1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/vmIntrinsics.hpp"
  28 #include "code/aotCodeCache.hpp"
  29 #include "compiler/oopMap.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/barrierSetNMethod.hpp"
  33 #include "gc/shared/gc_globals.hpp"
  34 #include "memory/universe.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/upcallLinker.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/continuationEntry.hpp"
  39 #include "runtime/javaThread.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "stubGenerator_x86_64.hpp"
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #include "opto/c2_globals.hpp"
  46 #endif
  47 #if INCLUDE_JVMCI
  48 #include "jvmci/jvmci_globals.hpp"
  49 #endif
  50 
  51 // For a more detailed description of the stub routine structure
  52 // see the comment in stubRoutines.hpp
  53 
  54 #define __ _masm->
  55 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  56 
  57 #ifdef PRODUCT
  58 #define BLOCK_COMMENT(str) /* nothing */
  59 #else
  60 #define BLOCK_COMMENT(str) __ block_comment(str)
  61 #endif // PRODUCT
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 //
  66 // Linux Arguments:
  67 //    c_rarg0:   call wrapper address                   address
  68 //    c_rarg1:   result                                 address
  69 //    c_rarg2:   result type                            BasicType
  70 //    c_rarg3:   method                                 Method*
  71 //    c_rarg4:   (interpreter) entry point              address
  72 //    c_rarg5:   parameters                             intptr_t*
  73 //    16(rbp): parameter size (in words)              int
  74 //    24(rbp): thread                                 Thread*
  75 //
  76 //     [ return_from_Java     ] <--- rsp
  77 //     [ argument word n      ]
  78 //      ...
  79 // -12 [ argument word 1      ]
  80 // -11 [ saved r15            ] <--- rsp_after_call
  81 // -10 [ saved r14            ]
  82 //  -9 [ saved r13            ]
  83 //  -8 [ saved r12            ]
  84 //  -7 [ saved rbx            ]
  85 //  -6 [ call wrapper         ]
  86 //  -5 [ result               ]
  87 //  -4 [ result type          ]
  88 //  -3 [ method               ]
  89 //  -2 [ entry point          ]
  90 //  -1 [ parameters           ]
  91 //   0 [ saved rbp            ] <--- rbp
  92 //   1 [ return address       ]
  93 //   2 [ parameter size       ]
  94 //   3 [ thread               ]
  95 //
  96 // Windows Arguments:
  97 //    c_rarg0:   call wrapper address                   address
  98 //    c_rarg1:   result                                 address
  99 //    c_rarg2:   result type                            BasicType
 100 //    c_rarg3:   method                                 Method*
 101 //    48(rbp): (interpreter) entry point              address
 102 //    56(rbp): parameters                             intptr_t*
 103 //    64(rbp): parameter size (in words)              int
 104 //    72(rbp): thread                                 Thread*
 105 //
 106 //     [ return_from_Java     ] <--- rsp
 107 //     [ argument word n      ]
 108 //      ...
 109 // -28 [ argument word 1      ]
 110 // -27 [ saved xmm15          ] <--- rsp after_call
 111 //     [ saved xmm7-xmm14     ]
 112 //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 113 //  -7 [ saved r15            ]
 114 //  -6 [ saved r14            ]
 115 //  -5 [ saved r13            ]
 116 //  -4 [ saved r12            ]
 117 //  -3 [ saved rdi            ]
 118 //  -2 [ saved rsi            ]
 119 //  -1 [ saved rbx            ]
 120 //   0 [ saved rbp            ] <--- rbp
 121 //   1 [ return address       ]
 122 //   2 [ call wrapper         ]
 123 //   3 [ result               ]
 124 //   4 [ result type          ]
 125 //   5 [ method               ]
 126 //   6 [ entry point          ]
 127 //   7 [ parameters           ]
 128 //   8 [ parameter size       ]
 129 //   9 [ thread               ]
 130 //
 131 //    Windows reserves the callers stack space for arguments 1-4.
 132 //    We spill c_rarg0-c_rarg3 to this space.
 133 
 134 // Call stub stack layout word offsets from rbp
 135 #ifdef _WIN64
 136 enum call_stub_layout {
 137   xmm_save_first     = 6,  // save from xmm6
 138   xmm_save_last      = 15, // to xmm15
 139   xmm_save_base      = -9,
 140   rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 141   r15_off            = -7,
 142   r14_off            = -6,
 143   r13_off            = -5,
 144   r12_off            = -4,
 145   rdi_off            = -3,
 146   rsi_off            = -2,
 147   rbx_off            = -1,
 148   rbp_off            =  0,
 149   retaddr_off        =  1,
 150   call_wrapper_off   =  2,
 151   result_off         =  3,
 152   result_type_off    =  4,
 153   method_off         =  5,
 154   entry_point_off    =  6,
 155   parameters_off     =  7,
 156   parameter_size_off =  8,
 157   thread_off         =  9
 158 };
 159 
 160 static Address xmm_save(int reg) {
 161   assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 162   return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 163 }
 164 #else // !_WIN64
 165 enum call_stub_layout {
 166   rsp_after_call_off = -12,
 167   mxcsr_off          = rsp_after_call_off,
 168   r15_off            = -11,
 169   r14_off            = -10,
 170   r13_off            = -9,
 171   r12_off            = -8,
 172   rbx_off            = -7,
 173   call_wrapper_off   = -6,
 174   result_off         = -5,
 175   result_type_off    = -4,
 176   method_off         = -3,
 177   entry_point_off    = -2,
 178   parameters_off     = -1,
 179   rbp_off            =  0,
 180   retaddr_off        =  1,
 181   parameter_size_off =  2,
 182   thread_off         =  3
 183 };
 184 #endif // _WIN64
 185 
 186 address StubGenerator::generate_call_stub(address& return_address) {
 187 
 188   assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 189          (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 190          "adjust this code");
 191   StubId stub_id = StubId::stubgen_call_stub_id;
 192   StubCodeMark mark(this, stub_id);
 193   address start = __ pc();
 194 
 195   // same as in generate_catch_exception()!
 196   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 197 
 198   const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 199   const Address result        (rbp, result_off         * wordSize);
 200   const Address result_type   (rbp, result_type_off    * wordSize);
 201   const Address method        (rbp, method_off         * wordSize);
 202   const Address entry_point   (rbp, entry_point_off    * wordSize);
 203   const Address parameters    (rbp, parameters_off     * wordSize);
 204   const Address parameter_size(rbp, parameter_size_off * wordSize);
 205 
 206   // same as in generate_catch_exception()!
 207   const Address thread        (rbp, thread_off         * wordSize);
 208 
 209   const Address r15_save(rbp, r15_off * wordSize);
 210   const Address r14_save(rbp, r14_off * wordSize);
 211   const Address r13_save(rbp, r13_off * wordSize);
 212   const Address r12_save(rbp, r12_off * wordSize);
 213   const Address rbx_save(rbp, rbx_off * wordSize);
 214 
 215   // stub code
 216   __ enter();
 217   __ subptr(rsp, -rsp_after_call_off * wordSize);
 218 
 219   // save register parameters
 220 #ifndef _WIN64
 221   __ movptr(parameters,   c_rarg5); // parameters
 222   __ movptr(entry_point,  c_rarg4); // entry_point
 223 #endif
 224 
 225   __ movptr(method,       c_rarg3); // method
 226   __ movl(result_type,  c_rarg2);   // result type
 227   __ movptr(result,       c_rarg1); // result
 228   __ movptr(call_wrapper, c_rarg0); // call wrapper
 229 
 230   // save regs belonging to calling function
 231   __ movptr(rbx_save, rbx);
 232   __ movptr(r12_save, r12);
 233   __ movptr(r13_save, r13);
 234   __ movptr(r14_save, r14);
 235   __ movptr(r15_save, r15);
 236 
 237 #ifdef _WIN64
 238   int last_reg = 15;
 239   for (int i = xmm_save_first; i <= last_reg; i++) {
 240     __ movdqu(xmm_save(i), as_XMMRegister(i));
 241   }
 242 
 243   const Address rdi_save(rbp, rdi_off * wordSize);
 244   const Address rsi_save(rbp, rsi_off * wordSize);
 245 
 246   __ movptr(rsi_save, rsi);
 247   __ movptr(rdi_save, rdi);
 248 #else
 249   const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 250   {
 251     Label skip_ldmx;
 252     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 253     __ jcc(Assembler::equal, skip_ldmx);
 254     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 255     __ ldmxcsr(mxcsr_std, rscratch1);
 256     __ bind(skip_ldmx);
 257   }
 258 #endif
 259 
 260   // Load up thread register
 261   __ movptr(r15_thread, thread);
 262   __ reinit_heapbase();
 263 
 264 #ifdef ASSERT
 265   // make sure we have no pending exceptions
 266   {
 267     Label L;
 268     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 269     __ jcc(Assembler::equal, L);
 270     __ stop("StubRoutines::call_stub: entered with pending exception");
 271     __ bind(L);
 272   }
 273 #endif
 274 
 275   // pass parameters if any
 276   BLOCK_COMMENT("pass parameters if any");
 277   Label parameters_done;
 278   __ movl(c_rarg3, parameter_size);
 279   __ testl(c_rarg3, c_rarg3);
 280   __ jcc(Assembler::zero, parameters_done);
 281 
 282   Label loop;
 283   __ movptr(c_rarg2, parameters);       // parameter pointer
 284   __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 285   __ BIND(loop);
 286   __ movptr(rax, Address(c_rarg2, 0));// get parameter
 287   __ addptr(c_rarg2, wordSize);       // advance to next parameter
 288   __ decrementl(c_rarg1);             // decrement counter
 289   __ push(rax);                       // pass parameter
 290   __ jcc(Assembler::notZero, loop);
 291 
 292   // call Java function
 293   __ BIND(parameters_done);
 294   __ movptr(rbx, method);             // get Method*
 295   __ movptr(c_rarg1, entry_point);    // get entry_point
 296   __ mov(r13, rsp);                   // set sender sp
 297   BLOCK_COMMENT("call Java function");
 298   __ call(c_rarg1);
 299 
 300   BLOCK_COMMENT("call_stub_return_address:");
 301   return_address = __ pc();
 302 
 303   // store result depending on type (everything that is not
 304   // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 305   __ movptr(c_rarg0, result);
 306   Label is_long, is_float, is_double, exit;
 307   __ movl(c_rarg1, result_type);
 308   __ cmpl(c_rarg1, T_OBJECT);
 309   __ jcc(Assembler::equal, is_long);
 310   __ cmpl(c_rarg1, T_LONG);
 311   __ jcc(Assembler::equal, is_long);
 312   __ cmpl(c_rarg1, T_FLOAT);
 313   __ jcc(Assembler::equal, is_float);
 314   __ cmpl(c_rarg1, T_DOUBLE);
 315   __ jcc(Assembler::equal, is_double);
 316 #ifdef ASSERT
 317   // make sure the type is INT
 318   {
 319     Label L;
 320     __ cmpl(c_rarg1, T_INT);
 321     __ jcc(Assembler::equal, L);
 322     __ stop("StubRoutines::call_stub: unexpected result type");
 323     __ bind(L);
 324   }
 325 #endif
 326 
 327   // handle T_INT case
 328   __ movl(Address(c_rarg0, 0), rax);
 329 
 330   __ BIND(exit);
 331 
 332   // pop parameters
 333   __ lea(rsp, rsp_after_call);
 334 
 335 #ifdef ASSERT
 336   // verify that threads correspond
 337   {
 338    Label L1, L2, L3;
 339     __ cmpptr(r15_thread, thread);
 340     __ jcc(Assembler::equal, L1);
 341     __ stop("StubRoutines::call_stub: r15_thread is corrupted");
 342     __ bind(L1);
 343     __ get_thread_slow(rbx);
 344     __ cmpptr(r15_thread, thread);
 345     __ jcc(Assembler::equal, L2);
 346     __ stop("StubRoutines::call_stub: r15_thread is modified by call");
 347     __ bind(L2);
 348     __ cmpptr(r15_thread, rbx);
 349     __ jcc(Assembler::equal, L3);
 350     __ stop("StubRoutines::call_stub: threads must correspond");
 351     __ bind(L3);
 352   }
 353 #endif
 354 
 355   __ pop_cont_fastpath();
 356 
 357   // restore regs belonging to calling function
 358 #ifdef _WIN64
 359   // emit the restores for xmm regs
 360   for (int i = xmm_save_first; i <= last_reg; i++) {
 361     __ movdqu(as_XMMRegister(i), xmm_save(i));
 362   }
 363 #endif
 364   __ movptr(r15, r15_save);
 365   __ movptr(r14, r14_save);
 366   __ movptr(r13, r13_save);
 367   __ movptr(r12, r12_save);
 368   __ movptr(rbx, rbx_save);
 369 
 370 #ifdef _WIN64
 371   __ movptr(rdi, rdi_save);
 372   __ movptr(rsi, rsi_save);
 373 #else
 374   __ ldmxcsr(mxcsr_save);
 375 #endif
 376 
 377   // restore rsp
 378   __ addptr(rsp, -rsp_after_call_off * wordSize);
 379 
 380   // return
 381   __ vzeroupper();
 382   __ pop(rbp);
 383   __ ret(0);
 384 
 385   // handle return types different from T_INT
 386   __ BIND(is_long);
 387   __ movq(Address(c_rarg0, 0), rax);
 388   __ jmp(exit);
 389 
 390   __ BIND(is_float);
 391   __ movflt(Address(c_rarg0, 0), xmm0);
 392   __ jmp(exit);
 393 
 394   __ BIND(is_double);
 395   __ movdbl(Address(c_rarg0, 0), xmm0);
 396   __ jmp(exit);
 397 
 398   return start;
 399 }
 400 
 401 // Return point for a Java call if there's an exception thrown in
 402 // Java code.  The exception is caught and transformed into a
 403 // pending exception stored in JavaThread that can be tested from
 404 // within the VM.
 405 //
 406 // Note: Usually the parameters are removed by the callee. In case
 407 // of an exception crossing an activation frame boundary, that is
 408 // not the case if the callee is compiled code => need to setup the
 409 // rsp.
 410 //
 411 // rax: exception oop
 412 
 413 address StubGenerator::generate_catch_exception() {
 414   StubId stub_id = StubId::stubgen_catch_exception_id;
 415   StubCodeMark mark(this, stub_id);
 416   address start = __ pc();
 417 
 418   // same as in generate_call_stub():
 419   const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 420   const Address thread        (rbp, thread_off         * wordSize);
 421 
 422 #ifdef ASSERT
 423   // verify that threads correspond
 424   {
 425     Label L1, L2, L3;
 426     __ cmpptr(r15_thread, thread);
 427     __ jcc(Assembler::equal, L1);
 428     __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
 429     __ bind(L1);
 430     __ get_thread_slow(rbx);
 431     __ cmpptr(r15_thread, thread);
 432     __ jcc(Assembler::equal, L2);
 433     __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
 434     __ bind(L2);
 435     __ cmpptr(r15_thread, rbx);
 436     __ jcc(Assembler::equal, L3);
 437     __ stop("StubRoutines::catch_exception: threads must correspond");
 438     __ bind(L3);
 439   }
 440 #endif
 441 
 442   // set pending exception
 443   __ verify_oop(rax);
 444 
 445   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 446   __ lea(rscratch1, ExternalAddress((address)__FILE__));
 447   __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 448   __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 449 
 450   // complete return to VM
 451   assert(StubRoutines::_call_stub_return_address != nullptr,
 452          "_call_stub_return_address must have been generated before");
 453   __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 454 
 455   return start;
 456 }
 457 
 458 // Continuation point for runtime calls returning with a pending
 459 // exception.  The pending exception check happened in the runtime
 460 // or native call stub.  The pending exception in Thread is
 461 // converted into a Java-level exception.
 462 //
 463 // Contract with Java-level exception handlers:
 464 // rax: exception
 465 // rdx: throwing pc
 466 //
 467 // NOTE: At entry of this stub, exception-pc must be on stack !!
 468 
 469 address StubGenerator::generate_forward_exception() {
 470   StubId stub_id = StubId::stubgen_forward_exception_id;
 471   StubCodeMark mark(this, stub_id);
 472   address start = __ pc();
 473 
 474   // Upon entry, the sp points to the return address returning into
 475   // Java (interpreted or compiled) code; i.e., the return address
 476   // becomes the throwing pc.
 477   //
 478   // Arguments pushed before the runtime call are still on the stack
 479   // but the exception handler will reset the stack pointer ->
 480   // ignore them.  A potential result in registers can be ignored as
 481   // well.
 482 
 483 #ifdef ASSERT
 484   // make sure this code is only executed if there is a pending exception
 485   {
 486     Label L;
 487     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 488     __ jcc(Assembler::notEqual, L);
 489     __ stop("StubRoutines::forward exception: no pending exception (1)");
 490     __ bind(L);
 491   }
 492 #endif
 493 
 494   // compute exception handler into rbx
 495   __ movptr(c_rarg0, Address(rsp, 0));
 496   BLOCK_COMMENT("call exception_handler_for_return_address");
 497   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 498                        SharedRuntime::exception_handler_for_return_address),
 499                   r15_thread, c_rarg0);
 500   __ mov(rbx, rax);
 501 
 502   // setup rax & rdx, remove return address & clear pending exception
 503   __ pop(rdx);
 504   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 505   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
 506 
 507 #ifdef ASSERT
 508   // make sure exception is set
 509   {
 510     Label L;
 511     __ testptr(rax, rax);
 512     __ jcc(Assembler::notEqual, L);
 513     __ stop("StubRoutines::forward exception: no pending exception (2)");
 514     __ bind(L);
 515   }
 516 #endif
 517 
 518   // continue at exception handler (return address removed)
 519   // rax: exception
 520   // rbx: exception handler
 521   // rdx: throwing pc
 522   __ verify_oop(rax);
 523   __ jmp(rbx);
 524 
 525   return start;
 526 }
 527 
 528 // Support for intptr_t OrderAccess::fence()
 529 //
 530 // Arguments :
 531 //
 532 // Result:
 533 address StubGenerator::generate_orderaccess_fence() {
 534   StubId stub_id = StubId::stubgen_fence_id;
 535   StubCodeMark mark(this, stub_id);
 536   address start = __ pc();
 537 
 538   __ membar(Assembler::StoreLoad);
 539   __ ret(0);
 540 
 541   return start;
 542 }
 543 
 544 
 545 //----------------------------------------------------------------------------------------------------
 546 // Support for void verify_mxcsr()
 547 //
 548 // This routine is used with -Xcheck:jni to verify that native
 549 // JNI code does not return to Java code without restoring the
 550 // MXCSR register to our expected state.
 551 
 552 address StubGenerator::generate_verify_mxcsr() {
 553   StubId stub_id = StubId::stubgen_verify_mxcsr_id;
 554   StubCodeMark mark(this, stub_id);
 555   address start = __ pc();
 556 
 557   const Address mxcsr_save(rsp, 0);
 558 
 559   if (CheckJNICalls) {
 560     Label ok_ret;
 561     ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
 562     __ push_ppx(rax);
 563     __ subptr(rsp, wordSize);      // allocate a temp location
 564     __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
 565     __ jcc(Assembler::equal, ok_ret);
 566 
 567     __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 568 
 569     __ ldmxcsr(mxcsr_std, rscratch1);
 570 
 571     __ bind(ok_ret);
 572     __ addptr(rsp, wordSize);
 573     __ pop_ppx(rax);
 574   }
 575 
 576   __ ret(0);
 577 
 578   return start;
 579 }
 580 
 581 address StubGenerator::generate_f2i_fixup() {
 582   StubId stub_id = StubId::stubgen_f2i_fixup_id;
 583   StubCodeMark mark(this, stub_id);
 584   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 585 
 586   address start = __ pc();
 587 
 588   Label L;
 589 
 590   __ push_ppx(rax);
 591   __ push_ppx(c_rarg3);
 592   __ push_ppx(c_rarg2);
 593   __ push_ppx(c_rarg1);
 594 
 595   __ movl(rax, 0x7f800000);
 596   __ xorl(c_rarg3, c_rarg3);
 597   __ movl(c_rarg2, inout);
 598   __ movl(c_rarg1, c_rarg2);
 599   __ andl(c_rarg1, 0x7fffffff);
 600   __ cmpl(rax, c_rarg1); // NaN? -> 0
 601   __ jcc(Assembler::negative, L);
 602   __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 603   __ movl(c_rarg3, 0x80000000);
 604   __ movl(rax, 0x7fffffff);
 605   __ cmovl(Assembler::positive, c_rarg3, rax);
 606 
 607   __ bind(L);
 608   __ movptr(inout, c_rarg3);
 609 
 610   __ pop_ppx(c_rarg1);
 611   __ pop_ppx(c_rarg2);
 612   __ pop_ppx(c_rarg3);
 613   __ pop_ppx(rax);
 614 
 615   __ ret(0);
 616 
 617   return start;
 618 }
 619 
 620 address StubGenerator::generate_f2l_fixup() {
 621   StubId stub_id = StubId::stubgen_f2l_fixup_id;
 622   StubCodeMark mark(this, stub_id);
 623   Address inout(rsp, 5 * wordSize); // return address + 4 saves
 624   address start = __ pc();
 625 
 626   Label L;
 627 
 628   __ push_ppx(rax);
 629   __ push_ppx(c_rarg3);
 630   __ push_ppx(c_rarg2);
 631   __ push_ppx(c_rarg1);
 632 
 633   __ movl(rax, 0x7f800000);
 634   __ xorl(c_rarg3, c_rarg3);
 635   __ movl(c_rarg2, inout);
 636   __ movl(c_rarg1, c_rarg2);
 637   __ andl(c_rarg1, 0x7fffffff);
 638   __ cmpl(rax, c_rarg1); // NaN? -> 0
 639   __ jcc(Assembler::negative, L);
 640   __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 641   __ mov64(c_rarg3, 0x8000000000000000);
 642   __ mov64(rax, 0x7fffffffffffffff);
 643   __ cmov(Assembler::positive, c_rarg3, rax);
 644 
 645   __ bind(L);
 646   __ movptr(inout, c_rarg3);
 647 
 648   __ pop_ppx(c_rarg1);
 649   __ pop_ppx(c_rarg2);
 650   __ pop_ppx(c_rarg3);
 651   __ pop_ppx(rax);
 652 
 653   __ ret(0);
 654 
 655   return start;
 656 }
 657 
 658 address StubGenerator::generate_d2i_fixup() {
 659   StubId stub_id = StubId::stubgen_d2i_fixup_id;
 660   StubCodeMark mark(this, stub_id);
 661   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 662 
 663   address start = __ pc();
 664 
 665   Label L;
 666 
 667   __ push_ppx(rax);
 668   __ push_ppx(c_rarg3);
 669   __ push_ppx(c_rarg2);
 670   __ push_ppx(c_rarg1);
 671   __ push_ppx(c_rarg0);
 672 
 673   __ movl(rax, 0x7ff00000);
 674   __ movq(c_rarg2, inout);
 675   __ movl(c_rarg3, c_rarg2);
 676   __ mov(c_rarg1, c_rarg2);
 677   __ mov(c_rarg0, c_rarg2);
 678   __ negl(c_rarg3);
 679   __ shrptr(c_rarg1, 0x20);
 680   __ orl(c_rarg3, c_rarg2);
 681   __ andl(c_rarg1, 0x7fffffff);
 682   __ xorl(c_rarg2, c_rarg2);
 683   __ shrl(c_rarg3, 0x1f);
 684   __ orl(c_rarg1, c_rarg3);
 685   __ cmpl(rax, c_rarg1);
 686   __ jcc(Assembler::negative, L); // NaN -> 0
 687   __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 688   __ movl(c_rarg2, 0x80000000);
 689   __ movl(rax, 0x7fffffff);
 690   __ cmov(Assembler::positive, c_rarg2, rax);
 691 
 692   __ bind(L);
 693   __ movptr(inout, c_rarg2);
 694 
 695   __ pop_ppx(c_rarg0);
 696   __ pop_ppx(c_rarg1);
 697   __ pop_ppx(c_rarg2);
 698   __ pop_ppx(c_rarg3);
 699   __ pop_ppx(rax);
 700 
 701   __ ret(0);
 702 
 703   return start;
 704 }
 705 
 706 address StubGenerator::generate_d2l_fixup() {
 707   StubId stub_id = StubId::stubgen_d2l_fixup_id;
 708   StubCodeMark mark(this, stub_id);
 709   Address inout(rsp, 6 * wordSize); // return address + 5 saves
 710 
 711   address start = __ pc();
 712 
 713   Label L;
 714 
 715   __ push_ppx(rax);
 716   __ push_ppx(c_rarg3);
 717   __ push_ppx(c_rarg2);
 718   __ push_ppx(c_rarg1);
 719   __ push_ppx(c_rarg0);
 720 
 721   __ movl(rax, 0x7ff00000);
 722   __ movq(c_rarg2, inout);
 723   __ movl(c_rarg3, c_rarg2);
 724   __ mov(c_rarg1, c_rarg2);
 725   __ mov(c_rarg0, c_rarg2);
 726   __ negl(c_rarg3);
 727   __ shrptr(c_rarg1, 0x20);
 728   __ orl(c_rarg3, c_rarg2);
 729   __ andl(c_rarg1, 0x7fffffff);
 730   __ xorl(c_rarg2, c_rarg2);
 731   __ shrl(c_rarg3, 0x1f);
 732   __ orl(c_rarg1, c_rarg3);
 733   __ cmpl(rax, c_rarg1);
 734   __ jcc(Assembler::negative, L); // NaN -> 0
 735   __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 736   __ mov64(c_rarg2, 0x8000000000000000);
 737   __ mov64(rax, 0x7fffffffffffffff);
 738   __ cmovq(Assembler::positive, c_rarg2, rax);
 739 
 740   __ bind(L);
 741   __ movq(inout, c_rarg2);
 742 
 743   __ pop_ppx(c_rarg0);
 744   __ pop_ppx(c_rarg1);
 745   __ pop_ppx(c_rarg2);
 746   __ pop_ppx(c_rarg3);
 747   __ pop_ppx(rax);
 748 
 749   __ ret(0);
 750 
 751   return start;
 752 }
 753 
 754 address StubGenerator::generate_count_leading_zeros_lut() {
 755   __ align64();
 756   StubId stub_id = StubId::stubgen_vector_count_leading_zeros_lut_id;
 757   StubCodeMark mark(this, stub_id);
 758   address start = __ pc();
 759 
 760   __ emit_data64(0x0101010102020304, relocInfo::none);
 761   __ emit_data64(0x0000000000000000, relocInfo::none);
 762   __ emit_data64(0x0101010102020304, relocInfo::none);
 763   __ emit_data64(0x0000000000000000, relocInfo::none);
 764   __ emit_data64(0x0101010102020304, relocInfo::none);
 765   __ emit_data64(0x0000000000000000, relocInfo::none);
 766   __ emit_data64(0x0101010102020304, relocInfo::none);
 767   __ emit_data64(0x0000000000000000, relocInfo::none);
 768 
 769   return start;
 770 }
 771 
 772 address StubGenerator::generate_popcount_avx_lut() {
 773   __ align64();
 774   StubId stub_id = StubId::stubgen_vector_popcount_lut_id;
 775   StubCodeMark mark(this, stub_id);
 776   address start = __ pc();
 777 
 778   __ emit_data64(0x0302020102010100, relocInfo::none);
 779   __ emit_data64(0x0403030203020201, relocInfo::none);
 780   __ emit_data64(0x0302020102010100, relocInfo::none);
 781   __ emit_data64(0x0403030203020201, relocInfo::none);
 782   __ emit_data64(0x0302020102010100, relocInfo::none);
 783   __ emit_data64(0x0403030203020201, relocInfo::none);
 784   __ emit_data64(0x0302020102010100, relocInfo::none);
 785   __ emit_data64(0x0403030203020201, relocInfo::none);
 786 
 787   return start;
 788 }
 789 
 790 address StubGenerator::generate_iota_indices() {
 791   __ align(CodeEntryAlignment);
 792   StubId stub_id = StubId::stubgen_vector_iota_indices_id;
 793   StubCodeMark mark(this, stub_id);
 794   address start = __ pc();
 795   // B
 796   __ emit_data64(0x0706050403020100, relocInfo::none);
 797   __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
 798   __ emit_data64(0x1716151413121110, relocInfo::none);
 799   __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
 800   __ emit_data64(0x2726252423222120, relocInfo::none);
 801   __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
 802   __ emit_data64(0x3736353433323130, relocInfo::none);
 803   __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
 804   // W
 805   __ emit_data64(0x0003000200010000, relocInfo::none);
 806   __ emit_data64(0x0007000600050004, relocInfo::none);
 807   __ emit_data64(0x000B000A00090008, relocInfo::none);
 808   __ emit_data64(0x000F000E000D000C, relocInfo::none);
 809   __ emit_data64(0x0013001200110010, relocInfo::none);
 810   __ emit_data64(0x0017001600150014, relocInfo::none);
 811   __ emit_data64(0x001B001A00190018, relocInfo::none);
 812   __ emit_data64(0x001F001E001D001C, relocInfo::none);
 813   // D
 814   __ emit_data64(0x0000000100000000, relocInfo::none);
 815   __ emit_data64(0x0000000300000002, relocInfo::none);
 816   __ emit_data64(0x0000000500000004, relocInfo::none);
 817   __ emit_data64(0x0000000700000006, relocInfo::none);
 818   __ emit_data64(0x0000000900000008, relocInfo::none);
 819   __ emit_data64(0x0000000B0000000A, relocInfo::none);
 820   __ emit_data64(0x0000000D0000000C, relocInfo::none);
 821   __ emit_data64(0x0000000F0000000E, relocInfo::none);
 822   // Q
 823   __ emit_data64(0x0000000000000000, relocInfo::none);
 824   __ emit_data64(0x0000000000000001, relocInfo::none);
 825   __ emit_data64(0x0000000000000002, relocInfo::none);
 826   __ emit_data64(0x0000000000000003, relocInfo::none);
 827   __ emit_data64(0x0000000000000004, relocInfo::none);
 828   __ emit_data64(0x0000000000000005, relocInfo::none);
 829   __ emit_data64(0x0000000000000006, relocInfo::none);
 830   __ emit_data64(0x0000000000000007, relocInfo::none);
 831   // D - FP
 832   __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
 833   __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
 834   __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
 835   __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
 836   __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
 837   __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
 838   __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
 839   __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
 840   // Q - FP
 841   __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
 842   __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
 843   __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
 844   __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
 845   __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
 846   __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
 847   __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
 848   __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
 849   return start;
 850 }
 851 
 852 address StubGenerator::generate_vector_reverse_bit_lut() {
 853   __ align(CodeEntryAlignment);
 854   StubId stub_id = StubId::stubgen_vector_reverse_bit_lut_id;
 855   StubCodeMark mark(this, stub_id);
 856   address start = __ pc();
 857 
 858   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 859   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 860   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 861   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 862   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 863   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 864   __ emit_data64(0x0E060A020C040800, relocInfo::none);
 865   __ emit_data64(0x0F070B030D050901, relocInfo::none);
 866 
 867   return start;
 868 }
 869 
 870 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() {
 871   __ align(CodeEntryAlignment);
 872   StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_long_id;
 873   StubCodeMark mark(this, stub_id);
 874   address start = __ pc();
 875 
 876   __ emit_data64(0x0001020304050607, relocInfo::none);
 877   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 878   __ emit_data64(0x0001020304050607, relocInfo::none);
 879   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 880   __ emit_data64(0x0001020304050607, relocInfo::none);
 881   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 882   __ emit_data64(0x0001020304050607, relocInfo::none);
 883   __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
 884 
 885   return start;
 886 }
 887 
 888 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() {
 889   __ align(CodeEntryAlignment);
 890   StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_int_id;
 891   StubCodeMark mark(this, stub_id);
 892   address start = __ pc();
 893 
 894   __ emit_data64(0x0405060700010203, relocInfo::none);
 895   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 896   __ emit_data64(0x0405060700010203, relocInfo::none);
 897   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 898   __ emit_data64(0x0405060700010203, relocInfo::none);
 899   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 900   __ emit_data64(0x0405060700010203, relocInfo::none);
 901   __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
 902 
 903   return start;
 904 }
 905 
 906 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() {
 907   __ align(CodeEntryAlignment);
 908   StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_short_id;
 909   StubCodeMark mark(this, stub_id);
 910   address start = __ pc();
 911 
 912   __ emit_data64(0x0607040502030001, relocInfo::none);
 913   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 914   __ emit_data64(0x0607040502030001, relocInfo::none);
 915   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 916   __ emit_data64(0x0607040502030001, relocInfo::none);
 917   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 918   __ emit_data64(0x0607040502030001, relocInfo::none);
 919   __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
 920 
 921   return start;
 922 }
 923 
 924 address StubGenerator::generate_vector_byte_shuffle_mask() {
 925   __ align(CodeEntryAlignment);
 926   StubId stub_id = StubId::stubgen_vector_byte_shuffle_mask_id;
 927   StubCodeMark mark(this, stub_id);
 928   address start = __ pc();
 929 
 930   __ emit_data64(0x7070707070707070, relocInfo::none);
 931   __ emit_data64(0x7070707070707070, relocInfo::none);
 932   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 933   __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
 934 
 935   return start;
 936 }
 937 
 938 address StubGenerator::generate_fp_mask(StubId stub_id, int64_t mask) {
 939   __ align(CodeEntryAlignment);
 940   StubCodeMark mark(this, stub_id);
 941   address start = __ pc();
 942 
 943   __ emit_data64( mask, relocInfo::none );
 944   __ emit_data64( mask, relocInfo::none );
 945 
 946   return start;
 947 }
 948 
 949 address StubGenerator::generate_compress_perm_table(StubId stub_id) {
 950   int esize;
 951   switch (stub_id) {
 952   case StubId::stubgen_compress_perm_table32_id:
 953     esize = 32;
 954     break;
 955   case StubId::stubgen_compress_perm_table64_id:
 956     esize = 64;
 957     break;
 958   default:
 959     ShouldNotReachHere();
 960   }
 961   __ align(CodeEntryAlignment);
 962   StubCodeMark mark(this, stub_id);
 963   address start = __ pc();
 964   if (esize == 32) {
 965     // Loop to generate 256 x 8 int compression permute index table. A row is
 966     // accessed using 8 bit index computed using vector mask. An entry in
 967     // a row holds either a valid permute index corresponding to set bit position
 968     // or a -1 (default) value.
 969     for (int mask = 0; mask < 256; mask++) {
 970       int ctr = 0;
 971       for (int j = 0; j < 8; j++) {
 972         if (mask & (1 << j)) {
 973           __ emit_data(j, relocInfo::none);
 974           ctr++;
 975         }
 976       }
 977       for (; ctr < 8; ctr++) {
 978         __ emit_data(-1, relocInfo::none);
 979       }
 980     }
 981   } else {
 982     assert(esize == 64, "");
 983     // Loop to generate 16 x 4 long compression permute index table. A row is
 984     // accessed using 4 bit index computed using vector mask. An entry in
 985     // a row holds either a valid permute index pair for a quadword corresponding
 986     // to set bit position or a -1 (default) value.
 987     for (int mask = 0; mask < 16; mask++) {
 988       int ctr = 0;
 989       for (int j = 0; j < 4; j++) {
 990         if (mask & (1 << j)) {
 991           __ emit_data(2 * j, relocInfo::none);
 992           __ emit_data(2 * j + 1, relocInfo::none);
 993           ctr++;
 994         }
 995       }
 996       for (; ctr < 4; ctr++) {
 997         __ emit_data64(-1L, relocInfo::none);
 998       }
 999     }
1000   }
1001   return start;
1002 }
1003 
1004 address StubGenerator::generate_expand_perm_table(StubId stub_id) {
1005   int esize;
1006   switch (stub_id) {
1007   case StubId::stubgen_expand_perm_table32_id:
1008     esize = 32;
1009     break;
1010   case StubId::stubgen_expand_perm_table64_id:
1011     esize = 64;
1012     break;
1013   default:
1014     ShouldNotReachHere();
1015   }
1016   __ align(CodeEntryAlignment);
1017   StubCodeMark mark(this, stub_id);
1018   address start = __ pc();
1019   if (esize == 32) {
1020     // Loop to generate 256 x 8 int expand permute index table. A row is accessed
1021     // using 8 bit index computed using vector mask. An entry in a row holds either
1022     // a valid permute index (starting from least significant lane) placed at poisition
1023     // corresponding to set bit position or a -1 (default) value.
1024     for (int mask = 0; mask < 256; mask++) {
1025       int ctr = 0;
1026       for (int j = 0; j < 8; j++) {
1027         if (mask & (1 << j)) {
1028           __ emit_data(ctr++, relocInfo::none);
1029         } else {
1030           __ emit_data(-1, relocInfo::none);
1031         }
1032       }
1033     }
1034   } else {
1035     assert(esize == 64, "");
1036     // Loop to generate 16 x 4 long expand permute index table. A row is accessed
1037     // using 4 bit index computed using vector mask. An entry in a row holds either
1038     // a valid doubleword permute index pair representing a quadword index (starting
1039     // from least significant lane) placed at poisition corresponding to set bit
1040     // position or a -1 (default) value.
1041     for (int mask = 0; mask < 16; mask++) {
1042       int ctr = 0;
1043       for (int j = 0; j < 4; j++) {
1044         if (mask & (1 << j)) {
1045           __ emit_data(2 * ctr, relocInfo::none);
1046           __ emit_data(2 * ctr + 1, relocInfo::none);
1047           ctr++;
1048         } else {
1049           __ emit_data64(-1L, relocInfo::none);
1050         }
1051       }
1052     }
1053   }
1054   return start;
1055 }
1056 
1057 address StubGenerator::generate_vector_mask(StubId stub_id, int64_t mask) {
1058   __ align(CodeEntryAlignment);
1059   StubCodeMark mark(this, stub_id);
1060   address start = __ pc();
1061 
1062   __ emit_data64(mask, relocInfo::none);
1063   __ emit_data64(mask, relocInfo::none);
1064   __ emit_data64(mask, relocInfo::none);
1065   __ emit_data64(mask, relocInfo::none);
1066   __ emit_data64(mask, relocInfo::none);
1067   __ emit_data64(mask, relocInfo::none);
1068   __ emit_data64(mask, relocInfo::none);
1069   __ emit_data64(mask, relocInfo::none);
1070 
1071   return start;
1072 }
1073 
1074 address StubGenerator::generate_vector_byte_perm_mask() {
1075   __ align(CodeEntryAlignment);
1076   StubId stub_id = StubId::stubgen_vector_byte_perm_mask_id;
1077   StubCodeMark mark(this, stub_id);
1078   address start = __ pc();
1079 
1080   __ emit_data64(0x0000000000000001, relocInfo::none);
1081   __ emit_data64(0x0000000000000003, relocInfo::none);
1082   __ emit_data64(0x0000000000000005, relocInfo::none);
1083   __ emit_data64(0x0000000000000007, relocInfo::none);
1084   __ emit_data64(0x0000000000000000, relocInfo::none);
1085   __ emit_data64(0x0000000000000002, relocInfo::none);
1086   __ emit_data64(0x0000000000000004, relocInfo::none);
1087   __ emit_data64(0x0000000000000006, relocInfo::none);
1088 
1089   return start;
1090 }
1091 
1092 address StubGenerator::generate_vector_fp_mask(StubId stub_id, int64_t mask) {
1093   __ align(CodeEntryAlignment);
1094   StubCodeMark mark(this, stub_id);
1095   address start = __ pc();
1096 
1097   __ emit_data64(mask, relocInfo::none);
1098   __ emit_data64(mask, relocInfo::none);
1099   __ emit_data64(mask, relocInfo::none);
1100   __ emit_data64(mask, relocInfo::none);
1101   __ emit_data64(mask, relocInfo::none);
1102   __ emit_data64(mask, relocInfo::none);
1103   __ emit_data64(mask, relocInfo::none);
1104   __ emit_data64(mask, relocInfo::none);
1105 
1106   return start;
1107 }
1108 
1109 address StubGenerator::generate_vector_custom_i32(StubId stub_id, Assembler::AvxVectorLen len,
1110                                    int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1111                                    int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1112                                    int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1113                                    int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1114   __ align(CodeEntryAlignment);
1115   StubCodeMark mark(this, stub_id);
1116   address start = __ pc();
1117 
1118   assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1119   __ emit_data(val0, relocInfo::none, 0);
1120   __ emit_data(val1, relocInfo::none, 0);
1121   __ emit_data(val2, relocInfo::none, 0);
1122   __ emit_data(val3, relocInfo::none, 0);
1123   if (len >= Assembler::AVX_256bit) {
1124     __ emit_data(val4, relocInfo::none, 0);
1125     __ emit_data(val5, relocInfo::none, 0);
1126     __ emit_data(val6, relocInfo::none, 0);
1127     __ emit_data(val7, relocInfo::none, 0);
1128     if (len >= Assembler::AVX_512bit) {
1129       __ emit_data(val8, relocInfo::none, 0);
1130       __ emit_data(val9, relocInfo::none, 0);
1131       __ emit_data(val10, relocInfo::none, 0);
1132       __ emit_data(val11, relocInfo::none, 0);
1133       __ emit_data(val12, relocInfo::none, 0);
1134       __ emit_data(val13, relocInfo::none, 0);
1135       __ emit_data(val14, relocInfo::none, 0);
1136       __ emit_data(val15, relocInfo::none, 0);
1137     }
1138   }
1139   return start;
1140 }
1141 
1142 // Non-destructive plausibility checks for oops
1143 //
1144 // Arguments:
1145 //    all args on stack!
1146 //
1147 // Stack after saving c_rarg3:
1148 //    [tos + 0]: saved c_rarg3
1149 //    [tos + 1]: saved c_rarg2
1150 //    [tos + 2]: saved r12 (several TemplateTable methods use it)
1151 //    [tos + 3]: saved flags
1152 //    [tos + 4]: return address
1153 //  * [tos + 5]: error message (char*)
1154 //  * [tos + 6]: object to verify (oop)
1155 //  * [tos + 7]: saved rax - saved by caller and bashed
1156 //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
1157 //  * = popped on exit
1158 address StubGenerator::generate_verify_oop() {
1159   StubId stub_id = StubId::stubgen_verify_oop_id;
1160   StubCodeMark mark(this, stub_id);
1161   address start = __ pc();
1162 
1163   Label exit, error;
1164 
1165   __ pushf();
1166   __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1167 
1168   __ push_ppx(r12);
1169 
1170   // save c_rarg2 and c_rarg3
1171   __ push_ppx(c_rarg2);
1172   __ push_ppx(c_rarg3);
1173 
1174   enum {
1175     // After previous pushes.
1176     oop_to_verify = 6 * wordSize,
1177     saved_rax     = 7 * wordSize,
1178     saved_r10     = 8 * wordSize,
1179 
1180     // Before the call to MacroAssembler::debug(), see below.
1181     return_addr   = 16 * wordSize,
1182     error_msg     = 17 * wordSize
1183   };
1184 
1185   // get object
1186   __ movptr(rax, Address(rsp, oop_to_verify));
1187 
1188   // make sure object is 'reasonable'
1189   __ testptr(rax, rax);
1190   __ jcc(Assembler::zero, exit); // if obj is null it is OK
1191 
1192    BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler();
1193    bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error);
1194 
1195   // return if everything seems ok
1196   __ bind(exit);
1197   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1198   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1199   __ pop_ppx(c_rarg3);           // restore c_rarg3
1200   __ pop_ppx(c_rarg2);           // restore c_rarg2
1201   __ pop_ppx(r12);               // restore r12
1202   __ popf();                                   // restore flags
1203   __ ret(4 * wordSize);                        // pop caller saved stuff
1204 
1205   // handle errors
1206   __ bind(error);
1207   __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1208   __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1209   __ pop_ppx(c_rarg3);           // get saved c_rarg3 back
1210   __ pop_ppx(c_rarg2);           // get saved c_rarg2 back
1211   __ pop_ppx(r12);               // get saved r12 back
1212   __ popf();                                   // get saved flags off stack --
1213                                                // will be ignored
1214 
1215   __ pusha();                                  // push registers
1216                                                // (rip is already
1217                                                // already pushed)
1218   // debug(char* msg, int64_t pc, int64_t regs[])
1219   // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1220   // pushed all the registers, so now the stack looks like:
1221   //     [tos +  0] 16 saved registers
1222   //     [tos + 16] return address
1223   //   * [tos + 17] error message (char*)
1224   //   * [tos + 18] object to verify (oop)
1225   //   * [tos + 19] saved rax - saved by caller and bashed
1226   //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1227   //   * = popped on exit
1228 
1229   __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1230   __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1231   __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1232   __ mov(r12, rsp);                               // remember rsp
1233   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1234   __ andptr(rsp, -16);                            // align stack as required by ABI
1235   BLOCK_COMMENT("call MacroAssembler::debug");
1236   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1237   __ hlt();
1238 
1239   return start;
1240 }
1241 
1242 
1243 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1244 //
1245 // Outputs:
1246 //    rdi - rcx
1247 //    rsi - rdx
1248 //    rdx - r8
1249 //    rcx - r9
1250 //
1251 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1252 // are non-volatile.  r9 and r10 should not be used by the caller.
1253 //
1254 void StubGenerator::setup_arg_regs(int nargs) {
1255   const Register saved_rdi = r9;
1256   const Register saved_rsi = r10;
1257   assert(nargs == 3 || nargs == 4, "else fix");
1258 #ifdef _WIN64
1259   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1260          "unexpected argument registers");
1261   if (nargs == 4) {
1262     __ mov(rax, r9);  // r9 is also saved_rdi
1263   }
1264   __ movptr(saved_rdi, rdi);
1265   __ movptr(saved_rsi, rsi);
1266   __ mov(rdi, rcx); // c_rarg0
1267   __ mov(rsi, rdx); // c_rarg1
1268   __ mov(rdx, r8);  // c_rarg2
1269   if (nargs == 4) {
1270     __ mov(rcx, rax); // c_rarg3 (via rax)
1271   }
1272 #else
1273   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1274          "unexpected argument registers");
1275 #endif
1276   DEBUG_ONLY(_regs_in_thread = false;)
1277 }
1278 
1279 
1280 void StubGenerator::restore_arg_regs() {
1281   assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1282   const Register saved_rdi = r9;
1283   const Register saved_rsi = r10;
1284 #ifdef _WIN64
1285   __ movptr(rdi, saved_rdi);
1286   __ movptr(rsi, saved_rsi);
1287 #endif
1288 }
1289 
1290 
1291 // This is used in places where r10 is a scratch register, and can
1292 // be adapted if r9 is needed also.
1293 void StubGenerator::setup_arg_regs_using_thread(int nargs) {
1294   const Register saved_r15 = r9;
1295   assert(nargs == 3 || nargs == 4, "else fix");
1296 #ifdef _WIN64
1297   if (nargs == 4) {
1298     __ mov(rax, r9);       // r9 is also saved_r15
1299   }
1300   __ mov(saved_r15, r15);  // r15 is callee saved and needs to be restored
1301   __ get_thread_slow(r15_thread);
1302   assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1303          "unexpected argument registers");
1304   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1305   __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1306 
1307   __ mov(rdi, rcx); // c_rarg0
1308   __ mov(rsi, rdx); // c_rarg1
1309   __ mov(rdx, r8);  // c_rarg2
1310   if (nargs == 4) {
1311     __ mov(rcx, rax); // c_rarg3 (via rax)
1312   }
1313 #else
1314   assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1315          "unexpected argument registers");
1316 #endif
1317   DEBUG_ONLY(_regs_in_thread = true;)
1318 }
1319 
1320 
1321 void StubGenerator::restore_arg_regs_using_thread() {
1322   assert(_regs_in_thread, "wrong call to restore_arg_regs");
1323   const Register saved_r15 = r9;
1324 #ifdef _WIN64
1325   __ get_thread_slow(r15_thread);
1326   __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1327   __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1328   __ mov(r15, saved_r15);  // r15 is callee saved and needs to be restored
1329 #endif
1330 }
1331 
1332 
1333 void StubGenerator::setup_argument_regs(BasicType type) {
1334   if (type == T_BYTE || type == T_SHORT) {
1335     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1336                       // r9 and r10 may be used to save non-volatile registers
1337   } else {
1338     setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1339                                    // r9 is used to save r15_thread
1340   }
1341 }
1342 
1343 
1344 void StubGenerator::restore_argument_regs(BasicType type) {
1345   if (type == T_BYTE || type == T_SHORT) {
1346     restore_arg_regs();
1347   } else {
1348     restore_arg_regs_using_thread();
1349   }
1350 }
1351 
1352 address StubGenerator::generate_data_cache_writeback() {
1353   const Register src        = c_rarg0;  // source address
1354 
1355   __ align(CodeEntryAlignment);
1356 
1357   StubId stub_id = StubId::stubgen_data_cache_writeback_id;
1358   StubCodeMark mark(this, stub_id);
1359 
1360   address start = __ pc();
1361 
1362   __ enter();
1363   __ cache_wb(Address(src, 0));
1364   __ leave();
1365   __ ret(0);
1366 
1367   return start;
1368 }
1369 
1370 address StubGenerator::generate_data_cache_writeback_sync() {
1371   const Register is_pre    = c_rarg0;  // pre or post sync
1372 
1373   __ align(CodeEntryAlignment);
1374 
1375   StubId stub_id = StubId::stubgen_data_cache_writeback_sync_id;
1376   StubCodeMark mark(this, stub_id);
1377 
1378   // pre wbsync is a no-op
1379   // post wbsync translates to an sfence
1380 
1381   Label skip;
1382   address start = __ pc();
1383 
1384   __ enter();
1385   __ cmpl(is_pre, 0);
1386   __ jcc(Assembler::notEqual, skip);
1387   __ cache_wbsync(false);
1388   __ bind(skip);
1389   __ leave();
1390   __ ret(0);
1391 
1392   return start;
1393 }
1394 
1395 // ofs and limit are use for multi-block byte array.
1396 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1397 address StubGenerator::generate_md5_implCompress(StubId stub_id) {
1398   bool multi_block;
1399   switch (stub_id) {
1400   case StubId::stubgen_md5_implCompress_id:
1401     multi_block = false;
1402     break;
1403   case StubId::stubgen_md5_implCompressMB_id:
1404     multi_block = true;
1405     break;
1406   default:
1407     ShouldNotReachHere();
1408   }
1409   __ align(CodeEntryAlignment);
1410   StubCodeMark mark(this, stub_id);
1411   address start = __ pc();
1412 
1413   const Register buf_param = r15;
1414   const Address state_param(rsp, 0 * wordSize);
1415   const Address ofs_param  (rsp, 1 * wordSize    );
1416   const Address limit_param(rsp, 1 * wordSize + 4);
1417 
1418   __ enter();
1419   __ push_ppx(rbx);
1420   __ push_ppx(rdi);
1421   __ push_ppx(rsi);
1422   __ push_ppx(r15);
1423   __ subptr(rsp, 2 * wordSize);
1424 
1425   __ movptr(buf_param, c_rarg0);
1426   __ movptr(state_param, c_rarg1);
1427   if (multi_block) {
1428     __ movl(ofs_param, c_rarg2);
1429     __ movl(limit_param, c_rarg3);
1430   }
1431   __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1432 
1433   __ addptr(rsp, 2 * wordSize);
1434   __ pop_ppx(r15);
1435   __ pop_ppx(rsi);
1436   __ pop_ppx(rdi);
1437   __ pop_ppx(rbx);
1438   __ leave();
1439   __ ret(0);
1440 
1441   return start;
1442 }
1443 
1444 address StubGenerator::generate_upper_word_mask() {
1445   __ align64();
1446   StubId stub_id = StubId::stubgen_upper_word_mask_id;
1447   StubCodeMark mark(this, stub_id);
1448   address start = __ pc();
1449 
1450   __ emit_data64(0x0000000000000000, relocInfo::none);
1451   __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1452 
1453   return start;
1454 }
1455 
1456 address StubGenerator::generate_shuffle_byte_flip_mask() {
1457   __ align64();
1458   StubId stub_id = StubId::stubgen_shuffle_byte_flip_mask_id;
1459   StubCodeMark mark(this, stub_id);
1460   address start = __ pc();
1461 
1462   __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1463   __ emit_data64(0x0001020304050607, relocInfo::none);
1464 
1465   return start;
1466 }
1467 
1468 // ofs and limit are use for multi-block byte array.
1469 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1470 address StubGenerator::generate_sha1_implCompress(StubId stub_id) {
1471   bool multi_block;
1472   switch (stub_id) {
1473   case StubId::stubgen_sha1_implCompress_id:
1474     multi_block = false;
1475     break;
1476   case StubId::stubgen_sha1_implCompressMB_id:
1477     multi_block = true;
1478     break;
1479   default:
1480     ShouldNotReachHere();
1481   }
1482   __ align(CodeEntryAlignment);
1483   StubCodeMark mark(this, stub_id);
1484   address start = __ pc();
1485 
1486   Register buf = c_rarg0;
1487   Register state = c_rarg1;
1488   Register ofs = c_rarg2;
1489   Register limit = c_rarg3;
1490 
1491   const XMMRegister abcd = xmm0;
1492   const XMMRegister e0 = xmm1;
1493   const XMMRegister e1 = xmm2;
1494   const XMMRegister msg0 = xmm3;
1495 
1496   const XMMRegister msg1 = xmm4;
1497   const XMMRegister msg2 = xmm5;
1498   const XMMRegister msg3 = xmm6;
1499   const XMMRegister shuf_mask = xmm7;
1500 
1501   __ enter();
1502 
1503   __ subptr(rsp, 4 * wordSize);
1504 
1505   __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1506     buf, state, ofs, limit, rsp, multi_block);
1507 
1508   __ addptr(rsp, 4 * wordSize);
1509 
1510   __ leave();
1511   __ ret(0);
1512 
1513   return start;
1514 }
1515 
1516 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1517   __ align64();
1518   StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_id;
1519   StubCodeMark mark(this, stub_id);
1520   address start = __ pc();
1521 
1522   __ emit_data64(0x0405060700010203, relocInfo::none);
1523   __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1524 
1525   if (VM_Version::supports_avx2()) {
1526     __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1527     __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1528     // _SHUF_00BA
1529     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1530     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1531     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1532     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1533     // _SHUF_DC00
1534     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1535     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1536     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1537     __ emit_data64(0x0b0a090803020100, relocInfo::none);
1538   }
1539 
1540   return start;
1541 }
1542 
1543 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1544 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1545   __ align32();
1546   StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_sha512_id;
1547   StubCodeMark mark(this, stub_id);
1548   address start = __ pc();
1549 
1550   if (VM_Version::supports_avx2()) {
1551     __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1552     __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1553     __ emit_data64(0x1011121314151617, relocInfo::none);
1554     __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1555     __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1556     __ emit_data64(0x0000000000000000, relocInfo::none);
1557     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1558     __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1559   }
1560 
1561   return start;
1562 }
1563 
1564 // ofs and limit are use for multi-block byte array.
1565 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1566 address StubGenerator::generate_sha256_implCompress(StubId stub_id) {
1567   bool multi_block;
1568   switch (stub_id) {
1569   case StubId::stubgen_sha256_implCompress_id:
1570     multi_block = false;
1571     break;
1572   case StubId::stubgen_sha256_implCompressMB_id:
1573     multi_block = true;
1574     break;
1575   default:
1576     ShouldNotReachHere();
1577   }
1578   assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1579   __ align(CodeEntryAlignment);
1580   StubCodeMark mark(this, stub_id);
1581   address start = __ pc();
1582 
1583   Register buf = c_rarg0;
1584   Register state = c_rarg1;
1585   Register ofs = c_rarg2;
1586   Register limit = c_rarg3;
1587 
1588   const XMMRegister msg = xmm0;
1589   const XMMRegister state0 = xmm1;
1590   const XMMRegister state1 = xmm2;
1591   const XMMRegister msgtmp0 = xmm3;
1592 
1593   const XMMRegister msgtmp1 = xmm4;
1594   const XMMRegister msgtmp2 = xmm5;
1595   const XMMRegister msgtmp3 = xmm6;
1596   const XMMRegister msgtmp4 = xmm7;
1597 
1598   const XMMRegister shuf_mask = xmm8;
1599 
1600   __ enter();
1601 
1602   __ subptr(rsp, 4 * wordSize);
1603 
1604   if (VM_Version::supports_sha()) {
1605     __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1606       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1607   } else if (VM_Version::supports_avx2()) {
1608     __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1609       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1610   }
1611   __ addptr(rsp, 4 * wordSize);
1612   __ vzeroupper();
1613   __ leave();
1614   __ ret(0);
1615 
1616   return start;
1617 }
1618 
1619 address StubGenerator::generate_sha512_implCompress(StubId stub_id) {
1620   bool multi_block;
1621   switch (stub_id) {
1622   case StubId::stubgen_sha512_implCompress_id:
1623     multi_block = false;
1624     break;
1625   case StubId::stubgen_sha512_implCompressMB_id:
1626     multi_block = true;
1627     break;
1628   default:
1629     ShouldNotReachHere();
1630   }
1631   assert(VM_Version::supports_avx2(), "");
1632   assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), "");
1633   __ align(CodeEntryAlignment);
1634   StubCodeMark mark(this, stub_id);
1635   address start = __ pc();
1636 
1637   Register buf = c_rarg0;
1638   Register state = c_rarg1;
1639   Register ofs = c_rarg2;
1640   Register limit = c_rarg3;
1641 
1642   __ enter();
1643 
1644   if (VM_Version::supports_sha512()) {
1645       __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block);
1646   } else {
1647     const XMMRegister msg = xmm0;
1648     const XMMRegister state0 = xmm1;
1649     const XMMRegister state1 = xmm2;
1650     const XMMRegister msgtmp0 = xmm3;
1651     const XMMRegister msgtmp1 = xmm4;
1652     const XMMRegister msgtmp2 = xmm5;
1653     const XMMRegister msgtmp3 = xmm6;
1654     const XMMRegister msgtmp4 = xmm7;
1655 
1656     const XMMRegister shuf_mask = xmm8;
1657     __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1658       buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1659   }
1660   __ vzeroupper();
1661   __ leave();
1662   __ ret(0);
1663 
1664   return start;
1665 }
1666 
1667 address StubGenerator::base64_shuffle_addr() {
1668   __ align64();
1669   StubId stub_id = StubId::stubgen_shuffle_base64_id;
1670   StubCodeMark mark(this, stub_id);
1671   address start = __ pc();
1672 
1673   assert(((unsigned long long)start & 0x3f) == 0,
1674          "Alignment problem (0x%08llx)", (unsigned long long)start);
1675   __ emit_data64(0x0405030401020001, relocInfo::none);
1676   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1677   __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1678   __ emit_data64(0x1617151613141213, relocInfo::none);
1679   __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1680   __ emit_data64(0x222321221f201e1f, relocInfo::none);
1681   __ emit_data64(0x2829272825262425, relocInfo::none);
1682   __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1683 
1684   return start;
1685 }
1686 
1687 address StubGenerator::base64_avx2_shuffle_addr() {
1688   __ align32();
1689   StubId stub_id = StubId::stubgen_avx2_shuffle_base64_id;
1690   StubCodeMark mark(this, stub_id);
1691   address start = __ pc();
1692 
1693   __ emit_data64(0x0809070805060405, relocInfo::none);
1694   __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1695   __ emit_data64(0x0405030401020001, relocInfo::none);
1696   __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1697 
1698   return start;
1699 }
1700 
1701 address StubGenerator::base64_avx2_input_mask_addr() {
1702   __ align32();
1703   StubId stub_id = StubId::stubgen_avx2_input_mask_base64_id;
1704   StubCodeMark mark(this, stub_id);
1705   address start = __ pc();
1706 
1707   __ emit_data64(0x8000000000000000, relocInfo::none);
1708   __ emit_data64(0x8000000080000000, relocInfo::none);
1709   __ emit_data64(0x8000000080000000, relocInfo::none);
1710   __ emit_data64(0x8000000080000000, relocInfo::none);
1711 
1712   return start;
1713 }
1714 
1715 address StubGenerator::base64_avx2_lut_addr() {
1716   __ align32();
1717   StubId stub_id = StubId::stubgen_avx2_lut_base64_id;
1718   StubCodeMark mark(this, stub_id);
1719   address start = __ pc();
1720 
1721   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1722   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1723   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1724   __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1725 
1726   // URL LUT
1727   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1728   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1729   __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1730   __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1731 
1732   return start;
1733 }
1734 
1735 address StubGenerator::base64_encoding_table_addr() {
1736   __ align64();
1737   StubId stub_id = StubId::stubgen_encoding_table_base64_id;
1738   StubCodeMark mark(this, stub_id);
1739   address start = __ pc();
1740 
1741   assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1742   __ emit_data64(0x4847464544434241, relocInfo::none);
1743   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1744   __ emit_data64(0x5857565554535251, relocInfo::none);
1745   __ emit_data64(0x6665646362615a59, relocInfo::none);
1746   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1747   __ emit_data64(0x767574737271706f, relocInfo::none);
1748   __ emit_data64(0x333231307a797877, relocInfo::none);
1749   __ emit_data64(0x2f2b393837363534, relocInfo::none);
1750 
1751   // URL table
1752   __ emit_data64(0x4847464544434241, relocInfo::none);
1753   __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1754   __ emit_data64(0x5857565554535251, relocInfo::none);
1755   __ emit_data64(0x6665646362615a59, relocInfo::none);
1756   __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1757   __ emit_data64(0x767574737271706f, relocInfo::none);
1758   __ emit_data64(0x333231307a797877, relocInfo::none);
1759   __ emit_data64(0x5f2d393837363534, relocInfo::none);
1760 
1761   return start;
1762 }
1763 
1764 // Code for generating Base64 encoding.
1765 // Intrinsic function prototype in Base64.java:
1766 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1767 // boolean isURL) {
1768 address StubGenerator::generate_base64_encodeBlock()
1769 {
1770   __ align(CodeEntryAlignment);
1771   StubId stub_id = StubId::stubgen_base64_encodeBlock_id;
1772   StubCodeMark mark(this, stub_id);
1773   address start = __ pc();
1774 
1775   __ enter();
1776 
1777   // Save callee-saved registers before using them
1778   __ push_ppx(r12);
1779   __ push_ppx(r13);
1780   __ push_ppx(r14);
1781   __ push_ppx(r15);
1782 
1783   // arguments
1784   const Register source = c_rarg0;       // Source Array
1785   const Register start_offset = c_rarg1; // start offset
1786   const Register end_offset = c_rarg2;   // end offset
1787   const Register dest = c_rarg3;   // destination array
1788 
1789 #ifndef _WIN64
1790   const Register dp = c_rarg4;    // Position for writing to dest array
1791   const Register isURL = c_rarg5; // Base64 or URL character set
1792 #else
1793   const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1794   const Address isURL_mem(rbp, 7 * wordSize);
1795   const Register isURL = r10; // pick the volatile windows register
1796   const Register dp = r12;
1797   __ movl(dp, dp_mem);
1798   __ movl(isURL, isURL_mem);
1799 #endif
1800 
1801   const Register length = r14;
1802   const Register encode_table = r13;
1803   Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1804 
1805   // calculate length from offsets
1806   __ movl(length, end_offset);
1807   __ subl(length, start_offset);
1808   __ jcc(Assembler::lessEqual, L_exit);
1809 
1810   // Code for 512-bit VBMI encoding.  Encodes 48 input bytes into 64
1811   // output bytes. We read 64 input bytes and ignore the last 16, so be
1812   // sure not to read past the end of the input buffer.
1813   if (VM_Version::supports_avx512_vbmi()) {
1814     __ cmpl(length, 64); // Do not overrun input buffer.
1815     __ jcc(Assembler::below, L_not512);
1816 
1817     __ shll(isURL, 6); // index into decode table based on isURL
1818     __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1819     __ addptr(encode_table, isURL);
1820     __ shrl(isURL, 6); // restore isURL
1821 
1822     __ mov64(rax, 0x3036242a1016040aull); // Shifts
1823     __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1824     __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1825     __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1826 
1827     __ align32();
1828     __ BIND(L_vbmiLoop);
1829 
1830     __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1831     __ subl(length, 48);
1832 
1833     // Put the input bytes into the proper lanes for writing, then
1834     // encode them.
1835     __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1836     __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1837 
1838     // Write to destination
1839     __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1840 
1841     __ addptr(dest, 64);
1842     __ addptr(source, 48);
1843     __ cmpl(length, 64);
1844     __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1845 
1846     __ vzeroupper();
1847   }
1848 
1849   __ BIND(L_not512);
1850   if (VM_Version::supports_avx2()) {
1851     /*
1852     ** This AVX2 encoder is based off the paper at:
1853     **      https://dl.acm.org/doi/10.1145/3132709
1854     **
1855     ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1856     ** output bytes.
1857     **
1858     */
1859     // Lengths under 32 bytes are done with scalar routine
1860     __ cmpl(length, 31);
1861     __ jcc(Assembler::belowEqual, L_process3);
1862 
1863     // Set up supporting constant table data
1864     __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1865     // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1866     __ movl(rax, 0x0fc0fc00);
1867     __ movdl(xmm8, rax);
1868     __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1869     __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit);
1870 
1871     // Multiplication constant for "shifting" right by 6 and 10
1872     // bits
1873     __ movl(rax, 0x04000040);
1874 
1875     __ subl(length, 24);
1876     __ movdl(xmm7, rax);
1877     __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit);
1878 
1879     // For the first load, we mask off reading of the first 4
1880     // bytes into the register. This is so we can get 4 3-byte
1881     // chunks into each lane of the register, avoiding having to
1882     // handle end conditions.  We then shuffle these bytes into a
1883     // specific order so that manipulation is easier.
1884     //
1885     // The initial read loads the XMM register like this:
1886     //
1887     // Lower 128-bit lane:
1888     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1889     // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1890     // | C2 | D0 | D1 | D2 |
1891     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1892     //
1893     // Upper 128-bit lane:
1894     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1895     // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1896     // | XX | XX | XX | XX |
1897     // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1898     //
1899     // Where A0 is the first input byte, B0 is the fourth, etc.
1900     // The alphabetical significance denotes the 3 bytes to be
1901     // consumed and encoded into 4 bytes.
1902     //
1903     // We then shuffle the register so each 32-bit word contains
1904     // the sequence:
1905     //    A1 A0 A2 A1, B1, B0, B2, B1, etc.
1906     // Each of these byte sequences are then manipulated into 4
1907     // 6-bit values ready for encoding.
1908     //
1909     // If we focus on one set of 3-byte chunks, changing the
1910     // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1911     // shuffle such that each 24-bit chunk contains:
1912     //
1913     // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1914     // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1915     // Explain this step.
1916     // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1917     // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1918     //
1919     // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1920     // a5..a0) and shift them using a vector multiplication
1921     // operation (vpmulhuw) which effectively shifts c right by 6
1922     // bits and a right by 10 bits.  We similarly mask bits 10-15
1923     // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1924     // bits respectively.  This is done using vpmullw.  We end up
1925     // with 4 6-bit values, thus splitting the 3 input bytes,
1926     // ready for encoding:
1927     //    0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1928     //
1929     // For translation, we recognize that there are 5 distinct
1930     // ranges of legal Base64 characters as below:
1931     //
1932     //   +-------------+-------------+------------+
1933     //   | 6-bit value | ASCII range |   offset   |
1934     //   +-------------+-------------+------------+
1935     //   |    0..25    |    A..Z     |     65     |
1936     //   |   26..51    |    a..z     |     71     |
1937     //   |   52..61    |    0..9     |     -4     |
1938     //   |     62      |   + or -    | -19 or -17 |
1939     //   |     63      |   / or _    | -16 or 32  |
1940     //   +-------------+-------------+------------+
1941     //
1942     // We note that vpshufb does a parallel lookup in a
1943     // destination register using the lower 4 bits of bytes from a
1944     // source register.  If we use a saturated subtraction and
1945     // subtract 51 from each 6-bit value, bytes from [0,51]
1946     // saturate to 0, and [52,63] map to a range of [1,12].  We
1947     // distinguish the [0,25] and [26,51] ranges by assigning a
1948     // value of 13 for all 6-bit values less than 26.  We end up
1949     // with:
1950     //
1951     //   +-------------+-------------+------------+
1952     //   | 6-bit value |   Reduced   |   offset   |
1953     //   +-------------+-------------+------------+
1954     //   |    0..25    |     13      |     65     |
1955     //   |   26..51    |      0      |     71     |
1956     //   |   52..61    |    0..9     |     -4     |
1957     //   |     62      |     11      | -19 or -17 |
1958     //   |     63      |     12      | -16 or 32  |
1959     //   +-------------+-------------+------------+
1960     //
1961     // We then use a final vpshufb to add the appropriate offset,
1962     // translating the bytes.
1963     //
1964     // Load input bytes - only 28 bytes.  Mask the first load to
1965     // not load into the full register.
1966     __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1967 
1968     // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1969     // ordering by:
1970     //   1, 0, 2, 1; 4, 3, 5, 4; etc.  This groups 6-bit chunks
1971     //   for easy masking
1972     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1973 
1974     __ addl(start_offset, 24);
1975 
1976     // Load masking register for first and third (and multiples)
1977     // 6-bit values.
1978     __ movl(rax, 0x003f03f0);
1979     __ movdl(xmm6, rax);
1980     __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit);
1981     // Multiplication constant for "shifting" left by 4 and 8 bits
1982     __ movl(rax, 0x01000010);
1983     __ movdl(xmm5, rax);
1984     __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit);
1985 
1986     // Isolate 6-bit chunks of interest
1987     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1988 
1989     // Load constants for encoding
1990     __ movl(rax, 0x19191919);
1991     __ movdl(xmm3, rax);
1992     __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit);
1993     __ movl(rax, 0x33333333);
1994     __ movdl(xmm4, rax);
1995     __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit);
1996 
1997     // Shift output bytes 0 and 2 into proper lanes
1998     __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
1999 
2000     // Mask and shift output bytes 1 and 3 into proper lanes and
2001     // combine
2002     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2003     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2004     __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2005 
2006     // Find out which are 0..25.  This indicates which input
2007     // values fall in the range of 'A'-'Z', which require an
2008     // additional offset (see comments above)
2009     __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
2010     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2011     __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
2012 
2013     // Load the proper lookup table
2014     __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
2015     __ movl(r15, isURL);
2016     __ shll(r15, 5);
2017     __ vmovdqu(xmm2, Address(r11, r15));
2018 
2019     // Shuffle the offsets based on the range calculation done
2020     // above. This allows us to add the correct offset to the
2021     // 6-bit value corresponding to the range documented above.
2022     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2023     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2024 
2025     // Store the encoded bytes
2026     __ vmovdqu(Address(dest, dp), xmm0);
2027     __ addl(dp, 32);
2028 
2029     __ cmpl(length, 31);
2030     __ jcc(Assembler::belowEqual, L_process3);
2031 
2032     __ align32();
2033     __ BIND(L_32byteLoop);
2034 
2035     // Get next 32 bytes
2036     __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
2037 
2038     __ subl(length, 24);
2039     __ addl(start_offset, 24);
2040 
2041     // This logic is identical to the above, with only constant
2042     // register loads removed.  Shuffle the input, mask off 6-bit
2043     // chunks, shift them into place, then add the offset to
2044     // encode.
2045     __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
2046 
2047     __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2048     __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
2049     __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2050     __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2051     __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2052     __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
2053     __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2054     __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
2055     __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2056     __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2057 
2058     // Store the encoded bytes
2059     __ vmovdqu(Address(dest, dp), xmm0);
2060     __ addl(dp, 32);
2061 
2062     __ cmpl(length, 31);
2063     __ jcc(Assembler::above, L_32byteLoop);
2064 
2065     __ BIND(L_process3);
2066     __ vzeroupper();
2067   } else {
2068     __ BIND(L_process3);
2069   }
2070 
2071   __ cmpl(length, 3);
2072   __ jcc(Assembler::below, L_exit);
2073 
2074   // Load the encoding table based on isURL
2075   __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
2076   __ movl(r15, isURL);
2077   __ shll(r15, 6);
2078   __ addptr(r11, r15);
2079 
2080   __ BIND(L_processdata);
2081 
2082   // Load 3 bytes
2083   __ load_unsigned_byte(r15, Address(source, start_offset));
2084   __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
2085   __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
2086 
2087   // Build a 32-bit word with bytes 1, 2, 0, 1
2088   __ movl(rax, r10);
2089   __ shll(r10, 24);
2090   __ orl(rax, r10);
2091 
2092   __ subl(length, 3);
2093 
2094   __ shll(r15, 8);
2095   __ shll(r13, 16);
2096   __ orl(rax, r15);
2097 
2098   __ addl(start_offset, 3);
2099 
2100   __ orl(rax, r13);
2101   // At this point, rax contains | byte1 | byte2 | byte0 | byte1
2102   // r13 has byte2 << 16 - need low-order 6 bits to translate.
2103   // This translated byte is the fourth output byte.
2104   __ shrl(r13, 16);
2105   __ andl(r13, 0x3f);
2106 
2107   // The high-order 6 bits of r15 (byte0) is translated.
2108   // The translated byte is the first output byte.
2109   __ shrl(r15, 10);
2110 
2111   __ load_unsigned_byte(r13, Address(r11, r13));
2112   __ load_unsigned_byte(r15, Address(r11, r15));
2113 
2114   __ movb(Address(dest, dp, Address::times_1, 3), r13);
2115 
2116   // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
2117   // This translated byte is the second output byte.
2118   __ shrl(rax, 4);
2119   __ movl(r10, rax);
2120   __ andl(rax, 0x3f);
2121 
2122   __ movb(Address(dest, dp, Address::times_1, 0), r15);
2123 
2124   __ load_unsigned_byte(rax, Address(r11, rax));
2125 
2126   // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
2127   // This translated byte is the third output byte.
2128   __ shrl(r10, 18);
2129   __ andl(r10, 0x3f);
2130 
2131   __ load_unsigned_byte(r10, Address(r11, r10));
2132 
2133   __ movb(Address(dest, dp, Address::times_1, 1), rax);
2134   __ movb(Address(dest, dp, Address::times_1, 2), r10);
2135 
2136   __ addl(dp, 4);
2137   __ cmpl(length, 3);
2138   __ jcc(Assembler::aboveEqual, L_processdata);
2139 
2140   __ BIND(L_exit);
2141   __ pop_ppx(r15);
2142   __ pop_ppx(r14);
2143   __ pop_ppx(r13);
2144   __ pop_ppx(r12);
2145   __ leave();
2146   __ ret(0);
2147 
2148   return start;
2149 }
2150 
2151 // base64 AVX512vbmi tables
2152 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2153   __ align64();
2154   StubId stub_id = StubId::stubgen_lookup_lo_base64_id;
2155   StubCodeMark mark(this, stub_id);
2156   address start = __ pc();
2157 
2158   assert(((unsigned long long)start & 0x3f) == 0,
2159          "Alignment problem (0x%08llx)", (unsigned long long)start);
2160   __ emit_data64(0x8080808080808080, relocInfo::none);
2161   __ emit_data64(0x8080808080808080, relocInfo::none);
2162   __ emit_data64(0x8080808080808080, relocInfo::none);
2163   __ emit_data64(0x8080808080808080, relocInfo::none);
2164   __ emit_data64(0x8080808080808080, relocInfo::none);
2165   __ emit_data64(0x3f8080803e808080, relocInfo::none);
2166   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2167   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2168 
2169   return start;
2170 }
2171 
2172 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2173   __ align64();
2174   StubId stub_id = StubId::stubgen_lookup_hi_base64_id;
2175   StubCodeMark mark(this, stub_id);
2176   address start = __ pc();
2177 
2178   assert(((unsigned long long)start & 0x3f) == 0,
2179          "Alignment problem (0x%08llx)", (unsigned long long)start);
2180   __ emit_data64(0x0605040302010080, relocInfo::none);
2181   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2182   __ emit_data64(0x161514131211100f, relocInfo::none);
2183   __ emit_data64(0x8080808080191817, relocInfo::none);
2184   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2185   __ emit_data64(0x2827262524232221, relocInfo::none);
2186   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2187   __ emit_data64(0x8080808080333231, relocInfo::none);
2188 
2189   return start;
2190 }
2191 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2192   __ align64();
2193   StubId stub_id = StubId::stubgen_lookup_lo_base64url_id;
2194   StubCodeMark mark(this, stub_id);
2195   address start = __ pc();
2196 
2197   assert(((unsigned long long)start & 0x3f) == 0,
2198          "Alignment problem (0x%08llx)", (unsigned long long)start);
2199   __ emit_data64(0x8080808080808080, relocInfo::none);
2200   __ emit_data64(0x8080808080808080, relocInfo::none);
2201   __ emit_data64(0x8080808080808080, relocInfo::none);
2202   __ emit_data64(0x8080808080808080, relocInfo::none);
2203   __ emit_data64(0x8080808080808080, relocInfo::none);
2204   __ emit_data64(0x80803e8080808080, relocInfo::none);
2205   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2206   __ emit_data64(0x8080808080803d3c, relocInfo::none);
2207 
2208   return start;
2209 }
2210 
2211 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2212   __ align64();
2213   StubId stub_id = StubId::stubgen_lookup_hi_base64url_id;
2214   StubCodeMark mark(this, stub_id);
2215   address start = __ pc();
2216 
2217   assert(((unsigned long long)start & 0x3f) == 0,
2218          "Alignment problem (0x%08llx)", (unsigned long long)start);
2219   __ emit_data64(0x0605040302010080, relocInfo::none);
2220   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2221   __ emit_data64(0x161514131211100f, relocInfo::none);
2222   __ emit_data64(0x3f80808080191817, relocInfo::none);
2223   __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2224   __ emit_data64(0x2827262524232221, relocInfo::none);
2225   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2226   __ emit_data64(0x8080808080333231, relocInfo::none);
2227 
2228   return start;
2229 }
2230 
2231 address StubGenerator::base64_vbmi_pack_vec_addr() {
2232   __ align64();
2233   StubId stub_id = StubId::stubgen_pack_vec_base64_id;
2234   StubCodeMark mark(this, stub_id);
2235   address start = __ pc();
2236 
2237   assert(((unsigned long long)start & 0x3f) == 0,
2238          "Alignment problem (0x%08llx)", (unsigned long long)start);
2239   __ emit_data64(0x090a040506000102, relocInfo::none);
2240   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2241   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2242   __ emit_data64(0x292a242526202122, relocInfo::none);
2243   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2244   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2245   __ emit_data64(0x0000000000000000, relocInfo::none);
2246   __ emit_data64(0x0000000000000000, relocInfo::none);
2247 
2248   return start;
2249 }
2250 
2251 address StubGenerator::base64_vbmi_join_0_1_addr() {
2252   __ align64();
2253   StubId stub_id = StubId::stubgen_join_0_1_base64_id;
2254   StubCodeMark mark(this, stub_id);
2255   address start = __ pc();
2256 
2257   assert(((unsigned long long)start & 0x3f) == 0,
2258          "Alignment problem (0x%08llx)", (unsigned long long)start);
2259   __ emit_data64(0x090a040506000102, relocInfo::none);
2260   __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2261   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2262   __ emit_data64(0x292a242526202122, relocInfo::none);
2263   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2264   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2265   __ emit_data64(0x494a444546404142, relocInfo::none);
2266   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2267 
2268   return start;
2269 }
2270 
2271 address StubGenerator::base64_vbmi_join_1_2_addr() {
2272   __ align64();
2273   StubId stub_id = StubId::stubgen_join_1_2_base64_id;
2274   StubCodeMark mark(this, stub_id);
2275   address start = __ pc();
2276 
2277   assert(((unsigned long long)start & 0x3f) == 0,
2278          "Alignment problem (0x%08llx)", (unsigned long long)start);
2279   __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2280   __ emit_data64(0x292a242526202122, relocInfo::none);
2281   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2282   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2283   __ emit_data64(0x494a444546404142, relocInfo::none);
2284   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2285   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2286   __ emit_data64(0x696a646566606162, relocInfo::none);
2287 
2288   return start;
2289 }
2290 
2291 address StubGenerator::base64_vbmi_join_2_3_addr() {
2292   __ align64();
2293   StubId stub_id = StubId::stubgen_join_2_3_base64_id;
2294   StubCodeMark mark(this, stub_id);
2295   address start = __ pc();
2296 
2297   assert(((unsigned long long)start & 0x3f) == 0,
2298          "Alignment problem (0x%08llx)", (unsigned long long)start);
2299   __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2300   __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2301   __ emit_data64(0x494a444546404142, relocInfo::none);
2302   __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2303   __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2304   __ emit_data64(0x696a646566606162, relocInfo::none);
2305   __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2306   __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2307 
2308   return start;
2309 }
2310 
2311 address StubGenerator::base64_AVX2_decode_tables_addr() {
2312   __ align64();
2313   StubId stub_id = StubId::stubgen_avx2_decode_tables_base64_id;
2314   StubCodeMark mark(this, stub_id);
2315   address start = __ pc();
2316 
2317   assert(((unsigned long long)start & 0x3f) == 0,
2318          "Alignment problem (0x%08llx)", (unsigned long long)start);
2319   __ emit_data(0x2f2f2f2f, relocInfo::none, 0);
2320   __ emit_data(0x5f5f5f5f, relocInfo::none, 0);  // for URL
2321 
2322   __ emit_data(0xffffffff, relocInfo::none, 0);
2323   __ emit_data(0xfcfcfcfc, relocInfo::none, 0);  // for URL
2324 
2325   // Permute table
2326   __ emit_data64(0x0000000100000000, relocInfo::none);
2327   __ emit_data64(0x0000000400000002, relocInfo::none);
2328   __ emit_data64(0x0000000600000005, relocInfo::none);
2329   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2330 
2331   // Shuffle table
2332   __ emit_data64(0x090a040506000102, relocInfo::none);
2333   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2334   __ emit_data64(0x090a040506000102, relocInfo::none);
2335   __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2336 
2337   // merge table
2338   __ emit_data(0x01400140, relocInfo::none, 0);
2339 
2340   // merge multiplier
2341   __ emit_data(0x00011000, relocInfo::none, 0);
2342 
2343   return start;
2344 }
2345 
2346 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() {
2347   __ align64();
2348   StubId stub_id = StubId::stubgen_avx2_decode_lut_tables_base64_id;
2349   StubCodeMark mark(this, stub_id);
2350   address start = __ pc();
2351 
2352   assert(((unsigned long long)start & 0x3f) == 0,
2353          "Alignment problem (0x%08llx)", (unsigned long long)start);
2354   // lut_lo
2355   __ emit_data64(0x1111111111111115, relocInfo::none);
2356   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2357   __ emit_data64(0x1111111111111115, relocInfo::none);
2358   __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2359 
2360   // lut_roll
2361   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2362   __ emit_data64(0x0000000000000000, relocInfo::none);
2363   __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2364   __ emit_data64(0x0000000000000000, relocInfo::none);
2365 
2366   // lut_lo URL
2367   __ emit_data64(0x1111111111111115, relocInfo::none);
2368   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2369   __ emit_data64(0x1111111111111115, relocInfo::none);
2370   __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2371 
2372   // lut_roll URL
2373   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2374   __ emit_data64(0x0000000000000000, relocInfo::none);
2375   __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2376   __ emit_data64(0x0000000000000000, relocInfo::none);
2377 
2378   // lut_hi
2379   __ emit_data64(0x0804080402011010, relocInfo::none);
2380   __ emit_data64(0x1010101010101010, relocInfo::none);
2381   __ emit_data64(0x0804080402011010, relocInfo::none);
2382   __ emit_data64(0x1010101010101010, relocInfo::none);
2383 
2384   return start;
2385 }
2386 
2387 address StubGenerator::base64_decoding_table_addr() {
2388   StubId stub_id = StubId::stubgen_decoding_table_base64_id;
2389   StubCodeMark mark(this, stub_id);
2390   address start = __ pc();
2391 
2392   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2393   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2394   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2395   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2396   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2397   __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2398   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2399   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2400   __ emit_data64(0x06050403020100ff, relocInfo::none);
2401   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2402   __ emit_data64(0x161514131211100f, relocInfo::none);
2403   __ emit_data64(0xffffffffff191817, relocInfo::none);
2404   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2405   __ emit_data64(0x2827262524232221, relocInfo::none);
2406   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2407   __ emit_data64(0xffffffffff333231, relocInfo::none);
2408   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2409   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2410   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2411   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2412   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2413   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2414   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2415   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2416   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2417   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2418   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2419   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2420   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2421   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2422   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2423   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2424 
2425   // URL table
2426   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2427   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2428   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2429   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2430   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2431   __ emit_data64(0xffff3effffffffff, relocInfo::none);
2432   __ emit_data64(0x3b3a393837363534, relocInfo::none);
2433   __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2434   __ emit_data64(0x06050403020100ff, relocInfo::none);
2435   __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2436   __ emit_data64(0x161514131211100f, relocInfo::none);
2437   __ emit_data64(0x3fffffffff191817, relocInfo::none);
2438   __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2439   __ emit_data64(0x2827262524232221, relocInfo::none);
2440   __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2441   __ emit_data64(0xffffffffff333231, relocInfo::none);
2442   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2443   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2444   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2445   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2446   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2447   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2448   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2449   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2450   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2451   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2452   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2453   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2454   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2455   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2456   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2457   __ emit_data64(0xffffffffffffffff, relocInfo::none);
2458 
2459   return start;
2460 }
2461 
2462 
2463 // Code for generating Base64 decoding.
2464 //
2465 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2466 //
2467 // Intrinsic function prototype in Base64.java:
2468 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2469 address StubGenerator::generate_base64_decodeBlock() {
2470   __ align(CodeEntryAlignment);
2471   StubId stub_id = StubId::stubgen_base64_decodeBlock_id;
2472   StubCodeMark mark(this, stub_id);
2473   address start = __ pc();
2474 
2475   __ enter();
2476 
2477   // Save callee-saved registers before using them
2478   __ push_ppx(r12);
2479   __ push_ppx(r13);
2480   __ push_ppx(r14);
2481   __ push_ppx(r15);
2482   __ push_ppx(rbx);
2483 
2484   // arguments
2485   const Register source = c_rarg0; // Source Array
2486   const Register start_offset = c_rarg1; // start offset
2487   const Register end_offset = c_rarg2; // end offset
2488   const Register dest = c_rarg3; // destination array
2489   const Register isMIME = rbx;
2490 
2491 #ifndef _WIN64
2492   const Register dp = c_rarg4;  // Position for writing to dest array
2493   const Register isURL = c_rarg5;// Base64 or URL character set
2494   __ movl(isMIME, Address(rbp, 2 * wordSize));
2495 #else
2496   const Address dp_mem(rbp, 6 * wordSize);  // length is on stack on Win64
2497   const Address isURL_mem(rbp, 7 * wordSize);
2498   const Register isURL = r10;      // pick the volatile windows register
2499   const Register dp = r12;
2500   __ movl(dp, dp_mem);
2501   __ movl(isURL, isURL_mem);
2502   __ movl(isMIME, Address(rbp, 8 * wordSize));
2503 #endif
2504 
2505   const XMMRegister lookup_lo = xmm5;
2506   const XMMRegister lookup_hi = xmm6;
2507   const XMMRegister errorvec = xmm7;
2508   const XMMRegister pack16_op = xmm9;
2509   const XMMRegister pack32_op = xmm8;
2510   const XMMRegister input0 = xmm3;
2511   const XMMRegister input1 = xmm20;
2512   const XMMRegister input2 = xmm21;
2513   const XMMRegister input3 = xmm19;
2514   const XMMRegister join01 = xmm12;
2515   const XMMRegister join12 = xmm11;
2516   const XMMRegister join23 = xmm10;
2517   const XMMRegister translated0 = xmm2;
2518   const XMMRegister translated1 = xmm1;
2519   const XMMRegister translated2 = xmm0;
2520   const XMMRegister translated3 = xmm4;
2521 
2522   const XMMRegister merged0 = xmm2;
2523   const XMMRegister merged1 = xmm1;
2524   const XMMRegister merged2 = xmm0;
2525   const XMMRegister merged3 = xmm4;
2526   const XMMRegister merge_ab_bc0 = xmm2;
2527   const XMMRegister merge_ab_bc1 = xmm1;
2528   const XMMRegister merge_ab_bc2 = xmm0;
2529   const XMMRegister merge_ab_bc3 = xmm4;
2530 
2531   const XMMRegister pack24bits = xmm4;
2532 
2533   const Register length = r14;
2534   const Register output_size = r13;
2535   const Register output_mask = r15;
2536   const KRegister input_mask = k1;
2537 
2538   const XMMRegister input_initial_valid_b64 = xmm0;
2539   const XMMRegister tmp = xmm10;
2540   const XMMRegister mask = xmm0;
2541   const XMMRegister invalid_b64 = xmm1;
2542 
2543   Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2544   Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2545   Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk;
2546 
2547   // calculate length from offsets
2548   __ movl(length, end_offset);
2549   __ subl(length, start_offset);
2550   __ push_ppx(dest);          // Save for return value calc
2551 
2552   // If AVX512 VBMI not supported, just compile non-AVX code
2553   if(VM_Version::supports_avx512_vbmi() &&
2554      VM_Version::supports_avx512bw()) {
2555     __ cmpl(length, 31);     // 32-bytes is break-even for AVX-512
2556     __ jcc(Assembler::lessEqual, L_lastChunk);
2557 
2558     __ cmpl(isMIME, 0);
2559     __ jcc(Assembler::notEqual, L_lastChunk);
2560 
2561     // Load lookup tables based on isURL
2562     __ cmpl(isURL, 0);
2563     __ jcc(Assembler::notZero, L_loadURL);
2564 
2565     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2566     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2567 
2568     __ BIND(L_continue);
2569 
2570     __ movl(r15, 0x01400140);
2571     __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2572 
2573     __ movl(r15, 0x00011000);
2574     __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2575 
2576     __ cmpl(length, 0xff);
2577     __ jcc(Assembler::lessEqual, L_process64);
2578 
2579     // load masks required for decoding data
2580     __ BIND(L_processdata);
2581     __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2582     __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2583     __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2584 
2585     __ align32();
2586     __ BIND(L_process256);
2587     // Grab input data
2588     __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2589     __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2590     __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2591     __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2592 
2593     // Copy the low part of the lookup table into the destination of the permutation
2594     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2595     __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2596     __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2597     __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2598 
2599     // Translate the base64 input into "decoded" bytes
2600     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2601     __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2602     __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2603     __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2604 
2605     // OR all of the translations together to check for errors (high-order bit of byte set)
2606     __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2607 
2608     __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2609     __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2610     __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2611 
2612     // Check if there was an error - if so, try 64-byte chunks
2613     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2614     __ kortestql(k3, k3);
2615     __ jcc(Assembler::notZero, L_process64);
2616 
2617     // The merging and shuffling happens here
2618     // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2619     // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2620     // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2621     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2622     __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2623     __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2624     __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2625 
2626     // Now do the same with packed 16-bit values.
2627     // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2628     // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2629     // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2630     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2631     __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2632     __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2633     __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2634 
2635     // The join vectors specify which byte from which vector goes into the outputs
2636     // One of every 4 bytes in the extended vector is zero, so we pack them into their
2637     // final positions in the register for storing (256 bytes in, 192 bytes out)
2638     __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2639     __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2640     __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2641 
2642     // Store result
2643     __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2644     __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2645     __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2646 
2647     __ addptr(source, 0x100);
2648     __ addptr(dest, 0xc0);
2649     __ subl(length, 0x100);
2650     __ cmpl(length, 64 * 4);
2651     __ jcc(Assembler::greaterEqual, L_process256);
2652 
2653     // At this point, we've decoded 64 * 4 * n bytes.
2654     // The remaining length will be <= 64 * 4 - 1.
2655     // UNLESS there was an error decoding the first 256-byte chunk.  In this
2656     // case, the length will be arbitrarily long.
2657     //
2658     // Note that this will be the path for MIME-encoded strings.
2659 
2660     __ BIND(L_process64);
2661 
2662     __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2663 
2664     __ cmpl(length, 63);
2665     __ jcc(Assembler::lessEqual, L_finalBit);
2666 
2667     __ mov64(rax, 0x0000ffffffffffff);
2668     __ kmovql(k2, rax);
2669 
2670     __ align32();
2671     __ BIND(L_process64Loop);
2672 
2673     // Handle first 64-byte block
2674 
2675     __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2676     __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2677     __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2678 
2679     __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2680 
2681     // Check for error and bomb out before updating dest
2682     __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2683     __ kortestql(k3, k3);
2684     __ jcc(Assembler::notZero, L_exit);
2685 
2686     // Pack output register, selecting correct byte ordering
2687     __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2688     __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2689     __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2690 
2691     __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2692 
2693     __ subl(length, 64);
2694     __ addptr(source, 64);
2695     __ addptr(dest, 48);
2696 
2697     __ cmpl(length, 64);
2698     __ jcc(Assembler::greaterEqual, L_process64Loop);
2699 
2700     __ cmpl(length, 0);
2701     __ jcc(Assembler::lessEqual, L_exit);
2702 
2703     __ BIND(L_finalBit);
2704     // Now have 1 to 63 bytes left to decode
2705 
2706     // I was going to let Java take care of the final fragment
2707     // however it will repeatedly call this routine for every 4 bytes
2708     // of input data, so handle the rest here.
2709     __ movq(rax, -1);
2710     __ bzhiq(rax, rax, length);    // Input mask in rax
2711 
2712     __ movl(output_size, length);
2713     __ shrl(output_size, 2);   // Find (len / 4) * 3 (output length)
2714     __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2715     // output_size in r13
2716 
2717     // Strip pad characters, if any, and adjust length and mask
2718     __ addq(length, start_offset);
2719     __ cmpb(Address(source, length, Address::times_1, -1), '=');
2720     __ jcc(Assembler::equal, L_padding);
2721 
2722     __ BIND(L_donePadding);
2723     __ subq(length, start_offset);
2724 
2725     // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2726     __ kmovql(input_mask, rax);
2727     __ movq(output_mask, -1);
2728     __ bzhiq(output_mask, output_mask, output_size);
2729 
2730     // Load initial input with all valid base64 characters.  Will be used
2731     // in merging source bytes to avoid masking when determining if an error occurred.
2732     __ movl(rax, 0x61616161);
2733     __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2734 
2735     // A register containing all invalid base64 decoded values
2736     __ movl(rax, 0x80808080);
2737     __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2738 
2739     // input_mask is in k1
2740     // output_size is in r13
2741     // output_mask is in r15
2742     // zmm0 - free
2743     // zmm1 - 0x00011000
2744     // zmm2 - 0x01400140
2745     // zmm3 - errorvec
2746     // zmm4 - pack vector
2747     // zmm5 - lookup_lo
2748     // zmm6 - lookup_hi
2749     // zmm7 - errorvec
2750     // zmm8 - 0x61616161
2751     // zmm9 - 0x80808080
2752 
2753     // Load only the bytes from source, merging into our "fully-valid" register
2754     __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2755 
2756     // Decode all bytes within our merged input
2757     __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2758     __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2759     __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2760 
2761     // Check for error.  Compare (decoded | initial) to all invalid.
2762     // If any bytes have their high-order bit set, then we have an error.
2763     __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2764     __ kortestql(k2, k2);
2765 
2766     // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2767     __ jcc(Assembler::notZero, L_bruteForce);
2768 
2769     // Shuffle output bytes
2770     __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2771     __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2772 
2773     __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2774     __ kmovql(k1, output_mask);
2775     __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2776 
2777     __ addptr(dest, output_size);
2778 
2779     __ BIND(L_exit);
2780     __ vzeroupper();
2781     __ pop_ppx(rax);             // Get original dest value
2782     __ subptr(dest, rax);      // Number of bytes converted
2783     __ movptr(rax, dest);
2784     __ pop_ppx(rbx);
2785     __ pop_ppx(r15);
2786     __ pop_ppx(r14);
2787     __ pop_ppx(r13);
2788     __ pop_ppx(r12);
2789     __ leave();
2790     __ ret(0);
2791 
2792     __ BIND(L_loadURL);
2793     __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2794     __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2795     __ jmp(L_continue);
2796 
2797     __ BIND(L_padding);
2798     __ decrementq(output_size, 1);
2799     __ shrq(rax, 1);
2800 
2801     __ cmpb(Address(source, length, Address::times_1, -2), '=');
2802     __ jcc(Assembler::notEqual, L_donePadding);
2803 
2804     __ decrementq(output_size, 1);
2805     __ shrq(rax, 1);
2806     __ jmp(L_donePadding);
2807 
2808     __ align32();
2809     __ BIND(L_bruteForce);
2810   }   // End of if(avx512_vbmi)
2811 
2812   if (VM_Version::supports_avx2()) {
2813     Label L_tailProc, L_topLoop, L_enterLoop;
2814 
2815     __ cmpl(isMIME, 0);
2816     __ jcc(Assembler::notEqual, L_lastChunk);
2817 
2818     // Check for buffer too small (for algorithm)
2819     __ subl(length, 0x2c);
2820     __ jcc(Assembler::less, L_tailProc);
2821 
2822     __ shll(isURL, 2);
2823 
2824     // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64
2825     // Encoding and Decoding using AVX2 Instructions".  URL modifications added.
2826 
2827     // Set up constants
2828     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr()));
2829     __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit);  // 2F or 5F
2830     __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit);  // -1 or -4
2831     __ vmovdqu(xmm12, Address(r13, 0x10));  // permute
2832     __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle
2833     __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit);  // merge
2834     __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit);  // merge mult
2835 
2836     __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr()));
2837     __ shll(isURL, 4);
2838     __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00));  // lut_lo
2839     __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll
2840     __ shrl(isURL, 6);  // restore isURL
2841     __ vmovdqu(xmm9, Address(r13, 0x80));  // lut_hi
2842     __ jmp(L_enterLoop);
2843 
2844     __ align32();
2845     __ bind(L_topLoop);
2846     // Add in the offset value (roll) to get 6-bit out values
2847     __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2848     // Merge and permute the output bits into appropriate output byte lanes
2849     __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit);
2850     __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit);
2851     __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit);
2852     __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit);
2853     // Store the output bytes
2854     __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0);
2855     __ addptr(source, 0x20);
2856     __ addptr(dest, 0x18);
2857     __ subl(length, 0x20);
2858     __ jcc(Assembler::less, L_tailProc);
2859 
2860     __ bind(L_enterLoop);
2861 
2862     // Load in encoded string (32 bytes)
2863     __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0));
2864     // Extract the high nibble for indexing into the lut tables.  High 4 bits are don't care.
2865     __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit);
2866     __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit);
2867     // Extract the low nibble. 5F/2F will isolate the low-order 4 bits.  High 4 bits are don't care.
2868     __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit);
2869     // Check for special-case (0x2F or 0x5F (URL))
2870     __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit);
2871     // Get the bitset based on the low nibble.  vpshufb uses low-order 4 bits only.
2872     __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit);
2873     // Get the bit value of the high nibble
2874     __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit);
2875     // Make sure 2F / 5F shows as valid
2876     __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit);
2877     // Make adjustment for roll index.  For non-URL, this is a no-op,
2878     // for URL, this adjusts by -4.  This is to properly index the
2879     // roll value for 2F / 5F.
2880     __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2881     // If the and of the two is non-zero, we have an invalid input character
2882     __ vptest(xmm3, xmm5);
2883     // Extract the "roll" value - value to add to the input to get 6-bit out value
2884     __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F
2885     __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit);
2886     __ jcc(Assembler::equal, L_topLoop);  // Fall through on error
2887 
2888     __ bind(L_tailProc);
2889 
2890     __ addl(length, 0x2c);
2891 
2892     __ vzeroupper();
2893   }
2894 
2895   // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2896 
2897   // Register state (Linux):
2898   // r12-15 - saved on stack
2899   // rdi - src
2900   // rsi - sp
2901   // rdx - sl
2902   // rcx - dst
2903   // r8 - dp
2904   // r9 - isURL
2905 
2906   // Register state (Windows):
2907   // r12-15 - saved on stack
2908   // rcx - src
2909   // rdx - sp
2910   // r8 - sl
2911   // r9 - dst
2912   // r12 - dp
2913   // r10 - isURL
2914 
2915   // Registers (common):
2916   // length (r14) - bytes in src
2917 
2918   const Register decode_table = r11;
2919   const Register out_byte_count = rbx;
2920   const Register byte1 = r13;
2921   const Register byte2 = r15;
2922   const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2923   const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2924 
2925   __ bind(L_lastChunk);
2926 
2927   __ shrl(length, 2);    // Multiple of 4 bytes only - length is # 4-byte chunks
2928   __ cmpl(length, 0);
2929   __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2930 
2931   __ shll(isURL, 8);    // index into decode table based on isURL
2932   __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2933   __ addptr(decode_table, isURL);
2934 
2935   __ jmp(L_bottomLoop);
2936 
2937   __ align32();
2938   __ BIND(L_forceLoop);
2939   __ shll(byte1, 18);
2940   __ shll(byte2, 12);
2941   __ shll(byte3, 6);
2942   __ orl(byte1, byte2);
2943   __ orl(byte1, byte3);
2944   __ orl(byte1, byte4);
2945 
2946   __ addptr(source, 4);
2947 
2948   __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2949   __ shrl(byte1, 8);
2950   __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2951   __ shrl(byte1, 8);
2952   __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2953 
2954   __ addptr(dest, 3);
2955   __ decrementl(length, 1);
2956   __ jcc(Assembler::zero, L_exit_no_vzero);
2957 
2958   __ BIND(L_bottomLoop);
2959   __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2960   __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2961   __ load_signed_byte(byte1, Address(decode_table, byte1));
2962   __ load_signed_byte(byte2, Address(decode_table, byte2));
2963   __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2964   __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2965   __ load_signed_byte(byte3, Address(decode_table, byte3));
2966   __ load_signed_byte(byte4, Address(decode_table, byte4));
2967 
2968   __ mov(rax, byte1);
2969   __ orl(rax, byte2);
2970   __ orl(rax, byte3);
2971   __ orl(rax, byte4);
2972   __ jcc(Assembler::positive, L_forceLoop);
2973 
2974   __ BIND(L_exit_no_vzero);
2975   __ pop_ppx(rax);             // Get original dest value
2976   __ subptr(dest, rax);                      // Number of bytes converted
2977   __ movptr(rax, dest);
2978   __ pop_ppx(rbx);
2979   __ pop_ppx(r15);
2980   __ pop_ppx(r14);
2981   __ pop_ppx(r13);
2982   __ pop_ppx(r12);
2983   __ leave();
2984   __ ret(0);
2985 
2986   return start;
2987 }
2988 
2989 
2990 /**
2991  *  Arguments:
2992  *
2993  * Inputs:
2994  *   c_rarg0   - int crc
2995  *   c_rarg1   - byte* buf
2996  *   c_rarg2   - int length
2997  *
2998  * Output:
2999  *       rax   - int crc result
3000  */
3001 address StubGenerator::generate_updateBytesCRC32() {
3002   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3003 
3004   __ align(CodeEntryAlignment);
3005   StubId stub_id = StubId::stubgen_updateBytesCRC32_id;
3006   StubCodeMark mark(this, stub_id);
3007 
3008   address start = __ pc();
3009 
3010   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3011   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3012   // rscratch1: r10
3013   const Register crc   = c_rarg0;  // crc
3014   const Register buf   = c_rarg1;  // source java byte array address
3015   const Register len   = c_rarg2;  // length
3016   const Register table = c_rarg3;  // crc_table address (reuse register)
3017   const Register tmp1   = r11;
3018   const Register tmp2   = r10;
3019   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
3020 
3021   BLOCK_COMMENT("Entry:");
3022   __ enter(); // required for proper stackwalking of RuntimeStub frame
3023 
3024   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3025       VM_Version::supports_avx512bw() &&
3026       VM_Version::supports_avx512vl()) {
3027       // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
3028       // However, the constant table for CRC32-C assumes the original crc value.  Account for this
3029       // difference before calling and after returning.
3030     __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
3031     __ notl(crc);
3032     __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
3033     __ notl(crc);
3034   } else {
3035     __ kernel_crc32(crc, buf, len, table, tmp1);
3036   }
3037 
3038   __ movl(rax, crc);
3039   __ vzeroupper();
3040   __ leave(); // required for proper stackwalking of RuntimeStub frame
3041   __ ret(0);
3042 
3043   return start;
3044 }
3045 
3046 /**
3047 *  Arguments:
3048 *
3049 * Inputs:
3050 *   c_rarg0   - int crc
3051 *   c_rarg1   - byte* buf
3052 *   c_rarg2   - long length
3053 *   c_rarg3   - table_start - optional (present only when doing a library_call,
3054 *              not used by x86 algorithm)
3055 *
3056 * Output:
3057 *       rax   - int crc result
3058 */
3059 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3060   assert(UseCRC32CIntrinsics, "need SSE4_2");
3061   __ align(CodeEntryAlignment);
3062   StubId stub_id = StubId::stubgen_updateBytesCRC32C_id;
3063   StubCodeMark mark(this, stub_id);
3064   address start = __ pc();
3065 
3066   //reg.arg        int#0        int#1        int#2        int#3        int#4        int#5        float regs
3067   //Windows        RCX          RDX          R8           R9           none         none         XMM0..XMM3
3068   //Lin / Sol      RDI          RSI          RDX          RCX          R8           R9           XMM0..XMM7
3069   const Register crc = c_rarg0;  // crc
3070   const Register buf = c_rarg1;  // source java byte array address
3071   const Register len = c_rarg2;  // length
3072   const Register a = rax;
3073   const Register j = r9;
3074   const Register k = r10;
3075   const Register l = r11;
3076 #ifdef _WIN64
3077   const Register y = rdi;
3078   const Register z = rsi;
3079 #else
3080   const Register y = rcx;
3081   const Register z = r8;
3082 #endif
3083   assert_different_registers(crc, buf, len, a, j, k, l, y, z);
3084 
3085   BLOCK_COMMENT("Entry:");
3086   __ enter(); // required for proper stackwalking of RuntimeStub frame
3087   Label L_continue;
3088 
3089   if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3090       VM_Version::supports_avx512bw() &&
3091       VM_Version::supports_avx512vl()) {
3092     Label L_doSmall;
3093 
3094     __ cmpl(len, 384);
3095     __ jcc(Assembler::lessEqual, L_doSmall);
3096 
3097     __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
3098     __ kernel_crc32_avx512(crc, buf, len, j, l, k);
3099 
3100     __ jmp(L_continue);
3101 
3102     __ bind(L_doSmall);
3103   }
3104 #ifdef _WIN64
3105   __ push_ppx(y);
3106   __ push_ppx(z);
3107 #endif
3108   __ crc32c_ipl_alg2_alt2(crc, buf, len,
3109                           a, j, k,
3110                           l, y, z,
3111                           c_farg0, c_farg1, c_farg2,
3112                           is_pclmulqdq_supported);
3113 #ifdef _WIN64
3114   __ pop_ppx(z);
3115   __ pop_ppx(y);
3116 #endif
3117 
3118   __ bind(L_continue);
3119   __ movl(rax, crc);
3120   __ vzeroupper();
3121   __ leave(); // required for proper stackwalking of RuntimeStub frame
3122   __ ret(0);
3123 
3124   return start;
3125 }
3126 
3127 
3128 /**
3129  *  Arguments:
3130  *
3131  *  Input:
3132  *    c_rarg0   - x address
3133  *    c_rarg1   - x length
3134  *    c_rarg2   - y address
3135  *    c_rarg3   - y length
3136  * not Win64
3137  *    c_rarg4   - z address
3138  * Win64
3139  *    rsp+40    - z address
3140  */
3141 address StubGenerator::generate_multiplyToLen() {
3142   __ align(CodeEntryAlignment);
3143   StubId stub_id = StubId::stubgen_multiplyToLen_id;
3144   StubCodeMark mark(this, stub_id);
3145   address start = __ pc();
3146 
3147   if (AOTCodeCache::load_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start)) {
3148     return start;
3149   }
3150 
3151   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3152   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3153   const Register x     = rdi;
3154   const Register xlen  = rax;
3155   const Register y     = rsi;
3156   const Register ylen  = rcx;
3157   const Register z     = r8;
3158 
3159   // Next registers will be saved on stack in multiply_to_len().
3160   const Register tmp0  = r11;
3161   const Register tmp1  = r12;
3162   const Register tmp2  = r13;
3163   const Register tmp3  = r14;
3164   const Register tmp4  = r15;
3165   const Register tmp5  = rbx;
3166 
3167   BLOCK_COMMENT("Entry:");
3168   __ enter(); // required for proper stackwalking of RuntimeStub frame
3169 
3170   setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3171                      // ylen => rcx, z => r8
3172                      // r9 and r10 may be used to save non-volatile registers
3173 #ifdef _WIN64
3174   // last argument (#4) is on stack on Win64
3175   __ movptr(z, Address(rsp, 6 * wordSize));
3176 #endif
3177 
3178   __ movptr(xlen, rsi);
3179   __ movptr(y,    rdx);
3180   __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3181 
3182   restore_arg_regs();
3183 
3184   __ leave(); // required for proper stackwalking of RuntimeStub frame
3185   __ ret(0);
3186 
3187   AOTCodeCache::store_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start);
3188   return start;
3189 }
3190 
3191 /**
3192 *  Arguments:
3193 *
3194 *  Input:
3195 *    c_rarg0   - obja     address
3196 *    c_rarg1   - objb     address
3197 *    c_rarg3   - length   length
3198 *    c_rarg4   - scale    log2_array_indxscale
3199 *
3200 *  Output:
3201 *        rax   - int >= mismatched index, < 0 bitwise complement of tail
3202 */
3203 address StubGenerator::generate_vectorizedMismatch() {
3204   __ align(CodeEntryAlignment);
3205   StubId stub_id = StubId::stubgen_vectorizedMismatch_id;
3206   StubCodeMark mark(this, stub_id);
3207   address start = __ pc();
3208 
3209   BLOCK_COMMENT("Entry:");
3210   __ enter();
3211 
3212 #ifdef _WIN64  // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3213   const Register scale = c_rarg0;  //rcx, will exchange with r9
3214   const Register objb = c_rarg1;   //rdx
3215   const Register length = c_rarg2; //r8
3216   const Register obja = c_rarg3;   //r9
3217   __ xchgq(obja, scale);  //now obja and scale contains the correct contents
3218 
3219   const Register tmp1 = r10;
3220   const Register tmp2 = r11;
3221 #endif
3222 #ifndef _WIN64 // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3223   const Register obja = c_rarg0;   //U:rdi
3224   const Register objb = c_rarg1;   //U:rsi
3225   const Register length = c_rarg2; //U:rdx
3226   const Register scale = c_rarg3;  //U:rcx
3227   const Register tmp1 = r8;
3228   const Register tmp2 = r9;
3229 #endif
3230   const Register result = rax; //return value
3231   const XMMRegister vec0 = xmm0;
3232   const XMMRegister vec1 = xmm1;
3233   const XMMRegister vec2 = xmm2;
3234 
3235   __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
3236 
3237   __ vzeroupper();
3238   __ leave();
3239   __ ret(0);
3240 
3241   return start;
3242 }
3243 
3244 /**
3245  *  Arguments:
3246  *
3247 //  Input:
3248 //    c_rarg0   - x address
3249 //    c_rarg1   - x length
3250 //    c_rarg2   - z address
3251 //    c_rarg3   - z length
3252  *
3253  */
3254 address StubGenerator::generate_squareToLen() {
3255 
3256   __ align(CodeEntryAlignment);
3257   StubId stub_id = StubId::stubgen_squareToLen_id;
3258   StubCodeMark mark(this, stub_id);
3259   address start = __ pc();
3260 
3261   if (AOTCodeCache::load_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start)) {
3262     return start;
3263   }
3264 
3265   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3266   // Unix:  rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
3267   const Register x      = rdi;
3268   const Register len    = rsi;
3269   const Register z      = r8;
3270   const Register zlen   = rcx;
3271 
3272  const Register tmp1      = r12;
3273  const Register tmp2      = r13;
3274  const Register tmp3      = r14;
3275  const Register tmp4      = r15;
3276  const Register tmp5      = rbx;
3277 
3278   BLOCK_COMMENT("Entry:");
3279   __ enter(); // required for proper stackwalking of RuntimeStub frame
3280 
3281   setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
3282                      // zlen => rcx
3283                      // r9 and r10 may be used to save non-volatile registers
3284   __ movptr(r8, rdx);
3285   __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3286 
3287   restore_arg_regs();
3288 
3289   __ leave(); // required for proper stackwalking of RuntimeStub frame
3290   __ ret(0);
3291 
3292   AOTCodeCache::store_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start);
3293   return start;
3294 }
3295 
3296 address StubGenerator::generate_method_entry_barrier() {
3297   __ align(CodeEntryAlignment);
3298   StubId stub_id = StubId::stubgen_method_entry_barrier_id;
3299   StubCodeMark mark(this, stub_id);
3300   address start = __ pc();
3301 
3302   Label deoptimize_label;
3303 
3304   __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
3305 
3306   BLOCK_COMMENT("Entry:");
3307   __ enter(); // save rbp
3308 
3309   // save c_rarg0, because we want to use that value.
3310   // We could do without it but then we depend on the number of slots used by pusha
3311   __ push_ppx(c_rarg0);
3312 
3313   __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
3314 
3315   __ pusha();
3316 
3317   // The method may have floats as arguments, and we must spill them before calling
3318   // the VM runtime.
3319   assert(Argument::n_float_register_parameters_j == 8, "Assumption");
3320   const int xmm_size = wordSize * 2;
3321   const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
3322   __ subptr(rsp, xmm_spill_size);
3323   __ movdqu(Address(rsp, xmm_size * 7), xmm7);
3324   __ movdqu(Address(rsp, xmm_size * 6), xmm6);
3325   __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3326   __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3327   __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3328   __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3329   __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3330   __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3331 
3332   __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3333 
3334   __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3335   __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3336   __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3337   __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3338   __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3339   __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3340   __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3341   __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3342   __ addptr(rsp, xmm_spill_size);
3343 
3344   __ cmpl(rax, 1); // 1 means deoptimize
3345   __ jcc(Assembler::equal, deoptimize_label);
3346 
3347   __ popa();
3348   __ pop_ppx(c_rarg0);
3349 
3350   __ leave();
3351 
3352   __ addptr(rsp, 1 * wordSize); // cookie
3353   __ ret(0);
3354 
3355 
3356   __ BIND(deoptimize_label);
3357 
3358   __ popa();
3359   __ pop_ppx(c_rarg0);
3360 
3361   __ leave();
3362 
3363   // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3364   // here while still having a correct stack is valuable
3365   __ testptr(rsp, Address(rsp, 0));
3366 
3367   __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3368   __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3369 
3370   return start;
3371 }
3372 
3373  /**
3374  *  Arguments:
3375  *
3376  *  Input:
3377  *    c_rarg0   - out address
3378  *    c_rarg1   - in address
3379  *    c_rarg2   - offset
3380  *    c_rarg3   - len
3381  * not Win64
3382  *    c_rarg4   - k
3383  * Win64
3384  *    rsp+40    - k
3385  */
3386 address StubGenerator::generate_mulAdd() {
3387   __ align(CodeEntryAlignment);
3388   StubId stub_id = StubId::stubgen_mulAdd_id;
3389   StubCodeMark mark(this, stub_id);
3390   address start = __ pc();
3391 
3392   if (AOTCodeCache::load_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start)) {
3393     return start;
3394   }
3395 
3396   // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3397   // Unix:  rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3398   const Register out     = rdi;
3399   const Register in      = rsi;
3400   const Register offset  = r11;
3401   const Register len     = rcx;
3402   const Register k       = r8;
3403 
3404   // Next registers will be saved on stack in mul_add().
3405   const Register tmp1  = r12;
3406   const Register tmp2  = r13;
3407   const Register tmp3  = r14;
3408   const Register tmp4  = r15;
3409   const Register tmp5  = rbx;
3410 
3411   BLOCK_COMMENT("Entry:");
3412   __ enter(); // required for proper stackwalking of RuntimeStub frame
3413 
3414   setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3415                      // len => rcx, k => r8
3416                      // r9 and r10 may be used to save non-volatile registers
3417 #ifdef _WIN64
3418   // last argument is on stack on Win64
3419   __ movl(k, Address(rsp, 6 * wordSize));
3420 #endif
3421   __ movptr(r11, rdx);  // move offset in rdx to offset(r11)
3422   __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3423 
3424   restore_arg_regs();
3425 
3426   __ leave(); // required for proper stackwalking of RuntimeStub frame
3427   __ ret(0);
3428 
3429   AOTCodeCache::store_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start);
3430   return start;
3431 }
3432 
3433 address StubGenerator::generate_bigIntegerRightShift() {
3434   __ align(CodeEntryAlignment);
3435   StubId stub_id = StubId::stubgen_bigIntegerRightShiftWorker_id;
3436   StubCodeMark mark(this, stub_id);
3437   address start = __ pc();
3438 
3439   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3440   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3441   const Register newArr = rdi;
3442   const Register oldArr = rsi;
3443   const Register newIdx = rdx;
3444   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3445   const Register totalNumIter = r8;
3446 
3447   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3448   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3449   const Register tmp1 = r11;                    // Caller save.
3450   const Register tmp2 = rax;                    // Caller save.
3451   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3452   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3453   const Register tmp5 = r14;                    // Callee save.
3454   const Register tmp6 = r15;
3455 
3456   const XMMRegister x0 = xmm0;
3457   const XMMRegister x1 = xmm1;
3458   const XMMRegister x2 = xmm2;
3459 
3460   BLOCK_COMMENT("Entry:");
3461   __ enter(); // required for proper stackwalking of RuntimeStub frame
3462 
3463 #ifdef _WIN64
3464   setup_arg_regs(4);
3465   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3466   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3467   // Save callee save registers.
3468   __ push_ppx(tmp3);
3469   __ push_ppx(tmp4);
3470 #endif
3471   __ push_ppx(tmp5);
3472 
3473   // Rename temps used throughout the code.
3474   const Register idx = tmp1;
3475   const Register nIdx = tmp2;
3476 
3477   __ xorl(idx, idx);
3478 
3479   // Start right shift from end of the array.
3480   // For example, if #iteration = 4 and newIdx = 1
3481   // then dest[4] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3482   // if #iteration = 4 and newIdx = 0
3483   // then dest[3] = src[4] >> shiftCount  | src[3] <<< (shiftCount - 32)
3484   __ movl(idx, totalNumIter);
3485   __ movl(nIdx, idx);
3486   __ addl(nIdx, newIdx);
3487 
3488   // If vectorization is enabled, check if the number of iterations is at least 64
3489   // If not, then go to ShifTwo processing 2 iterations
3490   if (VM_Version::supports_avx512_vbmi2()) {
3491     __ cmpptr(totalNumIter, (AVX3Threshold/64));
3492     __ jcc(Assembler::less, ShiftTwo);
3493 
3494     if (AVX3Threshold < 16 * 64) {
3495       __ cmpl(totalNumIter, 16);
3496       __ jcc(Assembler::less, ShiftTwo);
3497     }
3498     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3499     __ subl(idx, 16);
3500     __ subl(nIdx, 16);
3501     __ BIND(Shift512Loop);
3502     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3503     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3504     __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3505     __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3506     __ subl(nIdx, 16);
3507     __ subl(idx, 16);
3508     __ jcc(Assembler::greaterEqual, Shift512Loop);
3509     __ addl(idx, 16);
3510     __ addl(nIdx, 16);
3511   }
3512   __ BIND(ShiftTwo);
3513   __ cmpl(idx, 2);
3514   __ jcc(Assembler::less, ShiftOne);
3515   __ subl(idx, 2);
3516   __ subl(nIdx, 2);
3517   __ BIND(ShiftTwoLoop);
3518   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3519   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3520   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3521   __ shrdl(tmp5, tmp4);
3522   __ shrdl(tmp4, tmp3);
3523   __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3524   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3525   __ subl(nIdx, 2);
3526   __ subl(idx, 2);
3527   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3528   __ addl(idx, 2);
3529   __ addl(nIdx, 2);
3530 
3531   // Do the last iteration
3532   __ BIND(ShiftOne);
3533   __ cmpl(idx, 1);
3534   __ jcc(Assembler::less, Exit);
3535   __ subl(idx, 1);
3536   __ subl(nIdx, 1);
3537   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3538   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3539   __ shrdl(tmp4, tmp3);
3540   __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3541   __ BIND(Exit);
3542   __ vzeroupper();
3543   // Restore callee save registers.
3544   __ pop_ppx(tmp5);
3545 #ifdef _WIN64
3546   __ pop_ppx(tmp4);
3547   __ pop_ppx(tmp3);
3548   restore_arg_regs();
3549 #endif
3550   __ leave(); // required for proper stackwalking of RuntimeStub frame
3551   __ ret(0);
3552 
3553   return start;
3554 }
3555 
3556  /**
3557  *  Arguments:
3558  *
3559  *  Input:
3560  *    c_rarg0   - newArr address
3561  *    c_rarg1   - oldArr address
3562  *    c_rarg2   - newIdx
3563  *    c_rarg3   - shiftCount
3564  * not Win64
3565  *    c_rarg4   - numIter
3566  * Win64
3567  *    rsp40    - numIter
3568  */
3569 address StubGenerator::generate_bigIntegerLeftShift() {
3570   __ align(CodeEntryAlignment);
3571   StubId stub_id = StubId::stubgen_bigIntegerLeftShiftWorker_id;
3572   StubCodeMark mark(this, stub_id);
3573   address start = __ pc();
3574 
3575   Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3576   // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3577   const Register newArr = rdi;
3578   const Register oldArr = rsi;
3579   const Register newIdx = rdx;
3580   const Register shiftCount = rcx;  // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3581   const Register totalNumIter = r8;
3582   // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3583   // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3584   const Register tmp1 = r11;                    // Caller save.
3585   const Register tmp2 = rax;                    // Caller save.
3586   const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9);   // Windows: Callee save. Linux: Caller save.
3587   const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10);  // Windows: Callee save. Linux: Caller save.
3588   const Register tmp5 = r14;                    // Callee save.
3589 
3590   const XMMRegister x0 = xmm0;
3591   const XMMRegister x1 = xmm1;
3592   const XMMRegister x2 = xmm2;
3593   BLOCK_COMMENT("Entry:");
3594   __ enter(); // required for proper stackwalking of RuntimeStub frame
3595 
3596 #ifdef _WIN64
3597   setup_arg_regs(4);
3598   // For windows, since last argument is on stack, we need to move it to the appropriate register.
3599   __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3600   // Save callee save registers.
3601   __ push_ppx(tmp3);
3602   __ push_ppx(tmp4);
3603 #endif
3604   __ push_ppx(tmp5);
3605 
3606   // Rename temps used throughout the code
3607   const Register idx = tmp1;
3608   const Register numIterTmp = tmp2;
3609 
3610   // Start idx from zero.
3611   __ xorl(idx, idx);
3612   // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3613   __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3614   __ movl(numIterTmp, totalNumIter);
3615 
3616   // If vectorization is enabled, check if the number of iterations is at least 64
3617   // If not, then go to ShiftTwo shifting two numbers at a time
3618   if (VM_Version::supports_avx512_vbmi2()) {
3619     __ cmpl(totalNumIter, (AVX3Threshold/64));
3620     __ jcc(Assembler::less, ShiftTwo);
3621 
3622     if (AVX3Threshold < 16 * 64) {
3623       __ cmpl(totalNumIter, 16);
3624       __ jcc(Assembler::less, ShiftTwo);
3625     }
3626     __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3627     __ subl(numIterTmp, 16);
3628     __ BIND(Shift512Loop);
3629     __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3630     __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3631     __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3632     __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3633     __ addl(idx, 16);
3634     __ subl(numIterTmp, 16);
3635     __ jcc(Assembler::greaterEqual, Shift512Loop);
3636     __ addl(numIterTmp, 16);
3637   }
3638   __ BIND(ShiftTwo);
3639   __ cmpl(totalNumIter, 1);
3640   __ jcc(Assembler::less, Exit);
3641   __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3642   __ subl(numIterTmp, 2);
3643   __ jcc(Assembler::less, ShiftOne);
3644 
3645   __ BIND(ShiftTwoLoop);
3646   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3647   __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3648   __ shldl(tmp3, tmp4);
3649   __ shldl(tmp4, tmp5);
3650   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3651   __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3652   __ movl(tmp3, tmp5);
3653   __ addl(idx, 2);
3654   __ subl(numIterTmp, 2);
3655   __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3656 
3657   // Do the last iteration
3658   __ BIND(ShiftOne);
3659   __ addl(numIterTmp, 2);
3660   __ cmpl(numIterTmp, 1);
3661   __ jcc(Assembler::less, Exit);
3662   __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3663   __ shldl(tmp3, tmp4);
3664   __ movl(Address(newArr, idx, Address::times_4), tmp3);
3665 
3666   __ BIND(Exit);
3667   __ vzeroupper();
3668   // Restore callee save registers.
3669   __ pop_ppx(tmp5);
3670 #ifdef _WIN64
3671   __ pop_ppx(tmp4);
3672   __ pop_ppx(tmp3);
3673   restore_arg_regs();
3674 #endif
3675   __ leave(); // required for proper stackwalking of RuntimeStub frame
3676   __ ret(0);
3677 
3678   return start;
3679 }
3680 
3681 void StubGenerator::generate_libm_stubs() {
3682   if (UseLibmIntrinsic && InlineIntrinsics) {
3683     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3684       StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3685     }
3686     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3687       StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3688     }
3689     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3690       StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3691     }
3692     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsinh)) {
3693       StubRoutines::_dsinh = generate_libmSinh(); // from stubGenerator_x86_64_sinh.cpp
3694     }
3695     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) {
3696       StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp
3697     }
3698     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcbrt)) {
3699       StubRoutines::_dcbrt = generate_libmCbrt(); // from stubGenerator_x86_64_cbrt.cpp
3700     }
3701     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3702       StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3703     }
3704     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3705       StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3706     }
3707     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3708       StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3709     }
3710     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3711       StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3712     }
3713   }
3714 }
3715 
3716 /**
3717 *  Arguments:
3718 *
3719 *  Input:
3720 *    c_rarg0   - float16  jshort
3721 *
3722 *  Output:
3723 *       xmm0   - float
3724 */
3725 address StubGenerator::generate_float16ToFloat() {
3726   StubId stub_id = StubId::stubgen_hf2f_id;
3727   StubCodeMark mark(this, stub_id);
3728 
3729   address start = __ pc();
3730 
3731   BLOCK_COMMENT("Entry:");
3732   // No need for RuntimeStub frame since it is called only during JIT compilation
3733 
3734   // Load value into xmm0 and convert
3735   __ flt16_to_flt(xmm0, c_rarg0);
3736 
3737   __ ret(0);
3738 
3739   return start;
3740 }
3741 
3742 /**
3743 *  Arguments:
3744 *
3745 *  Input:
3746 *       xmm0   - float
3747 *
3748 *  Output:
3749 *        rax   - float16  jshort
3750 */
3751 address StubGenerator::generate_floatToFloat16() {
3752   StubId stub_id = StubId::stubgen_f2hf_id;
3753   StubCodeMark mark(this, stub_id);
3754 
3755   address start = __ pc();
3756 
3757   BLOCK_COMMENT("Entry:");
3758   // No need for RuntimeStub frame since it is called only during JIT compilation
3759 
3760   // Convert and put result into rax
3761   __ flt_to_flt16(rax, xmm0, xmm1);
3762 
3763   __ ret(0);
3764 
3765   return start;
3766 }
3767 
3768 address StubGenerator::generate_cont_thaw(StubId stub_id) {
3769   if (!Continuations::enabled()) return nullptr;
3770 
3771   bool return_barrier;
3772   bool return_barrier_exception;
3773   Continuation::thaw_kind kind;
3774 
3775   switch (stub_id) {
3776   case StubId::stubgen_cont_thaw_id:
3777     return_barrier = false;
3778     return_barrier_exception = false;
3779     kind = Continuation::thaw_top;
3780     break;
3781   case StubId::stubgen_cont_returnBarrier_id:
3782     return_barrier = true;
3783     return_barrier_exception = false;
3784     kind = Continuation::thaw_return_barrier;
3785     break;
3786   case StubId::stubgen_cont_returnBarrierExc_id:
3787     return_barrier = true;
3788     return_barrier_exception = true;
3789     kind = Continuation::thaw_return_barrier_exception;
3790     break;
3791   default:
3792     ShouldNotReachHere();
3793   }
3794   StubCodeMark mark(this, stub_id);
3795   address start = __ pc();
3796 
3797   // TODO: Handle Valhalla return types. May require generating different return barriers.
3798 
3799   if (!return_barrier) {
3800     // Pop return address. If we don't do this, we get a drift,
3801     // where the bottom-most frozen frame continuously grows.
3802     __ pop(c_rarg3);
3803   } else {
3804     __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3805   }
3806 
3807 #ifdef ASSERT
3808   {
3809     Label L_good_sp;
3810     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3811     __ jcc(Assembler::equal, L_good_sp);
3812     __ stop("Incorrect rsp at thaw entry");
3813     __ BIND(L_good_sp);
3814   }
3815 #endif // ASSERT
3816 
3817   if (return_barrier) {
3818     // Preserve possible return value from a method returning to the return barrier.
3819     __ push_ppx(rax);
3820     __ push_d(xmm0);
3821   }
3822 
3823   __ movptr(c_rarg0, r15_thread);
3824   __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3825   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3826   __ movptr(rbx, rax);
3827 
3828   if (return_barrier) {
3829     // Restore return value from a method returning to the return barrier.
3830     // No safepoint in the call to thaw, so even an oop return value should be OK.
3831     __ pop_d(xmm0);
3832     __ pop_ppx(rax);
3833   }
3834 
3835 #ifdef ASSERT
3836   {
3837     Label L_good_sp;
3838     __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3839     __ jcc(Assembler::equal, L_good_sp);
3840     __ stop("Incorrect rsp after prepare thaw");
3841     __ BIND(L_good_sp);
3842   }
3843 #endif // ASSERT
3844 
3845   // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3846   Label L_thaw_success;
3847   __ testptr(rbx, rbx);
3848   __ jccb(Assembler::notZero, L_thaw_success);
3849   __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
3850   __ bind(L_thaw_success);
3851 
3852   // Make room for the thawed frames and align the stack.
3853   __ subptr(rsp, rbx);
3854   __ andptr(rsp, -StackAlignmentInBytes);
3855 
3856   if (return_barrier) {
3857     // Preserve possible return value from a method returning to the return barrier. (Again.)
3858     __ push_ppx(rax);
3859     __ push_d(xmm0);
3860   }
3861 
3862   // If we want, we can templatize thaw by kind, and have three different entries.
3863   __ movptr(c_rarg0, r15_thread);
3864   __ movptr(c_rarg1, kind);
3865   __ call_VM_leaf(Continuation::thaw_entry(), 2);
3866   __ movptr(rbx, rax);
3867 
3868   if (return_barrier) {
3869     // Restore return value from a method returning to the return barrier. (Again.)
3870     // No safepoint in the call to thaw, so even an oop return value should be OK.
3871     __ pop_d(xmm0);
3872     __ pop_ppx(rax);
3873   } else {
3874     // Return 0 (success) from doYield.
3875     __ xorptr(rax, rax);
3876   }
3877 
3878   // After thawing, rbx is the SP of the yielding frame.
3879   // Move there, and then to saved RBP slot.
3880   __ movptr(rsp, rbx);
3881   __ subptr(rsp, 2*wordSize);
3882 
3883   if (return_barrier_exception) {
3884     __ movptr(c_rarg0, r15_thread);
3885     __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3886 
3887     // rax still holds the original exception oop, save it before the call
3888     __ push_ppx(rax);
3889 
3890     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3891     __ movptr(rbx, rax);
3892 
3893     // Continue at exception handler:
3894     //   rax: exception oop
3895     //   rbx: exception handler
3896     //   rdx: exception pc
3897     __ pop_ppx(rax);
3898     __ verify_oop(rax);
3899     __ pop(rbp); // pop out RBP here too
3900     __ pop(rdx);
3901     __ jmp(rbx);
3902   } else {
3903     // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3904     __ pop(rbp);
3905     __ ret(0);
3906   }
3907 
3908   return start;
3909 }
3910 
3911 address StubGenerator::generate_cont_thaw() {
3912   return generate_cont_thaw(StubId::stubgen_cont_thaw_id);
3913 }
3914 
3915 // TODO: will probably need multiple return barriers depending on return type
3916 
3917 address StubGenerator::generate_cont_returnBarrier() {
3918   return generate_cont_thaw(StubId::stubgen_cont_returnBarrier_id);
3919 }
3920 
3921 address StubGenerator::generate_cont_returnBarrier_exception() {
3922   return generate_cont_thaw(StubId::stubgen_cont_returnBarrierExc_id);
3923 }
3924 
3925 address StubGenerator::generate_cont_preempt_stub() {
3926   if (!Continuations::enabled()) return nullptr;
3927   StubId stub_id = StubId::stubgen_cont_preempt_id;
3928   StubCodeMark mark(this, stub_id);
3929   address start = __ pc();
3930 
3931   __ reset_last_Java_frame(true);
3932 
3933   // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap.
3934   __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3935 
3936   Label preemption_cancelled;
3937   __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset()));
3938   __ testbool(rscratch1);
3939   __ jcc(Assembler::notZero, preemption_cancelled);
3940 
3941   // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount.
3942   SharedRuntime::continuation_enter_cleanup(_masm);
3943   __ pop(rbp);
3944   __ ret(0);
3945 
3946   // We acquired the monitor after freezing the frames so call thaw to continue execution.
3947   __ bind(preemption_cancelled);
3948   __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false);
3949   __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size())));
3950   __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address()));
3951   __ jmp(rscratch1);
3952 
3953   return start;
3954 }
3955 
3956 // exception handler for upcall stubs
3957 address StubGenerator::generate_upcall_stub_exception_handler() {
3958   StubId stub_id = StubId::stubgen_upcall_stub_exception_handler_id;
3959   StubCodeMark mark(this, stub_id);
3960   address start = __ pc();
3961 
3962   // native caller has no idea how to handle exceptions
3963   // we just crash here. Up to callee to catch exceptions.
3964   __ verify_oop(rax);
3965   __ vzeroupper();
3966   __ mov(c_rarg0, rax);
3967   __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI
3968   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3969   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception)));
3970   __ should_not_reach_here();
3971 
3972   return start;
3973 }
3974 
3975 // load Method* target of MethodHandle
3976 // j_rarg0 = jobject receiver
3977 // rbx = result
3978 address StubGenerator::generate_upcall_stub_load_target() {
3979   StubId stub_id = StubId::stubgen_upcall_stub_load_target_id;
3980   StubCodeMark mark(this, stub_id);
3981   address start = __ pc();
3982 
3983   __ resolve_global_jobject(j_rarg0, rscratch1);
3984     // Load target method from receiver
3985   __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1);
3986   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1);
3987   __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1);
3988   __ access_load_at(T_ADDRESS, IN_HEAP, rbx,
3989                     Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()),
3990                     noreg);
3991   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized
3992 
3993   __ ret(0);
3994 
3995   return start;
3996 }
3997 
3998 void StubGenerator::generate_lookup_secondary_supers_table_stub() {
3999   StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_id;
4000   StubCodeMark mark(this, stub_id);
4001 
4002   const Register
4003       r_super_klass = rax,
4004       r_sub_klass   = rsi,
4005       result        = rdi;
4006 
4007   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
4008     StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc();
4009     __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass,
4010                                            rdx, rcx, rbx, r11, // temps
4011                                            result,
4012                                            slot);
4013     __ ret(0);
4014   }
4015 }
4016 
4017 // Slow path implementation for UseSecondarySupersTable.
4018 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() {
4019   StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_slow_path_id;
4020   StubCodeMark mark(this, stub_id);
4021 
4022   address start = __ pc();
4023 
4024   const Register
4025       r_super_klass  = rax,
4026       r_array_base   = rbx,
4027       r_array_index  = rdx,
4028       r_sub_klass    = rsi,
4029       r_bitmap       = r11,
4030       result         = rdi;
4031 
4032   Label L_success;
4033   __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap,
4034                                              rcx, rdi, // temps
4035                                              &L_success);
4036   // bind(L_failure);
4037   __ movl(result, 1);
4038   __ ret(0);
4039 
4040   __ bind(L_success);
4041   __ movl(result, 0);
4042   __ ret(0);
4043 
4044   return start;
4045 }
4046 
4047 void StubGenerator::create_control_words() {
4048   // Round to nearest, 64-bit mode, exceptions masked, flags specialized
4049   StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80;
4050   // Round to zero, 64-bit mode, exceptions masked, flags specialized
4051   StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80;
4052 }
4053 
4054 // Initialization
4055 void StubGenerator::generate_preuniverse_stubs() {
4056   // atomic calls
4057   StubRoutines::_fence_entry                = generate_orderaccess_fence();
4058 }
4059 
4060 void StubGenerator::generate_initial_stubs() {
4061   // Generates all stubs and initializes the entry points
4062 
4063   // This platform-specific settings are needed by generate_call_stub()
4064   create_control_words();
4065 
4066   // Initialize table for unsafe copy memeory check.
4067   if (UnsafeMemoryAccess::_table == nullptr) {
4068     UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory
4069   }
4070 
4071   // entry points that exist in all platforms Note: This is code
4072   // that could be shared among different platforms - however the
4073   // benefit seems to be smaller than the disadvantage of having a
4074   // much more complicated generator structure. See also comment in
4075   // stubRoutines.hpp.
4076 
4077   StubRoutines::_forward_exception_entry = generate_forward_exception();
4078 
4079   StubRoutines::_call_stub_entry =
4080     generate_call_stub(StubRoutines::_call_stub_return_address);
4081 
4082   // is referenced by megamorphic call
4083   StubRoutines::_catch_exception_entry = generate_catch_exception();
4084 
4085   // platform dependent
4086   StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
4087 
4088   StubRoutines::x86::_f2i_fixup             = generate_f2i_fixup();
4089   StubRoutines::x86::_f2l_fixup             = generate_f2l_fixup();
4090   StubRoutines::x86::_d2i_fixup             = generate_d2i_fixup();
4091   StubRoutines::x86::_d2l_fixup             = generate_d2l_fixup();
4092 
4093   StubRoutines::x86::_float_sign_mask       = generate_fp_mask(StubId::stubgen_float_sign_mask_id,  0x7FFFFFFF7FFFFFFF);
4094   StubRoutines::x86::_float_sign_flip       = generate_fp_mask(StubId::stubgen_float_sign_flip_id,  0x8000000080000000);
4095   StubRoutines::x86::_double_sign_mask      = generate_fp_mask(StubId::stubgen_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4096   StubRoutines::x86::_double_sign_flip      = generate_fp_mask(StubId::stubgen_double_sign_flip_id, 0x8000000000000000);
4097 
4098   if (UseCRC32Intrinsics) {
4099     StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
4100   }
4101 
4102   if (UseCRC32CIntrinsics) {
4103     bool supports_clmul = VM_Version::supports_clmul();
4104     StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
4105   }
4106 
4107   if (VM_Version::supports_float16()) {
4108     // For results consistency both intrinsics should be enabled.
4109     // vmIntrinsics checks InlineIntrinsics flag, no need to check it here.
4110     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) &&
4111         vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) {
4112       StubRoutines::_hf2f = generate_float16ToFloat();
4113       StubRoutines::_f2hf = generate_floatToFloat16();
4114     }
4115   }
4116 
4117   generate_libm_stubs();
4118 
4119   StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp
4120 }
4121 
4122 void StubGenerator::generate_continuation_stubs() {
4123   // Continuation stubs:
4124   StubRoutines::_cont_thaw          = generate_cont_thaw();
4125   StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
4126   StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
4127   StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub();
4128 }
4129 
4130 void StubGenerator::generate_final_stubs() {
4131   // Generates the rest of stubs and initializes the entry points
4132 
4133   // support for verify_oop (must happen after universe_init)
4134   if (VerifyOops) {
4135     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
4136   }
4137 
4138   // arraycopy stubs used by compilers
4139   generate_arraycopy_stubs();
4140 
4141   StubRoutines::_method_entry_barrier = generate_method_entry_barrier();
4142 
4143 #ifdef COMPILER2
4144   if (UseSecondarySupersTable) {
4145     StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub();
4146     if (! InlineSecondarySupersTest) {
4147       generate_lookup_secondary_supers_table_stub();
4148     }
4149   }
4150 #endif // COMPILER2
4151 
4152   if (UseVectorizedMismatchIntrinsic) {
4153     StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4154   }
4155 
4156   StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler();
4157   StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target();
4158 }
4159 
4160 void StubGenerator::generate_compiler_stubs() {
4161 #if COMPILER2_OR_JVMCI
4162 
4163   // Entry points that are C2 compiler specific.
4164 
4165   StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubId::stubgen_vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4166   StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubId::stubgen_vector_float_sign_flip_id, 0x8000000080000000);
4167   StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubId::stubgen_vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4168   StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubId::stubgen_vector_double_sign_flip_id, 0x8000000000000000);
4169   StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubId::stubgen_vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF);
4170   StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubId::stubgen_vector_int_mask_cmp_bits_id, 0x0000000100000001);
4171   StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff);
4172   StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask();
4173   StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_int_to_byte_mask_id, 0x000000ff000000ff);
4174   StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubId::stubgen_vector_int_to_short_mask_id, 0x0000ffff0000ffff);
4175   StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_32_bit_mask_id, Assembler::AVX_512bit,
4176                                                                       0xFFFFFFFF, 0, 0, 0);
4177   StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_64_bit_mask_id, Assembler::AVX_512bit,
4178                                                                       0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
4179   StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_int_shuffle_mask_id, 0x0302010003020100);
4180   StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask();
4181   StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_short_shuffle_mask_id, 0x0100010001000100);
4182   StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_long_shuffle_mask_id, 0x0000000100000000);
4183   StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubId::stubgen_vector_long_sign_mask_id, 0x8000000000000000);
4184   StubRoutines::x86::_vector_iota_indices = generate_iota_indices();
4185   StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut();
4186   StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut();
4187   StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long();
4188   StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int();
4189   StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short();
4190 
4191   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) {
4192     StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubId::stubgen_compress_perm_table32_id);
4193     StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubId::stubgen_compress_perm_table64_id);
4194     StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubId::stubgen_expand_perm_table32_id);
4195     StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubId::stubgen_expand_perm_table64_id);
4196   }
4197 
4198   if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
4199     // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
4200     StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut();
4201   }
4202 
4203   generate_aes_stubs();
4204 
4205   generate_ghash_stubs();
4206 
4207   generate_chacha_stubs();
4208 
4209   generate_kyber_stubs();
4210 
4211   generate_dilithium_stubs();
4212 
4213   generate_sha3_stubs();
4214 
4215   // data cache line writeback
4216   StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
4217   StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
4218 
4219 #ifdef COMPILER2
4220   if ((UseAVX == 2) && EnableX86ECoreOpts) {
4221     generate_string_indexof(StubRoutines::_string_indexof_array);
4222   }
4223 #endif
4224 
4225   if (UseAdler32Intrinsics) {
4226      StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
4227   }
4228 
4229   if (UsePoly1305Intrinsics) {
4230     StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
4231   }
4232 
4233   if (UseIntPolyIntrinsics) {
4234     StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256();
4235     StubRoutines::_intpoly_assign = generate_intpoly_assign();
4236   }
4237 
4238   if (UseMD5Intrinsics) {
4239     StubRoutines::_md5_implCompress = generate_md5_implCompress(StubId::stubgen_md5_implCompress_id);
4240     StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubId::stubgen_md5_implCompressMB_id);
4241   }
4242 
4243   if (UseSHA1Intrinsics) {
4244     StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
4245     StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
4246     StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubId::stubgen_sha1_implCompress_id);
4247     StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubId::stubgen_sha1_implCompressMB_id);
4248   }
4249 
4250   if (UseSHA256Intrinsics) {
4251     StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
4252     char* dst = (char*)StubRoutines::x86::_k256_W;
4253     char* src = (char*)StubRoutines::x86::_k256;
4254     for (int ii = 0; ii < 16; ++ii) {
4255       memcpy(dst + 32 * ii,      src + 16 * ii, 16);
4256       memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4257     }
4258     StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4259     StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4260     StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubId::stubgen_sha256_implCompress_id);
4261     StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubId::stubgen_sha256_implCompressMB_id);
4262   }
4263 
4264   if (UseSHA512Intrinsics) {
4265     StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4266     StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4267     StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubId::stubgen_sha512_implCompress_id);
4268     StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubId::stubgen_sha512_implCompressMB_id);
4269   }
4270 
4271   if (UseBASE64Intrinsics) {
4272     if(VM_Version::supports_avx2()) {
4273       StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4274       StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4275       StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4276       StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr();
4277       StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr();
4278     }
4279     StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4280     if (VM_Version::supports_avx512_vbmi()) {
4281       StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4282       StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4283       StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4284       StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4285       StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4286       StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4287       StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4288       StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4289       StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4290     }
4291     StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4292     StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4293     StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4294   }
4295 
4296 #ifdef COMPILER2
4297   if (UseMultiplyToLenIntrinsic) {
4298     StubRoutines::_multiplyToLen = generate_multiplyToLen();
4299   }
4300   if (UseSquareToLenIntrinsic) {
4301     StubRoutines::_squareToLen = generate_squareToLen();
4302   }
4303   if (UseMulAddIntrinsic) {
4304     StubRoutines::_mulAdd = generate_mulAdd();
4305   }
4306   if (VM_Version::supports_avx512_vbmi2()) {
4307     StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4308     StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4309   }
4310   if (UseMontgomeryMultiplyIntrinsic) {
4311     StubRoutines::_montgomeryMultiply
4312       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4313   }
4314   if (UseMontgomerySquareIntrinsic) {
4315     StubRoutines::_montgomerySquare
4316       = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4317   }
4318 
4319   // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics
4320 
4321   if (VM_Version::supports_avx512dq() || VM_Version::supports_avx2()) {
4322     void *libsimdsort = nullptr;
4323     char ebuf_[1024];
4324     char dll_name_simd_sort[JVM_MAXPATHLEN];
4325     if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) {
4326       libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_);
4327     }
4328     // Get addresses for SIMD sort and partition routines
4329     if (libsimdsort != nullptr) {
4330       log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort));
4331 
4332       os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_sort" : "avx2_sort");
4333       StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_);
4334 
4335       os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_partition" : "avx2_partition");
4336       StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_);
4337     }
4338   }
4339 
4340 #endif // COMPILER2
4341 #endif // COMPILER2_OR_JVMCI
4342 }
4343 
4344 StubGenerator::StubGenerator(CodeBuffer* code, BlobId blob_id) : StubCodeGenerator(code, blob_id) {
4345   switch(blob_id) {
4346   case BlobId::stubgen_preuniverse_id:
4347     generate_preuniverse_stubs();
4348     break;
4349   case BlobId::stubgen_initial_id:
4350     generate_initial_stubs();
4351     break;
4352   case BlobId::stubgen_continuation_id:
4353     generate_continuation_stubs();
4354     break;
4355   case BlobId::stubgen_compiler_id:
4356     generate_compiler_stubs();
4357     break;
4358   case BlobId::stubgen_final_id:
4359     generate_final_stubs();
4360     break;
4361   default:
4362     fatal("unexpected blob id: %s", StubInfo::name(blob_id));
4363     break;
4364   };
4365 }
4366 
4367 void StubGenerator_generate(CodeBuffer* code, BlobId blob_id) {
4368   StubGenerator g(code, blob_id);
4369 }
4370 
4371 #undef __