This is done using vpmullw. We end up 1941 // with 4 6-bit values, thus splitting the 3 input bytes, 1942 // ready for encoding: 1943 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1944 // 1945 // For translation, we recognize that there are 5 distinct 1946 // ranges of legal Base64 characters as below: 1947 // 1948 // +-------------+-------------+------------+ 1949 // | 6-bit value | ASCII range | offset | 1950 // +-------------+-------------+------------+ 1951 // | 0..25 | A..Z | 65 | 1952 // | 26..51 | a..z | 71 | 1953 // | 52..61 | 0..9 | -4 | 1954 // | 62 | + or - | -19 or -17 | 1955 // | 63 | / or _ | -16 or 32 | 1956 // +-------------+-------------+------------+ 1957 // 1958 // We note that vpshufb does a parallel lookup in a 1959 // destination register using the lower 4 bits of bytes from a 1960 // source register. If we use a saturated subtraction and 1961 // subtract 51 from each 6-bit value, bytes from [0,51] 1962 // saturate to 0, and [52,63] map to a range of [1,12]. We 1963 // distinguish the [0,25] and [26,51] ranges by assigning a 1964 // value of 13 for all 6-bit values less than 26. We end up 1965 // with: 1966 // 1967 // +-------------+-------------+------------+ 1968 // | 6-bit value | Reduced | offset | 1969 // +-------------+-------------+------------+ 1970 // | 0..25 | 13 | 65 | 1971 // | 26..51 | 0 | 71 | 1972 // | 52..61 | 0..9 | -4 | 1973 // | 62 | 11 | -19 or -17 | 1974 // | 63 | 12 | -16 or 32 | 1975 // +-------------+-------------+------------+ 1976 // 1977 // We then use a final vpshufb to add the appropriate offset, 1978 // translating the bytes. 1979 // 1980 // Load input bytes - only 28 bytes. Mask the first load to 1981 // not load into the full register. 1982 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1983 1984 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1985 // ordering by: 1986 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1987 // for easy masking 1988 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1989 1990 __ addl(start_offset, 24); 1991 1992 // Load masking register for first and third (and multiples) 1993 // 6-bit values. 1994 __ movl(rax, 0x003f03f0); 1995 __ movdl(xmm6, rax); 1996 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1997 // Multiplication constant for "shifting" left by 4 and 8 bits 1998 __ movl(rax, 0x01000010); 1999 __ movdl(xmm5, rax); 2000 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 2001 2002 // Isolate 6-bit chunks of interest 2003 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 2004 2005 // Load constants for encoding 2006 __ movl(rax, 0x19191919); 2007 __ movdl(xmm3, rax); 2008 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 2009 __ movl(rax, 0x33333333); 2010 __ movdl(xmm4, rax); 2011 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 2012 2013 // Shift output bytes 0 and 2 into proper lanes 2014 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 2015 2016 // Mask and shift output bytes 1 and 3 into proper lanes and 2017 // combine 2018 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 2019 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 2020 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2021 2022 // Find out which are 0..25. This indicates which input 2023 // values fall in the range of 'A'-'Z', which require an 2024 // additional offset (see comments above) 2025 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 2026 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 2027 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 2028 2029 // Load the proper lookup table 2030 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 2031 __ movl(r15, isURL); 2032 __ shll(r15, 5); 2033 __ vmovdqu(xmm2, Address(r11, r15)); 2034 2035 // Shuffle the offsets based on the range calculation done 2036 // above. This allows us to add the correct offset to the 2037 // 6-bit value corresponding to the range documented above. 2038 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 2039 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 2040 2041 // Store the encoded bytes 2042 __ vmovdqu(Address(dest, dp), xmm0); 2043 __ addl(dp, 32); 2044 2045 __ cmpl(length, 31); 2046 __ jcc(Assembler::belowEqual, L_process3); 2047 2048 __ align32(); 2049 __ BIND(L_32byteLoop); 2050 2051 // Get next 32 bytes 2052 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 2053 2054 __ subl(length, 24); 2055 __ addl(start_offset, 24); 2056 2057 // This logic is identical to the above, with only constant 2058 // register loads removed. Shuffle the input, mask off 6-bit 2059 // chunks, shift them into place, then add the offset to 2060 // encode. 2061 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 2062 2063 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 2064 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 2065 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 2066 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 2067 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2068 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 2069 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 2070 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 2071 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 2072 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 2073 2074 // Store the encoded bytes 2075 __ vmovdqu(Address(dest, dp), xmm0); 2076 __ addl(dp, 32); 2077 2078 __ cmpl(length, 31); 2079 __ jcc(Assembler::above, L_32byteLoop); 2080 2081 __ BIND(L_process3); 2082 __ vzeroupper(); 2083 } else { 2084 __ BIND(L_process3); 2085 } 2086 2087 __ cmpl(length, 3); 2088 __ jcc(Assembler::below, L_exit); 2089 2090 // Load the encoding table based on isURL 2091 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 2092 __ movl(r15, isURL); 2093 __ shll(r15, 6); 2094 __ addptr(r11, r15); 2095 2096 __ BIND(L_processdata); 2097 2098 // Load 3 bytes 2099 __ load_unsigned_byte(r15, Address(source, start_offset)); 2100 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2101 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2102 2103 // Build a 32-bit word with bytes 1, 2, 0, 1 2104 __ movl(rax, r10); 2105 __ shll(r10, 24); 2106 __ orl(rax, r10); 2107 2108 __ subl(length, 3); 2109 2110 __ shll(r15, 8); 2111 __ shll(r13, 16); 2112 __ orl(rax, r15); 2113 2114 __ addl(start_offset, 3); 2115 2116 __ orl(rax, r13); 2117 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2118 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2119 // This translated byte is the fourth output byte. 2120 __ shrl(r13, 16); 2121 __ andl(r13, 0x3f); 2122 2123 // The high-order 6 bits of r15 (byte0) is translated. 2124 // The translated byte is the first output byte. 2125 __ shrl(r15, 10); 2126 2127 __ load_unsigned_byte(r13, Address(r11, r13)); 2128 __ load_unsigned_byte(r15, Address(r11, r15)); 2129 2130 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2131 2132 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2133 // This translated byte is the second output byte. 2134 __ shrl(rax, 4); 2135 __ movl(r10, rax); 2136 __ andl(rax, 0x3f); 2137 2138 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2139 2140 __ load_unsigned_byte(rax, Address(r11, rax)); 2141 2142 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2143 // This translated byte is the third output byte. 2144 __ shrl(r10, 18); 2145 __ andl(r10, 0x3f); 2146 2147 __ load_unsigned_byte(r10, Address(r11, r10)); 2148 2149 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2150 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2151 2152 __ addl(dp, 4); 2153 __ cmpl(length, 3); 2154 __ jcc(Assembler::aboveEqual, L_processdata); 2155 2156 __ BIND(L_exit); 2157 __ pop(r15); 2158 __ pop(r14); 2159 __ pop(r13); 2160 __ pop(r12); 2161 __ leave(); 2162 __ ret(0); 2163 2164 return start; 2165 } 2166 2167 // base64 AVX512vbmi tables 2168 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2169 __ align64(); 2170 StubGenStubId stub_id = StubGenStubId::lookup_lo_base64_id; 2171 StubCodeMark mark(this, stub_id); 2172 address start = __ pc(); 2173 2174 assert(((unsigned long long)start & 0x3f) == 0, 2175 "Alignment problem (0x%08llx)", (unsigned long long)start); 2176 __ emit_data64(0x8080808080808080, relocInfo::none); 2177 __ emit_data64(0x8080808080808080, relocInfo::none); 2178 __ emit_data64(0x8080808080808080, relocInfo::none); 2179 __ emit_data64(0x8080808080808080, relocInfo::none); 2180 __ emit_data64(0x8080808080808080, relocInfo::none); 2181 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2182 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2183 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2184 2185 return start; 2186 } 2187 2188 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2189 __ align64(); 2190 StubGenStubId stub_id = StubGenStubId::lookup_hi_base64_id; 2191 StubCodeMark mark(this, stub_id); 2192 address start = __ pc(); 2193 2194 assert(((unsigned long long)start & 0x3f) == 0, 2195 "Alignment problem (0x%08llx)", (unsigned long long)start); 2196 __ emit_data64(0x0605040302010080, relocInfo::none); 2197 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2198 __ emit_data64(0x161514131211100f, relocInfo::none); 2199 __ emit_data64(0x8080808080191817, relocInfo::none); 2200 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2201 __ emit_data64(0x2827262524232221, relocInfo::none); 2202 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2203 __ emit_data64(0x8080808080333231, relocInfo::none); 2204 2205 return start; 2206 } 2207 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2208 __ align64(); 2209 StubGenStubId stub_id = StubGenStubId::lookup_lo_base64url_id; 2210 StubCodeMark mark(this, stub_id); 2211 address start = __ pc(); 2212 2213 assert(((unsigned long long)start & 0x3f) == 0, 2214 "Alignment problem (0x%08llx)", (unsigned long long)start); 2215 __ emit_data64(0x8080808080808080, relocInfo::none); 2216 __ emit_data64(0x8080808080808080, relocInfo::none); 2217 __ emit_data64(0x8080808080808080, relocInfo::none); 2218 __ emit_data64(0x8080808080808080, relocInfo::none); 2219 __ emit_data64(0x8080808080808080, relocInfo::none); 2220 __ emit_data64(0x80803e8080808080, relocInfo::none); 2221 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2222 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2223 2224 return start; 2225 } 2226 2227 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2228 __ align64(); 2229 StubGenStubId stub_id = StubGenStubId::lookup_hi_base64url_id; 2230 StubCodeMark mark(this, stub_id); 2231 address start = __ pc(); 2232 2233 assert(((unsigned long long)start & 0x3f) == 0, 2234 "Alignment problem (0x%08llx)", (unsigned long long)start); 2235 __ emit_data64(0x0605040302010080, relocInfo::none); 2236 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2237 __ emit_data64(0x161514131211100f, relocInfo::none); 2238 __ emit_data64(0x3f80808080191817, relocInfo::none); 2239 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2240 __ emit_data64(0x2827262524232221, relocInfo::none); 2241 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2242 __ emit_data64(0x8080808080333231, relocInfo::none); 2243 2244 return start; 2245 } 2246 2247 address StubGenerator::base64_vbmi_pack_vec_addr() { 2248 __ align64(); 2249 StubGenStubId stub_id = StubGenStubId::pack_vec_base64_id; 2250 StubCodeMark mark(this, stub_id); 2251 address start = __ pc(); 2252 2253 assert(((unsigned long long)start & 0x3f) == 0, 2254 "Alignment problem (0x%08llx)", (unsigned long long)start); 2255 __ emit_data64(0x090a040506000102, relocInfo::none); 2256 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2257 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2258 __ emit_data64(0x292a242526202122, relocInfo::none); 2259 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2260 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2261 __ emit_data64(0x0000000000000000, relocInfo::none); 2262 __ emit_data64(0x0000000000000000, relocInfo::none); 2263 2264 return start; 2265 } 2266 2267 address StubGenerator::base64_vbmi_join_0_1_addr() { 2268 __ align64(); 2269 StubGenStubId stub_id = StubGenStubId::join_0_1_base64_id; 2270 StubCodeMark mark(this, stub_id); 2271 address start = __ pc(); 2272 2273 assert(((unsigned long long)start & 0x3f) == 0, 2274 "Alignment problem (0x%08llx)", (unsigned long long)start); 2275 __ emit_data64(0x090a040506000102, relocInfo::none); 2276 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2277 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2278 __ emit_data64(0x292a242526202122, relocInfo::none); 2279 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2280 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2281 __ emit_data64(0x494a444546404142, relocInfo::none); 2282 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2283 2284 return start; 2285 } 2286 2287 address StubGenerator::base64_vbmi_join_1_2_addr() { 2288 __ align64(); 2289 StubGenStubId stub_id = StubGenStubId::join_1_2_base64_id; 2290 StubCodeMark mark(this, stub_id); 2291 address start = __ pc(); 2292 2293 assert(((unsigned long long)start & 0x3f) == 0, 2294 "Alignment problem (0x%08llx)", (unsigned long long)start); 2295 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2296 __ emit_data64(0x292a242526202122, relocInfo::none); 2297 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2298 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2299 __ emit_data64(0x494a444546404142, relocInfo::none); 2300 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2301 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2302 __ emit_data64(0x696a646566606162, relocInfo::none); 2303 2304 return start; 2305 } 2306 2307 address StubGenerator::base64_vbmi_join_2_3_addr() { 2308 __ align64(); 2309 StubGenStubId stub_id = StubGenStubId::join_2_3_base64_id; 2310 StubCodeMark mark(this, stub_id); 2311 address start = __ pc(); 2312 2313 assert(((unsigned long long)start & 0x3f) == 0, 2314 "Alignment problem (0x%08llx)", (unsigned long long)start); 2315 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2316 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2317 __ emit_data64(0x494a444546404142, relocInfo::none); 2318 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2319 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2320 __ emit_data64(0x696a646566606162, relocInfo::none); 2321 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2322 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2323 2324 return start; 2325 } 2326 2327 address StubGenerator::base64_AVX2_decode_tables_addr() { 2328 __ align64(); 2329 StubGenStubId stub_id = StubGenStubId::avx2_decode_tables_base64_id; 2330 StubCodeMark mark(this, stub_id); 2331 address start = __ pc(); 2332 2333 assert(((unsigned long long)start & 0x3f) == 0, 2334 "Alignment problem (0x%08llx)", (unsigned long long)start); 2335 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2336 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2337 2338 __ emit_data(0xffffffff, relocInfo::none, 0); 2339 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2340 2341 // Permute table 2342 __ emit_data64(0x0000000100000000, relocInfo::none); 2343 __ emit_data64(0x0000000400000002, relocInfo::none); 2344 __ emit_data64(0x0000000600000005, relocInfo::none); 2345 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2346 2347 // Shuffle table 2348 __ emit_data64(0x090a040506000102, relocInfo::none); 2349 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2350 __ emit_data64(0x090a040506000102, relocInfo::none); 2351 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2352 2353 // merge table 2354 __ emit_data(0x01400140, relocInfo::none, 0); 2355 2356 // merge multiplier 2357 __ emit_data(0x00011000, relocInfo::none, 0); 2358 2359 return start; 2360 } 2361 2362 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2363 __ align64(); 2364 StubGenStubId stub_id = StubGenStubId::avx2_decode_lut_tables_base64_id; 2365 StubCodeMark mark(this, stub_id); 2366 address start = __ pc(); 2367 2368 assert(((unsigned long long)start & 0x3f) == 0, 2369 "Alignment problem (0x%08llx)", (unsigned long long)start); 2370 // lut_lo 2371 __ emit_data64(0x1111111111111115, relocInfo::none); 2372 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2373 __ emit_data64(0x1111111111111115, relocInfo::none); 2374 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2375 2376 // lut_roll 2377 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2378 __ emit_data64(0x0000000000000000, relocInfo::none); 2379 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2380 __ emit_data64(0x0000000000000000, relocInfo::none); 2381 2382 // lut_lo URL 2383 __ emit_data64(0x1111111111111115, relocInfo::none); 2384 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2385 __ emit_data64(0x1111111111111115, relocInfo::none); 2386 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2387 2388 // lut_roll URL 2389 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2390 __ emit_data64(0x0000000000000000, relocInfo::none); 2391 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2392 __ emit_data64(0x0000000000000000, relocInfo::none); 2393 2394 // lut_hi 2395 __ emit_data64(0x0804080402011010, relocInfo::none); 2396 __ emit_data64(0x1010101010101010, relocInfo::none); 2397 __ emit_data64(0x0804080402011010, relocInfo::none); 2398 __ emit_data64(0x1010101010101010, relocInfo::none); 2399 2400 return start; 2401 } 2402 2403 address StubGenerator::base64_decoding_table_addr() { 2404 StubGenStubId stub_id = StubGenStubId::decoding_table_base64_id; 2405 StubCodeMark mark(this, stub_id); 2406 address start = __ pc(); 2407 2408 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2409 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2410 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2411 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2412 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2413 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2414 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2415 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2416 __ emit_data64(0x06050403020100ff, relocInfo::none); 2417 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2418 __ emit_data64(0x161514131211100f, relocInfo::none); 2419 __ emit_data64(0xffffffffff191817, relocInfo::none); 2420 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2421 __ emit_data64(0x2827262524232221, relocInfo::none); 2422 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2423 __ emit_data64(0xffffffffff333231, relocInfo::none); 2424 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2425 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2426 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2427 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2428 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2429 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2430 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2431 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2432 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2433 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2434 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2435 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2436 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2437 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2438 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2439 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2440 2441 // URL table 2442 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2443 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2444 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2445 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2446 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2447 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2448 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2449 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2450 __ emit_data64(0x06050403020100ff, relocInfo::none); 2451 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2452 __ emit_data64(0x161514131211100f, relocInfo::none); 2453 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2454 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2455 __ emit_data64(0x2827262524232221, relocInfo::none); 2456 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2457 __ emit_data64(0xffffffffff333231, relocInfo::none); 2458 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2459 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2460 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2461 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2462 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2463 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2464 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2465 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2466 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2467 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2468 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2469 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2470 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2471 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2472 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2473 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2474 2475 return start; 2476 } 2477 2478 2479 // Code for generating Base64 decoding. 2480 // 2481 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2482 // 2483 // Intrinsic function prototype in Base64.java: 2484 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2485 address StubGenerator::generate_base64_decodeBlock() { 2486 __ align(CodeEntryAlignment); 2487 StubGenStubId stub_id = StubGenStubId::base64_decodeBlock_id; 2488 StubCodeMark mark(this, stub_id); 2489 address start = __ pc(); 2490 2491 __ enter(); 2492 2493 // Save callee-saved registers before using them 2494 __ push(r12); 2495 __ push(r13); 2496 __ push(r14); 2497 __ push(r15); 2498 __ push(rbx); 2499 2500 // arguments 2501 const Register source = c_rarg0; // Source Array 2502 const Register start_offset = c_rarg1; // start offset 2503 const Register end_offset = c_rarg2; // end offset 2504 const Register dest = c_rarg3; // destination array 2505 const Register isMIME = rbx; 2506 2507 #ifndef _WIN64 2508 const Register dp = c_rarg4; // Position for writing to dest array 2509 const Register isURL = c_rarg5;// Base64 or URL character set 2510 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2511 #else 2512 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2513 const Address isURL_mem(rbp, 7 * wordSize); 2514 const Register isURL = r10; // pick the volatile windows register 2515 const Register dp = r12; 2516 __ movl(dp, dp_mem); 2517 __ movl(isURL, isURL_mem); 2518 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2519 #endif 2520 2521 const XMMRegister lookup_lo = xmm5; 2522 const XMMRegister lookup_hi = xmm6; 2523 const XMMRegister errorvec = xmm7; 2524 const XMMRegister pack16_op = xmm9; 2525 const XMMRegister pack32_op = xmm8; 2526 const XMMRegister input0 = xmm3; 2527 const XMMRegister input1 = xmm20; 2528 const XMMRegister input2 = xmm21; 2529 const XMMRegister input3 = xmm19; 2530 const XMMRegister join01 = xmm12; 2531 const XMMRegister join12 = xmm11; 2532 const XMMRegister join23 = xmm10; 2533 const XMMRegister translated0 = xmm2; 2534 const XMMRegister translated1 = xmm1; 2535 const XMMRegister translated2 = xmm0; 2536 const XMMRegister translated3 = xmm4; 2537 2538 const XMMRegister merged0 = xmm2; 2539 const XMMRegister merged1 = xmm1; 2540 const XMMRegister merged2 = xmm0; 2541 const XMMRegister merged3 = xmm4; 2542 const XMMRegister merge_ab_bc0 = xmm2; 2543 const XMMRegister merge_ab_bc1 = xmm1; 2544 const XMMRegister merge_ab_bc2 = xmm0; 2545 const XMMRegister merge_ab_bc3 = xmm4; 2546 2547 const XMMRegister pack24bits = xmm4; 2548 2549 const Register length = r14; 2550 const Register output_size = r13; 2551 const Register output_mask = r15; 2552 const KRegister input_mask = k1; 2553 2554 const XMMRegister input_initial_valid_b64 = xmm0; 2555 const XMMRegister tmp = xmm10; 2556 const XMMRegister mask = xmm0; 2557 const XMMRegister invalid_b64 = xmm1; 2558 2559 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2560 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2561 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2562 2563 // calculate length from offsets 2564 __ movl(length, end_offset); 2565 __ subl(length, start_offset); 2566 __ push(dest); // Save for return value calc 2567 2568 // If AVX512 VBMI not supported, just compile non-AVX code 2569 if(VM_Version::supports_avx512_vbmi() && 2570 VM_Version::supports_avx512bw()) { 2571 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2572 __ jcc(Assembler::lessEqual, L_lastChunk); 2573 2574 __ cmpl(isMIME, 0); 2575 __ jcc(Assembler::notEqual, L_lastChunk); 2576 2577 // Load lookup tables based on isURL 2578 __ cmpl(isURL, 0); 2579 __ jcc(Assembler::notZero, L_loadURL); 2580 2581 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2582 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2583 2584 __ BIND(L_continue); 2585 2586 __ movl(r15, 0x01400140); 2587 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2588 2589 __ movl(r15, 0x00011000); 2590 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2591 2592 __ cmpl(length, 0xff); 2593 __ jcc(Assembler::lessEqual, L_process64); 2594 2595 // load masks required for decoding data 2596 __ BIND(L_processdata); 2597 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2598 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2599 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2600 2601 __ align32(); 2602 __ BIND(L_process256); 2603 // Grab input data 2604 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2605 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2606 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2607 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2608 2609 // Copy the low part of the lookup table into the destination of the permutation 2610 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2611 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2612 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2613 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2614 2615 // Translate the base64 input into "decoded" bytes 2616 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2617 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2618 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2619 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2620 2621 // OR all of the translations together to check for errors (high-order bit of byte set) 2622 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2623 2624 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2625 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2626 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2627 2628 // Check if there was an error - if so, try 64-byte chunks 2629 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2630 __ kortestql(k3, k3); 2631 __ jcc(Assembler::notZero, L_process64); 2632 2633 // The merging and shuffling happens here 2634 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2635 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2636 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2637 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2638 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2639 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2640 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2641 2642 // Now do the same with packed 16-bit values. 2643 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2644 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2645 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2646 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2647 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2648 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2649 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2650 2651 // The join vectors specify which byte from which vector goes into the outputs 2652 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2653 // final positions in the register for storing (256 bytes in, 192 bytes out) 2654 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2655 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2656 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2657 2658 // Store result 2659 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2660 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2661 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2662 2663 __ addptr(source, 0x100); 2664 __ addptr(dest, 0xc0); 2665 __ subl(length, 0x100); 2666 __ cmpl(length, 64 * 4); 2667 __ jcc(Assembler::greaterEqual, L_process256); 2668 2669 // At this point, we've decoded 64 * 4 * n bytes. 2670 // The remaining length will be <= 64 * 4 - 1. 2671 // UNLESS there was an error decoding the first 256-byte chunk. In this 2672 // case, the length will be arbitrarily long. 2673 // 2674 // Note that this will be the path for MIME-encoded strings. 2675 2676 __ BIND(L_process64); 2677 2678 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2679 2680 __ cmpl(length, 63); 2681 __ jcc(Assembler::lessEqual, L_finalBit); 2682 2683 __ mov64(rax, 0x0000ffffffffffff); 2684 __ kmovql(k2, rax); 2685 2686 __ align32(); 2687 __ BIND(L_process64Loop); 2688 2689 // Handle first 64-byte block 2690 2691 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2692 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2693 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2694 2695 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2696 2697 // Check for error and bomb out before updating dest 2698 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2699 __ kortestql(k3, k3); 2700 __ jcc(Assembler::notZero, L_exit); 2701 2702 // Pack output register, selecting correct byte ordering 2703 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2704 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2705 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2706 2707 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2708 2709 __ subl(length, 64); 2710 __ addptr(source, 64); 2711 __ addptr(dest, 48); 2712 2713 __ cmpl(length, 64); 2714 __ jcc(Assembler::greaterEqual, L_process64Loop); 2715 2716 __ cmpl(length, 0); 2717 __ jcc(Assembler::lessEqual, L_exit); 2718 2719 __ BIND(L_finalBit); 2720 // Now have 1 to 63 bytes left to decode 2721 2722 // I was going to let Java take care of the final fragment 2723 // however it will repeatedly call this routine for every 4 bytes 2724 // of input data, so handle the rest here. 2725 __ movq(rax, -1); 2726 __ bzhiq(rax, rax, length); // Input mask in rax 2727 2728 __ movl(output_size, length); 2729 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2730 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2731 // output_size in r13 2732 2733 // Strip pad characters, if any, and adjust length and mask 2734 __ addq(length, start_offset); 2735 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2736 __ jcc(Assembler::equal, L_padding); 2737 2738 __ BIND(L_donePadding); 2739 __ subq(length, start_offset); 2740 2741 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2742 __ kmovql(input_mask, rax); 2743 __ movq(output_mask, -1); 2744 __ bzhiq(output_mask, output_mask, output_size); 2745 2746 // Load initial input with all valid base64 characters. Will be used 2747 // in merging source bytes to avoid masking when determining if an error occurred. 2748 __ movl(rax, 0x61616161); 2749 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2750 2751 // A register containing all invalid base64 decoded values 2752 __ movl(rax, 0x80808080); 2753 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2754 2755 // input_mask is in k1 2756 // output_size is in r13 2757 // output_mask is in r15 2758 // zmm0 - free 2759 // zmm1 - 0x00011000 2760 // zmm2 - 0x01400140 2761 // zmm3 - errorvec 2762 // zmm4 - pack vector 2763 // zmm5 - lookup_lo 2764 // zmm6 - lookup_hi 2765 // zmm7 - errorvec 2766 // zmm8 - 0x61616161 2767 // zmm9 - 0x80808080 2768 2769 // Load only the bytes from source, merging into our "fully-valid" register 2770 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2771 2772 // Decode all bytes within our merged input 2773 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2774 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2775 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2776 2777 // Check for error. Compare (decoded | initial) to all invalid. 2778 // If any bytes have their high-order bit set, then we have an error. 2779 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2780 __ kortestql(k2, k2); 2781 2782 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2783 __ jcc(Assembler::notZero, L_bruteForce); 2784 2785 // Shuffle output bytes 2786 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2787 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2788 2789 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2790 __ kmovql(k1, output_mask); 2791 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2792 2793 __ addptr(dest, output_size); 2794 2795 __ BIND(L_exit); 2796 __ vzeroupper(); 2797 __ pop(rax); // Get original dest value 2798 __ subptr(dest, rax); // Number of bytes converted 2799 __ movptr(rax, dest); 2800 __ pop(rbx); 2801 __ pop(r15); 2802 __ pop(r14); 2803 __ pop(r13); 2804 __ pop(r12); 2805 __ leave(); 2806 __ ret(0); 2807 2808 __ BIND(L_loadURL); 2809 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2810 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2811 __ jmp(L_continue); 2812 2813 __ BIND(L_padding); 2814 __ decrementq(output_size, 1); 2815 __ shrq(rax, 1); 2816 2817 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2818 __ jcc(Assembler::notEqual, L_donePadding); 2819 2820 __ decrementq(output_size, 1); 2821 __ shrq(rax, 1); 2822 __ jmp(L_donePadding); 2823 2824 __ align32(); 2825 __ BIND(L_bruteForce); 2826 } // End of if(avx512_vbmi) 2827 2828 if (VM_Version::supports_avx2()) { 2829 Label L_tailProc, L_topLoop, L_enterLoop; 2830 2831 __ cmpl(isMIME, 0); 2832 __ jcc(Assembler::notEqual, L_lastChunk); 2833 2834 // Check for buffer too small (for algorithm) 2835 __ subl(length, 0x2c); 2836 __ jcc(Assembler::less, L_tailProc); 2837 2838 __ shll(isURL, 2); 2839 2840 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2841 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2842 2843 // Set up constants 2844 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2845 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2846 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2847 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2848 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2849 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2850 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2851 2852 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2853 __ shll(isURL, 4); 2854 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2855 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2856 __ shrl(isURL, 6); // restore isURL 2857 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2858 __ jmp(L_enterLoop); 2859 2860 __ align32(); 2861 __ bind(L_topLoop); 2862 // Add in the offset value (roll) to get 6-bit out values 2863 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2864 // Merge and permute the output bits into appropriate output byte lanes 2865 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2866 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2867 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2868 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2869 // Store the output bytes 2870 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2871 __ addptr(source, 0x20); 2872 __ addptr(dest, 0x18); 2873 __ subl(length, 0x20); 2874 __ jcc(Assembler::less, L_tailProc); 2875 2876 __ bind(L_enterLoop); 2877 2878 // Load in encoded string (32 bytes) 2879 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2880 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2881 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2882 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2883 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2884 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2885 // Check for special-case (0x2F or 0x5F (URL)) 2886 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2887 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2888 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2889 // Get the bit value of the high nibble 2890 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2891 // Make sure 2F / 5F shows as valid 2892 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2893 // Make adjustment for roll index. For non-URL, this is a no-op, 2894 // for URL, this adjusts by -4. This is to properly index the 2895 // roll value for 2F / 5F. 2896 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2897 // If the and of the two is non-zero, we have an invalid input character 2898 __ vptest(xmm3, xmm5); 2899 // Extract the "roll" value - value to add to the input to get 6-bit out value 2900 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2901 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2902 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2903 2904 __ bind(L_tailProc); 2905 2906 __ addl(length, 0x2c); 2907 2908 __ vzeroupper(); 2909 } 2910 2911 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2912 2913 // Register state (Linux): 2914 // r12-15 - saved on stack 2915 // rdi - src 2916 // rsi - sp 2917 // rdx - sl 2918 // rcx - dst 2919 // r8 - dp 2920 // r9 - isURL 2921 2922 // Register state (Windows): 2923 // r12-15 - saved on stack 2924 // rcx - src 2925 // rdx - sp 2926 // r8 - sl 2927 // r9 - dst 2928 // r12 - dp 2929 // r10 - isURL 2930 2931 // Registers (common): 2932 // length (r14) - bytes in src 2933 2934 const Register decode_table = r11; 2935 const Register out_byte_count = rbx; 2936 const Register byte1 = r13; 2937 const Register byte2 = r15; 2938 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2939 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2940 2941 __ bind(L_lastChunk); 2942 2943 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2944 __ cmpl(length, 0); 2945 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2946 2947 __ shll(isURL, 8); // index into decode table based on isURL 2948 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2949 __ addptr(decode_table, isURL); 2950 2951 __ jmp(L_bottomLoop); 2952 2953 __ align32(); 2954 __ BIND(L_forceLoop); 2955 __ shll(byte1, 18); 2956 __ shll(byte2, 12); 2957 __ shll(byte3, 6); 2958 __ orl(byte1, byte2); 2959 __ orl(byte1, byte3); 2960 __ orl(byte1, byte4); 2961 2962 __ addptr(source, 4); 2963 2964 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2965 __ shrl(byte1, 8); 2966 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2967 __ shrl(byte1, 8); 2968 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2969 2970 __ addptr(dest, 3); 2971 __ decrementl(length, 1); 2972 __ jcc(Assembler::zero, L_exit_no_vzero); 2973 2974 __ BIND(L_bottomLoop); 2975 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2976 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2977 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2978 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2979 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2980 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2981 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2982 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2983 2984 __ mov(rax, byte1); 2985 __ orl(rax, byte2); 2986 __ orl(rax, byte3); 2987 __ orl(rax, byte4); 2988 __ jcc(Assembler::positive, L_forceLoop); 2989 2990 __ BIND(L_exit_no_vzero); 2991 __ pop(rax); // Get original dest value 2992 __ subptr(dest, rax); // Number of bytes converted 2993 __ movptr(rax, dest); 2994 __ pop(rbx); 2995 __ pop(r15); 2996 __ pop(r14); 2997 __ pop(r13); 2998 __ pop(r12); 2999 __ leave(); 3000 __ ret(0); 3001 3002 return start; 3003 } 3004 3005 3006 /** 3007 * Arguments: 3008 * 3009 * Inputs: 3010 * c_rarg0 - int crc 3011 * c_rarg1 - byte* buf 3012 * c_rarg2 - int length 3013 * 3014 * Output: 3015 * rax - int crc result 3016 */ 3017 address StubGenerator::generate_updateBytesCRC32() { 3018 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 3019 3020 __ align(CodeEntryAlignment); 3021 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32_id; 3022 StubCodeMark mark(this, stub_id); 3023 3024 address start = __ pc(); 3025 3026 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3027 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3028 // rscratch1: r10 3029 const Register crc = c_rarg0; // crc 3030 const Register buf = c_rarg1; // source java byte array address 3031 const Register len = c_rarg2; // length 3032 const Register table = c_rarg3; // crc_table address (reuse register) 3033 const Register tmp1 = r11; 3034 const Register tmp2 = r10; 3035 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 3036 3037 BLOCK_COMMENT("Entry:"); 3038 __ enter(); // required for proper stackwalking of RuntimeStub frame 3039 3040 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3041 VM_Version::supports_avx512bw() && 3042 VM_Version::supports_avx512vl()) { 3043 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 3044 // However, the constant table for CRC32-C assumes the original crc value. Account for this 3045 // difference before calling and after returning. 3046 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 3047 __ notl(crc); 3048 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 3049 __ notl(crc); 3050 } else { 3051 __ kernel_crc32(crc, buf, len, table, tmp1); 3052 } 3053 3054 __ movl(rax, crc); 3055 __ vzeroupper(); 3056 __ leave(); // required for proper stackwalking of RuntimeStub frame 3057 __ ret(0); 3058 3059 return start; 3060 } 3061 3062 /** 3063 * Arguments: 3064 * 3065 * Inputs: 3066 * c_rarg0 - int crc 3067 * c_rarg1 - byte* buf 3068 * c_rarg2 - long length 3069 * c_rarg3 - table_start - optional (present only when doing a library_call, 3070 * not used by x86 algorithm) 3071 * 3072 * Output: 3073 * rax - int crc result 3074 */ 3075 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 3076 assert(UseCRC32CIntrinsics, "need SSE4_2"); 3077 __ align(CodeEntryAlignment); 3078 StubGenStubId stub_id = StubGenStubId::updateBytesCRC32C_id; 3079 StubCodeMark mark(this, stub_id); 3080 address start = __ pc(); 3081 3082 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 3083 //Windows RCX RDX R8 R9 none none XMM0..XMM3 3084 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 3085 const Register crc = c_rarg0; // crc 3086 const Register buf = c_rarg1; // source java byte array address 3087 const Register len = c_rarg2; // length 3088 const Register a = rax; 3089 const Register j = r9; 3090 const Register k = r10; 3091 const Register l = r11; 3092 #ifdef _WIN64 3093 const Register y = rdi; 3094 const Register z = rsi; 3095 #else 3096 const Register y = rcx; 3097 const Register z = r8; 3098 #endif 3099 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 3100 3101 BLOCK_COMMENT("Entry:"); 3102 __ enter(); // required for proper stackwalking of RuntimeStub frame 3103 Label L_continue; 3104 3105 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 3106 VM_Version::supports_avx512bw() && 3107 VM_Version::supports_avx512vl()) { 3108 Label L_doSmall; 3109 3110 __ cmpl(len, 384); 3111 __ jcc(Assembler::lessEqual, L_doSmall); 3112 3113 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3114 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3115 3116 __ jmp(L_continue); 3117 3118 __ bind(L_doSmall); 3119 } 3120 #ifdef _WIN64 3121 __ push(y); 3122 __ push(z); 3123 #endif 3124 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3125 a, j, k, 3126 l, y, z, 3127 c_farg0, c_farg1, c_farg2, 3128 is_pclmulqdq_supported); 3129 #ifdef _WIN64 3130 __ pop(z); 3131 __ pop(y); 3132 #endif 3133 3134 __ bind(L_continue); 3135 __ movl(rax, crc); 3136 __ vzeroupper(); 3137 __ leave(); // required for proper stackwalking of RuntimeStub frame 3138 __ ret(0); 3139 3140 return start; 3141 } 3142 3143 3144 /** 3145 * Arguments: 3146 * 3147 * Input: 3148 * c_rarg0 - x address 3149 * c_rarg1 - x length 3150 * c_rarg2 - y address 3151 * c_rarg3 - y length 3152 * not Win64 3153 * c_rarg4 - z address 3154 * Win64 3155 * rsp+40 - z address 3156 */ 3157 address StubGenerator::generate_multiplyToLen() { 3158 __ align(CodeEntryAlignment); 3159 StubGenStubId stub_id = StubGenStubId::multiplyToLen_id; 3160 StubCodeMark mark(this, stub_id); 3161 address start = __ pc(); 3162 3163 if (SCCache::load_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start)) { 3164 return start; 3165 } 3166 3167 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3168 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3169 const Register x = rdi; 3170 const Register xlen = rax; 3171 const Register y = rsi; 3172 const Register ylen = rcx; 3173 const Register z = r8; 3174 3175 // Next registers will be saved on stack in multiply_to_len(). 3176 const Register tmp0 = r11; 3177 const Register tmp1 = r12; 3178 const Register tmp2 = r13; 3179 const Register tmp3 = r14; 3180 const Register tmp4 = r15; 3181 const Register tmp5 = rbx; 3182 3183 BLOCK_COMMENT("Entry:"); 3184 __ enter(); // required for proper stackwalking of RuntimeStub frame 3185 3186 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3187 // ylen => rcx, z => r8 3188 // r9 and r10 may be used to save non-volatile registers 3189 #ifdef _WIN64 3190 // last argument (#4) is on stack on Win64 3191 __ movptr(z, Address(rsp, 6 * wordSize)); 3192 #endif 3193 3194 __ movptr(xlen, rsi); 3195 __ movptr(y, rdx); 3196 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3197 3198 restore_arg_regs(); 3199 3200 __ leave(); // required for proper stackwalking of RuntimeStub frame 3201 __ ret(0); 3202 3203 SCCache::store_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start); 3204 return start; 3205 } 3206 3207 /** 3208 * Arguments: 3209 * 3210 * Input: 3211 * c_rarg0 - obja address 3212 * c_rarg1 - objb address 3213 * c_rarg3 - length length 3214 * c_rarg4 - scale log2_array_indxscale 3215 * 3216 * Output: 3217 * rax - int >= mismatched index, < 0 bitwise complement of tail 3218 */ 3219 address StubGenerator::generate_vectorizedMismatch() { 3220 __ align(CodeEntryAlignment); 3221 StubGenStubId stub_id = StubGenStubId::vectorizedMismatch_id; 3222 StubCodeMark mark(this, stub_id); 3223 address start = __ pc(); 3224 3225 BLOCK_COMMENT("Entry:"); 3226 __ enter(); 3227 3228 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3229 const Register scale = c_rarg0; //rcx, will exchange with r9 3230 const Register objb = c_rarg1; //rdx 3231 const Register length = c_rarg2; //r8 3232 const Register obja = c_rarg3; //r9 3233 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3234 3235 const Register tmp1 = r10; 3236 const Register tmp2 = r11; 3237 #endif 3238 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3239 const Register obja = c_rarg0; //U:rdi 3240 const Register objb = c_rarg1; //U:rsi 3241 const Register length = c_rarg2; //U:rdx 3242 const Register scale = c_rarg3; //U:rcx 3243 const Register tmp1 = r8; 3244 const Register tmp2 = r9; 3245 #endif 3246 const Register result = rax; //return value 3247 const XMMRegister vec0 = xmm0; 3248 const XMMRegister vec1 = xmm1; 3249 const XMMRegister vec2 = xmm2; 3250 3251 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3252 3253 __ vzeroupper(); 3254 __ leave(); 3255 __ ret(0); 3256 3257 return start; 3258 } 3259 3260 /** 3261 * Arguments: 3262 * 3263 // Input: 3264 // c_rarg0 - x address 3265 // c_rarg1 - x length 3266 // c_rarg2 - z address 3267 // c_rarg3 - z length 3268 * 3269 */ 3270 address StubGenerator::generate_squareToLen() { 3271 3272 __ align(CodeEntryAlignment); 3273 StubGenStubId stub_id = StubGenStubId::squareToLen_id; 3274 StubCodeMark mark(this, stub_id); 3275 address start = __ pc(); 3276 3277 if (SCCache::load_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start)) { 3278 return start; 3279 } 3280 3281 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3282 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3283 const Register x = rdi; 3284 const Register len = rsi; 3285 const Register z = r8; 3286 const Register zlen = rcx; 3287 3288 const Register tmp1 = r12; 3289 const Register tmp2 = r13; 3290 const Register tmp3 = r14; 3291 const Register tmp4 = r15; 3292 const Register tmp5 = rbx; 3293 3294 BLOCK_COMMENT("Entry:"); 3295 __ enter(); // required for proper stackwalking of RuntimeStub frame 3296 3297 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3298 // zlen => rcx 3299 // r9 and r10 may be used to save non-volatile registers 3300 __ movptr(r8, rdx); 3301 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3302 3303 restore_arg_regs(); 3304 3305 __ leave(); // required for proper stackwalking of RuntimeStub frame 3306 __ ret(0); 3307 3308 SCCache::store_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start); 3309 return start; 3310 } 3311 3312 address StubGenerator::generate_method_entry_barrier() { 3313 __ align(CodeEntryAlignment); 3314 StubGenStubId stub_id = StubGenStubId::method_entry_barrier_id; 3315 StubCodeMark mark(this, stub_id); 3316 address start = __ pc(); 3317 3318 Label deoptimize_label; 3319 3320 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3321 3322 BLOCK_COMMENT("Entry:"); 3323 __ enter(); // save rbp 3324 3325 // save c_rarg0, because we want to use that value. 3326 // We could do without it but then we depend on the number of slots used by pusha 3327 __ push(c_rarg0); 3328 3329 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3330 3331 __ pusha(); 3332 3333 // The method may have floats as arguments, and we must spill them before calling 3334 // the VM runtime. 3335 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3336 const int xmm_size = wordSize * 2; 3337 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3338 __ subptr(rsp, xmm_spill_size); 3339 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3340 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3341 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3342 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3343 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3344 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3345 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3346 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3347 3348 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3349 3350 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3351 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3352 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3353 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3354 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3355 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3356 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3357 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3358 __ addptr(rsp, xmm_spill_size); 3359 3360 __ cmpl(rax, 1); // 1 means deoptimize 3361 __ jcc(Assembler::equal, deoptimize_label); 3362 3363 __ popa(); 3364 __ pop(c_rarg0); 3365 3366 __ leave(); 3367 3368 __ addptr(rsp, 1 * wordSize); // cookie 3369 __ ret(0); 3370 3371 3372 __ BIND(deoptimize_label); 3373 3374 __ popa(); 3375 __ pop(c_rarg0); 3376 3377 __ leave(); 3378 3379 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3380 // here while still having a correct stack is valuable 3381 __ testptr(rsp, Address(rsp, 0)); 3382 3383 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3384 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3385 3386 return start; 3387 } 3388 3389 /** 3390 * Arguments: 3391 * 3392 * Input: 3393 * c_rarg0 - out address 3394 * c_rarg1 - in address 3395 * c_rarg2 - offset 3396 * c_rarg3 - len 3397 * not Win64 3398 * c_rarg4 - k 3399 * Win64 3400 * rsp+40 - k 3401 */ 3402 address StubGenerator::generate_mulAdd() { 3403 __ align(CodeEntryAlignment); 3404 StubGenStubId stub_id = StubGenStubId::mulAdd_id; 3405 StubCodeMark mark(this, stub_id); 3406 address start = __ pc(); 3407 3408 if (SCCache::load_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start)) { 3409 return start; 3410 } 3411 3412 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3413 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3414 const Register out = rdi; 3415 const Register in = rsi; 3416 const Register offset = r11; 3417 const Register len = rcx; 3418 const Register k = r8; 3419 3420 // Next registers will be saved on stack in mul_add(). 3421 const Register tmp1 = r12; 3422 const Register tmp2 = r13; 3423 const Register tmp3 = r14; 3424 const Register tmp4 = r15; 3425 const Register tmp5 = rbx; 3426 3427 BLOCK_COMMENT("Entry:"); 3428 __ enter(); // required for proper stackwalking of RuntimeStub frame 3429 3430 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3431 // len => rcx, k => r8 3432 // r9 and r10 may be used to save non-volatile registers 3433 #ifdef _WIN64 3434 // last argument is on stack on Win64 3435 __ movl(k, Address(rsp, 6 * wordSize)); 3436 #endif 3437 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3438 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3439 3440 restore_arg_regs(); 3441 3442 __ leave(); // required for proper stackwalking of RuntimeStub frame 3443 __ ret(0); 3444 3445 SCCache::store_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start); 3446 return start; 3447 } 3448 3449 address StubGenerator::generate_bigIntegerRightShift() { 3450 __ align(CodeEntryAlignment); 3451 StubGenStubId stub_id = StubGenStubId::bigIntegerRightShiftWorker_id; 3452 StubCodeMark mark(this, stub_id); 3453 address start = __ pc(); 3454 3455 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3456 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3457 const Register newArr = rdi; 3458 const Register oldArr = rsi; 3459 const Register newIdx = rdx; 3460 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3461 const Register totalNumIter = r8; 3462 3463 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3464 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3465 const Register tmp1 = r11; // Caller save. 3466 const Register tmp2 = rax; // Caller save. 3467 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3468 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3469 const Register tmp5 = r14; // Callee save. 3470 const Register tmp6 = r15; 3471 3472 const XMMRegister x0 = xmm0; 3473 const XMMRegister x1 = xmm1; 3474 const XMMRegister x2 = xmm2; 3475 3476 BLOCK_COMMENT("Entry:"); 3477 __ enter(); // required for proper stackwalking of RuntimeStub frame 3478 3479 #ifdef _WIN64 3480 setup_arg_regs(4); 3481 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3482 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3483 // Save callee save registers. 3484 __ push(tmp3); 3485 __ push(tmp4); 3486 #endif 3487 __ push(tmp5); 3488 3489 // Rename temps used throughout the code. 3490 const Register idx = tmp1; 3491 const Register nIdx = tmp2; 3492 3493 __ xorl(idx, idx); 3494 3495 // Start right shift from end of the array. 3496 // For example, if #iteration = 4 and newIdx = 1 3497 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3498 // if #iteration = 4 and newIdx = 0 3499 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3500 __ movl(idx, totalNumIter); 3501 __ movl(nIdx, idx); 3502 __ addl(nIdx, newIdx); 3503 3504 // If vectorization is enabled, check if the number of iterations is at least 64 3505 // If not, then go to ShifTwo processing 2 iterations 3506 if (VM_Version::supports_avx512_vbmi2()) { 3507 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3508 __ jcc(Assembler::less, ShiftTwo); 3509 3510 if (AVX3Threshold < 16 * 64) { 3511 __ cmpl(totalNumIter, 16); 3512 __ jcc(Assembler::less, ShiftTwo); 3513 } 3514 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3515 __ subl(idx, 16); 3516 __ subl(nIdx, 16); 3517 __ BIND(Shift512Loop); 3518 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3519 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3520 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3521 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3522 __ subl(nIdx, 16); 3523 __ subl(idx, 16); 3524 __ jcc(Assembler::greaterEqual, Shift512Loop); 3525 __ addl(idx, 16); 3526 __ addl(nIdx, 16); 3527 } 3528 __ BIND(ShiftTwo); 3529 __ cmpl(idx, 2); 3530 __ jcc(Assembler::less, ShiftOne); 3531 __ subl(idx, 2); 3532 __ subl(nIdx, 2); 3533 __ BIND(ShiftTwoLoop); 3534 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3535 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3536 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3537 __ shrdl(tmp5, tmp4); 3538 __ shrdl(tmp4, tmp3); 3539 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3540 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3541 __ subl(nIdx, 2); 3542 __ subl(idx, 2); 3543 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3544 __ addl(idx, 2); 3545 __ addl(nIdx, 2); 3546 3547 // Do the last iteration 3548 __ BIND(ShiftOne); 3549 __ cmpl(idx, 1); 3550 __ jcc(Assembler::less, Exit); 3551 __ subl(idx, 1); 3552 __ subl(nIdx, 1); 3553 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3554 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3555 __ shrdl(tmp4, tmp3); 3556 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3557 __ BIND(Exit); 3558 __ vzeroupper(); 3559 // Restore callee save registers. 3560 __ pop(tmp5); 3561 #ifdef _WIN64 3562 __ pop(tmp4); 3563 __ pop(tmp3); 3564 restore_arg_regs(); 3565 #endif 3566 __ leave(); // required for proper stackwalking of RuntimeStub frame 3567 __ ret(0); 3568 3569 return start; 3570 } 3571 3572 /** 3573 * Arguments: 3574 * 3575 * Input: 3576 * c_rarg0 - newArr address 3577 * c_rarg1 - oldArr address 3578 * c_rarg2 - newIdx 3579 * c_rarg3 - shiftCount 3580 * not Win64 3581 * c_rarg4 - numIter 3582 * Win64 3583 * rsp40 - numIter 3584 */ 3585 address StubGenerator::generate_bigIntegerLeftShift() { 3586 __ align(CodeEntryAlignment); 3587 StubGenStubId stub_id = StubGenStubId::bigIntegerLeftShiftWorker_id; 3588 StubCodeMark mark(this, stub_id); 3589 address start = __ pc(); 3590 3591 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3592 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3593 const Register newArr = rdi; 3594 const Register oldArr = rsi; 3595 const Register newIdx = rdx; 3596 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3597 const Register totalNumIter = r8; 3598 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3599 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3600 const Register tmp1 = r11; // Caller save. 3601 const Register tmp2 = rax; // Caller save. 3602 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3603 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3604 const Register tmp5 = r14; // Callee save. 3605 3606 const XMMRegister x0 = xmm0; 3607 const XMMRegister x1 = xmm1; 3608 const XMMRegister x2 = xmm2; 3609 BLOCK_COMMENT("Entry:"); 3610 __ enter(); // required for proper stackwalking of RuntimeStub frame 3611 3612 #ifdef _WIN64 3613 setup_arg_regs(4); 3614 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3615 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3616 // Save callee save registers. 3617 __ push(tmp3); 3618 __ push(tmp4); 3619 #endif 3620 __ push(tmp5); 3621 3622 // Rename temps used throughout the code 3623 const Register idx = tmp1; 3624 const Register numIterTmp = tmp2; 3625 3626 // Start idx from zero. 3627 __ xorl(idx, idx); 3628 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3629 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3630 __ movl(numIterTmp, totalNumIter); 3631 3632 // If vectorization is enabled, check if the number of iterations is at least 64 3633 // If not, then go to ShiftTwo shifting two numbers at a time 3634 if (VM_Version::supports_avx512_vbmi2()) { 3635 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3636 __ jcc(Assembler::less, ShiftTwo); 3637 3638 if (AVX3Threshold < 16 * 64) { 3639 __ cmpl(totalNumIter, 16); 3640 __ jcc(Assembler::less, ShiftTwo); 3641 } 3642 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3643 __ subl(numIterTmp, 16); 3644 __ BIND(Shift512Loop); 3645 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3646 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3647 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3648 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3649 __ addl(idx, 16); 3650 __ subl(numIterTmp, 16); 3651 __ jcc(Assembler::greaterEqual, Shift512Loop); 3652 __ addl(numIterTmp, 16); 3653 } 3654 __ BIND(ShiftTwo); 3655 __ cmpl(totalNumIter, 1); 3656 __ jcc(Assembler::less, Exit); 3657 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3658 __ subl(numIterTmp, 2); 3659 __ jcc(Assembler::less, ShiftOne); 3660 3661 __ BIND(ShiftTwoLoop); 3662 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3663 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3664 __ shldl(tmp3, tmp4); 3665 __ shldl(tmp4, tmp5); 3666 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3667 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3668 __ movl(tmp3, tmp5); 3669 __ addl(idx, 2); 3670 __ subl(numIterTmp, 2); 3671 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3672 3673 // Do the last iteration 3674 __ BIND(ShiftOne); 3675 __ addl(numIterTmp, 2); 3676 __ cmpl(numIterTmp, 1); 3677 __ jcc(Assembler::less, Exit); 3678 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3679 __ shldl(tmp3, tmp4); 3680 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3681 3682 __ BIND(Exit); 3683 __ vzeroupper(); 3684 // Restore callee save registers. 3685 __ pop(tmp5); 3686 #ifdef _WIN64 3687 __ pop(tmp4); 3688 __ pop(tmp3); 3689 restore_arg_regs(); 3690 #endif 3691 __ leave(); // required for proper stackwalking of RuntimeStub frame 3692 __ ret(0); 3693 3694 return start; 3695 } 3696 3697 void StubGenerator::generate_libm_stubs() { 3698 if (UseLibmIntrinsic && InlineIntrinsics) { 3699 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3700 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3701 } 3702 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3703 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3704 } 3705 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3706 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3707 } 3708 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) { 3709 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp 3710 } 3711 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3712 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3713 } 3714 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3715 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3716 } 3717 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3718 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3719 } 3720 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3721 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3722 } 3723 } 3724 } 3725 3726 /** 3727 * Arguments: 3728 * 3729 * Input: 3730 * c_rarg0 - float16 jshort 3731 * 3732 * Output: 3733 * xmm0 - float 3734 */ 3735 address StubGenerator::generate_float16ToFloat() { 3736 StubGenStubId stub_id = StubGenStubId::hf2f_id; 3737 StubCodeMark mark(this, stub_id); 3738 3739 address start = __ pc(); 3740 3741 BLOCK_COMMENT("Entry:"); 3742 // No need for RuntimeStub frame since it is called only during JIT compilation 3743 3744 // Load value into xmm0 and convert 3745 __ flt16_to_flt(xmm0, c_rarg0); 3746 3747 __ ret(0); 3748 3749 return start; 3750 } 3751 3752 /** 3753 * Arguments: 3754 * 3755 * Input: 3756 * xmm0 - float 3757 * 3758 * Output: 3759 * rax - float16 jshort 3760 */ 3761 address StubGenerator::generate_floatToFloat16() { 3762 StubGenStubId stub_id = StubGenStubId::f2hf_id; 3763 StubCodeMark mark(this, stub_id); 3764 3765 address start = __ pc(); 3766 3767 BLOCK_COMMENT("Entry:"); 3768 // No need for RuntimeStub frame since it is called only during JIT compilation 3769 3770 // Convert and put result into rax 3771 __ flt_to_flt16(rax, xmm0, xmm1); 3772 3773 __ ret(0); 3774 3775 return start; 3776 } 3777 3778 address StubGenerator::generate_cont_thaw(StubGenStubId stub_id) { 3779 if (!Continuations::enabled()) return nullptr; 3780 3781 bool return_barrier; 3782 bool return_barrier_exception; 3783 Continuation::thaw_kind kind; 3784 3785 switch (stub_id) { 3786 case cont_thaw_id: 3787 return_barrier = false; 3788 return_barrier_exception = false; 3789 kind = Continuation::thaw_top; 3790 break; 3791 case cont_returnBarrier_id: 3792 return_barrier = true; 3793 return_barrier_exception = false; 3794 kind = Continuation::thaw_return_barrier; 3795 break; 3796 case cont_returnBarrierExc_id: 3797 return_barrier = true; 3798 return_barrier_exception = true; 3799 kind = Continuation::thaw_return_barrier_exception; 3800 break; 3801 default: 3802 ShouldNotReachHere(); 3803 } 3804 StubCodeMark mark(this, stub_id); 3805 address start = __ pc(); 3806 3807 // TODO: Handle Valhalla return types. May require generating different return barriers. 3808 3809 if (!return_barrier) { 3810 // Pop return address. If we don't do this, we get a drift, 3811 // where the bottom-most frozen frame continuously grows. 3812 __ pop(c_rarg3); 3813 } else { 3814 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3815 } 3816 3817 #ifdef ASSERT 3818 { 3819 Label L_good_sp; 3820 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3821 __ jcc(Assembler::equal, L_good_sp); 3822 __ stop("Incorrect rsp at thaw entry"); 3823 __ BIND(L_good_sp); 3824 } 3825 #endif // ASSERT 3826 3827 if (return_barrier) { 3828 // Preserve possible return value from a method returning to the return barrier. 3829 __ push(rax); 3830 __ push_d(xmm0); 3831 } 3832 3833 __ movptr(c_rarg0, r15_thread); 3834 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3835 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3836 __ movptr(rbx, rax); 3837 3838 if (return_barrier) { 3839 // Restore return value from a method returning to the return barrier. 3840 // No safepoint in the call to thaw, so even an oop return value should be OK. 3841 __ pop_d(xmm0); 3842 __ pop(rax); 3843 } 3844 3845 #ifdef ASSERT 3846 { 3847 Label L_good_sp; 3848 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3849 __ jcc(Assembler::equal, L_good_sp); 3850 __ stop("Incorrect rsp after prepare thaw"); 3851 __ BIND(L_good_sp); 3852 } 3853 #endif // ASSERT 3854 3855 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3856 Label L_thaw_success; 3857 __ testptr(rbx, rbx); 3858 __ jccb(Assembler::notZero, L_thaw_success); 3859 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 3860 __ bind(L_thaw_success); 3861 3862 // Make room for the thawed frames and align the stack. 3863 __ subptr(rsp, rbx); 3864 __ andptr(rsp, -StackAlignmentInBytes); 3865 3866 if (return_barrier) { 3867 // Preserve possible return value from a method returning to the return barrier. (Again.) 3868 __ push(rax); 3869 __ push_d(xmm0); 3870 } 3871 3872 // If we want, we can templatize thaw by kind, and have three different entries. 3873 __ movptr(c_rarg0, r15_thread); 3874 __ movptr(c_rarg1, kind); 3875 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3876 __ movptr(rbx, rax); 3877 3878 if (return_barrier) { 3879 // Restore return value from a method returning to the return barrier. (Again.) 3880 // No safepoint in the call to thaw, so even an oop return value should be OK. 3881 __ pop_d(xmm0); 3882 __ pop(rax); 3883 } else { 3884 // Return 0 (success) from doYield. 3885 __ xorptr(rax, rax); 3886 } 3887 3888 // After thawing, rbx is the SP of the yielding frame. 3889 // Move there, and then to saved RBP slot. 3890 __ movptr(rsp, rbx); 3891 __ subptr(rsp, 2*wordSize); 3892 3893 if (return_barrier_exception) { 3894 __ movptr(c_rarg0, r15_thread); 3895 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3896 3897 // rax still holds the original exception oop, save it before the call 3898 __ push(rax); 3899 3900 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3901 __ movptr(rbx, rax); 3902 3903 // Continue at exception handler: 3904 // rax: exception oop 3905 // rbx: exception handler 3906 // rdx: exception pc 3907 __ pop(rax); 3908 __ verify_oop(rax); 3909 __ pop(rbp); // pop out RBP here too 3910 __ pop(rdx); 3911 __ jmp(rbx); 3912 } else { 3913 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3914 __ pop(rbp); 3915 __ ret(0); 3916 } 3917 3918 return start; 3919 } 3920 3921 address StubGenerator::generate_cont_thaw() { 3922 return generate_cont_thaw(StubGenStubId::cont_thaw_id); 3923 } 3924 3925 // TODO: will probably need multiple return barriers depending on return type 3926 3927 address StubGenerator::generate_cont_returnBarrier() { 3928 return generate_cont_thaw(StubGenStubId::cont_returnBarrier_id); 3929 } 3930 3931 address StubGenerator::generate_cont_returnBarrier_exception() { 3932 return generate_cont_thaw(StubGenStubId::cont_returnBarrierExc_id); 3933 } 3934 3935 address StubGenerator::generate_cont_preempt_stub() { 3936 if (!Continuations::enabled()) return nullptr; 3937 StubGenStubId stub_id = StubGenStubId::cont_preempt_id; 3938 StubCodeMark mark(this, stub_id); 3939 address start = __ pc(); 3940 3941 __ reset_last_Java_frame(true); 3942 3943 // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap. 3944 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3945 3946 Label preemption_cancelled; 3947 __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset())); 3948 __ testbool(rscratch1); 3949 __ jcc(Assembler::notZero, preemption_cancelled); 3950 3951 // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount. 3952 SharedRuntime::continuation_enter_cleanup(_masm); 3953 __ pop(rbp); 3954 __ ret(0); 3955 3956 // We acquired the monitor after freezing the frames so call thaw to continue execution. 3957 __ bind(preemption_cancelled); 3958 __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false); 3959 __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size()))); 3960 __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address())); 3961 __ jmp(rscratch1); 3962 3963 return start; 3964 } 3965 3966 // exception handler for upcall stubs 3967 address StubGenerator::generate_upcall_stub_exception_handler() { 3968 StubGenStubId stub_id = StubGenStubId::upcall_stub_exception_handler_id; 3969 StubCodeMark mark(this, stub_id); 3970 address start = __ pc(); 3971 3972 // native caller has no idea how to handle exceptions 3973 // we just crash here. Up to callee to catch exceptions. 3974 __ verify_oop(rax); 3975 __ vzeroupper(); 3976 __ mov(c_rarg0, rax); 3977 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3978 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3979 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3980 __ should_not_reach_here(); 3981 3982 return start; 3983 } 3984 3985 // load Method* target of MethodHandle 3986 // j_rarg0 = jobject receiver 3987 // rbx = result 3988 address StubGenerator::generate_upcall_stub_load_target() { 3989 StubGenStubId stub_id = StubGenStubId::upcall_stub_load_target_id; 3990 StubCodeMark mark(this, stub_id); 3991 address start = __ pc(); 3992 3993 __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1); 3994 // Load target method from receiver 3995 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1); 3996 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1); 3997 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1); 3998 __ access_load_at(T_ADDRESS, IN_HEAP, rbx, 3999 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()), 4000 noreg, noreg); 4001 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized 4002 4003 __ ret(0); 4004 4005 return start; 4006 } 4007 4008 void StubGenerator::generate_lookup_secondary_supers_table_stub() { 4009 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_id; 4010 StubCodeMark mark(this, stub_id); 4011 4012 const Register 4013 r_super_klass = rax, 4014 r_sub_klass = rsi, 4015 result = rdi; 4016 4017 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4018 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc(); 4019 __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass, 4020 rdx, rcx, rbx, r11, // temps 4021 result, 4022 slot); 4023 __ ret(0); 4024 } 4025 } 4026 4027 // Slow path implementation for UseSecondarySupersTable. 4028 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 4029 StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_slow_path_id; 4030 StubCodeMark mark(this, stub_id); 4031 4032 address start = __ pc(); 4033 4034 const Register 4035 r_super_klass = rax, 4036 r_array_base = rbx, 4037 r_array_index = rdx, 4038 r_sub_klass = rsi, 4039 r_bitmap = r11, 4040 result = rdi; 4041 4042 Label L_success; 4043 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 4044 rcx, rdi, // temps 4045 &L_success); 4046 // bind(L_failure); 4047 __ movl(result, 1); 4048 __ ret(0); 4049 4050 __ bind(L_success); 4051 __ movl(result, 0); 4052 __ ret(0); 4053 4054 return start; 4055 } 4056 4057 void StubGenerator::create_control_words() { 4058 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 4059 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 4060 // Round to zero, 64-bit mode, exceptions masked, flags specialized 4061 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 4062 } 4063 4064 // Initialization 4065 void StubGenerator::generate_initial_stubs() { 4066 // Generates all stubs and initializes the entry points 4067 4068 // This platform-specific settings are needed by generate_call_stub() 4069 create_control_words(); 4070 4071 // Initialize table for unsafe copy memeory check. 4072 if (UnsafeMemoryAccess::_table == nullptr) { 4073 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 4074 } 4075 4076 // entry points that exist in all platforms Note: This is code 4077 // that could be shared among different platforms - however the 4078 // benefit seems to be smaller than the disadvantage of having a 4079 // much more complicated generator structure. See also comment in 4080 // stubRoutines.hpp. 4081 4082 StubRoutines::_forward_exception_entry = generate_forward_exception(); 4083 4084 StubRoutines::_call_stub_entry = 4085 generate_call_stub(StubRoutines::_call_stub_return_address); 4086 4087 // is referenced by megamorphic call 4088 StubRoutines::_catch_exception_entry = generate_catch_exception(); 4089 4090 // atomic calls 4091 StubRoutines::_fence_entry = generate_orderaccess_fence(); 4092 4093 // platform dependent 4094 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 4095 4096 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 4097 4098 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 4099 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 4100 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 4101 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 4102 4103 StubRoutines::x86::_float_sign_mask = generate_fp_mask(StubGenStubId::float_sign_mask_id, 0x7FFFFFFF7FFFFFFF); 4104 StubRoutines::x86::_float_sign_flip = generate_fp_mask(StubGenStubId::float_sign_flip_id, 0x8000000080000000); 4105 StubRoutines::x86::_double_sign_mask = generate_fp_mask(StubGenStubId::double_sign_mask_id, 0x7FFFFFFFFFFFFFFF); 4106 StubRoutines::x86::_double_sign_flip = generate_fp_mask(StubGenStubId::double_sign_flip_id, 0x8000000000000000); 4107 4108 if (UseCRC32Intrinsics) { 4109 // set table address before stub generation which use it 4110 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 4111 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 4112 } 4113 4114 if (UseCRC32CIntrinsics) { 4115 bool supports_clmul = VM_Version::supports_clmul(); 4116 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 4117 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 4118 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 4119 } 4120 4121 if (VM_Version::supports_float16()) { 4122 // For results consistency both intrinsics should be enabled. 4123 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 4124 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 4125 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 4126 StubRoutines::_hf2f = generate_float16ToFloat(); 4127 StubRoutines::_f2hf = generate_floatToFloat16(); 4128 } 4129 } 4130 4131 generate_libm_stubs(); 4132 4133 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 4134 } 4135 4136 void StubGenerator::generate_continuation_stubs() { 4137 // Continuation stubs: 4138 StubRoutines::_cont_thaw = generate_cont_thaw(); 4139 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 4140 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 4141 StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub(); 4142 } 4143 4144 void StubGenerator::generate_final_stubs() { 4145 // Generates the rest of stubs and initializes the entry points 4146 4147 // support for verify_oop (must happen after universe_init) 4148 if (VerifyOops) { 4149 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 4150 } 4151 4152 // arraycopy stubs used by compilers 4153 generate_arraycopy_stubs(); 4154 4155 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 4156 if (bs_nm != nullptr) { 4157 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 4158 } 4159 4160 #ifdef COMPILER2 4161 if (UseSecondarySupersTable) { 4162 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4163 if (! InlineSecondarySupersTest) { 4164 generate_lookup_secondary_supers_table_stub(); 4165 } 4166 } 4167 #endif // COMPILER2 4168 4169 if (UseVectorizedMismatchIntrinsic) { 4170 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 4171 } 4172 4173 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 4174 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target(); 4175 } 4176 4177 void StubGenerator::generate_compiler_stubs() { 4178 #if COMPILER2_OR_JVMCI 4179 4180 // Entry points that are C2 compiler specific. 4181 4182 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubGenStubId::vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF); 4183 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubGenStubId::vector_float_sign_flip_id, 0x8000000080000000); 4184 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubGenStubId::vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF); 4185 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubGenStubId::vector_double_sign_flip_id, 0x8000000000000000); 4186 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubGenStubId::vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF); 4187 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubGenStubId::vector_int_mask_cmp_bits_id, 0x0000000100000001); 4188 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubGenStubId::vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff); 4189 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask(); 4190 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubGenStubId::vector_int_to_byte_mask_id, 0x000000ff000000ff); 4191 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubGenStubId::vector_int_to_short_mask_id, 0x0000ffff0000ffff); 4192 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_32_bit_mask_id, Assembler::AVX_512bit, 4193 0xFFFFFFFF, 0, 0, 0); 4194 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_64_bit_mask_id, Assembler::AVX_512bit, 4195 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4196 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubGenStubId::vector_int_shuffle_mask_id, 0x0302010003020100); 4197 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask(); 4198 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubGenStubId::vector_short_shuffle_mask_id, 0x0100010001000100); 4199 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubGenStubId::vector_long_shuffle_mask_id, 0x0000000100000000); 4200 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubGenStubId::vector_long_sign_mask_id, 0x8000000000000000); 4201 StubRoutines::x86::_vector_iota_indices = generate_iota_indices(); 4202 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut(); 4203 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut(); 4204 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long(); 4205 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int(); 4206 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short(); 4207 4208 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4209 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubGenStubId::compress_perm_table32_id); 4210 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubGenStubId::compress_perm_table64_id); 4211 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubGenStubId::expand_perm_table32_id); 4212 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubGenStubId::expand_perm_table64_id); 4213 } 4214 4215 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4216 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4217 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut(); 4218 } 4219 4220 generate_aes_stubs(); 4221 4222 generate_ghash_stubs(); 4223 4224 generate_chacha_stubs(); 4225 4226 generate_sha3_stubs(); 4227 4228 // data cache line writeback 4229 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 4230 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 4231 4232 #ifdef COMPILER2 4233 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4234 generate_string_indexof(StubRoutines::_string_indexof_array); 4235 } 4236 #endif 4237 4238 if (UseAdler32Intrinsics) { 4239 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4240 } 4241 4242 if (UsePoly1305Intrinsics) { 4243 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4244 } 4245 4246 if (UseIntPolyIntrinsics) { 4247 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4248 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4249 } 4250 4251 if (UseMD5Intrinsics) { 4252 StubRoutines::_md5_implCompress = generate_md5_implCompress(StubGenStubId::md5_implCompress_id); 4253 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubGenStubId::md5_implCompressMB_id); 4254 } 4255 4256 if (UseSHA1Intrinsics) { 4257 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4258 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4259 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubGenStubId::sha1_implCompress_id); 4260 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubGenStubId::sha1_implCompressMB_id); 4261 } 4262 4263 if (UseSHA256Intrinsics) { 4264 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4265 char* dst = (char*)StubRoutines::x86::_k256_W; 4266 char* src = (char*)StubRoutines::x86::_k256; 4267 for (int ii = 0; ii < 16; ++ii) { 4268 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4269 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4270 } 4271 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4272 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4273 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubGenStubId::sha256_implCompress_id); 4274 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubGenStubId::sha256_implCompressMB_id); 4275 } 4276 4277 if (UseSHA512Intrinsics) { 4278 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4279 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4280 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubGenStubId::sha512_implCompress_id); 4281 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubGenStubId::sha512_implCompressMB_id); 4282 } 4283 4284 if (UseBASE64Intrinsics) { 4285 if(VM_Version::supports_avx2()) { 4286 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4287 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4288 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4289 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4290 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4291 } 4292 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4293 if (VM_Version::supports_avx512_vbmi()) { 4294 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4295 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4296 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4297 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4298 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4299 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4300 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4301 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4302 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4303 } 4304 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4305 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4306 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4307 } 4308 4309 #ifdef COMPILER2 4310 if (UseMultiplyToLenIntrinsic) { 4311 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4312 } 4313 if (UseSquareToLenIntrinsic) { 4314 StubRoutines::_squareToLen = generate_squareToLen(); 4315 } 4316 if (UseMulAddIntrinsic) { 4317 StubRoutines::_mulAdd = generate_mulAdd(); 4318 } 4319 if (VM_Version::supports_avx512_vbmi2()) { 4320 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4321 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4322 } 4323 if (UseMontgomeryMultiplyIntrinsic) { 4324 StubRoutines::_montgomeryMultiply 4325 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4326 } 4327 if (UseMontgomerySquareIntrinsic) { 4328 StubRoutines::_montgomerySquare 4329 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4330 } 4331 4332 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4333 4334 if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) { 4335 void *libsimdsort = nullptr; 4336 char ebuf_[1024]; 4337 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4338 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4339 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4340 } 4341 // Get addresses for SIMD sort and partition routines 4342 if (libsimdsort != nullptr) { 4343 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4344 4345 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort"); 4346 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4347 4348 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition"); 4349 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4350 } 4351 } 4352 4353 // Get svml stub routine addresses 4354 void *libjsvml = nullptr; 4355 char ebuf[1024]; 4356 char dll_name[JVM_MAXPATHLEN]; 4357 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4358 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4359 } 4360 if (libjsvml != nullptr) { 4361 // SVML method naming convention 4362 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4363 // Where: 4364 // ha stands for high accuracy 4365 // <T> is optional to indicate float/double 4366 // Set to f for vector float operation 4367 // Omitted for vector double operation 4368 // <N> is the number of elements in the vector 4369 // 1, 2, 4, 8, 16 4370 // e.g. 128 bit float vector has 4 float elements 4371 // <VV> indicates the avx/sse level: 4372 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4373 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4374 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4375 4376 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4377 if (UseAVX > 2) { 4378 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4379 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4380 if ((!VM_Version::supports_avx512dq()) && 4381 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4382 continue; 4383 } 4384 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]); 4385 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4386 4387 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]); 4388 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4389 } 4390 } 4391 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4392 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4393 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4394 if (vop == VectorSupport::VECTOR_OP_POW) { 4395 continue; 4396 } 4397 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4398 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4399 4400 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4401 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4402 4403 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4404 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4405 4406 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4407 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4408 4409 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4410 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4411 4412 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4413 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4414 } 4415 } 4416 4417 #endif // COMPILER2 4418 #endif // COMPILER2_OR_JVMCI 4419 } 4420 4421 StubGenerator::StubGenerator(CodeBuffer* code, StubGenBlobId blob_id) : StubCodeGenerator(code, blob_id) { 4422 switch(blob_id) { 4423 case initial_id: 4424 generate_initial_stubs(); 4425 break; 4426 case continuation_id: 4427 generate_continuation_stubs(); 4428 break; 4429 case compiler_id: 4430 generate_compiler_stubs(); 4431 break; 4432 case final_id: 4433 generate_final_stubs(); 4434 break; 4435 default: 4436 fatal("unexpected blob id: %d", blob_id); 4437 break; 4438 }; 4439 } 4440 4441 void StubGenerator_generate(CodeBuffer* code, StubGenBlobId blob_id) { 4442 StubGenerator g(code, blob_id); 4443 } 4444 4445 #undef __