1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "classfile/vmIntrinsics.hpp" 28 #include "code/SCCache.hpp" 29 #include "compiler/oopMap.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "gc/shared/barrierSetNMethod.hpp" 33 #include "gc/shared/gc_globals.hpp" 34 #include "memory/universe.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/upcallLinker.hpp" 37 #include "runtime/arguments.hpp" 38 #include "runtime/javaThread.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "stubGenerator_x86_64.hpp" 42 #ifdef COMPILER2 43 #include "opto/runtime.hpp" 44 #include "opto/c2_globals.hpp" 45 #endif 46 #if INCLUDE_JVMCI 47 #include "jvmci/jvmci_globals.hpp" 48 #endif 49 50 // For a more detailed description of the stub routine structure 51 // see the comment in stubRoutines.hpp 52 53 #define __ _masm-> 54 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 55 56 #ifdef PRODUCT 57 #define BLOCK_COMMENT(str) /* nothing */ 58 #else 59 #define BLOCK_COMMENT(str) __ block_comment(str) 60 #endif // PRODUCT 61 62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 63 64 // 65 // Linux Arguments: 66 // c_rarg0: call wrapper address address 67 // c_rarg1: result address 68 // c_rarg2: result type BasicType 69 // c_rarg3: method Method* 70 // c_rarg4: (interpreter) entry point address 71 // c_rarg5: parameters intptr_t* 72 // 16(rbp): parameter size (in words) int 73 // 24(rbp): thread Thread* 74 // 75 // [ return_from_Java ] <--- rsp 76 // [ argument word n ] 77 // ... 78 // -12 [ argument word 1 ] 79 // -11 [ saved r15 ] <--- rsp_after_call 80 // -10 [ saved r14 ] 81 // -9 [ saved r13 ] 82 // -8 [ saved r12 ] 83 // -7 [ saved rbx ] 84 // -6 [ call wrapper ] 85 // -5 [ result ] 86 // -4 [ result type ] 87 // -3 [ method ] 88 // -2 [ entry point ] 89 // -1 [ parameters ] 90 // 0 [ saved rbp ] <--- rbp 91 // 1 [ return address ] 92 // 2 [ parameter size ] 93 // 3 [ thread ] 94 // 95 // Windows Arguments: 96 // c_rarg0: call wrapper address address 97 // c_rarg1: result address 98 // c_rarg2: result type BasicType 99 // c_rarg3: method Method* 100 // 48(rbp): (interpreter) entry point address 101 // 56(rbp): parameters intptr_t* 102 // 64(rbp): parameter size (in words) int 103 // 72(rbp): thread Thread* 104 // 105 // [ return_from_Java ] <--- rsp 106 // [ argument word n ] 107 // ... 108 // -28 [ argument word 1 ] 109 // -27 [ saved xmm15 ] <--- rsp after_call 110 // [ saved xmm7-xmm14 ] 111 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 112 // -7 [ saved r15 ] 113 // -6 [ saved r14 ] 114 // -5 [ saved r13 ] 115 // -4 [ saved r12 ] 116 // -3 [ saved rdi ] 117 // -2 [ saved rsi ] 118 // -1 [ saved rbx ] 119 // 0 [ saved rbp ] <--- rbp 120 // 1 [ return address ] 121 // 2 [ call wrapper ] 122 // 3 [ result ] 123 // 4 [ result type ] 124 // 5 [ method ] 125 // 6 [ entry point ] 126 // 7 [ parameters ] 127 // 8 [ parameter size ] 128 // 9 [ thread ] 129 // 130 // Windows reserves the callers stack space for arguments 1-4. 131 // We spill c_rarg0-c_rarg3 to this space. 132 133 // Call stub stack layout word offsets from rbp 134 #ifdef _WIN64 135 enum call_stub_layout { 136 xmm_save_first = 6, // save from xmm6 137 xmm_save_last = 15, // to xmm15 138 xmm_save_base = -9, 139 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 140 r15_off = -7, 141 r14_off = -6, 142 r13_off = -5, 143 r12_off = -4, 144 rdi_off = -3, 145 rsi_off = -2, 146 rbx_off = -1, 147 rbp_off = 0, 148 retaddr_off = 1, 149 call_wrapper_off = 2, 150 result_off = 3, 151 result_type_off = 4, 152 method_off = 5, 153 entry_point_off = 6, 154 parameters_off = 7, 155 parameter_size_off = 8, 156 thread_off = 9 157 }; 158 159 static Address xmm_save(int reg) { 160 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 161 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 162 } 163 #else // !_WIN64 164 enum call_stub_layout { 165 rsp_after_call_off = -12, 166 mxcsr_off = rsp_after_call_off, 167 r15_off = -11, 168 r14_off = -10, 169 r13_off = -9, 170 r12_off = -8, 171 rbx_off = -7, 172 call_wrapper_off = -6, 173 result_off = -5, 174 result_type_off = -4, 175 method_off = -3, 176 entry_point_off = -2, 177 parameters_off = -1, 178 rbp_off = 0, 179 retaddr_off = 1, 180 parameter_size_off = 2, 181 thread_off = 3 182 }; 183 #endif // _WIN64 184 185 address StubGenerator::generate_call_stub(address& return_address) { 186 187 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 188 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 189 "adjust this code"); 190 StubCodeMark mark(this, "StubRoutines", "call_stub"); 191 address start = __ pc(); 192 193 // same as in generate_catch_exception()! 194 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 195 196 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 197 const Address result (rbp, result_off * wordSize); 198 const Address result_type (rbp, result_type_off * wordSize); 199 const Address method (rbp, method_off * wordSize); 200 const Address entry_point (rbp, entry_point_off * wordSize); 201 const Address parameters (rbp, parameters_off * wordSize); 202 const Address parameter_size(rbp, parameter_size_off * wordSize); 203 204 // same as in generate_catch_exception()! 205 const Address thread (rbp, thread_off * wordSize); 206 207 const Address r15_save(rbp, r15_off * wordSize); 208 const Address r14_save(rbp, r14_off * wordSize); 209 const Address r13_save(rbp, r13_off * wordSize); 210 const Address r12_save(rbp, r12_off * wordSize); 211 const Address rbx_save(rbp, rbx_off * wordSize); 212 213 // stub code 214 __ enter(); 215 __ subptr(rsp, -rsp_after_call_off * wordSize); 216 217 // save register parameters 218 #ifndef _WIN64 219 __ movptr(parameters, c_rarg5); // parameters 220 __ movptr(entry_point, c_rarg4); // entry_point 221 #endif 222 223 __ movptr(method, c_rarg3); // method 224 __ movl(result_type, c_rarg2); // result type 225 __ movptr(result, c_rarg1); // result 226 __ movptr(call_wrapper, c_rarg0); // call wrapper 227 228 // save regs belonging to calling function 229 __ movptr(rbx_save, rbx); 230 __ movptr(r12_save, r12); 231 __ movptr(r13_save, r13); 232 __ movptr(r14_save, r14); 233 __ movptr(r15_save, r15); 234 235 #ifdef _WIN64 236 int last_reg = 15; 237 for (int i = xmm_save_first; i <= last_reg; i++) { 238 __ movdqu(xmm_save(i), as_XMMRegister(i)); 239 } 240 241 const Address rdi_save(rbp, rdi_off * wordSize); 242 const Address rsi_save(rbp, rsi_off * wordSize); 243 244 __ movptr(rsi_save, rsi); 245 __ movptr(rdi_save, rdi); 246 #else 247 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 248 { 249 Label skip_ldmx; 250 __ stmxcsr(mxcsr_save); 251 __ movl(rax, mxcsr_save); 252 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 253 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 254 __ cmp32(rax, mxcsr_std, rscratch1); 255 __ jcc(Assembler::equal, skip_ldmx); 256 __ ldmxcsr(mxcsr_std, rscratch1); 257 __ bind(skip_ldmx); 258 } 259 #endif 260 261 // Load up thread register 262 __ movptr(r15_thread, thread); 263 __ reinit_heapbase(); 264 265 #ifdef ASSERT 266 // make sure we have no pending exceptions 267 { 268 Label L; 269 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 270 __ jcc(Assembler::equal, L); 271 __ stop("StubRoutines::call_stub: entered with pending exception"); 272 __ bind(L); 273 } 274 #endif 275 276 // pass parameters if any 277 BLOCK_COMMENT("pass parameters if any"); 278 Label parameters_done; 279 __ movl(c_rarg3, parameter_size); 280 __ testl(c_rarg3, c_rarg3); 281 __ jcc(Assembler::zero, parameters_done); 282 283 Label loop; 284 __ movptr(c_rarg2, parameters); // parameter pointer 285 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 286 __ BIND(loop); 287 __ movptr(rax, Address(c_rarg2, 0));// get parameter 288 __ addptr(c_rarg2, wordSize); // advance to next parameter 289 __ decrementl(c_rarg1); // decrement counter 290 __ push(rax); // pass parameter 291 __ jcc(Assembler::notZero, loop); 292 293 // call Java function 294 __ BIND(parameters_done); 295 __ movptr(rbx, method); // get Method* 296 __ movptr(c_rarg1, entry_point); // get entry_point 297 __ mov(r13, rsp); // set sender sp 298 BLOCK_COMMENT("call Java function"); 299 __ call(c_rarg1); 300 301 BLOCK_COMMENT("call_stub_return_address:"); 302 return_address = __ pc(); 303 304 // store result depending on type (everything that is not 305 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 306 __ movptr(c_rarg0, result); 307 Label is_long, is_float, is_double, exit; 308 __ movl(c_rarg1, result_type); 309 __ cmpl(c_rarg1, T_OBJECT); 310 __ jcc(Assembler::equal, is_long); 311 __ cmpl(c_rarg1, T_LONG); 312 __ jcc(Assembler::equal, is_long); 313 __ cmpl(c_rarg1, T_FLOAT); 314 __ jcc(Assembler::equal, is_float); 315 __ cmpl(c_rarg1, T_DOUBLE); 316 __ jcc(Assembler::equal, is_double); 317 #ifdef ASSERT 318 // make sure the type is INT 319 { 320 Label L; 321 __ cmpl(c_rarg1, T_INT); 322 __ jcc(Assembler::equal, L); 323 __ stop("StubRoutines::call_stub: unexpected result type"); 324 __ bind(L); 325 } 326 #endif 327 328 // handle T_INT case 329 __ movl(Address(c_rarg0, 0), rax); 330 331 __ BIND(exit); 332 333 // pop parameters 334 __ lea(rsp, rsp_after_call); 335 336 #ifdef ASSERT 337 // verify that threads correspond 338 { 339 Label L1, L2, L3; 340 __ cmpptr(r15_thread, thread); 341 __ jcc(Assembler::equal, L1); 342 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 343 __ bind(L1); 344 __ get_thread(rbx); 345 __ cmpptr(r15_thread, thread); 346 __ jcc(Assembler::equal, L2); 347 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 348 __ bind(L2); 349 __ cmpptr(r15_thread, rbx); 350 __ jcc(Assembler::equal, L3); 351 __ stop("StubRoutines::call_stub: threads must correspond"); 352 __ bind(L3); 353 } 354 #endif 355 356 __ pop_cont_fastpath(); 357 358 // restore regs belonging to calling function 359 #ifdef _WIN64 360 // emit the restores for xmm regs 361 for (int i = xmm_save_first; i <= last_reg; i++) { 362 __ movdqu(as_XMMRegister(i), xmm_save(i)); 363 } 364 #endif 365 __ movptr(r15, r15_save); 366 __ movptr(r14, r14_save); 367 __ movptr(r13, r13_save); 368 __ movptr(r12, r12_save); 369 __ movptr(rbx, rbx_save); 370 371 #ifdef _WIN64 372 __ movptr(rdi, rdi_save); 373 __ movptr(rsi, rsi_save); 374 #else 375 __ ldmxcsr(mxcsr_save); 376 #endif 377 378 // restore rsp 379 __ addptr(rsp, -rsp_after_call_off * wordSize); 380 381 // return 382 __ vzeroupper(); 383 __ pop(rbp); 384 __ ret(0); 385 386 // handle return types different from T_INT 387 __ BIND(is_long); 388 __ movq(Address(c_rarg0, 0), rax); 389 __ jmp(exit); 390 391 __ BIND(is_float); 392 __ movflt(Address(c_rarg0, 0), xmm0); 393 __ jmp(exit); 394 395 __ BIND(is_double); 396 __ movdbl(Address(c_rarg0, 0), xmm0); 397 __ jmp(exit); 398 399 return start; 400 } 401 402 // Return point for a Java call if there's an exception thrown in 403 // Java code. The exception is caught and transformed into a 404 // pending exception stored in JavaThread that can be tested from 405 // within the VM. 406 // 407 // Note: Usually the parameters are removed by the callee. In case 408 // of an exception crossing an activation frame boundary, that is 409 // not the case if the callee is compiled code => need to setup the 410 // rsp. 411 // 412 // rax: exception oop 413 414 address StubGenerator::generate_catch_exception() { 415 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 416 address start = __ pc(); 417 418 // same as in generate_call_stub(): 419 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 420 const Address thread (rbp, thread_off * wordSize); 421 422 #ifdef ASSERT 423 // verify that threads correspond 424 { 425 Label L1, L2, L3; 426 __ cmpptr(r15_thread, thread); 427 __ jcc(Assembler::equal, L1); 428 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 429 __ bind(L1); 430 __ get_thread(rbx); 431 __ cmpptr(r15_thread, thread); 432 __ jcc(Assembler::equal, L2); 433 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 434 __ bind(L2); 435 __ cmpptr(r15_thread, rbx); 436 __ jcc(Assembler::equal, L3); 437 __ stop("StubRoutines::catch_exception: threads must correspond"); 438 __ bind(L3); 439 } 440 #endif 441 442 // set pending exception 443 __ verify_oop(rax); 444 445 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 446 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 447 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 448 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 449 450 // complete return to VM 451 assert(StubRoutines::_call_stub_return_address != nullptr, 452 "_call_stub_return_address must have been generated before"); 453 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 454 455 return start; 456 } 457 458 // Continuation point for runtime calls returning with a pending 459 // exception. The pending exception check happened in the runtime 460 // or native call stub. The pending exception in Thread is 461 // converted into a Java-level exception. 462 // 463 // Contract with Java-level exception handlers: 464 // rax: exception 465 // rdx: throwing pc 466 // 467 // NOTE: At entry of this stub, exception-pc must be on stack !! 468 469 address StubGenerator::generate_forward_exception() { 470 StubCodeMark mark(this, "StubRoutines", "forward exception"); 471 address start = __ pc(); 472 473 // Upon entry, the sp points to the return address returning into 474 // Java (interpreted or compiled) code; i.e., the return address 475 // becomes the throwing pc. 476 // 477 // Arguments pushed before the runtime call are still on the stack 478 // but the exception handler will reset the stack pointer -> 479 // ignore them. A potential result in registers can be ignored as 480 // well. 481 482 #ifdef ASSERT 483 // make sure this code is only executed if there is a pending exception 484 { 485 Label L; 486 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 487 __ jcc(Assembler::notEqual, L); 488 __ stop("StubRoutines::forward exception: no pending exception (1)"); 489 __ bind(L); 490 } 491 #endif 492 493 // compute exception handler into rbx 494 __ movptr(c_rarg0, Address(rsp, 0)); 495 BLOCK_COMMENT("call exception_handler_for_return_address"); 496 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 497 SharedRuntime::exception_handler_for_return_address), 498 r15_thread, c_rarg0); 499 __ mov(rbx, rax); 500 501 // setup rax & rdx, remove return address & clear pending exception 502 __ pop(rdx); 503 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 504 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 505 506 #ifdef ASSERT 507 // make sure exception is set 508 { 509 Label L; 510 __ testptr(rax, rax); 511 __ jcc(Assembler::notEqual, L); 512 __ stop("StubRoutines::forward exception: no pending exception (2)"); 513 __ bind(L); 514 } 515 #endif 516 517 // continue at exception handler (return address removed) 518 // rax: exception 519 // rbx: exception handler 520 // rdx: throwing pc 521 __ verify_oop(rax); 522 __ jmp(rbx); 523 524 return start; 525 } 526 527 // Support for intptr_t OrderAccess::fence() 528 // 529 // Arguments : 530 // 531 // Result: 532 address StubGenerator::generate_orderaccess_fence() { 533 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 534 address start = __ pc(); 535 536 __ membar(Assembler::StoreLoad); 537 __ ret(0); 538 539 return start; 540 } 541 542 543 // Support for intptr_t get_previous_sp() 544 // 545 // This routine is used to find the previous stack pointer for the 546 // caller. 547 address StubGenerator::generate_get_previous_sp() { 548 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 549 address start = __ pc(); 550 551 __ movptr(rax, rsp); 552 __ addptr(rax, 8); // return address is at the top of the stack. 553 __ ret(0); 554 555 return start; 556 } 557 558 //---------------------------------------------------------------------------------------------------- 559 // Support for void verify_mxcsr() 560 // 561 // This routine is used with -Xcheck:jni to verify that native 562 // JNI code does not return to Java code without restoring the 563 // MXCSR register to our expected state. 564 565 address StubGenerator::generate_verify_mxcsr() { 566 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 567 address start = __ pc(); 568 569 const Address mxcsr_save(rsp, 0); 570 571 if (CheckJNICalls) { 572 Label ok_ret; 573 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 574 __ push(rax); 575 __ subptr(rsp, wordSize); // allocate a temp location 576 __ stmxcsr(mxcsr_save); 577 __ movl(rax, mxcsr_save); 578 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 579 __ cmp32(rax, mxcsr_std, rscratch1); 580 __ jcc(Assembler::equal, ok_ret); 581 582 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 583 584 __ ldmxcsr(mxcsr_std, rscratch1); 585 586 __ bind(ok_ret); 587 __ addptr(rsp, wordSize); 588 __ pop(rax); 589 } 590 591 __ ret(0); 592 593 return start; 594 } 595 596 address StubGenerator::generate_f2i_fixup() { 597 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 598 Address inout(rsp, 5 * wordSize); // return address + 4 saves 599 600 address start = __ pc(); 601 602 Label L; 603 604 __ push(rax); 605 __ push(c_rarg3); 606 __ push(c_rarg2); 607 __ push(c_rarg1); 608 609 __ movl(rax, 0x7f800000); 610 __ xorl(c_rarg3, c_rarg3); 611 __ movl(c_rarg2, inout); 612 __ movl(c_rarg1, c_rarg2); 613 __ andl(c_rarg1, 0x7fffffff); 614 __ cmpl(rax, c_rarg1); // NaN? -> 0 615 __ jcc(Assembler::negative, L); 616 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 617 __ movl(c_rarg3, 0x80000000); 618 __ movl(rax, 0x7fffffff); 619 __ cmovl(Assembler::positive, c_rarg3, rax); 620 621 __ bind(L); 622 __ movptr(inout, c_rarg3); 623 624 __ pop(c_rarg1); 625 __ pop(c_rarg2); 626 __ pop(c_rarg3); 627 __ pop(rax); 628 629 __ ret(0); 630 631 return start; 632 } 633 634 address StubGenerator::generate_f2l_fixup() { 635 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 636 Address inout(rsp, 5 * wordSize); // return address + 4 saves 637 address start = __ pc(); 638 639 Label L; 640 641 __ push(rax); 642 __ push(c_rarg3); 643 __ push(c_rarg2); 644 __ push(c_rarg1); 645 646 __ movl(rax, 0x7f800000); 647 __ xorl(c_rarg3, c_rarg3); 648 __ movl(c_rarg2, inout); 649 __ movl(c_rarg1, c_rarg2); 650 __ andl(c_rarg1, 0x7fffffff); 651 __ cmpl(rax, c_rarg1); // NaN? -> 0 652 __ jcc(Assembler::negative, L); 653 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 654 __ mov64(c_rarg3, 0x8000000000000000); 655 __ mov64(rax, 0x7fffffffffffffff); 656 __ cmov(Assembler::positive, c_rarg3, rax); 657 658 __ bind(L); 659 __ movptr(inout, c_rarg3); 660 661 __ pop(c_rarg1); 662 __ pop(c_rarg2); 663 __ pop(c_rarg3); 664 __ pop(rax); 665 666 __ ret(0); 667 668 return start; 669 } 670 671 address StubGenerator::generate_d2i_fixup() { 672 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 673 Address inout(rsp, 6 * wordSize); // return address + 5 saves 674 675 address start = __ pc(); 676 677 Label L; 678 679 __ push(rax); 680 __ push(c_rarg3); 681 __ push(c_rarg2); 682 __ push(c_rarg1); 683 __ push(c_rarg0); 684 685 __ movl(rax, 0x7ff00000); 686 __ movq(c_rarg2, inout); 687 __ movl(c_rarg3, c_rarg2); 688 __ mov(c_rarg1, c_rarg2); 689 __ mov(c_rarg0, c_rarg2); 690 __ negl(c_rarg3); 691 __ shrptr(c_rarg1, 0x20); 692 __ orl(c_rarg3, c_rarg2); 693 __ andl(c_rarg1, 0x7fffffff); 694 __ xorl(c_rarg2, c_rarg2); 695 __ shrl(c_rarg3, 0x1f); 696 __ orl(c_rarg1, c_rarg3); 697 __ cmpl(rax, c_rarg1); 698 __ jcc(Assembler::negative, L); // NaN -> 0 699 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 700 __ movl(c_rarg2, 0x80000000); 701 __ movl(rax, 0x7fffffff); 702 __ cmov(Assembler::positive, c_rarg2, rax); 703 704 __ bind(L); 705 __ movptr(inout, c_rarg2); 706 707 __ pop(c_rarg0); 708 __ pop(c_rarg1); 709 __ pop(c_rarg2); 710 __ pop(c_rarg3); 711 __ pop(rax); 712 713 __ ret(0); 714 715 return start; 716 } 717 718 address StubGenerator::generate_d2l_fixup() { 719 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 720 Address inout(rsp, 6 * wordSize); // return address + 5 saves 721 722 address start = __ pc(); 723 724 Label L; 725 726 __ push(rax); 727 __ push(c_rarg3); 728 __ push(c_rarg2); 729 __ push(c_rarg1); 730 __ push(c_rarg0); 731 732 __ movl(rax, 0x7ff00000); 733 __ movq(c_rarg2, inout); 734 __ movl(c_rarg3, c_rarg2); 735 __ mov(c_rarg1, c_rarg2); 736 __ mov(c_rarg0, c_rarg2); 737 __ negl(c_rarg3); 738 __ shrptr(c_rarg1, 0x20); 739 __ orl(c_rarg3, c_rarg2); 740 __ andl(c_rarg1, 0x7fffffff); 741 __ xorl(c_rarg2, c_rarg2); 742 __ shrl(c_rarg3, 0x1f); 743 __ orl(c_rarg1, c_rarg3); 744 __ cmpl(rax, c_rarg1); 745 __ jcc(Assembler::negative, L); // NaN -> 0 746 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 747 __ mov64(c_rarg2, 0x8000000000000000); 748 __ mov64(rax, 0x7fffffffffffffff); 749 __ cmovq(Assembler::positive, c_rarg2, rax); 750 751 __ bind(L); 752 __ movq(inout, c_rarg2); 753 754 __ pop(c_rarg0); 755 __ pop(c_rarg1); 756 __ pop(c_rarg2); 757 __ pop(c_rarg3); 758 __ pop(rax); 759 760 __ ret(0); 761 762 return start; 763 } 764 765 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) { 766 __ align64(); 767 StubCodeMark mark(this, "StubRoutines", stub_name); 768 address start = __ pc(); 769 770 __ emit_data64(0x0101010102020304, relocInfo::none); 771 __ emit_data64(0x0000000000000000, relocInfo::none); 772 __ emit_data64(0x0101010102020304, relocInfo::none); 773 __ emit_data64(0x0000000000000000, relocInfo::none); 774 __ emit_data64(0x0101010102020304, relocInfo::none); 775 __ emit_data64(0x0000000000000000, relocInfo::none); 776 __ emit_data64(0x0101010102020304, relocInfo::none); 777 __ emit_data64(0x0000000000000000, relocInfo::none); 778 779 return start; 780 } 781 782 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) { 783 __ align64(); 784 StubCodeMark mark(this, "StubRoutines", stub_name); 785 address start = __ pc(); 786 787 __ emit_data64(0x0302020102010100, relocInfo::none); 788 __ emit_data64(0x0403030203020201, relocInfo::none); 789 __ emit_data64(0x0302020102010100, relocInfo::none); 790 __ emit_data64(0x0403030203020201, relocInfo::none); 791 __ emit_data64(0x0302020102010100, relocInfo::none); 792 __ emit_data64(0x0403030203020201, relocInfo::none); 793 __ emit_data64(0x0302020102010100, relocInfo::none); 794 __ emit_data64(0x0403030203020201, relocInfo::none); 795 796 return start; 797 } 798 799 address StubGenerator::generate_iota_indices(const char *stub_name) { 800 __ align(CodeEntryAlignment); 801 StubCodeMark mark(this, "StubRoutines", stub_name); 802 address start = __ pc(); 803 // B 804 __ emit_data64(0x0706050403020100, relocInfo::none); 805 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 806 __ emit_data64(0x1716151413121110, relocInfo::none); 807 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 808 __ emit_data64(0x2726252423222120, relocInfo::none); 809 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 810 __ emit_data64(0x3736353433323130, relocInfo::none); 811 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 812 // W 813 __ emit_data64(0x0003000200010000, relocInfo::none); 814 __ emit_data64(0x0007000600050004, relocInfo::none); 815 __ emit_data64(0x000B000A00090008, relocInfo::none); 816 __ emit_data64(0x000F000E000D000C, relocInfo::none); 817 __ emit_data64(0x0013001200110010, relocInfo::none); 818 __ emit_data64(0x0017001600150014, relocInfo::none); 819 __ emit_data64(0x001B001A00190018, relocInfo::none); 820 __ emit_data64(0x001F001E001D001C, relocInfo::none); 821 // D 822 __ emit_data64(0x0000000100000000, relocInfo::none); 823 __ emit_data64(0x0000000300000002, relocInfo::none); 824 __ emit_data64(0x0000000500000004, relocInfo::none); 825 __ emit_data64(0x0000000700000006, relocInfo::none); 826 __ emit_data64(0x0000000900000008, relocInfo::none); 827 __ emit_data64(0x0000000B0000000A, relocInfo::none); 828 __ emit_data64(0x0000000D0000000C, relocInfo::none); 829 __ emit_data64(0x0000000F0000000E, relocInfo::none); 830 // Q 831 __ emit_data64(0x0000000000000000, relocInfo::none); 832 __ emit_data64(0x0000000000000001, relocInfo::none); 833 __ emit_data64(0x0000000000000002, relocInfo::none); 834 __ emit_data64(0x0000000000000003, relocInfo::none); 835 __ emit_data64(0x0000000000000004, relocInfo::none); 836 __ emit_data64(0x0000000000000005, relocInfo::none); 837 __ emit_data64(0x0000000000000006, relocInfo::none); 838 __ emit_data64(0x0000000000000007, relocInfo::none); 839 // D - FP 840 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 841 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 842 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 843 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 844 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 845 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 846 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 847 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 848 // Q - FP 849 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 850 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 851 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 852 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 853 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 854 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 855 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 856 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 857 return start; 858 } 859 860 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) { 861 __ align(CodeEntryAlignment); 862 StubCodeMark mark(this, "StubRoutines", stub_name); 863 address start = __ pc(); 864 865 __ emit_data64(0x0E060A020C040800, relocInfo::none); 866 __ emit_data64(0x0F070B030D050901, relocInfo::none); 867 __ emit_data64(0x0E060A020C040800, relocInfo::none); 868 __ emit_data64(0x0F070B030D050901, relocInfo::none); 869 __ emit_data64(0x0E060A020C040800, relocInfo::none); 870 __ emit_data64(0x0F070B030D050901, relocInfo::none); 871 __ emit_data64(0x0E060A020C040800, relocInfo::none); 872 __ emit_data64(0x0F070B030D050901, relocInfo::none); 873 874 return start; 875 } 876 877 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) { 878 __ align(CodeEntryAlignment); 879 StubCodeMark mark(this, "StubRoutines", stub_name); 880 address start = __ pc(); 881 882 __ emit_data64(0x0001020304050607, relocInfo::none); 883 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 884 __ emit_data64(0x0001020304050607, relocInfo::none); 885 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 886 __ emit_data64(0x0001020304050607, relocInfo::none); 887 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 888 __ emit_data64(0x0001020304050607, relocInfo::none); 889 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 890 891 return start; 892 } 893 894 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) { 895 __ align(CodeEntryAlignment); 896 StubCodeMark mark(this, "StubRoutines", stub_name); 897 address start = __ pc(); 898 899 __ emit_data64(0x0405060700010203, relocInfo::none); 900 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 901 __ emit_data64(0x0405060700010203, relocInfo::none); 902 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 903 __ emit_data64(0x0405060700010203, relocInfo::none); 904 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 905 __ emit_data64(0x0405060700010203, relocInfo::none); 906 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 907 908 return start; 909 } 910 911 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) { 912 __ align(CodeEntryAlignment); 913 StubCodeMark mark(this, "StubRoutines", stub_name); 914 address start = __ pc(); 915 916 __ emit_data64(0x0607040502030001, relocInfo::none); 917 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 918 __ emit_data64(0x0607040502030001, relocInfo::none); 919 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 920 __ emit_data64(0x0607040502030001, relocInfo::none); 921 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 922 __ emit_data64(0x0607040502030001, relocInfo::none); 923 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 924 925 return start; 926 } 927 928 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) { 929 __ align(CodeEntryAlignment); 930 StubCodeMark mark(this, "StubRoutines", stub_name); 931 address start = __ pc(); 932 933 __ emit_data64(0x7070707070707070, relocInfo::none); 934 __ emit_data64(0x7070707070707070, relocInfo::none); 935 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 936 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 937 938 return start; 939 } 940 941 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) { 942 __ align(CodeEntryAlignment); 943 StubCodeMark mark(this, "StubRoutines", stub_name); 944 address start = __ pc(); 945 946 __ emit_data64( mask, relocInfo::none ); 947 __ emit_data64( mask, relocInfo::none ); 948 949 return start; 950 } 951 952 address StubGenerator::generate_compress_perm_table(const char *stub_name, int32_t esize) { 953 __ align(CodeEntryAlignment); 954 StubCodeMark mark(this, "StubRoutines", stub_name); 955 address start = __ pc(); 956 if (esize == 32) { 957 // Loop to generate 256 x 8 int compression permute index table. A row is 958 // accessed using 8 bit index computed using vector mask. An entry in 959 // a row holds either a valid permute index corresponding to set bit position 960 // or a -1 (default) value. 961 for (int mask = 0; mask < 256; mask++) { 962 int ctr = 0; 963 for (int j = 0; j < 8; j++) { 964 if (mask & (1 << j)) { 965 __ emit_data(j, relocInfo::none); 966 ctr++; 967 } 968 } 969 for (; ctr < 8; ctr++) { 970 __ emit_data(-1, relocInfo::none); 971 } 972 } 973 } else { 974 assert(esize == 64, ""); 975 // Loop to generate 16 x 4 long compression permute index table. A row is 976 // accessed using 4 bit index computed using vector mask. An entry in 977 // a row holds either a valid permute index pair for a quadword corresponding 978 // to set bit position or a -1 (default) value. 979 for (int mask = 0; mask < 16; mask++) { 980 int ctr = 0; 981 for (int j = 0; j < 4; j++) { 982 if (mask & (1 << j)) { 983 __ emit_data(2 * j, relocInfo::none); 984 __ emit_data(2 * j + 1, relocInfo::none); 985 ctr++; 986 } 987 } 988 for (; ctr < 4; ctr++) { 989 __ emit_data64(-1L, relocInfo::none); 990 } 991 } 992 } 993 return start; 994 } 995 996 address StubGenerator::generate_expand_perm_table(const char *stub_name, int32_t esize) { 997 __ align(CodeEntryAlignment); 998 StubCodeMark mark(this, "StubRoutines", stub_name); 999 address start = __ pc(); 1000 if (esize == 32) { 1001 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1002 // using 8 bit index computed using vector mask. An entry in a row holds either 1003 // a valid permute index (starting from least significant lane) placed at poisition 1004 // corresponding to set bit position or a -1 (default) value. 1005 for (int mask = 0; mask < 256; mask++) { 1006 int ctr = 0; 1007 for (int j = 0; j < 8; j++) { 1008 if (mask & (1 << j)) { 1009 __ emit_data(ctr++, relocInfo::none); 1010 } else { 1011 __ emit_data(-1, relocInfo::none); 1012 } 1013 } 1014 } 1015 } else { 1016 assert(esize == 64, ""); 1017 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1018 // using 4 bit index computed using vector mask. An entry in a row holds either 1019 // a valid doubleword permute index pair representing a quadword index (starting 1020 // from least significant lane) placed at poisition corresponding to set bit 1021 // position or a -1 (default) value. 1022 for (int mask = 0; mask < 16; mask++) { 1023 int ctr = 0; 1024 for (int j = 0; j < 4; j++) { 1025 if (mask & (1 << j)) { 1026 __ emit_data(2 * ctr, relocInfo::none); 1027 __ emit_data(2 * ctr + 1, relocInfo::none); 1028 ctr++; 1029 } else { 1030 __ emit_data64(-1L, relocInfo::none); 1031 } 1032 } 1033 } 1034 } 1035 return start; 1036 } 1037 1038 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) { 1039 __ align(CodeEntryAlignment); 1040 StubCodeMark mark(this, "StubRoutines", stub_name); 1041 address start = __ pc(); 1042 1043 __ emit_data64(mask, relocInfo::none); 1044 __ emit_data64(mask, relocInfo::none); 1045 __ emit_data64(mask, relocInfo::none); 1046 __ emit_data64(mask, relocInfo::none); 1047 __ emit_data64(mask, relocInfo::none); 1048 __ emit_data64(mask, relocInfo::none); 1049 __ emit_data64(mask, relocInfo::none); 1050 __ emit_data64(mask, relocInfo::none); 1051 1052 return start; 1053 } 1054 1055 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) { 1056 __ align(CodeEntryAlignment); 1057 StubCodeMark mark(this, "StubRoutines", stub_name); 1058 address start = __ pc(); 1059 1060 __ emit_data64(0x0000000000000001, relocInfo::none); 1061 __ emit_data64(0x0000000000000003, relocInfo::none); 1062 __ emit_data64(0x0000000000000005, relocInfo::none); 1063 __ emit_data64(0x0000000000000007, relocInfo::none); 1064 __ emit_data64(0x0000000000000000, relocInfo::none); 1065 __ emit_data64(0x0000000000000002, relocInfo::none); 1066 __ emit_data64(0x0000000000000004, relocInfo::none); 1067 __ emit_data64(0x0000000000000006, relocInfo::none); 1068 1069 return start; 1070 } 1071 1072 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) { 1073 __ align(CodeEntryAlignment); 1074 StubCodeMark mark(this, "StubRoutines", stub_name); 1075 address start = __ pc(); 1076 1077 __ emit_data64(mask, relocInfo::none); 1078 __ emit_data64(mask, relocInfo::none); 1079 __ emit_data64(mask, relocInfo::none); 1080 __ emit_data64(mask, relocInfo::none); 1081 __ emit_data64(mask, relocInfo::none); 1082 __ emit_data64(mask, relocInfo::none); 1083 __ emit_data64(mask, relocInfo::none); 1084 __ emit_data64(mask, relocInfo::none); 1085 1086 return start; 1087 } 1088 1089 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, 1090 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1091 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1092 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1093 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1094 __ align(CodeEntryAlignment); 1095 StubCodeMark mark(this, "StubRoutines", stub_name); 1096 address start = __ pc(); 1097 1098 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1099 __ emit_data(val0, relocInfo::none, 0); 1100 __ emit_data(val1, relocInfo::none, 0); 1101 __ emit_data(val2, relocInfo::none, 0); 1102 __ emit_data(val3, relocInfo::none, 0); 1103 if (len >= Assembler::AVX_256bit) { 1104 __ emit_data(val4, relocInfo::none, 0); 1105 __ emit_data(val5, relocInfo::none, 0); 1106 __ emit_data(val6, relocInfo::none, 0); 1107 __ emit_data(val7, relocInfo::none, 0); 1108 if (len >= Assembler::AVX_512bit) { 1109 __ emit_data(val8, relocInfo::none, 0); 1110 __ emit_data(val9, relocInfo::none, 0); 1111 __ emit_data(val10, relocInfo::none, 0); 1112 __ emit_data(val11, relocInfo::none, 0); 1113 __ emit_data(val12, relocInfo::none, 0); 1114 __ emit_data(val13, relocInfo::none, 0); 1115 __ emit_data(val14, relocInfo::none, 0); 1116 __ emit_data(val15, relocInfo::none, 0); 1117 } 1118 } 1119 return start; 1120 } 1121 1122 // Non-destructive plausibility checks for oops 1123 // 1124 // Arguments: 1125 // all args on stack! 1126 // 1127 // Stack after saving c_rarg3: 1128 // [tos + 0]: saved c_rarg3 1129 // [tos + 1]: saved c_rarg2 1130 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1131 // [tos + 3]: saved flags 1132 // [tos + 4]: return address 1133 // * [tos + 5]: error message (char*) 1134 // * [tos + 6]: object to verify (oop) 1135 // * [tos + 7]: saved rax - saved by caller and bashed 1136 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1137 // * = popped on exit 1138 address StubGenerator::generate_verify_oop() { 1139 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 1140 address start = __ pc(); 1141 1142 Label exit, error; 1143 1144 __ pushf(); 1145 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1146 1147 __ push(r12); 1148 1149 // save c_rarg2 and c_rarg3 1150 __ push(c_rarg2); 1151 __ push(c_rarg3); 1152 1153 enum { 1154 // After previous pushes. 1155 oop_to_verify = 6 * wordSize, 1156 saved_rax = 7 * wordSize, 1157 saved_r10 = 8 * wordSize, 1158 1159 // Before the call to MacroAssembler::debug(), see below. 1160 return_addr = 16 * wordSize, 1161 error_msg = 17 * wordSize 1162 }; 1163 1164 // get object 1165 __ movptr(rax, Address(rsp, oop_to_verify)); 1166 1167 // make sure object is 'reasonable' 1168 __ testptr(rax, rax); 1169 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1170 1171 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1172 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1173 1174 // return if everything seems ok 1175 __ bind(exit); 1176 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1177 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1178 __ pop(c_rarg3); // restore c_rarg3 1179 __ pop(c_rarg2); // restore c_rarg2 1180 __ pop(r12); // restore r12 1181 __ popf(); // restore flags 1182 __ ret(4 * wordSize); // pop caller saved stuff 1183 1184 // handle errors 1185 __ bind(error); 1186 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1187 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1188 __ pop(c_rarg3); // get saved c_rarg3 back 1189 __ pop(c_rarg2); // get saved c_rarg2 back 1190 __ pop(r12); // get saved r12 back 1191 __ popf(); // get saved flags off stack -- 1192 // will be ignored 1193 1194 __ pusha(); // push registers 1195 // (rip is already 1196 // already pushed) 1197 // debug(char* msg, int64_t pc, int64_t regs[]) 1198 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1199 // pushed all the registers, so now the stack looks like: 1200 // [tos + 0] 16 saved registers 1201 // [tos + 16] return address 1202 // * [tos + 17] error message (char*) 1203 // * [tos + 18] object to verify (oop) 1204 // * [tos + 19] saved rax - saved by caller and bashed 1205 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1206 // * = popped on exit 1207 1208 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1209 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1210 __ movq(c_rarg2, rsp); // pass address of regs on stack 1211 __ mov(r12, rsp); // remember rsp 1212 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1213 __ andptr(rsp, -16); // align stack as required by ABI 1214 BLOCK_COMMENT("call MacroAssembler::debug"); 1215 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1216 __ hlt(); 1217 1218 return start; 1219 } 1220 1221 1222 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1223 // 1224 // Outputs: 1225 // rdi - rcx 1226 // rsi - rdx 1227 // rdx - r8 1228 // rcx - r9 1229 // 1230 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1231 // are non-volatile. r9 and r10 should not be used by the caller. 1232 // 1233 void StubGenerator::setup_arg_regs(int nargs) { 1234 const Register saved_rdi = r9; 1235 const Register saved_rsi = r10; 1236 assert(nargs == 3 || nargs == 4, "else fix"); 1237 #ifdef _WIN64 1238 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1239 "unexpected argument registers"); 1240 if (nargs == 4) { 1241 __ mov(rax, r9); // r9 is also saved_rdi 1242 } 1243 __ movptr(saved_rdi, rdi); 1244 __ movptr(saved_rsi, rsi); 1245 __ mov(rdi, rcx); // c_rarg0 1246 __ mov(rsi, rdx); // c_rarg1 1247 __ mov(rdx, r8); // c_rarg2 1248 if (nargs == 4) { 1249 __ mov(rcx, rax); // c_rarg3 (via rax) 1250 } 1251 #else 1252 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1253 "unexpected argument registers"); 1254 #endif 1255 DEBUG_ONLY(_regs_in_thread = false;) 1256 } 1257 1258 1259 void StubGenerator::restore_arg_regs() { 1260 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1261 const Register saved_rdi = r9; 1262 const Register saved_rsi = r10; 1263 #ifdef _WIN64 1264 __ movptr(rdi, saved_rdi); 1265 __ movptr(rsi, saved_rsi); 1266 #endif 1267 } 1268 1269 1270 // This is used in places where r10 is a scratch register, and can 1271 // be adapted if r9 is needed also. 1272 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1273 const Register saved_r15 = r9; 1274 assert(nargs == 3 || nargs == 4, "else fix"); 1275 #ifdef _WIN64 1276 if (nargs == 4) { 1277 __ mov(rax, r9); // r9 is also saved_r15 1278 } 1279 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1280 __ get_thread(r15_thread); 1281 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1282 "unexpected argument registers"); 1283 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1284 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1285 1286 __ mov(rdi, rcx); // c_rarg0 1287 __ mov(rsi, rdx); // c_rarg1 1288 __ mov(rdx, r8); // c_rarg2 1289 if (nargs == 4) { 1290 __ mov(rcx, rax); // c_rarg3 (via rax) 1291 } 1292 #else 1293 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1294 "unexpected argument registers"); 1295 #endif 1296 DEBUG_ONLY(_regs_in_thread = true;) 1297 } 1298 1299 1300 void StubGenerator::restore_arg_regs_using_thread() { 1301 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1302 const Register saved_r15 = r9; 1303 #ifdef _WIN64 1304 __ get_thread(r15_thread); 1305 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1306 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1307 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1308 #endif 1309 } 1310 1311 1312 void StubGenerator::setup_argument_regs(BasicType type) { 1313 if (type == T_BYTE || type == T_SHORT) { 1314 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1315 // r9 and r10 may be used to save non-volatile registers 1316 } else { 1317 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1318 // r9 is used to save r15_thread 1319 } 1320 } 1321 1322 1323 void StubGenerator::restore_argument_regs(BasicType type) { 1324 if (type == T_BYTE || type == T_SHORT) { 1325 restore_arg_regs(); 1326 } else { 1327 restore_arg_regs_using_thread(); 1328 } 1329 } 1330 1331 address StubGenerator::generate_data_cache_writeback() { 1332 const Register src = c_rarg0; // source address 1333 1334 __ align(CodeEntryAlignment); 1335 1336 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); 1337 1338 address start = __ pc(); 1339 1340 __ enter(); 1341 __ cache_wb(Address(src, 0)); 1342 __ leave(); 1343 __ ret(0); 1344 1345 return start; 1346 } 1347 1348 address StubGenerator::generate_data_cache_writeback_sync() { 1349 const Register is_pre = c_rarg0; // pre or post sync 1350 1351 __ align(CodeEntryAlignment); 1352 1353 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); 1354 1355 // pre wbsync is a no-op 1356 // post wbsync translates to an sfence 1357 1358 Label skip; 1359 address start = __ pc(); 1360 1361 __ enter(); 1362 __ cmpl(is_pre, 0); 1363 __ jcc(Assembler::notEqual, skip); 1364 __ cache_wbsync(false); 1365 __ bind(skip); 1366 __ leave(); 1367 __ ret(0); 1368 1369 return start; 1370 } 1371 1372 // ofs and limit are use for multi-block byte array. 1373 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1374 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) { 1375 __ align(CodeEntryAlignment); 1376 StubCodeMark mark(this, "StubRoutines", name); 1377 address start = __ pc(); 1378 1379 const Register buf_param = r15; 1380 const Address state_param(rsp, 0 * wordSize); 1381 const Address ofs_param (rsp, 1 * wordSize ); 1382 const Address limit_param(rsp, 1 * wordSize + 4); 1383 1384 __ enter(); 1385 __ push(rbx); 1386 __ push(rdi); 1387 __ push(rsi); 1388 __ push(r15); 1389 __ subptr(rsp, 2 * wordSize); 1390 1391 __ movptr(buf_param, c_rarg0); 1392 __ movptr(state_param, c_rarg1); 1393 if (multi_block) { 1394 __ movl(ofs_param, c_rarg2); 1395 __ movl(limit_param, c_rarg3); 1396 } 1397 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1398 1399 __ addptr(rsp, 2 * wordSize); 1400 __ pop(r15); 1401 __ pop(rsi); 1402 __ pop(rdi); 1403 __ pop(rbx); 1404 __ leave(); 1405 __ ret(0); 1406 1407 return start; 1408 } 1409 1410 address StubGenerator::generate_upper_word_mask() { 1411 __ align64(); 1412 StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); 1413 address start = __ pc(); 1414 1415 __ emit_data64(0x0000000000000000, relocInfo::none); 1416 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1417 1418 return start; 1419 } 1420 1421 address StubGenerator::generate_shuffle_byte_flip_mask() { 1422 __ align64(); 1423 StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); 1424 address start = __ pc(); 1425 1426 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1427 __ emit_data64(0x0001020304050607, relocInfo::none); 1428 1429 return start; 1430 } 1431 1432 // ofs and limit are use for multi-block byte array. 1433 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1434 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) { 1435 __ align(CodeEntryAlignment); 1436 StubCodeMark mark(this, "StubRoutines", name); 1437 address start = __ pc(); 1438 1439 Register buf = c_rarg0; 1440 Register state = c_rarg1; 1441 Register ofs = c_rarg2; 1442 Register limit = c_rarg3; 1443 1444 const XMMRegister abcd = xmm0; 1445 const XMMRegister e0 = xmm1; 1446 const XMMRegister e1 = xmm2; 1447 const XMMRegister msg0 = xmm3; 1448 1449 const XMMRegister msg1 = xmm4; 1450 const XMMRegister msg2 = xmm5; 1451 const XMMRegister msg3 = xmm6; 1452 const XMMRegister shuf_mask = xmm7; 1453 1454 __ enter(); 1455 1456 __ subptr(rsp, 4 * wordSize); 1457 1458 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1459 buf, state, ofs, limit, rsp, multi_block); 1460 1461 __ addptr(rsp, 4 * wordSize); 1462 1463 __ leave(); 1464 __ ret(0); 1465 1466 return start; 1467 } 1468 1469 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1470 __ align64(); 1471 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); 1472 address start = __ pc(); 1473 1474 __ emit_data64(0x0405060700010203, relocInfo::none); 1475 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1476 1477 if (VM_Version::supports_avx2()) { 1478 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1479 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1480 // _SHUF_00BA 1481 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1482 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1483 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1484 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1485 // _SHUF_DC00 1486 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1487 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1488 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1489 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1490 } 1491 1492 return start; 1493 } 1494 1495 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1496 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1497 __ align32(); 1498 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); 1499 address start = __ pc(); 1500 1501 if (VM_Version::supports_avx2()) { 1502 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1503 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1504 __ emit_data64(0x1011121314151617, relocInfo::none); 1505 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1506 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1507 __ emit_data64(0x0000000000000000, relocInfo::none); 1508 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1509 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1510 } 1511 1512 return start; 1513 } 1514 1515 // ofs and limit are use for multi-block byte array. 1516 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1517 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) { 1518 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1519 __ align(CodeEntryAlignment); 1520 StubCodeMark mark(this, "StubRoutines", name); 1521 address start = __ pc(); 1522 1523 Register buf = c_rarg0; 1524 Register state = c_rarg1; 1525 Register ofs = c_rarg2; 1526 Register limit = c_rarg3; 1527 1528 const XMMRegister msg = xmm0; 1529 const XMMRegister state0 = xmm1; 1530 const XMMRegister state1 = xmm2; 1531 const XMMRegister msgtmp0 = xmm3; 1532 1533 const XMMRegister msgtmp1 = xmm4; 1534 const XMMRegister msgtmp2 = xmm5; 1535 const XMMRegister msgtmp3 = xmm6; 1536 const XMMRegister msgtmp4 = xmm7; 1537 1538 const XMMRegister shuf_mask = xmm8; 1539 1540 __ enter(); 1541 1542 __ subptr(rsp, 4 * wordSize); 1543 1544 if (VM_Version::supports_sha()) { 1545 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1546 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1547 } else if (VM_Version::supports_avx2()) { 1548 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1549 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1550 } 1551 __ addptr(rsp, 4 * wordSize); 1552 __ vzeroupper(); 1553 __ leave(); 1554 __ ret(0); 1555 1556 return start; 1557 } 1558 1559 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) { 1560 assert(VM_Version::supports_avx2(), ""); 1561 assert(VM_Version::supports_bmi2(), ""); 1562 __ align(CodeEntryAlignment); 1563 StubCodeMark mark(this, "StubRoutines", name); 1564 address start = __ pc(); 1565 1566 Register buf = c_rarg0; 1567 Register state = c_rarg1; 1568 Register ofs = c_rarg2; 1569 Register limit = c_rarg3; 1570 1571 const XMMRegister msg = xmm0; 1572 const XMMRegister state0 = xmm1; 1573 const XMMRegister state1 = xmm2; 1574 const XMMRegister msgtmp0 = xmm3; 1575 const XMMRegister msgtmp1 = xmm4; 1576 const XMMRegister msgtmp2 = xmm5; 1577 const XMMRegister msgtmp3 = xmm6; 1578 const XMMRegister msgtmp4 = xmm7; 1579 1580 const XMMRegister shuf_mask = xmm8; 1581 1582 __ enter(); 1583 1584 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1585 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1586 1587 __ vzeroupper(); 1588 __ leave(); 1589 __ ret(0); 1590 1591 return start; 1592 } 1593 1594 address StubGenerator::base64_shuffle_addr() { 1595 __ align64(); 1596 StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); 1597 address start = __ pc(); 1598 1599 assert(((unsigned long long)start & 0x3f) == 0, 1600 "Alignment problem (0x%08llx)", (unsigned long long)start); 1601 __ emit_data64(0x0405030401020001, relocInfo::none); 1602 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1603 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1604 __ emit_data64(0x1617151613141213, relocInfo::none); 1605 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1606 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1607 __ emit_data64(0x2829272825262425, relocInfo::none); 1608 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1609 1610 return start; 1611 } 1612 1613 address StubGenerator::base64_avx2_shuffle_addr() { 1614 __ align32(); 1615 StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); 1616 address start = __ pc(); 1617 1618 __ emit_data64(0x0809070805060405, relocInfo::none); 1619 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1620 __ emit_data64(0x0405030401020001, relocInfo::none); 1621 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1622 1623 return start; 1624 } 1625 1626 address StubGenerator::base64_avx2_input_mask_addr() { 1627 __ align32(); 1628 StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); 1629 address start = __ pc(); 1630 1631 __ emit_data64(0x8000000000000000, relocInfo::none); 1632 __ emit_data64(0x8000000080000000, relocInfo::none); 1633 __ emit_data64(0x8000000080000000, relocInfo::none); 1634 __ emit_data64(0x8000000080000000, relocInfo::none); 1635 1636 return start; 1637 } 1638 1639 address StubGenerator::base64_avx2_lut_addr() { 1640 __ align32(); 1641 StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); 1642 address start = __ pc(); 1643 1644 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1645 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1646 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1647 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1648 1649 // URL LUT 1650 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1651 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1652 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1653 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1654 1655 return start; 1656 } 1657 1658 address StubGenerator::base64_encoding_table_addr() { 1659 __ align64(); 1660 StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); 1661 address start = __ pc(); 1662 1663 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1664 __ emit_data64(0x4847464544434241, relocInfo::none); 1665 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1666 __ emit_data64(0x5857565554535251, relocInfo::none); 1667 __ emit_data64(0x6665646362615a59, relocInfo::none); 1668 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1669 __ emit_data64(0x767574737271706f, relocInfo::none); 1670 __ emit_data64(0x333231307a797877, relocInfo::none); 1671 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1672 1673 // URL table 1674 __ emit_data64(0x4847464544434241, relocInfo::none); 1675 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1676 __ emit_data64(0x5857565554535251, relocInfo::none); 1677 __ emit_data64(0x6665646362615a59, relocInfo::none); 1678 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1679 __ emit_data64(0x767574737271706f, relocInfo::none); 1680 __ emit_data64(0x333231307a797877, relocInfo::none); 1681 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1682 1683 return start; 1684 } 1685 1686 // Code for generating Base64 encoding. 1687 // Intrinsic function prototype in Base64.java: 1688 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1689 // boolean isURL) { 1690 address StubGenerator::generate_base64_encodeBlock() 1691 { 1692 __ align(CodeEntryAlignment); 1693 StubCodeMark mark(this, "StubRoutines", "implEncode"); 1694 address start = __ pc(); 1695 1696 __ enter(); 1697 1698 // Save callee-saved registers before using them 1699 __ push(r12); 1700 __ push(r13); 1701 __ push(r14); 1702 __ push(r15); 1703 1704 // arguments 1705 const Register source = c_rarg0; // Source Array 1706 const Register start_offset = c_rarg1; // start offset 1707 const Register end_offset = c_rarg2; // end offset 1708 const Register dest = c_rarg3; // destination array 1709 1710 #ifndef _WIN64 1711 const Register dp = c_rarg4; // Position for writing to dest array 1712 const Register isURL = c_rarg5; // Base64 or URL character set 1713 #else 1714 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1715 const Address isURL_mem(rbp, 7 * wordSize); 1716 const Register isURL = r10; // pick the volatile windows register 1717 const Register dp = r12; 1718 __ movl(dp, dp_mem); 1719 __ movl(isURL, isURL_mem); 1720 #endif 1721 1722 const Register length = r14; 1723 const Register encode_table = r13; 1724 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1725 1726 // calculate length from offsets 1727 __ movl(length, end_offset); 1728 __ subl(length, start_offset); 1729 __ jcc(Assembler::lessEqual, L_exit); 1730 1731 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1732 // output bytes. We read 64 input bytes and ignore the last 16, so be 1733 // sure not to read past the end of the input buffer. 1734 if (VM_Version::supports_avx512_vbmi()) { 1735 __ cmpl(length, 64); // Do not overrun input buffer. 1736 __ jcc(Assembler::below, L_not512); 1737 1738 __ shll(isURL, 6); // index into decode table based on isURL 1739 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1740 __ addptr(encode_table, isURL); 1741 __ shrl(isURL, 6); // restore isURL 1742 1743 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1744 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1745 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1746 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1747 1748 __ align32(); 1749 __ BIND(L_vbmiLoop); 1750 1751 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1752 __ subl(length, 48); 1753 1754 // Put the input bytes into the proper lanes for writing, then 1755 // encode them. 1756 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1757 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1758 1759 // Write to destination 1760 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1761 1762 __ addptr(dest, 64); 1763 __ addptr(source, 48); 1764 __ cmpl(length, 64); 1765 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1766 1767 __ vzeroupper(); 1768 } 1769 1770 __ BIND(L_not512); 1771 if (VM_Version::supports_avx2()) { 1772 /* 1773 ** This AVX2 encoder is based off the paper at: 1774 ** https://dl.acm.org/doi/10.1145/3132709 1775 ** 1776 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1777 ** output bytes. 1778 ** 1779 */ 1780 // Lengths under 32 bytes are done with scalar routine 1781 __ cmpl(length, 31); 1782 __ jcc(Assembler::belowEqual, L_process3); 1783 1784 // Set up supporting constant table data 1785 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1786 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1787 __ movl(rax, 0x0fc0fc00); 1788 __ movdl(xmm8, rax); 1789 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1790 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1791 1792 // Multiplication constant for "shifting" right by 6 and 10 1793 // bits 1794 __ movl(rax, 0x04000040); 1795 1796 __ subl(length, 24); 1797 __ movdl(xmm7, rax); 1798 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1799 1800 // For the first load, we mask off reading of the first 4 1801 // bytes into the register. This is so we can get 4 3-byte 1802 // chunks into each lane of the register, avoiding having to 1803 // handle end conditions. We then shuffle these bytes into a 1804 // specific order so that manipulation is easier. 1805 // 1806 // The initial read loads the XMM register like this: 1807 // 1808 // Lower 128-bit lane: 1809 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1810 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1811 // | C2 | D0 | D1 | D2 | 1812 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1813 // 1814 // Upper 128-bit lane: 1815 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1816 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1817 // | XX | XX | XX | XX | 1818 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1819 // 1820 // Where A0 is the first input byte, B0 is the fourth, etc. 1821 // The alphabetical significance denotes the 3 bytes to be 1822 // consumed and encoded into 4 bytes. 1823 // 1824 // We then shuffle the register so each 32-bit word contains 1825 // the sequence: 1826 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1827 // Each of these byte sequences are then manipulated into 4 1828 // 6-bit values ready for encoding. 1829 // 1830 // If we focus on one set of 3-byte chunks, changing the 1831 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1832 // shuffle such that each 24-bit chunk contains: 1833 // 1834 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1835 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1836 // Explain this step. 1837 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1838 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1839 // 1840 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1841 // a5..a0) and shift them using a vector multiplication 1842 // operation (vpmulhuw) which effectively shifts c right by 6 1843 // bits and a right by 10 bits. We similarly mask bits 10-15 1844 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1845 // bits respectively. This is done using vpmullw. We end up 1846 // with 4 6-bit values, thus splitting the 3 input bytes, 1847 // ready for encoding: 1848 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1849 // 1850 // For translation, we recognize that there are 5 distinct 1851 // ranges of legal Base64 characters as below: 1852 // 1853 // +-------------+-------------+------------+ 1854 // | 6-bit value | ASCII range | offset | 1855 // +-------------+-------------+------------+ 1856 // | 0..25 | A..Z | 65 | 1857 // | 26..51 | a..z | 71 | 1858 // | 52..61 | 0..9 | -4 | 1859 // | 62 | + or - | -19 or -17 | 1860 // | 63 | / or _ | -16 or 32 | 1861 // +-------------+-------------+------------+ 1862 // 1863 // We note that vpshufb does a parallel lookup in a 1864 // destination register using the lower 4 bits of bytes from a 1865 // source register. If we use a saturated subtraction and 1866 // subtract 51 from each 6-bit value, bytes from [0,51] 1867 // saturate to 0, and [52,63] map to a range of [1,12]. We 1868 // distinguish the [0,25] and [26,51] ranges by assigning a 1869 // value of 13 for all 6-bit values less than 26. We end up 1870 // with: 1871 // 1872 // +-------------+-------------+------------+ 1873 // | 6-bit value | Reduced | offset | 1874 // +-------------+-------------+------------+ 1875 // | 0..25 | 13 | 65 | 1876 // | 26..51 | 0 | 71 | 1877 // | 52..61 | 0..9 | -4 | 1878 // | 62 | 11 | -19 or -17 | 1879 // | 63 | 12 | -16 or 32 | 1880 // +-------------+-------------+------------+ 1881 // 1882 // We then use a final vpshufb to add the appropriate offset, 1883 // translating the bytes. 1884 // 1885 // Load input bytes - only 28 bytes. Mask the first load to 1886 // not load into the full register. 1887 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1888 1889 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1890 // ordering by: 1891 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1892 // for easy masking 1893 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1894 1895 __ addl(start_offset, 24); 1896 1897 // Load masking register for first and third (and multiples) 1898 // 6-bit values. 1899 __ movl(rax, 0x003f03f0); 1900 __ movdl(xmm6, rax); 1901 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1902 // Multiplication constant for "shifting" left by 4 and 8 bits 1903 __ movl(rax, 0x01000010); 1904 __ movdl(xmm5, rax); 1905 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 1906 1907 // Isolate 6-bit chunks of interest 1908 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1909 1910 // Load constants for encoding 1911 __ movl(rax, 0x19191919); 1912 __ movdl(xmm3, rax); 1913 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 1914 __ movl(rax, 0x33333333); 1915 __ movdl(xmm4, rax); 1916 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 1917 1918 // Shift output bytes 0 and 2 into proper lanes 1919 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 1920 1921 // Mask and shift output bytes 1 and 3 into proper lanes and 1922 // combine 1923 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1924 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1925 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 1926 1927 // Find out which are 0..25. This indicates which input 1928 // values fall in the range of 'A'-'Z', which require an 1929 // additional offset (see comments above) 1930 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 1931 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1932 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 1933 1934 // Load the proper lookup table 1935 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 1936 __ movl(r15, isURL); 1937 __ shll(r15, 5); 1938 __ vmovdqu(xmm2, Address(r11, r15)); 1939 1940 // Shuffle the offsets based on the range calculation done 1941 // above. This allows us to add the correct offset to the 1942 // 6-bit value corresponding to the range documented above. 1943 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1944 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1945 1946 // Store the encoded bytes 1947 __ vmovdqu(Address(dest, dp), xmm0); 1948 __ addl(dp, 32); 1949 1950 __ cmpl(length, 31); 1951 __ jcc(Assembler::belowEqual, L_process3); 1952 1953 __ align32(); 1954 __ BIND(L_32byteLoop); 1955 1956 // Get next 32 bytes 1957 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 1958 1959 __ subl(length, 24); 1960 __ addl(start_offset, 24); 1961 1962 // This logic is identical to the above, with only constant 1963 // register loads removed. Shuffle the input, mask off 6-bit 1964 // chunks, shift them into place, then add the offset to 1965 // encode. 1966 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1967 1968 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1969 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 1970 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1971 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1972 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 1973 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 1974 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1975 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 1976 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1977 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1978 1979 // Store the encoded bytes 1980 __ vmovdqu(Address(dest, dp), xmm0); 1981 __ addl(dp, 32); 1982 1983 __ cmpl(length, 31); 1984 __ jcc(Assembler::above, L_32byteLoop); 1985 1986 __ BIND(L_process3); 1987 __ vzeroupper(); 1988 } else { 1989 __ BIND(L_process3); 1990 } 1991 1992 __ cmpl(length, 3); 1993 __ jcc(Assembler::below, L_exit); 1994 1995 // Load the encoding table based on isURL 1996 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1997 __ movl(r15, isURL); 1998 __ shll(r15, 6); 1999 __ addptr(r11, r15); 2000 2001 __ BIND(L_processdata); 2002 2003 // Load 3 bytes 2004 __ load_unsigned_byte(r15, Address(source, start_offset)); 2005 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2006 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2007 2008 // Build a 32-bit word with bytes 1, 2, 0, 1 2009 __ movl(rax, r10); 2010 __ shll(r10, 24); 2011 __ orl(rax, r10); 2012 2013 __ subl(length, 3); 2014 2015 __ shll(r15, 8); 2016 __ shll(r13, 16); 2017 __ orl(rax, r15); 2018 2019 __ addl(start_offset, 3); 2020 2021 __ orl(rax, r13); 2022 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2023 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2024 // This translated byte is the fourth output byte. 2025 __ shrl(r13, 16); 2026 __ andl(r13, 0x3f); 2027 2028 // The high-order 6 bits of r15 (byte0) is translated. 2029 // The translated byte is the first output byte. 2030 __ shrl(r15, 10); 2031 2032 __ load_unsigned_byte(r13, Address(r11, r13)); 2033 __ load_unsigned_byte(r15, Address(r11, r15)); 2034 2035 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2036 2037 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2038 // This translated byte is the second output byte. 2039 __ shrl(rax, 4); 2040 __ movl(r10, rax); 2041 __ andl(rax, 0x3f); 2042 2043 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2044 2045 __ load_unsigned_byte(rax, Address(r11, rax)); 2046 2047 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2048 // This translated byte is the third output byte. 2049 __ shrl(r10, 18); 2050 __ andl(r10, 0x3f); 2051 2052 __ load_unsigned_byte(r10, Address(r11, r10)); 2053 2054 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2055 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2056 2057 __ addl(dp, 4); 2058 __ cmpl(length, 3); 2059 __ jcc(Assembler::aboveEqual, L_processdata); 2060 2061 __ BIND(L_exit); 2062 __ pop(r15); 2063 __ pop(r14); 2064 __ pop(r13); 2065 __ pop(r12); 2066 __ leave(); 2067 __ ret(0); 2068 2069 return start; 2070 } 2071 2072 // base64 AVX512vbmi tables 2073 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2074 __ align64(); 2075 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); 2076 address start = __ pc(); 2077 2078 assert(((unsigned long long)start & 0x3f) == 0, 2079 "Alignment problem (0x%08llx)", (unsigned long long)start); 2080 __ emit_data64(0x8080808080808080, relocInfo::none); 2081 __ emit_data64(0x8080808080808080, relocInfo::none); 2082 __ emit_data64(0x8080808080808080, relocInfo::none); 2083 __ emit_data64(0x8080808080808080, relocInfo::none); 2084 __ emit_data64(0x8080808080808080, relocInfo::none); 2085 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2086 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2087 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2088 2089 return start; 2090 } 2091 2092 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2093 __ align64(); 2094 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); 2095 address start = __ pc(); 2096 2097 assert(((unsigned long long)start & 0x3f) == 0, 2098 "Alignment problem (0x%08llx)", (unsigned long long)start); 2099 __ emit_data64(0x0605040302010080, relocInfo::none); 2100 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2101 __ emit_data64(0x161514131211100f, relocInfo::none); 2102 __ emit_data64(0x8080808080191817, relocInfo::none); 2103 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2104 __ emit_data64(0x2827262524232221, relocInfo::none); 2105 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2106 __ emit_data64(0x8080808080333231, relocInfo::none); 2107 2108 return start; 2109 } 2110 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2111 __ align64(); 2112 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); 2113 address start = __ pc(); 2114 2115 assert(((unsigned long long)start & 0x3f) == 0, 2116 "Alignment problem (0x%08llx)", (unsigned long long)start); 2117 __ emit_data64(0x8080808080808080, relocInfo::none); 2118 __ emit_data64(0x8080808080808080, relocInfo::none); 2119 __ emit_data64(0x8080808080808080, relocInfo::none); 2120 __ emit_data64(0x8080808080808080, relocInfo::none); 2121 __ emit_data64(0x8080808080808080, relocInfo::none); 2122 __ emit_data64(0x80803e8080808080, relocInfo::none); 2123 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2124 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2125 2126 return start; 2127 } 2128 2129 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2130 __ align64(); 2131 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); 2132 address start = __ pc(); 2133 2134 assert(((unsigned long long)start & 0x3f) == 0, 2135 "Alignment problem (0x%08llx)", (unsigned long long)start); 2136 __ emit_data64(0x0605040302010080, relocInfo::none); 2137 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2138 __ emit_data64(0x161514131211100f, relocInfo::none); 2139 __ emit_data64(0x3f80808080191817, relocInfo::none); 2140 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2141 __ emit_data64(0x2827262524232221, relocInfo::none); 2142 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2143 __ emit_data64(0x8080808080333231, relocInfo::none); 2144 2145 return start; 2146 } 2147 2148 address StubGenerator::base64_vbmi_pack_vec_addr() { 2149 __ align64(); 2150 StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); 2151 address start = __ pc(); 2152 2153 assert(((unsigned long long)start & 0x3f) == 0, 2154 "Alignment problem (0x%08llx)", (unsigned long long)start); 2155 __ emit_data64(0x090a040506000102, relocInfo::none); 2156 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2157 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2158 __ emit_data64(0x292a242526202122, relocInfo::none); 2159 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2160 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2161 __ emit_data64(0x0000000000000000, relocInfo::none); 2162 __ emit_data64(0x0000000000000000, relocInfo::none); 2163 2164 return start; 2165 } 2166 2167 address StubGenerator::base64_vbmi_join_0_1_addr() { 2168 __ align64(); 2169 StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); 2170 address start = __ pc(); 2171 2172 assert(((unsigned long long)start & 0x3f) == 0, 2173 "Alignment problem (0x%08llx)", (unsigned long long)start); 2174 __ emit_data64(0x090a040506000102, relocInfo::none); 2175 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2176 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2177 __ emit_data64(0x292a242526202122, relocInfo::none); 2178 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2179 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2180 __ emit_data64(0x494a444546404142, relocInfo::none); 2181 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2182 2183 return start; 2184 } 2185 2186 address StubGenerator::base64_vbmi_join_1_2_addr() { 2187 __ align64(); 2188 StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); 2189 address start = __ pc(); 2190 2191 assert(((unsigned long long)start & 0x3f) == 0, 2192 "Alignment problem (0x%08llx)", (unsigned long long)start); 2193 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2194 __ emit_data64(0x292a242526202122, relocInfo::none); 2195 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2196 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2197 __ emit_data64(0x494a444546404142, relocInfo::none); 2198 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2199 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2200 __ emit_data64(0x696a646566606162, relocInfo::none); 2201 2202 return start; 2203 } 2204 2205 address StubGenerator::base64_vbmi_join_2_3_addr() { 2206 __ align64(); 2207 StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); 2208 address start = __ pc(); 2209 2210 assert(((unsigned long long)start & 0x3f) == 0, 2211 "Alignment problem (0x%08llx)", (unsigned long long)start); 2212 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2213 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2214 __ emit_data64(0x494a444546404142, relocInfo::none); 2215 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2216 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2217 __ emit_data64(0x696a646566606162, relocInfo::none); 2218 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2219 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2220 2221 return start; 2222 } 2223 2224 address StubGenerator::base64_AVX2_decode_tables_addr() { 2225 __ align64(); 2226 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_base64"); 2227 address start = __ pc(); 2228 2229 assert(((unsigned long long)start & 0x3f) == 0, 2230 "Alignment problem (0x%08llx)", (unsigned long long)start); 2231 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2232 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2233 2234 __ emit_data(0xffffffff, relocInfo::none, 0); 2235 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2236 2237 // Permute table 2238 __ emit_data64(0x0000000100000000, relocInfo::none); 2239 __ emit_data64(0x0000000400000002, relocInfo::none); 2240 __ emit_data64(0x0000000600000005, relocInfo::none); 2241 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2242 2243 // Shuffle table 2244 __ emit_data64(0x090a040506000102, relocInfo::none); 2245 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2246 __ emit_data64(0x090a040506000102, relocInfo::none); 2247 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2248 2249 // merge table 2250 __ emit_data(0x01400140, relocInfo::none, 0); 2251 2252 // merge multiplier 2253 __ emit_data(0x00011000, relocInfo::none, 0); 2254 2255 return start; 2256 } 2257 2258 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2259 __ align64(); 2260 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_URL_base64"); 2261 address start = __ pc(); 2262 2263 assert(((unsigned long long)start & 0x3f) == 0, 2264 "Alignment problem (0x%08llx)", (unsigned long long)start); 2265 // lut_lo 2266 __ emit_data64(0x1111111111111115, relocInfo::none); 2267 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2268 __ emit_data64(0x1111111111111115, relocInfo::none); 2269 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2270 2271 // lut_roll 2272 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2273 __ emit_data64(0x0000000000000000, relocInfo::none); 2274 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2275 __ emit_data64(0x0000000000000000, relocInfo::none); 2276 2277 // lut_lo URL 2278 __ emit_data64(0x1111111111111115, relocInfo::none); 2279 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2280 __ emit_data64(0x1111111111111115, relocInfo::none); 2281 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2282 2283 // lut_roll URL 2284 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2285 __ emit_data64(0x0000000000000000, relocInfo::none); 2286 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2287 __ emit_data64(0x0000000000000000, relocInfo::none); 2288 2289 // lut_hi 2290 __ emit_data64(0x0804080402011010, relocInfo::none); 2291 __ emit_data64(0x1010101010101010, relocInfo::none); 2292 __ emit_data64(0x0804080402011010, relocInfo::none); 2293 __ emit_data64(0x1010101010101010, relocInfo::none); 2294 2295 return start; 2296 } 2297 2298 address StubGenerator::base64_decoding_table_addr() { 2299 StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); 2300 address start = __ pc(); 2301 2302 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2303 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2304 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2305 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2306 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2307 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2308 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2309 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2310 __ emit_data64(0x06050403020100ff, relocInfo::none); 2311 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2312 __ emit_data64(0x161514131211100f, relocInfo::none); 2313 __ emit_data64(0xffffffffff191817, relocInfo::none); 2314 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2315 __ emit_data64(0x2827262524232221, relocInfo::none); 2316 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2317 __ emit_data64(0xffffffffff333231, relocInfo::none); 2318 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2319 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2320 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2321 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2322 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2323 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2324 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2325 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2326 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2327 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2328 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2329 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2330 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2331 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2332 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2333 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2334 2335 // URL table 2336 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2337 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2338 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2339 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2340 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2341 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2342 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2343 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2344 __ emit_data64(0x06050403020100ff, relocInfo::none); 2345 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2346 __ emit_data64(0x161514131211100f, relocInfo::none); 2347 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2348 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2349 __ emit_data64(0x2827262524232221, relocInfo::none); 2350 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2351 __ emit_data64(0xffffffffff333231, relocInfo::none); 2352 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2353 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2354 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2355 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2356 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2357 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2358 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2359 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2360 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2361 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2362 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2363 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2364 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2365 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2366 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2367 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2368 2369 return start; 2370 } 2371 2372 2373 // Code for generating Base64 decoding. 2374 // 2375 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2376 // 2377 // Intrinsic function prototype in Base64.java: 2378 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2379 address StubGenerator::generate_base64_decodeBlock() { 2380 __ align(CodeEntryAlignment); 2381 StubCodeMark mark(this, "StubRoutines", "implDecode"); 2382 address start = __ pc(); 2383 2384 __ enter(); 2385 2386 // Save callee-saved registers before using them 2387 __ push(r12); 2388 __ push(r13); 2389 __ push(r14); 2390 __ push(r15); 2391 __ push(rbx); 2392 2393 // arguments 2394 const Register source = c_rarg0; // Source Array 2395 const Register start_offset = c_rarg1; // start offset 2396 const Register end_offset = c_rarg2; // end offset 2397 const Register dest = c_rarg3; // destination array 2398 const Register isMIME = rbx; 2399 2400 #ifndef _WIN64 2401 const Register dp = c_rarg4; // Position for writing to dest array 2402 const Register isURL = c_rarg5;// Base64 or URL character set 2403 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2404 #else 2405 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2406 const Address isURL_mem(rbp, 7 * wordSize); 2407 const Register isURL = r10; // pick the volatile windows register 2408 const Register dp = r12; 2409 __ movl(dp, dp_mem); 2410 __ movl(isURL, isURL_mem); 2411 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2412 #endif 2413 2414 const XMMRegister lookup_lo = xmm5; 2415 const XMMRegister lookup_hi = xmm6; 2416 const XMMRegister errorvec = xmm7; 2417 const XMMRegister pack16_op = xmm9; 2418 const XMMRegister pack32_op = xmm8; 2419 const XMMRegister input0 = xmm3; 2420 const XMMRegister input1 = xmm20; 2421 const XMMRegister input2 = xmm21; 2422 const XMMRegister input3 = xmm19; 2423 const XMMRegister join01 = xmm12; 2424 const XMMRegister join12 = xmm11; 2425 const XMMRegister join23 = xmm10; 2426 const XMMRegister translated0 = xmm2; 2427 const XMMRegister translated1 = xmm1; 2428 const XMMRegister translated2 = xmm0; 2429 const XMMRegister translated3 = xmm4; 2430 2431 const XMMRegister merged0 = xmm2; 2432 const XMMRegister merged1 = xmm1; 2433 const XMMRegister merged2 = xmm0; 2434 const XMMRegister merged3 = xmm4; 2435 const XMMRegister merge_ab_bc0 = xmm2; 2436 const XMMRegister merge_ab_bc1 = xmm1; 2437 const XMMRegister merge_ab_bc2 = xmm0; 2438 const XMMRegister merge_ab_bc3 = xmm4; 2439 2440 const XMMRegister pack24bits = xmm4; 2441 2442 const Register length = r14; 2443 const Register output_size = r13; 2444 const Register output_mask = r15; 2445 const KRegister input_mask = k1; 2446 2447 const XMMRegister input_initial_valid_b64 = xmm0; 2448 const XMMRegister tmp = xmm10; 2449 const XMMRegister mask = xmm0; 2450 const XMMRegister invalid_b64 = xmm1; 2451 2452 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2453 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2454 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2455 2456 // calculate length from offsets 2457 __ movl(length, end_offset); 2458 __ subl(length, start_offset); 2459 __ push(dest); // Save for return value calc 2460 2461 // If AVX512 VBMI not supported, just compile non-AVX code 2462 if(VM_Version::supports_avx512_vbmi() && 2463 VM_Version::supports_avx512bw()) { 2464 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2465 __ jcc(Assembler::lessEqual, L_lastChunk); 2466 2467 __ cmpl(isMIME, 0); 2468 __ jcc(Assembler::notEqual, L_lastChunk); 2469 2470 // Load lookup tables based on isURL 2471 __ cmpl(isURL, 0); 2472 __ jcc(Assembler::notZero, L_loadURL); 2473 2474 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2475 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2476 2477 __ BIND(L_continue); 2478 2479 __ movl(r15, 0x01400140); 2480 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2481 2482 __ movl(r15, 0x00011000); 2483 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2484 2485 __ cmpl(length, 0xff); 2486 __ jcc(Assembler::lessEqual, L_process64); 2487 2488 // load masks required for decoding data 2489 __ BIND(L_processdata); 2490 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2491 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2492 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2493 2494 __ align32(); 2495 __ BIND(L_process256); 2496 // Grab input data 2497 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2498 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2499 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2500 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2501 2502 // Copy the low part of the lookup table into the destination of the permutation 2503 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2504 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2505 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2506 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2507 2508 // Translate the base64 input into "decoded" bytes 2509 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2510 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2511 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2512 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2513 2514 // OR all of the translations together to check for errors (high-order bit of byte set) 2515 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2516 2517 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2518 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2519 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2520 2521 // Check if there was an error - if so, try 64-byte chunks 2522 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2523 __ kortestql(k3, k3); 2524 __ jcc(Assembler::notZero, L_process64); 2525 2526 // The merging and shuffling happens here 2527 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2528 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2529 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2530 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2531 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2532 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2533 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2534 2535 // Now do the same with packed 16-bit values. 2536 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2537 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2538 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2539 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2540 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2541 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2542 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2543 2544 // The join vectors specify which byte from which vector goes into the outputs 2545 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2546 // final positions in the register for storing (256 bytes in, 192 bytes out) 2547 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2548 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2549 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2550 2551 // Store result 2552 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2553 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2554 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2555 2556 __ addptr(source, 0x100); 2557 __ addptr(dest, 0xc0); 2558 __ subl(length, 0x100); 2559 __ cmpl(length, 64 * 4); 2560 __ jcc(Assembler::greaterEqual, L_process256); 2561 2562 // At this point, we've decoded 64 * 4 * n bytes. 2563 // The remaining length will be <= 64 * 4 - 1. 2564 // UNLESS there was an error decoding the first 256-byte chunk. In this 2565 // case, the length will be arbitrarily long. 2566 // 2567 // Note that this will be the path for MIME-encoded strings. 2568 2569 __ BIND(L_process64); 2570 2571 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2572 2573 __ cmpl(length, 63); 2574 __ jcc(Assembler::lessEqual, L_finalBit); 2575 2576 __ mov64(rax, 0x0000ffffffffffff); 2577 __ kmovql(k2, rax); 2578 2579 __ align32(); 2580 __ BIND(L_process64Loop); 2581 2582 // Handle first 64-byte block 2583 2584 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2585 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2586 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2587 2588 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2589 2590 // Check for error and bomb out before updating dest 2591 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2592 __ kortestql(k3, k3); 2593 __ jcc(Assembler::notZero, L_exit); 2594 2595 // Pack output register, selecting correct byte ordering 2596 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2597 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2598 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2599 2600 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2601 2602 __ subl(length, 64); 2603 __ addptr(source, 64); 2604 __ addptr(dest, 48); 2605 2606 __ cmpl(length, 64); 2607 __ jcc(Assembler::greaterEqual, L_process64Loop); 2608 2609 __ cmpl(length, 0); 2610 __ jcc(Assembler::lessEqual, L_exit); 2611 2612 __ BIND(L_finalBit); 2613 // Now have 1 to 63 bytes left to decode 2614 2615 // I was going to let Java take care of the final fragment 2616 // however it will repeatedly call this routine for every 4 bytes 2617 // of input data, so handle the rest here. 2618 __ movq(rax, -1); 2619 __ bzhiq(rax, rax, length); // Input mask in rax 2620 2621 __ movl(output_size, length); 2622 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2623 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2624 // output_size in r13 2625 2626 // Strip pad characters, if any, and adjust length and mask 2627 __ addq(length, start_offset); 2628 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2629 __ jcc(Assembler::equal, L_padding); 2630 2631 __ BIND(L_donePadding); 2632 __ subq(length, start_offset); 2633 2634 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2635 __ kmovql(input_mask, rax); 2636 __ movq(output_mask, -1); 2637 __ bzhiq(output_mask, output_mask, output_size); 2638 2639 // Load initial input with all valid base64 characters. Will be used 2640 // in merging source bytes to avoid masking when determining if an error occurred. 2641 __ movl(rax, 0x61616161); 2642 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2643 2644 // A register containing all invalid base64 decoded values 2645 __ movl(rax, 0x80808080); 2646 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2647 2648 // input_mask is in k1 2649 // output_size is in r13 2650 // output_mask is in r15 2651 // zmm0 - free 2652 // zmm1 - 0x00011000 2653 // zmm2 - 0x01400140 2654 // zmm3 - errorvec 2655 // zmm4 - pack vector 2656 // zmm5 - lookup_lo 2657 // zmm6 - lookup_hi 2658 // zmm7 - errorvec 2659 // zmm8 - 0x61616161 2660 // zmm9 - 0x80808080 2661 2662 // Load only the bytes from source, merging into our "fully-valid" register 2663 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2664 2665 // Decode all bytes within our merged input 2666 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2667 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2668 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2669 2670 // Check for error. Compare (decoded | initial) to all invalid. 2671 // If any bytes have their high-order bit set, then we have an error. 2672 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2673 __ kortestql(k2, k2); 2674 2675 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2676 __ jcc(Assembler::notZero, L_bruteForce); 2677 2678 // Shuffle output bytes 2679 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2680 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2681 2682 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2683 __ kmovql(k1, output_mask); 2684 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2685 2686 __ addptr(dest, output_size); 2687 2688 __ BIND(L_exit); 2689 __ vzeroupper(); 2690 __ pop(rax); // Get original dest value 2691 __ subptr(dest, rax); // Number of bytes converted 2692 __ movptr(rax, dest); 2693 __ pop(rbx); 2694 __ pop(r15); 2695 __ pop(r14); 2696 __ pop(r13); 2697 __ pop(r12); 2698 __ leave(); 2699 __ ret(0); 2700 2701 __ BIND(L_loadURL); 2702 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2703 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2704 __ jmp(L_continue); 2705 2706 __ BIND(L_padding); 2707 __ decrementq(output_size, 1); 2708 __ shrq(rax, 1); 2709 2710 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2711 __ jcc(Assembler::notEqual, L_donePadding); 2712 2713 __ decrementq(output_size, 1); 2714 __ shrq(rax, 1); 2715 __ jmp(L_donePadding); 2716 2717 __ align32(); 2718 __ BIND(L_bruteForce); 2719 } // End of if(avx512_vbmi) 2720 2721 if (VM_Version::supports_avx2()) { 2722 Label L_tailProc, L_topLoop, L_enterLoop; 2723 2724 __ cmpl(isMIME, 0); 2725 __ jcc(Assembler::notEqual, L_lastChunk); 2726 2727 // Check for buffer too small (for algorithm) 2728 __ subl(length, 0x2c); 2729 __ jcc(Assembler::less, L_tailProc); 2730 2731 __ shll(isURL, 2); 2732 2733 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2734 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2735 2736 // Set up constants 2737 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2738 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2739 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2740 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2741 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2742 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2743 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2744 2745 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2746 __ shll(isURL, 4); 2747 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2748 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2749 __ shrl(isURL, 6); // restore isURL 2750 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2751 __ jmp(L_enterLoop); 2752 2753 __ align32(); 2754 __ bind(L_topLoop); 2755 // Add in the offset value (roll) to get 6-bit out values 2756 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2757 // Merge and permute the output bits into appropriate output byte lanes 2758 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2759 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2760 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2761 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2762 // Store the output bytes 2763 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2764 __ addptr(source, 0x20); 2765 __ addptr(dest, 0x18); 2766 __ subl(length, 0x20); 2767 __ jcc(Assembler::less, L_tailProc); 2768 2769 __ bind(L_enterLoop); 2770 2771 // Load in encoded string (32 bytes) 2772 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2773 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2774 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2775 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2776 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2777 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2778 // Check for special-case (0x2F or 0x5F (URL)) 2779 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2780 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2781 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2782 // Get the bit value of the high nibble 2783 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2784 // Make sure 2F / 5F shows as valid 2785 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2786 // Make adjustment for roll index. For non-URL, this is a no-op, 2787 // for URL, this adjusts by -4. This is to properly index the 2788 // roll value for 2F / 5F. 2789 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2790 // If the and of the two is non-zero, we have an invalid input character 2791 __ vptest(xmm3, xmm5); 2792 // Extract the "roll" value - value to add to the input to get 6-bit out value 2793 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2794 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2795 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2796 2797 __ bind(L_tailProc); 2798 2799 __ addl(length, 0x2c); 2800 2801 __ vzeroupper(); 2802 } 2803 2804 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2805 2806 // Register state (Linux): 2807 // r12-15 - saved on stack 2808 // rdi - src 2809 // rsi - sp 2810 // rdx - sl 2811 // rcx - dst 2812 // r8 - dp 2813 // r9 - isURL 2814 2815 // Register state (Windows): 2816 // r12-15 - saved on stack 2817 // rcx - src 2818 // rdx - sp 2819 // r8 - sl 2820 // r9 - dst 2821 // r12 - dp 2822 // r10 - isURL 2823 2824 // Registers (common): 2825 // length (r14) - bytes in src 2826 2827 const Register decode_table = r11; 2828 const Register out_byte_count = rbx; 2829 const Register byte1 = r13; 2830 const Register byte2 = r15; 2831 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2832 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2833 2834 __ bind(L_lastChunk); 2835 2836 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2837 __ cmpl(length, 0); 2838 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2839 2840 __ shll(isURL, 8); // index into decode table based on isURL 2841 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2842 __ addptr(decode_table, isURL); 2843 2844 __ jmp(L_bottomLoop); 2845 2846 __ align32(); 2847 __ BIND(L_forceLoop); 2848 __ shll(byte1, 18); 2849 __ shll(byte2, 12); 2850 __ shll(byte3, 6); 2851 __ orl(byte1, byte2); 2852 __ orl(byte1, byte3); 2853 __ orl(byte1, byte4); 2854 2855 __ addptr(source, 4); 2856 2857 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2858 __ shrl(byte1, 8); 2859 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2860 __ shrl(byte1, 8); 2861 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2862 2863 __ addptr(dest, 3); 2864 __ decrementl(length, 1); 2865 __ jcc(Assembler::zero, L_exit_no_vzero); 2866 2867 __ BIND(L_bottomLoop); 2868 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2869 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2870 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2871 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2872 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2873 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2874 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2875 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2876 2877 __ mov(rax, byte1); 2878 __ orl(rax, byte2); 2879 __ orl(rax, byte3); 2880 __ orl(rax, byte4); 2881 __ jcc(Assembler::positive, L_forceLoop); 2882 2883 __ BIND(L_exit_no_vzero); 2884 __ pop(rax); // Get original dest value 2885 __ subptr(dest, rax); // Number of bytes converted 2886 __ movptr(rax, dest); 2887 __ pop(rbx); 2888 __ pop(r15); 2889 __ pop(r14); 2890 __ pop(r13); 2891 __ pop(r12); 2892 __ leave(); 2893 __ ret(0); 2894 2895 return start; 2896 } 2897 2898 2899 /** 2900 * Arguments: 2901 * 2902 * Inputs: 2903 * c_rarg0 - int crc 2904 * c_rarg1 - byte* buf 2905 * c_rarg2 - int length 2906 * 2907 * Output: 2908 * rax - int crc result 2909 */ 2910 address StubGenerator::generate_updateBytesCRC32() { 2911 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 2912 2913 __ align(CodeEntryAlignment); 2914 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 2915 2916 address start = __ pc(); 2917 2918 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 2919 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 2920 // rscratch1: r10 2921 const Register crc = c_rarg0; // crc 2922 const Register buf = c_rarg1; // source java byte array address 2923 const Register len = c_rarg2; // length 2924 const Register table = c_rarg3; // crc_table address (reuse register) 2925 const Register tmp1 = r11; 2926 const Register tmp2 = r10; 2927 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 2928 2929 BLOCK_COMMENT("Entry:"); 2930 __ enter(); // required for proper stackwalking of RuntimeStub frame 2931 2932 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2933 VM_Version::supports_avx512bw() && 2934 VM_Version::supports_avx512vl()) { 2935 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 2936 // However, the constant table for CRC32-C assumes the original crc value. Account for this 2937 // difference before calling and after returning. 2938 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 2939 __ notl(crc); 2940 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 2941 __ notl(crc); 2942 } else { 2943 __ kernel_crc32(crc, buf, len, table, tmp1); 2944 } 2945 2946 __ movl(rax, crc); 2947 __ vzeroupper(); 2948 __ leave(); // required for proper stackwalking of RuntimeStub frame 2949 __ ret(0); 2950 2951 return start; 2952 } 2953 2954 /** 2955 * Arguments: 2956 * 2957 * Inputs: 2958 * c_rarg0 - int crc 2959 * c_rarg1 - byte* buf 2960 * c_rarg2 - long length 2961 * c_rarg3 - table_start - optional (present only when doing a library_call, 2962 * not used by x86 algorithm) 2963 * 2964 * Output: 2965 * rax - int crc result 2966 */ 2967 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 2968 assert(UseCRC32CIntrinsics, "need SSE4_2"); 2969 __ align(CodeEntryAlignment); 2970 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); 2971 address start = __ pc(); 2972 2973 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 2974 //Windows RCX RDX R8 R9 none none XMM0..XMM3 2975 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 2976 const Register crc = c_rarg0; // crc 2977 const Register buf = c_rarg1; // source java byte array address 2978 const Register len = c_rarg2; // length 2979 const Register a = rax; 2980 const Register j = r9; 2981 const Register k = r10; 2982 const Register l = r11; 2983 #ifdef _WIN64 2984 const Register y = rdi; 2985 const Register z = rsi; 2986 #else 2987 const Register y = rcx; 2988 const Register z = r8; 2989 #endif 2990 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 2991 2992 BLOCK_COMMENT("Entry:"); 2993 __ enter(); // required for proper stackwalking of RuntimeStub frame 2994 Label L_continue; 2995 2996 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2997 VM_Version::supports_avx512bw() && 2998 VM_Version::supports_avx512vl()) { 2999 Label L_doSmall; 3000 3001 __ cmpl(len, 384); 3002 __ jcc(Assembler::lessEqual, L_doSmall); 3003 3004 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3005 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3006 3007 __ jmp(L_continue); 3008 3009 __ bind(L_doSmall); 3010 } 3011 #ifdef _WIN64 3012 __ push(y); 3013 __ push(z); 3014 #endif 3015 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3016 a, j, k, 3017 l, y, z, 3018 c_farg0, c_farg1, c_farg2, 3019 is_pclmulqdq_supported); 3020 #ifdef _WIN64 3021 __ pop(z); 3022 __ pop(y); 3023 #endif 3024 3025 __ bind(L_continue); 3026 __ movl(rax, crc); 3027 __ vzeroupper(); 3028 __ leave(); // required for proper stackwalking of RuntimeStub frame 3029 __ ret(0); 3030 3031 return start; 3032 } 3033 3034 3035 /** 3036 * Arguments: 3037 * 3038 * Input: 3039 * c_rarg0 - x address 3040 * c_rarg1 - x length 3041 * c_rarg2 - y address 3042 * c_rarg3 - y length 3043 * not Win64 3044 * c_rarg4 - z address 3045 * Win64 3046 * rsp+40 - z address 3047 */ 3048 address StubGenerator::generate_multiplyToLen() { 3049 __ align(CodeEntryAlignment); 3050 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 3051 address start = __ pc(); 3052 3053 if (SCCache::load_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start)) { 3054 return start; 3055 } 3056 3057 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3058 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3059 const Register x = rdi; 3060 const Register xlen = rax; 3061 const Register y = rsi; 3062 const Register ylen = rcx; 3063 const Register z = r8; 3064 3065 // Next registers will be saved on stack in multiply_to_len(). 3066 const Register tmp0 = r11; 3067 const Register tmp1 = r12; 3068 const Register tmp2 = r13; 3069 const Register tmp3 = r14; 3070 const Register tmp4 = r15; 3071 const Register tmp5 = rbx; 3072 3073 BLOCK_COMMENT("Entry:"); 3074 __ enter(); // required for proper stackwalking of RuntimeStub frame 3075 3076 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3077 // ylen => rcx, z => r8 3078 // r9 and r10 may be used to save non-volatile registers 3079 #ifdef _WIN64 3080 // last argument (#4) is on stack on Win64 3081 __ movptr(z, Address(rsp, 6 * wordSize)); 3082 #endif 3083 3084 __ movptr(xlen, rsi); 3085 __ movptr(y, rdx); 3086 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3087 3088 restore_arg_regs(); 3089 3090 __ leave(); // required for proper stackwalking of RuntimeStub frame 3091 __ ret(0); 3092 3093 SCCache::store_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start); 3094 return start; 3095 } 3096 3097 /** 3098 * Arguments: 3099 * 3100 * Input: 3101 * c_rarg0 - obja address 3102 * c_rarg1 - objb address 3103 * c_rarg3 - length length 3104 * c_rarg4 - scale log2_array_indxscale 3105 * 3106 * Output: 3107 * rax - int >= mismatched index, < 0 bitwise complement of tail 3108 */ 3109 address StubGenerator::generate_vectorizedMismatch() { 3110 __ align(CodeEntryAlignment); 3111 StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); 3112 address start = __ pc(); 3113 3114 BLOCK_COMMENT("Entry:"); 3115 __ enter(); 3116 3117 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3118 const Register scale = c_rarg0; //rcx, will exchange with r9 3119 const Register objb = c_rarg1; //rdx 3120 const Register length = c_rarg2; //r8 3121 const Register obja = c_rarg3; //r9 3122 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3123 3124 const Register tmp1 = r10; 3125 const Register tmp2 = r11; 3126 #endif 3127 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3128 const Register obja = c_rarg0; //U:rdi 3129 const Register objb = c_rarg1; //U:rsi 3130 const Register length = c_rarg2; //U:rdx 3131 const Register scale = c_rarg3; //U:rcx 3132 const Register tmp1 = r8; 3133 const Register tmp2 = r9; 3134 #endif 3135 const Register result = rax; //return value 3136 const XMMRegister vec0 = xmm0; 3137 const XMMRegister vec1 = xmm1; 3138 const XMMRegister vec2 = xmm2; 3139 3140 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3141 3142 __ vzeroupper(); 3143 __ leave(); 3144 __ ret(0); 3145 3146 return start; 3147 } 3148 3149 /** 3150 * Arguments: 3151 * 3152 // Input: 3153 // c_rarg0 - x address 3154 // c_rarg1 - x length 3155 // c_rarg2 - z address 3156 // c_rarg3 - z length 3157 * 3158 */ 3159 address StubGenerator::generate_squareToLen() { 3160 3161 __ align(CodeEntryAlignment); 3162 StubCodeMark mark(this, "StubRoutines", "squareToLen"); 3163 address start = __ pc(); 3164 3165 if (SCCache::load_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start)) { 3166 return start; 3167 } 3168 3169 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3170 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3171 const Register x = rdi; 3172 const Register len = rsi; 3173 const Register z = r8; 3174 const Register zlen = rcx; 3175 3176 const Register tmp1 = r12; 3177 const Register tmp2 = r13; 3178 const Register tmp3 = r14; 3179 const Register tmp4 = r15; 3180 const Register tmp5 = rbx; 3181 3182 BLOCK_COMMENT("Entry:"); 3183 __ enter(); // required for proper stackwalking of RuntimeStub frame 3184 3185 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3186 // zlen => rcx 3187 // r9 and r10 may be used to save non-volatile registers 3188 __ movptr(r8, rdx); 3189 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3190 3191 restore_arg_regs(); 3192 3193 __ leave(); // required for proper stackwalking of RuntimeStub frame 3194 __ ret(0); 3195 3196 SCCache::store_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start); 3197 return start; 3198 } 3199 3200 address StubGenerator::generate_method_entry_barrier() { 3201 __ align(CodeEntryAlignment); 3202 StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); 3203 address start = __ pc(); 3204 3205 Label deoptimize_label; 3206 3207 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3208 3209 BLOCK_COMMENT("Entry:"); 3210 __ enter(); // save rbp 3211 3212 // save c_rarg0, because we want to use that value. 3213 // We could do without it but then we depend on the number of slots used by pusha 3214 __ push(c_rarg0); 3215 3216 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3217 3218 __ pusha(); 3219 3220 // The method may have floats as arguments, and we must spill them before calling 3221 // the VM runtime. 3222 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3223 const int xmm_size = wordSize * 2; 3224 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3225 __ subptr(rsp, xmm_spill_size); 3226 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3227 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3228 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3229 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3230 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3231 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3232 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3233 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3234 3235 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3236 3237 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3238 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3239 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3240 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3241 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3242 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3243 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3244 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3245 __ addptr(rsp, xmm_spill_size); 3246 3247 __ cmpl(rax, 1); // 1 means deoptimize 3248 __ jcc(Assembler::equal, deoptimize_label); 3249 3250 __ popa(); 3251 __ pop(c_rarg0); 3252 3253 __ leave(); 3254 3255 __ addptr(rsp, 1 * wordSize); // cookie 3256 __ ret(0); 3257 3258 3259 __ BIND(deoptimize_label); 3260 3261 __ popa(); 3262 __ pop(c_rarg0); 3263 3264 __ leave(); 3265 3266 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3267 // here while still having a correct stack is valuable 3268 __ testptr(rsp, Address(rsp, 0)); 3269 3270 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3271 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3272 3273 return start; 3274 } 3275 3276 /** 3277 * Arguments: 3278 * 3279 * Input: 3280 * c_rarg0 - out address 3281 * c_rarg1 - in address 3282 * c_rarg2 - offset 3283 * c_rarg3 - len 3284 * not Win64 3285 * c_rarg4 - k 3286 * Win64 3287 * rsp+40 - k 3288 */ 3289 address StubGenerator::generate_mulAdd() { 3290 __ align(CodeEntryAlignment); 3291 StubCodeMark mark(this, "StubRoutines", "mulAdd"); 3292 address start = __ pc(); 3293 3294 if (SCCache::load_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start)) { 3295 return start; 3296 } 3297 3298 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3299 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3300 const Register out = rdi; 3301 const Register in = rsi; 3302 const Register offset = r11; 3303 const Register len = rcx; 3304 const Register k = r8; 3305 3306 // Next registers will be saved on stack in mul_add(). 3307 const Register tmp1 = r12; 3308 const Register tmp2 = r13; 3309 const Register tmp3 = r14; 3310 const Register tmp4 = r15; 3311 const Register tmp5 = rbx; 3312 3313 BLOCK_COMMENT("Entry:"); 3314 __ enter(); // required for proper stackwalking of RuntimeStub frame 3315 3316 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3317 // len => rcx, k => r8 3318 // r9 and r10 may be used to save non-volatile registers 3319 #ifdef _WIN64 3320 // last argument is on stack on Win64 3321 __ movl(k, Address(rsp, 6 * wordSize)); 3322 #endif 3323 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3324 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3325 3326 restore_arg_regs(); 3327 3328 __ leave(); // required for proper stackwalking of RuntimeStub frame 3329 __ ret(0); 3330 3331 SCCache::store_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start); 3332 return start; 3333 } 3334 3335 address StubGenerator::generate_bigIntegerRightShift() { 3336 __ align(CodeEntryAlignment); 3337 StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); 3338 address start = __ pc(); 3339 3340 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3341 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3342 const Register newArr = rdi; 3343 const Register oldArr = rsi; 3344 const Register newIdx = rdx; 3345 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3346 const Register totalNumIter = r8; 3347 3348 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3349 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3350 const Register tmp1 = r11; // Caller save. 3351 const Register tmp2 = rax; // Caller save. 3352 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3353 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3354 const Register tmp5 = r14; // Callee save. 3355 const Register tmp6 = r15; 3356 3357 const XMMRegister x0 = xmm0; 3358 const XMMRegister x1 = xmm1; 3359 const XMMRegister x2 = xmm2; 3360 3361 BLOCK_COMMENT("Entry:"); 3362 __ enter(); // required for proper stackwalking of RuntimeStub frame 3363 3364 #ifdef _WIN64 3365 setup_arg_regs(4); 3366 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3367 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3368 // Save callee save registers. 3369 __ push(tmp3); 3370 __ push(tmp4); 3371 #endif 3372 __ push(tmp5); 3373 3374 // Rename temps used throughout the code. 3375 const Register idx = tmp1; 3376 const Register nIdx = tmp2; 3377 3378 __ xorl(idx, idx); 3379 3380 // Start right shift from end of the array. 3381 // For example, if #iteration = 4 and newIdx = 1 3382 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3383 // if #iteration = 4 and newIdx = 0 3384 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3385 __ movl(idx, totalNumIter); 3386 __ movl(nIdx, idx); 3387 __ addl(nIdx, newIdx); 3388 3389 // If vectorization is enabled, check if the number of iterations is at least 64 3390 // If not, then go to ShifTwo processing 2 iterations 3391 if (VM_Version::supports_avx512_vbmi2()) { 3392 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3393 __ jcc(Assembler::less, ShiftTwo); 3394 3395 if (AVX3Threshold < 16 * 64) { 3396 __ cmpl(totalNumIter, 16); 3397 __ jcc(Assembler::less, ShiftTwo); 3398 } 3399 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3400 __ subl(idx, 16); 3401 __ subl(nIdx, 16); 3402 __ BIND(Shift512Loop); 3403 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3404 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3405 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3406 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3407 __ subl(nIdx, 16); 3408 __ subl(idx, 16); 3409 __ jcc(Assembler::greaterEqual, Shift512Loop); 3410 __ addl(idx, 16); 3411 __ addl(nIdx, 16); 3412 } 3413 __ BIND(ShiftTwo); 3414 __ cmpl(idx, 2); 3415 __ jcc(Assembler::less, ShiftOne); 3416 __ subl(idx, 2); 3417 __ subl(nIdx, 2); 3418 __ BIND(ShiftTwoLoop); 3419 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3420 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3421 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3422 __ shrdl(tmp5, tmp4); 3423 __ shrdl(tmp4, tmp3); 3424 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3425 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3426 __ subl(nIdx, 2); 3427 __ subl(idx, 2); 3428 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3429 __ addl(idx, 2); 3430 __ addl(nIdx, 2); 3431 3432 // Do the last iteration 3433 __ BIND(ShiftOne); 3434 __ cmpl(idx, 1); 3435 __ jcc(Assembler::less, Exit); 3436 __ subl(idx, 1); 3437 __ subl(nIdx, 1); 3438 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3439 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3440 __ shrdl(tmp4, tmp3); 3441 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3442 __ BIND(Exit); 3443 __ vzeroupper(); 3444 // Restore callee save registers. 3445 __ pop(tmp5); 3446 #ifdef _WIN64 3447 __ pop(tmp4); 3448 __ pop(tmp3); 3449 restore_arg_regs(); 3450 #endif 3451 __ leave(); // required for proper stackwalking of RuntimeStub frame 3452 __ ret(0); 3453 3454 return start; 3455 } 3456 3457 /** 3458 * Arguments: 3459 * 3460 * Input: 3461 * c_rarg0 - newArr address 3462 * c_rarg1 - oldArr address 3463 * c_rarg2 - newIdx 3464 * c_rarg3 - shiftCount 3465 * not Win64 3466 * c_rarg4 - numIter 3467 * Win64 3468 * rsp40 - numIter 3469 */ 3470 address StubGenerator::generate_bigIntegerLeftShift() { 3471 __ align(CodeEntryAlignment); 3472 StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); 3473 address start = __ pc(); 3474 3475 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3476 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3477 const Register newArr = rdi; 3478 const Register oldArr = rsi; 3479 const Register newIdx = rdx; 3480 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3481 const Register totalNumIter = r8; 3482 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3483 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3484 const Register tmp1 = r11; // Caller save. 3485 const Register tmp2 = rax; // Caller save. 3486 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3487 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3488 const Register tmp5 = r14; // Callee save. 3489 3490 const XMMRegister x0 = xmm0; 3491 const XMMRegister x1 = xmm1; 3492 const XMMRegister x2 = xmm2; 3493 BLOCK_COMMENT("Entry:"); 3494 __ enter(); // required for proper stackwalking of RuntimeStub frame 3495 3496 #ifdef _WIN64 3497 setup_arg_regs(4); 3498 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3499 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3500 // Save callee save registers. 3501 __ push(tmp3); 3502 __ push(tmp4); 3503 #endif 3504 __ push(tmp5); 3505 3506 // Rename temps used throughout the code 3507 const Register idx = tmp1; 3508 const Register numIterTmp = tmp2; 3509 3510 // Start idx from zero. 3511 __ xorl(idx, idx); 3512 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3513 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3514 __ movl(numIterTmp, totalNumIter); 3515 3516 // If vectorization is enabled, check if the number of iterations is at least 64 3517 // If not, then go to ShiftTwo shifting two numbers at a time 3518 if (VM_Version::supports_avx512_vbmi2()) { 3519 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3520 __ jcc(Assembler::less, ShiftTwo); 3521 3522 if (AVX3Threshold < 16 * 64) { 3523 __ cmpl(totalNumIter, 16); 3524 __ jcc(Assembler::less, ShiftTwo); 3525 } 3526 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3527 __ subl(numIterTmp, 16); 3528 __ BIND(Shift512Loop); 3529 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3530 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3531 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3532 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3533 __ addl(idx, 16); 3534 __ subl(numIterTmp, 16); 3535 __ jcc(Assembler::greaterEqual, Shift512Loop); 3536 __ addl(numIterTmp, 16); 3537 } 3538 __ BIND(ShiftTwo); 3539 __ cmpl(totalNumIter, 1); 3540 __ jcc(Assembler::less, Exit); 3541 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3542 __ subl(numIterTmp, 2); 3543 __ jcc(Assembler::less, ShiftOne); 3544 3545 __ BIND(ShiftTwoLoop); 3546 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3547 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3548 __ shldl(tmp3, tmp4); 3549 __ shldl(tmp4, tmp5); 3550 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3551 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3552 __ movl(tmp3, tmp5); 3553 __ addl(idx, 2); 3554 __ subl(numIterTmp, 2); 3555 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3556 3557 // Do the last iteration 3558 __ BIND(ShiftOne); 3559 __ addl(numIterTmp, 2); 3560 __ cmpl(numIterTmp, 1); 3561 __ jcc(Assembler::less, Exit); 3562 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3563 __ shldl(tmp3, tmp4); 3564 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3565 3566 __ BIND(Exit); 3567 __ vzeroupper(); 3568 // Restore callee save registers. 3569 __ pop(tmp5); 3570 #ifdef _WIN64 3571 __ pop(tmp4); 3572 __ pop(tmp3); 3573 restore_arg_regs(); 3574 #endif 3575 __ leave(); // required for proper stackwalking of RuntimeStub frame 3576 __ ret(0); 3577 3578 return start; 3579 } 3580 3581 void StubGenerator::generate_libm_stubs() { 3582 if (UseLibmIntrinsic && InlineIntrinsics) { 3583 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3584 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3585 } 3586 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3587 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3588 } 3589 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3590 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3591 } 3592 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) { 3593 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp 3594 } 3595 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3596 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3597 } 3598 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3599 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3600 } 3601 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3602 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3603 } 3604 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3605 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3606 } 3607 } 3608 } 3609 3610 /** 3611 * Arguments: 3612 * 3613 * Input: 3614 * c_rarg0 - float16 jshort 3615 * 3616 * Output: 3617 * xmm0 - float 3618 */ 3619 address StubGenerator::generate_float16ToFloat() { 3620 StubCodeMark mark(this, "StubRoutines", "float16ToFloat"); 3621 3622 address start = __ pc(); 3623 3624 BLOCK_COMMENT("Entry:"); 3625 // No need for RuntimeStub frame since it is called only during JIT compilation 3626 3627 // Load value into xmm0 and convert 3628 __ flt16_to_flt(xmm0, c_rarg0); 3629 3630 __ ret(0); 3631 3632 return start; 3633 } 3634 3635 /** 3636 * Arguments: 3637 * 3638 * Input: 3639 * xmm0 - float 3640 * 3641 * Output: 3642 * rax - float16 jshort 3643 */ 3644 address StubGenerator::generate_floatToFloat16() { 3645 StubCodeMark mark(this, "StubRoutines", "floatToFloat16"); 3646 3647 address start = __ pc(); 3648 3649 BLOCK_COMMENT("Entry:"); 3650 // No need for RuntimeStub frame since it is called only during JIT compilation 3651 3652 // Convert and put result into rax 3653 __ flt_to_flt16(rax, xmm0, xmm1); 3654 3655 __ ret(0); 3656 3657 return start; 3658 } 3659 3660 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) { 3661 if (!Continuations::enabled()) return nullptr; 3662 3663 bool return_barrier = Continuation::is_thaw_return_barrier(kind); 3664 bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind); 3665 3666 StubCodeMark mark(this, "StubRoutines", label); 3667 address start = __ pc(); 3668 3669 // TODO: Handle Valhalla return types. May require generating different return barriers. 3670 3671 if (!return_barrier) { 3672 // Pop return address. If we don't do this, we get a drift, 3673 // where the bottom-most frozen frame continuously grows. 3674 __ pop(c_rarg3); 3675 } else { 3676 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3677 } 3678 3679 #ifdef ASSERT 3680 { 3681 Label L_good_sp; 3682 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3683 __ jcc(Assembler::equal, L_good_sp); 3684 __ stop("Incorrect rsp at thaw entry"); 3685 __ BIND(L_good_sp); 3686 } 3687 #endif // ASSERT 3688 3689 if (return_barrier) { 3690 // Preserve possible return value from a method returning to the return barrier. 3691 __ push(rax); 3692 __ push_d(xmm0); 3693 } 3694 3695 __ movptr(c_rarg0, r15_thread); 3696 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3697 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3698 __ movptr(rbx, rax); 3699 3700 if (return_barrier) { 3701 // Restore return value from a method returning to the return barrier. 3702 // No safepoint in the call to thaw, so even an oop return value should be OK. 3703 __ pop_d(xmm0); 3704 __ pop(rax); 3705 } 3706 3707 #ifdef ASSERT 3708 { 3709 Label L_good_sp; 3710 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3711 __ jcc(Assembler::equal, L_good_sp); 3712 __ stop("Incorrect rsp after prepare thaw"); 3713 __ BIND(L_good_sp); 3714 } 3715 #endif // ASSERT 3716 3717 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3718 Label L_thaw_success; 3719 __ testptr(rbx, rbx); 3720 __ jccb(Assembler::notZero, L_thaw_success); 3721 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 3722 __ bind(L_thaw_success); 3723 3724 // Make room for the thawed frames and align the stack. 3725 __ subptr(rsp, rbx); 3726 __ andptr(rsp, -StackAlignmentInBytes); 3727 3728 if (return_barrier) { 3729 // Preserve possible return value from a method returning to the return barrier. (Again.) 3730 __ push(rax); 3731 __ push_d(xmm0); 3732 } 3733 3734 // If we want, we can templatize thaw by kind, and have three different entries. 3735 __ movptr(c_rarg0, r15_thread); 3736 __ movptr(c_rarg1, kind); 3737 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3738 __ movptr(rbx, rax); 3739 3740 if (return_barrier) { 3741 // Restore return value from a method returning to the return barrier. (Again.) 3742 // No safepoint in the call to thaw, so even an oop return value should be OK. 3743 __ pop_d(xmm0); 3744 __ pop(rax); 3745 } else { 3746 // Return 0 (success) from doYield. 3747 __ xorptr(rax, rax); 3748 } 3749 3750 // After thawing, rbx is the SP of the yielding frame. 3751 // Move there, and then to saved RBP slot. 3752 __ movptr(rsp, rbx); 3753 __ subptr(rsp, 2*wordSize); 3754 3755 if (return_barrier_exception) { 3756 __ movptr(c_rarg0, r15_thread); 3757 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3758 3759 // rax still holds the original exception oop, save it before the call 3760 __ push(rax); 3761 3762 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3763 __ movptr(rbx, rax); 3764 3765 // Continue at exception handler: 3766 // rax: exception oop 3767 // rbx: exception handler 3768 // rdx: exception pc 3769 __ pop(rax); 3770 __ verify_oop(rax); 3771 __ pop(rbp); // pop out RBP here too 3772 __ pop(rdx); 3773 __ jmp(rbx); 3774 } else { 3775 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3776 __ pop(rbp); 3777 __ ret(0); 3778 } 3779 3780 return start; 3781 } 3782 3783 address StubGenerator::generate_cont_thaw() { 3784 return generate_cont_thaw("Cont thaw", Continuation::thaw_top); 3785 } 3786 3787 // TODO: will probably need multiple return barriers depending on return type 3788 3789 address StubGenerator::generate_cont_returnBarrier() { 3790 return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier); 3791 } 3792 3793 address StubGenerator::generate_cont_returnBarrier_exception() { 3794 return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception); 3795 } 3796 3797 // exception handler for upcall stubs 3798 address StubGenerator::generate_upcall_stub_exception_handler() { 3799 StubCodeMark mark(this, "StubRoutines", "upcall stub exception handler"); 3800 address start = __ pc(); 3801 3802 // native caller has no idea how to handle exceptions 3803 // we just crash here. Up to callee to catch exceptions. 3804 __ verify_oop(rax); 3805 __ vzeroupper(); 3806 __ mov(c_rarg0, rax); 3807 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3808 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3809 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3810 __ should_not_reach_here(); 3811 3812 return start; 3813 } 3814 3815 address StubGenerator::generate_lookup_secondary_supers_table_stub(u1 super_klass_index) { 3816 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3817 3818 address start = __ pc(); 3819 3820 const Register 3821 r_super_klass = rax, 3822 r_sub_klass = rsi, 3823 result = rdi; 3824 3825 __ lookup_secondary_supers_table(r_sub_klass, r_super_klass, 3826 rdx, rcx, rbx, r11, // temps 3827 result, 3828 super_klass_index); 3829 __ ret(0); 3830 3831 return start; 3832 } 3833 3834 // Slow path implementation for UseSecondarySupersTable. 3835 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 3836 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3837 3838 address start = __ pc(); 3839 3840 const Register 3841 r_super_klass = rax, 3842 r_array_base = rbx, 3843 r_array_index = rdx, 3844 r_sub_klass = rsi, 3845 r_bitmap = r11, 3846 result = rdi; 3847 3848 Label L_success; 3849 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 3850 rcx, rdi, // temps 3851 &L_success); 3852 // bind(L_failure); 3853 __ movl(result, 1); 3854 __ ret(0); 3855 3856 __ bind(L_success); 3857 __ movl(result, 0); 3858 __ ret(0); 3859 3860 return start; 3861 } 3862 3863 void StubGenerator::create_control_words() { 3864 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 3865 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 3866 // Round to zero, 64-bit mode, exceptions masked, flags specialized 3867 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 3868 } 3869 3870 // Initialization 3871 void StubGenerator::generate_initial_stubs() { 3872 // Generates all stubs and initializes the entry points 3873 3874 // This platform-specific settings are needed by generate_call_stub() 3875 create_control_words(); 3876 3877 // Initialize table for unsafe copy memeory check. 3878 if (UnsafeMemoryAccess::_table == nullptr) { 3879 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 3880 } 3881 3882 // entry points that exist in all platforms Note: This is code 3883 // that could be shared among different platforms - however the 3884 // benefit seems to be smaller than the disadvantage of having a 3885 // much more complicated generator structure. See also comment in 3886 // stubRoutines.hpp. 3887 3888 StubRoutines::_forward_exception_entry = generate_forward_exception(); 3889 3890 StubRoutines::_call_stub_entry = 3891 generate_call_stub(StubRoutines::_call_stub_return_address); 3892 3893 // is referenced by megamorphic call 3894 StubRoutines::_catch_exception_entry = generate_catch_exception(); 3895 3896 // atomic calls 3897 StubRoutines::_fence_entry = generate_orderaccess_fence(); 3898 3899 // platform dependent 3900 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 3901 3902 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 3903 3904 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 3905 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 3906 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 3907 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 3908 3909 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 3910 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 3911 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 3912 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 3913 3914 if (UseCRC32Intrinsics) { 3915 // set table address before stub generation which use it 3916 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 3917 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 3918 } 3919 3920 if (UseCRC32CIntrinsics) { 3921 bool supports_clmul = VM_Version::supports_clmul(); 3922 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 3923 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 3924 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 3925 } 3926 3927 if (VM_Version::supports_float16()) { 3928 // For results consistency both intrinsics should be enabled. 3929 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 3930 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 3931 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 3932 StubRoutines::_hf2f = generate_float16ToFloat(); 3933 StubRoutines::_f2hf = generate_floatToFloat16(); 3934 } 3935 } 3936 3937 generate_libm_stubs(); 3938 3939 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 3940 } 3941 3942 void StubGenerator::generate_continuation_stubs() { 3943 // Continuation stubs: 3944 StubRoutines::_cont_thaw = generate_cont_thaw(); 3945 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 3946 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 3947 } 3948 3949 void StubGenerator::generate_final_stubs() { 3950 // Generates the rest of stubs and initializes the entry points 3951 3952 // support for verify_oop (must happen after universe_init) 3953 if (VerifyOops) { 3954 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 3955 } 3956 3957 // data cache line writeback 3958 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 3959 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 3960 3961 // arraycopy stubs used by compilers 3962 generate_arraycopy_stubs(); 3963 3964 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 3965 if (bs_nm != nullptr) { 3966 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 3967 } 3968 3969 if (UseVectorizedMismatchIntrinsic) { 3970 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 3971 } 3972 3973 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 3974 } 3975 3976 void StubGenerator::generate_compiler_stubs() { 3977 #if COMPILER2_OR_JVMCI 3978 3979 // Entry points that are C2 compiler specific. 3980 3981 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); 3982 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); 3983 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); 3984 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); 3985 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); 3986 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001); 3987 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); 3988 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); 3989 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); 3990 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); 3991 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, 3992 0xFFFFFFFF, 0, 0, 0); 3993 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, 3994 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 3995 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); 3996 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); 3997 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); 3998 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); 3999 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); 4000 StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); 4001 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut"); 4002 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut"); 4003 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long"); 4004 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int"); 4005 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short"); 4006 4007 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4008 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table("compress_perm_table32", 32); 4009 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table("compress_perm_table64", 64); 4010 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table("expand_perm_table32", 32); 4011 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table("expand_perm_table64", 64); 4012 } 4013 4014 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4015 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4016 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut"); 4017 } 4018 4019 generate_aes_stubs(); 4020 4021 generate_ghash_stubs(); 4022 4023 generate_chacha_stubs(); 4024 4025 #ifdef COMPILER2 4026 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4027 generate_string_indexof(StubRoutines::_string_indexof_array); 4028 } 4029 #endif 4030 4031 if (UseAdler32Intrinsics) { 4032 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4033 } 4034 4035 if (UsePoly1305Intrinsics) { 4036 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4037 } 4038 4039 if (UseIntPolyIntrinsics) { 4040 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4041 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4042 } 4043 4044 if (UseMD5Intrinsics) { 4045 StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); 4046 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); 4047 } 4048 4049 if (UseSHA1Intrinsics) { 4050 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4051 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4052 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); 4053 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); 4054 } 4055 4056 if (UseSHA256Intrinsics) { 4057 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4058 char* dst = (char*)StubRoutines::x86::_k256_W; 4059 char* src = (char*)StubRoutines::x86::_k256; 4060 for (int ii = 0; ii < 16; ++ii) { 4061 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4062 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4063 } 4064 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4065 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4066 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); 4067 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); 4068 } 4069 4070 if (UseSHA512Intrinsics) { 4071 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4072 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4073 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); 4074 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); 4075 } 4076 4077 if (UseBASE64Intrinsics) { 4078 if(VM_Version::supports_avx2()) { 4079 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4080 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4081 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4082 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4083 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4084 } 4085 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4086 if (VM_Version::supports_avx512_vbmi()) { 4087 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4088 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4089 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4090 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4091 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4092 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4093 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4094 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4095 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4096 } 4097 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4098 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4099 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4100 } 4101 4102 #ifdef COMPILER2 4103 if (UseMultiplyToLenIntrinsic) { 4104 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4105 } 4106 if (UseSquareToLenIntrinsic) { 4107 StubRoutines::_squareToLen = generate_squareToLen(); 4108 } 4109 if (UseMulAddIntrinsic) { 4110 StubRoutines::_mulAdd = generate_mulAdd(); 4111 } 4112 if (VM_Version::supports_avx512_vbmi2()) { 4113 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4114 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4115 } 4116 if (UseSecondarySupersTable) { 4117 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4118 if (! InlineSecondarySupersTest) { 4119 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4120 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = generate_lookup_secondary_supers_table_stub(slot); 4121 } 4122 } 4123 } 4124 if (UseMontgomeryMultiplyIntrinsic) { 4125 StubRoutines::_montgomeryMultiply 4126 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4127 } 4128 if (UseMontgomerySquareIntrinsic) { 4129 StubRoutines::_montgomerySquare 4130 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4131 } 4132 4133 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4134 4135 if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) { 4136 void *libsimdsort = nullptr; 4137 char ebuf_[1024]; 4138 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4139 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4140 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4141 } 4142 // Get addresses for SIMD sort and partition routines 4143 if (libsimdsort != nullptr) { 4144 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4145 4146 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort"); 4147 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4148 4149 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition"); 4150 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4151 } 4152 } 4153 4154 // Get svml stub routine addresses 4155 void *libjsvml = nullptr; 4156 char ebuf[1024]; 4157 char dll_name[JVM_MAXPATHLEN]; 4158 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4159 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4160 } 4161 if (libjsvml != nullptr) { 4162 // SVML method naming convention 4163 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4164 // Where: 4165 // ha stands for high accuracy 4166 // <T> is optional to indicate float/double 4167 // Set to f for vector float operation 4168 // Omitted for vector double operation 4169 // <N> is the number of elements in the vector 4170 // 1, 2, 4, 8, 16 4171 // e.g. 128 bit float vector has 4 float elements 4172 // <VV> indicates the avx/sse level: 4173 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4174 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4175 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4176 4177 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4178 if (UseAVX > 2) { 4179 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 4180 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 4181 if ((!VM_Version::supports_avx512dq()) && 4182 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4183 continue; 4184 } 4185 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::svmlname[op]); 4186 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4187 4188 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::svmlname[op]); 4189 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4190 } 4191 } 4192 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4193 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 4194 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 4195 if (vop == VectorSupport::VECTOR_OP_POW) { 4196 continue; 4197 } 4198 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4199 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4200 4201 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4202 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4203 4204 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4205 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4206 4207 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4208 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4209 4210 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4211 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4212 4213 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 4214 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4215 } 4216 } 4217 4218 #endif // COMPILER2 4219 #endif // COMPILER2_OR_JVMCI 4220 } 4221 4222 StubGenerator::StubGenerator(CodeBuffer* code, StubsKind kind) : StubCodeGenerator(code) { 4223 DEBUG_ONLY( _regs_in_thread = false; ) 4224 switch(kind) { 4225 case Initial_stubs: 4226 generate_initial_stubs(); 4227 break; 4228 case Continuation_stubs: 4229 generate_continuation_stubs(); 4230 break; 4231 case Compiler_stubs: 4232 generate_compiler_stubs(); 4233 break; 4234 case Final_stubs: 4235 generate_final_stubs(); 4236 break; 4237 default: 4238 fatal("unexpected stubs kind: %d", kind); 4239 break; 4240 }; 4241 } 4242 4243 void StubGenerator_generate(CodeBuffer* code, StubCodeGenerator::StubsKind kind) { 4244 StubGenerator g(code, kind); 4245 } 4246 4247 #undef __