1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "code/SCCache.hpp" 30 #include "compiler/oopMap.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/barrierSetNMethod.hpp" 34 #include "gc/shared/gc_globals.hpp" 35 #include "memory/universe.hpp" 36 #include "prims/jvmtiExport.hpp" 37 #include "prims/upcallLinker.hpp" 38 #include "runtime/arguments.hpp" 39 #include "runtime/javaThread.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "stubGenerator_x86_64.hpp" 43 #ifdef COMPILER2 44 #include "opto/runtime.hpp" 45 #include "opto/c2_globals.hpp" 46 #endif 47 #if INCLUDE_JVMCI 48 #include "jvmci/jvmci_globals.hpp" 49 #endif 50 51 // For a more detailed description of the stub routine structure 52 // see the comment in stubRoutines.hpp 53 54 #define __ _masm-> 55 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 56 57 #ifdef PRODUCT 58 #define BLOCK_COMMENT(str) /* nothing */ 59 #else 60 #define BLOCK_COMMENT(str) __ block_comment(str) 61 #endif // PRODUCT 62 63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 64 65 // 66 // Linux Arguments: 67 // c_rarg0: call wrapper address address 68 // c_rarg1: result address 69 // c_rarg2: result type BasicType 70 // c_rarg3: method Method* 71 // c_rarg4: (interpreter) entry point address 72 // c_rarg5: parameters intptr_t* 73 // 16(rbp): parameter size (in words) int 74 // 24(rbp): thread Thread* 75 // 76 // [ return_from_Java ] <--- rsp 77 // [ argument word n ] 78 // ... 79 // -12 [ argument word 1 ] 80 // -11 [ saved r15 ] <--- rsp_after_call 81 // -10 [ saved r14 ] 82 // -9 [ saved r13 ] 83 // -8 [ saved r12 ] 84 // -7 [ saved rbx ] 85 // -6 [ call wrapper ] 86 // -5 [ result ] 87 // -4 [ result type ] 88 // -3 [ method ] 89 // -2 [ entry point ] 90 // -1 [ parameters ] 91 // 0 [ saved rbp ] <--- rbp 92 // 1 [ return address ] 93 // 2 [ parameter size ] 94 // 3 [ thread ] 95 // 96 // Windows Arguments: 97 // c_rarg0: call wrapper address address 98 // c_rarg1: result address 99 // c_rarg2: result type BasicType 100 // c_rarg3: method Method* 101 // 48(rbp): (interpreter) entry point address 102 // 56(rbp): parameters intptr_t* 103 // 64(rbp): parameter size (in words) int 104 // 72(rbp): thread Thread* 105 // 106 // [ return_from_Java ] <--- rsp 107 // [ argument word n ] 108 // ... 109 // -28 [ argument word 1 ] 110 // -27 [ saved xmm15 ] <--- rsp after_call 111 // [ saved xmm7-xmm14 ] 112 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 113 // -7 [ saved r15 ] 114 // -6 [ saved r14 ] 115 // -5 [ saved r13 ] 116 // -4 [ saved r12 ] 117 // -3 [ saved rdi ] 118 // -2 [ saved rsi ] 119 // -1 [ saved rbx ] 120 // 0 [ saved rbp ] <--- rbp 121 // 1 [ return address ] 122 // 2 [ call wrapper ] 123 // 3 [ result ] 124 // 4 [ result type ] 125 // 5 [ method ] 126 // 6 [ entry point ] 127 // 7 [ parameters ] 128 // 8 [ parameter size ] 129 // 9 [ thread ] 130 // 131 // Windows reserves the callers stack space for arguments 1-4. 132 // We spill c_rarg0-c_rarg3 to this space. 133 134 // Call stub stack layout word offsets from rbp 135 #ifdef _WIN64 136 enum call_stub_layout { 137 xmm_save_first = 6, // save from xmm6 138 xmm_save_last = 15, // to xmm15 139 xmm_save_base = -9, 140 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 141 r15_off = -7, 142 r14_off = -6, 143 r13_off = -5, 144 r12_off = -4, 145 rdi_off = -3, 146 rsi_off = -2, 147 rbx_off = -1, 148 rbp_off = 0, 149 retaddr_off = 1, 150 call_wrapper_off = 2, 151 result_off = 3, 152 result_type_off = 4, 153 method_off = 5, 154 entry_point_off = 6, 155 parameters_off = 7, 156 parameter_size_off = 8, 157 thread_off = 9 158 }; 159 160 static Address xmm_save(int reg) { 161 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 162 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 163 } 164 #else // !_WIN64 165 enum call_stub_layout { 166 rsp_after_call_off = -12, 167 mxcsr_off = rsp_after_call_off, 168 r15_off = -11, 169 r14_off = -10, 170 r13_off = -9, 171 r12_off = -8, 172 rbx_off = -7, 173 call_wrapper_off = -6, 174 result_off = -5, 175 result_type_off = -4, 176 method_off = -3, 177 entry_point_off = -2, 178 parameters_off = -1, 179 rbp_off = 0, 180 retaddr_off = 1, 181 parameter_size_off = 2, 182 thread_off = 3 183 }; 184 #endif // _WIN64 185 186 address StubGenerator::generate_call_stub(address& return_address) { 187 188 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 189 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 190 "adjust this code"); 191 StubCodeMark mark(this, "StubRoutines", "call_stub"); 192 address start = __ pc(); 193 194 // same as in generate_catch_exception()! 195 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 196 197 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 198 const Address result (rbp, result_off * wordSize); 199 const Address result_type (rbp, result_type_off * wordSize); 200 const Address method (rbp, method_off * wordSize); 201 const Address entry_point (rbp, entry_point_off * wordSize); 202 const Address parameters (rbp, parameters_off * wordSize); 203 const Address parameter_size(rbp, parameter_size_off * wordSize); 204 205 // same as in generate_catch_exception()! 206 const Address thread (rbp, thread_off * wordSize); 207 208 const Address r15_save(rbp, r15_off * wordSize); 209 const Address r14_save(rbp, r14_off * wordSize); 210 const Address r13_save(rbp, r13_off * wordSize); 211 const Address r12_save(rbp, r12_off * wordSize); 212 const Address rbx_save(rbp, rbx_off * wordSize); 213 214 // stub code 215 __ enter(); 216 __ subptr(rsp, -rsp_after_call_off * wordSize); 217 218 // save register parameters 219 #ifndef _WIN64 220 __ movptr(parameters, c_rarg5); // parameters 221 __ movptr(entry_point, c_rarg4); // entry_point 222 #endif 223 224 __ movptr(method, c_rarg3); // method 225 __ movl(result_type, c_rarg2); // result type 226 __ movptr(result, c_rarg1); // result 227 __ movptr(call_wrapper, c_rarg0); // call wrapper 228 229 // save regs belonging to calling function 230 __ movptr(rbx_save, rbx); 231 __ movptr(r12_save, r12); 232 __ movptr(r13_save, r13); 233 __ movptr(r14_save, r14); 234 __ movptr(r15_save, r15); 235 236 #ifdef _WIN64 237 int last_reg = 15; 238 for (int i = xmm_save_first; i <= last_reg; i++) { 239 __ movdqu(xmm_save(i), as_XMMRegister(i)); 240 } 241 242 const Address rdi_save(rbp, rdi_off * wordSize); 243 const Address rsi_save(rbp, rsi_off * wordSize); 244 245 __ movptr(rsi_save, rsi); 246 __ movptr(rdi_save, rdi); 247 #else 248 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 249 { 250 Label skip_ldmx; 251 __ stmxcsr(mxcsr_save); 252 __ movl(rax, mxcsr_save); 253 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 254 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 255 __ cmp32(rax, mxcsr_std, rscratch1); 256 __ jcc(Assembler::equal, skip_ldmx); 257 __ ldmxcsr(mxcsr_std, rscratch1); 258 __ bind(skip_ldmx); 259 } 260 #endif 261 262 // Load up thread register 263 __ movptr(r15_thread, thread); 264 __ reinit_heapbase(); 265 266 #ifdef ASSERT 267 // make sure we have no pending exceptions 268 { 269 Label L; 270 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 271 __ jcc(Assembler::equal, L); 272 __ stop("StubRoutines::call_stub: entered with pending exception"); 273 __ bind(L); 274 } 275 #endif 276 277 // pass parameters if any 278 BLOCK_COMMENT("pass parameters if any"); 279 Label parameters_done; 280 __ movl(c_rarg3, parameter_size); 281 __ testl(c_rarg3, c_rarg3); 282 __ jcc(Assembler::zero, parameters_done); 283 284 Label loop; 285 __ movptr(c_rarg2, parameters); // parameter pointer 286 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 287 __ BIND(loop); 288 __ movptr(rax, Address(c_rarg2, 0));// get parameter 289 __ addptr(c_rarg2, wordSize); // advance to next parameter 290 __ decrementl(c_rarg1); // decrement counter 291 __ push(rax); // pass parameter 292 __ jcc(Assembler::notZero, loop); 293 294 // call Java function 295 __ BIND(parameters_done); 296 __ movptr(rbx, method); // get Method* 297 __ movptr(c_rarg1, entry_point); // get entry_point 298 __ mov(r13, rsp); // set sender sp 299 BLOCK_COMMENT("call Java function"); 300 __ call(c_rarg1); 301 302 BLOCK_COMMENT("call_stub_return_address:"); 303 return_address = __ pc(); 304 305 // store result depending on type (everything that is not 306 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 307 __ movptr(c_rarg0, result); 308 Label is_long, is_float, is_double, exit; 309 __ movl(c_rarg1, result_type); 310 __ cmpl(c_rarg1, T_OBJECT); 311 __ jcc(Assembler::equal, is_long); 312 __ cmpl(c_rarg1, T_LONG); 313 __ jcc(Assembler::equal, is_long); 314 __ cmpl(c_rarg1, T_FLOAT); 315 __ jcc(Assembler::equal, is_float); 316 __ cmpl(c_rarg1, T_DOUBLE); 317 __ jcc(Assembler::equal, is_double); 318 #ifdef ASSERT 319 // make sure the type is INT 320 { 321 Label L; 322 __ cmpl(c_rarg1, T_INT); 323 __ jcc(Assembler::equal, L); 324 __ stop("StubRoutines::call_stub: unexpected result type"); 325 __ bind(L); 326 } 327 #endif 328 329 // handle T_INT case 330 __ movl(Address(c_rarg0, 0), rax); 331 332 __ BIND(exit); 333 334 // pop parameters 335 __ lea(rsp, rsp_after_call); 336 337 #ifdef ASSERT 338 // verify that threads correspond 339 { 340 Label L1, L2, L3; 341 __ cmpptr(r15_thread, thread); 342 __ jcc(Assembler::equal, L1); 343 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 344 __ bind(L1); 345 __ get_thread(rbx); 346 __ cmpptr(r15_thread, thread); 347 __ jcc(Assembler::equal, L2); 348 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 349 __ bind(L2); 350 __ cmpptr(r15_thread, rbx); 351 __ jcc(Assembler::equal, L3); 352 __ stop("StubRoutines::call_stub: threads must correspond"); 353 __ bind(L3); 354 } 355 #endif 356 357 __ pop_cont_fastpath(); 358 359 // restore regs belonging to calling function 360 #ifdef _WIN64 361 // emit the restores for xmm regs 362 for (int i = xmm_save_first; i <= last_reg; i++) { 363 __ movdqu(as_XMMRegister(i), xmm_save(i)); 364 } 365 #endif 366 __ movptr(r15, r15_save); 367 __ movptr(r14, r14_save); 368 __ movptr(r13, r13_save); 369 __ movptr(r12, r12_save); 370 __ movptr(rbx, rbx_save); 371 372 #ifdef _WIN64 373 __ movptr(rdi, rdi_save); 374 __ movptr(rsi, rsi_save); 375 #else 376 __ ldmxcsr(mxcsr_save); 377 #endif 378 379 // restore rsp 380 __ addptr(rsp, -rsp_after_call_off * wordSize); 381 382 // return 383 __ vzeroupper(); 384 __ pop(rbp); 385 __ ret(0); 386 387 // handle return types different from T_INT 388 __ BIND(is_long); 389 __ movq(Address(c_rarg0, 0), rax); 390 __ jmp(exit); 391 392 __ BIND(is_float); 393 __ movflt(Address(c_rarg0, 0), xmm0); 394 __ jmp(exit); 395 396 __ BIND(is_double); 397 __ movdbl(Address(c_rarg0, 0), xmm0); 398 __ jmp(exit); 399 400 return start; 401 } 402 403 // Return point for a Java call if there's an exception thrown in 404 // Java code. The exception is caught and transformed into a 405 // pending exception stored in JavaThread that can be tested from 406 // within the VM. 407 // 408 // Note: Usually the parameters are removed by the callee. In case 409 // of an exception crossing an activation frame boundary, that is 410 // not the case if the callee is compiled code => need to setup the 411 // rsp. 412 // 413 // rax: exception oop 414 415 address StubGenerator::generate_catch_exception() { 416 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 417 address start = __ pc(); 418 419 // same as in generate_call_stub(): 420 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 421 const Address thread (rbp, thread_off * wordSize); 422 423 #ifdef ASSERT 424 // verify that threads correspond 425 { 426 Label L1, L2, L3; 427 __ cmpptr(r15_thread, thread); 428 __ jcc(Assembler::equal, L1); 429 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 430 __ bind(L1); 431 __ get_thread(rbx); 432 __ cmpptr(r15_thread, thread); 433 __ jcc(Assembler::equal, L2); 434 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 435 __ bind(L2); 436 __ cmpptr(r15_thread, rbx); 437 __ jcc(Assembler::equal, L3); 438 __ stop("StubRoutines::catch_exception: threads must correspond"); 439 __ bind(L3); 440 } 441 #endif 442 443 // set pending exception 444 __ verify_oop(rax); 445 446 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 447 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 448 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 449 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 450 451 // complete return to VM 452 assert(StubRoutines::_call_stub_return_address != nullptr, 453 "_call_stub_return_address must have been generated before"); 454 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 455 456 return start; 457 } 458 459 // Continuation point for runtime calls returning with a pending 460 // exception. The pending exception check happened in the runtime 461 // or native call stub. The pending exception in Thread is 462 // converted into a Java-level exception. 463 // 464 // Contract with Java-level exception handlers: 465 // rax: exception 466 // rdx: throwing pc 467 // 468 // NOTE: At entry of this stub, exception-pc must be on stack !! 469 470 address StubGenerator::generate_forward_exception() { 471 StubCodeMark mark(this, "StubRoutines", "forward exception"); 472 address start = __ pc(); 473 474 // Upon entry, the sp points to the return address returning into 475 // Java (interpreted or compiled) code; i.e., the return address 476 // becomes the throwing pc. 477 // 478 // Arguments pushed before the runtime call are still on the stack 479 // but the exception handler will reset the stack pointer -> 480 // ignore them. A potential result in registers can be ignored as 481 // well. 482 483 #ifdef ASSERT 484 // make sure this code is only executed if there is a pending exception 485 { 486 Label L; 487 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 488 __ jcc(Assembler::notEqual, L); 489 __ stop("StubRoutines::forward exception: no pending exception (1)"); 490 __ bind(L); 491 } 492 #endif 493 494 // compute exception handler into rbx 495 __ movptr(c_rarg0, Address(rsp, 0)); 496 BLOCK_COMMENT("call exception_handler_for_return_address"); 497 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 498 SharedRuntime::exception_handler_for_return_address), 499 r15_thread, c_rarg0); 500 __ mov(rbx, rax); 501 502 // setup rax & rdx, remove return address & clear pending exception 503 __ pop(rdx); 504 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 505 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD); 506 507 #ifdef ASSERT 508 // make sure exception is set 509 { 510 Label L; 511 __ testptr(rax, rax); 512 __ jcc(Assembler::notEqual, L); 513 __ stop("StubRoutines::forward exception: no pending exception (2)"); 514 __ bind(L); 515 } 516 #endif 517 518 // continue at exception handler (return address removed) 519 // rax: exception 520 // rbx: exception handler 521 // rdx: throwing pc 522 __ verify_oop(rax); 523 __ jmp(rbx); 524 525 return start; 526 } 527 528 // Support for intptr_t OrderAccess::fence() 529 // 530 // Arguments : 531 // 532 // Result: 533 address StubGenerator::generate_orderaccess_fence() { 534 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 535 address start = __ pc(); 536 537 __ membar(Assembler::StoreLoad); 538 __ ret(0); 539 540 return start; 541 } 542 543 544 // Support for intptr_t get_previous_sp() 545 // 546 // This routine is used to find the previous stack pointer for the 547 // caller. 548 address StubGenerator::generate_get_previous_sp() { 549 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 550 address start = __ pc(); 551 552 __ movptr(rax, rsp); 553 __ addptr(rax, 8); // return address is at the top of the stack. 554 __ ret(0); 555 556 return start; 557 } 558 559 //---------------------------------------------------------------------------------------------------- 560 // Support for void verify_mxcsr() 561 // 562 // This routine is used with -Xcheck:jni to verify that native 563 // JNI code does not return to Java code without restoring the 564 // MXCSR register to our expected state. 565 566 address StubGenerator::generate_verify_mxcsr() { 567 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 568 address start = __ pc(); 569 570 const Address mxcsr_save(rsp, 0); 571 572 if (CheckJNICalls) { 573 Label ok_ret; 574 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 575 __ push(rax); 576 __ subptr(rsp, wordSize); // allocate a temp location 577 __ stmxcsr(mxcsr_save); 578 __ movl(rax, mxcsr_save); 579 __ andl(rax, 0xFFC0); // Mask out any pending exceptions (only check control and mask bits) 580 __ cmp32(rax, mxcsr_std, rscratch1); 581 __ jcc(Assembler::equal, ok_ret); 582 583 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 584 585 __ ldmxcsr(mxcsr_std, rscratch1); 586 587 __ bind(ok_ret); 588 __ addptr(rsp, wordSize); 589 __ pop(rax); 590 } 591 592 __ ret(0); 593 594 return start; 595 } 596 597 address StubGenerator::generate_f2i_fixup() { 598 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 599 Address inout(rsp, 5 * wordSize); // return address + 4 saves 600 601 address start = __ pc(); 602 603 Label L; 604 605 __ push(rax); 606 __ push(c_rarg3); 607 __ push(c_rarg2); 608 __ push(c_rarg1); 609 610 __ movl(rax, 0x7f800000); 611 __ xorl(c_rarg3, c_rarg3); 612 __ movl(c_rarg2, inout); 613 __ movl(c_rarg1, c_rarg2); 614 __ andl(c_rarg1, 0x7fffffff); 615 __ cmpl(rax, c_rarg1); // NaN? -> 0 616 __ jcc(Assembler::negative, L); 617 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 618 __ movl(c_rarg3, 0x80000000); 619 __ movl(rax, 0x7fffffff); 620 __ cmovl(Assembler::positive, c_rarg3, rax); 621 622 __ bind(L); 623 __ movptr(inout, c_rarg3); 624 625 __ pop(c_rarg1); 626 __ pop(c_rarg2); 627 __ pop(c_rarg3); 628 __ pop(rax); 629 630 __ ret(0); 631 632 return start; 633 } 634 635 address StubGenerator::generate_f2l_fixup() { 636 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 637 Address inout(rsp, 5 * wordSize); // return address + 4 saves 638 address start = __ pc(); 639 640 Label L; 641 642 __ push(rax); 643 __ push(c_rarg3); 644 __ push(c_rarg2); 645 __ push(c_rarg1); 646 647 __ movl(rax, 0x7f800000); 648 __ xorl(c_rarg3, c_rarg3); 649 __ movl(c_rarg2, inout); 650 __ movl(c_rarg1, c_rarg2); 651 __ andl(c_rarg1, 0x7fffffff); 652 __ cmpl(rax, c_rarg1); // NaN? -> 0 653 __ jcc(Assembler::negative, L); 654 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 655 __ mov64(c_rarg3, 0x8000000000000000); 656 __ mov64(rax, 0x7fffffffffffffff); 657 __ cmov(Assembler::positive, c_rarg3, rax); 658 659 __ bind(L); 660 __ movptr(inout, c_rarg3); 661 662 __ pop(c_rarg1); 663 __ pop(c_rarg2); 664 __ pop(c_rarg3); 665 __ pop(rax); 666 667 __ ret(0); 668 669 return start; 670 } 671 672 address StubGenerator::generate_d2i_fixup() { 673 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 674 Address inout(rsp, 6 * wordSize); // return address + 5 saves 675 676 address start = __ pc(); 677 678 Label L; 679 680 __ push(rax); 681 __ push(c_rarg3); 682 __ push(c_rarg2); 683 __ push(c_rarg1); 684 __ push(c_rarg0); 685 686 __ movl(rax, 0x7ff00000); 687 __ movq(c_rarg2, inout); 688 __ movl(c_rarg3, c_rarg2); 689 __ mov(c_rarg1, c_rarg2); 690 __ mov(c_rarg0, c_rarg2); 691 __ negl(c_rarg3); 692 __ shrptr(c_rarg1, 0x20); 693 __ orl(c_rarg3, c_rarg2); 694 __ andl(c_rarg1, 0x7fffffff); 695 __ xorl(c_rarg2, c_rarg2); 696 __ shrl(c_rarg3, 0x1f); 697 __ orl(c_rarg1, c_rarg3); 698 __ cmpl(rax, c_rarg1); 699 __ jcc(Assembler::negative, L); // NaN -> 0 700 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 701 __ movl(c_rarg2, 0x80000000); 702 __ movl(rax, 0x7fffffff); 703 __ cmov(Assembler::positive, c_rarg2, rax); 704 705 __ bind(L); 706 __ movptr(inout, c_rarg2); 707 708 __ pop(c_rarg0); 709 __ pop(c_rarg1); 710 __ pop(c_rarg2); 711 __ pop(c_rarg3); 712 __ pop(rax); 713 714 __ ret(0); 715 716 return start; 717 } 718 719 address StubGenerator::generate_d2l_fixup() { 720 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 721 Address inout(rsp, 6 * wordSize); // return address + 5 saves 722 723 address start = __ pc(); 724 725 Label L; 726 727 __ push(rax); 728 __ push(c_rarg3); 729 __ push(c_rarg2); 730 __ push(c_rarg1); 731 __ push(c_rarg0); 732 733 __ movl(rax, 0x7ff00000); 734 __ movq(c_rarg2, inout); 735 __ movl(c_rarg3, c_rarg2); 736 __ mov(c_rarg1, c_rarg2); 737 __ mov(c_rarg0, c_rarg2); 738 __ negl(c_rarg3); 739 __ shrptr(c_rarg1, 0x20); 740 __ orl(c_rarg3, c_rarg2); 741 __ andl(c_rarg1, 0x7fffffff); 742 __ xorl(c_rarg2, c_rarg2); 743 __ shrl(c_rarg3, 0x1f); 744 __ orl(c_rarg1, c_rarg3); 745 __ cmpl(rax, c_rarg1); 746 __ jcc(Assembler::negative, L); // NaN -> 0 747 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 748 __ mov64(c_rarg2, 0x8000000000000000); 749 __ mov64(rax, 0x7fffffffffffffff); 750 __ cmovq(Assembler::positive, c_rarg2, rax); 751 752 __ bind(L); 753 __ movq(inout, c_rarg2); 754 755 __ pop(c_rarg0); 756 __ pop(c_rarg1); 757 __ pop(c_rarg2); 758 __ pop(c_rarg3); 759 __ pop(rax); 760 761 __ ret(0); 762 763 return start; 764 } 765 766 address StubGenerator::generate_count_leading_zeros_lut(const char *stub_name) { 767 __ align64(); 768 StubCodeMark mark(this, "StubRoutines", stub_name); 769 address start = __ pc(); 770 771 __ emit_data64(0x0101010102020304, relocInfo::none); 772 __ emit_data64(0x0000000000000000, relocInfo::none); 773 __ emit_data64(0x0101010102020304, relocInfo::none); 774 __ emit_data64(0x0000000000000000, relocInfo::none); 775 __ emit_data64(0x0101010102020304, relocInfo::none); 776 __ emit_data64(0x0000000000000000, relocInfo::none); 777 __ emit_data64(0x0101010102020304, relocInfo::none); 778 __ emit_data64(0x0000000000000000, relocInfo::none); 779 780 return start; 781 } 782 783 address StubGenerator::generate_popcount_avx_lut(const char *stub_name) { 784 __ align64(); 785 StubCodeMark mark(this, "StubRoutines", stub_name); 786 address start = __ pc(); 787 788 __ emit_data64(0x0302020102010100, relocInfo::none); 789 __ emit_data64(0x0403030203020201, relocInfo::none); 790 __ emit_data64(0x0302020102010100, relocInfo::none); 791 __ emit_data64(0x0403030203020201, relocInfo::none); 792 __ emit_data64(0x0302020102010100, relocInfo::none); 793 __ emit_data64(0x0403030203020201, relocInfo::none); 794 __ emit_data64(0x0302020102010100, relocInfo::none); 795 __ emit_data64(0x0403030203020201, relocInfo::none); 796 797 return start; 798 } 799 800 address StubGenerator::generate_iota_indices(const char *stub_name) { 801 __ align(CodeEntryAlignment); 802 StubCodeMark mark(this, "StubRoutines", stub_name); 803 address start = __ pc(); 804 // B 805 __ emit_data64(0x0706050403020100, relocInfo::none); 806 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 807 __ emit_data64(0x1716151413121110, relocInfo::none); 808 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 809 __ emit_data64(0x2726252423222120, relocInfo::none); 810 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 811 __ emit_data64(0x3736353433323130, relocInfo::none); 812 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 813 // W 814 __ emit_data64(0x0003000200010000, relocInfo::none); 815 __ emit_data64(0x0007000600050004, relocInfo::none); 816 __ emit_data64(0x000B000A00090008, relocInfo::none); 817 __ emit_data64(0x000F000E000D000C, relocInfo::none); 818 __ emit_data64(0x0013001200110010, relocInfo::none); 819 __ emit_data64(0x0017001600150014, relocInfo::none); 820 __ emit_data64(0x001B001A00190018, relocInfo::none); 821 __ emit_data64(0x001F001E001D001C, relocInfo::none); 822 // D 823 __ emit_data64(0x0000000100000000, relocInfo::none); 824 __ emit_data64(0x0000000300000002, relocInfo::none); 825 __ emit_data64(0x0000000500000004, relocInfo::none); 826 __ emit_data64(0x0000000700000006, relocInfo::none); 827 __ emit_data64(0x0000000900000008, relocInfo::none); 828 __ emit_data64(0x0000000B0000000A, relocInfo::none); 829 __ emit_data64(0x0000000D0000000C, relocInfo::none); 830 __ emit_data64(0x0000000F0000000E, relocInfo::none); 831 // Q 832 __ emit_data64(0x0000000000000000, relocInfo::none); 833 __ emit_data64(0x0000000000000001, relocInfo::none); 834 __ emit_data64(0x0000000000000002, relocInfo::none); 835 __ emit_data64(0x0000000000000003, relocInfo::none); 836 __ emit_data64(0x0000000000000004, relocInfo::none); 837 __ emit_data64(0x0000000000000005, relocInfo::none); 838 __ emit_data64(0x0000000000000006, relocInfo::none); 839 __ emit_data64(0x0000000000000007, relocInfo::none); 840 // D - FP 841 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f 842 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f 843 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f 844 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f 845 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f 846 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f 847 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f 848 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f 849 // Q - FP 850 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d 851 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d 852 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d 853 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d 854 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d 855 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d 856 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d 857 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d 858 return start; 859 } 860 861 address StubGenerator::generate_vector_reverse_bit_lut(const char *stub_name) { 862 __ align(CodeEntryAlignment); 863 StubCodeMark mark(this, "StubRoutines", stub_name); 864 address start = __ pc(); 865 866 __ emit_data64(0x0E060A020C040800, relocInfo::none); 867 __ emit_data64(0x0F070B030D050901, relocInfo::none); 868 __ emit_data64(0x0E060A020C040800, relocInfo::none); 869 __ emit_data64(0x0F070B030D050901, relocInfo::none); 870 __ emit_data64(0x0E060A020C040800, relocInfo::none); 871 __ emit_data64(0x0F070B030D050901, relocInfo::none); 872 __ emit_data64(0x0E060A020C040800, relocInfo::none); 873 __ emit_data64(0x0F070B030D050901, relocInfo::none); 874 875 return start; 876 } 877 878 address StubGenerator::generate_vector_reverse_byte_perm_mask_long(const char *stub_name) { 879 __ align(CodeEntryAlignment); 880 StubCodeMark mark(this, "StubRoutines", stub_name); 881 address start = __ pc(); 882 883 __ emit_data64(0x0001020304050607, relocInfo::none); 884 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 885 __ emit_data64(0x0001020304050607, relocInfo::none); 886 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 887 __ emit_data64(0x0001020304050607, relocInfo::none); 888 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 889 __ emit_data64(0x0001020304050607, relocInfo::none); 890 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none); 891 892 return start; 893 } 894 895 address StubGenerator::generate_vector_reverse_byte_perm_mask_int(const char *stub_name) { 896 __ align(CodeEntryAlignment); 897 StubCodeMark mark(this, "StubRoutines", stub_name); 898 address start = __ pc(); 899 900 __ emit_data64(0x0405060700010203, relocInfo::none); 901 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 902 __ emit_data64(0x0405060700010203, relocInfo::none); 903 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 904 __ emit_data64(0x0405060700010203, relocInfo::none); 905 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 906 __ emit_data64(0x0405060700010203, relocInfo::none); 907 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none); 908 909 return start; 910 } 911 912 address StubGenerator::generate_vector_reverse_byte_perm_mask_short(const char *stub_name) { 913 __ align(CodeEntryAlignment); 914 StubCodeMark mark(this, "StubRoutines", stub_name); 915 address start = __ pc(); 916 917 __ emit_data64(0x0607040502030001, relocInfo::none); 918 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 919 __ emit_data64(0x0607040502030001, relocInfo::none); 920 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 921 __ emit_data64(0x0607040502030001, relocInfo::none); 922 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 923 __ emit_data64(0x0607040502030001, relocInfo::none); 924 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none); 925 926 return start; 927 } 928 929 address StubGenerator::generate_vector_byte_shuffle_mask(const char *stub_name) { 930 __ align(CodeEntryAlignment); 931 StubCodeMark mark(this, "StubRoutines", stub_name); 932 address start = __ pc(); 933 934 __ emit_data64(0x7070707070707070, relocInfo::none); 935 __ emit_data64(0x7070707070707070, relocInfo::none); 936 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 937 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 938 939 return start; 940 } 941 942 address StubGenerator::generate_fp_mask(const char *stub_name, int64_t mask) { 943 __ align(CodeEntryAlignment); 944 StubCodeMark mark(this, "StubRoutines", stub_name); 945 address start = __ pc(); 946 947 __ emit_data64( mask, relocInfo::none ); 948 __ emit_data64( mask, relocInfo::none ); 949 950 return start; 951 } 952 953 address StubGenerator::generate_compress_perm_table(const char *stub_name, int32_t esize) { 954 __ align(CodeEntryAlignment); 955 StubCodeMark mark(this, "StubRoutines", stub_name); 956 address start = __ pc(); 957 if (esize == 32) { 958 // Loop to generate 256 x 8 int compression permute index table. A row is 959 // accessed using 8 bit index computed using vector mask. An entry in 960 // a row holds either a valid permute index corresponding to set bit position 961 // or a -1 (default) value. 962 for (int mask = 0; mask < 256; mask++) { 963 int ctr = 0; 964 for (int j = 0; j < 8; j++) { 965 if (mask & (1 << j)) { 966 __ emit_data(j, relocInfo::none); 967 ctr++; 968 } 969 } 970 for (; ctr < 8; ctr++) { 971 __ emit_data(-1, relocInfo::none); 972 } 973 } 974 } else { 975 assert(esize == 64, ""); 976 // Loop to generate 16 x 4 long compression permute index table. A row is 977 // accessed using 4 bit index computed using vector mask. An entry in 978 // a row holds either a valid permute index pair for a quadword corresponding 979 // to set bit position or a -1 (default) value. 980 for (int mask = 0; mask < 16; mask++) { 981 int ctr = 0; 982 for (int j = 0; j < 4; j++) { 983 if (mask & (1 << j)) { 984 __ emit_data(2 * j, relocInfo::none); 985 __ emit_data(2 * j + 1, relocInfo::none); 986 ctr++; 987 } 988 } 989 for (; ctr < 4; ctr++) { 990 __ emit_data64(-1L, relocInfo::none); 991 } 992 } 993 } 994 return start; 995 } 996 997 address StubGenerator::generate_expand_perm_table(const char *stub_name, int32_t esize) { 998 __ align(CodeEntryAlignment); 999 StubCodeMark mark(this, "StubRoutines", stub_name); 1000 address start = __ pc(); 1001 if (esize == 32) { 1002 // Loop to generate 256 x 8 int expand permute index table. A row is accessed 1003 // using 8 bit index computed using vector mask. An entry in a row holds either 1004 // a valid permute index (starting from least significant lane) placed at poisition 1005 // corresponding to set bit position or a -1 (default) value. 1006 for (int mask = 0; mask < 256; mask++) { 1007 int ctr = 0; 1008 for (int j = 0; j < 8; j++) { 1009 if (mask & (1 << j)) { 1010 __ emit_data(ctr++, relocInfo::none); 1011 } else { 1012 __ emit_data(-1, relocInfo::none); 1013 } 1014 } 1015 } 1016 } else { 1017 assert(esize == 64, ""); 1018 // Loop to generate 16 x 4 long expand permute index table. A row is accessed 1019 // using 4 bit index computed using vector mask. An entry in a row holds either 1020 // a valid doubleword permute index pair representing a quadword index (starting 1021 // from least significant lane) placed at poisition corresponding to set bit 1022 // position or a -1 (default) value. 1023 for (int mask = 0; mask < 16; mask++) { 1024 int ctr = 0; 1025 for (int j = 0; j < 4; j++) { 1026 if (mask & (1 << j)) { 1027 __ emit_data(2 * ctr, relocInfo::none); 1028 __ emit_data(2 * ctr + 1, relocInfo::none); 1029 ctr++; 1030 } else { 1031 __ emit_data64(-1L, relocInfo::none); 1032 } 1033 } 1034 } 1035 } 1036 return start; 1037 } 1038 1039 address StubGenerator::generate_vector_mask(const char *stub_name, int64_t mask) { 1040 __ align(CodeEntryAlignment); 1041 StubCodeMark mark(this, "StubRoutines", stub_name); 1042 address start = __ pc(); 1043 1044 __ emit_data64(mask, relocInfo::none); 1045 __ emit_data64(mask, relocInfo::none); 1046 __ emit_data64(mask, relocInfo::none); 1047 __ emit_data64(mask, relocInfo::none); 1048 __ emit_data64(mask, relocInfo::none); 1049 __ emit_data64(mask, relocInfo::none); 1050 __ emit_data64(mask, relocInfo::none); 1051 __ emit_data64(mask, relocInfo::none); 1052 1053 return start; 1054 } 1055 1056 address StubGenerator::generate_vector_byte_perm_mask(const char *stub_name) { 1057 __ align(CodeEntryAlignment); 1058 StubCodeMark mark(this, "StubRoutines", stub_name); 1059 address start = __ pc(); 1060 1061 __ emit_data64(0x0000000000000001, relocInfo::none); 1062 __ emit_data64(0x0000000000000003, relocInfo::none); 1063 __ emit_data64(0x0000000000000005, relocInfo::none); 1064 __ emit_data64(0x0000000000000007, relocInfo::none); 1065 __ emit_data64(0x0000000000000000, relocInfo::none); 1066 __ emit_data64(0x0000000000000002, relocInfo::none); 1067 __ emit_data64(0x0000000000000004, relocInfo::none); 1068 __ emit_data64(0x0000000000000006, relocInfo::none); 1069 1070 return start; 1071 } 1072 1073 address StubGenerator::generate_vector_fp_mask(const char *stub_name, int64_t mask) { 1074 __ align(CodeEntryAlignment); 1075 StubCodeMark mark(this, "StubRoutines", stub_name); 1076 address start = __ pc(); 1077 1078 __ emit_data64(mask, relocInfo::none); 1079 __ emit_data64(mask, relocInfo::none); 1080 __ emit_data64(mask, relocInfo::none); 1081 __ emit_data64(mask, relocInfo::none); 1082 __ emit_data64(mask, relocInfo::none); 1083 __ emit_data64(mask, relocInfo::none); 1084 __ emit_data64(mask, relocInfo::none); 1085 __ emit_data64(mask, relocInfo::none); 1086 1087 return start; 1088 } 1089 1090 address StubGenerator::generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, 1091 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 1092 int32_t val4, int32_t val5, int32_t val6, int32_t val7, 1093 int32_t val8, int32_t val9, int32_t val10, int32_t val11, 1094 int32_t val12, int32_t val13, int32_t val14, int32_t val15) { 1095 __ align(CodeEntryAlignment); 1096 StubCodeMark mark(this, "StubRoutines", stub_name); 1097 address start = __ pc(); 1098 1099 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 1100 __ emit_data(val0, relocInfo::none, 0); 1101 __ emit_data(val1, relocInfo::none, 0); 1102 __ emit_data(val2, relocInfo::none, 0); 1103 __ emit_data(val3, relocInfo::none, 0); 1104 if (len >= Assembler::AVX_256bit) { 1105 __ emit_data(val4, relocInfo::none, 0); 1106 __ emit_data(val5, relocInfo::none, 0); 1107 __ emit_data(val6, relocInfo::none, 0); 1108 __ emit_data(val7, relocInfo::none, 0); 1109 if (len >= Assembler::AVX_512bit) { 1110 __ emit_data(val8, relocInfo::none, 0); 1111 __ emit_data(val9, relocInfo::none, 0); 1112 __ emit_data(val10, relocInfo::none, 0); 1113 __ emit_data(val11, relocInfo::none, 0); 1114 __ emit_data(val12, relocInfo::none, 0); 1115 __ emit_data(val13, relocInfo::none, 0); 1116 __ emit_data(val14, relocInfo::none, 0); 1117 __ emit_data(val15, relocInfo::none, 0); 1118 } 1119 } 1120 return start; 1121 } 1122 1123 // Non-destructive plausibility checks for oops 1124 // 1125 // Arguments: 1126 // all args on stack! 1127 // 1128 // Stack after saving c_rarg3: 1129 // [tos + 0]: saved c_rarg3 1130 // [tos + 1]: saved c_rarg2 1131 // [tos + 2]: saved r12 (several TemplateTable methods use it) 1132 // [tos + 3]: saved flags 1133 // [tos + 4]: return address 1134 // * [tos + 5]: error message (char*) 1135 // * [tos + 6]: object to verify (oop) 1136 // * [tos + 7]: saved rax - saved by caller and bashed 1137 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 1138 // * = popped on exit 1139 address StubGenerator::generate_verify_oop() { 1140 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 1141 address start = __ pc(); 1142 1143 Label exit, error; 1144 1145 __ pushf(); 1146 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1); 1147 1148 __ push(r12); 1149 1150 // save c_rarg2 and c_rarg3 1151 __ push(c_rarg2); 1152 __ push(c_rarg3); 1153 1154 enum { 1155 // After previous pushes. 1156 oop_to_verify = 6 * wordSize, 1157 saved_rax = 7 * wordSize, 1158 saved_r10 = 8 * wordSize, 1159 1160 // Before the call to MacroAssembler::debug(), see below. 1161 return_addr = 16 * wordSize, 1162 error_msg = 17 * wordSize 1163 }; 1164 1165 // get object 1166 __ movptr(rax, Address(rsp, oop_to_verify)); 1167 1168 // make sure object is 'reasonable' 1169 __ testptr(rax, rax); 1170 __ jcc(Assembler::zero, exit); // if obj is null it is OK 1171 1172 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler(); 1173 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error); 1174 1175 // return if everything seems ok 1176 __ bind(exit); 1177 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1178 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1179 __ pop(c_rarg3); // restore c_rarg3 1180 __ pop(c_rarg2); // restore c_rarg2 1181 __ pop(r12); // restore r12 1182 __ popf(); // restore flags 1183 __ ret(4 * wordSize); // pop caller saved stuff 1184 1185 // handle errors 1186 __ bind(error); 1187 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1188 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1189 __ pop(c_rarg3); // get saved c_rarg3 back 1190 __ pop(c_rarg2); // get saved c_rarg2 back 1191 __ pop(r12); // get saved r12 back 1192 __ popf(); // get saved flags off stack -- 1193 // will be ignored 1194 1195 __ pusha(); // push registers 1196 // (rip is already 1197 // already pushed) 1198 // debug(char* msg, int64_t pc, int64_t regs[]) 1199 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1200 // pushed all the registers, so now the stack looks like: 1201 // [tos + 0] 16 saved registers 1202 // [tos + 16] return address 1203 // * [tos + 17] error message (char*) 1204 // * [tos + 18] object to verify (oop) 1205 // * [tos + 19] saved rax - saved by caller and bashed 1206 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1207 // * = popped on exit 1208 1209 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1210 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1211 __ movq(c_rarg2, rsp); // pass address of regs on stack 1212 __ mov(r12, rsp); // remember rsp 1213 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1214 __ andptr(rsp, -16); // align stack as required by ABI 1215 BLOCK_COMMENT("call MacroAssembler::debug"); 1216 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1217 __ hlt(); 1218 1219 return start; 1220 } 1221 1222 1223 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1224 // 1225 // Outputs: 1226 // rdi - rcx 1227 // rsi - rdx 1228 // rdx - r8 1229 // rcx - r9 1230 // 1231 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1232 // are non-volatile. r9 and r10 should not be used by the caller. 1233 // 1234 void StubGenerator::setup_arg_regs(int nargs) { 1235 const Register saved_rdi = r9; 1236 const Register saved_rsi = r10; 1237 assert(nargs == 3 || nargs == 4, "else fix"); 1238 #ifdef _WIN64 1239 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1240 "unexpected argument registers"); 1241 if (nargs == 4) { 1242 __ mov(rax, r9); // r9 is also saved_rdi 1243 } 1244 __ movptr(saved_rdi, rdi); 1245 __ movptr(saved_rsi, rsi); 1246 __ mov(rdi, rcx); // c_rarg0 1247 __ mov(rsi, rdx); // c_rarg1 1248 __ mov(rdx, r8); // c_rarg2 1249 if (nargs == 4) { 1250 __ mov(rcx, rax); // c_rarg3 (via rax) 1251 } 1252 #else 1253 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1254 "unexpected argument registers"); 1255 #endif 1256 DEBUG_ONLY(_regs_in_thread = false;) 1257 } 1258 1259 1260 void StubGenerator::restore_arg_regs() { 1261 assert(!_regs_in_thread, "wrong call to restore_arg_regs"); 1262 const Register saved_rdi = r9; 1263 const Register saved_rsi = r10; 1264 #ifdef _WIN64 1265 __ movptr(rdi, saved_rdi); 1266 __ movptr(rsi, saved_rsi); 1267 #endif 1268 } 1269 1270 1271 // This is used in places where r10 is a scratch register, and can 1272 // be adapted if r9 is needed also. 1273 void StubGenerator::setup_arg_regs_using_thread(int nargs) { 1274 const Register saved_r15 = r9; 1275 assert(nargs == 3 || nargs == 4, "else fix"); 1276 #ifdef _WIN64 1277 if (nargs == 4) { 1278 __ mov(rax, r9); // r9 is also saved_r15 1279 } 1280 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1281 __ get_thread(r15_thread); 1282 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1283 "unexpected argument registers"); 1284 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1285 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1286 1287 __ mov(rdi, rcx); // c_rarg0 1288 __ mov(rsi, rdx); // c_rarg1 1289 __ mov(rdx, r8); // c_rarg2 1290 if (nargs == 4) { 1291 __ mov(rcx, rax); // c_rarg3 (via rax) 1292 } 1293 #else 1294 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1295 "unexpected argument registers"); 1296 #endif 1297 DEBUG_ONLY(_regs_in_thread = true;) 1298 } 1299 1300 1301 void StubGenerator::restore_arg_regs_using_thread() { 1302 assert(_regs_in_thread, "wrong call to restore_arg_regs"); 1303 const Register saved_r15 = r9; 1304 #ifdef _WIN64 1305 __ get_thread(r15_thread); 1306 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1307 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1308 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1309 #endif 1310 } 1311 1312 1313 void StubGenerator::setup_argument_regs(BasicType type) { 1314 if (type == T_BYTE || type == T_SHORT) { 1315 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1316 // r9 and r10 may be used to save non-volatile registers 1317 } else { 1318 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1319 // r9 is used to save r15_thread 1320 } 1321 } 1322 1323 1324 void StubGenerator::restore_argument_regs(BasicType type) { 1325 if (type == T_BYTE || type == T_SHORT) { 1326 restore_arg_regs(); 1327 } else { 1328 restore_arg_regs_using_thread(); 1329 } 1330 } 1331 1332 address StubGenerator::generate_data_cache_writeback() { 1333 const Register src = c_rarg0; // source address 1334 1335 __ align(CodeEntryAlignment); 1336 1337 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); 1338 1339 address start = __ pc(); 1340 1341 __ enter(); 1342 __ cache_wb(Address(src, 0)); 1343 __ leave(); 1344 __ ret(0); 1345 1346 return start; 1347 } 1348 1349 address StubGenerator::generate_data_cache_writeback_sync() { 1350 const Register is_pre = c_rarg0; // pre or post sync 1351 1352 __ align(CodeEntryAlignment); 1353 1354 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); 1355 1356 // pre wbsync is a no-op 1357 // post wbsync translates to an sfence 1358 1359 Label skip; 1360 address start = __ pc(); 1361 1362 __ enter(); 1363 __ cmpl(is_pre, 0); 1364 __ jcc(Assembler::notEqual, skip); 1365 __ cache_wbsync(false); 1366 __ bind(skip); 1367 __ leave(); 1368 __ ret(0); 1369 1370 return start; 1371 } 1372 1373 // ofs and limit are use for multi-block byte array. 1374 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 1375 address StubGenerator::generate_md5_implCompress(bool multi_block, const char *name) { 1376 __ align(CodeEntryAlignment); 1377 StubCodeMark mark(this, "StubRoutines", name); 1378 address start = __ pc(); 1379 1380 const Register buf_param = r15; 1381 const Address state_param(rsp, 0 * wordSize); 1382 const Address ofs_param (rsp, 1 * wordSize ); 1383 const Address limit_param(rsp, 1 * wordSize + 4); 1384 1385 __ enter(); 1386 __ push(rbx); 1387 __ push(rdi); 1388 __ push(rsi); 1389 __ push(r15); 1390 __ subptr(rsp, 2 * wordSize); 1391 1392 __ movptr(buf_param, c_rarg0); 1393 __ movptr(state_param, c_rarg1); 1394 if (multi_block) { 1395 __ movl(ofs_param, c_rarg2); 1396 __ movl(limit_param, c_rarg3); 1397 } 1398 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 1399 1400 __ addptr(rsp, 2 * wordSize); 1401 __ pop(r15); 1402 __ pop(rsi); 1403 __ pop(rdi); 1404 __ pop(rbx); 1405 __ leave(); 1406 __ ret(0); 1407 1408 return start; 1409 } 1410 1411 address StubGenerator::generate_upper_word_mask() { 1412 __ align64(); 1413 StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); 1414 address start = __ pc(); 1415 1416 __ emit_data64(0x0000000000000000, relocInfo::none); 1417 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 1418 1419 return start; 1420 } 1421 1422 address StubGenerator::generate_shuffle_byte_flip_mask() { 1423 __ align64(); 1424 StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); 1425 address start = __ pc(); 1426 1427 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1428 __ emit_data64(0x0001020304050607, relocInfo::none); 1429 1430 return start; 1431 } 1432 1433 // ofs and limit are use for multi-block byte array. 1434 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1435 address StubGenerator::generate_sha1_implCompress(bool multi_block, const char *name) { 1436 __ align(CodeEntryAlignment); 1437 StubCodeMark mark(this, "StubRoutines", name); 1438 address start = __ pc(); 1439 1440 Register buf = c_rarg0; 1441 Register state = c_rarg1; 1442 Register ofs = c_rarg2; 1443 Register limit = c_rarg3; 1444 1445 const XMMRegister abcd = xmm0; 1446 const XMMRegister e0 = xmm1; 1447 const XMMRegister e1 = xmm2; 1448 const XMMRegister msg0 = xmm3; 1449 1450 const XMMRegister msg1 = xmm4; 1451 const XMMRegister msg2 = xmm5; 1452 const XMMRegister msg3 = xmm6; 1453 const XMMRegister shuf_mask = xmm7; 1454 1455 __ enter(); 1456 1457 __ subptr(rsp, 4 * wordSize); 1458 1459 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 1460 buf, state, ofs, limit, rsp, multi_block); 1461 1462 __ addptr(rsp, 4 * wordSize); 1463 1464 __ leave(); 1465 __ ret(0); 1466 1467 return start; 1468 } 1469 1470 address StubGenerator::generate_pshuffle_byte_flip_mask() { 1471 __ align64(); 1472 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); 1473 address start = __ pc(); 1474 1475 __ emit_data64(0x0405060700010203, relocInfo::none); 1476 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1477 1478 if (VM_Version::supports_avx2()) { 1479 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 1480 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 1481 // _SHUF_00BA 1482 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1483 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1484 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1485 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1486 // _SHUF_DC00 1487 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1488 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1489 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1490 __ emit_data64(0x0b0a090803020100, relocInfo::none); 1491 } 1492 1493 return start; 1494 } 1495 1496 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 1497 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() { 1498 __ align32(); 1499 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); 1500 address start = __ pc(); 1501 1502 if (VM_Version::supports_avx2()) { 1503 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 1504 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 1505 __ emit_data64(0x1011121314151617, relocInfo::none); 1506 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 1507 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 1508 __ emit_data64(0x0000000000000000, relocInfo::none); 1509 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1510 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 1511 } 1512 1513 return start; 1514 } 1515 1516 // ofs and limit are use for multi-block byte array. 1517 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 1518 address StubGenerator::generate_sha256_implCompress(bool multi_block, const char *name) { 1519 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 1520 __ align(CodeEntryAlignment); 1521 StubCodeMark mark(this, "StubRoutines", name); 1522 address start = __ pc(); 1523 1524 Register buf = c_rarg0; 1525 Register state = c_rarg1; 1526 Register ofs = c_rarg2; 1527 Register limit = c_rarg3; 1528 1529 const XMMRegister msg = xmm0; 1530 const XMMRegister state0 = xmm1; 1531 const XMMRegister state1 = xmm2; 1532 const XMMRegister msgtmp0 = xmm3; 1533 1534 const XMMRegister msgtmp1 = xmm4; 1535 const XMMRegister msgtmp2 = xmm5; 1536 const XMMRegister msgtmp3 = xmm6; 1537 const XMMRegister msgtmp4 = xmm7; 1538 1539 const XMMRegister shuf_mask = xmm8; 1540 1541 __ enter(); 1542 1543 __ subptr(rsp, 4 * wordSize); 1544 1545 if (VM_Version::supports_sha()) { 1546 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1547 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1548 } else if (VM_Version::supports_avx2()) { 1549 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1550 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1551 } 1552 __ addptr(rsp, 4 * wordSize); 1553 __ vzeroupper(); 1554 __ leave(); 1555 __ ret(0); 1556 1557 return start; 1558 } 1559 1560 address StubGenerator::generate_sha512_implCompress(bool multi_block, const char *name) { 1561 assert(VM_Version::supports_avx2(), ""); 1562 assert(VM_Version::supports_bmi2(), ""); 1563 __ align(CodeEntryAlignment); 1564 StubCodeMark mark(this, "StubRoutines", name); 1565 address start = __ pc(); 1566 1567 Register buf = c_rarg0; 1568 Register state = c_rarg1; 1569 Register ofs = c_rarg2; 1570 Register limit = c_rarg3; 1571 1572 const XMMRegister msg = xmm0; 1573 const XMMRegister state0 = xmm1; 1574 const XMMRegister state1 = xmm2; 1575 const XMMRegister msgtmp0 = xmm3; 1576 const XMMRegister msgtmp1 = xmm4; 1577 const XMMRegister msgtmp2 = xmm5; 1578 const XMMRegister msgtmp3 = xmm6; 1579 const XMMRegister msgtmp4 = xmm7; 1580 1581 const XMMRegister shuf_mask = xmm8; 1582 1583 __ enter(); 1584 1585 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 1586 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 1587 1588 __ vzeroupper(); 1589 __ leave(); 1590 __ ret(0); 1591 1592 return start; 1593 } 1594 1595 address StubGenerator::base64_shuffle_addr() { 1596 __ align64(); 1597 StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); 1598 address start = __ pc(); 1599 1600 assert(((unsigned long long)start & 0x3f) == 0, 1601 "Alignment problem (0x%08llx)", (unsigned long long)start); 1602 __ emit_data64(0x0405030401020001, relocInfo::none); 1603 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1604 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 1605 __ emit_data64(0x1617151613141213, relocInfo::none); 1606 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 1607 __ emit_data64(0x222321221f201e1f, relocInfo::none); 1608 __ emit_data64(0x2829272825262425, relocInfo::none); 1609 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 1610 1611 return start; 1612 } 1613 1614 address StubGenerator::base64_avx2_shuffle_addr() { 1615 __ align32(); 1616 StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); 1617 address start = __ pc(); 1618 1619 __ emit_data64(0x0809070805060405, relocInfo::none); 1620 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 1621 __ emit_data64(0x0405030401020001, relocInfo::none); 1622 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 1623 1624 return start; 1625 } 1626 1627 address StubGenerator::base64_avx2_input_mask_addr() { 1628 __ align32(); 1629 StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); 1630 address start = __ pc(); 1631 1632 __ emit_data64(0x8000000000000000, relocInfo::none); 1633 __ emit_data64(0x8000000080000000, relocInfo::none); 1634 __ emit_data64(0x8000000080000000, relocInfo::none); 1635 __ emit_data64(0x8000000080000000, relocInfo::none); 1636 1637 return start; 1638 } 1639 1640 address StubGenerator::base64_avx2_lut_addr() { 1641 __ align32(); 1642 StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); 1643 address start = __ pc(); 1644 1645 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1646 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1647 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1648 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 1649 1650 // URL LUT 1651 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1652 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1653 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 1654 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 1655 1656 return start; 1657 } 1658 1659 address StubGenerator::base64_encoding_table_addr() { 1660 __ align64(); 1661 StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); 1662 address start = __ pc(); 1663 1664 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 1665 __ emit_data64(0x4847464544434241, relocInfo::none); 1666 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1667 __ emit_data64(0x5857565554535251, relocInfo::none); 1668 __ emit_data64(0x6665646362615a59, relocInfo::none); 1669 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1670 __ emit_data64(0x767574737271706f, relocInfo::none); 1671 __ emit_data64(0x333231307a797877, relocInfo::none); 1672 __ emit_data64(0x2f2b393837363534, relocInfo::none); 1673 1674 // URL table 1675 __ emit_data64(0x4847464544434241, relocInfo::none); 1676 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 1677 __ emit_data64(0x5857565554535251, relocInfo::none); 1678 __ emit_data64(0x6665646362615a59, relocInfo::none); 1679 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 1680 __ emit_data64(0x767574737271706f, relocInfo::none); 1681 __ emit_data64(0x333231307a797877, relocInfo::none); 1682 __ emit_data64(0x5f2d393837363534, relocInfo::none); 1683 1684 return start; 1685 } 1686 1687 // Code for generating Base64 encoding. 1688 // Intrinsic function prototype in Base64.java: 1689 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 1690 // boolean isURL) { 1691 address StubGenerator::generate_base64_encodeBlock() 1692 { 1693 __ align(CodeEntryAlignment); 1694 StubCodeMark mark(this, "StubRoutines", "implEncode"); 1695 address start = __ pc(); 1696 1697 __ enter(); 1698 1699 // Save callee-saved registers before using them 1700 __ push(r12); 1701 __ push(r13); 1702 __ push(r14); 1703 __ push(r15); 1704 1705 // arguments 1706 const Register source = c_rarg0; // Source Array 1707 const Register start_offset = c_rarg1; // start offset 1708 const Register end_offset = c_rarg2; // end offset 1709 const Register dest = c_rarg3; // destination array 1710 1711 #ifndef _WIN64 1712 const Register dp = c_rarg4; // Position for writing to dest array 1713 const Register isURL = c_rarg5; // Base64 or URL character set 1714 #else 1715 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 1716 const Address isURL_mem(rbp, 7 * wordSize); 1717 const Register isURL = r10; // pick the volatile windows register 1718 const Register dp = r12; 1719 __ movl(dp, dp_mem); 1720 __ movl(isURL, isURL_mem); 1721 #endif 1722 1723 const Register length = r14; 1724 const Register encode_table = r13; 1725 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 1726 1727 // calculate length from offsets 1728 __ movl(length, end_offset); 1729 __ subl(length, start_offset); 1730 __ jcc(Assembler::lessEqual, L_exit); 1731 1732 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 1733 // output bytes. We read 64 input bytes and ignore the last 16, so be 1734 // sure not to read past the end of the input buffer. 1735 if (VM_Version::supports_avx512_vbmi()) { 1736 __ cmpl(length, 64); // Do not overrun input buffer. 1737 __ jcc(Assembler::below, L_not512); 1738 1739 __ shll(isURL, 6); // index into decode table based on isURL 1740 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1741 __ addptr(encode_table, isURL); 1742 __ shrl(isURL, 6); // restore isURL 1743 1744 __ mov64(rax, 0x3036242a1016040aull); // Shifts 1745 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 1746 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 1747 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 1748 1749 __ align32(); 1750 __ BIND(L_vbmiLoop); 1751 1752 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 1753 __ subl(length, 48); 1754 1755 // Put the input bytes into the proper lanes for writing, then 1756 // encode them. 1757 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 1758 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 1759 1760 // Write to destination 1761 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 1762 1763 __ addptr(dest, 64); 1764 __ addptr(source, 48); 1765 __ cmpl(length, 64); 1766 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 1767 1768 __ vzeroupper(); 1769 } 1770 1771 __ BIND(L_not512); 1772 if (VM_Version::supports_avx2()) { 1773 /* 1774 ** This AVX2 encoder is based off the paper at: 1775 ** https://dl.acm.org/doi/10.1145/3132709 1776 ** 1777 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 1778 ** output bytes. 1779 ** 1780 */ 1781 // Lengths under 32 bytes are done with scalar routine 1782 __ cmpl(length, 31); 1783 __ jcc(Assembler::belowEqual, L_process3); 1784 1785 // Set up supporting constant table data 1786 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 1787 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 1788 __ movl(rax, 0x0fc0fc00); 1789 __ movdl(xmm8, rax); 1790 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 1791 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit); 1792 1793 // Multiplication constant for "shifting" right by 6 and 10 1794 // bits 1795 __ movl(rax, 0x04000040); 1796 1797 __ subl(length, 24); 1798 __ movdl(xmm7, rax); 1799 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit); 1800 1801 // For the first load, we mask off reading of the first 4 1802 // bytes into the register. This is so we can get 4 3-byte 1803 // chunks into each lane of the register, avoiding having to 1804 // handle end conditions. We then shuffle these bytes into a 1805 // specific order so that manipulation is easier. 1806 // 1807 // The initial read loads the XMM register like this: 1808 // 1809 // Lower 128-bit lane: 1810 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1811 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 1812 // | C2 | D0 | D1 | D2 | 1813 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1814 // 1815 // Upper 128-bit lane: 1816 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1817 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 1818 // | XX | XX | XX | XX | 1819 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 1820 // 1821 // Where A0 is the first input byte, B0 is the fourth, etc. 1822 // The alphabetical significance denotes the 3 bytes to be 1823 // consumed and encoded into 4 bytes. 1824 // 1825 // We then shuffle the register so each 32-bit word contains 1826 // the sequence: 1827 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 1828 // Each of these byte sequences are then manipulated into 4 1829 // 6-bit values ready for encoding. 1830 // 1831 // If we focus on one set of 3-byte chunks, changing the 1832 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 1833 // shuffle such that each 24-bit chunk contains: 1834 // 1835 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 1836 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 1837 // Explain this step. 1838 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 1839 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 1840 // 1841 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 1842 // a5..a0) and shift them using a vector multiplication 1843 // operation (vpmulhuw) which effectively shifts c right by 6 1844 // bits and a right by 10 bits. We similarly mask bits 10-15 1845 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 1846 // bits respectively. This is done using vpmullw. We end up 1847 // with 4 6-bit values, thus splitting the 3 input bytes, 1848 // ready for encoding: 1849 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 1850 // 1851 // For translation, we recognize that there are 5 distinct 1852 // ranges of legal Base64 characters as below: 1853 // 1854 // +-------------+-------------+------------+ 1855 // | 6-bit value | ASCII range | offset | 1856 // +-------------+-------------+------------+ 1857 // | 0..25 | A..Z | 65 | 1858 // | 26..51 | a..z | 71 | 1859 // | 52..61 | 0..9 | -4 | 1860 // | 62 | + or - | -19 or -17 | 1861 // | 63 | / or _ | -16 or 32 | 1862 // +-------------+-------------+------------+ 1863 // 1864 // We note that vpshufb does a parallel lookup in a 1865 // destination register using the lower 4 bits of bytes from a 1866 // source register. If we use a saturated subtraction and 1867 // subtract 51 from each 6-bit value, bytes from [0,51] 1868 // saturate to 0, and [52,63] map to a range of [1,12]. We 1869 // distinguish the [0,25] and [26,51] ranges by assigning a 1870 // value of 13 for all 6-bit values less than 26. We end up 1871 // with: 1872 // 1873 // +-------------+-------------+------------+ 1874 // | 6-bit value | Reduced | offset | 1875 // +-------------+-------------+------------+ 1876 // | 0..25 | 13 | 65 | 1877 // | 26..51 | 0 | 71 | 1878 // | 52..61 | 0..9 | -4 | 1879 // | 62 | 11 | -19 or -17 | 1880 // | 63 | 12 | -16 or 32 | 1881 // +-------------+-------------+------------+ 1882 // 1883 // We then use a final vpshufb to add the appropriate offset, 1884 // translating the bytes. 1885 // 1886 // Load input bytes - only 28 bytes. Mask the first load to 1887 // not load into the full register. 1888 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 1889 1890 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 1891 // ordering by: 1892 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 1893 // for easy masking 1894 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1895 1896 __ addl(start_offset, 24); 1897 1898 // Load masking register for first and third (and multiples) 1899 // 6-bit values. 1900 __ movl(rax, 0x003f03f0); 1901 __ movdl(xmm6, rax); 1902 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit); 1903 // Multiplication constant for "shifting" left by 4 and 8 bits 1904 __ movl(rax, 0x01000010); 1905 __ movdl(xmm5, rax); 1906 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit); 1907 1908 // Isolate 6-bit chunks of interest 1909 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1910 1911 // Load constants for encoding 1912 __ movl(rax, 0x19191919); 1913 __ movdl(xmm3, rax); 1914 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit); 1915 __ movl(rax, 0x33333333); 1916 __ movdl(xmm4, rax); 1917 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit); 1918 1919 // Shift output bytes 0 and 2 into proper lanes 1920 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 1921 1922 // Mask and shift output bytes 1 and 3 into proper lanes and 1923 // combine 1924 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1925 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1926 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 1927 1928 // Find out which are 0..25. This indicates which input 1929 // values fall in the range of 'A'-'Z', which require an 1930 // additional offset (see comments above) 1931 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 1932 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1933 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 1934 1935 // Load the proper lookup table 1936 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 1937 __ movl(r15, isURL); 1938 __ shll(r15, 5); 1939 __ vmovdqu(xmm2, Address(r11, r15)); 1940 1941 // Shuffle the offsets based on the range calculation done 1942 // above. This allows us to add the correct offset to the 1943 // 6-bit value corresponding to the range documented above. 1944 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1945 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1946 1947 // Store the encoded bytes 1948 __ vmovdqu(Address(dest, dp), xmm0); 1949 __ addl(dp, 32); 1950 1951 __ cmpl(length, 31); 1952 __ jcc(Assembler::belowEqual, L_process3); 1953 1954 __ align32(); 1955 __ BIND(L_32byteLoop); 1956 1957 // Get next 32 bytes 1958 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 1959 1960 __ subl(length, 24); 1961 __ addl(start_offset, 24); 1962 1963 // This logic is identical to the above, with only constant 1964 // register loads removed. Shuffle the input, mask off 6-bit 1965 // chunks, shift them into place, then add the offset to 1966 // encode. 1967 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 1968 1969 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 1970 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 1971 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 1972 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 1973 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 1974 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 1975 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 1976 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 1977 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 1978 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 1979 1980 // Store the encoded bytes 1981 __ vmovdqu(Address(dest, dp), xmm0); 1982 __ addl(dp, 32); 1983 1984 __ cmpl(length, 31); 1985 __ jcc(Assembler::above, L_32byteLoop); 1986 1987 __ BIND(L_process3); 1988 __ vzeroupper(); 1989 } else { 1990 __ BIND(L_process3); 1991 } 1992 1993 __ cmpl(length, 3); 1994 __ jcc(Assembler::below, L_exit); 1995 1996 // Load the encoding table based on isURL 1997 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 1998 __ movl(r15, isURL); 1999 __ shll(r15, 6); 2000 __ addptr(r11, r15); 2001 2002 __ BIND(L_processdata); 2003 2004 // Load 3 bytes 2005 __ load_unsigned_byte(r15, Address(source, start_offset)); 2006 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 2007 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 2008 2009 // Build a 32-bit word with bytes 1, 2, 0, 1 2010 __ movl(rax, r10); 2011 __ shll(r10, 24); 2012 __ orl(rax, r10); 2013 2014 __ subl(length, 3); 2015 2016 __ shll(r15, 8); 2017 __ shll(r13, 16); 2018 __ orl(rax, r15); 2019 2020 __ addl(start_offset, 3); 2021 2022 __ orl(rax, r13); 2023 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 2024 // r13 has byte2 << 16 - need low-order 6 bits to translate. 2025 // This translated byte is the fourth output byte. 2026 __ shrl(r13, 16); 2027 __ andl(r13, 0x3f); 2028 2029 // The high-order 6 bits of r15 (byte0) is translated. 2030 // The translated byte is the first output byte. 2031 __ shrl(r15, 10); 2032 2033 __ load_unsigned_byte(r13, Address(r11, r13)); 2034 __ load_unsigned_byte(r15, Address(r11, r15)); 2035 2036 __ movb(Address(dest, dp, Address::times_1, 3), r13); 2037 2038 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 2039 // This translated byte is the second output byte. 2040 __ shrl(rax, 4); 2041 __ movl(r10, rax); 2042 __ andl(rax, 0x3f); 2043 2044 __ movb(Address(dest, dp, Address::times_1, 0), r15); 2045 2046 __ load_unsigned_byte(rax, Address(r11, rax)); 2047 2048 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 2049 // This translated byte is the third output byte. 2050 __ shrl(r10, 18); 2051 __ andl(r10, 0x3f); 2052 2053 __ load_unsigned_byte(r10, Address(r11, r10)); 2054 2055 __ movb(Address(dest, dp, Address::times_1, 1), rax); 2056 __ movb(Address(dest, dp, Address::times_1, 2), r10); 2057 2058 __ addl(dp, 4); 2059 __ cmpl(length, 3); 2060 __ jcc(Assembler::aboveEqual, L_processdata); 2061 2062 __ BIND(L_exit); 2063 __ pop(r15); 2064 __ pop(r14); 2065 __ pop(r13); 2066 __ pop(r12); 2067 __ leave(); 2068 __ ret(0); 2069 2070 return start; 2071 } 2072 2073 // base64 AVX512vbmi tables 2074 address StubGenerator::base64_vbmi_lookup_lo_addr() { 2075 __ align64(); 2076 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); 2077 address start = __ pc(); 2078 2079 assert(((unsigned long long)start & 0x3f) == 0, 2080 "Alignment problem (0x%08llx)", (unsigned long long)start); 2081 __ emit_data64(0x8080808080808080, relocInfo::none); 2082 __ emit_data64(0x8080808080808080, relocInfo::none); 2083 __ emit_data64(0x8080808080808080, relocInfo::none); 2084 __ emit_data64(0x8080808080808080, relocInfo::none); 2085 __ emit_data64(0x8080808080808080, relocInfo::none); 2086 __ emit_data64(0x3f8080803e808080, relocInfo::none); 2087 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2088 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2089 2090 return start; 2091 } 2092 2093 address StubGenerator::base64_vbmi_lookup_hi_addr() { 2094 __ align64(); 2095 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); 2096 address start = __ pc(); 2097 2098 assert(((unsigned long long)start & 0x3f) == 0, 2099 "Alignment problem (0x%08llx)", (unsigned long long)start); 2100 __ emit_data64(0x0605040302010080, relocInfo::none); 2101 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2102 __ emit_data64(0x161514131211100f, relocInfo::none); 2103 __ emit_data64(0x8080808080191817, relocInfo::none); 2104 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2105 __ emit_data64(0x2827262524232221, relocInfo::none); 2106 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2107 __ emit_data64(0x8080808080333231, relocInfo::none); 2108 2109 return start; 2110 } 2111 address StubGenerator::base64_vbmi_lookup_lo_url_addr() { 2112 __ align64(); 2113 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); 2114 address start = __ pc(); 2115 2116 assert(((unsigned long long)start & 0x3f) == 0, 2117 "Alignment problem (0x%08llx)", (unsigned long long)start); 2118 __ emit_data64(0x8080808080808080, relocInfo::none); 2119 __ emit_data64(0x8080808080808080, relocInfo::none); 2120 __ emit_data64(0x8080808080808080, relocInfo::none); 2121 __ emit_data64(0x8080808080808080, relocInfo::none); 2122 __ emit_data64(0x8080808080808080, relocInfo::none); 2123 __ emit_data64(0x80803e8080808080, relocInfo::none); 2124 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2125 __ emit_data64(0x8080808080803d3c, relocInfo::none); 2126 2127 return start; 2128 } 2129 2130 address StubGenerator::base64_vbmi_lookup_hi_url_addr() { 2131 __ align64(); 2132 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); 2133 address start = __ pc(); 2134 2135 assert(((unsigned long long)start & 0x3f) == 0, 2136 "Alignment problem (0x%08llx)", (unsigned long long)start); 2137 __ emit_data64(0x0605040302010080, relocInfo::none); 2138 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2139 __ emit_data64(0x161514131211100f, relocInfo::none); 2140 __ emit_data64(0x3f80808080191817, relocInfo::none); 2141 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 2142 __ emit_data64(0x2827262524232221, relocInfo::none); 2143 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2144 __ emit_data64(0x8080808080333231, relocInfo::none); 2145 2146 return start; 2147 } 2148 2149 address StubGenerator::base64_vbmi_pack_vec_addr() { 2150 __ align64(); 2151 StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); 2152 address start = __ pc(); 2153 2154 assert(((unsigned long long)start & 0x3f) == 0, 2155 "Alignment problem (0x%08llx)", (unsigned long long)start); 2156 __ emit_data64(0x090a040506000102, relocInfo::none); 2157 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2158 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2159 __ emit_data64(0x292a242526202122, relocInfo::none); 2160 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2161 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2162 __ emit_data64(0x0000000000000000, relocInfo::none); 2163 __ emit_data64(0x0000000000000000, relocInfo::none); 2164 2165 return start; 2166 } 2167 2168 address StubGenerator::base64_vbmi_join_0_1_addr() { 2169 __ align64(); 2170 StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); 2171 address start = __ pc(); 2172 2173 assert(((unsigned long long)start & 0x3f) == 0, 2174 "Alignment problem (0x%08llx)", (unsigned long long)start); 2175 __ emit_data64(0x090a040506000102, relocInfo::none); 2176 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 2177 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2178 __ emit_data64(0x292a242526202122, relocInfo::none); 2179 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2180 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2181 __ emit_data64(0x494a444546404142, relocInfo::none); 2182 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2183 2184 return start; 2185 } 2186 2187 address StubGenerator::base64_vbmi_join_1_2_addr() { 2188 __ align64(); 2189 StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); 2190 address start = __ pc(); 2191 2192 assert(((unsigned long long)start & 0x3f) == 0, 2193 "Alignment problem (0x%08llx)", (unsigned long long)start); 2194 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 2195 __ emit_data64(0x292a242526202122, relocInfo::none); 2196 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2197 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2198 __ emit_data64(0x494a444546404142, relocInfo::none); 2199 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2200 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2201 __ emit_data64(0x696a646566606162, relocInfo::none); 2202 2203 return start; 2204 } 2205 2206 address StubGenerator::base64_vbmi_join_2_3_addr() { 2207 __ align64(); 2208 StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); 2209 address start = __ pc(); 2210 2211 assert(((unsigned long long)start & 0x3f) == 0, 2212 "Alignment problem (0x%08llx)", (unsigned long long)start); 2213 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 2214 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 2215 __ emit_data64(0x494a444546404142, relocInfo::none); 2216 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 2217 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 2218 __ emit_data64(0x696a646566606162, relocInfo::none); 2219 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 2220 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 2221 2222 return start; 2223 } 2224 2225 address StubGenerator::base64_AVX2_decode_tables_addr() { 2226 __ align64(); 2227 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_base64"); 2228 address start = __ pc(); 2229 2230 assert(((unsigned long long)start & 0x3f) == 0, 2231 "Alignment problem (0x%08llx)", (unsigned long long)start); 2232 __ emit_data(0x2f2f2f2f, relocInfo::none, 0); 2233 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL 2234 2235 __ emit_data(0xffffffff, relocInfo::none, 0); 2236 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL 2237 2238 // Permute table 2239 __ emit_data64(0x0000000100000000, relocInfo::none); 2240 __ emit_data64(0x0000000400000002, relocInfo::none); 2241 __ emit_data64(0x0000000600000005, relocInfo::none); 2242 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2243 2244 // Shuffle table 2245 __ emit_data64(0x090a040506000102, relocInfo::none); 2246 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2247 __ emit_data64(0x090a040506000102, relocInfo::none); 2248 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none); 2249 2250 // merge table 2251 __ emit_data(0x01400140, relocInfo::none, 0); 2252 2253 // merge multiplier 2254 __ emit_data(0x00011000, relocInfo::none, 0); 2255 2256 return start; 2257 } 2258 2259 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() { 2260 __ align64(); 2261 StubCodeMark mark(this, "StubRoutines", "AVX2_tables_URL_base64"); 2262 address start = __ pc(); 2263 2264 assert(((unsigned long long)start & 0x3f) == 0, 2265 "Alignment problem (0x%08llx)", (unsigned long long)start); 2266 // lut_lo 2267 __ emit_data64(0x1111111111111115, relocInfo::none); 2268 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2269 __ emit_data64(0x1111111111111115, relocInfo::none); 2270 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none); 2271 2272 // lut_roll 2273 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2274 __ emit_data64(0x0000000000000000, relocInfo::none); 2275 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none); 2276 __ emit_data64(0x0000000000000000, relocInfo::none); 2277 2278 // lut_lo URL 2279 __ emit_data64(0x1111111111111115, relocInfo::none); 2280 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2281 __ emit_data64(0x1111111111111115, relocInfo::none); 2282 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none); 2283 2284 // lut_roll URL 2285 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2286 __ emit_data64(0x0000000000000000, relocInfo::none); 2287 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none); 2288 __ emit_data64(0x0000000000000000, relocInfo::none); 2289 2290 // lut_hi 2291 __ emit_data64(0x0804080402011010, relocInfo::none); 2292 __ emit_data64(0x1010101010101010, relocInfo::none); 2293 __ emit_data64(0x0804080402011010, relocInfo::none); 2294 __ emit_data64(0x1010101010101010, relocInfo::none); 2295 2296 return start; 2297 } 2298 2299 address StubGenerator::base64_decoding_table_addr() { 2300 StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); 2301 address start = __ pc(); 2302 2303 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2304 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2305 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2306 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2307 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2308 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 2309 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2310 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2311 __ emit_data64(0x06050403020100ff, relocInfo::none); 2312 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2313 __ emit_data64(0x161514131211100f, relocInfo::none); 2314 __ emit_data64(0xffffffffff191817, relocInfo::none); 2315 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2316 __ emit_data64(0x2827262524232221, relocInfo::none); 2317 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2318 __ emit_data64(0xffffffffff333231, relocInfo::none); 2319 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2320 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2321 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2322 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2323 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2324 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2325 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2326 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2327 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2328 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2329 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2330 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2331 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2332 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2333 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2334 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2335 2336 // URL table 2337 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2338 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2339 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2340 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2341 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2342 __ emit_data64(0xffff3effffffffff, relocInfo::none); 2343 __ emit_data64(0x3b3a393837363534, relocInfo::none); 2344 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 2345 __ emit_data64(0x06050403020100ff, relocInfo::none); 2346 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 2347 __ emit_data64(0x161514131211100f, relocInfo::none); 2348 __ emit_data64(0x3fffffffff191817, relocInfo::none); 2349 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 2350 __ emit_data64(0x2827262524232221, relocInfo::none); 2351 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 2352 __ emit_data64(0xffffffffff333231, relocInfo::none); 2353 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2354 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2355 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2356 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2357 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2358 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2359 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2360 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2361 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2362 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2363 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2364 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2365 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2366 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2367 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2368 __ emit_data64(0xffffffffffffffff, relocInfo::none); 2369 2370 return start; 2371 } 2372 2373 2374 // Code for generating Base64 decoding. 2375 // 2376 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 2377 // 2378 // Intrinsic function prototype in Base64.java: 2379 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 2380 address StubGenerator::generate_base64_decodeBlock() { 2381 __ align(CodeEntryAlignment); 2382 StubCodeMark mark(this, "StubRoutines", "implDecode"); 2383 address start = __ pc(); 2384 2385 __ enter(); 2386 2387 // Save callee-saved registers before using them 2388 __ push(r12); 2389 __ push(r13); 2390 __ push(r14); 2391 __ push(r15); 2392 __ push(rbx); 2393 2394 // arguments 2395 const Register source = c_rarg0; // Source Array 2396 const Register start_offset = c_rarg1; // start offset 2397 const Register end_offset = c_rarg2; // end offset 2398 const Register dest = c_rarg3; // destination array 2399 const Register isMIME = rbx; 2400 2401 #ifndef _WIN64 2402 const Register dp = c_rarg4; // Position for writing to dest array 2403 const Register isURL = c_rarg5;// Base64 or URL character set 2404 __ movl(isMIME, Address(rbp, 2 * wordSize)); 2405 #else 2406 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 2407 const Address isURL_mem(rbp, 7 * wordSize); 2408 const Register isURL = r10; // pick the volatile windows register 2409 const Register dp = r12; 2410 __ movl(dp, dp_mem); 2411 __ movl(isURL, isURL_mem); 2412 __ movl(isMIME, Address(rbp, 8 * wordSize)); 2413 #endif 2414 2415 const XMMRegister lookup_lo = xmm5; 2416 const XMMRegister lookup_hi = xmm6; 2417 const XMMRegister errorvec = xmm7; 2418 const XMMRegister pack16_op = xmm9; 2419 const XMMRegister pack32_op = xmm8; 2420 const XMMRegister input0 = xmm3; 2421 const XMMRegister input1 = xmm20; 2422 const XMMRegister input2 = xmm21; 2423 const XMMRegister input3 = xmm19; 2424 const XMMRegister join01 = xmm12; 2425 const XMMRegister join12 = xmm11; 2426 const XMMRegister join23 = xmm10; 2427 const XMMRegister translated0 = xmm2; 2428 const XMMRegister translated1 = xmm1; 2429 const XMMRegister translated2 = xmm0; 2430 const XMMRegister translated3 = xmm4; 2431 2432 const XMMRegister merged0 = xmm2; 2433 const XMMRegister merged1 = xmm1; 2434 const XMMRegister merged2 = xmm0; 2435 const XMMRegister merged3 = xmm4; 2436 const XMMRegister merge_ab_bc0 = xmm2; 2437 const XMMRegister merge_ab_bc1 = xmm1; 2438 const XMMRegister merge_ab_bc2 = xmm0; 2439 const XMMRegister merge_ab_bc3 = xmm4; 2440 2441 const XMMRegister pack24bits = xmm4; 2442 2443 const Register length = r14; 2444 const Register output_size = r13; 2445 const Register output_mask = r15; 2446 const KRegister input_mask = k1; 2447 2448 const XMMRegister input_initial_valid_b64 = xmm0; 2449 const XMMRegister tmp = xmm10; 2450 const XMMRegister mask = xmm0; 2451 const XMMRegister invalid_b64 = xmm1; 2452 2453 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 2454 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 2455 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk; 2456 2457 // calculate length from offsets 2458 __ movl(length, end_offset); 2459 __ subl(length, start_offset); 2460 __ push(dest); // Save for return value calc 2461 2462 // If AVX512 VBMI not supported, just compile non-AVX code 2463 if(VM_Version::supports_avx512_vbmi() && 2464 VM_Version::supports_avx512bw()) { 2465 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512 2466 __ jcc(Assembler::lessEqual, L_lastChunk); 2467 2468 __ cmpl(isMIME, 0); 2469 __ jcc(Assembler::notEqual, L_lastChunk); 2470 2471 // Load lookup tables based on isURL 2472 __ cmpl(isURL, 0); 2473 __ jcc(Assembler::notZero, L_loadURL); 2474 2475 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 2476 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 2477 2478 __ BIND(L_continue); 2479 2480 __ movl(r15, 0x01400140); 2481 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 2482 2483 __ movl(r15, 0x00011000); 2484 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 2485 2486 __ cmpl(length, 0xff); 2487 __ jcc(Assembler::lessEqual, L_process64); 2488 2489 // load masks required for decoding data 2490 __ BIND(L_processdata); 2491 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 2492 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 2493 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 2494 2495 __ align32(); 2496 __ BIND(L_process256); 2497 // Grab input data 2498 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 2499 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 2500 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 2501 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 2502 2503 // Copy the low part of the lookup table into the destination of the permutation 2504 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2505 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 2506 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 2507 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 2508 2509 // Translate the base64 input into "decoded" bytes 2510 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2511 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 2512 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 2513 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 2514 2515 // OR all of the translations together to check for errors (high-order bit of byte set) 2516 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 2517 2518 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 2519 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 2520 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 2521 2522 // Check if there was an error - if so, try 64-byte chunks 2523 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2524 __ kortestql(k3, k3); 2525 __ jcc(Assembler::notZero, L_process64); 2526 2527 // The merging and shuffling happens here 2528 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 2529 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 2530 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 2531 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2532 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 2533 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 2534 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 2535 2536 // Now do the same with packed 16-bit values. 2537 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 2538 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 2539 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 2540 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2541 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 2542 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 2543 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 2544 2545 // The join vectors specify which byte from which vector goes into the outputs 2546 // One of every 4 bytes in the extended vector is zero, so we pack them into their 2547 // final positions in the register for storing (256 bytes in, 192 bytes out) 2548 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 2549 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 2550 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 2551 2552 // Store result 2553 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 2554 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 2555 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 2556 2557 __ addptr(source, 0x100); 2558 __ addptr(dest, 0xc0); 2559 __ subl(length, 0x100); 2560 __ cmpl(length, 64 * 4); 2561 __ jcc(Assembler::greaterEqual, L_process256); 2562 2563 // At this point, we've decoded 64 * 4 * n bytes. 2564 // The remaining length will be <= 64 * 4 - 1. 2565 // UNLESS there was an error decoding the first 256-byte chunk. In this 2566 // case, the length will be arbitrarily long. 2567 // 2568 // Note that this will be the path for MIME-encoded strings. 2569 2570 __ BIND(L_process64); 2571 2572 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 2573 2574 __ cmpl(length, 63); 2575 __ jcc(Assembler::lessEqual, L_finalBit); 2576 2577 __ mov64(rax, 0x0000ffffffffffff); 2578 __ kmovql(k2, rax); 2579 2580 __ align32(); 2581 __ BIND(L_process64Loop); 2582 2583 // Handle first 64-byte block 2584 2585 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 2586 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 2587 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 2588 2589 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 2590 2591 // Check for error and bomb out before updating dest 2592 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 2593 __ kortestql(k3, k3); 2594 __ jcc(Assembler::notZero, L_exit); 2595 2596 // Pack output register, selecting correct byte ordering 2597 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 2598 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 2599 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 2600 2601 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 2602 2603 __ subl(length, 64); 2604 __ addptr(source, 64); 2605 __ addptr(dest, 48); 2606 2607 __ cmpl(length, 64); 2608 __ jcc(Assembler::greaterEqual, L_process64Loop); 2609 2610 __ cmpl(length, 0); 2611 __ jcc(Assembler::lessEqual, L_exit); 2612 2613 __ BIND(L_finalBit); 2614 // Now have 1 to 63 bytes left to decode 2615 2616 // I was going to let Java take care of the final fragment 2617 // however it will repeatedly call this routine for every 4 bytes 2618 // of input data, so handle the rest here. 2619 __ movq(rax, -1); 2620 __ bzhiq(rax, rax, length); // Input mask in rax 2621 2622 __ movl(output_size, length); 2623 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 2624 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 2625 // output_size in r13 2626 2627 // Strip pad characters, if any, and adjust length and mask 2628 __ addq(length, start_offset); 2629 __ cmpb(Address(source, length, Address::times_1, -1), '='); 2630 __ jcc(Assembler::equal, L_padding); 2631 2632 __ BIND(L_donePadding); 2633 __ subq(length, start_offset); 2634 2635 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 2636 __ kmovql(input_mask, rax); 2637 __ movq(output_mask, -1); 2638 __ bzhiq(output_mask, output_mask, output_size); 2639 2640 // Load initial input with all valid base64 characters. Will be used 2641 // in merging source bytes to avoid masking when determining if an error occurred. 2642 __ movl(rax, 0x61616161); 2643 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 2644 2645 // A register containing all invalid base64 decoded values 2646 __ movl(rax, 0x80808080); 2647 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 2648 2649 // input_mask is in k1 2650 // output_size is in r13 2651 // output_mask is in r15 2652 // zmm0 - free 2653 // zmm1 - 0x00011000 2654 // zmm2 - 0x01400140 2655 // zmm3 - errorvec 2656 // zmm4 - pack vector 2657 // zmm5 - lookup_lo 2658 // zmm6 - lookup_hi 2659 // zmm7 - errorvec 2660 // zmm8 - 0x61616161 2661 // zmm9 - 0x80808080 2662 2663 // Load only the bytes from source, merging into our "fully-valid" register 2664 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 2665 2666 // Decode all bytes within our merged input 2667 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 2668 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 2669 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 2670 2671 // Check for error. Compare (decoded | initial) to all invalid. 2672 // If any bytes have their high-order bit set, then we have an error. 2673 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 2674 __ kortestql(k2, k2); 2675 2676 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 2677 __ jcc(Assembler::notZero, L_bruteForce); 2678 2679 // Shuffle output bytes 2680 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 2681 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 2682 2683 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 2684 __ kmovql(k1, output_mask); 2685 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 2686 2687 __ addptr(dest, output_size); 2688 2689 __ BIND(L_exit); 2690 __ vzeroupper(); 2691 __ pop(rax); // Get original dest value 2692 __ subptr(dest, rax); // Number of bytes converted 2693 __ movptr(rax, dest); 2694 __ pop(rbx); 2695 __ pop(r15); 2696 __ pop(r14); 2697 __ pop(r13); 2698 __ pop(r12); 2699 __ leave(); 2700 __ ret(0); 2701 2702 __ BIND(L_loadURL); 2703 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 2704 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 2705 __ jmp(L_continue); 2706 2707 __ BIND(L_padding); 2708 __ decrementq(output_size, 1); 2709 __ shrq(rax, 1); 2710 2711 __ cmpb(Address(source, length, Address::times_1, -2), '='); 2712 __ jcc(Assembler::notEqual, L_donePadding); 2713 2714 __ decrementq(output_size, 1); 2715 __ shrq(rax, 1); 2716 __ jmp(L_donePadding); 2717 2718 __ align32(); 2719 __ BIND(L_bruteForce); 2720 } // End of if(avx512_vbmi) 2721 2722 if (VM_Version::supports_avx2()) { 2723 Label L_tailProc, L_topLoop, L_enterLoop; 2724 2725 __ cmpl(isMIME, 0); 2726 __ jcc(Assembler::notEqual, L_lastChunk); 2727 2728 // Check for buffer too small (for algorithm) 2729 __ subl(length, 0x2c); 2730 __ jcc(Assembler::less, L_tailProc); 2731 2732 __ shll(isURL, 2); 2733 2734 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64 2735 // Encoding and Decoding using AVX2 Instructions". URL modifications added. 2736 2737 // Set up constants 2738 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr())); 2739 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F 2740 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4 2741 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute 2742 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle 2743 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge 2744 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult 2745 2746 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr())); 2747 __ shll(isURL, 4); 2748 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo 2749 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll 2750 __ shrl(isURL, 6); // restore isURL 2751 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi 2752 __ jmp(L_enterLoop); 2753 2754 __ align32(); 2755 __ bind(L_topLoop); 2756 // Add in the offset value (roll) to get 6-bit out values 2757 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 2758 // Merge and permute the output bits into appropriate output byte lanes 2759 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit); 2760 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit); 2761 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit); 2762 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit); 2763 // Store the output bytes 2764 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0); 2765 __ addptr(source, 0x20); 2766 __ addptr(dest, 0x18); 2767 __ subl(length, 0x20); 2768 __ jcc(Assembler::less, L_tailProc); 2769 2770 __ bind(L_enterLoop); 2771 2772 // Load in encoded string (32 bytes) 2773 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0)); 2774 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care. 2775 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit); 2776 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit); 2777 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care. 2778 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit); 2779 // Check for special-case (0x2F or 0x5F (URL)) 2780 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit); 2781 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only. 2782 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit); 2783 // Get the bit value of the high nibble 2784 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit); 2785 // Make sure 2F / 5F shows as valid 2786 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit); 2787 // Make adjustment for roll index. For non-URL, this is a no-op, 2788 // for URL, this adjusts by -4. This is to properly index the 2789 // roll value for 2F / 5F. 2790 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 2791 // If the and of the two is non-zero, we have an invalid input character 2792 __ vptest(xmm3, xmm5); 2793 // Extract the "roll" value - value to add to the input to get 6-bit out value 2794 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F 2795 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit); 2796 __ jcc(Assembler::equal, L_topLoop); // Fall through on error 2797 2798 __ bind(L_tailProc); 2799 2800 __ addl(length, 0x2c); 2801 2802 __ vzeroupper(); 2803 } 2804 2805 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 2806 2807 // Register state (Linux): 2808 // r12-15 - saved on stack 2809 // rdi - src 2810 // rsi - sp 2811 // rdx - sl 2812 // rcx - dst 2813 // r8 - dp 2814 // r9 - isURL 2815 2816 // Register state (Windows): 2817 // r12-15 - saved on stack 2818 // rcx - src 2819 // rdx - sp 2820 // r8 - sl 2821 // r9 - dst 2822 // r12 - dp 2823 // r10 - isURL 2824 2825 // Registers (common): 2826 // length (r14) - bytes in src 2827 2828 const Register decode_table = r11; 2829 const Register out_byte_count = rbx; 2830 const Register byte1 = r13; 2831 const Register byte2 = r15; 2832 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx); 2833 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9); 2834 2835 __ bind(L_lastChunk); 2836 2837 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 2838 __ cmpl(length, 0); 2839 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 2840 2841 __ shll(isURL, 8); // index into decode table based on isURL 2842 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 2843 __ addptr(decode_table, isURL); 2844 2845 __ jmp(L_bottomLoop); 2846 2847 __ align32(); 2848 __ BIND(L_forceLoop); 2849 __ shll(byte1, 18); 2850 __ shll(byte2, 12); 2851 __ shll(byte3, 6); 2852 __ orl(byte1, byte2); 2853 __ orl(byte1, byte3); 2854 __ orl(byte1, byte4); 2855 2856 __ addptr(source, 4); 2857 2858 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 2859 __ shrl(byte1, 8); 2860 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 2861 __ shrl(byte1, 8); 2862 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 2863 2864 __ addptr(dest, 3); 2865 __ decrementl(length, 1); 2866 __ jcc(Assembler::zero, L_exit_no_vzero); 2867 2868 __ BIND(L_bottomLoop); 2869 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 2870 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 2871 __ load_signed_byte(byte1, Address(decode_table, byte1)); 2872 __ load_signed_byte(byte2, Address(decode_table, byte2)); 2873 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 2874 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 2875 __ load_signed_byte(byte3, Address(decode_table, byte3)); 2876 __ load_signed_byte(byte4, Address(decode_table, byte4)); 2877 2878 __ mov(rax, byte1); 2879 __ orl(rax, byte2); 2880 __ orl(rax, byte3); 2881 __ orl(rax, byte4); 2882 __ jcc(Assembler::positive, L_forceLoop); 2883 2884 __ BIND(L_exit_no_vzero); 2885 __ pop(rax); // Get original dest value 2886 __ subptr(dest, rax); // Number of bytes converted 2887 __ movptr(rax, dest); 2888 __ pop(rbx); 2889 __ pop(r15); 2890 __ pop(r14); 2891 __ pop(r13); 2892 __ pop(r12); 2893 __ leave(); 2894 __ ret(0); 2895 2896 return start; 2897 } 2898 2899 2900 /** 2901 * Arguments: 2902 * 2903 * Inputs: 2904 * c_rarg0 - int crc 2905 * c_rarg1 - byte* buf 2906 * c_rarg2 - int length 2907 * 2908 * Output: 2909 * rax - int crc result 2910 */ 2911 address StubGenerator::generate_updateBytesCRC32() { 2912 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 2913 2914 __ align(CodeEntryAlignment); 2915 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 2916 2917 address start = __ pc(); 2918 2919 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 2920 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 2921 // rscratch1: r10 2922 const Register crc = c_rarg0; // crc 2923 const Register buf = c_rarg1; // source java byte array address 2924 const Register len = c_rarg2; // length 2925 const Register table = c_rarg3; // crc_table address (reuse register) 2926 const Register tmp1 = r11; 2927 const Register tmp2 = r10; 2928 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 2929 2930 BLOCK_COMMENT("Entry:"); 2931 __ enter(); // required for proper stackwalking of RuntimeStub frame 2932 2933 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2934 VM_Version::supports_avx512bw() && 2935 VM_Version::supports_avx512vl()) { 2936 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 2937 // However, the constant table for CRC32-C assumes the original crc value. Account for this 2938 // difference before calling and after returning. 2939 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 2940 __ notl(crc); 2941 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 2942 __ notl(crc); 2943 } else { 2944 __ kernel_crc32(crc, buf, len, table, tmp1); 2945 } 2946 2947 __ movl(rax, crc); 2948 __ vzeroupper(); 2949 __ leave(); // required for proper stackwalking of RuntimeStub frame 2950 __ ret(0); 2951 2952 return start; 2953 } 2954 2955 /** 2956 * Arguments: 2957 * 2958 * Inputs: 2959 * c_rarg0 - int crc 2960 * c_rarg1 - byte* buf 2961 * c_rarg2 - long length 2962 * c_rarg3 - table_start - optional (present only when doing a library_call, 2963 * not used by x86 algorithm) 2964 * 2965 * Output: 2966 * rax - int crc result 2967 */ 2968 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 2969 assert(UseCRC32CIntrinsics, "need SSE4_2"); 2970 __ align(CodeEntryAlignment); 2971 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); 2972 address start = __ pc(); 2973 2974 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 2975 //Windows RCX RDX R8 R9 none none XMM0..XMM3 2976 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 2977 const Register crc = c_rarg0; // crc 2978 const Register buf = c_rarg1; // source java byte array address 2979 const Register len = c_rarg2; // length 2980 const Register a = rax; 2981 const Register j = r9; 2982 const Register k = r10; 2983 const Register l = r11; 2984 #ifdef _WIN64 2985 const Register y = rdi; 2986 const Register z = rsi; 2987 #else 2988 const Register y = rcx; 2989 const Register z = r8; 2990 #endif 2991 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 2992 2993 BLOCK_COMMENT("Entry:"); 2994 __ enter(); // required for proper stackwalking of RuntimeStub frame 2995 Label L_continue; 2996 2997 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 2998 VM_Version::supports_avx512bw() && 2999 VM_Version::supports_avx512vl()) { 3000 Label L_doSmall; 3001 3002 __ cmpl(len, 384); 3003 __ jcc(Assembler::lessEqual, L_doSmall); 3004 3005 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 3006 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 3007 3008 __ jmp(L_continue); 3009 3010 __ bind(L_doSmall); 3011 } 3012 #ifdef _WIN64 3013 __ push(y); 3014 __ push(z); 3015 #endif 3016 __ crc32c_ipl_alg2_alt2(crc, buf, len, 3017 a, j, k, 3018 l, y, z, 3019 c_farg0, c_farg1, c_farg2, 3020 is_pclmulqdq_supported); 3021 #ifdef _WIN64 3022 __ pop(z); 3023 __ pop(y); 3024 #endif 3025 3026 __ bind(L_continue); 3027 __ movl(rax, crc); 3028 __ vzeroupper(); 3029 __ leave(); // required for proper stackwalking of RuntimeStub frame 3030 __ ret(0); 3031 3032 return start; 3033 } 3034 3035 3036 /** 3037 * Arguments: 3038 * 3039 * Input: 3040 * c_rarg0 - x address 3041 * c_rarg1 - x length 3042 * c_rarg2 - y address 3043 * c_rarg3 - y length 3044 * not Win64 3045 * c_rarg4 - z address 3046 * Win64 3047 * rsp+40 - z address 3048 */ 3049 address StubGenerator::generate_multiplyToLen() { 3050 __ align(CodeEntryAlignment); 3051 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 3052 address start = __ pc(); 3053 3054 if (SCCache::load_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start)) { 3055 return start; 3056 } 3057 3058 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3059 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3060 const Register x = rdi; 3061 const Register xlen = rax; 3062 const Register y = rsi; 3063 const Register ylen = rcx; 3064 const Register z = r8; 3065 3066 // Next registers will be saved on stack in multiply_to_len(). 3067 const Register tmp0 = r11; 3068 const Register tmp1 = r12; 3069 const Register tmp2 = r13; 3070 const Register tmp3 = r14; 3071 const Register tmp4 = r15; 3072 const Register tmp5 = rbx; 3073 3074 BLOCK_COMMENT("Entry:"); 3075 __ enter(); // required for proper stackwalking of RuntimeStub frame 3076 3077 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3078 // ylen => rcx, z => r8 3079 // r9 and r10 may be used to save non-volatile registers 3080 #ifdef _WIN64 3081 // last argument (#4) is on stack on Win64 3082 __ movptr(z, Address(rsp, 6 * wordSize)); 3083 #endif 3084 3085 __ movptr(xlen, rsi); 3086 __ movptr(y, rdx); 3087 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 3088 3089 restore_arg_regs(); 3090 3091 __ leave(); // required for proper stackwalking of RuntimeStub frame 3092 __ ret(0); 3093 3094 SCCache::store_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start); 3095 return start; 3096 } 3097 3098 /** 3099 * Arguments: 3100 * 3101 * Input: 3102 * c_rarg0 - obja address 3103 * c_rarg1 - objb address 3104 * c_rarg3 - length length 3105 * c_rarg4 - scale log2_array_indxscale 3106 * 3107 * Output: 3108 * rax - int >= mismatched index, < 0 bitwise complement of tail 3109 */ 3110 address StubGenerator::generate_vectorizedMismatch() { 3111 __ align(CodeEntryAlignment); 3112 StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); 3113 address start = __ pc(); 3114 3115 BLOCK_COMMENT("Entry:"); 3116 __ enter(); 3117 3118 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3119 const Register scale = c_rarg0; //rcx, will exchange with r9 3120 const Register objb = c_rarg1; //rdx 3121 const Register length = c_rarg2; //r8 3122 const Register obja = c_rarg3; //r9 3123 __ xchgq(obja, scale); //now obja and scale contains the correct contents 3124 3125 const Register tmp1 = r10; 3126 const Register tmp2 = r11; 3127 #endif 3128 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3129 const Register obja = c_rarg0; //U:rdi 3130 const Register objb = c_rarg1; //U:rsi 3131 const Register length = c_rarg2; //U:rdx 3132 const Register scale = c_rarg3; //U:rcx 3133 const Register tmp1 = r8; 3134 const Register tmp2 = r9; 3135 #endif 3136 const Register result = rax; //return value 3137 const XMMRegister vec0 = xmm0; 3138 const XMMRegister vec1 = xmm1; 3139 const XMMRegister vec2 = xmm2; 3140 3141 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 3142 3143 __ vzeroupper(); 3144 __ leave(); 3145 __ ret(0); 3146 3147 return start; 3148 } 3149 3150 /** 3151 * Arguments: 3152 * 3153 // Input: 3154 // c_rarg0 - x address 3155 // c_rarg1 - x length 3156 // c_rarg2 - z address 3157 // c_rarg3 - z length 3158 * 3159 */ 3160 address StubGenerator::generate_squareToLen() { 3161 3162 __ align(CodeEntryAlignment); 3163 StubCodeMark mark(this, "StubRoutines", "squareToLen"); 3164 address start = __ pc(); 3165 3166 if (SCCache::load_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start)) { 3167 return start; 3168 } 3169 3170 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3171 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 3172 const Register x = rdi; 3173 const Register len = rsi; 3174 const Register z = r8; 3175 const Register zlen = rcx; 3176 3177 const Register tmp1 = r12; 3178 const Register tmp2 = r13; 3179 const Register tmp3 = r14; 3180 const Register tmp4 = r15; 3181 const Register tmp5 = rbx; 3182 3183 BLOCK_COMMENT("Entry:"); 3184 __ enter(); // required for proper stackwalking of RuntimeStub frame 3185 3186 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 3187 // zlen => rcx 3188 // r9 and r10 may be used to save non-volatile registers 3189 __ movptr(r8, rdx); 3190 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3191 3192 restore_arg_regs(); 3193 3194 __ leave(); // required for proper stackwalking of RuntimeStub frame 3195 __ ret(0); 3196 3197 SCCache::store_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start); 3198 return start; 3199 } 3200 3201 address StubGenerator::generate_method_entry_barrier() { 3202 __ align(CodeEntryAlignment); 3203 StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); 3204 address start = __ pc(); 3205 3206 Label deoptimize_label; 3207 3208 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 3209 3210 BLOCK_COMMENT("Entry:"); 3211 __ enter(); // save rbp 3212 3213 // save c_rarg0, because we want to use that value. 3214 // We could do without it but then we depend on the number of slots used by pusha 3215 __ push(c_rarg0); 3216 3217 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 3218 3219 __ pusha(); 3220 3221 // The method may have floats as arguments, and we must spill them before calling 3222 // the VM runtime. 3223 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 3224 const int xmm_size = wordSize * 2; 3225 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 3226 __ subptr(rsp, xmm_spill_size); 3227 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 3228 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 3229 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 3230 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 3231 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 3232 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 3233 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 3234 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 3235 3236 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 3237 3238 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 3239 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 3240 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 3241 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 3242 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 3243 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 3244 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 3245 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 3246 __ addptr(rsp, xmm_spill_size); 3247 3248 __ cmpl(rax, 1); // 1 means deoptimize 3249 __ jcc(Assembler::equal, deoptimize_label); 3250 3251 __ popa(); 3252 __ pop(c_rarg0); 3253 3254 __ leave(); 3255 3256 __ addptr(rsp, 1 * wordSize); // cookie 3257 __ ret(0); 3258 3259 3260 __ BIND(deoptimize_label); 3261 3262 __ popa(); 3263 __ pop(c_rarg0); 3264 3265 __ leave(); 3266 3267 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 3268 // here while still having a correct stack is valuable 3269 __ testptr(rsp, Address(rsp, 0)); 3270 3271 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 3272 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 3273 3274 return start; 3275 } 3276 3277 /** 3278 * Arguments: 3279 * 3280 * Input: 3281 * c_rarg0 - out address 3282 * c_rarg1 - in address 3283 * c_rarg2 - offset 3284 * c_rarg3 - len 3285 * not Win64 3286 * c_rarg4 - k 3287 * Win64 3288 * rsp+40 - k 3289 */ 3290 address StubGenerator::generate_mulAdd() { 3291 __ align(CodeEntryAlignment); 3292 StubCodeMark mark(this, "StubRoutines", "mulAdd"); 3293 address start = __ pc(); 3294 3295 if (SCCache::load_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start)) { 3296 return start; 3297 } 3298 3299 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3300 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3301 const Register out = rdi; 3302 const Register in = rsi; 3303 const Register offset = r11; 3304 const Register len = rcx; 3305 const Register k = r8; 3306 3307 // Next registers will be saved on stack in mul_add(). 3308 const Register tmp1 = r12; 3309 const Register tmp2 = r13; 3310 const Register tmp3 = r14; 3311 const Register tmp4 = r15; 3312 const Register tmp5 = rbx; 3313 3314 BLOCK_COMMENT("Entry:"); 3315 __ enter(); // required for proper stackwalking of RuntimeStub frame 3316 3317 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 3318 // len => rcx, k => r8 3319 // r9 and r10 may be used to save non-volatile registers 3320 #ifdef _WIN64 3321 // last argument is on stack on Win64 3322 __ movl(k, Address(rsp, 6 * wordSize)); 3323 #endif 3324 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 3325 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 3326 3327 restore_arg_regs(); 3328 3329 __ leave(); // required for proper stackwalking of RuntimeStub frame 3330 __ ret(0); 3331 3332 SCCache::store_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start); 3333 return start; 3334 } 3335 3336 address StubGenerator::generate_bigIntegerRightShift() { 3337 __ align(CodeEntryAlignment); 3338 StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); 3339 address start = __ pc(); 3340 3341 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3342 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3343 const Register newArr = rdi; 3344 const Register oldArr = rsi; 3345 const Register newIdx = rdx; 3346 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3347 const Register totalNumIter = r8; 3348 3349 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3350 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3351 const Register tmp1 = r11; // Caller save. 3352 const Register tmp2 = rax; // Caller save. 3353 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3354 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3355 const Register tmp5 = r14; // Callee save. 3356 const Register tmp6 = r15; 3357 3358 const XMMRegister x0 = xmm0; 3359 const XMMRegister x1 = xmm1; 3360 const XMMRegister x2 = xmm2; 3361 3362 BLOCK_COMMENT("Entry:"); 3363 __ enter(); // required for proper stackwalking of RuntimeStub frame 3364 3365 #ifdef _WIN64 3366 setup_arg_regs(4); 3367 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3368 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3369 // Save callee save registers. 3370 __ push(tmp3); 3371 __ push(tmp4); 3372 #endif 3373 __ push(tmp5); 3374 3375 // Rename temps used throughout the code. 3376 const Register idx = tmp1; 3377 const Register nIdx = tmp2; 3378 3379 __ xorl(idx, idx); 3380 3381 // Start right shift from end of the array. 3382 // For example, if #iteration = 4 and newIdx = 1 3383 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3384 // if #iteration = 4 and newIdx = 0 3385 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 3386 __ movl(idx, totalNumIter); 3387 __ movl(nIdx, idx); 3388 __ addl(nIdx, newIdx); 3389 3390 // If vectorization is enabled, check if the number of iterations is at least 64 3391 // If not, then go to ShifTwo processing 2 iterations 3392 if (VM_Version::supports_avx512_vbmi2()) { 3393 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 3394 __ jcc(Assembler::less, ShiftTwo); 3395 3396 if (AVX3Threshold < 16 * 64) { 3397 __ cmpl(totalNumIter, 16); 3398 __ jcc(Assembler::less, ShiftTwo); 3399 } 3400 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3401 __ subl(idx, 16); 3402 __ subl(nIdx, 16); 3403 __ BIND(Shift512Loop); 3404 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 3405 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3406 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 3407 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 3408 __ subl(nIdx, 16); 3409 __ subl(idx, 16); 3410 __ jcc(Assembler::greaterEqual, Shift512Loop); 3411 __ addl(idx, 16); 3412 __ addl(nIdx, 16); 3413 } 3414 __ BIND(ShiftTwo); 3415 __ cmpl(idx, 2); 3416 __ jcc(Assembler::less, ShiftOne); 3417 __ subl(idx, 2); 3418 __ subl(nIdx, 2); 3419 __ BIND(ShiftTwoLoop); 3420 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 3421 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3422 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3423 __ shrdl(tmp5, tmp4); 3424 __ shrdl(tmp4, tmp3); 3425 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 3426 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3427 __ subl(nIdx, 2); 3428 __ subl(idx, 2); 3429 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3430 __ addl(idx, 2); 3431 __ addl(nIdx, 2); 3432 3433 // Do the last iteration 3434 __ BIND(ShiftOne); 3435 __ cmpl(idx, 1); 3436 __ jcc(Assembler::less, Exit); 3437 __ subl(idx, 1); 3438 __ subl(nIdx, 1); 3439 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 3440 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3441 __ shrdl(tmp4, tmp3); 3442 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 3443 __ BIND(Exit); 3444 __ vzeroupper(); 3445 // Restore callee save registers. 3446 __ pop(tmp5); 3447 #ifdef _WIN64 3448 __ pop(tmp4); 3449 __ pop(tmp3); 3450 restore_arg_regs(); 3451 #endif 3452 __ leave(); // required for proper stackwalking of RuntimeStub frame 3453 __ ret(0); 3454 3455 return start; 3456 } 3457 3458 /** 3459 * Arguments: 3460 * 3461 * Input: 3462 * c_rarg0 - newArr address 3463 * c_rarg1 - oldArr address 3464 * c_rarg2 - newIdx 3465 * c_rarg3 - shiftCount 3466 * not Win64 3467 * c_rarg4 - numIter 3468 * Win64 3469 * rsp40 - numIter 3470 */ 3471 address StubGenerator::generate_bigIntegerLeftShift() { 3472 __ align(CodeEntryAlignment); 3473 StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); 3474 address start = __ pc(); 3475 3476 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 3477 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 3478 const Register newArr = rdi; 3479 const Register oldArr = rsi; 3480 const Register newIdx = rdx; 3481 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 3482 const Register totalNumIter = r8; 3483 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 3484 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 3485 const Register tmp1 = r11; // Caller save. 3486 const Register tmp2 = rax; // Caller save. 3487 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save. 3488 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save. 3489 const Register tmp5 = r14; // Callee save. 3490 3491 const XMMRegister x0 = xmm0; 3492 const XMMRegister x1 = xmm1; 3493 const XMMRegister x2 = xmm2; 3494 BLOCK_COMMENT("Entry:"); 3495 __ enter(); // required for proper stackwalking of RuntimeStub frame 3496 3497 #ifdef _WIN64 3498 setup_arg_regs(4); 3499 // For windows, since last argument is on stack, we need to move it to the appropriate register. 3500 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 3501 // Save callee save registers. 3502 __ push(tmp3); 3503 __ push(tmp4); 3504 #endif 3505 __ push(tmp5); 3506 3507 // Rename temps used throughout the code 3508 const Register idx = tmp1; 3509 const Register numIterTmp = tmp2; 3510 3511 // Start idx from zero. 3512 __ xorl(idx, idx); 3513 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 3514 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 3515 __ movl(numIterTmp, totalNumIter); 3516 3517 // If vectorization is enabled, check if the number of iterations is at least 64 3518 // If not, then go to ShiftTwo shifting two numbers at a time 3519 if (VM_Version::supports_avx512_vbmi2()) { 3520 __ cmpl(totalNumIter, (AVX3Threshold/64)); 3521 __ jcc(Assembler::less, ShiftTwo); 3522 3523 if (AVX3Threshold < 16 * 64) { 3524 __ cmpl(totalNumIter, 16); 3525 __ jcc(Assembler::less, ShiftTwo); 3526 } 3527 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 3528 __ subl(numIterTmp, 16); 3529 __ BIND(Shift512Loop); 3530 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 3531 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 3532 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 3533 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 3534 __ addl(idx, 16); 3535 __ subl(numIterTmp, 16); 3536 __ jcc(Assembler::greaterEqual, Shift512Loop); 3537 __ addl(numIterTmp, 16); 3538 } 3539 __ BIND(ShiftTwo); 3540 __ cmpl(totalNumIter, 1); 3541 __ jcc(Assembler::less, Exit); 3542 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 3543 __ subl(numIterTmp, 2); 3544 __ jcc(Assembler::less, ShiftOne); 3545 3546 __ BIND(ShiftTwoLoop); 3547 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3548 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 3549 __ shldl(tmp3, tmp4); 3550 __ shldl(tmp4, tmp5); 3551 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3552 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 3553 __ movl(tmp3, tmp5); 3554 __ addl(idx, 2); 3555 __ subl(numIterTmp, 2); 3556 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 3557 3558 // Do the last iteration 3559 __ BIND(ShiftOne); 3560 __ addl(numIterTmp, 2); 3561 __ cmpl(numIterTmp, 1); 3562 __ jcc(Assembler::less, Exit); 3563 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 3564 __ shldl(tmp3, tmp4); 3565 __ movl(Address(newArr, idx, Address::times_4), tmp3); 3566 3567 __ BIND(Exit); 3568 __ vzeroupper(); 3569 // Restore callee save registers. 3570 __ pop(tmp5); 3571 #ifdef _WIN64 3572 __ pop(tmp4); 3573 __ pop(tmp3); 3574 restore_arg_regs(); 3575 #endif 3576 __ leave(); // required for proper stackwalking of RuntimeStub frame 3577 __ ret(0); 3578 3579 return start; 3580 } 3581 3582 void StubGenerator::generate_libm_stubs() { 3583 if (UseLibmIntrinsic && InlineIntrinsics) { 3584 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 3585 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp 3586 } 3587 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 3588 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp 3589 } 3590 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 3591 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp 3592 } 3593 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) { 3594 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp 3595 } 3596 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 3597 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp 3598 } 3599 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 3600 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp 3601 } 3602 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 3603 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp 3604 } 3605 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 3606 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp 3607 } 3608 } 3609 } 3610 3611 /** 3612 * Arguments: 3613 * 3614 * Input: 3615 * c_rarg0 - float16 jshort 3616 * 3617 * Output: 3618 * xmm0 - float 3619 */ 3620 address StubGenerator::generate_float16ToFloat() { 3621 StubCodeMark mark(this, "StubRoutines", "float16ToFloat"); 3622 3623 address start = __ pc(); 3624 3625 BLOCK_COMMENT("Entry:"); 3626 // No need for RuntimeStub frame since it is called only during JIT compilation 3627 3628 // Load value into xmm0 and convert 3629 __ flt16_to_flt(xmm0, c_rarg0); 3630 3631 __ ret(0); 3632 3633 return start; 3634 } 3635 3636 /** 3637 * Arguments: 3638 * 3639 * Input: 3640 * xmm0 - float 3641 * 3642 * Output: 3643 * rax - float16 jshort 3644 */ 3645 address StubGenerator::generate_floatToFloat16() { 3646 StubCodeMark mark(this, "StubRoutines", "floatToFloat16"); 3647 3648 address start = __ pc(); 3649 3650 BLOCK_COMMENT("Entry:"); 3651 // No need for RuntimeStub frame since it is called only during JIT compilation 3652 3653 // Convert and put result into rax 3654 __ flt_to_flt16(rax, xmm0, xmm1); 3655 3656 __ ret(0); 3657 3658 return start; 3659 } 3660 3661 address StubGenerator::generate_cont_thaw(const char* label, Continuation::thaw_kind kind) { 3662 if (!Continuations::enabled()) return nullptr; 3663 3664 bool return_barrier = Continuation::is_thaw_return_barrier(kind); 3665 bool return_barrier_exception = Continuation::is_thaw_return_barrier_exception(kind); 3666 3667 StubCodeMark mark(this, "StubRoutines", label); 3668 address start = __ pc(); 3669 3670 // TODO: Handle Valhalla return types. May require generating different return barriers. 3671 3672 if (!return_barrier) { 3673 // Pop return address. If we don't do this, we get a drift, 3674 // where the bottom-most frozen frame continuously grows. 3675 __ pop(c_rarg3); 3676 } else { 3677 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3678 } 3679 3680 #ifdef ASSERT 3681 { 3682 Label L_good_sp; 3683 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3684 __ jcc(Assembler::equal, L_good_sp); 3685 __ stop("Incorrect rsp at thaw entry"); 3686 __ BIND(L_good_sp); 3687 } 3688 #endif // ASSERT 3689 3690 if (return_barrier) { 3691 // Preserve possible return value from a method returning to the return barrier. 3692 __ push(rax); 3693 __ push_d(xmm0); 3694 } 3695 3696 __ movptr(c_rarg0, r15_thread); 3697 __ movptr(c_rarg1, (return_barrier ? 1 : 0)); 3698 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2); 3699 __ movptr(rbx, rax); 3700 3701 if (return_barrier) { 3702 // Restore return value from a method returning to the return barrier. 3703 // No safepoint in the call to thaw, so even an oop return value should be OK. 3704 __ pop_d(xmm0); 3705 __ pop(rax); 3706 } 3707 3708 #ifdef ASSERT 3709 { 3710 Label L_good_sp; 3711 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset())); 3712 __ jcc(Assembler::equal, L_good_sp); 3713 __ stop("Incorrect rsp after prepare thaw"); 3714 __ BIND(L_good_sp); 3715 } 3716 #endif // ASSERT 3717 3718 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames 3719 Label L_thaw_success; 3720 __ testptr(rbx, rbx); 3721 __ jccb(Assembler::notZero, L_thaw_success); 3722 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 3723 __ bind(L_thaw_success); 3724 3725 // Make room for the thawed frames and align the stack. 3726 __ subptr(rsp, rbx); 3727 __ andptr(rsp, -StackAlignmentInBytes); 3728 3729 if (return_barrier) { 3730 // Preserve possible return value from a method returning to the return barrier. (Again.) 3731 __ push(rax); 3732 __ push_d(xmm0); 3733 } 3734 3735 // If we want, we can templatize thaw by kind, and have three different entries. 3736 __ movptr(c_rarg0, r15_thread); 3737 __ movptr(c_rarg1, kind); 3738 __ call_VM_leaf(Continuation::thaw_entry(), 2); 3739 __ movptr(rbx, rax); 3740 3741 if (return_barrier) { 3742 // Restore return value from a method returning to the return barrier. (Again.) 3743 // No safepoint in the call to thaw, so even an oop return value should be OK. 3744 __ pop_d(xmm0); 3745 __ pop(rax); 3746 } else { 3747 // Return 0 (success) from doYield. 3748 __ xorptr(rax, rax); 3749 } 3750 3751 // After thawing, rbx is the SP of the yielding frame. 3752 // Move there, and then to saved RBP slot. 3753 __ movptr(rsp, rbx); 3754 __ subptr(rsp, 2*wordSize); 3755 3756 if (return_barrier_exception) { 3757 __ movptr(c_rarg0, r15_thread); 3758 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address 3759 3760 // rax still holds the original exception oop, save it before the call 3761 __ push(rax); 3762 3763 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2); 3764 __ movptr(rbx, rax); 3765 3766 // Continue at exception handler: 3767 // rax: exception oop 3768 // rbx: exception handler 3769 // rdx: exception pc 3770 __ pop(rax); 3771 __ verify_oop(rax); 3772 __ pop(rbp); // pop out RBP here too 3773 __ pop(rdx); 3774 __ jmp(rbx); 3775 } else { 3776 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame 3777 __ pop(rbp); 3778 __ ret(0); 3779 } 3780 3781 return start; 3782 } 3783 3784 address StubGenerator::generate_cont_thaw() { 3785 return generate_cont_thaw("Cont thaw", Continuation::thaw_top); 3786 } 3787 3788 // TODO: will probably need multiple return barriers depending on return type 3789 3790 address StubGenerator::generate_cont_returnBarrier() { 3791 return generate_cont_thaw("Cont thaw return barrier", Continuation::thaw_return_barrier); 3792 } 3793 3794 address StubGenerator::generate_cont_returnBarrier_exception() { 3795 return generate_cont_thaw("Cont thaw return barrier exception", Continuation::thaw_return_barrier_exception); 3796 } 3797 3798 // exception handler for upcall stubs 3799 address StubGenerator::generate_upcall_stub_exception_handler() { 3800 StubCodeMark mark(this, "StubRoutines", "upcall stub exception handler"); 3801 address start = __ pc(); 3802 3803 // native caller has no idea how to handle exceptions 3804 // we just crash here. Up to callee to catch exceptions. 3805 __ verify_oop(rax); 3806 __ vzeroupper(); 3807 __ mov(c_rarg0, rax); 3808 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI 3809 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 3810 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception))); 3811 __ should_not_reach_here(); 3812 3813 return start; 3814 } 3815 3816 // load Method* target of MethodHandle 3817 // j_rarg0 = jobject receiver 3818 // rbx = result 3819 address StubGenerator::generate_upcall_stub_load_target() { 3820 StubCodeMark mark(this, "StubRoutines", "upcall_stub_load_target"); 3821 address start = __ pc(); 3822 3823 __ resolve_global_jobject(j_rarg0, r15_thread, rscratch1); 3824 // Load target method from receiver 3825 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1); 3826 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1); 3827 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1); 3828 __ access_load_at(T_ADDRESS, IN_HEAP, rbx, 3829 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()), 3830 noreg, noreg); 3831 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized 3832 3833 __ ret(0); 3834 3835 return start; 3836 } 3837 3838 address StubGenerator::generate_lookup_secondary_supers_table_stub(u1 super_klass_index) { 3839 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3840 3841 address start = __ pc(); 3842 3843 const Register 3844 r_super_klass = rax, 3845 r_sub_klass = rsi, 3846 result = rdi; 3847 3848 __ lookup_secondary_supers_table(r_sub_klass, r_super_klass, 3849 rdx, rcx, rbx, r11, // temps 3850 result, 3851 super_klass_index); 3852 __ ret(0); 3853 3854 return start; 3855 } 3856 3857 // Slow path implementation for UseSecondarySupersTable. 3858 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() { 3859 StubCodeMark mark(this, "StubRoutines", "lookup_secondary_supers_table"); 3860 3861 address start = __ pc(); 3862 3863 const Register 3864 r_super_klass = rax, 3865 r_array_base = rbx, 3866 r_array_index = rdx, 3867 r_sub_klass = rsi, 3868 r_bitmap = r11, 3869 result = rdi; 3870 3871 Label L_success; 3872 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap, 3873 rcx, rdi, // temps 3874 &L_success); 3875 // bind(L_failure); 3876 __ movl(result, 1); 3877 __ ret(0); 3878 3879 __ bind(L_success); 3880 __ movl(result, 0); 3881 __ ret(0); 3882 3883 return start; 3884 } 3885 3886 void StubGenerator::create_control_words() { 3887 // Round to nearest, 64-bit mode, exceptions masked, flags specialized 3888 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80; 3889 // Round to zero, 64-bit mode, exceptions masked, flags specialized 3890 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80; 3891 } 3892 3893 // Initialization 3894 void StubGenerator::generate_initial_stubs() { 3895 // Generates all stubs and initializes the entry points 3896 3897 // This platform-specific settings are needed by generate_call_stub() 3898 create_control_words(); 3899 3900 // Initialize table for unsafe copy memeory check. 3901 if (UnsafeMemoryAccess::_table == nullptr) { 3902 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory 3903 } 3904 3905 // entry points that exist in all platforms Note: This is code 3906 // that could be shared among different platforms - however the 3907 // benefit seems to be smaller than the disadvantage of having a 3908 // much more complicated generator structure. See also comment in 3909 // stubRoutines.hpp. 3910 3911 StubRoutines::_forward_exception_entry = generate_forward_exception(); 3912 3913 StubRoutines::_call_stub_entry = 3914 generate_call_stub(StubRoutines::_call_stub_return_address); 3915 3916 // is referenced by megamorphic call 3917 StubRoutines::_catch_exception_entry = generate_catch_exception(); 3918 3919 // atomic calls 3920 StubRoutines::_fence_entry = generate_orderaccess_fence(); 3921 3922 // platform dependent 3923 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 3924 3925 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 3926 3927 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 3928 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 3929 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 3930 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 3931 3932 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 3933 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 3934 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 3935 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 3936 3937 if (UseCRC32Intrinsics) { 3938 // set table address before stub generation which use it 3939 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 3940 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 3941 } 3942 3943 if (UseCRC32CIntrinsics) { 3944 bool supports_clmul = VM_Version::supports_clmul(); 3945 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 3946 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 3947 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 3948 } 3949 3950 if (VM_Version::supports_float16()) { 3951 // For results consistency both intrinsics should be enabled. 3952 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here. 3953 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) && 3954 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) { 3955 StubRoutines::_hf2f = generate_float16ToFloat(); 3956 StubRoutines::_f2hf = generate_floatToFloat16(); 3957 } 3958 } 3959 3960 generate_libm_stubs(); 3961 3962 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp 3963 } 3964 3965 void StubGenerator::generate_continuation_stubs() { 3966 // Continuation stubs: 3967 StubRoutines::_cont_thaw = generate_cont_thaw(); 3968 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier(); 3969 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception(); 3970 } 3971 3972 void StubGenerator::generate_final_stubs() { 3973 // Generates the rest of stubs and initializes the entry points 3974 3975 // support for verify_oop (must happen after universe_init) 3976 if (VerifyOops) { 3977 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 3978 } 3979 3980 // data cache line writeback 3981 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 3982 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 3983 3984 // arraycopy stubs used by compilers 3985 generate_arraycopy_stubs(); 3986 3987 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 3988 if (bs_nm != nullptr) { 3989 StubRoutines::_method_entry_barrier = generate_method_entry_barrier(); 3990 } 3991 3992 if (UseVectorizedMismatchIntrinsic) { 3993 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 3994 } 3995 3996 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler(); 3997 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target(); 3998 } 3999 4000 void StubGenerator::generate_compiler_stubs() { 4001 #if COMPILER2_OR_JVMCI 4002 4003 // Entry points that are C2 compiler specific. 4004 4005 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); 4006 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); 4007 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); 4008 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); 4009 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); 4010 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001); 4011 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); 4012 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); 4013 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); 4014 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); 4015 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, 4016 0xFFFFFFFF, 0, 0, 0); 4017 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, 4018 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 4019 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); 4020 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); 4021 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); 4022 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); 4023 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); 4024 StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); 4025 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut("count_leading_zeros_lut"); 4026 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut("reverse_bit_lut"); 4027 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long("perm_mask_long"); 4028 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int("perm_mask_int"); 4029 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short("perm_mask_short"); 4030 4031 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) { 4032 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table("compress_perm_table32", 32); 4033 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table("compress_perm_table64", 64); 4034 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table("expand_perm_table32", 32); 4035 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table("expand_perm_table64", 64); 4036 } 4037 4038 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) { 4039 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight. 4040 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut("popcount_lut"); 4041 } 4042 4043 generate_aes_stubs(); 4044 4045 generate_ghash_stubs(); 4046 4047 generate_chacha_stubs(); 4048 4049 #ifdef COMPILER2 4050 if ((UseAVX == 2) && EnableX86ECoreOpts) { 4051 generate_string_indexof(StubRoutines::_string_indexof_array); 4052 } 4053 #endif 4054 4055 if (UseAdler32Intrinsics) { 4056 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 4057 } 4058 4059 if (UsePoly1305Intrinsics) { 4060 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks(); 4061 } 4062 4063 if (UseIntPolyIntrinsics) { 4064 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256(); 4065 StubRoutines::_intpoly_assign = generate_intpoly_assign(); 4066 } 4067 4068 if (UseMD5Intrinsics) { 4069 StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); 4070 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); 4071 } 4072 4073 if (UseSHA1Intrinsics) { 4074 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 4075 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 4076 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); 4077 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); 4078 } 4079 4080 if (UseSHA256Intrinsics) { 4081 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 4082 char* dst = (char*)StubRoutines::x86::_k256_W; 4083 char* src = (char*)StubRoutines::x86::_k256; 4084 for (int ii = 0; ii < 16; ++ii) { 4085 memcpy(dst + 32 * ii, src + 16 * ii, 16); 4086 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 4087 } 4088 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 4089 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 4090 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); 4091 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); 4092 } 4093 4094 if (UseSHA512Intrinsics) { 4095 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 4096 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 4097 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); 4098 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); 4099 } 4100 4101 if (UseBASE64Intrinsics) { 4102 if(VM_Version::supports_avx2()) { 4103 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 4104 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 4105 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 4106 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr(); 4107 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr(); 4108 } 4109 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 4110 if (VM_Version::supports_avx512_vbmi()) { 4111 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 4112 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 4113 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 4114 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 4115 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 4116 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 4117 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 4118 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 4119 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 4120 } 4121 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 4122 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 4123 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 4124 } 4125 4126 #ifdef COMPILER2 4127 if (UseMultiplyToLenIntrinsic) { 4128 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 4129 } 4130 if (UseSquareToLenIntrinsic) { 4131 StubRoutines::_squareToLen = generate_squareToLen(); 4132 } 4133 if (UseMulAddIntrinsic) { 4134 StubRoutines::_mulAdd = generate_mulAdd(); 4135 } 4136 if (VM_Version::supports_avx512_vbmi2()) { 4137 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 4138 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 4139 } 4140 if (UseSecondarySupersTable) { 4141 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub(); 4142 if (! InlineSecondarySupersTest) { 4143 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 4144 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = generate_lookup_secondary_supers_table_stub(slot); 4145 } 4146 } 4147 } 4148 if (UseMontgomeryMultiplyIntrinsic) { 4149 StubRoutines::_montgomeryMultiply 4150 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 4151 } 4152 if (UseMontgomerySquareIntrinsic) { 4153 StubRoutines::_montgomerySquare 4154 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 4155 } 4156 4157 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics 4158 4159 if (VM_Version::is_intel() && (VM_Version::supports_avx512dq() || VM_Version::supports_avx2())) { 4160 void *libsimdsort = nullptr; 4161 char ebuf_[1024]; 4162 char dll_name_simd_sort[JVM_MAXPATHLEN]; 4163 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) { 4164 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_); 4165 } 4166 // Get addresses for SIMD sort and partition routines 4167 if (libsimdsort != nullptr) { 4168 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort)); 4169 4170 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_sort" : "avx2_sort"); 4171 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_); 4172 4173 snprintf(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512dq() ? "avx512_partition" : "avx2_partition"); 4174 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_); 4175 } 4176 } 4177 4178 // Get svml stub routine addresses 4179 void *libjsvml = nullptr; 4180 char ebuf[1024]; 4181 char dll_name[JVM_MAXPATHLEN]; 4182 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 4183 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 4184 } 4185 if (libjsvml != nullptr) { 4186 // SVML method naming convention 4187 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 4188 // Where: 4189 // ha stands for high accuracy 4190 // <T> is optional to indicate float/double 4191 // Set to f for vector float operation 4192 // Omitted for vector double operation 4193 // <N> is the number of elements in the vector 4194 // 1, 2, 4, 8, 16 4195 // e.g. 128 bit float vector has 4 float elements 4196 // <VV> indicates the avx/sse level: 4197 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 4198 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 4199 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 4200 4201 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 4202 if (UseAVX > 2) { 4203 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4204 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4205 if ((!VM_Version::supports_avx512dq()) && 4206 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 4207 continue; 4208 } 4209 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::mathname[op]); 4210 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4211 4212 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::mathname[op]); 4213 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 4214 } 4215 } 4216 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 4217 for (int op = 0; op < VectorSupport::NUM_VECTOR_OP_MATH; op++) { 4218 int vop = VectorSupport::VECTOR_OP_MATH_START + op; 4219 if (vop == VectorSupport::VECTOR_OP_POW) { 4220 continue; 4221 } 4222 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4223 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4224 4225 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4226 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4227 4228 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4229 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4230 4231 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4232 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 4233 4234 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4235 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 4236 4237 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::mathname[op], avx_sse_str); 4238 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 4239 } 4240 } 4241 4242 #endif // COMPILER2 4243 #endif // COMPILER2_OR_JVMCI 4244 } 4245 4246 StubGenerator::StubGenerator(CodeBuffer* code, StubsKind kind) : StubCodeGenerator(code) { 4247 DEBUG_ONLY( _regs_in_thread = false; ) 4248 switch(kind) { 4249 case Initial_stubs: 4250 generate_initial_stubs(); 4251 break; 4252 case Continuation_stubs: 4253 generate_continuation_stubs(); 4254 break; 4255 case Compiler_stubs: 4256 generate_compiler_stubs(); 4257 break; 4258 case Final_stubs: 4259 generate_final_stubs(); 4260 break; 4261 default: 4262 fatal("unexpected stubs kind: %d", kind); 4263 break; 4264 }; 4265 } 4266 4267 void StubGenerator_generate(CodeBuffer* code, StubCodeGenerator::StubsKind kind) { 4268 StubGenerator g(code, kind); 4269 } 4270 4271 #undef __