1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/vmIntrinsics.hpp"
  28 #include "code/SCCache.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/barrierSetNMethod.hpp"
  33 #include "gc/shared/gc_globals.hpp"
  34 #include "memory/universe.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/upcallLinker.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/continuationEntry.hpp"
  39 #include "runtime/javaThread.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "stubGenerator_x86_64.hpp"
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #include "opto/c2_globals.hpp"
  46 #endif
  47 #if INCLUDE_JVMCI
  48 #include "jvmci/jvmci_globals.hpp"
  49 #endif
  50 
  51 // For a more detailed description of the stub routine structure
  52 // see the comment in stubRoutines.hpp
  53 
  54 #define __ _masm->
  55 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  56 
  57 #ifdef PRODUCT
  58 #define BLOCK_COMMENT(str) /* nothing */
  59 #else
  60 #define BLOCK_COMMENT(str) __ block_comment(str)
  61 #endif // PRODUCT
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 //
  66 // Linux Arguments:
  67 //    c_rarg0:   call wrapper address                   address
  68 //    c_rarg1:   result                                 address
  69 //    c_rarg2:   result type                            BasicType
  70 //    c_rarg3:   method                                 Method*
  71 //    c_rarg4:   (interpreter) entry point              address
  72 //    c_rarg5:   parameters                             intptr_t*
  73 //    16(rbp): parameter size (in words)              int
  74 //    24(rbp): thread                                 Thread*
  75 //
  76 //     [ return_from_Java     ] <--- rsp
  77 //     [ argument word n      ]
  78 //      ...
  79 // -12 [ argument word 1      ]
  80 // -11 [ saved r15            ] <--- rsp_after_call
  81 // -10 [ saved r14            ]
  82 //  -9 [ saved r13            ]
  83 //  -8 [ saved r12            ]
  84 //  -7 [ saved rbx            ]
  85 //  -6 [ call wrapper         ]
  86 //  -5 [ result               ]
  87 //  -4 [ result type          ]
  88 //  -3 [ method               ]
  89 //  -2 [ entry point          ]
  90 //  -1 [ parameters           ]
  91 //   0 [ saved rbp            ] <--- rbp
  92 //   1 [ return address       ]
  93 //   2 [ parameter size       ]
  94 //   3 [ thread               ]
  95 //
  96 // Windows Arguments:
  97 //    c_rarg0:   call wrapper address                   address
  98 //    c_rarg1:   result                                 address
  99 //    c_rarg2:   result type                            BasicType
 100 //    c_rarg3:   method                                 Method*
 101 //    48(rbp): (interpreter) entry point              address
 102 //    56(rbp): parameters                             intptr_t*
 103 //    64(rbp): parameter size (in words)              int
 104 //    72(rbp): thread                                 Thread*
 105 //
 106 //     [ return_from_Java     ] <--- rsp
 107 //     [ argument word n      ]
 108 //      ...
 109 // -28 [ argument word 1      ]
 110 // -27 [ saved xmm15          ] <--- rsp after_call
 111 //     [ saved xmm7-xmm14     ]
 112 //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 113 //  -7 [ saved r15            ]
 114 //  -6 [ saved r14            ]
 115 //  -5 [ saved r13            ]
 116 //  -4 [ saved r12            ]
 117 //  -3 [ saved rdi            ]
 118 //  -2 [ saved rsi            ]
 119 //  -1 [ saved rbx            ]
 120 //   0 [ saved rbp            ] <--- rbp
 121 //   1 [ return address       ]
 122 //   2 [ call wrapper         ]
 123 //   3 [ result               ]
 124 //   4 [ result type          ]
 125 //   5 [ method               ]
 126 //   6 [ entry point          ]
 127 //   7 [ parameters           ]
 128 //   8 [ parameter size       ]
 129 //   9 [ thread               ]
 130 //
 131 //    Windows reserves the callers stack space for arguments 1-4.
 132 //    We spill c_rarg0-c_rarg3 to this space.
 133 
 134 // Call stub stack layout word offsets from rbp
 135 #ifdef _WIN64
 136 enum call_stub_layout {
 137   xmm_save_first     = 6,  // save from xmm6
 138   xmm_save_last      = 15, // to xmm15
 139   xmm_save_base      = -9,
 140   rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 141   r15_off            = -7,
 142   r14_off            = -6,
 143   r13_off            = -5,
 144   r12_off            = -4,
 145   rdi_off            = -3,
 146   rsi_off            = -2,
 147   rbx_off            = -1,
 148   rbp_off            =  0,
 149   retaddr_off        =  1,
 150   call_wrapper_off   =  2,
 151   result_off         =  3,
 152   result_type_off    =  4,
 153   method_off         =  5,
 154   entry_point_off    =  6,
 155   parameters_off     =  7,
 156   parameter_size_off =  8,
 157   thread_off         =  9
 158 };
 159 
 160 static Address xmm_save(int reg) {
 161   assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 162   return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 163 }
 164 #else // !_WIN64
 165 enum call_stub_layout {
 166   rsp_after_call_off = -12,
 167   mxcsr_off          = rsp_after_call_off,
 168   r15_off            = -11,
 169   r14_off            = -10,
 170   r13_off            = -9,
 171   r12_off            = -8,
 172   rbx_off            = -7,
 173   call_wrapper_off   = -6,
 174   result_off         = -5,
 175   result_type_off    = -4,
 176   method_off         = -3,
 177   entry_point_off    = -2,
 178   parameters_off     = -1,
 179   rbp_off            =  0,
 180   retaddr_off        =  1,
 181   parameter_size_off =  2,
 182   thread_off         =  3
 183 };
 184 #endif // _WIN64
 185 
 186 address StubGenerator::generate_call_stub(address& return_address) {
 187 
 188   assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 189          (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 190          "adjust this code");
 191   StubGenStubId stub_id = StubGenStubId::call_stub_id;
 192   StubCodeMark mark(this, stub_id);
 193   address start = __ pc();
 194 
 195   // same as in generate_catch_exception()!
 196   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 197 
 198   const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 199   const Address result        (rbp, result_off         * wordSize);
 200   const Address result_type   (rbp, result_type_off    * wordSize);
 201   const Address method        (rbp, method_off         * wordSize);
 202   const Address entry_point   (rbp, entry_point_off    * wordSize);
 203   const Address parameters    (rbp, parameters_off     * wordSize);
 204   const Address parameter_size(rbp, parameter_size_off * wordSize);
 205 
 206   // same as in generate_catch_exception()!
 207   const Address thread        (rbp, thread_off         * wordSize);
 208 
 209   const Address r15_save(rbp, r15_off * wordSize);
 210   const Address r14_save(rbp, r14_off * wordSize);
 211   const Address r13_save(rbp, r13_off * wordSize);
 212   const Address r12_save(rbp, r12_off * wordSize);
 213   const Address rbx_save(rbp, rbx_off * wordSize);
 214 
 215   // stub code
 216   __ enter();
 217   __ subptr(rsp, -rsp_after_call_off * wordSize);
 218 
 219   // save register parameters
 220 #ifndef _WIN64
 221   __ movptr(parameters,   c_rarg5); // parameters
 222   __ movptr(entry_point,  c_rarg4); // entry_point
 223 #endif
 224 
 225   __ movptr(method,       c_rarg3); // method
 226   __ movl(result_type,  c_rarg2);   // result type
 227   __ movptr(result,       c_rarg1); // result
 228   __ movptr(call_wrapper, c_rarg0); // call wrapper
 229 
 230   // save regs belonging to calling function
 231   __ movptr(rbx_save, rbx);
 232   __ movptr(r12_save, r12);
 233   __ movptr(r13_save, r13);
 234   __ movptr(r14_save, r14);
 235   __ movptr(r15_save, r15);
 236 
 237 #ifdef _WIN64
 238   int last_reg = 15;
 239   for (int i = xmm_save_first; i <= last_reg; i++) {
 240     __ movdqu(xmm_save(i), as_XMMRegister(i));
 241   }
 242 
 243   const Address rdi_save(rbp, rdi_off * wordSize);
 244   const Address rsi_save(rbp, rsi_off * wordSize);
 245 
 246   __ movptr(rsi_save, rsi);
 247   __ movptr(rdi_save, rdi);
 248 #else
 249   const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 250   {
 251     Label skip_ldmx;
 252     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 253     __ jcc(Assembler::equal, skip_ldmx);
 254     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 255     __ ldmxcsr(mxcsr_std, rscratch1);
 256     __ bind(skip_ldmx);
 257   }
 258 #endif
 259 
 260   // Load up thread register
 261   __ movptr(r15_thread, thread);
 262   __ reinit_heapbase();
 263 
 264 #ifdef ASSERT
 265   // make sure we have no pending exceptions
 266   {
 267     Label L;
 268     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 269     __ jcc(Assembler::equal, L);
 270     __ stop("StubRoutines::call_stub: entered with pending exception");
 271     __ bind(L);
 272   }
 273 #endif
 274 
 275   // pass parameters if any
 276   BLOCK_COMMENT("pass parameters if any");
 277   Label parameters_done;
 278   __ movl(c_rarg3, parameter_size);
 279   __ testl(c_rarg3, c_rarg3);
 280   __ jcc(Assembler::zero, parameters_done);
 281 
 282   Label loop;
 283   __ movptr(c_rarg2, parameters);       // parameter pointer
 284   __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 285   __ BIND(loop);
 286   __ movptr(rax, Address(c_rarg2, 0));// get parameter
 287   __ addptr(c_rarg2, wordSize);       // advance to next parameter
 288   __ decrementl(c_rarg1);             // decrement counter
 289   __ push(rax);                       // pass parameter
 290   __ jcc(Assembler::notZero, loop);
 291 
 292   // call Java function
 293   __ BIND(parameters_done);
 294   __ movptr(rbx, method);             // get Method*
 295   __ movptr(c_rarg1, entry_point);    // get entry_point
 296   __ mov(r13, rsp);                   // set sender sp
 297   BLOCK_COMMENT("call Java function");
 298   __ call(c_rarg1);
 299 
 300   BLOCK_COMMENT("call_stub_return_address:");
 301   return_address = __ pc();
 302 
 303   // store result depending on type (everything that is not
 304   // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 305   __ movptr(c_rarg0, result);
 306   Label is_long, is_float, is_double, exit;
 307   __ movl(c_rarg1, result_type);
 308   __ cmpl(c_rarg1, T_OBJECT);
 309   __ jcc(Assembler::equal, is_long);
 310   __ cmpl(c_rarg1, T_LONG);
 311   __ jcc(Assembler::equal, is_long);
 312   __ cmpl(c_rarg1, T_FLOAT);
 313   __ jcc(Assembler::equal, is_float);
 314   __ cmpl(c_rarg1, T_DOUBLE);
 315   __ jcc(Assembler::equal, is_double);
 316 #ifdef ASSERT
 317   // make sure the type is INT
 318   {
 319     Label L;
 320     __ cmpl(c_rarg1, T_INT);
 321     __ jcc(Assembler::equal, L);
 322     __ stop("StubRoutines::call_stub: unexpected result type");
 323     __ bind(L);
 324   }
 325 #endif
 326 
 327   // handle T_INT case
 328   __ movl(Address(c_rarg0, 0), rax);
 329 
 330   __ BIND(exit);
 331 
 332   // pop parameters
 333   __ lea(rsp, rsp_after_call);
 334 
 335 #ifdef ASSERT
 336   // verify that threads correspond
 337   {
 338    Label L1, L2, L3;
 339     __ cmpptr(r15_thread, thread);
 340     __ jcc(Assembler::equal, L1);
 341     __ stop("StubRoutines::call_stub: r15_thread is corrupted");
 342     __ bind(L1);
 343     __ get_thread(rbx);
 344     __ cmpptr(r15_thread, thread);
 345     __ jcc(Assembler::equal, L2);
 346     __ stop("StubRoutines::call_stub: r15_thread is modified by call");
 347     __ bind(L2);
 348     __ cmpptr(r15_thread, rbx);
 349     __ jcc(Assembler::equal, L3);
 350     __ stop("StubRoutines::call_stub: threads must correspond");
 351     __ bind(L3);
 352   }
 353 #endif
 354 
 355   __ pop_cont_fastpath();
 356 
 357   // restore regs belonging to calling function
 358 #ifdef _WIN64
 359   // emit the restores for xmm regs
 360   for (int i = xmm_save_first; i <= last_reg; i++) {
 361     __ movdqu(as_XMMRegister(i), xmm_save(i));
 362   }
 363 #endif
 364   __ movptr(r15, r15_save);
 365   __ movptr(r14, r14_save);
 366   __ movptr(r13, r13_save);
 367   __ movptr(r12, r12_save);
 368   __ movptr(rbx, rbx_save);
 369 
 370 #ifdef _WIN64
 371   __ movptr(rdi, rdi_save);
 372   __ movptr(rsi, rsi_save);
 373 #else
 374   __ ldmxcsr(mxcsr_save);
 375 #endif
 376 
 377   // restore rsp
 378   __ addptr(rsp, -rsp_after_call_off * wordSize);
 379 
 380   // return
 381   __ vzeroupper();
 382   __ pop(rbp);
 383   __ ret(0);
 384 
 385   // handle return types different from T_INT
 386   __ BIND(is_long);
 387   __ movq(Address(c_rarg0, 0), rax);
 388   __ jmp(exit);
 389 
 390   __ BIND(is_float);
 391   __ movflt(Address(c_rarg0, 0), xmm0);
 392   __ jmp(exit);
 393 
 394   __ BIND(is_double);
 395   __ movdbl(Address(c_rarg0, 0), xmm0);
 396   __ jmp(exit);
 397 
 398   return start;
 399 }
 400 
 401 // Return point for a Java call if there's an exception thrown in
 402 // Java code.  The exception is caught and transformed into a
 403 // pending exception stored in JavaThread that can be tested from
 404 // within the VM.
 405 //
 406 // Note: Usually the parameters are removed by the callee. In case
 407 // of an exception crossing an activation frame boundary, that is
 408 // not the case if the callee is compiled code => need to setup the
 409 // rsp.
 410 //
 411 // rax: exception oop
 412 
 413 address StubGenerator::generate_catch_exception() {
 414   StubGenStubId stub_id = StubGenStubId::catch_exception_id;
 415   StubCodeMark mark(this, stub_id);
 416   address start = __ pc();
 417 
 418   // same as in generate_call_stub():
 419   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 420   const Address thread        (rbp, thread_off         * wordSize);
 421 
 422 #ifdef ASSERT
 423   // verify that threads correspond
 424   {
 425     Label L1, L2, L3;
 426     __ cmpptr(r15_thread, thread);
 427     __ jcc(Assembler::equal, L1);
 428     __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
 429     __ bind(L1);
 430     __ get_thread(rbx);
 431     __ cmpptr(r15_thread, thread);
 432     __ jcc(Assembler::equal, L2);
 433     __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
 434     __ bind(L2);
 435     __ cmpptr(r15_thread, rbx);
 436     __ jcc(Assembler::equal, L3);
 437     __ stop("StubRoutines::catch_exception: threads must correspond");
 438     __ bind(L3);
 439   }
 440 #endif
 441 
 442   // set pending exception
 443   __ verify_oop(rax);
 444 
 445   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 446   __ lea(rscratch1, ExternalAddress((address)__FILE__));
 447   __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 448   __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 449 
 450   // complete return to VM
 451   assert(StubRoutines::_call_stub_return_address != nullptr,
 452          "_call_stub_return_address must have been generated before");
 453   __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 454 
 455   return start;
 456 }
 457 
 458 // Continuation point for runtime calls returning with a pending
 459 // exception.  The pending exception check happened in the runtime
 460 // or native call stub.  The pending exception in Thread is
 461 // converted into a Java-level exception.
 462 //
 463 // Contract with Java-level exception handlers:
 464 // rax: exception
 465 // rdx: throwing pc
 466 //
 467 // NOTE: At entry of this stub, exception-pc must be on stack !!
 468 
 469 address StubGenerator::generate_forward_exception() {
 470   StubGenStubId stub_id = StubGenStubId::forward_exception_id;
 471   StubCodeMark mark(this, stub_id);
 472   address start = __ pc();
 473 
 474   // Upon entry, the sp points to the return address returning into
 475   // Java (interpreted or compiled) code; i.e., the return address
 476   // becomes the throwing pc.
 477   //
 478   // Arguments pushed before the runtime call are still on the stack
 479   // but the exception handler will reset the stack pointer ->
 480   // ignore them.  A potential result in registers can be ignored as
 481   // well.
 482 
 483 #ifdef ASSERT
 484   // make sure this code is only executed if there is a pending exception
 485   {
 486     Label L;
 487     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 488     __ jcc(Assembler::notEqual, L);
 489     __ stop("StubRoutines::forward exception: no pending exception (1)");
 490     __ bind(L);
 491   }
 492 #endif
 493 
 494   // compute exception handler into rbx
 495   __ movptr(c_rarg0, Address(rsp, 0));
 496   BLOCK_COMMENT("call exception_handler_for_return_address");
 497   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 498                        SharedRuntime::exception_handler_for_return_address),
 499                   r15_thread, c_rarg0);
 500   __ mov(rbx, rax);
 501 
 502   // setup rax & rdx, remove return address & clear pending exception
 503   __ pop(rdx);
 504   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 505   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 506 
 507 #ifdef ASSERT
 508   // make sure exception is set
 509   {
 510     Label L;
 511     __ testptr(rax, rax);
 512     __ jcc(Assembler::notEqual, L);
 513     __ stop("StubRoutines::forward exception: no pending exception (2)");
 514     __ bind(L);
 515   }
 516 #endif
 517 
 518   // continue at exception handler (return address removed)
 519   // rax: exception
 520   // rbx: exception handler
 521   // rdx: throwing pc
 522   __ verify_oop(rax);
 523   __ jmp(rbx);
 524 
 525   return start;
 526 }
 527 
 528 // Support for intptr_t OrderAccess::fence()
 529 //
 530 // Arguments :
 531 //
 532 // Result:
 533 address StubGenerator::generate_orderaccess_fence() {
 534   StubGenStubId stub_id = StubGenStubId::fence_id;
 535   StubCodeMark mark(this, stub_id);
 536   address start = __ pc();
 537 
 538   __ membar(Assembler::StoreLoad);
 539   __ ret(0);
 540 
 541   return start;
 542 }
 543 
 544 
 545 // Support for intptr_t get_previous_sp()
 546 //
 547 // This routine is used to find the previous stack pointer for the
 548 // caller.
 549 address StubGenerator::generate_get_previous_sp() {
 550   StubGenStubId stub_id = StubGenStubId::get_previous_sp_id;
 551   StubCodeMark mark(this, stub_id);
 552   address start = __ pc();
 553 
 554   __ movptr(rax, rsp);
 555   __ addptr(rax, 8); // return address is at the top of the stack.
 556   __ ret(0);
 557 
 558   return start;
 559 }
 560 
 561 //----------------------------------------------------------------------------------------------------
 562 // Support for void verify_mxcsr()
 563 //
 564 // This routine is used with -Xcheck:jni to verify that native
 565 // JNI code does not return to Java code without restoring the
 566 // MXCSR register to our expected state.
 567 
 568 address StubGenerator::generate_verify_mxcsr() {
 569   StubGenStubId stub_id = StubGenStubId::verify_mxcsr_id;
 570   StubCodeMark mark(this, stub_id);
 571   address start = __ pc();
 572 
 573   const Address mxcsr_save(rsp, 0);
 574 
 575   if (CheckJNICalls) {
 576     Label ok_ret;
 577     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 578     __ push(rax);
 579     __ subptr(rsp, wordSize);      // allocate a temp location
 580     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 581     __ jcc(Assembler::equal, ok_ret);
 582 
 583     __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 584 
 585     __ ldmxcsr(mxcsr_std, rscratch1);
 586 
 587     __ bind(ok_ret);
 588     __ addptr(rsp, wordSize);
 589     __ pop(rax);
 590   }
 591 
 592   __ ret(0);
 593 
 594   return start;
 595 }
 596 
 597 address StubGenerator::generate_f2i_fixup() {
 598   StubGenStubId stub_id = StubGenStubId::f2i_fixup_id;
 599   StubCodeMark mark(this, stub_id);
 600   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 601 
 602   address start = __ pc();
 603 
 604   Label L;
 605 
 606   __ push(rax);
 607   __ push(c_rarg3);
 608   __ push(c_rarg2);
 609   __ push(c_rarg1);
 610 
 611   __ movl(rax, 0x7f800000);
 612   __ xorl(c_rarg3, c_rarg3);
 613   __ movl(c_rarg2, inout);
 614   __ movl(c_rarg1, c_rarg2);
 615   __ andl(c_rarg1, 0x7fffffff);
 616   __ cmpl(rax, c_rarg1); // NaN? -> 0
 617   __ jcc(Assembler::negative, L);
 618   __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 619   __ movl(c_rarg3, 0x80000000);
 620   __ movl(rax, 0x7fffffff);
 621   __ cmovl(Assembler::positive, c_rarg3, rax);
 622 
 623   __ bind(L);
 624   __ movptr(inout, c_rarg3);
 625 
 626   __ pop(c_rarg1);
 627   __ pop(c_rarg2);
 628   __ pop(c_rarg3);
 629   __ pop(rax);
 630 
 631   __ ret(0);
 632 
 633   return start;
 634 }
 635 
 636 address StubGenerator::generate_f2l_fixup() {
 637   StubGenStubId stub_id = StubGenStubId::f2l_fixup_id;
 638   StubCodeMark mark(this, stub_id);
 639   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 640   address start = __ pc();
 641 
 642   Label L;
 643 
 644   __ push(rax);
 645   __ push(c_rarg3);
 646   __ push(c_rarg2);
 647   __ push(c_rarg1);
 648 
 649   __ movl(rax, 0x7f800000);
 650   __ xorl(c_rarg3, c_rarg3);
 651   __ movl(c_rarg2, inout);
 652   __ movl(c_rarg1, c_rarg2);
 653   __ andl(c_rarg1, 0x7fffffff);
 654   __ cmpl(rax, c_rarg1); // NaN? -> 0
 655   __ jcc(Assembler::negative, L);
 656   __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 657   __ mov64(c_rarg3, 0x8000000000000000);
 658   __ mov64(rax, 0x7fffffffffffffff);
 659   __ cmov(Assembler::positive, c_rarg3, rax);
 660 
 661   __ bind(L);
 662   __ movptr(inout, c_rarg3);
 663 
 664   __ pop(c_rarg1);
 665   __ pop(c_rarg2);
 666   __ pop(c_rarg3);
 667   __ pop(rax);
 668 
 669   __ ret(0);
 670 
 671   return start;
 672 }
 673 
 674 address StubGenerator::generate_d2i_fixup() {
 675   StubGenStubId stub_id = StubGenStubId::d2i_fixup_id;
 676   StubCodeMark mark(this, stub_id);
 677   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 678 
 679   address start = __ pc();
 680 
 681   Label L;
 682 
 683   __ push(rax);
 684   __ push(c_rarg3);
 685   __ push(c_rarg2);
 686   __ push(c_rarg1);
 687   __ push(c_rarg0);
 688 
 689   __ movl(rax, 0x7ff00000);
 690   __ movq(c_rarg2, inout);
 691   __ movl(c_rarg3, c_rarg2);
 692   __ mov(c_rarg1, c_rarg2);
 693   __ mov(c_rarg0, c_rarg2);
 694   __ negl(c_rarg3);
 695   __ shrptr(c_rarg1, 0x20);
 696   __ orl(c_rarg3, c_rarg2);
 697   __ andl(c_rarg1, 0x7fffffff);
 698   __ xorl(c_rarg2, c_rarg2);
 699   __ shrl(c_rarg3, 0x1f);
 700   __ orl(c_rarg1, c_rarg3);
 701   __ cmpl(rax, c_rarg1);
 702   __ jcc(Assembler::negative, L); // NaN -> 0
 703   __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 704   __ movl(c_rarg2, 0x80000000);
 705   __ movl(rax, 0x7fffffff);
 706   __ cmov(Assembler::positive, c_rarg2, rax);
 707 
 708   __ bind(L);
 709   __ movptr(inout, c_rarg2);
 710 
 711   __ pop(c_rarg0);
 712   __ pop(c_rarg1);
 713   __ pop(c_rarg2);
 714   __ pop(c_rarg3);
 715   __ pop(rax);
 716 
 717   __ ret(0);
 718 
 719   return start;
 720 }
 721 
 722 address StubGenerator::generate_d2l_fixup() {
 723   StubGenStubId stub_id = StubGenStubId::d2l_fixup_id;
 724   StubCodeMark mark(this, stub_id);
 725   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 726 
 727   address start = __ pc();
 728 
 729   Label L;
 730 
 731   __ push(rax);
 732   __ push(c_rarg3);
 733   __ push(c_rarg2);
 734   __ push(c_rarg1);
 735   __ push(c_rarg0);
 736 
 737   __ movl(rax, 0x7ff00000);
 738   __ movq(c_rarg2, inout);
 739   __ movl(c_rarg3, c_rarg2);
 740   __ mov(c_rarg1, c_rarg2);
 741   __ mov(c_rarg0, c_rarg2);
 742   __ negl(c_rarg3);
 743   __ shrptr(c_rarg1, 0x20);
 744   __ orl(c_rarg3, c_rarg2);
 745   __ andl(c_rarg1, 0x7fffffff);
 746   __ xorl(c_rarg2, c_rarg2);
 747   __ shrl(c_rarg3, 0x1f);
 748   __ orl(c_rarg1, c_rarg3);
 749   __ cmpl(rax, c_rarg1);
 750   __ jcc(Assembler::negative, L); // NaN -> 0
 751   __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 752   __ mov64(c_rarg2, 0x8000000000000000);
 753   __ mov64(rax, 0x7fffffffffffffff);
 754   __ cmovq(Assembler::positive, c_rarg2, rax);
 755 
 756   __ bind(L);
 757   __ movq(inout, c_rarg2);
 758 
 759   __ pop(c_rarg0);
 760   __ pop(c_rarg1);
 761   __ pop(c_rarg2);
 762   __ pop(c_rarg3);
 763   __ pop(rax);
 764 
 765   __ ret(0);
 766 
 767   return start;
 768 }
 769 
 770 address StubGenerator::generate_count_leading_zeros_lut() {
 771   __ align64();
 772   StubGenStubId stub_id = StubGenStubId::vector_count_leading_zeros_lut_id;
 773   StubCodeMark mark(this, stub_id);
 774   address start = __ pc();
 775 
 776   __ emit_data64(0x0101010102020304, relocInfo::none);
 777   __ emit_data64(0x0000000000000000, relocInfo::none);
 778   __ emit_data64(0x0101010102020304, relocInfo::none);
 779   __ emit_data64(0x0000000000000000, relocInfo::none);
 780   __ emit_data64(0x0101010102020304, relocInfo::none);
 781   __ emit_data64(0x0000000000000000, relocInfo::none);
 782   __ emit_data64(0x0101010102020304, relocInfo::none);
 783   __ emit_data64(0x0000000000000000, relocInfo::none);
 784 
 785   return start;
 786 }
 787 
 788 address StubGenerator::generate_popcount_avx_lut() {
 789   __ align64();
 790   StubGenStubId stub_id = StubGenStubId::vector_popcount_lut_id;
 791   StubCodeMark mark(this, stub_id);
 792   address start = __ pc();
 793 
 794   __ emit_data64(0x0302020102010100, relocInfo::none);
 795   __ emit_data64(0x0403030203020201, relocInfo::none);
 796   __ emit_data64(0x0302020102010100, relocInfo::none);
 797   __ emit_data64(0x0403030203020201, relocInfo::none);
 798   __ emit_data64(0x0302020102010100, relocInfo::none);
 799   __ emit_data64(0x0403030203020201, relocInfo::none);
 800   __ emit_data64(0x0302020102010100, relocInfo::none);
 801   __ emit_data64(0x0403030203020201, relocInfo::none);
 802 
 803   return start;
 804 }
 805 
 806 address StubGenerator::generate_iota_indices() {
 807   __ align(CodeEntryAlignment);
 808   StubGenStubId stub_id = StubGenStubId::vector_iota_indices_id;
 809   StubCodeMark mark(this, stub_id);
 810   address start = __ pc();
 811   // B
 812   __ emit_data64(0x0706050403020100, relocInfo::none);
 813   __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
 814   __ emit_data64(0x1716151413121110, relocInfo::none);
 815   __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
 816   __ emit_data64(0x2726252423222120, relocInfo::none);
 817   __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
 818   __ emit_data64(0x3736353433323130, relocInfo::none);
 819   __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
 820   // W
 821   __ emit_data64(0x0003000200010000, relocInfo::none);
 822   __ emit_data64(0x0007000600050004, relocInfo::none);
 823   __ emit_data64(0x000B000A00090008, relocInfo::none);
 824   __ emit_data64(0x000F000E000D000C, relocInfo::none);
 825   __ emit_data64(0x0013001200110010, relocInfo::none);
 826   __ emit_data64(0x0017001600150014, relocInfo::none);
 827   __ emit_data64(0x001B001A00190018, relocInfo::none);
 828   __ emit_data64(0x001F001E001D001C, relocInfo::none);
 829   // D
 830   __ emit_data64(0x0000000100000000, relocInfo::none);
 831   __ emit_data64(0x0000000300000002, relocInfo::none);
 832   __ emit_data64(0x0000000500000004, relocInfo::none);
 833   __ emit_data64(0x0000000700000006, relocInfo::none);
 834   __ emit_data64(0x0000000900000008, relocInfo::none);
 835   __ emit_data64(0x0000000B0000000A, relocInfo::none);
 836   __ emit_data64(0x0000000D0000000C, relocInfo::none);
 837   __ emit_data64(0x0000000F0000000E, relocInfo::none);
 838   // Q
 839   __ emit_data64(0x0000000000000000, relocInfo::none);
 840   __ emit_data64(0x0000000000000001, relocInfo::none);
 841   __ emit_data64(0x0000000000000002, relocInfo::none);
 842   __ emit_data64(0x0000000000000003, relocInfo::none);
 843   __ emit_data64(0x0000000000000004, relocInfo::none);
 844   __ emit_data64(0x0000000000000005, relocInfo::none);
 845   __ emit_data64(0x0000000000000006, relocInfo::none);
 846   __ emit_data64(0x0000000000000007, relocInfo::none);
 847   // D - FP
 848   __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
 849   __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
 850   __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
 851   __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
 852   __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
 853   __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
 854   __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
 855   __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
 856   // Q - FP
 857   __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
 858   __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
 859   __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
 860   __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
 861   __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
 862   __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
 863   __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
 864   __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
 865   return start;
 866 }
 867 
 868 address StubGenerator::generate_vector_reverse_bit_lut() {
 869   __ align(CodeEntryAlignment);
 870   StubGenStubId stub_id = StubGenStubId::vector_reverse_bit_lut_id;
 871   StubCodeMark mark(this, stub_id);
 872   address start = __ pc();
 873 
 874   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 875   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 876   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 877   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 878   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 879   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 880   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 881   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 882 
 883   return start;
 884 }
 885 
 886 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() {
 887   __ align(CodeEntryAlignment);
 888   StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_long_id;
 889   StubCodeMark mark(this, stub_id);
 890   address start = __ pc();
 891 
 892   __ emit_data64(0x0001020304050607, relocInfo::none);
 893   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 894   __ emit_data64(0x0001020304050607, relocInfo::none);
 895   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 896   __ emit_data64(0x0001020304050607, relocInfo::none);
 897   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 898   __ emit_data64(0x0001020304050607, relocInfo::none);
 899   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 900 
 901   return start;
 902 }
 903 
 904 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() {
 905   __ align(CodeEntryAlignment);
 906   StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_int_id;
 907   StubCodeMark mark(this, stub_id);
 908   address start = __ pc();
 909 
 910   __ emit_data64(0x0405060700010203, relocInfo::none);
 911   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 912   __ emit_data64(0x0405060700010203, relocInfo::none);
 913   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 914   __ emit_data64(0x0405060700010203, relocInfo::none);
 915   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 916   __ emit_data64(0x0405060700010203, relocInfo::none);
 917   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 918 
 919   return start;
 920 }
 921 
 922 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() {
 923   __ align(CodeEntryAlignment);
 924   StubGenStubId stub_id = StubGenStubId::vector_reverse_byte_perm_mask_short_id;
 925   StubCodeMark mark(this, stub_id);
 926   address start = __ pc();
 927 
 928   __ emit_data64(0x0607040502030001, relocInfo::none);
 929   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 930   __ emit_data64(0x0607040502030001, relocInfo::none);
 931   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 932   __ emit_data64(0x0607040502030001, relocInfo::none);
 933   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 934   __ emit_data64(0x0607040502030001, relocInfo::none);
 935   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 936 
 937   return start;
 938 }
 939 
 940 address StubGenerator::generate_vector_byte_shuffle_mask() {
 941   __ align(CodeEntryAlignment);
 942   StubGenStubId stub_id = StubGenStubId::vector_byte_shuffle_mask_id;
 943   StubCodeMark mark(this, stub_id);
 944   address start = __ pc();
 945 
 946   __ emit_data64(0x7070707070707070, relocInfo::none);
 947   __ emit_data64(0x7070707070707070, relocInfo::none);
 948   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 949   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 950 
 951   return start;
 952 }
 953 
 954 address StubGenerator::generate_fp_mask(StubGenStubId stub_id, int64_t mask) {
 955   __ align(CodeEntryAlignment);
 956   StubCodeMark mark(this, stub_id);
 957   address start = __ pc();
 958 
 959   __ emit_data64( mask, relocInfo::none );
 960   __ emit_data64( mask, relocInfo::none );
 961 
 962   return start;
 963 }
 964 
 965 address StubGenerator::generate_compress_perm_table(StubGenStubId stub_id) {
 966   int esize;
 967   switch (stub_id) {
 968   case compress_perm_table32_id:
 969     esize = 32;
 970     break;
 971   case compress_perm_table64_id:
 972     esize = 64;
 973     break;
 974   default:
 975     ShouldNotReachHere();
 976   }
 977   __ align(CodeEntryAlignment);
 978   StubCodeMark mark(this, stub_id);
 979   address start = __ pc();
 980   if (esize == 32) {
 981     // Loop to generate 256 x 8 int compression permute index table. A row is
 982     // accessed using 8 bit index computed using vector mask. An entry in
 983     // a row holds either a valid permute index corresponding to set bit position
 984     // or a -1 (default) value.
 985     for (int mask = 0; mask < 256; mask++) {
 986       int ctr = 0;
 987       for (int j = 0; j < 8; j++) {
 988         if (mask & (1 << j)) {
 989           __ emit_data(j, relocInfo::none);
 990           ctr++;
 991         }
 992       }
 993       for (; ctr < 8; ctr++) {
 994         __ emit_data(-1, relocInfo::none);
 995       }
 996     }
 997   } else {
 998     assert(esize == 64, "");
 999     // Loop to generate 16 x 4 long compression permute index table. A row is
1000     // accessed using 4 bit index computed using vector mask. An entry in
1001     // a row holds either a valid permute index pair for a quadword corresponding
1002     // to set bit position or a -1 (default) value.
1003     for (int mask = 0; mask < 16; mask++) {
1004       int ctr = 0;
1005       for (int j = 0; j < 4; j++) {
1006         if (mask & (1 << j)) {
1007           __ emit_data(2 * j, relocInfo::none);
1008           __ emit_data(2 * j + 1, relocInfo::none);
1009           ctr++;
1010         }
1011       }
1012       for (; ctr < 4; ctr++) {
1013         __ emit_data64(-1L, relocInfo::none);
1014       }
1015     }
1016   }
1017   return start;
1018 }
1019 
1020 address StubGenerator::generate_expand_perm_table(StubGenStubId stub_id) {
1021   int esize;
1022   switch (stub_id) {
1023   case expand_perm_table32_id:
1024     esize = 32;
1025     break;
1026   case expand_perm_table64_id:
1027     esize = 64;
1028     break;
1029   default:
1030     ShouldNotReachHere();
1031   }
1032   __ align(CodeEntryAlignment);
1033   StubCodeMark mark(this, stub_id);
1034   address start = __ pc();
1035   if (esize == 32) {
1036     // Loop to generate 256 x 8 int expand permute index table. A row is accessed
1037     // using 8 bit index computed using vector mask. An entry in a row holds either
1038     // a valid permute index (starting from least significant lane) placed at poisition
1039     // corresponding to set bit position or a -1 (default) value.
1040     for (int mask = 0; mask < 256; mask++) {
1041       int ctr = 0;
1042       for (int j = 0; j < 8; j++) {
1043         if (mask & (1 << j)) {
1044           __ emit_data(ctr++, relocInfo::none);
1045         } else {
1046           __ emit_data(-1, relocInfo::none);
1047         }
1048       }
1049     }
1050   } else {
1051     assert(esize == 64, "");
1052     // Loop to generate 16 x 4 long expand permute index table. A row is accessed
1053     // using 4 bit index computed using vector mask. An entry in a row holds either
1054     // a valid doubleword permute index pair representing a quadword index (starting
1055     // from least significant lane) placed at poisition corresponding to set bit
1056     // position or a -1 (default) value.
1057     for (int mask = 0; mask < 16; mask++) {
1058       int ctr = 0;
1059       for (int j = 0; j < 4; j++) {
1060         if (mask & (1 << j)) {
1061           __ emit_data(2 * ctr, relocInfo::none);
1062           __ emit_data(2 * ctr + 1, relocInfo::none);
1063           ctr++;
1064         } else {
1065           __ emit_data64(-1L, relocInfo::none);
1066         }
1067       }
1068     }
1069   }
1070   return start;
1071 }
1072 
1073 address StubGenerator::generate_vector_mask(StubGenStubId stub_id, int64_t mask) {
1074   __ align(CodeEntryAlignment);
1075   StubCodeMark mark(this, stub_id);
1076   address start = __ pc();
1077 
1078   __ emit_data64(mask, relocInfo::none);
1079   __ emit_data64(mask, relocInfo::none);
1080   __ emit_data64(mask, relocInfo::none);
1081   __ emit_data64(mask, relocInfo::none);
1082   __ emit_data64(mask, relocInfo::none);
1083   __ emit_data64(mask, relocInfo::none);
1084   __ emit_data64(mask, relocInfo::none);
1085   __ emit_data64(mask, relocInfo::none);
1086 
1087   return start;
1088 }
1089 
1090 address StubGenerator::generate_vector_byte_perm_mask() {
1091   __ align(CodeEntryAlignment);
1092   StubGenStubId stub_id = StubGenStubId::vector_byte_perm_mask_id;
1093   StubCodeMark mark(this, stub_id);
1094   address start = __ pc();
1095 
1096   __ emit_data64(0x0000000000000001, relocInfo::none);
1097   __ emit_data64(0x0000000000000003, relocInfo::none);
1098   __ emit_data64(0x0000000000000005, relocInfo::none);
1099   __ emit_data64(0x0000000000000007, relocInfo::none);
1100   __ emit_data64(0x0000000000000000, relocInfo::none);
1101   __ emit_data64(0x0000000000000002, relocInfo::none);
1102   __ emit_data64(0x0000000000000004, relocInfo::none);
1103   __ emit_data64(0x0000000000000006, relocInfo::none);
1104 
1105   return start;
1106 }
1107 
1108 address StubGenerator::generate_vector_fp_mask(StubGenStubId stub_id, int64_t mask) {
1109   __ align(CodeEntryAlignment);
1110   StubCodeMark mark(this, stub_id);
1111   address start = __ pc();
1112 
1113   __ emit_data64(mask, relocInfo::none);
1114   __ emit_data64(mask, relocInfo::none);
1115   __ emit_data64(mask, relocInfo::none);
1116   __ emit_data64(mask, relocInfo::none);
1117   __ emit_data64(mask, relocInfo::none);
1118   __ emit_data64(mask, relocInfo::none);
1119   __ emit_data64(mask, relocInfo::none);
1120   __ emit_data64(mask, relocInfo::none);
1121 
1122   return start;
1123 }
1124 
1125 address StubGenerator::generate_vector_custom_i32(StubGenStubId stub_id, Assembler::AvxVectorLen len,
1126                                    int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1127                                    int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1128                                    int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1129                                    int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1130   __ align(CodeEntryAlignment);
1131   StubCodeMark mark(this, stub_id);
1132   address start = __ pc();
1133 
1134   assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1135   __ emit_data(val0, relocInfo::none, 0);
1136   __ emit_data(val1, relocInfo::none, 0);
1137   __ emit_data(val2, relocInfo::none, 0);
1138   __ emit_data(val3, relocInfo::none, 0);
1139   if (len >= Assembler::AVX_256bit) {
1140     __ emit_data(val4, relocInfo::none, 0);
1141     __ emit_data(val5, relocInfo::none, 0);
1142     __ emit_data(val6, relocInfo::none, 0);
1143     __ emit_data(val7, relocInfo::none, 0);
1144     if (len >= Assembler::AVX_512bit) {
1145       __ emit_data(val8, relocInfo::none, 0);
1146       __ emit_data(val9, relocInfo::none, 0);
1147       __ emit_data(val10, relocInfo::none, 0);
1148       __ emit_data(val11, relocInfo::none, 0);
1149       __ emit_data(val12, relocInfo::none, 0);
1150       __ emit_data(val13, relocInfo::none, 0);
1151       __ emit_data(val14, relocInfo::none, 0);
1152       __ emit_data(val15, relocInfo::none, 0);
1153     }
1154   }
1155   return start;
1156 }
1157 
1158 // Non-destructive plausibility checks for oops
1159 //
1160 // Arguments:
1161 //    all args on stack!
1162 //
1163 // Stack after saving c_rarg3:
1164 //    [tos + 0]: saved c_rarg3
1165 //    [tos + 1]: saved c_rarg2
1166 //    [tos + 2]: saved r12 (several TemplateTable methods use it)
1167 //    [tos + 3]: saved flags
1168 //    [tos + 4]: return address
1169 //  * [tos + 5]: error message (char*)
1170 //  * [tos + 6]: object to verify (oop)
1171 //  * [tos + 7]: saved rax - saved by caller and bashed
1172 //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
1173 //  * = popped on exit
1174 address StubGenerator::generate_verify_oop() {
1175   StubGenStubId stub_id = StubGenStubId::verify_oop_id;
1176   StubCodeMark mark(this, stub_id);
1177   address start = __ pc();
1178 
1179   Label exit, error;
1180 
1181   __ pushf();
1182   __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1183 
1184   __ push(r12);
1185 
1186   // save c_rarg2 and c_rarg3
1187   __ push(c_rarg2);
1188   __ push(c_rarg3);
1189 
1190   enum {
1191     // After previous pushes.
1192     oop_to_verify = 6 * wordSize,
1193     saved_rax     = 7 * wordSize,
1194     saved_r10     = 8 * wordSize,
1195 
1196     // Before the call to MacroAssembler::debug(), see below.
1197     return_addr   = 16 * wordSize,
1198     error_msg     = 17 * wordSize
1199   };
1200 
1201   // get object
1202   __ movptr(rax, Address(rsp, oop_to_verify));
1203 
1204   // make sure object is 'reasonable'
1205   __ testptr(rax, rax);
1206   __ jcc(Assembler::zero, exit); // if obj is null it is OK
1207 
1208    BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler();
1209    bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error);
1210 
1211   // return if everything seems ok
1212   __ bind(exit);
1213   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1214   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1215   __ pop(c_rarg3);                             // restore c_rarg3
1216   __ pop(c_rarg2);                             // restore c_rarg2
1217   __ pop(r12);                                 // restore r12
1218   __ popf();                                   // restore flags
1219   __ ret(4 * wordSize);                        // pop caller saved stuff
1220 
1221   // handle errors
1222   __ bind(error);
1223   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1224   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1225   __ pop(c_rarg3);                             // get saved c_rarg3 back
1226   __ pop(c_rarg2);                             // get saved c_rarg2 back
1227   __ pop(r12);                                 // get saved r12 back
1228   __ popf();                                   // get saved flags off stack --
1229                                                // will be ignored
1230 
1231   __ pusha();                                  // push registers
1232                                                // (rip is already
1233                                                // already pushed)
1234   // debug(char* msg, int64_t pc, int64_t regs[])
1235   // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1236   // pushed all the registers, so now the stack looks like:
1237   //     [tos +  0] 16 saved registers
1238   //     [tos + 16] return address
1239   //   * [tos + 17] error message (char*)
1240   //   * [tos + 18] object to verify (oop)
1241   //   * [tos + 19] saved rax - saved by caller and bashed
1242   //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1243   //   * = popped on exit
1244 
1245   __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1246   __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1247   __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1248   __ mov(r12, rsp);                               // remember rsp
1249   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1250   __ andptr(rsp, -16);                            // align stack as required by ABI
1251   BLOCK_COMMENT("call MacroAssembler::debug");
1252   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1253   __ hlt();
1254 
1255   return start;
1256 }
1257 
1258 
1259 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1260 //
1261 // Outputs:
1262 //    rdi - rcx
1263 //    rsi - rdx
1264 //    rdx - r8
1265 //    rcx - r9
1266 //
1267 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1268 // are non-volatile.  r9 and r10 should not be used by the caller.
1269 //
1270 void StubGenerator::setup_arg_regs(int nargs) {
1271   const Register saved_rdi = r9;
1272   const Register saved_rsi = r10;
1273   assert(nargs == 3 || nargs == 4, "else fix");
1274 #ifdef _WIN64
1275   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1276          "unexpected argument registers");
1277   if (nargs == 4) {
1278     __ mov(rax, r9);  // r9 is also saved_rdi
1279   }
1280   __ movptr(saved_rdi, rdi);
1281   __ movptr(saved_rsi, rsi);
1282   __ mov(rdi, rcx); // c_rarg0
1283   __ mov(rsi, rdx); // c_rarg1
1284   __ mov(rdx, r8);  // c_rarg2
1285   if (nargs == 4) {
1286     __ mov(rcx, rax); // c_rarg3 (via rax)
1287   }
1288 #else
1289   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1290          "unexpected argument registers");
1291 #endif
1292   DEBUG_ONLY(_regs_in_thread = false;)
1293 }
1294 
1295 
1296 void StubGenerator::restore_arg_regs() {
1297   assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1298   const Register saved_rdi = r9;
1299   const Register saved_rsi = r10;
1300 #ifdef _WIN64
1301   __ movptr(rdi, saved_rdi);
1302   __ movptr(rsi, saved_rsi);
1303 #endif
1304 }
1305 
1306 
1307 // This is used in places where r10 is a scratch register, and can
1308 // be adapted if r9 is needed also.
1309 void StubGenerator::setup_arg_regs_using_thread(int nargs) {
1310   const Register saved_r15 = r9;
1311   assert(nargs == 3 || nargs == 4, "else fix");
1312 #ifdef _WIN64
1313   if (nargs == 4) {
1314     __ mov(rax, r9);       // r9 is also saved_r15
1315   }
1316   __ mov(saved_r15, r15);  // r15 is callee saved and needs to be restored
1317   __ get_thread(r15_thread);
1318   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1319          "unexpected argument registers");
1320   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1321   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1322 
1323   __ mov(rdi, rcx); // c_rarg0
1324   __ mov(rsi, rdx); // c_rarg1
1325   __ mov(rdx, r8);  // c_rarg2
1326   if (nargs == 4) {
1327     __ mov(rcx, rax); // c_rarg3 (via rax)
1328   }
1329 #else
1330   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1331          "unexpected argument registers");
1332 #endif
1333   DEBUG_ONLY(_regs_in_thread = true;)
1334 }
1335 
1336 
1337 void StubGenerator::restore_arg_regs_using_thread() {
1338   assert(_regs_in_thread, "wrong call to restore_arg_regs");
1339   const Register saved_r15 = r9;
1340 #ifdef _WIN64
1341   __ get_thread(r15_thread);
1342   __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1343   __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1344   __ mov(r15, saved_r15);  // r15 is callee saved and needs to be restored
1345 #endif
1346 }
1347 
1348 
1349 void StubGenerator::setup_argument_regs(BasicType type) {
1350   if (type == T_BYTE || type == T_SHORT) {
1351     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1352                       // r9 and r10 may be used to save non-volatile registers
1353   } else {
1354     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1355                                    // r9 is used to save r15_thread
1356   }
1357 }
1358 
1359 
1360 void StubGenerator::restore_argument_regs(BasicType type) {
1361   if (type == T_BYTE || type == T_SHORT) {
1362     restore_arg_regs();
1363   } else {
1364     restore_arg_regs_using_thread();
1365   }
1366 }
1367 
1368 address StubGenerator::generate_data_cache_writeback() {
1369   const Register src        = c_rarg0;  // source address
1370 
1371   __ align(CodeEntryAlignment);
1372 
1373   StubGenStubId stub_id = StubGenStubId::data_cache_writeback_id;
1374   StubCodeMark mark(this, stub_id);
1375 
1376   address start = __ pc();
1377 
1378   __ enter();
1379   __ cache_wb(Address(src, 0));
1380   __ leave();
1381   __ ret(0);
1382 
1383   return start;
1384 }
1385 
1386 address StubGenerator::generate_data_cache_writeback_sync() {
1387   const Register is_pre    = c_rarg0;  // pre or post sync
1388 
1389   __ align(CodeEntryAlignment);
1390 
1391   StubGenStubId stub_id = StubGenStubId::data_cache_writeback_sync_id;
1392   StubCodeMark mark(this, stub_id);
1393 
1394   // pre wbsync is a no-op
1395   // post wbsync translates to an sfence
1396 
1397   Label skip;
1398   address start = __ pc();
1399 
1400   __ enter();
1401   __ cmpl(is_pre, 0);
1402   __ jcc(Assembler::notEqual, skip);
1403   __ cache_wbsync(false);
1404   __ bind(skip);
1405   __ leave();
1406   __ ret(0);
1407 
1408   return start;
1409 }
1410 
1411 // ofs and limit are use for multi-block byte array.
1412 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1413 address StubGenerator::generate_md5_implCompress(StubGenStubId stub_id) {
1414   bool multi_block;
1415   switch (stub_id) {
1416   case md5_implCompress_id:
1417     multi_block = false;
1418     break;
1419   case md5_implCompressMB_id:
1420     multi_block = true;
1421     break;
1422   default:
1423     ShouldNotReachHere();
1424   }
1425   __ align(CodeEntryAlignment);
1426   StubCodeMark mark(this, stub_id);
1427   address start = __ pc();
1428 
1429   const Register buf_param = r15;
1430   const Address state_param(rsp, 0 * wordSize);
1431   const Address ofs_param  (rsp, 1 * wordSize    );
1432   const Address limit_param(rsp, 1 * wordSize + 4);
1433 
1434   __ enter();
1435   __ push(rbx);
1436   __ push(rdi);
1437   __ push(rsi);
1438   __ push(r15);
1439   __ subptr(rsp, 2 * wordSize);
1440 
1441   __ movptr(buf_param, c_rarg0);
1442   __ movptr(state_param, c_rarg1);
1443   if (multi_block) {
1444     __ movl(ofs_param, c_rarg2);
1445     __ movl(limit_param, c_rarg3);
1446   }
1447   __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1448 
1449   __ addptr(rsp, 2 * wordSize);
1450   __ pop(r15);
1451   __ pop(rsi);
1452   __ pop(rdi);
1453   __ pop(rbx);
1454   __ leave();
1455   __ ret(0);
1456 
1457   return start;
1458 }
1459 
1460 address StubGenerator::generate_upper_word_mask() {
1461   __ align64();
1462   StubGenStubId stub_id = StubGenStubId::upper_word_mask_id;
1463   StubCodeMark mark(this, stub_id);
1464   address start = __ pc();
1465 
1466   __ emit_data64(0x0000000000000000, relocInfo::none);
1467   __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1468 
1469   return start;
1470 }
1471 
1472 address StubGenerator::generate_shuffle_byte_flip_mask() {
1473   __ align64();
1474   StubGenStubId stub_id = StubGenStubId::shuffle_byte_flip_mask_id;
1475   StubCodeMark mark(this, stub_id);
1476   address start = __ pc();
1477 
1478   __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1479   __ emit_data64(0x0001020304050607, relocInfo::none);
1480 
1481   return start;
1482 }
1483 
1484 // ofs and limit are use for multi-block byte array.
1485 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1486 address StubGenerator::generate_sha1_implCompress(StubGenStubId stub_id) {
1487   bool multi_block;
1488   switch (stub_id) {
1489   case sha1_implCompress_id:
1490     multi_block = false;
1491     break;
1492   case sha1_implCompressMB_id:
1493     multi_block = true;
1494     break;
1495   default:
1496     ShouldNotReachHere();
1497   }
1498   __ align(CodeEntryAlignment);
1499   StubCodeMark mark(this, stub_id);
1500   address start = __ pc();
1501 
1502   Register buf = c_rarg0;
1503   Register state = c_rarg1;
1504   Register ofs = c_rarg2;
1505   Register limit = c_rarg3;
1506 
1507   const XMMRegister abcd = xmm0;
1508   const XMMRegister e0 = xmm1;
1509   const XMMRegister e1 = xmm2;
1510   const XMMRegister msg0 = xmm3;
1511 
1512   const XMMRegister msg1 = xmm4;
1513   const XMMRegister msg2 = xmm5;
1514   const XMMRegister msg3 = xmm6;
1515   const XMMRegister shuf_mask = xmm7;
1516 
1517   __ enter();
1518 
1519   __ subptr(rsp, 4 * wordSize);
1520 
1521   __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1522     buf, state, ofs, limit, rsp, multi_block);
1523 
1524   __ addptr(rsp, 4 * wordSize);
1525 
1526   __ leave();
1527   __ ret(0);
1528 
1529   return start;
1530 }
1531 
1532 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1533   __ align64();
1534   StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_id;
1535   StubCodeMark mark(this, stub_id);
1536   address start = __ pc();
1537 
1538   __ emit_data64(0x0405060700010203, relocInfo::none);
1539   __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1540 
1541   if (VM_Version::supports_avx2()) {
1542     __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1543     __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1544     // _SHUF_00BA
1545     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1546     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1547     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1548     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1549     // _SHUF_DC00
1550     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1551     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1552     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1553     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1554   }
1555 
1556   return start;
1557 }
1558 
1559 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1560 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1561   __ align32();
1562   StubGenStubId stub_id = StubGenStubId::pshuffle_byte_flip_mask_sha512_id;
1563   StubCodeMark mark(this, stub_id);
1564   address start = __ pc();
1565 
1566   if (VM_Version::supports_avx2()) {
1567     __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1568     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1569     __ emit_data64(0x1011121314151617, relocInfo::none);
1570     __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1571     __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1572     __ emit_data64(0x0000000000000000, relocInfo::none);
1573     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1574     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1575   }
1576 
1577   return start;
1578 }
1579 
1580 // ofs and limit are use for multi-block byte array.
1581 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1582 address StubGenerator::generate_sha256_implCompress(StubGenStubId stub_id) {
1583   bool multi_block;
1584   switch (stub_id) {
1585   case sha256_implCompress_id:
1586     multi_block = false;
1587     break;
1588   case sha256_implCompressMB_id:
1589     multi_block = true;
1590     break;
1591   default:
1592     ShouldNotReachHere();
1593   }
1594   assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1595   __ align(CodeEntryAlignment);
1596   StubCodeMark mark(this, stub_id);
1597   address start = __ pc();
1598 
1599   Register buf = c_rarg0;
1600   Register state = c_rarg1;
1601   Register ofs = c_rarg2;
1602   Register limit = c_rarg3;
1603 
1604   const XMMRegister msg = xmm0;
1605   const XMMRegister state0 = xmm1;
1606   const XMMRegister state1 = xmm2;
1607   const XMMRegister msgtmp0 = xmm3;
1608 
1609   const XMMRegister msgtmp1 = xmm4;
1610   const XMMRegister msgtmp2 = xmm5;
1611   const XMMRegister msgtmp3 = xmm6;
1612   const XMMRegister msgtmp4 = xmm7;
1613 
1614   const XMMRegister shuf_mask = xmm8;
1615 
1616   __ enter();
1617 
1618   __ subptr(rsp, 4 * wordSize);
1619 
1620   if (VM_Version::supports_sha()) {
1621     __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1622       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1623   } else if (VM_Version::supports_avx2()) {
1624     __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1625       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1626   }
1627   __ addptr(rsp, 4 * wordSize);
1628   __ vzeroupper();
1629   __ leave();
1630   __ ret(0);
1631 
1632   return start;
1633 }
1634 
1635 address StubGenerator::generate_sha512_implCompress(StubGenStubId stub_id) {
1636   bool multi_block;
1637   switch (stub_id) {
1638   case sha512_implCompress_id:
1639     multi_block = false;
1640     break;
1641   case sha512_implCompressMB_id:
1642     multi_block = true;
1643     break;
1644   default:
1645     ShouldNotReachHere();
1646   }
1647   assert(VM_Version::supports_avx2(), "");
1648   assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), "");
1649   __ align(CodeEntryAlignment);
1650   StubCodeMark mark(this, stub_id);
1651   address start = __ pc();
1652 
1653   Register buf = c_rarg0;
1654   Register state = c_rarg1;
1655   Register ofs = c_rarg2;
1656   Register limit = c_rarg3;
1657 
1658   __ enter();
1659 
1660   if (VM_Version::supports_sha512()) {
1661       __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block);
1662   } else {
1663     const XMMRegister msg = xmm0;
1664     const XMMRegister state0 = xmm1;
1665     const XMMRegister state1 = xmm2;
1666     const XMMRegister msgtmp0 = xmm3;
1667     const XMMRegister msgtmp1 = xmm4;
1668     const XMMRegister msgtmp2 = xmm5;
1669     const XMMRegister msgtmp3 = xmm6;
1670     const XMMRegister msgtmp4 = xmm7;
1671 
1672     const XMMRegister shuf_mask = xmm8;
1673     __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1674       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1675   }
1676   __ vzeroupper();
1677   __ leave();
1678   __ ret(0);
1679 
1680   return start;
1681 }
1682 
1683 address StubGenerator::base64_shuffle_addr() {
1684   __ align64();
1685   StubGenStubId stub_id = StubGenStubId::shuffle_base64_id;
1686   StubCodeMark mark(this, stub_id);
1687   address start = __ pc();
1688 
1689   assert(((unsigned long long)start & 0x3f) == 0,
1690          "Alignment problem (0x%08llx)", (unsigned long long)start);
1691   __ emit_data64(0x0405030401020001, relocInfo::none);
1692   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1693   __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1694   __ emit_data64(0x1617151613141213, relocInfo::none);
1695   __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1696   __ emit_data64(0x222321221f201e1f, relocInfo::none);
1697   __ emit_data64(0x2829272825262425, relocInfo::none);
1698   __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1699 
1700   return start;
1701 }
1702 
1703 address StubGenerator::base64_avx2_shuffle_addr() {
1704   __ align32();
1705   StubGenStubId stub_id = StubGenStubId::avx2_shuffle_base64_id;
1706   StubCodeMark mark(this, stub_id);
1707   address start = __ pc();
1708 
1709   __ emit_data64(0x0809070805060405, relocInfo::none);
1710   __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1711   __ emit_data64(0x0405030401020001, relocInfo::none);
1712   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1713 
1714   return start;
1715 }
1716 
1717 address StubGenerator::base64_avx2_input_mask_addr() {
1718   __ align32();
1719   StubGenStubId stub_id = StubGenStubId::avx2_input_mask_base64_id;
1720   StubCodeMark mark(this, stub_id);
1721   address start = __ pc();
1722 
1723   __ emit_data64(0x8000000000000000, relocInfo::none);
1724   __ emit_data64(0x8000000080000000, relocInfo::none);
1725   __ emit_data64(0x8000000080000000, relocInfo::none);
1726   __ emit_data64(0x8000000080000000, relocInfo::none);
1727 
1728   return start;
1729 }
1730 
1731 address StubGenerator::base64_avx2_lut_addr() {
1732   __ align32();
1733   StubGenStubId stub_id = StubGenStubId::avx2_lut_base64_id;
1734   StubCodeMark mark(this, stub_id);
1735   address start = __ pc();
1736 
1737   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1738   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1739   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1740   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1741 
1742   // URL LUT
1743   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1744   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1745   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1746   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1747 
1748   return start;
1749 }
1750 
1751 address StubGenerator::base64_encoding_table_addr() {
1752   __ align64();
1753   StubGenStubId stub_id = StubGenStubId::encoding_table_base64_id;
1754   StubCodeMark mark(this, stub_id);
1755   address start = __ pc();
1756 
1757   assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1758   __ emit_data64(0x4847464544434241, relocInfo::none);
1759   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1760   __ emit_data64(0x5857565554535251, relocInfo::none);
1761   __ emit_data64(0x6665646362615a59, relocInfo::none);
1762   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1763   __ emit_data64(0x767574737271706f, relocInfo::none);
1764   __ emit_data64(0x333231307a797877, relocInfo::none);
1765   __ emit_data64(0x2f2b393837363534, relocInfo::none);
1766 
1767   // URL table
1768   __ emit_data64(0x4847464544434241, relocInfo::none);
1769   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1770   __ emit_data64(0x5857565554535251, relocInfo::none);
1771   __ emit_data64(0x6665646362615a59, relocInfo::none);
1772   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1773   __ emit_data64(0x767574737271706f, relocInfo::none);
1774   __ emit_data64(0x333231307a797877, relocInfo::none);
1775   __ emit_data64(0x5f2d393837363534, relocInfo::none);
1776 
1777   return start;
1778 }
1779 
1780 // Code for generating Base64 encoding.
1781 // Intrinsic function prototype in Base64.java:
1782 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1783 // boolean isURL) {
1784 address StubGenerator::generate_base64_encodeBlock()
1785 {
1786   __ align(CodeEntryAlignment);
1787   StubGenStubId stub_id = StubGenStubId::base64_encodeBlock_id;
1788   StubCodeMark mark(this, stub_id);
1789   address start = __ pc();
1790 
1791   __ enter();
1792 
1793   // Save callee-saved registers before using them
1794   __ push(r12);
1795   __ push(r13);
1796   __ push(r14);
1797   __ push(r15);
1798 
1799   // arguments
1800   const Register source = c_rarg0;       // Source Array
1801   const Register start_offset = c_rarg1; // start offset
1802   const Register end_offset = c_rarg2;   // end offset
1803   const Register dest = c_rarg3;   // destination array
1804 
1805 #ifndef _WIN64
1806   const Register dp = c_rarg4;    // Position for writing to dest array
1807   const Register isURL = c_rarg5; // Base64 or URL character set
1808 #else
1809   const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1810   const Address isURL_mem(rbp, 7 * wordSize);
1811   const Register isURL = r10; // pick the volatile windows register
1812   const Register dp = r12;
1813   __ movl(dp, dp_mem);
1814   __ movl(isURL, isURL_mem);
1815 #endif
1816 
1817   const Register length = r14;
1818   const Register encode_table = r13;
1819   Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1820 
1821   // calculate length from offsets
1822   __ movl(length, end_offset);
1823   __ subl(length, start_offset);
1824   __ jcc(Assembler::lessEqual, L_exit);
1825 
1826   // Code for 512-bit VBMI encoding.  Encodes 48 input bytes into 64
1827   // output bytes. We read 64 input bytes and ignore the last 16, so be
1828   // sure not to read past the end of the input buffer.
1829   if (VM_Version::supports_avx512_vbmi()) {
1830     __ cmpl(length, 64); // Do not overrun input buffer.
1831     __ jcc(Assembler::below, L_not512);
1832 
1833     __ shll(isURL, 6); // index into decode table based on isURL
1834     __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1835     __ addptr(encode_table, isURL);
1836     __ shrl(isURL, 6); // restore isURL
1837 
1838     __ mov64(rax, 0x3036242a1016040aull); // Shifts
1839     __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1840     __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1841     __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1842 
1843     __ align32();
1844     __ BIND(L_vbmiLoop);
1845 
1846     __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1847     __ subl(length, 48);
1848 
1849     // Put the input bytes into the proper lanes for writing, then
1850     // encode them.
1851     __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1852     __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1853 
1854     // Write to destination
1855     __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1856 
1857     __ addptr(dest, 64);
1858     __ addptr(source, 48);
1859     __ cmpl(length, 64);
1860     __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1861 
1862     __ vzeroupper();
1863   }
1864 
1865   __ BIND(L_not512);
1866   if (VM_Version::supports_avx2()) {
1867     /*
1868     ** This AVX2 encoder is based off the paper at:
1869     **      https://dl.acm.org/doi/10.1145/3132709
1870     **
1871     ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1872     ** output bytes.
1873     **
1874     */
1875     // Lengths under 32 bytes are done with scalar routine
1876     __ cmpl(length, 31);
1877     __ jcc(Assembler::belowEqual, L_process3);
1878 
1879     // Set up supporting constant table data
1880     __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1881     // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1882     __ movl(rax, 0x0fc0fc00);
1883     __ movdl(xmm8, rax);
1884     __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1885     __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit);
1886 
1887     // Multiplication constant for "shifting" right by 6 and 10
1888     // bits
1889     __ movl(rax, 0x04000040);
1890 
1891     __ subl(length, 24);
1892     __ movdl(xmm7, rax);
1893     __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit);
1894 
1895     // For the first load, we mask off reading of the first 4
1896     // bytes into the register. This is so we can get 4 3-byte
1897     // chunks into each lane of the register, avoiding having to
1898     // handle end conditions.  We then shuffle these bytes into a
1899     // specific order so that manipulation is easier.
1900     //
1901     // The initial read loads the XMM register like this:
1902     //
1903     // Lower 128-bit lane:
1904     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1905     // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1906     // | C2 | D0 | D1 | D2 |
1907     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1908     //
1909     // Upper 128-bit lane:
1910     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1911     // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1912     // | XX | XX | XX | XX |
1913     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1914     //
1915     // Where A0 is the first input byte, B0 is the fourth, etc.
1916     // The alphabetical significance denotes the 3 bytes to be
1917     // consumed and encoded into 4 bytes.
1918     //
1919     // We then shuffle the register so each 32-bit word contains
1920     // the sequence:
1921     //    A1 A0 A2 A1, B1, B0, B2, B1, etc.
1922     // Each of these byte sequences are then manipulated into 4
1923     // 6-bit values ready for encoding.
1924     //
1925     // If we focus on one set of 3-byte chunks, changing the
1926     // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1927     // shuffle such that each 24-bit chunk contains:
1928     //
1929     // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1930     // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1931     // Explain this step.
1932     // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1933     // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1934     //
1935     // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1936     // a5..a0) and shift them using a vector multiplication
1937     // operation (vpmulhuw) which effectively shifts c right by 6
1938     // bits and a right by 10 bits.  We similarly mask bits 10-15
1939     // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1940     // bits respectively.  This is done using vpmullw.  We end up
1941     // with 4 6-bit values, thus splitting the 3 input bytes,
1942     // ready for encoding:
1943     //    0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1944     //
1945     // For translation, we recognize that there are 5 distinct
1946     // ranges of legal Base64 characters as below:
1947     //
1948     //   +-------------+-------------+------------+
1949     //   | 6-bit value | ASCII range |   offset   |
1950     //   +-------------+-------------+------------+
1951     //   |    0..25    |    A..Z     |     65     |
1952     //   |   26..51    |    a..z     |     71     |
1953     //   |   52..61    |    0..9     |     -4     |
1954     //   |     62      |   + or -    | -19 or -17 |
1955     //   |     63      |   / or _    | -16 or 32  |
1956     //   +-------------+-------------+------------+
1957     //
1958     // We note that vpshufb does a parallel lookup in a
1959     // destination register using the lower 4 bits of bytes from a
1960     // source register.  If we use a saturated subtraction and
1961     // subtract 51 from each 6-bit value, bytes from [0,51]
1962     // saturate to 0, and [52,63] map to a range of [1,12].  We
1963     // distinguish the [0,25] and [26,51] ranges by assigning a
1964     // value of 13 for all 6-bit values less than 26.  We end up
1965     // with:
1966     //
1967     //   +-------------+-------------+------------+
1968     //   | 6-bit value |   Reduced   |   offset   |
1969     //   +-------------+-------------+------------+
1970     //   |    0..25    |     13      |     65     |
1971     //   |   26..51    |      0      |     71     |
1972     //   |   52..61    |    0..9     |     -4     |
1973     //   |     62      |     11      | -19 or -17 |
1974     //   |     63      |     12      | -16 or 32  |
1975     //   +-------------+-------------+------------+
1976     //
1977     // We then use a final vpshufb to add the appropriate offset,
1978     // translating the bytes.
1979     //
1980     // Load input bytes - only 28 bytes.  Mask the first load to
1981     // not load into the full register.
1982     __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1983 
1984     // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1985     // ordering by:
1986     //   1, 0, 2, 1; 4, 3, 5, 4; etc.  This groups 6-bit chunks
1987     //   for easy masking
1988     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1989 
1990     __ addl(start_offset, 24);
1991 
1992     // Load masking register for first and third (and multiples)
1993     // 6-bit values.
1994     __ movl(rax, 0x003f03f0);
1995     __ movdl(xmm6, rax);
1996     __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit);
1997     // Multiplication constant for "shifting" left by 4 and 8 bits
1998     __ movl(rax, 0x01000010);
1999     __ movdl(xmm5, rax);
2000     __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit);
2001 
2002     // Isolate 6-bit chunks of interest
2003     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2004 
2005     // Load constants for encoding
2006     __ movl(rax, 0x19191919);
2007     __ movdl(xmm3, rax);
2008     __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit);
2009     __ movl(rax, 0x33333333);
2010     __ movdl(xmm4, rax);
2011     __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit);
2012 
2013     // Shift output bytes 0 and 2 into proper lanes
2014     __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
2015 
2016     // Mask and shift output bytes 1 and 3 into proper lanes and
2017     // combine
2018     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2019     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2020     __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2021 
2022     // Find out which are 0..25.  This indicates which input
2023     // values fall in the range of 'A'-'Z', which require an
2024     // additional offset (see comments above)
2025     __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
2026     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2027     __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
2028 
2029     // Load the proper lookup table
2030     __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
2031     __ movl(r15, isURL);
2032     __ shll(r15, 5);
2033     __ vmovdqu(xmm2, Address(r11, r15));
2034 
2035     // Shuffle the offsets based on the range calculation done
2036     // above. This allows us to add the correct offset to the
2037     // 6-bit value corresponding to the range documented above.
2038     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2039     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2040 
2041     // Store the encoded bytes
2042     __ vmovdqu(Address(dest, dp), xmm0);
2043     __ addl(dp, 32);
2044 
2045     __ cmpl(length, 31);
2046     __ jcc(Assembler::belowEqual, L_process3);
2047 
2048     __ align32();
2049     __ BIND(L_32byteLoop);
2050 
2051     // Get next 32 bytes
2052     __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
2053 
2054     __ subl(length, 24);
2055     __ addl(start_offset, 24);
2056 
2057     // This logic is identical to the above, with only constant
2058     // register loads removed.  Shuffle the input, mask off 6-bit
2059     // chunks, shift them into place, then add the offset to
2060     // encode.
2061     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
2062 
2063     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2064     __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
2065     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2066     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2067     __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2068     __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
2069     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2070     __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
2071     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2072     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2073 
2074     // Store the encoded bytes
2075     __ vmovdqu(Address(dest, dp), xmm0);
2076     __ addl(dp, 32);
2077 
2078     __ cmpl(length, 31);
2079     __ jcc(Assembler::above, L_32byteLoop);
2080 
2081     __ BIND(L_process3);
2082     __ vzeroupper();
2083   } else {
2084     __ BIND(L_process3);
2085   }
2086 
2087   __ cmpl(length, 3);
2088   __ jcc(Assembler::below, L_exit);
2089 
2090   // Load the encoding table based on isURL
2091   __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
2092   __ movl(r15, isURL);
2093   __ shll(r15, 6);
2094   __ addptr(r11, r15);
2095 
2096   __ BIND(L_processdata);
2097 
2098   // Load 3 bytes
2099   __ load_unsigned_byte(r15, Address(source, start_offset));
2100   __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
2101   __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
2102 
2103   // Build a 32-bit word with bytes 1, 2, 0, 1
2104   __ movl(rax, r10);
2105   __ shll(r10, 24);
2106   __ orl(rax, r10);
2107 
2108   __ subl(length, 3);
2109 
2110   __ shll(r15, 8);
2111   __ shll(r13, 16);
2112   __ orl(rax, r15);
2113 
2114   __ addl(start_offset, 3);
2115 
2116   __ orl(rax, r13);
2117   // At this point, rax contains | byte1 | byte2 | byte0 | byte1
2118   // r13 has byte2 << 16 - need low-order 6 bits to translate.
2119   // This translated byte is the fourth output byte.
2120   __ shrl(r13, 16);
2121   __ andl(r13, 0x3f);
2122 
2123   // The high-order 6 bits of r15 (byte0) is translated.
2124   // The translated byte is the first output byte.
2125   __ shrl(r15, 10);
2126 
2127   __ load_unsigned_byte(r13, Address(r11, r13));
2128   __ load_unsigned_byte(r15, Address(r11, r15));
2129 
2130   __ movb(Address(dest, dp, Address::times_1, 3), r13);
2131 
2132   // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
2133   // This translated byte is the second output byte.
2134   __ shrl(rax, 4);
2135   __ movl(r10, rax);
2136   __ andl(rax, 0x3f);
2137 
2138   __ movb(Address(dest, dp, Address::times_1, 0), r15);
2139 
2140   __ load_unsigned_byte(rax, Address(r11, rax));
2141 
2142   // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
2143   // This translated byte is the third output byte.
2144   __ shrl(r10, 18);
2145   __ andl(r10, 0x3f);
2146 
2147   __ load_unsigned_byte(r10, Address(r11, r10));
2148 
2149   __ movb(Address(dest, dp, Address::times_1, 1), rax);
2150   __ movb(Address(dest, dp, Address::times_1, 2), r10);
2151 
2152   __ addl(dp, 4);
2153   __ cmpl(length, 3);
2154   __ jcc(Assembler::aboveEqual, L_processdata);
2155 
2156   __ BIND(L_exit);
2157   __ pop(r15);
2158   __ pop(r14);
2159   __ pop(r13);
2160   __ pop(r12);
2161   __ leave();
2162   __ ret(0);
2163 
2164   return start;
2165 }
2166 
2167 // base64 AVX512vbmi tables
2168 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2169   __ align64();
2170   StubGenStubId stub_id = StubGenStubId::lookup_lo_base64_id;
2171   StubCodeMark mark(this, stub_id);
2172   address start = __ pc();
2173 
2174   assert(((unsigned long long)start & 0x3f) == 0,
2175          "Alignment problem (0x%08llx)", (unsigned long long)start);
2176   __ emit_data64(0x8080808080808080, relocInfo::none);
2177   __ emit_data64(0x8080808080808080, relocInfo::none);
2178   __ emit_data64(0x8080808080808080, relocInfo::none);
2179   __ emit_data64(0x8080808080808080, relocInfo::none);
2180   __ emit_data64(0x8080808080808080, relocInfo::none);
2181   __ emit_data64(0x3f8080803e808080, relocInfo::none);
2182   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2183   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2184 
2185   return start;
2186 }
2187 
2188 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2189   __ align64();
2190   StubGenStubId stub_id = StubGenStubId::lookup_hi_base64_id;
2191   StubCodeMark mark(this, stub_id);
2192   address start = __ pc();
2193 
2194   assert(((unsigned long long)start & 0x3f) == 0,
2195          "Alignment problem (0x%08llx)", (unsigned long long)start);
2196   __ emit_data64(0x0605040302010080, relocInfo::none);
2197   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2198   __ emit_data64(0x161514131211100f, relocInfo::none);
2199   __ emit_data64(0x8080808080191817, relocInfo::none);
2200   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2201   __ emit_data64(0x2827262524232221, relocInfo::none);
2202   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2203   __ emit_data64(0x8080808080333231, relocInfo::none);
2204 
2205   return start;
2206 }
2207 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2208   __ align64();
2209   StubGenStubId stub_id = StubGenStubId::lookup_lo_base64url_id;
2210   StubCodeMark mark(this, stub_id);
2211   address start = __ pc();
2212 
2213   assert(((unsigned long long)start & 0x3f) == 0,
2214          "Alignment problem (0x%08llx)", (unsigned long long)start);
2215   __ emit_data64(0x8080808080808080, relocInfo::none);
2216   __ emit_data64(0x8080808080808080, relocInfo::none);
2217   __ emit_data64(0x8080808080808080, relocInfo::none);
2218   __ emit_data64(0x8080808080808080, relocInfo::none);
2219   __ emit_data64(0x8080808080808080, relocInfo::none);
2220   __ emit_data64(0x80803e8080808080, relocInfo::none);
2221   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2222   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2223 
2224   return start;
2225 }
2226 
2227 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2228   __ align64();
2229   StubGenStubId stub_id = StubGenStubId::lookup_hi_base64url_id;
2230   StubCodeMark mark(this, stub_id);
2231   address start = __ pc();
2232 
2233   assert(((unsigned long long)start & 0x3f) == 0,
2234          "Alignment problem (0x%08llx)", (unsigned long long)start);
2235   __ emit_data64(0x0605040302010080, relocInfo::none);
2236   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2237   __ emit_data64(0x161514131211100f, relocInfo::none);
2238   __ emit_data64(0x3f80808080191817, relocInfo::none);
2239   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2240   __ emit_data64(0x2827262524232221, relocInfo::none);
2241   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2242   __ emit_data64(0x8080808080333231, relocInfo::none);
2243 
2244   return start;
2245 }
2246 
2247 address StubGenerator::base64_vbmi_pack_vec_addr() {
2248   __ align64();
2249   StubGenStubId stub_id = StubGenStubId::pack_vec_base64_id;
2250   StubCodeMark mark(this, stub_id);
2251   address start = __ pc();
2252 
2253   assert(((unsigned long long)start & 0x3f) == 0,
2254          "Alignment problem (0x%08llx)", (unsigned long long)start);
2255   __ emit_data64(0x090a040506000102, relocInfo::none);
2256   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2257   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2258   __ emit_data64(0x292a242526202122, relocInfo::none);
2259   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2260   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2261   __ emit_data64(0x0000000000000000, relocInfo::none);
2262   __ emit_data64(0x0000000000000000, relocInfo::none);
2263 
2264   return start;
2265 }
2266 
2267 address StubGenerator::base64_vbmi_join_0_1_addr() {
2268   __ align64();
2269   StubGenStubId stub_id = StubGenStubId::join_0_1_base64_id;
2270   StubCodeMark mark(this, stub_id);
2271   address start = __ pc();
2272 
2273   assert(((unsigned long long)start & 0x3f) == 0,
2274          "Alignment problem (0x%08llx)", (unsigned long long)start);
2275   __ emit_data64(0x090a040506000102, relocInfo::none);
2276   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2277   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2278   __ emit_data64(0x292a242526202122, relocInfo::none);
2279   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2280   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2281   __ emit_data64(0x494a444546404142, relocInfo::none);
2282   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2283 
2284   return start;
2285 }
2286 
2287 address StubGenerator::base64_vbmi_join_1_2_addr() {
2288   __ align64();
2289   StubGenStubId stub_id = StubGenStubId::join_1_2_base64_id;
2290   StubCodeMark mark(this, stub_id);
2291   address start = __ pc();
2292 
2293   assert(((unsigned long long)start & 0x3f) == 0,
2294          "Alignment problem (0x%08llx)", (unsigned long long)start);
2295   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2296   __ emit_data64(0x292a242526202122, relocInfo::none);
2297   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2298   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2299   __ emit_data64(0x494a444546404142, relocInfo::none);
2300   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2301   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2302   __ emit_data64(0x696a646566606162, relocInfo::none);
2303 
2304   return start;
2305 }
2306 
2307 address StubGenerator::base64_vbmi_join_2_3_addr() {
2308   __ align64();
2309   StubGenStubId stub_id = StubGenStubId::join_2_3_base64_id;
2310   StubCodeMark mark(this, stub_id);
2311   address start = __ pc();
2312 
2313   assert(((unsigned long long)start & 0x3f) == 0,
2314          "Alignment problem (0x%08llx)", (unsigned long long)start);
2315   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2316   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2317   __ emit_data64(0x494a444546404142, relocInfo::none);
2318   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2319   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2320   __ emit_data64(0x696a646566606162, relocInfo::none);
2321   __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2322   __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2323 
2324   return start;
2325 }
2326 
2327 address StubGenerator::base64_AVX2_decode_tables_addr() {
2328   __ align64();
2329   StubGenStubId stub_id = StubGenStubId::avx2_decode_tables_base64_id;
2330   StubCodeMark mark(this, stub_id);
2331   address start = __ pc();
2332 
2333   assert(((unsigned long long)start & 0x3f) == 0,
2334          "Alignment problem (0x%08llx)", (unsigned long long)start);
2335   __ emit_data(0x2f2f2f2f, relocInfo::none, 0);
2336   __ emit_data(0x5f5f5f5f, relocInfo::none, 0);  // for URL
2337 
2338   __ emit_data(0xffffffff, relocInfo::none, 0);
2339   __ emit_data(0xfcfcfcfc, relocInfo::none, 0);  // for URL
2340 
2341   // Permute table
2342   __ emit_data64(0x0000000100000000, relocInfo::none);
2343   __ emit_data64(0x0000000400000002, relocInfo::none);
2344   __ emit_data64(0x0000000600000005, relocInfo::none);
2345   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2346 
2347   // Shuffle table
2348   __ emit_data64(0x090a040506000102, relocInfo::none);
2349   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2350   __ emit_data64(0x090a040506000102, relocInfo::none);
2351   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2352 
2353   // merge table
2354   __ emit_data(0x01400140, relocInfo::none, 0);
2355 
2356   // merge multiplier
2357   __ emit_data(0x00011000, relocInfo::none, 0);
2358 
2359   return start;
2360 }
2361 
2362 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() {
2363   __ align64();
2364   StubGenStubId stub_id = StubGenStubId::avx2_decode_lut_tables_base64_id;
2365   StubCodeMark mark(this, stub_id);
2366   address start = __ pc();
2367 
2368   assert(((unsigned long long)start & 0x3f) == 0,
2369          "Alignment problem (0x%08llx)", (unsigned long long)start);
2370   // lut_lo
2371   __ emit_data64(0x1111111111111115, relocInfo::none);
2372   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2373   __ emit_data64(0x1111111111111115, relocInfo::none);
2374   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2375 
2376   // lut_roll
2377   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2378   __ emit_data64(0x0000000000000000, relocInfo::none);
2379   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2380   __ emit_data64(0x0000000000000000, relocInfo::none);
2381 
2382   // lut_lo URL
2383   __ emit_data64(0x1111111111111115, relocInfo::none);
2384   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2385   __ emit_data64(0x1111111111111115, relocInfo::none);
2386   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2387 
2388   // lut_roll URL
2389   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2390   __ emit_data64(0x0000000000000000, relocInfo::none);
2391   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2392   __ emit_data64(0x0000000000000000, relocInfo::none);
2393 
2394   // lut_hi
2395   __ emit_data64(0x0804080402011010, relocInfo::none);
2396   __ emit_data64(0x1010101010101010, relocInfo::none);
2397   __ emit_data64(0x0804080402011010, relocInfo::none);
2398   __ emit_data64(0x1010101010101010, relocInfo::none);
2399 
2400   return start;
2401 }
2402 
2403 address StubGenerator::base64_decoding_table_addr() {
2404   StubGenStubId stub_id = StubGenStubId::decoding_table_base64_id;
2405   StubCodeMark mark(this, stub_id);
2406   address start = __ pc();
2407 
2408   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2409   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2410   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2411   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2412   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2413   __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2414   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2415   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2416   __ emit_data64(0x06050403020100ff, relocInfo::none);
2417   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2418   __ emit_data64(0x161514131211100f, relocInfo::none);
2419   __ emit_data64(0xffffffffff191817, relocInfo::none);
2420   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2421   __ emit_data64(0x2827262524232221, relocInfo::none);
2422   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2423   __ emit_data64(0xffffffffff333231, relocInfo::none);
2424   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2425   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2426   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2427   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2428   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2429   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2430   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2431   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2432   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2433   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2434   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2435   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2436   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2437   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2438   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2439   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2440 
2441   // URL table
2442   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2443   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2444   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2445   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2446   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2447   __ emit_data64(0xffff3effffffffff, relocInfo::none);
2448   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2449   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2450   __ emit_data64(0x06050403020100ff, relocInfo::none);
2451   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2452   __ emit_data64(0x161514131211100f, relocInfo::none);
2453   __ emit_data64(0x3fffffffff191817, relocInfo::none);
2454   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2455   __ emit_data64(0x2827262524232221, relocInfo::none);
2456   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2457   __ emit_data64(0xffffffffff333231, relocInfo::none);
2458   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2459   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2460   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2461   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2462   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2463   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2464   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2465   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2466   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2467   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2468   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2469   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2470   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2471   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2472   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2473   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2474 
2475   return start;
2476 }
2477 
2478 
2479 // Code for generating Base64 decoding.
2480 //
2481 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2482 //
2483 // Intrinsic function prototype in Base64.java:
2484 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2485 address StubGenerator::generate_base64_decodeBlock() {
2486   __ align(CodeEntryAlignment);
2487   StubGenStubId stub_id = StubGenStubId::base64_decodeBlock_id;
2488   StubCodeMark mark(this, stub_id);
2489   address start = __ pc();
2490 
2491   __ enter();
2492 
2493   // Save callee-saved registers before using them
2494   __ push(r12);
2495   __ push(r13);
2496   __ push(r14);
2497   __ push(r15);
2498   __ push(rbx);
2499 
2500   // arguments
2501   const Register source = c_rarg0; // Source Array
2502   const Register start_offset = c_rarg1; // start offset
2503   const Register end_offset = c_rarg2; // end offset
2504   const Register dest = c_rarg3; // destination array
2505   const Register isMIME = rbx;
2506 
2507 #ifndef _WIN64
2508   const Register dp = c_rarg4;  // Position for writing to dest array
2509   const Register isURL = c_rarg5;// Base64 or URL character set
2510   __ movl(isMIME, Address(rbp, 2 * wordSize));
2511 #else
2512   const Address dp_mem(rbp, 6 * wordSize);  // length is on stack on Win64
2513   const Address isURL_mem(rbp, 7 * wordSize);
2514   const Register isURL = r10;      // pick the volatile windows register
2515   const Register dp = r12;
2516   __ movl(dp, dp_mem);
2517   __ movl(isURL, isURL_mem);
2518   __ movl(isMIME, Address(rbp, 8 * wordSize));
2519 #endif
2520 
2521   const XMMRegister lookup_lo = xmm5;
2522   const XMMRegister lookup_hi = xmm6;
2523   const XMMRegister errorvec = xmm7;
2524   const XMMRegister pack16_op = xmm9;
2525   const XMMRegister pack32_op = xmm8;
2526   const XMMRegister input0 = xmm3;
2527   const XMMRegister input1 = xmm20;
2528   const XMMRegister input2 = xmm21;
2529   const XMMRegister input3 = xmm19;
2530   const XMMRegister join01 = xmm12;
2531   const XMMRegister join12 = xmm11;
2532   const XMMRegister join23 = xmm10;
2533   const XMMRegister translated0 = xmm2;
2534   const XMMRegister translated1 = xmm1;
2535   const XMMRegister translated2 = xmm0;
2536   const XMMRegister translated3 = xmm4;
2537 
2538   const XMMRegister merged0 = xmm2;
2539   const XMMRegister merged1 = xmm1;
2540   const XMMRegister merged2 = xmm0;
2541   const XMMRegister merged3 = xmm4;
2542   const XMMRegister merge_ab_bc0 = xmm2;
2543   const XMMRegister merge_ab_bc1 = xmm1;
2544   const XMMRegister merge_ab_bc2 = xmm0;
2545   const XMMRegister merge_ab_bc3 = xmm4;
2546 
2547   const XMMRegister pack24bits = xmm4;
2548 
2549   const Register length = r14;
2550   const Register output_size = r13;
2551   const Register output_mask = r15;
2552   const KRegister input_mask = k1;
2553 
2554   const XMMRegister input_initial_valid_b64 = xmm0;
2555   const XMMRegister tmp = xmm10;
2556   const XMMRegister mask = xmm0;
2557   const XMMRegister invalid_b64 = xmm1;
2558 
2559   Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2560   Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2561   Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk;
2562 
2563   // calculate length from offsets
2564   __ movl(length, end_offset);
2565   __ subl(length, start_offset);
2566   __ push(dest);          // Save for return value calc
2567 
2568   // If AVX512 VBMI not supported, just compile non-AVX code
2569   if(VM_Version::supports_avx512_vbmi() &&
2570      VM_Version::supports_avx512bw()) {
2571     __ cmpl(length, 31);     // 32-bytes is break-even for AVX-512
2572     __ jcc(Assembler::lessEqual, L_lastChunk);
2573 
2574     __ cmpl(isMIME, 0);
2575     __ jcc(Assembler::notEqual, L_lastChunk);
2576 
2577     // Load lookup tables based on isURL
2578     __ cmpl(isURL, 0);
2579     __ jcc(Assembler::notZero, L_loadURL);
2580 
2581     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2582     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2583 
2584     __ BIND(L_continue);
2585 
2586     __ movl(r15, 0x01400140);
2587     __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2588 
2589     __ movl(r15, 0x00011000);
2590     __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2591 
2592     __ cmpl(length, 0xff);
2593     __ jcc(Assembler::lessEqual, L_process64);
2594 
2595     // load masks required for decoding data
2596     __ BIND(L_processdata);
2597     __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2598     __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2599     __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2600 
2601     __ align32();
2602     __ BIND(L_process256);
2603     // Grab input data
2604     __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2605     __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2606     __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2607     __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2608 
2609     // Copy the low part of the lookup table into the destination of the permutation
2610     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2611     __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2612     __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2613     __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2614 
2615     // Translate the base64 input into "decoded" bytes
2616     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2617     __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2618     __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2619     __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2620 
2621     // OR all of the translations together to check for errors (high-order bit of byte set)
2622     __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2623 
2624     __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2625     __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2626     __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2627 
2628     // Check if there was an error - if so, try 64-byte chunks
2629     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2630     __ kortestql(k3, k3);
2631     __ jcc(Assembler::notZero, L_process64);
2632 
2633     // The merging and shuffling happens here
2634     // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2635     // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2636     // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2637     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2638     __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2639     __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2640     __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2641 
2642     // Now do the same with packed 16-bit values.
2643     // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2644     // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2645     // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2646     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2647     __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2648     __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2649     __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2650 
2651     // The join vectors specify which byte from which vector goes into the outputs
2652     // One of every 4 bytes in the extended vector is zero, so we pack them into their
2653     // final positions in the register for storing (256 bytes in, 192 bytes out)
2654     __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2655     __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2656     __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2657 
2658     // Store result
2659     __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2660     __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2661     __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2662 
2663     __ addptr(source, 0x100);
2664     __ addptr(dest, 0xc0);
2665     __ subl(length, 0x100);
2666     __ cmpl(length, 64 * 4);
2667     __ jcc(Assembler::greaterEqual, L_process256);
2668 
2669     // At this point, we've decoded 64 * 4 * n bytes.
2670     // The remaining length will be <= 64 * 4 - 1.
2671     // UNLESS there was an error decoding the first 256-byte chunk.  In this
2672     // case, the length will be arbitrarily long.
2673     //
2674     // Note that this will be the path for MIME-encoded strings.
2675 
2676     __ BIND(L_process64);
2677 
2678     __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2679 
2680     __ cmpl(length, 63);
2681     __ jcc(Assembler::lessEqual, L_finalBit);
2682 
2683     __ mov64(rax, 0x0000ffffffffffff);
2684     __ kmovql(k2, rax);
2685 
2686     __ align32();
2687     __ BIND(L_process64Loop);
2688 
2689     // Handle first 64-byte block
2690 
2691     __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2692     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2693     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2694 
2695     __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2696 
2697     // Check for error and bomb out before updating dest
2698     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2699     __ kortestql(k3, k3);
2700     __ jcc(Assembler::notZero, L_exit);
2701 
2702     // Pack output register, selecting correct byte ordering
2703     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2704     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2705     __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2706 
2707     __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2708 
2709     __ subl(length, 64);
2710     __ addptr(source, 64);
2711     __ addptr(dest, 48);
2712 
2713     __ cmpl(length, 64);
2714     __ jcc(Assembler::greaterEqual, L_process64Loop);
2715 
2716     __ cmpl(length, 0);
2717     __ jcc(Assembler::lessEqual, L_exit);
2718 
2719     __ BIND(L_finalBit);
2720     // Now have 1 to 63 bytes left to decode
2721 
2722     // I was going to let Java take care of the final fragment
2723     // however it will repeatedly call this routine for every 4 bytes
2724     // of input data, so handle the rest here.
2725     __ movq(rax, -1);
2726     __ bzhiq(rax, rax, length);    // Input mask in rax
2727 
2728     __ movl(output_size, length);
2729     __ shrl(output_size, 2);   // Find (len / 4) * 3 (output length)
2730     __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2731     // output_size in r13
2732 
2733     // Strip pad characters, if any, and adjust length and mask
2734     __ addq(length, start_offset);
2735     __ cmpb(Address(source, length, Address::times_1, -1), '=');
2736     __ jcc(Assembler::equal, L_padding);
2737 
2738     __ BIND(L_donePadding);
2739     __ subq(length, start_offset);
2740 
2741     // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2742     __ kmovql(input_mask, rax);
2743     __ movq(output_mask, -1);
2744     __ bzhiq(output_mask, output_mask, output_size);
2745 
2746     // Load initial input with all valid base64 characters.  Will be used
2747     // in merging source bytes to avoid masking when determining if an error occurred.
2748     __ movl(rax, 0x61616161);
2749     __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2750 
2751     // A register containing all invalid base64 decoded values
2752     __ movl(rax, 0x80808080);
2753     __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2754 
2755     // input_mask is in k1
2756     // output_size is in r13
2757     // output_mask is in r15
2758     // zmm0 - free
2759     // zmm1 - 0x00011000
2760     // zmm2 - 0x01400140
2761     // zmm3 - errorvec
2762     // zmm4 - pack vector
2763     // zmm5 - lookup_lo
2764     // zmm6 - lookup_hi
2765     // zmm7 - errorvec
2766     // zmm8 - 0x61616161
2767     // zmm9 - 0x80808080
2768 
2769     // Load only the bytes from source, merging into our "fully-valid" register
2770     __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2771 
2772     // Decode all bytes within our merged input
2773     __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2774     __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2775     __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2776 
2777     // Check for error.  Compare (decoded | initial) to all invalid.
2778     // If any bytes have their high-order bit set, then we have an error.
2779     __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2780     __ kortestql(k2, k2);
2781 
2782     // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2783     __ jcc(Assembler::notZero, L_bruteForce);
2784 
2785     // Shuffle output bytes
2786     __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2787     __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2788 
2789     __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2790     __ kmovql(k1, output_mask);
2791     __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2792 
2793     __ addptr(dest, output_size);
2794 
2795     __ BIND(L_exit);
2796     __ vzeroupper();
2797     __ pop(rax);             // Get original dest value
2798     __ subptr(dest, rax);      // Number of bytes converted
2799     __ movptr(rax, dest);
2800     __ pop(rbx);
2801     __ pop(r15);
2802     __ pop(r14);
2803     __ pop(r13);
2804     __ pop(r12);
2805     __ leave();
2806     __ ret(0);
2807 
2808     __ BIND(L_loadURL);
2809     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2810     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2811     __ jmp(L_continue);
2812 
2813     __ BIND(L_padding);
2814     __ decrementq(output_size, 1);
2815     __ shrq(rax, 1);
2816 
2817     __ cmpb(Address(source, length, Address::times_1, -2), '=');
2818     __ jcc(Assembler::notEqual, L_donePadding);
2819 
2820     __ decrementq(output_size, 1);
2821     __ shrq(rax, 1);
2822     __ jmp(L_donePadding);
2823 
2824     __ align32();
2825     __ BIND(L_bruteForce);
2826   }   // End of if(avx512_vbmi)
2827 
2828   if (VM_Version::supports_avx2()) {
2829     Label L_tailProc, L_topLoop, L_enterLoop;
2830 
2831     __ cmpl(isMIME, 0);
2832     __ jcc(Assembler::notEqual, L_lastChunk);
2833 
2834     // Check for buffer too small (for algorithm)
2835     __ subl(length, 0x2c);
2836     __ jcc(Assembler::less, L_tailProc);
2837 
2838     __ shll(isURL, 2);
2839 
2840     // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64
2841     // Encoding and Decoding using AVX2 Instructions".  URL modifications added.
2842 
2843     // Set up constants
2844     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr()));
2845     __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit);  // 2F or 5F
2846     __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit);  // -1 or -4
2847     __ vmovdqu(xmm12, Address(r13, 0x10));  // permute
2848     __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle
2849     __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit);  // merge
2850     __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit);  // merge mult
2851 
2852     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr()));
2853     __ shll(isURL, 4);
2854     __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00));  // lut_lo
2855     __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll
2856     __ shrl(isURL, 6);  // restore isURL
2857     __ vmovdqu(xmm9, Address(r13, 0x80));  // lut_hi
2858     __ jmp(L_enterLoop);
2859 
2860     __ align32();
2861     __ bind(L_topLoop);
2862     // Add in the offset value (roll) to get 6-bit out values
2863     __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2864     // Merge and permute the output bits into appropriate output byte lanes
2865     __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit);
2866     __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit);
2867     __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit);
2868     __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit);
2869     // Store the output bytes
2870     __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0);
2871     __ addptr(source, 0x20);
2872     __ addptr(dest, 0x18);
2873     __ subl(length, 0x20);
2874     __ jcc(Assembler::less, L_tailProc);
2875 
2876     __ bind(L_enterLoop);
2877 
2878     // Load in encoded string (32 bytes)
2879     __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0));
2880     // Extract the high nibble for indexing into the lut tables.  High 4 bits are don't care.
2881     __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit);
2882     __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit);
2883     // Extract the low nibble. 5F/2F will isolate the low-order 4 bits.  High 4 bits are don't care.
2884     __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit);
2885     // Check for special-case (0x2F or 0x5F (URL))
2886     __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit);
2887     // Get the bitset based on the low nibble.  vpshufb uses low-order 4 bits only.
2888     __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit);
2889     // Get the bit value of the high nibble
2890     __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit);
2891     // Make sure 2F / 5F shows as valid
2892     __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit);
2893     // Make adjustment for roll index.  For non-URL, this is a no-op,
2894     // for URL, this adjusts by -4.  This is to properly index the
2895     // roll value for 2F / 5F.
2896     __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2897     // If the and of the two is non-zero, we have an invalid input character
2898     __ vptest(xmm3, xmm5);
2899     // Extract the "roll" value - value to add to the input to get 6-bit out value
2900     __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F
2901     __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit);
2902     __ jcc(Assembler::equal, L_topLoop);  // Fall through on error
2903 
2904     __ bind(L_tailProc);
2905 
2906     __ addl(length, 0x2c);
2907 
2908     __ vzeroupper();
2909   }
2910 
2911   // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2912 
2913   // Register state (Linux):
2914   // r12-15 - saved on stack
2915   // rdi - src
2916   // rsi - sp
2917   // rdx - sl
2918   // rcx - dst
2919   // r8 - dp
2920   // r9 - isURL
2921 
2922   // Register state (Windows):
2923   // r12-15 - saved on stack
2924   // rcx - src
2925   // rdx - sp
2926   // r8 - sl
2927   // r9 - dst
2928   // r12 - dp
2929   // r10 - isURL
2930 
2931   // Registers (common):
2932   // length (r14) - bytes in src
2933 
2934   const Register decode_table = r11;
2935   const Register out_byte_count = rbx;
2936   const Register byte1 = r13;
2937   const Register byte2 = r15;
2938   const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2939   const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2940 
2941   __ bind(L_lastChunk);
2942 
2943   __ shrl(length, 2);    // Multiple of 4 bytes only - length is # 4-byte chunks
2944   __ cmpl(length, 0);
2945   __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2946 
2947   __ shll(isURL, 8);    // index into decode table based on isURL
2948   __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2949   __ addptr(decode_table, isURL);
2950 
2951   __ jmp(L_bottomLoop);
2952 
2953   __ align32();
2954   __ BIND(L_forceLoop);
2955   __ shll(byte1, 18);
2956   __ shll(byte2, 12);
2957   __ shll(byte3, 6);
2958   __ orl(byte1, byte2);
2959   __ orl(byte1, byte3);
2960   __ orl(byte1, byte4);
2961 
2962   __ addptr(source, 4);
2963 
2964   __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2965   __ shrl(byte1, 8);
2966   __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2967   __ shrl(byte1, 8);
2968   __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2969 
2970   __ addptr(dest, 3);
2971   __ decrementl(length, 1);
2972   __ jcc(Assembler::zero, L_exit_no_vzero);
2973 
2974   __ BIND(L_bottomLoop);
2975   __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2976   __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2977   __ load_signed_byte(byte1, Address(decode_table, byte1));
2978   __ load_signed_byte(byte2, Address(decode_table, byte2));
2979   __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2980   __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2981   __ load_signed_byte(byte3, Address(decode_table, byte3));
2982   __ load_signed_byte(byte4, Address(decode_table, byte4));
2983 
2984   __ mov(rax, byte1);
2985   __ orl(rax, byte2);
2986   __ orl(rax, byte3);
2987   __ orl(rax, byte4);
2988   __ jcc(Assembler::positive, L_forceLoop);
2989 
2990   __ BIND(L_exit_no_vzero);
2991   __ pop(rax);             // Get original dest value
2992   __ subptr(dest, rax);      // Number of bytes converted
2993   __ movptr(rax, dest);
2994   __ pop(rbx);
2995   __ pop(r15);
2996   __ pop(r14);
2997   __ pop(r13);
2998   __ pop(r12);
2999   __ leave();
3000   __ ret(0);
3001 
3002   return start;
3003 }
3004 
3005 
3006 /**
3007  *  Arguments:
3008  *
3009  * Inputs:
3010  *   c_rarg0   - int crc
3011  *   c_rarg1   - byte* buf
3012  *   c_rarg2   - int length
3013  *
3014  * Output:
3015  *       rax   - int crc result
3016  */
3017 address StubGenerator::generate_updateBytesCRC32() {
3018   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3019 
3020   __ align(CodeEntryAlignment);
3021   StubGenStubId stub_id = StubGenStubId::updateBytesCRC32_id;
3022   StubCodeMark mark(this, stub_id);
3023 
3024   address start = __ pc();
3025 
3026   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3027   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3028   // rscratch1: r10
3029   const Register crc   = c_rarg0;  // crc
3030   const Register buf   = c_rarg1;  // source java byte array address
3031   const Register len   = c_rarg2;  // length
3032   const Register table = c_rarg3;  // crc_table address (reuse register)
3033   const Register tmp1   = r11;
3034   const Register tmp2   = r10;
3035   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
3036 
3037   BLOCK_COMMENT("Entry:");
3038   __ enter(); // required for proper stackwalking of RuntimeStub frame
3039 
3040   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3041       VM_Version::supports_avx512bw() &&
3042       VM_Version::supports_avx512vl()) {
3043       // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
3044       // However, the constant table for CRC32-C assumes the original crc value.  Account for this
3045       // difference before calling and after returning.
3046     __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
3047     __ notl(crc);
3048     __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
3049     __ notl(crc);
3050   } else {
3051     __ kernel_crc32(crc, buf, len, table, tmp1);
3052   }
3053 
3054   __ movl(rax, crc);
3055   __ vzeroupper();
3056   __ leave(); // required for proper stackwalking of RuntimeStub frame
3057   __ ret(0);
3058 
3059   return start;
3060 }
3061 
3062 /**
3063 *  Arguments:
3064 *
3065 * Inputs:
3066 *   c_rarg0   - int crc
3067 *   c_rarg1   - byte* buf
3068 *   c_rarg2   - long length
3069 *   c_rarg3   - table_start - optional (present only when doing a library_call,
3070 *              not used by x86 algorithm)
3071 *
3072 * Output:
3073 *       rax   - int crc result
3074 */
3075 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3076   assert(UseCRC32CIntrinsics, "need SSE4_2");
3077   __ align(CodeEntryAlignment);
3078   StubGenStubId stub_id = StubGenStubId::updateBytesCRC32C_id;
3079   StubCodeMark mark(this, stub_id);
3080   address start = __ pc();
3081 
3082   //reg.arg        int#0        int#1        int#2        int#3        int#4        int#5        float regs
3083   //Windows        RCX          RDX          R8           R9           none         none         XMM0..XMM3
3084   //Lin / Sol      RDI          RSI          RDX          RCX          R8           R9           XMM0..XMM7
3085   const Register crc = c_rarg0;  // crc
3086   const Register buf = c_rarg1;  // source java byte array address
3087   const Register len = c_rarg2;  // length
3088   const Register a = rax;
3089   const Register j = r9;
3090   const Register k = r10;
3091   const Register l = r11;
3092 #ifdef _WIN64
3093   const Register y = rdi;
3094   const Register z = rsi;
3095 #else
3096   const Register y = rcx;
3097   const Register z = r8;
3098 #endif
3099   assert_different_registers(crc, buf, len, a, j, k, l, y, z);
3100 
3101   BLOCK_COMMENT("Entry:");
3102   __ enter(); // required for proper stackwalking of RuntimeStub frame
3103   Label L_continue;
3104 
3105   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3106       VM_Version::supports_avx512bw() &&
3107       VM_Version::supports_avx512vl()) {
3108     Label L_doSmall;
3109 
3110     __ cmpl(len, 384);
3111     __ jcc(Assembler::lessEqual, L_doSmall);
3112 
3113     __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
3114     __ kernel_crc32_avx512(crc, buf, len, j, l, k);
3115 
3116     __ jmp(L_continue);
3117 
3118     __ bind(L_doSmall);
3119   }
3120 #ifdef _WIN64
3121   __ push(y);
3122   __ push(z);
3123 #endif
3124   __ crc32c_ipl_alg2_alt2(crc, buf, len,
3125                           a, j, k,
3126                           l, y, z,
3127                           c_farg0, c_farg1, c_farg2,
3128                           is_pclmulqdq_supported);
3129 #ifdef _WIN64
3130   __ pop(z);
3131   __ pop(y);
3132 #endif
3133 
3134   __ bind(L_continue);
3135   __ movl(rax, crc);
3136   __ vzeroupper();
3137   __ leave(); // required for proper stackwalking of RuntimeStub frame
3138   __ ret(0);
3139 
3140   return start;
3141 }
3142 
3143 
3144 /**
3145  *  Arguments:
3146  *
3147  *  Input:
3148  *    c_rarg0   - x address
3149  *    c_rarg1   - x length
3150  *    c_rarg2   - y address
3151  *    c_rarg3   - y length
3152  * not Win64
3153  *    c_rarg4   - z address
3154  * Win64
3155  *    rsp+40    - z address
3156  */
3157 address StubGenerator::generate_multiplyToLen() {
3158   __ align(CodeEntryAlignment);
3159   StubGenStubId stub_id = StubGenStubId::multiplyToLen_id;
3160   StubCodeMark mark(this, stub_id);
3161   address start = __ pc();
3162 
3163   if (SCCache::load_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start)) {
3164     return start;
3165   }
3166 
3167   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3168   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3169   const Register x     = rdi;
3170   const Register xlen  = rax;
3171   const Register y     = rsi;
3172   const Register ylen  = rcx;
3173   const Register z     = r8;
3174 
3175   // Next registers will be saved on stack in multiply_to_len().
3176   const Register tmp0  = r11;
3177   const Register tmp1  = r12;
3178   const Register tmp2  = r13;
3179   const Register tmp3  = r14;
3180   const Register tmp4  = r15;
3181   const Register tmp5  = rbx;
3182 
3183   BLOCK_COMMENT("Entry:");
3184   __ enter(); // required for proper stackwalking of RuntimeStub frame
3185 
3186   setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3187                      // ylen => rcx, z => r8
3188                      // r9 and r10 may be used to save non-volatile registers
3189 #ifdef _WIN64
3190   // last argument (#4) is on stack on Win64
3191   __ movptr(z, Address(rsp, 6 * wordSize));
3192 #endif
3193 
3194   __ movptr(xlen, rsi);
3195   __ movptr(y,    rdx);
3196   __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3197 
3198   restore_arg_regs();
3199 
3200   __ leave(); // required for proper stackwalking of RuntimeStub frame
3201   __ ret(0);
3202 
3203   SCCache::store_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start);
3204   return start;
3205 }
3206 
3207 /**
3208 *  Arguments:
3209 *
3210 *  Input:
3211 *    c_rarg0   - obja     address
3212 *    c_rarg1   - objb     address
3213 *    c_rarg3   - length   length
3214 *    c_rarg4   - scale    log2_array_indxscale
3215 *
3216 *  Output:
3217 *        rax   - int >= mismatched index, < 0 bitwise complement of tail
3218 */
3219 address StubGenerator::generate_vectorizedMismatch() {
3220   __ align(CodeEntryAlignment);
3221   StubGenStubId stub_id = StubGenStubId::vectorizedMismatch_id;
3222   StubCodeMark mark(this, stub_id);
3223   address start = __ pc();
3224 
3225   BLOCK_COMMENT("Entry:");
3226   __ enter();
3227 
3228 #ifdef _WIN64  // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3229   const Register scale = c_rarg0;  //rcx, will exchange with r9
3230   const Register objb = c_rarg1;   //rdx
3231   const Register length = c_rarg2; //r8
3232   const Register obja = c_rarg3;   //r9
3233   __ xchgq(obja, scale);  //now obja and scale contains the correct contents
3234 
3235   const Register tmp1 = r10;
3236   const Register tmp2 = r11;
3237 #endif
3238 #ifndef _WIN64 // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3239   const Register obja = c_rarg0;   //U:rdi
3240   const Register objb = c_rarg1;   //U:rsi
3241   const Register length = c_rarg2; //U:rdx
3242   const Register scale = c_rarg3;  //U:rcx
3243   const Register tmp1 = r8;
3244   const Register tmp2 = r9;
3245 #endif
3246   const Register result = rax; //return value
3247   const XMMRegister vec0 = xmm0;
3248   const XMMRegister vec1 = xmm1;
3249   const XMMRegister vec2 = xmm2;
3250 
3251   __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
3252 
3253   __ vzeroupper();
3254   __ leave();
3255   __ ret(0);
3256 
3257   return start;
3258 }
3259 
3260 /**
3261  *  Arguments:
3262  *
3263 //  Input:
3264 //    c_rarg0   - x address
3265 //    c_rarg1   - x length
3266 //    c_rarg2   - z address
3267 //    c_rarg3   - z length
3268  *
3269  */
3270 address StubGenerator::generate_squareToLen() {
3271 
3272   __ align(CodeEntryAlignment);
3273   StubGenStubId stub_id = StubGenStubId::squareToLen_id;
3274   StubCodeMark mark(this, stub_id);
3275   address start = __ pc();
3276 
3277   if (SCCache::load_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start)) {
3278     return start;
3279   }
3280 
3281   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3282   // Unix:  rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
3283   const Register x      = rdi;
3284   const Register len    = rsi;
3285   const Register z      = r8;
3286   const Register zlen   = rcx;
3287 
3288  const Register tmp1      = r12;
3289  const Register tmp2      = r13;
3290  const Register tmp3      = r14;
3291  const Register tmp4      = r15;
3292  const Register tmp5      = rbx;
3293 
3294   BLOCK_COMMENT("Entry:");
3295   __ enter(); // required for proper stackwalking of RuntimeStub frame
3296 
3297   setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
3298                      // zlen => rcx
3299                      // r9 and r10 may be used to save non-volatile registers
3300   __ movptr(r8, rdx);
3301   __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3302 
3303   restore_arg_regs();
3304 
3305   __ leave(); // required for proper stackwalking of RuntimeStub frame
3306   __ ret(0);
3307 
3308   SCCache::store_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start);
3309   return start;
3310 }
3311 
3312 address StubGenerator::generate_method_entry_barrier() {
3313   __ align(CodeEntryAlignment);
3314   StubGenStubId stub_id = StubGenStubId::method_entry_barrier_id;
3315   StubCodeMark mark(this, stub_id);
3316   address start = __ pc();
3317 
3318   Label deoptimize_label;
3319 
3320   __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
3321 
3322   BLOCK_COMMENT("Entry:");
3323   __ enter(); // save rbp
3324 
3325   // save c_rarg0, because we want to use that value.
3326   // We could do without it but then we depend on the number of slots used by pusha
3327   __ push(c_rarg0);
3328 
3329   __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
3330 
3331   __ pusha();
3332 
3333   // The method may have floats as arguments, and we must spill them before calling
3334   // the VM runtime.
3335   assert(Argument::n_float_register_parameters_j == 8, "Assumption");
3336   const int xmm_size = wordSize * 2;
3337   const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
3338   __ subptr(rsp, xmm_spill_size);
3339   __ movdqu(Address(rsp, xmm_size * 7), xmm7);
3340   __ movdqu(Address(rsp, xmm_size * 6), xmm6);
3341   __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3342   __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3343   __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3344   __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3345   __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3346   __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3347 
3348   __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3349 
3350   __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3351   __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3352   __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3353   __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3354   __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3355   __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3356   __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3357   __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3358   __ addptr(rsp, xmm_spill_size);
3359 
3360   __ cmpl(rax, 1); // 1 means deoptimize
3361   __ jcc(Assembler::equal, deoptimize_label);
3362 
3363   __ popa();
3364   __ pop(c_rarg0);
3365 
3366   __ leave();
3367 
3368   __ addptr(rsp, 1 * wordSize); // cookie
3369   __ ret(0);
3370 
3371 
3372   __ BIND(deoptimize_label);
3373 
3374   __ popa();
3375   __ pop(c_rarg0);
3376 
3377   __ leave();
3378 
3379   // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3380   // here while still having a correct stack is valuable
3381   __ testptr(rsp, Address(rsp, 0));
3382 
3383   __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3384   __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3385 
3386   return start;
3387 }
3388 
3389  /**
3390  *  Arguments:
3391  *
3392  *  Input:
3393  *    c_rarg0   - out address
3394  *    c_rarg1   - in address
3395  *    c_rarg2   - offset
3396  *    c_rarg3   - len
3397  * not Win64
3398  *    c_rarg4   - k
3399  * Win64
3400  *    rsp+40    - k
3401  */
3402 address StubGenerator::generate_mulAdd() {
3403   __ align(CodeEntryAlignment);
3404   StubGenStubId stub_id = StubGenStubId::mulAdd_id;
3405   StubCodeMark mark(this, stub_id);
3406   address start = __ pc();
3407 
3408   if (SCCache::load_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start)) {
3409     return start;
3410   }
3411 
3412   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3413   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3414   const Register out     = rdi;
3415   const Register in      = rsi;
3416   const Register offset  = r11;
3417   const Register len     = rcx;
3418   const Register k       = r8;
3419 
3420   // Next registers will be saved on stack in mul_add().
3421   const Register tmp1  = r12;
3422   const Register tmp2  = r13;
3423   const Register tmp3  = r14;
3424   const Register tmp4  = r15;
3425   const Register tmp5  = rbx;
3426 
3427   BLOCK_COMMENT("Entry:");
3428   __ enter(); // required for proper stackwalking of RuntimeStub frame
3429 
3430   setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3431                      // len => rcx, k => r8
3432                      // r9 and r10 may be used to save non-volatile registers
3433 #ifdef _WIN64
3434   // last argument is on stack on Win64
3435   __ movl(k, Address(rsp, 6 * wordSize));
3436 #endif
3437   __ movptr(r11, rdx);  // move offset in rdx to offset(r11)
3438   __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3439 
3440   restore_arg_regs();
3441 
3442   __ leave(); // required for proper stackwalking of RuntimeStub frame
3443   __ ret(0);
3444 
3445   SCCache::store_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start);
3446   return start;
3447 }
3448 
3449 address StubGenerator::generate_bigIntegerRightShift() {
3450   __ align(CodeEntryAlignment);
3451   StubGenStubId stub_id = StubGenStubId::bigIntegerRightShiftWorker_id;
3452   StubCodeMark mark(this, stub_id);
3453   address start = __ pc();
3454 
3455   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3456   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3457   const Register newArr = rdi;
3458   const Register oldArr = rsi;
3459   const Register newIdx = rdx;
3460   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3461   const Register totalNumIter = r8;
3462 
3463   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3464   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3465   const Register tmp1 = r11;                    // Caller save.
3466   const Register tmp2 = rax;                    // Caller save.
3467   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3468   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3469   const Register tmp5 = r14;                    // Callee save.
3470   const Register tmp6 = r15;
3471 
3472   const XMMRegister x0 = xmm0;
3473   const XMMRegister x1 = xmm1;
3474   const XMMRegister x2 = xmm2;
3475 
3476   BLOCK_COMMENT("Entry:");
3477   __ enter(); // required for proper stackwalking of RuntimeStub frame
3478 
3479 #ifdef _WIN64
3480   setup_arg_regs(4);
3481   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3482   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3483   // Save callee save registers.
3484   __ push(tmp3);
3485   __ push(tmp4);
3486 #endif
3487   __ push(tmp5);
3488 
3489   // Rename temps used throughout the code.
3490   const Register idx = tmp1;
3491   const Register nIdx = tmp2;
3492 
3493   __ xorl(idx, idx);
3494 
3495   // Start right shift from end of the array.
3496   // For example, if #iteration = 4 and newIdx = 1
3497   // then dest[4] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3498   // if #iteration = 4 and newIdx = 0
3499   // then dest[3] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3500   __ movl(idx, totalNumIter);
3501   __ movl(nIdx, idx);
3502   __ addl(nIdx, newIdx);
3503 
3504   // If vectorization is enabled, check if the number of iterations is at least 64
3505   // If not, then go to ShifTwo processing 2 iterations
3506   if (VM_Version::supports_avx512_vbmi2()) {
3507     __ cmpptr(totalNumIter, (AVX3Threshold/64));
3508     __ jcc(Assembler::less, ShiftTwo);
3509 
3510     if (AVX3Threshold < 16 * 64) {
3511       __ cmpl(totalNumIter, 16);
3512       __ jcc(Assembler::less, ShiftTwo);
3513     }
3514     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3515     __ subl(idx, 16);
3516     __ subl(nIdx, 16);
3517     __ BIND(Shift512Loop);
3518     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3519     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3520     __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3521     __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3522     __ subl(nIdx, 16);
3523     __ subl(idx, 16);
3524     __ jcc(Assembler::greaterEqual, Shift512Loop);
3525     __ addl(idx, 16);
3526     __ addl(nIdx, 16);
3527   }
3528   __ BIND(ShiftTwo);
3529   __ cmpl(idx, 2);
3530   __ jcc(Assembler::less, ShiftOne);
3531   __ subl(idx, 2);
3532   __ subl(nIdx, 2);
3533   __ BIND(ShiftTwoLoop);
3534   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3535   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3536   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3537   __ shrdl(tmp5, tmp4);
3538   __ shrdl(tmp4, tmp3);
3539   __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3540   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3541   __ subl(nIdx, 2);
3542   __ subl(idx, 2);
3543   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3544   __ addl(idx, 2);
3545   __ addl(nIdx, 2);
3546 
3547   // Do the last iteration
3548   __ BIND(ShiftOne);
3549   __ cmpl(idx, 1);
3550   __ jcc(Assembler::less, Exit);
3551   __ subl(idx, 1);
3552   __ subl(nIdx, 1);
3553   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3554   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3555   __ shrdl(tmp4, tmp3);
3556   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3557   __ BIND(Exit);
3558   __ vzeroupper();
3559   // Restore callee save registers.
3560   __ pop(tmp5);
3561 #ifdef _WIN64
3562   __ pop(tmp4);
3563   __ pop(tmp3);
3564   restore_arg_regs();
3565 #endif
3566   __ leave(); // required for proper stackwalking of RuntimeStub frame
3567   __ ret(0);
3568 
3569   return start;
3570 }
3571 
3572  /**
3573  *  Arguments:
3574  *
3575  *  Input:
3576  *    c_rarg0   - newArr address
3577  *    c_rarg1   - oldArr address
3578  *    c_rarg2   - newIdx
3579  *    c_rarg3   - shiftCount
3580  * not Win64
3581  *    c_rarg4   - numIter
3582  * Win64
3583  *    rsp40    - numIter
3584  */
3585 address StubGenerator::generate_bigIntegerLeftShift() {
3586   __ align(CodeEntryAlignment);
3587   StubGenStubId stub_id = StubGenStubId::bigIntegerLeftShiftWorker_id;
3588   StubCodeMark mark(this, stub_id);
3589   address start = __ pc();
3590 
3591   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3592   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3593   const Register newArr = rdi;
3594   const Register oldArr = rsi;
3595   const Register newIdx = rdx;
3596   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3597   const Register totalNumIter = r8;
3598   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3599   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3600   const Register tmp1 = r11;                    // Caller save.
3601   const Register tmp2 = rax;                    // Caller save.
3602   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3603   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3604   const Register tmp5 = r14;                    // Callee save.
3605 
3606   const XMMRegister x0 = xmm0;
3607   const XMMRegister x1 = xmm1;
3608   const XMMRegister x2 = xmm2;
3609   BLOCK_COMMENT("Entry:");
3610   __ enter(); // required for proper stackwalking of RuntimeStub frame
3611 
3612 #ifdef _WIN64
3613   setup_arg_regs(4);
3614   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3615   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3616   // Save callee save registers.
3617   __ push(tmp3);
3618   __ push(tmp4);
3619 #endif
3620   __ push(tmp5);
3621 
3622   // Rename temps used throughout the code
3623   const Register idx = tmp1;
3624   const Register numIterTmp = tmp2;
3625 
3626   // Start idx from zero.
3627   __ xorl(idx, idx);
3628   // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3629   __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3630   __ movl(numIterTmp, totalNumIter);
3631 
3632   // If vectorization is enabled, check if the number of iterations is at least 64
3633   // If not, then go to ShiftTwo shifting two numbers at a time
3634   if (VM_Version::supports_avx512_vbmi2()) {
3635     __ cmpl(totalNumIter, (AVX3Threshold/64));
3636     __ jcc(Assembler::less, ShiftTwo);
3637 
3638     if (AVX3Threshold < 16 * 64) {
3639       __ cmpl(totalNumIter, 16);
3640       __ jcc(Assembler::less, ShiftTwo);
3641     }
3642     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3643     __ subl(numIterTmp, 16);
3644     __ BIND(Shift512Loop);
3645     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3646     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3647     __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3648     __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3649     __ addl(idx, 16);
3650     __ subl(numIterTmp, 16);
3651     __ jcc(Assembler::greaterEqual, Shift512Loop);
3652     __ addl(numIterTmp, 16);
3653   }
3654   __ BIND(ShiftTwo);
3655   __ cmpl(totalNumIter, 1);
3656   __ jcc(Assembler::less, Exit);
3657   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3658   __ subl(numIterTmp, 2);
3659   __ jcc(Assembler::less, ShiftOne);
3660 
3661   __ BIND(ShiftTwoLoop);
3662   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3663   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3664   __ shldl(tmp3, tmp4);
3665   __ shldl(tmp4, tmp5);
3666   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3667   __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3668   __ movl(tmp3, tmp5);
3669   __ addl(idx, 2);
3670   __ subl(numIterTmp, 2);
3671   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3672 
3673   // Do the last iteration
3674   __ BIND(ShiftOne);
3675   __ addl(numIterTmp, 2);
3676   __ cmpl(numIterTmp, 1);
3677   __ jcc(Assembler::less, Exit);
3678   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3679   __ shldl(tmp3, tmp4);
3680   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3681 
3682   __ BIND(Exit);
3683   __ vzeroupper();
3684   // Restore callee save registers.
3685   __ pop(tmp5);
3686 #ifdef _WIN64
3687   __ pop(tmp4);
3688   __ pop(tmp3);
3689   restore_arg_regs();
3690 #endif
3691   __ leave(); // required for proper stackwalking of RuntimeStub frame
3692   __ ret(0);
3693 
3694   return start;
3695 }
3696 
3697 void StubGenerator::generate_libm_stubs() {
3698   if (UseLibmIntrinsic && InlineIntrinsics) {
3699     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3700       StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3701     }
3702     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3703       StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3704     }
3705     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3706       StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3707     }
3708     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) {
3709       StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp
3710     }
3711     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3712       StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3713     }
3714     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3715       StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3716     }
3717     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3718       StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3719     }
3720     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3721       StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3722     }
3723   }
3724 }
3725 
3726 /**
3727 *  Arguments:
3728 *
3729 *  Input:
3730 *    c_rarg0   - float16  jshort
3731 *
3732 *  Output:
3733 *       xmm0   - float
3734 */
3735 address StubGenerator::generate_float16ToFloat() {
3736   StubGenStubId stub_id = StubGenStubId::hf2f_id;
3737   StubCodeMark mark(this, stub_id);
3738 
3739   address start = __ pc();
3740 
3741   BLOCK_COMMENT("Entry:");
3742   // No need for RuntimeStub frame since it is called only during JIT compilation
3743 
3744   // Load value into xmm0 and convert
3745   __ flt16_to_flt(xmm0, c_rarg0);
3746 
3747   __ ret(0);
3748 
3749   return start;
3750 }
3751 
3752 /**
3753 *  Arguments:
3754 *
3755 *  Input:
3756 *       xmm0   - float
3757 *
3758 *  Output:
3759 *        rax   - float16  jshort
3760 */
3761 address StubGenerator::generate_floatToFloat16() {
3762   StubGenStubId stub_id = StubGenStubId::f2hf_id;
3763   StubCodeMark mark(this, stub_id);
3764 
3765   address start = __ pc();
3766 
3767   BLOCK_COMMENT("Entry:");
3768   // No need for RuntimeStub frame since it is called only during JIT compilation
3769 
3770   // Convert and put result into rax
3771   __ flt_to_flt16(rax, xmm0, xmm1);
3772 
3773   __ ret(0);
3774 
3775   return start;
3776 }
3777 
3778 address StubGenerator::generate_cont_thaw(StubGenStubId stub_id) {
3779   if (!Continuations::enabled()) return nullptr;
3780 
3781   bool return_barrier;
3782   bool return_barrier_exception;
3783   Continuation::thaw_kind kind;
3784 
3785   switch (stub_id) {
3786   case cont_thaw_id:
3787     return_barrier = false;
3788     return_barrier_exception = false;
3789     kind = Continuation::thaw_top;
3790     break;
3791   case cont_returnBarrier_id:
3792     return_barrier = true;
3793     return_barrier_exception = false;
3794     kind = Continuation::thaw_return_barrier;
3795     break;
3796   case cont_returnBarrierExc_id:
3797     return_barrier = true;
3798     return_barrier_exception = true;
3799     kind = Continuation::thaw_return_barrier_exception;
3800     break;
3801   default:
3802     ShouldNotReachHere();
3803   }
3804   StubCodeMark mark(this, stub_id);
3805   address start = __ pc();
3806 
3807   // TODO: Handle Valhalla return types. May require generating different return barriers.
3808 
3809   if (!return_barrier) {
3810     // Pop return address. If we don't do this, we get a drift,
3811     // where the bottom-most frozen frame continuously grows.
3812     __ pop(c_rarg3);
3813   } else {
3814     __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3815   }
3816 
3817 #ifdef ASSERT
3818   {
3819     Label L_good_sp;
3820     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3821     __ jcc(Assembler::equal, L_good_sp);
3822     __ stop("Incorrect rsp at thaw entry");
3823     __ BIND(L_good_sp);
3824   }
3825 #endif // ASSERT
3826 
3827   if (return_barrier) {
3828     // Preserve possible return value from a method returning to the return barrier.
3829     __ push(rax);
3830     __ push_d(xmm0);
3831   }
3832 
3833   __ movptr(c_rarg0, r15_thread);
3834   __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3835   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3836   __ movptr(rbx, rax);
3837 
3838   if (return_barrier) {
3839     // Restore return value from a method returning to the return barrier.
3840     // No safepoint in the call to thaw, so even an oop return value should be OK.
3841     __ pop_d(xmm0);
3842     __ pop(rax);
3843   }
3844 
3845 #ifdef ASSERT
3846   {
3847     Label L_good_sp;
3848     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3849     __ jcc(Assembler::equal, L_good_sp);
3850     __ stop("Incorrect rsp after prepare thaw");
3851     __ BIND(L_good_sp);
3852   }
3853 #endif // ASSERT
3854 
3855   // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3856   Label L_thaw_success;
3857   __ testptr(rbx, rbx);
3858   __ jccb(Assembler::notZero, L_thaw_success);
3859   __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
3860   __ bind(L_thaw_success);
3861 
3862   // Make room for the thawed frames and align the stack.
3863   __ subptr(rsp, rbx);
3864   __ andptr(rsp, -StackAlignmentInBytes);
3865 
3866   if (return_barrier) {
3867     // Preserve possible return value from a method returning to the return barrier. (Again.)
3868     __ push(rax);
3869     __ push_d(xmm0);
3870   }
3871 
3872   // If we want, we can templatize thaw by kind, and have three different entries.
3873   __ movptr(c_rarg0, r15_thread);
3874   __ movptr(c_rarg1, kind);
3875   __ call_VM_leaf(Continuation::thaw_entry(), 2);
3876   __ movptr(rbx, rax);
3877 
3878   if (return_barrier) {
3879     // Restore return value from a method returning to the return barrier. (Again.)
3880     // No safepoint in the call to thaw, so even an oop return value should be OK.
3881     __ pop_d(xmm0);
3882     __ pop(rax);
3883   } else {
3884     // Return 0 (success) from doYield.
3885     __ xorptr(rax, rax);
3886   }
3887 
3888   // After thawing, rbx is the SP of the yielding frame.
3889   // Move there, and then to saved RBP slot.
3890   __ movptr(rsp, rbx);
3891   __ subptr(rsp, 2*wordSize);
3892 
3893   if (return_barrier_exception) {
3894     __ movptr(c_rarg0, r15_thread);
3895     __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3896 
3897     // rax still holds the original exception oop, save it before the call
3898     __ push(rax);
3899 
3900     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3901     __ movptr(rbx, rax);
3902 
3903     // Continue at exception handler:
3904     //   rax: exception oop
3905     //   rbx: exception handler
3906     //   rdx: exception pc
3907     __ pop(rax);
3908     __ verify_oop(rax);
3909     __ pop(rbp); // pop out RBP here too
3910     __ pop(rdx);
3911     __ jmp(rbx);
3912   } else {
3913     // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3914     __ pop(rbp);
3915     __ ret(0);
3916   }
3917 
3918   return start;
3919 }
3920 
3921 address StubGenerator::generate_cont_thaw() {
3922   return generate_cont_thaw(StubGenStubId::cont_thaw_id);
3923 }
3924 
3925 // TODO: will probably need multiple return barriers depending on return type
3926 
3927 address StubGenerator::generate_cont_returnBarrier() {
3928   return generate_cont_thaw(StubGenStubId::cont_returnBarrier_id);
3929 }
3930 
3931 address StubGenerator::generate_cont_returnBarrier_exception() {
3932   return generate_cont_thaw(StubGenStubId::cont_returnBarrierExc_id);
3933 }
3934 
3935 address StubGenerator::generate_cont_preempt_stub() {
3936   if (!Continuations::enabled()) return nullptr;
3937   StubGenStubId stub_id = StubGenStubId::cont_preempt_id;
3938   StubCodeMark mark(this, stub_id);
3939   address start = __ pc();
3940 
3941   __ reset_last_Java_frame(true);
3942 
3943   // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap.
3944   __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3945 
3946   Label preemption_cancelled;
3947   __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset()));
3948   __ testbool(rscratch1);
3949   __ jcc(Assembler::notZero, preemption_cancelled);
3950 
3951   // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount.
3952   SharedRuntime::continuation_enter_cleanup(_masm);
3953   __ pop(rbp);
3954   __ ret(0);
3955 
3956   // We acquired the monitor after freezing the frames so call thaw to continue execution.
3957   __ bind(preemption_cancelled);
3958   __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false);
3959   __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size())));
3960   __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address()));
3961   __ jmp(rscratch1);
3962 
3963   return start;
3964 }
3965 
3966 // exception handler for upcall stubs
3967 address StubGenerator::generate_upcall_stub_exception_handler() {
3968   StubGenStubId stub_id = StubGenStubId::upcall_stub_exception_handler_id;
3969   StubCodeMark mark(this, stub_id);
3970   address start = __ pc();
3971 
3972   // native caller has no idea how to handle exceptions
3973   // we just crash here. Up to callee to catch exceptions.
3974   __ verify_oop(rax);
3975   __ vzeroupper();
3976   __ mov(c_rarg0, rax);
3977   __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI
3978   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3979   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception)));
3980   __ should_not_reach_here();
3981 
3982   return start;
3983 }
3984 
3985 // load Method* target of MethodHandle
3986 // j_rarg0 = jobject receiver
3987 // rbx = result
3988 address StubGenerator::generate_upcall_stub_load_target() {
3989   StubGenStubId stub_id = StubGenStubId::upcall_stub_load_target_id;
3990   StubCodeMark mark(this, stub_id);
3991   address start = __ pc();
3992 
3993   __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1);
3994     // Load target method from receiver
3995   __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1);
3996   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1);
3997   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1);
3998   __ access_load_at(T_ADDRESS, IN_HEAP, rbx,
3999                     Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()),
4000                     noreg, noreg);
4001   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized
4002 
4003   __ ret(0);
4004 
4005   return start;
4006 }
4007 
4008 void StubGenerator::generate_lookup_secondary_supers_table_stub() {
4009   StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_id;
4010   StubCodeMark mark(this, stub_id);
4011 
4012   const Register
4013       r_super_klass = rax,
4014       r_sub_klass   = rsi,
4015       result        = rdi;
4016 
4017   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
4018     StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc();
4019     __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass,
4020                                            rdx, rcx, rbx, r11, // temps
4021                                            result,
4022                                            slot);
4023     __ ret(0);
4024   }
4025 }
4026 
4027 // Slow path implementation for UseSecondarySupersTable.
4028 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() {
4029   StubGenStubId stub_id = StubGenStubId::lookup_secondary_supers_table_slow_path_id;
4030   StubCodeMark mark(this, stub_id);
4031 
4032   address start = __ pc();
4033 
4034   const Register
4035       r_super_klass  = rax,
4036       r_array_base   = rbx,
4037       r_array_index  = rdx,
4038       r_sub_klass    = rsi,
4039       r_bitmap       = r11,
4040       result         = rdi;
4041 
4042   Label L_success;
4043   __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap,
4044                                              rcx, rdi, // temps
4045                                              &L_success);
4046   // bind(L_failure);
4047   __ movl(result, 1);
4048   __ ret(0);
4049 
4050   __ bind(L_success);
4051   __ movl(result, 0);
4052   __ ret(0);
4053 
4054   return start;
4055 }
4056 
4057 void StubGenerator::create_control_words() {
4058   // Round to nearest, 64-bit mode, exceptions masked, flags specialized
4059   StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80;
4060   // Round to zero, 64-bit mode, exceptions masked, flags specialized
4061   StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80;
4062 }
4063 
4064 // Initialization
4065 void StubGenerator::generate_initial_stubs() {
4066   // Generates all stubs and initializes the entry points
4067 
4068   // This platform-specific settings are needed by generate_call_stub()
4069   create_control_words();
4070 
4071   // Initialize table for unsafe copy memeory check.
4072   if (UnsafeMemoryAccess::_table == nullptr) {
4073     UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory
4074   }
4075 
4076   // entry points that exist in all platforms Note: This is code
4077   // that could be shared among different platforms - however the
4078   // benefit seems to be smaller than the disadvantage of having a
4079   // much more complicated generator structure. See also comment in
4080   // stubRoutines.hpp.
4081 
4082   StubRoutines::_forward_exception_entry = generate_forward_exception();
4083 
4084   StubRoutines::_call_stub_entry =
4085     generate_call_stub(StubRoutines::_call_stub_return_address);
4086 
4087   // is referenced by megamorphic call
4088   StubRoutines::_catch_exception_entry = generate_catch_exception();
4089 
4090   // atomic calls
4091   StubRoutines::_fence_entry                = generate_orderaccess_fence();
4092 
4093   // platform dependent
4094   StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
4095 
4096   StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
4097 
4098   StubRoutines::x86::_f2i_fixup             = generate_f2i_fixup();
4099   StubRoutines::x86::_f2l_fixup             = generate_f2l_fixup();
4100   StubRoutines::x86::_d2i_fixup             = generate_d2i_fixup();
4101   StubRoutines::x86::_d2l_fixup             = generate_d2l_fixup();
4102 
4103   StubRoutines::x86::_float_sign_mask       = generate_fp_mask(StubGenStubId::float_sign_mask_id,  0x7FFFFFFF7FFFFFFF);
4104   StubRoutines::x86::_float_sign_flip       = generate_fp_mask(StubGenStubId::float_sign_flip_id,  0x8000000080000000);
4105   StubRoutines::x86::_double_sign_mask      = generate_fp_mask(StubGenStubId::double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4106   StubRoutines::x86::_double_sign_flip      = generate_fp_mask(StubGenStubId::double_sign_flip_id, 0x8000000000000000);
4107 
4108   if (UseCRC32Intrinsics) {
4109     // set table address before stub generation which use it
4110     StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
4111     StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
4112   }
4113 
4114   if (UseCRC32CIntrinsics) {
4115     bool supports_clmul = VM_Version::supports_clmul();
4116     StubRoutines::x86::generate_CRC32C_table(supports_clmul);
4117     StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
4118     StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
4119   }
4120 
4121   if (VM_Version::supports_float16()) {
4122     // For results consistency both intrinsics should be enabled.
4123     // vmIntrinsics checks InlineIntrinsics flag, no need to check it here.
4124     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) &&
4125         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) {
4126       StubRoutines::_hf2f = generate_float16ToFloat();
4127       StubRoutines::_f2hf = generate_floatToFloat16();
4128     }
4129   }
4130 
4131   generate_libm_stubs();
4132 
4133   StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp
4134 }
4135 
4136 void StubGenerator::generate_continuation_stubs() {
4137   // Continuation stubs:
4138   StubRoutines::_cont_thaw          = generate_cont_thaw();
4139   StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
4140   StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
4141   StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub();
4142 }
4143 
4144 void StubGenerator::generate_final_stubs() {
4145   // Generates the rest of stubs and initializes the entry points
4146 
4147   // support for verify_oop (must happen after universe_init)
4148   if (VerifyOops) {
4149     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
4150   }
4151 
4152   // arraycopy stubs used by compilers
4153   generate_arraycopy_stubs();
4154 
4155   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
4156   if (bs_nm != nullptr) {
4157     StubRoutines::_method_entry_barrier = generate_method_entry_barrier();
4158   }
4159 
4160 #ifdef COMPILER2
4161   if (UseSecondarySupersTable) {
4162     StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub();
4163     if (! InlineSecondarySupersTest) {
4164       generate_lookup_secondary_supers_table_stub();
4165     }
4166   }
4167 #endif // COMPILER2
4168 
4169   if (UseVectorizedMismatchIntrinsic) {
4170     StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4171   }
4172 
4173   StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler();
4174   StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target();
4175 }
4176 
4177 void StubGenerator::generate_compiler_stubs() {
4178 #if COMPILER2_OR_JVMCI
4179 
4180   // Entry points that are C2 compiler specific.
4181 
4182   StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubGenStubId::vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4183   StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubGenStubId::vector_float_sign_flip_id, 0x8000000080000000);
4184   StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubGenStubId::vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4185   StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubGenStubId::vector_double_sign_flip_id, 0x8000000000000000);
4186   StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubGenStubId::vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF);
4187   StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubGenStubId::vector_int_mask_cmp_bits_id, 0x0000000100000001);
4188   StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubGenStubId::vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff);
4189   StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask();
4190   StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubGenStubId::vector_int_to_byte_mask_id, 0x000000ff000000ff);
4191   StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubGenStubId::vector_int_to_short_mask_id, 0x0000ffff0000ffff);
4192   StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_32_bit_mask_id, Assembler::AVX_512bit,
4193                                                                       0xFFFFFFFF, 0, 0, 0);
4194   StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubGenStubId::vector_64_bit_mask_id, Assembler::AVX_512bit,
4195                                                                       0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
4196   StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubGenStubId::vector_int_shuffle_mask_id, 0x0302010003020100);
4197   StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask();
4198   StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubGenStubId::vector_short_shuffle_mask_id, 0x0100010001000100);
4199   StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubGenStubId::vector_long_shuffle_mask_id, 0x0000000100000000);
4200   StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubGenStubId::vector_long_sign_mask_id, 0x8000000000000000);
4201   StubRoutines::x86::_vector_iota_indices = generate_iota_indices();
4202   StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut();
4203   StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut();
4204   StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long();
4205   StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int();
4206   StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short();
4207 
4208   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) {
4209     StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubGenStubId::compress_perm_table32_id);
4210     StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubGenStubId::compress_perm_table64_id);
4211     StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubGenStubId::expand_perm_table32_id);
4212     StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubGenStubId::expand_perm_table64_id);
4213   }
4214 
4215   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
4216     // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
4217     StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut();
4218   }
4219 
4220   generate_aes_stubs();
4221 
4222   generate_ghash_stubs();
4223 
4224   generate_chacha_stubs();
4225 
4226   generate_sha3_stubs();
4227 
4228   // data cache line writeback
4229   StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
4230   StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
4231 
4232 #ifdef COMPILER2
4233   if ((UseAVX == 2) && EnableX86ECoreOpts) {
4234     generate_string_indexof(StubRoutines::_string_indexof_array);
4235   }
4236 #endif
4237 
4238   if (UseAdler32Intrinsics) {
4239      StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
4240   }
4241 
4242   if (UsePoly1305Intrinsics) {
4243     StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
4244   }
4245 
4246   if (UseIntPolyIntrinsics) {
4247     StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256();
4248     StubRoutines::_intpoly_assign = generate_intpoly_assign();
4249   }
4250 
4251   if (UseMD5Intrinsics) {
4252     StubRoutines::_md5_implCompress = generate_md5_implCompress(StubGenStubId::md5_implCompress_id);
4253     StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubGenStubId::md5_implCompressMB_id);
4254   }
4255 
4256   if (UseSHA1Intrinsics) {
4257     StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
4258     StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
4259     StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubGenStubId::sha1_implCompress_id);
4260     StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubGenStubId::sha1_implCompressMB_id);
4261   }
4262 
4263   if (UseSHA256Intrinsics) {
4264     StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
4265     char* dst = (char*)StubRoutines::x86::_k256_W;
4266     char* src = (char*)StubRoutines::x86::_k256;
4267     for (int ii = 0; ii < 16; ++ii) {
4268       memcpy(dst + 32 * ii,      src + 16 * ii, 16);
4269       memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4270     }
4271     StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4272     StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4273     StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubGenStubId::sha256_implCompress_id);
4274     StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubGenStubId::sha256_implCompressMB_id);
4275   }
4276 
4277   if (UseSHA512Intrinsics) {
4278     StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4279     StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4280     StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubGenStubId::sha512_implCompress_id);
4281     StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubGenStubId::sha512_implCompressMB_id);
4282   }
4283 
4284   if (UseBASE64Intrinsics) {
4285     if(VM_Version::supports_avx2()) {
4286       StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4287       StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4288       StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4289       StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr();
4290       StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr();
4291     }
4292     StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4293     if (VM_Version::supports_avx512_vbmi()) {
4294       StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4295       StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4296       StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4297       StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4298       StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4299       StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4300       StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4301       StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4302       StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4303     }
4304     StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4305     StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4306     StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4307   }
4308 
4309 #ifdef COMPILER2
4310   if (UseMultiplyToLenIntrinsic) {
4311     StubRoutines::_multiplyToLen = generate_multiplyToLen();
4312   }
4313   if (UseSquareToLenIntrinsic) {
4314     StubRoutines::_squareToLen = generate_squareToLen();
4315   }
4316   if (UseMulAddIntrinsic) {
4317     StubRoutines::_mulAdd = generate_mulAdd();
4318   }
4319   if (VM_Version::supports_avx512_vbmi2()) {
4320     StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4321     StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4322   }
4323   if (UseMontgomeryMultiplyIntrinsic) {
4324     StubRoutines::_montgomeryMultiply
4325       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4326   }
4327   if (UseMontgomerySquareIntrinsic) {
4328     StubRoutines::_montgomerySquare
4329       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4330   }
4331 
4332   // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics
4333 
4334   if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) {
4335     void *libsimdsort = nullptr;
4336     char ebuf_[1024];
4337     char dll_name_simd_sort[JVM_MAXPATHLEN];
4338     if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) {
4339       libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_);
4340     }
4341     // Get addresses for SIMD sort and partition routines
4342     if (libsimdsort != nullptr) {
4343       log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort));
4344 
4345       snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort");
4346       StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_);
4347 
4348       snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition");
4349       StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_);
4350     }
4351   }
4352 
4353   // Get svml stub routine addresses
4354   void *libjsvml = nullptr;
4355   char ebuf[1024];
4356   char dll_name[JVM_MAXPATHLEN];
4357   if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) {
4358     libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf);
4359   }
4360   if (libjsvml != nullptr) {
4361     // SVML method naming convention
4362     //   All the methods are named as __jsvml_op<T><N>_ha_<VV>
4363     //   Where:
4364     //      ha stands for high accuracy
4365     //      <T> is optional to indicate float/double
4366     //              Set to f for vector float operation
4367     //              Omitted for vector double operation
4368     //      <N> is the number of elements in the vector
4369     //              1, 2, 4, 8, 16
4370     //              e.g. 128 bit float vector has 4 float elements
4371     //      <VV> indicates the avx/sse level:
4372     //              z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2
4373     //      e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns
4374     //           __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns
4375 
4376     log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml));
4377     if (UseAVX > 2) {
4378       for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) {
4379         int vop = VectorSupport::VECTOR_OP_MATH_START + op;
4380         if ((!VM_Version::supports_avx512dq()) &&
4381             (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) {
4382           continue;
4383         }
4384         snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]);
4385         StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4386 
4387         snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]);
4388         StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf);
4389       }
4390     }
4391     const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex");
4392     for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) {
4393       int vop = VectorSupport::VECTOR_OP_MATH_START + op;
4394       if (vop == VectorSupport::VECTOR_OP_POW) {
4395         continue;
4396       }
4397       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4398       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4399 
4400       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4401       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4402 
4403       snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4404       StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4405 
4406       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4407       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf);
4408 
4409       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4410       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf);
4411 
4412       snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str);
4413       StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf);
4414     }
4415   }
4416 
4417 #endif // COMPILER2
4418 #endif // COMPILER2_OR_JVMCI
4419 }
4420 
4421 StubGenerator::StubGenerator(CodeBuffer* code, StubGenBlobId blob_id) : StubCodeGenerator(code, blob_id) {
4422   switch(blob_id) {
4423   case initial_id:
4424     generate_initial_stubs();
4425     break;
4426   case continuation_id:
4427     generate_continuation_stubs();
4428     break;
4429   case compiler_id:
4430     generate_compiler_stubs();
4431     break;
4432   case final_id:
4433     generate_final_stubs();
4434     break;
4435   default:
4436     fatal("unexpected blob id: %d", blob_id);
4437     break;
4438   };
4439 }
4440 
4441 void StubGenerator_generate(CodeBuffer* code, StubGenBlobId blob_id) {
4442   StubGenerator g(code, blob_id);
4443 }
4444 
4445 #undef __