1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/macroAssembler.hpp"
26 #include "classfile/javaClasses.hpp"
27 #include "classfile/vmIntrinsics.hpp"
28 #include "code/aotCodeCache.hpp"
29 #include "compiler/oopMap.hpp"
30 #include "gc/shared/barrierSet.hpp"
31 #include "gc/shared/barrierSetAssembler.hpp"
32 #include "gc/shared/barrierSetNMethod.hpp"
33 #include "gc/shared/gc_globals.hpp"
34 #include "memory/universe.hpp"
35 #include "prims/jvmtiExport.hpp"
36 #include "prims/upcallLinker.hpp"
37 #include "runtime/arguments.hpp"
38 #include "runtime/continuationEntry.hpp"
39 #include "runtime/javaThread.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/stubRoutines.hpp"
42 #include "stubGenerator_x86_64.hpp"
43 #ifdef COMPILER2
44 #include "opto/runtime.hpp"
45 #include "opto/c2_globals.hpp"
46 #endif
47 #if INCLUDE_JVMCI
48 #include "jvmci/jvmci_globals.hpp"
49 #endif
50
51 // For a more detailed description of the stub routine structure
52 // see the comment in stubRoutines.hpp
53
54 #define __ _masm->
55 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
56
57 #ifdef PRODUCT
58 #define BLOCK_COMMENT(str) /* nothing */
59 #else
60 #define BLOCK_COMMENT(str) __ block_comment(str)
61 #endif // PRODUCT
62
63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
64
65 //
66 // Linux Arguments:
67 // c_rarg0: call wrapper address address
68 // c_rarg1: result address
69 // c_rarg2: result type BasicType
70 // c_rarg3: method Method*
71 // c_rarg4: (interpreter) entry point address
72 // c_rarg5: parameters intptr_t*
73 // 16(rbp): parameter size (in words) int
74 // 24(rbp): thread Thread*
75 //
76 // [ return_from_Java ] <--- rsp
77 // [ argument word n ]
78 // ...
79 // -12 [ argument word 1 ]
80 // -11 [ saved r15 ] <--- rsp_after_call
81 // -10 [ saved r14 ]
82 // -9 [ saved r13 ]
83 // -8 [ saved r12 ]
84 // -7 [ saved rbx ]
85 // -6 [ call wrapper ]
86 // -5 [ result ]
87 // -4 [ result type ]
88 // -3 [ method ]
89 // -2 [ entry point ]
90 // -1 [ parameters ]
91 // 0 [ saved rbp ] <--- rbp
92 // 1 [ return address ]
93 // 2 [ parameter size ]
94 // 3 [ thread ]
95 //
96 // Windows Arguments:
97 // c_rarg0: call wrapper address address
98 // c_rarg1: result address
99 // c_rarg2: result type BasicType
100 // c_rarg3: method Method*
101 // 48(rbp): (interpreter) entry point address
102 // 56(rbp): parameters intptr_t*
103 // 64(rbp): parameter size (in words) int
104 // 72(rbp): thread Thread*
105 //
106 // [ return_from_Java ] <--- rsp
107 // [ argument word n ]
108 // ...
109 // -28 [ argument word 1 ]
110 // -27 [ saved xmm15 ] <--- rsp after_call
111 // [ saved xmm7-xmm14 ]
112 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
113 // -7 [ saved r15 ]
114 // -6 [ saved r14 ]
115 // -5 [ saved r13 ]
116 // -4 [ saved r12 ]
117 // -3 [ saved rdi ]
118 // -2 [ saved rsi ]
119 // -1 [ saved rbx ]
120 // 0 [ saved rbp ] <--- rbp
121 // 1 [ return address ]
122 // 2 [ call wrapper ]
123 // 3 [ result ]
124 // 4 [ result type ]
125 // 5 [ method ]
126 // 6 [ entry point ]
127 // 7 [ parameters ]
128 // 8 [ parameter size ]
129 // 9 [ thread ]
130 //
131 // Windows reserves the callers stack space for arguments 1-4.
132 // We spill c_rarg0-c_rarg3 to this space.
133
134 // Call stub stack layout word offsets from rbp
135 #ifdef _WIN64
136 enum call_stub_layout {
137 xmm_save_first = 6, // save from xmm6
138 xmm_save_last = 15, // to xmm15
139 xmm_save_base = -9,
140 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
141 r15_off = -7,
142 r14_off = -6,
143 r13_off = -5,
144 r12_off = -4,
145 rdi_off = -3,
146 rsi_off = -2,
147 rbx_off = -1,
148 rbp_off = 0,
149 retaddr_off = 1,
150 call_wrapper_off = 2,
151 result_off = 3,
152 result_type_off = 4,
153 method_off = 5,
154 entry_point_off = 6,
155 parameters_off = 7,
156 parameter_size_off = 8,
157 thread_off = 9
158 };
159
160 static Address xmm_save(int reg) {
161 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
162 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
163 }
164 #else // !_WIN64
165 enum call_stub_layout {
166 rsp_after_call_off = -12,
167 mxcsr_off = rsp_after_call_off,
168 r15_off = -11,
169 r14_off = -10,
170 r13_off = -9,
171 r12_off = -8,
172 rbx_off = -7,
173 call_wrapper_off = -6,
174 result_off = -5,
175 result_type_off = -4,
176 method_off = -3,
177 entry_point_off = -2,
178 parameters_off = -1,
179 rbp_off = 0,
180 retaddr_off = 1,
181 parameter_size_off = 2,
182 thread_off = 3
183 };
184 #endif // _WIN64
185
186 address StubGenerator::generate_call_stub(address& return_address) {
187
188 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
189 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
190 "adjust this code");
191 StubId stub_id = StubId::stubgen_call_stub_id;
192 StubCodeMark mark(this, stub_id);
193 address start = __ pc();
194
195 // same as in generate_catch_exception()!
196 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
197
198 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
199 const Address result (rbp, result_off * wordSize);
200 const Address result_type (rbp, result_type_off * wordSize);
201 const Address method (rbp, method_off * wordSize);
202 const Address entry_point (rbp, entry_point_off * wordSize);
203 const Address parameters (rbp, parameters_off * wordSize);
204 const Address parameter_size(rbp, parameter_size_off * wordSize);
205
206 // same as in generate_catch_exception()!
207 const Address thread (rbp, thread_off * wordSize);
208
209 const Address r15_save(rbp, r15_off * wordSize);
210 const Address r14_save(rbp, r14_off * wordSize);
211 const Address r13_save(rbp, r13_off * wordSize);
212 const Address r12_save(rbp, r12_off * wordSize);
213 const Address rbx_save(rbp, rbx_off * wordSize);
214
215 // stub code
216 __ enter();
217 __ subptr(rsp, -rsp_after_call_off * wordSize);
218
219 // save register parameters
220 #ifndef _WIN64
221 __ movptr(parameters, c_rarg5); // parameters
222 __ movptr(entry_point, c_rarg4); // entry_point
223 #endif
224
225 __ movptr(method, c_rarg3); // method
226 __ movl(result_type, c_rarg2); // result type
227 __ movptr(result, c_rarg1); // result
228 __ movptr(call_wrapper, c_rarg0); // call wrapper
229
230 // save regs belonging to calling function
231 __ movptr(rbx_save, rbx);
232 __ movptr(r12_save, r12);
233 __ movptr(r13_save, r13);
234 __ movptr(r14_save, r14);
235 __ movptr(r15_save, r15);
236
237 #ifdef _WIN64
238 int last_reg = 15;
239 for (int i = xmm_save_first; i <= last_reg; i++) {
240 __ movdqu(xmm_save(i), as_XMMRegister(i));
241 }
242
243 const Address rdi_save(rbp, rdi_off * wordSize);
244 const Address rsi_save(rbp, rsi_off * wordSize);
245
246 __ movptr(rsi_save, rsi);
247 __ movptr(rdi_save, rdi);
248 #else
249 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
250 {
251 Label skip_ldmx;
252 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
253 __ jcc(Assembler::equal, skip_ldmx);
254 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
255 __ ldmxcsr(mxcsr_std, rscratch1);
256 __ bind(skip_ldmx);
257 }
258 #endif
259
260 // Load up thread register
261 __ movptr(r15_thread, thread);
262 __ reinit_heapbase();
263
264 #ifdef ASSERT
265 // make sure we have no pending exceptions
266 {
267 Label L;
268 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
269 __ jcc(Assembler::equal, L);
270 __ stop("StubRoutines::call_stub: entered with pending exception");
271 __ bind(L);
272 }
273 #endif
274
275 // pass parameters if any
276 BLOCK_COMMENT("pass parameters if any");
277 Label parameters_done;
278 __ movl(c_rarg3, parameter_size);
279 __ testl(c_rarg3, c_rarg3);
280 __ jcc(Assembler::zero, parameters_done);
281
282 Label loop;
283 __ movptr(c_rarg2, parameters); // parameter pointer
284 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
285 __ BIND(loop);
286 __ movptr(rax, Address(c_rarg2, 0));// get parameter
287 __ addptr(c_rarg2, wordSize); // advance to next parameter
288 __ decrementl(c_rarg1); // decrement counter
289 __ push(rax); // pass parameter
290 __ jcc(Assembler::notZero, loop);
291
292 // call Java function
293 __ BIND(parameters_done);
294 __ movptr(rbx, method); // get Method*
295 __ movptr(c_rarg1, entry_point); // get entry_point
296 __ mov(r13, rsp); // set sender sp
297 BLOCK_COMMENT("call Java function");
298 __ call(c_rarg1);
299
300 BLOCK_COMMENT("call_stub_return_address:");
301 return_address = __ pc();
302
303 // store result depending on type (everything that is not
304 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
305 __ movptr(c_rarg0, result);
306 Label is_long, is_float, is_double, exit;
307 __ movl(c_rarg1, result_type);
308 __ cmpl(c_rarg1, T_OBJECT);
309 __ jcc(Assembler::equal, is_long);
310 __ cmpl(c_rarg1, T_LONG);
311 __ jcc(Assembler::equal, is_long);
312 __ cmpl(c_rarg1, T_FLOAT);
313 __ jcc(Assembler::equal, is_float);
314 __ cmpl(c_rarg1, T_DOUBLE);
315 __ jcc(Assembler::equal, is_double);
316 #ifdef ASSERT
317 // make sure the type is INT
318 {
319 Label L;
320 __ cmpl(c_rarg1, T_INT);
321 __ jcc(Assembler::equal, L);
322 __ stop("StubRoutines::call_stub: unexpected result type");
323 __ bind(L);
324 }
325 #endif
326
327 // handle T_INT case
328 __ movl(Address(c_rarg0, 0), rax);
329
330 __ BIND(exit);
331
332 // pop parameters
333 __ lea(rsp, rsp_after_call);
334
335 #ifdef ASSERT
336 // verify that threads correspond
337 {
338 Label L1, L2, L3;
339 __ cmpptr(r15_thread, thread);
340 __ jcc(Assembler::equal, L1);
341 __ stop("StubRoutines::call_stub: r15_thread is corrupted");
342 __ bind(L1);
343 __ get_thread_slow(rbx);
344 __ cmpptr(r15_thread, thread);
345 __ jcc(Assembler::equal, L2);
346 __ stop("StubRoutines::call_stub: r15_thread is modified by call");
347 __ bind(L2);
348 __ cmpptr(r15_thread, rbx);
349 __ jcc(Assembler::equal, L3);
350 __ stop("StubRoutines::call_stub: threads must correspond");
351 __ bind(L3);
352 }
353 #endif
354
355 __ pop_cont_fastpath();
356
357 // restore regs belonging to calling function
358 #ifdef _WIN64
359 // emit the restores for xmm regs
360 for (int i = xmm_save_first; i <= last_reg; i++) {
361 __ movdqu(as_XMMRegister(i), xmm_save(i));
362 }
363 #endif
364 __ movptr(r15, r15_save);
365 __ movptr(r14, r14_save);
366 __ movptr(r13, r13_save);
367 __ movptr(r12, r12_save);
368 __ movptr(rbx, rbx_save);
369
370 #ifdef _WIN64
371 __ movptr(rdi, rdi_save);
372 __ movptr(rsi, rsi_save);
373 #else
374 __ ldmxcsr(mxcsr_save);
375 #endif
376
377 // restore rsp
378 __ addptr(rsp, -rsp_after_call_off * wordSize);
379
380 // return
381 __ vzeroupper();
382 __ pop(rbp);
383 __ ret(0);
384
385 // handle return types different from T_INT
386 __ BIND(is_long);
387 __ movq(Address(c_rarg0, 0), rax);
388 __ jmp(exit);
389
390 __ BIND(is_float);
391 __ movflt(Address(c_rarg0, 0), xmm0);
392 __ jmp(exit);
393
394 __ BIND(is_double);
395 __ movdbl(Address(c_rarg0, 0), xmm0);
396 __ jmp(exit);
397
398 return start;
399 }
400
401 // Return point for a Java call if there's an exception thrown in
402 // Java code. The exception is caught and transformed into a
403 // pending exception stored in JavaThread that can be tested from
404 // within the VM.
405 //
406 // Note: Usually the parameters are removed by the callee. In case
407 // of an exception crossing an activation frame boundary, that is
408 // not the case if the callee is compiled code => need to setup the
409 // rsp.
410 //
411 // rax: exception oop
412
413 address StubGenerator::generate_catch_exception() {
414 StubId stub_id = StubId::stubgen_catch_exception_id;
415 StubCodeMark mark(this, stub_id);
416 address start = __ pc();
417
418 // same as in generate_call_stub():
419 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
420 const Address thread (rbp, thread_off * wordSize);
421
422 #ifdef ASSERT
423 // verify that threads correspond
424 {
425 Label L1, L2, L3;
426 __ cmpptr(r15_thread, thread);
427 __ jcc(Assembler::equal, L1);
428 __ stop("StubRoutines::catch_exception: r15_thread is corrupted");
429 __ bind(L1);
430 __ get_thread_slow(rbx);
431 __ cmpptr(r15_thread, thread);
432 __ jcc(Assembler::equal, L2);
433 __ stop("StubRoutines::catch_exception: r15_thread is modified by call");
434 __ bind(L2);
435 __ cmpptr(r15_thread, rbx);
436 __ jcc(Assembler::equal, L3);
437 __ stop("StubRoutines::catch_exception: threads must correspond");
438 __ bind(L3);
439 }
440 #endif
441
442 // set pending exception
443 __ verify_oop(rax);
444
445 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
446 __ lea(rscratch1, ExternalAddress((address)__FILE__));
447 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
448 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
449
450 // complete return to VM
451 assert(StubRoutines::_call_stub_return_address != nullptr,
452 "_call_stub_return_address must have been generated before");
453 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
454
455 return start;
456 }
457
458 // Continuation point for runtime calls returning with a pending
459 // exception. The pending exception check happened in the runtime
460 // or native call stub. The pending exception in Thread is
461 // converted into a Java-level exception.
462 //
463 // Contract with Java-level exception handlers:
464 // rax: exception
465 // rdx: throwing pc
466 //
467 // NOTE: At entry of this stub, exception-pc must be on stack !!
468
469 address StubGenerator::generate_forward_exception() {
470 StubId stub_id = StubId::stubgen_forward_exception_id;
471 StubCodeMark mark(this, stub_id);
472 address start = __ pc();
473
474 // Upon entry, the sp points to the return address returning into
475 // Java (interpreted or compiled) code; i.e., the return address
476 // becomes the throwing pc.
477 //
478 // Arguments pushed before the runtime call are still on the stack
479 // but the exception handler will reset the stack pointer ->
480 // ignore them. A potential result in registers can be ignored as
481 // well.
482
483 #ifdef ASSERT
484 // make sure this code is only executed if there is a pending exception
485 {
486 Label L;
487 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
488 __ jcc(Assembler::notEqual, L);
489 __ stop("StubRoutines::forward exception: no pending exception (1)");
490 __ bind(L);
491 }
492 #endif
493
494 // compute exception handler into rbx
495 __ movptr(c_rarg0, Address(rsp, 0));
496 BLOCK_COMMENT("call exception_handler_for_return_address");
497 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
498 SharedRuntime::exception_handler_for_return_address),
499 r15_thread, c_rarg0);
500 __ mov(rbx, rax);
501
502 // setup rax & rdx, remove return address & clear pending exception
503 __ pop(rdx);
504 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
505 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), NULL_WORD);
506
507 #ifdef ASSERT
508 // make sure exception is set
509 {
510 Label L;
511 __ testptr(rax, rax);
512 __ jcc(Assembler::notEqual, L);
513 __ stop("StubRoutines::forward exception: no pending exception (2)");
514 __ bind(L);
515 }
516 #endif
517
518 // continue at exception handler (return address removed)
519 // rax: exception
520 // rbx: exception handler
521 // rdx: throwing pc
522 __ verify_oop(rax);
523 __ jmp(rbx);
524
525 return start;
526 }
527
528 // Support for intptr_t OrderAccess::fence()
529 //
530 // Arguments :
531 //
532 // Result:
533 address StubGenerator::generate_orderaccess_fence() {
534 StubId stub_id = StubId::stubgen_fence_id;
535 StubCodeMark mark(this, stub_id);
536 address start = __ pc();
537
538 __ membar(Assembler::StoreLoad);
539 __ ret(0);
540
541 return start;
542 }
543
544
545 //----------------------------------------------------------------------------------------------------
546 // Support for void verify_mxcsr()
547 //
548 // This routine is used with -Xcheck:jni to verify that native
549 // JNI code does not return to Java code without restoring the
550 // MXCSR register to our expected state.
551
552 address StubGenerator::generate_verify_mxcsr() {
553 StubId stub_id = StubId::stubgen_verify_mxcsr_id;
554 StubCodeMark mark(this, stub_id);
555 address start = __ pc();
556
557 const Address mxcsr_save(rsp, 0);
558
559 if (CheckJNICalls) {
560 Label ok_ret;
561 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std());
562 __ push_ppx(rax);
563 __ subptr(rsp, wordSize); // allocate a temp location
564 __ cmp32_mxcsr_std(mxcsr_save, rax, rscratch1);
565 __ jcc(Assembler::equal, ok_ret);
566
567 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
568
569 __ ldmxcsr(mxcsr_std, rscratch1);
570
571 __ bind(ok_ret);
572 __ addptr(rsp, wordSize);
573 __ pop_ppx(rax);
574 }
575
576 __ ret(0);
577
578 return start;
579 }
580
581 address StubGenerator::generate_f2i_fixup() {
582 StubId stub_id = StubId::stubgen_f2i_fixup_id;
583 StubCodeMark mark(this, stub_id);
584 Address inout(rsp, 5 * wordSize); // return address + 4 saves
585
586 address start = __ pc();
587
588 Label L;
589
590 __ push_ppx(rax);
591 __ push_ppx(c_rarg3);
592 __ push_ppx(c_rarg2);
593 __ push_ppx(c_rarg1);
594
595 __ movl(rax, 0x7f800000);
596 __ xorl(c_rarg3, c_rarg3);
597 __ movl(c_rarg2, inout);
598 __ movl(c_rarg1, c_rarg2);
599 __ andl(c_rarg1, 0x7fffffff);
600 __ cmpl(rax, c_rarg1); // NaN? -> 0
601 __ jcc(Assembler::negative, L);
602 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
603 __ movl(c_rarg3, 0x80000000);
604 __ movl(rax, 0x7fffffff);
605 __ cmovl(Assembler::positive, c_rarg3, rax);
606
607 __ bind(L);
608 __ movptr(inout, c_rarg3);
609
610 __ pop_ppx(c_rarg1);
611 __ pop_ppx(c_rarg2);
612 __ pop_ppx(c_rarg3);
613 __ pop_ppx(rax);
614
615 __ ret(0);
616
617 return start;
618 }
619
620 address StubGenerator::generate_f2l_fixup() {
621 StubId stub_id = StubId::stubgen_f2l_fixup_id;
622 StubCodeMark mark(this, stub_id);
623 Address inout(rsp, 5 * wordSize); // return address + 4 saves
624 address start = __ pc();
625
626 Label L;
627
628 __ push_ppx(rax);
629 __ push_ppx(c_rarg3);
630 __ push_ppx(c_rarg2);
631 __ push_ppx(c_rarg1);
632
633 __ movl(rax, 0x7f800000);
634 __ xorl(c_rarg3, c_rarg3);
635 __ movl(c_rarg2, inout);
636 __ movl(c_rarg1, c_rarg2);
637 __ andl(c_rarg1, 0x7fffffff);
638 __ cmpl(rax, c_rarg1); // NaN? -> 0
639 __ jcc(Assembler::negative, L);
640 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
641 __ mov64(c_rarg3, 0x8000000000000000);
642 __ mov64(rax, 0x7fffffffffffffff);
643 __ cmov(Assembler::positive, c_rarg3, rax);
644
645 __ bind(L);
646 __ movptr(inout, c_rarg3);
647
648 __ pop_ppx(c_rarg1);
649 __ pop_ppx(c_rarg2);
650 __ pop_ppx(c_rarg3);
651 __ pop_ppx(rax);
652
653 __ ret(0);
654
655 return start;
656 }
657
658 address StubGenerator::generate_d2i_fixup() {
659 StubId stub_id = StubId::stubgen_d2i_fixup_id;
660 StubCodeMark mark(this, stub_id);
661 Address inout(rsp, 6 * wordSize); // return address + 5 saves
662
663 address start = __ pc();
664
665 Label L;
666
667 __ push_ppx(rax);
668 __ push_ppx(c_rarg3);
669 __ push_ppx(c_rarg2);
670 __ push_ppx(c_rarg1);
671 __ push_ppx(c_rarg0);
672
673 __ movl(rax, 0x7ff00000);
674 __ movq(c_rarg2, inout);
675 __ movl(c_rarg3, c_rarg2);
676 __ mov(c_rarg1, c_rarg2);
677 __ mov(c_rarg0, c_rarg2);
678 __ negl(c_rarg3);
679 __ shrptr(c_rarg1, 0x20);
680 __ orl(c_rarg3, c_rarg2);
681 __ andl(c_rarg1, 0x7fffffff);
682 __ xorl(c_rarg2, c_rarg2);
683 __ shrl(c_rarg3, 0x1f);
684 __ orl(c_rarg1, c_rarg3);
685 __ cmpl(rax, c_rarg1);
686 __ jcc(Assembler::negative, L); // NaN -> 0
687 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
688 __ movl(c_rarg2, 0x80000000);
689 __ movl(rax, 0x7fffffff);
690 __ cmov(Assembler::positive, c_rarg2, rax);
691
692 __ bind(L);
693 __ movptr(inout, c_rarg2);
694
695 __ pop_ppx(c_rarg0);
696 __ pop_ppx(c_rarg1);
697 __ pop_ppx(c_rarg2);
698 __ pop_ppx(c_rarg3);
699 __ pop_ppx(rax);
700
701 __ ret(0);
702
703 return start;
704 }
705
706 address StubGenerator::generate_d2l_fixup() {
707 StubId stub_id = StubId::stubgen_d2l_fixup_id;
708 StubCodeMark mark(this, stub_id);
709 Address inout(rsp, 6 * wordSize); // return address + 5 saves
710
711 address start = __ pc();
712
713 Label L;
714
715 __ push_ppx(rax);
716 __ push_ppx(c_rarg3);
717 __ push_ppx(c_rarg2);
718 __ push_ppx(c_rarg1);
719 __ push_ppx(c_rarg0);
720
721 __ movl(rax, 0x7ff00000);
722 __ movq(c_rarg2, inout);
723 __ movl(c_rarg3, c_rarg2);
724 __ mov(c_rarg1, c_rarg2);
725 __ mov(c_rarg0, c_rarg2);
726 __ negl(c_rarg3);
727 __ shrptr(c_rarg1, 0x20);
728 __ orl(c_rarg3, c_rarg2);
729 __ andl(c_rarg1, 0x7fffffff);
730 __ xorl(c_rarg2, c_rarg2);
731 __ shrl(c_rarg3, 0x1f);
732 __ orl(c_rarg1, c_rarg3);
733 __ cmpl(rax, c_rarg1);
734 __ jcc(Assembler::negative, L); // NaN -> 0
735 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
736 __ mov64(c_rarg2, 0x8000000000000000);
737 __ mov64(rax, 0x7fffffffffffffff);
738 __ cmovq(Assembler::positive, c_rarg2, rax);
739
740 __ bind(L);
741 __ movq(inout, c_rarg2);
742
743 __ pop_ppx(c_rarg0);
744 __ pop_ppx(c_rarg1);
745 __ pop_ppx(c_rarg2);
746 __ pop_ppx(c_rarg3);
747 __ pop_ppx(rax);
748
749 __ ret(0);
750
751 return start;
752 }
753
754 address StubGenerator::generate_count_leading_zeros_lut() {
755 __ align64();
756 StubId stub_id = StubId::stubgen_vector_count_leading_zeros_lut_id;
757 StubCodeMark mark(this, stub_id);
758 address start = __ pc();
759
760 __ emit_data64(0x0101010102020304, relocInfo::none);
761 __ emit_data64(0x0000000000000000, relocInfo::none);
762 __ emit_data64(0x0101010102020304, relocInfo::none);
763 __ emit_data64(0x0000000000000000, relocInfo::none);
764 __ emit_data64(0x0101010102020304, relocInfo::none);
765 __ emit_data64(0x0000000000000000, relocInfo::none);
766 __ emit_data64(0x0101010102020304, relocInfo::none);
767 __ emit_data64(0x0000000000000000, relocInfo::none);
768
769 return start;
770 }
771
772 address StubGenerator::generate_popcount_avx_lut() {
773 __ align64();
774 StubId stub_id = StubId::stubgen_vector_popcount_lut_id;
775 StubCodeMark mark(this, stub_id);
776 address start = __ pc();
777
778 __ emit_data64(0x0302020102010100, relocInfo::none);
779 __ emit_data64(0x0403030203020201, relocInfo::none);
780 __ emit_data64(0x0302020102010100, relocInfo::none);
781 __ emit_data64(0x0403030203020201, relocInfo::none);
782 __ emit_data64(0x0302020102010100, relocInfo::none);
783 __ emit_data64(0x0403030203020201, relocInfo::none);
784 __ emit_data64(0x0302020102010100, relocInfo::none);
785 __ emit_data64(0x0403030203020201, relocInfo::none);
786
787 return start;
788 }
789
790 address StubGenerator::generate_iota_indices() {
791 __ align(CodeEntryAlignment);
792 StubId stub_id = StubId::stubgen_vector_iota_indices_id;
793 StubCodeMark mark(this, stub_id);
794 address start = __ pc();
795 // B
796 __ emit_data64(0x0706050403020100, relocInfo::none);
797 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none);
798 __ emit_data64(0x1716151413121110, relocInfo::none);
799 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none);
800 __ emit_data64(0x2726252423222120, relocInfo::none);
801 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none);
802 __ emit_data64(0x3736353433323130, relocInfo::none);
803 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none);
804 // W
805 __ emit_data64(0x0003000200010000, relocInfo::none);
806 __ emit_data64(0x0007000600050004, relocInfo::none);
807 __ emit_data64(0x000B000A00090008, relocInfo::none);
808 __ emit_data64(0x000F000E000D000C, relocInfo::none);
809 __ emit_data64(0x0013001200110010, relocInfo::none);
810 __ emit_data64(0x0017001600150014, relocInfo::none);
811 __ emit_data64(0x001B001A00190018, relocInfo::none);
812 __ emit_data64(0x001F001E001D001C, relocInfo::none);
813 // D
814 __ emit_data64(0x0000000100000000, relocInfo::none);
815 __ emit_data64(0x0000000300000002, relocInfo::none);
816 __ emit_data64(0x0000000500000004, relocInfo::none);
817 __ emit_data64(0x0000000700000006, relocInfo::none);
818 __ emit_data64(0x0000000900000008, relocInfo::none);
819 __ emit_data64(0x0000000B0000000A, relocInfo::none);
820 __ emit_data64(0x0000000D0000000C, relocInfo::none);
821 __ emit_data64(0x0000000F0000000E, relocInfo::none);
822 // Q
823 __ emit_data64(0x0000000000000000, relocInfo::none);
824 __ emit_data64(0x0000000000000001, relocInfo::none);
825 __ emit_data64(0x0000000000000002, relocInfo::none);
826 __ emit_data64(0x0000000000000003, relocInfo::none);
827 __ emit_data64(0x0000000000000004, relocInfo::none);
828 __ emit_data64(0x0000000000000005, relocInfo::none);
829 __ emit_data64(0x0000000000000006, relocInfo::none);
830 __ emit_data64(0x0000000000000007, relocInfo::none);
831 // D - FP
832 __ emit_data64(0x3F80000000000000, relocInfo::none); // 0.0f, 1.0f
833 __ emit_data64(0x4040000040000000, relocInfo::none); // 2.0f, 3.0f
834 __ emit_data64(0x40A0000040800000, relocInfo::none); // 4.0f, 5.0f
835 __ emit_data64(0x40E0000040C00000, relocInfo::none); // 6.0f, 7.0f
836 __ emit_data64(0x4110000041000000, relocInfo::none); // 8.0f, 9.0f
837 __ emit_data64(0x4130000041200000, relocInfo::none); // 10.0f, 11.0f
838 __ emit_data64(0x4150000041400000, relocInfo::none); // 12.0f, 13.0f
839 __ emit_data64(0x4170000041600000, relocInfo::none); // 14.0f, 15.0f
840 // Q - FP
841 __ emit_data64(0x0000000000000000, relocInfo::none); // 0.0d
842 __ emit_data64(0x3FF0000000000000, relocInfo::none); // 1.0d
843 __ emit_data64(0x4000000000000000, relocInfo::none); // 2.0d
844 __ emit_data64(0x4008000000000000, relocInfo::none); // 3.0d
845 __ emit_data64(0x4010000000000000, relocInfo::none); // 4.0d
846 __ emit_data64(0x4014000000000000, relocInfo::none); // 5.0d
847 __ emit_data64(0x4018000000000000, relocInfo::none); // 6.0d
848 __ emit_data64(0x401c000000000000, relocInfo::none); // 7.0d
849 return start;
850 }
851
852 address StubGenerator::generate_vector_reverse_bit_lut() {
853 __ align(CodeEntryAlignment);
854 StubId stub_id = StubId::stubgen_vector_reverse_bit_lut_id;
855 StubCodeMark mark(this, stub_id);
856 address start = __ pc();
857
858 __ emit_data64(0x0E060A020C040800, relocInfo::none);
859 __ emit_data64(0x0F070B030D050901, relocInfo::none);
860 __ emit_data64(0x0E060A020C040800, relocInfo::none);
861 __ emit_data64(0x0F070B030D050901, relocInfo::none);
862 __ emit_data64(0x0E060A020C040800, relocInfo::none);
863 __ emit_data64(0x0F070B030D050901, relocInfo::none);
864 __ emit_data64(0x0E060A020C040800, relocInfo::none);
865 __ emit_data64(0x0F070B030D050901, relocInfo::none);
866
867 return start;
868 }
869
870 address StubGenerator::generate_vector_reverse_byte_perm_mask_long() {
871 __ align(CodeEntryAlignment);
872 StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_long_id;
873 StubCodeMark mark(this, stub_id);
874 address start = __ pc();
875
876 __ emit_data64(0x0001020304050607, relocInfo::none);
877 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
878 __ emit_data64(0x0001020304050607, relocInfo::none);
879 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
880 __ emit_data64(0x0001020304050607, relocInfo::none);
881 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
882 __ emit_data64(0x0001020304050607, relocInfo::none);
883 __ emit_data64(0x08090A0B0C0D0E0F, relocInfo::none);
884
885 return start;
886 }
887
888 address StubGenerator::generate_vector_reverse_byte_perm_mask_int() {
889 __ align(CodeEntryAlignment);
890 StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_int_id;
891 StubCodeMark mark(this, stub_id);
892 address start = __ pc();
893
894 __ emit_data64(0x0405060700010203, relocInfo::none);
895 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
896 __ emit_data64(0x0405060700010203, relocInfo::none);
897 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
898 __ emit_data64(0x0405060700010203, relocInfo::none);
899 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
900 __ emit_data64(0x0405060700010203, relocInfo::none);
901 __ emit_data64(0x0C0D0E0F08090A0B, relocInfo::none);
902
903 return start;
904 }
905
906 address StubGenerator::generate_vector_reverse_byte_perm_mask_short() {
907 __ align(CodeEntryAlignment);
908 StubId stub_id = StubId::stubgen_vector_reverse_byte_perm_mask_short_id;
909 StubCodeMark mark(this, stub_id);
910 address start = __ pc();
911
912 __ emit_data64(0x0607040502030001, relocInfo::none);
913 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
914 __ emit_data64(0x0607040502030001, relocInfo::none);
915 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
916 __ emit_data64(0x0607040502030001, relocInfo::none);
917 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
918 __ emit_data64(0x0607040502030001, relocInfo::none);
919 __ emit_data64(0x0E0F0C0D0A0B0809, relocInfo::none);
920
921 return start;
922 }
923
924 address StubGenerator::generate_vector_byte_shuffle_mask() {
925 __ align(CodeEntryAlignment);
926 StubId stub_id = StubId::stubgen_vector_byte_shuffle_mask_id;
927 StubCodeMark mark(this, stub_id);
928 address start = __ pc();
929
930 __ emit_data64(0x7070707070707070, relocInfo::none);
931 __ emit_data64(0x7070707070707070, relocInfo::none);
932 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
933 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none);
934
935 return start;
936 }
937
938 address StubGenerator::generate_fp_mask(StubId stub_id, int64_t mask) {
939 __ align(CodeEntryAlignment);
940 StubCodeMark mark(this, stub_id);
941 address start = __ pc();
942
943 __ emit_data64( mask, relocInfo::none );
944 __ emit_data64( mask, relocInfo::none );
945
946 return start;
947 }
948
949 address StubGenerator::generate_compress_perm_table(StubId stub_id) {
950 int esize;
951 switch (stub_id) {
952 case StubId::stubgen_compress_perm_table32_id:
953 esize = 32;
954 break;
955 case StubId::stubgen_compress_perm_table64_id:
956 esize = 64;
957 break;
958 default:
959 ShouldNotReachHere();
960 }
961 __ align(CodeEntryAlignment);
962 StubCodeMark mark(this, stub_id);
963 address start = __ pc();
964 if (esize == 32) {
965 // Loop to generate 256 x 8 int compression permute index table. A row is
966 // accessed using 8 bit index computed using vector mask. An entry in
967 // a row holds either a valid permute index corresponding to set bit position
968 // or a -1 (default) value.
969 for (int mask = 0; mask < 256; mask++) {
970 int ctr = 0;
971 for (int j = 0; j < 8; j++) {
972 if (mask & (1 << j)) {
973 __ emit_data(j, relocInfo::none);
974 ctr++;
975 }
976 }
977 for (; ctr < 8; ctr++) {
978 __ emit_data(-1, relocInfo::none);
979 }
980 }
981 } else {
982 assert(esize == 64, "");
983 // Loop to generate 16 x 4 long compression permute index table. A row is
984 // accessed using 4 bit index computed using vector mask. An entry in
985 // a row holds either a valid permute index pair for a quadword corresponding
986 // to set bit position or a -1 (default) value.
987 for (int mask = 0; mask < 16; mask++) {
988 int ctr = 0;
989 for (int j = 0; j < 4; j++) {
990 if (mask & (1 << j)) {
991 __ emit_data(2 * j, relocInfo::none);
992 __ emit_data(2 * j + 1, relocInfo::none);
993 ctr++;
994 }
995 }
996 for (; ctr < 4; ctr++) {
997 __ emit_data64(-1L, relocInfo::none);
998 }
999 }
1000 }
1001 return start;
1002 }
1003
1004 address StubGenerator::generate_expand_perm_table(StubId stub_id) {
1005 int esize;
1006 switch (stub_id) {
1007 case StubId::stubgen_expand_perm_table32_id:
1008 esize = 32;
1009 break;
1010 case StubId::stubgen_expand_perm_table64_id:
1011 esize = 64;
1012 break;
1013 default:
1014 ShouldNotReachHere();
1015 }
1016 __ align(CodeEntryAlignment);
1017 StubCodeMark mark(this, stub_id);
1018 address start = __ pc();
1019 if (esize == 32) {
1020 // Loop to generate 256 x 8 int expand permute index table. A row is accessed
1021 // using 8 bit index computed using vector mask. An entry in a row holds either
1022 // a valid permute index (starting from least significant lane) placed at poisition
1023 // corresponding to set bit position or a -1 (default) value.
1024 for (int mask = 0; mask < 256; mask++) {
1025 int ctr = 0;
1026 for (int j = 0; j < 8; j++) {
1027 if (mask & (1 << j)) {
1028 __ emit_data(ctr++, relocInfo::none);
1029 } else {
1030 __ emit_data(-1, relocInfo::none);
1031 }
1032 }
1033 }
1034 } else {
1035 assert(esize == 64, "");
1036 // Loop to generate 16 x 4 long expand permute index table. A row is accessed
1037 // using 4 bit index computed using vector mask. An entry in a row holds either
1038 // a valid doubleword permute index pair representing a quadword index (starting
1039 // from least significant lane) placed at poisition corresponding to set bit
1040 // position or a -1 (default) value.
1041 for (int mask = 0; mask < 16; mask++) {
1042 int ctr = 0;
1043 for (int j = 0; j < 4; j++) {
1044 if (mask & (1 << j)) {
1045 __ emit_data(2 * ctr, relocInfo::none);
1046 __ emit_data(2 * ctr + 1, relocInfo::none);
1047 ctr++;
1048 } else {
1049 __ emit_data64(-1L, relocInfo::none);
1050 }
1051 }
1052 }
1053 }
1054 return start;
1055 }
1056
1057 address StubGenerator::generate_vector_mask(StubId stub_id, int64_t mask) {
1058 __ align(CodeEntryAlignment);
1059 StubCodeMark mark(this, stub_id);
1060 address start = __ pc();
1061
1062 __ emit_data64(mask, relocInfo::none);
1063 __ emit_data64(mask, relocInfo::none);
1064 __ emit_data64(mask, relocInfo::none);
1065 __ emit_data64(mask, relocInfo::none);
1066 __ emit_data64(mask, relocInfo::none);
1067 __ emit_data64(mask, relocInfo::none);
1068 __ emit_data64(mask, relocInfo::none);
1069 __ emit_data64(mask, relocInfo::none);
1070
1071 return start;
1072 }
1073
1074 address StubGenerator::generate_vector_byte_perm_mask() {
1075 __ align(CodeEntryAlignment);
1076 StubId stub_id = StubId::stubgen_vector_byte_perm_mask_id;
1077 StubCodeMark mark(this, stub_id);
1078 address start = __ pc();
1079
1080 __ emit_data64(0x0000000000000001, relocInfo::none);
1081 __ emit_data64(0x0000000000000003, relocInfo::none);
1082 __ emit_data64(0x0000000000000005, relocInfo::none);
1083 __ emit_data64(0x0000000000000007, relocInfo::none);
1084 __ emit_data64(0x0000000000000000, relocInfo::none);
1085 __ emit_data64(0x0000000000000002, relocInfo::none);
1086 __ emit_data64(0x0000000000000004, relocInfo::none);
1087 __ emit_data64(0x0000000000000006, relocInfo::none);
1088
1089 return start;
1090 }
1091
1092 address StubGenerator::generate_vector_fp_mask(StubId stub_id, int64_t mask) {
1093 __ align(CodeEntryAlignment);
1094 StubCodeMark mark(this, stub_id);
1095 address start = __ pc();
1096
1097 __ emit_data64(mask, relocInfo::none);
1098 __ emit_data64(mask, relocInfo::none);
1099 __ emit_data64(mask, relocInfo::none);
1100 __ emit_data64(mask, relocInfo::none);
1101 __ emit_data64(mask, relocInfo::none);
1102 __ emit_data64(mask, relocInfo::none);
1103 __ emit_data64(mask, relocInfo::none);
1104 __ emit_data64(mask, relocInfo::none);
1105
1106 return start;
1107 }
1108
1109 address StubGenerator::generate_vector_custom_i32(StubId stub_id, Assembler::AvxVectorLen len,
1110 int32_t val0, int32_t val1, int32_t val2, int32_t val3,
1111 int32_t val4, int32_t val5, int32_t val6, int32_t val7,
1112 int32_t val8, int32_t val9, int32_t val10, int32_t val11,
1113 int32_t val12, int32_t val13, int32_t val14, int32_t val15) {
1114 __ align(CodeEntryAlignment);
1115 StubCodeMark mark(this, stub_id);
1116 address start = __ pc();
1117
1118 assert(len != Assembler::AVX_NoVec, "vector len must be specified");
1119 __ emit_data(val0, relocInfo::none, 0);
1120 __ emit_data(val1, relocInfo::none, 0);
1121 __ emit_data(val2, relocInfo::none, 0);
1122 __ emit_data(val3, relocInfo::none, 0);
1123 if (len >= Assembler::AVX_256bit) {
1124 __ emit_data(val4, relocInfo::none, 0);
1125 __ emit_data(val5, relocInfo::none, 0);
1126 __ emit_data(val6, relocInfo::none, 0);
1127 __ emit_data(val7, relocInfo::none, 0);
1128 if (len >= Assembler::AVX_512bit) {
1129 __ emit_data(val8, relocInfo::none, 0);
1130 __ emit_data(val9, relocInfo::none, 0);
1131 __ emit_data(val10, relocInfo::none, 0);
1132 __ emit_data(val11, relocInfo::none, 0);
1133 __ emit_data(val12, relocInfo::none, 0);
1134 __ emit_data(val13, relocInfo::none, 0);
1135 __ emit_data(val14, relocInfo::none, 0);
1136 __ emit_data(val15, relocInfo::none, 0);
1137 }
1138 }
1139 return start;
1140 }
1141
1142 // Non-destructive plausibility checks for oops
1143 //
1144 // Arguments:
1145 // all args on stack!
1146 //
1147 // Stack after saving c_rarg3:
1148 // [tos + 0]: saved c_rarg3
1149 // [tos + 1]: saved c_rarg2
1150 // [tos + 2]: saved r12 (several TemplateTable methods use it)
1151 // [tos + 3]: saved flags
1152 // [tos + 4]: return address
1153 // * [tos + 5]: error message (char*)
1154 // * [tos + 6]: object to verify (oop)
1155 // * [tos + 7]: saved rax - saved by caller and bashed
1156 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
1157 // * = popped on exit
1158 address StubGenerator::generate_verify_oop() {
1159 StubId stub_id = StubId::stubgen_verify_oop_id;
1160 StubCodeMark mark(this, stub_id);
1161 address start = __ pc();
1162
1163 Label exit, error;
1164
1165 __ pushf();
1166 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()), rscratch1);
1167
1168 __ push_ppx(r12);
1169
1170 // save c_rarg2 and c_rarg3
1171 __ push_ppx(c_rarg2);
1172 __ push_ppx(c_rarg3);
1173
1174 enum {
1175 // After previous pushes.
1176 oop_to_verify = 6 * wordSize,
1177 saved_rax = 7 * wordSize,
1178 saved_r10 = 8 * wordSize,
1179
1180 // Before the call to MacroAssembler::debug(), see below.
1181 return_addr = 16 * wordSize,
1182 error_msg = 17 * wordSize
1183 };
1184
1185 // get object
1186 __ movptr(rax, Address(rsp, oop_to_verify));
1187
1188 // make sure object is 'reasonable'
1189 __ testptr(rax, rax);
1190 __ jcc(Assembler::zero, exit); // if obj is null it is OK
1191
1192 BarrierSetAssembler* bs_asm = BarrierSet::barrier_set()->barrier_set_assembler();
1193 bs_asm->check_oop(_masm, rax, c_rarg2, c_rarg3, error);
1194
1195 // return if everything seems ok
1196 __ bind(exit);
1197 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
1198 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1199 __ pop_ppx(c_rarg3); // restore c_rarg3
1200 __ pop_ppx(c_rarg2); // restore c_rarg2
1201 __ pop_ppx(r12); // restore r12
1202 __ popf(); // restore flags
1203 __ ret(4 * wordSize); // pop caller saved stuff
1204
1205 // handle errors
1206 __ bind(error);
1207 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
1208 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1209 __ pop_ppx(c_rarg3); // get saved c_rarg3 back
1210 __ pop_ppx(c_rarg2); // get saved c_rarg2 back
1211 __ pop_ppx(r12); // get saved r12 back
1212 __ popf(); // get saved flags off stack --
1213 // will be ignored
1214
1215 __ pusha(); // push registers
1216 // (rip is already
1217 // already pushed)
1218 // debug(char* msg, int64_t pc, int64_t regs[])
1219 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1220 // pushed all the registers, so now the stack looks like:
1221 // [tos + 0] 16 saved registers
1222 // [tos + 16] return address
1223 // * [tos + 17] error message (char*)
1224 // * [tos + 18] object to verify (oop)
1225 // * [tos + 19] saved rax - saved by caller and bashed
1226 // * [tos + 20] saved r10 (rscratch1) - saved by caller
1227 // * = popped on exit
1228
1229 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
1230 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
1231 __ movq(c_rarg2, rsp); // pass address of regs on stack
1232 __ mov(r12, rsp); // remember rsp
1233 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1234 __ andptr(rsp, -16); // align stack as required by ABI
1235 BLOCK_COMMENT("call MacroAssembler::debug");
1236 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1237 __ hlt();
1238
1239 return start;
1240 }
1241
1242
1243 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1244 //
1245 // Outputs:
1246 // rdi - rcx
1247 // rsi - rdx
1248 // rdx - r8
1249 // rcx - r9
1250 //
1251 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1252 // are non-volatile. r9 and r10 should not be used by the caller.
1253 //
1254 void StubGenerator::setup_arg_regs(int nargs) {
1255 const Register saved_rdi = r9;
1256 const Register saved_rsi = r10;
1257 assert(nargs == 3 || nargs == 4, "else fix");
1258 #ifdef _WIN64
1259 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1260 "unexpected argument registers");
1261 if (nargs == 4) {
1262 __ mov(rax, r9); // r9 is also saved_rdi
1263 }
1264 __ movptr(saved_rdi, rdi);
1265 __ movptr(saved_rsi, rsi);
1266 __ mov(rdi, rcx); // c_rarg0
1267 __ mov(rsi, rdx); // c_rarg1
1268 __ mov(rdx, r8); // c_rarg2
1269 if (nargs == 4) {
1270 __ mov(rcx, rax); // c_rarg3 (via rax)
1271 }
1272 #else
1273 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1274 "unexpected argument registers");
1275 #endif
1276 DEBUG_ONLY(_regs_in_thread = false;)
1277 }
1278
1279
1280 void StubGenerator::restore_arg_regs() {
1281 assert(!_regs_in_thread, "wrong call to restore_arg_regs");
1282 const Register saved_rdi = r9;
1283 const Register saved_rsi = r10;
1284 #ifdef _WIN64
1285 __ movptr(rdi, saved_rdi);
1286 __ movptr(rsi, saved_rsi);
1287 #endif
1288 }
1289
1290
1291 // This is used in places where r10 is a scratch register, and can
1292 // be adapted if r9 is needed also.
1293 void StubGenerator::setup_arg_regs_using_thread(int nargs) {
1294 const Register saved_r15 = r9;
1295 assert(nargs == 3 || nargs == 4, "else fix");
1296 #ifdef _WIN64
1297 if (nargs == 4) {
1298 __ mov(rax, r9); // r9 is also saved_r15
1299 }
1300 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored
1301 __ get_thread_slow(r15_thread);
1302 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1303 "unexpected argument registers");
1304 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi);
1305 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi);
1306
1307 __ mov(rdi, rcx); // c_rarg0
1308 __ mov(rsi, rdx); // c_rarg1
1309 __ mov(rdx, r8); // c_rarg2
1310 if (nargs == 4) {
1311 __ mov(rcx, rax); // c_rarg3 (via rax)
1312 }
1313 #else
1314 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1315 "unexpected argument registers");
1316 #endif
1317 DEBUG_ONLY(_regs_in_thread = true;)
1318 }
1319
1320
1321 void StubGenerator::restore_arg_regs_using_thread() {
1322 assert(_regs_in_thread, "wrong call to restore_arg_regs");
1323 const Register saved_r15 = r9;
1324 #ifdef _WIN64
1325 __ get_thread_slow(r15_thread);
1326 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())));
1327 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())));
1328 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored
1329 #endif
1330 }
1331
1332
1333 void StubGenerator::setup_argument_regs(BasicType type) {
1334 if (type == T_BYTE || type == T_SHORT) {
1335 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1336 // r9 and r10 may be used to save non-volatile registers
1337 } else {
1338 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx
1339 // r9 is used to save r15_thread
1340 }
1341 }
1342
1343
1344 void StubGenerator::restore_argument_regs(BasicType type) {
1345 if (type == T_BYTE || type == T_SHORT) {
1346 restore_arg_regs();
1347 } else {
1348 restore_arg_regs_using_thread();
1349 }
1350 }
1351
1352 address StubGenerator::generate_data_cache_writeback() {
1353 const Register src = c_rarg0; // source address
1354
1355 __ align(CodeEntryAlignment);
1356
1357 StubId stub_id = StubId::stubgen_data_cache_writeback_id;
1358 StubCodeMark mark(this, stub_id);
1359
1360 address start = __ pc();
1361
1362 __ enter();
1363 __ cache_wb(Address(src, 0));
1364 __ leave();
1365 __ ret(0);
1366
1367 return start;
1368 }
1369
1370 address StubGenerator::generate_data_cache_writeback_sync() {
1371 const Register is_pre = c_rarg0; // pre or post sync
1372
1373 __ align(CodeEntryAlignment);
1374
1375 StubId stub_id = StubId::stubgen_data_cache_writeback_sync_id;
1376 StubCodeMark mark(this, stub_id);
1377
1378 // pre wbsync is a no-op
1379 // post wbsync translates to an sfence
1380
1381 Label skip;
1382 address start = __ pc();
1383
1384 __ enter();
1385 __ cmpl(is_pre, 0);
1386 __ jcc(Assembler::notEqual, skip);
1387 __ cache_wbsync(false);
1388 __ bind(skip);
1389 __ leave();
1390 __ ret(0);
1391
1392 return start;
1393 }
1394
1395 // ofs and limit are use for multi-block byte array.
1396 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs)
1397 address StubGenerator::generate_md5_implCompress(StubId stub_id) {
1398 bool multi_block;
1399 switch (stub_id) {
1400 case StubId::stubgen_md5_implCompress_id:
1401 multi_block = false;
1402 break;
1403 case StubId::stubgen_md5_implCompressMB_id:
1404 multi_block = true;
1405 break;
1406 default:
1407 ShouldNotReachHere();
1408 }
1409 __ align(CodeEntryAlignment);
1410 StubCodeMark mark(this, stub_id);
1411 address start = __ pc();
1412
1413 const Register buf_param = r15;
1414 const Address state_param(rsp, 0 * wordSize);
1415 const Address ofs_param (rsp, 1 * wordSize );
1416 const Address limit_param(rsp, 1 * wordSize + 4);
1417
1418 __ enter();
1419 __ push_ppx(rbx);
1420 __ push_ppx(rdi);
1421 __ push_ppx(rsi);
1422 __ push_ppx(r15);
1423 __ subptr(rsp, 2 * wordSize);
1424
1425 __ movptr(buf_param, c_rarg0);
1426 __ movptr(state_param, c_rarg1);
1427 if (multi_block) {
1428 __ movl(ofs_param, c_rarg2);
1429 __ movl(limit_param, c_rarg3);
1430 }
1431 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block);
1432
1433 __ addptr(rsp, 2 * wordSize);
1434 __ pop_ppx(r15);
1435 __ pop_ppx(rsi);
1436 __ pop_ppx(rdi);
1437 __ pop_ppx(rbx);
1438 __ leave();
1439 __ ret(0);
1440
1441 return start;
1442 }
1443
1444 address StubGenerator::generate_upper_word_mask() {
1445 __ align64();
1446 StubId stub_id = StubId::stubgen_upper_word_mask_id;
1447 StubCodeMark mark(this, stub_id);
1448 address start = __ pc();
1449
1450 __ emit_data64(0x0000000000000000, relocInfo::none);
1451 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none);
1452
1453 return start;
1454 }
1455
1456 address StubGenerator::generate_shuffle_byte_flip_mask() {
1457 __ align64();
1458 StubId stub_id = StubId::stubgen_shuffle_byte_flip_mask_id;
1459 StubCodeMark mark(this, stub_id);
1460 address start = __ pc();
1461
1462 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1463 __ emit_data64(0x0001020304050607, relocInfo::none);
1464
1465 return start;
1466 }
1467
1468 // ofs and limit are use for multi-block byte array.
1469 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1470 address StubGenerator::generate_sha1_implCompress(StubId stub_id) {
1471 bool multi_block;
1472 switch (stub_id) {
1473 case StubId::stubgen_sha1_implCompress_id:
1474 multi_block = false;
1475 break;
1476 case StubId::stubgen_sha1_implCompressMB_id:
1477 multi_block = true;
1478 break;
1479 default:
1480 ShouldNotReachHere();
1481 }
1482 __ align(CodeEntryAlignment);
1483 StubCodeMark mark(this, stub_id);
1484 address start = __ pc();
1485
1486 Register buf = c_rarg0;
1487 Register state = c_rarg1;
1488 Register ofs = c_rarg2;
1489 Register limit = c_rarg3;
1490
1491 const XMMRegister abcd = xmm0;
1492 const XMMRegister e0 = xmm1;
1493 const XMMRegister e1 = xmm2;
1494 const XMMRegister msg0 = xmm3;
1495
1496 const XMMRegister msg1 = xmm4;
1497 const XMMRegister msg2 = xmm5;
1498 const XMMRegister msg3 = xmm6;
1499 const XMMRegister shuf_mask = xmm7;
1500
1501 __ enter();
1502
1503 __ subptr(rsp, 4 * wordSize);
1504
1505 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
1506 buf, state, ofs, limit, rsp, multi_block);
1507
1508 __ addptr(rsp, 4 * wordSize);
1509
1510 __ leave();
1511 __ ret(0);
1512
1513 return start;
1514 }
1515
1516 address StubGenerator::generate_pshuffle_byte_flip_mask() {
1517 __ align64();
1518 StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_id;
1519 StubCodeMark mark(this, stub_id);
1520 address start = __ pc();
1521
1522 __ emit_data64(0x0405060700010203, relocInfo::none);
1523 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1524
1525 if (VM_Version::supports_avx2()) {
1526 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy
1527 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none);
1528 // _SHUF_00BA
1529 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1530 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1531 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1532 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1533 // _SHUF_DC00
1534 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1535 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1536 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1537 __ emit_data64(0x0b0a090803020100, relocInfo::none);
1538 }
1539
1540 return start;
1541 }
1542
1543 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
1544 address StubGenerator::generate_pshuffle_byte_flip_mask_sha512() {
1545 __ align32();
1546 StubId stub_id = StubId::stubgen_pshuffle_byte_flip_mask_sha512_id;
1547 StubCodeMark mark(this, stub_id);
1548 address start = __ pc();
1549
1550 if (VM_Version::supports_avx2()) {
1551 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK
1552 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);
1553 __ emit_data64(0x1011121314151617, relocInfo::none);
1554 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none);
1555 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO
1556 __ emit_data64(0x0000000000000000, relocInfo::none);
1557 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1558 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none);
1559 }
1560
1561 return start;
1562 }
1563
1564 // ofs and limit are use for multi-block byte array.
1565 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
1566 address StubGenerator::generate_sha256_implCompress(StubId stub_id) {
1567 bool multi_block;
1568 switch (stub_id) {
1569 case StubId::stubgen_sha256_implCompress_id:
1570 multi_block = false;
1571 break;
1572 case StubId::stubgen_sha256_implCompressMB_id:
1573 multi_block = true;
1574 break;
1575 default:
1576 ShouldNotReachHere();
1577 }
1578 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "");
1579 __ align(CodeEntryAlignment);
1580 StubCodeMark mark(this, stub_id);
1581 address start = __ pc();
1582
1583 Register buf = c_rarg0;
1584 Register state = c_rarg1;
1585 Register ofs = c_rarg2;
1586 Register limit = c_rarg3;
1587
1588 const XMMRegister msg = xmm0;
1589 const XMMRegister state0 = xmm1;
1590 const XMMRegister state1 = xmm2;
1591 const XMMRegister msgtmp0 = xmm3;
1592
1593 const XMMRegister msgtmp1 = xmm4;
1594 const XMMRegister msgtmp2 = xmm5;
1595 const XMMRegister msgtmp3 = xmm6;
1596 const XMMRegister msgtmp4 = xmm7;
1597
1598 const XMMRegister shuf_mask = xmm8;
1599
1600 __ enter();
1601
1602 __ subptr(rsp, 4 * wordSize);
1603
1604 if (VM_Version::supports_sha()) {
1605 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1606 buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1607 } else if (VM_Version::supports_avx2()) {
1608 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1609 buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1610 }
1611 __ addptr(rsp, 4 * wordSize);
1612 __ vzeroupper();
1613 __ leave();
1614 __ ret(0);
1615
1616 return start;
1617 }
1618
1619 address StubGenerator::generate_sha512_implCompress(StubId stub_id) {
1620 bool multi_block;
1621 switch (stub_id) {
1622 case StubId::stubgen_sha512_implCompress_id:
1623 multi_block = false;
1624 break;
1625 case StubId::stubgen_sha512_implCompressMB_id:
1626 multi_block = true;
1627 break;
1628 default:
1629 ShouldNotReachHere();
1630 }
1631 assert(VM_Version::supports_avx2(), "");
1632 assert(VM_Version::supports_bmi2() || VM_Version::supports_sha512(), "");
1633 __ align(CodeEntryAlignment);
1634 StubCodeMark mark(this, stub_id);
1635 address start = __ pc();
1636
1637 Register buf = c_rarg0;
1638 Register state = c_rarg1;
1639 Register ofs = c_rarg2;
1640 Register limit = c_rarg3;
1641
1642 __ enter();
1643
1644 if (VM_Version::supports_sha512()) {
1645 __ sha512_update_ni_x1(state, buf, ofs, limit, multi_block);
1646 } else {
1647 const XMMRegister msg = xmm0;
1648 const XMMRegister state0 = xmm1;
1649 const XMMRegister state1 = xmm2;
1650 const XMMRegister msgtmp0 = xmm3;
1651 const XMMRegister msgtmp1 = xmm4;
1652 const XMMRegister msgtmp2 = xmm5;
1653 const XMMRegister msgtmp3 = xmm6;
1654 const XMMRegister msgtmp4 = xmm7;
1655
1656 const XMMRegister shuf_mask = xmm8;
1657 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
1658 buf, state, ofs, limit, rsp, multi_block, shuf_mask);
1659 }
1660 __ vzeroupper();
1661 __ leave();
1662 __ ret(0);
1663
1664 return start;
1665 }
1666
1667 address StubGenerator::base64_shuffle_addr() {
1668 __ align64();
1669 StubId stub_id = StubId::stubgen_shuffle_base64_id;
1670 StubCodeMark mark(this, stub_id);
1671 address start = __ pc();
1672
1673 assert(((unsigned long long)start & 0x3f) == 0,
1674 "Alignment problem (0x%08llx)", (unsigned long long)start);
1675 __ emit_data64(0x0405030401020001, relocInfo::none);
1676 __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1677 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none);
1678 __ emit_data64(0x1617151613141213, relocInfo::none);
1679 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none);
1680 __ emit_data64(0x222321221f201e1f, relocInfo::none);
1681 __ emit_data64(0x2829272825262425, relocInfo::none);
1682 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none);
1683
1684 return start;
1685 }
1686
1687 address StubGenerator::base64_avx2_shuffle_addr() {
1688 __ align32();
1689 StubId stub_id = StubId::stubgen_avx2_shuffle_base64_id;
1690 StubCodeMark mark(this, stub_id);
1691 address start = __ pc();
1692
1693 __ emit_data64(0x0809070805060405, relocInfo::none);
1694 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none);
1695 __ emit_data64(0x0405030401020001, relocInfo::none);
1696 __ emit_data64(0x0a0b090a07080607, relocInfo::none);
1697
1698 return start;
1699 }
1700
1701 address StubGenerator::base64_avx2_input_mask_addr() {
1702 __ align32();
1703 StubId stub_id = StubId::stubgen_avx2_input_mask_base64_id;
1704 StubCodeMark mark(this, stub_id);
1705 address start = __ pc();
1706
1707 __ emit_data64(0x8000000000000000, relocInfo::none);
1708 __ emit_data64(0x8000000080000000, relocInfo::none);
1709 __ emit_data64(0x8000000080000000, relocInfo::none);
1710 __ emit_data64(0x8000000080000000, relocInfo::none);
1711
1712 return start;
1713 }
1714
1715 address StubGenerator::base64_avx2_lut_addr() {
1716 __ align32();
1717 StubId stub_id = StubId::stubgen_avx2_lut_base64_id;
1718 StubCodeMark mark(this, stub_id);
1719 address start = __ pc();
1720
1721 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1722 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1723 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1724 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none);
1725
1726 // URL LUT
1727 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1728 __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1729 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none);
1730 __ emit_data64(0x000020effcfcfcfc, relocInfo::none);
1731
1732 return start;
1733 }
1734
1735 address StubGenerator::base64_encoding_table_addr() {
1736 __ align64();
1737 StubId stub_id = StubId::stubgen_encoding_table_base64_id;
1738 StubCodeMark mark(this, stub_id);
1739 address start = __ pc();
1740
1741 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start);
1742 __ emit_data64(0x4847464544434241, relocInfo::none);
1743 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1744 __ emit_data64(0x5857565554535251, relocInfo::none);
1745 __ emit_data64(0x6665646362615a59, relocInfo::none);
1746 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1747 __ emit_data64(0x767574737271706f, relocInfo::none);
1748 __ emit_data64(0x333231307a797877, relocInfo::none);
1749 __ emit_data64(0x2f2b393837363534, relocInfo::none);
1750
1751 // URL table
1752 __ emit_data64(0x4847464544434241, relocInfo::none);
1753 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none);
1754 __ emit_data64(0x5857565554535251, relocInfo::none);
1755 __ emit_data64(0x6665646362615a59, relocInfo::none);
1756 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none);
1757 __ emit_data64(0x767574737271706f, relocInfo::none);
1758 __ emit_data64(0x333231307a797877, relocInfo::none);
1759 __ emit_data64(0x5f2d393837363534, relocInfo::none);
1760
1761 return start;
1762 }
1763
1764 // Code for generating Base64 encoding.
1765 // Intrinsic function prototype in Base64.java:
1766 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp,
1767 // boolean isURL) {
1768 address StubGenerator::generate_base64_encodeBlock()
1769 {
1770 __ align(CodeEntryAlignment);
1771 StubId stub_id = StubId::stubgen_base64_encodeBlock_id;
1772 StubCodeMark mark(this, stub_id);
1773 address start = __ pc();
1774
1775 __ enter();
1776
1777 // Save callee-saved registers before using them
1778 __ push_ppx(r12);
1779 __ push_ppx(r13);
1780 __ push_ppx(r14);
1781 __ push_ppx(r15);
1782
1783 // arguments
1784 const Register source = c_rarg0; // Source Array
1785 const Register start_offset = c_rarg1; // start offset
1786 const Register end_offset = c_rarg2; // end offset
1787 const Register dest = c_rarg3; // destination array
1788
1789 #ifndef _WIN64
1790 const Register dp = c_rarg4; // Position for writing to dest array
1791 const Register isURL = c_rarg5; // Base64 or URL character set
1792 #else
1793 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
1794 const Address isURL_mem(rbp, 7 * wordSize);
1795 const Register isURL = r10; // pick the volatile windows register
1796 const Register dp = r12;
1797 __ movl(dp, dp_mem);
1798 __ movl(isURL, isURL_mem);
1799 #endif
1800
1801 const Register length = r14;
1802 const Register encode_table = r13;
1803 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop;
1804
1805 // calculate length from offsets
1806 __ movl(length, end_offset);
1807 __ subl(length, start_offset);
1808 __ jcc(Assembler::lessEqual, L_exit);
1809
1810 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64
1811 // output bytes. We read 64 input bytes and ignore the last 16, so be
1812 // sure not to read past the end of the input buffer.
1813 if (VM_Version::supports_avx512_vbmi()) {
1814 __ cmpl(length, 64); // Do not overrun input buffer.
1815 __ jcc(Assembler::below, L_not512);
1816
1817 __ shll(isURL, 6); // index into decode table based on isURL
1818 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
1819 __ addptr(encode_table, isURL);
1820 __ shrl(isURL, 6); // restore isURL
1821
1822 __ mov64(rax, 0x3036242a1016040aull); // Shifts
1823 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15);
1824 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit);
1825 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit);
1826
1827 __ align32();
1828 __ BIND(L_vbmiLoop);
1829
1830 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit);
1831 __ subl(length, 48);
1832
1833 // Put the input bytes into the proper lanes for writing, then
1834 // encode them.
1835 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit);
1836 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit);
1837
1838 // Write to destination
1839 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit);
1840
1841 __ addptr(dest, 64);
1842 __ addptr(source, 48);
1843 __ cmpl(length, 64);
1844 __ jcc(Assembler::aboveEqual, L_vbmiLoop);
1845
1846 __ vzeroupper();
1847 }
1848
1849 __ BIND(L_not512);
1850 if (VM_Version::supports_avx2()) {
1851 /*
1852 ** This AVX2 encoder is based off the paper at:
1853 ** https://dl.acm.org/doi/10.1145/3132709
1854 **
1855 ** We use AVX2 SIMD instructions to encode 24 bytes into 32
1856 ** output bytes.
1857 **
1858 */
1859 // Lengths under 32 bytes are done with scalar routine
1860 __ cmpl(length, 31);
1861 __ jcc(Assembler::belowEqual, L_process3);
1862
1863 // Set up supporting constant table data
1864 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax);
1865 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values
1866 __ movl(rax, 0x0fc0fc00);
1867 __ movdl(xmm8, rax);
1868 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax);
1869 __ vpbroadcastd(xmm8, xmm8, Assembler::AVX_256bit);
1870
1871 // Multiplication constant for "shifting" right by 6 and 10
1872 // bits
1873 __ movl(rax, 0x04000040);
1874
1875 __ subl(length, 24);
1876 __ movdl(xmm7, rax);
1877 __ vpbroadcastd(xmm7, xmm7, Assembler::AVX_256bit);
1878
1879 // For the first load, we mask off reading of the first 4
1880 // bytes into the register. This is so we can get 4 3-byte
1881 // chunks into each lane of the register, avoiding having to
1882 // handle end conditions. We then shuffle these bytes into a
1883 // specific order so that manipulation is easier.
1884 //
1885 // The initial read loads the XMM register like this:
1886 //
1887 // Lower 128-bit lane:
1888 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1889 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1
1890 // | C2 | D0 | D1 | D2 |
1891 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1892 //
1893 // Upper 128-bit lane:
1894 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1895 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2
1896 // | XX | XX | XX | XX |
1897 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
1898 //
1899 // Where A0 is the first input byte, B0 is the fourth, etc.
1900 // The alphabetical significance denotes the 3 bytes to be
1901 // consumed and encoded into 4 bytes.
1902 //
1903 // We then shuffle the register so each 32-bit word contains
1904 // the sequence:
1905 // A1 A0 A2 A1, B1, B0, B2, B1, etc.
1906 // Each of these byte sequences are then manipulated into 4
1907 // 6-bit values ready for encoding.
1908 //
1909 // If we focus on one set of 3-byte chunks, changing the
1910 // nomenclature such that A0 => a, A1 => b, and A2 => c, we
1911 // shuffle such that each 24-bit chunk contains:
1912 //
1913 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6
1914 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0
1915 // Explain this step.
1916 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4
1917 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2
1918 //
1919 // W first and off all but bits 4-9 and 16-21 (c5..c0 and
1920 // a5..a0) and shift them using a vector multiplication
1921 // operation (vpmulhuw) which effectively shifts c right by 6
1922 // bits and a right by 10 bits. We similarly mask bits 10-15
1923 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4
1924 // bits respectively. This is done using vpmullw. We end up
1925 // with 4 6-bit values, thus splitting the 3 input bytes,
1926 // ready for encoding:
1927 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0
1928 //
1929 // For translation, we recognize that there are 5 distinct
1930 // ranges of legal Base64 characters as below:
1931 //
1932 // +-------------+-------------+------------+
1933 // | 6-bit value | ASCII range | offset |
1934 // +-------------+-------------+------------+
1935 // | 0..25 | A..Z | 65 |
1936 // | 26..51 | a..z | 71 |
1937 // | 52..61 | 0..9 | -4 |
1938 // | 62 | + or - | -19 or -17 |
1939 // | 63 | / or _ | -16 or 32 |
1940 // +-------------+-------------+------------+
1941 //
1942 // We note that vpshufb does a parallel lookup in a
1943 // destination register using the lower 4 bits of bytes from a
1944 // source register. If we use a saturated subtraction and
1945 // subtract 51 from each 6-bit value, bytes from [0,51]
1946 // saturate to 0, and [52,63] map to a range of [1,12]. We
1947 // distinguish the [0,25] and [26,51] ranges by assigning a
1948 // value of 13 for all 6-bit values less than 26. We end up
1949 // with:
1950 //
1951 // +-------------+-------------+------------+
1952 // | 6-bit value | Reduced | offset |
1953 // +-------------+-------------+------------+
1954 // | 0..25 | 13 | 65 |
1955 // | 26..51 | 0 | 71 |
1956 // | 52..61 | 0..9 | -4 |
1957 // | 62 | 11 | -19 or -17 |
1958 // | 63 | 12 | -16 or 32 |
1959 // +-------------+-------------+------------+
1960 //
1961 // We then use a final vpshufb to add the appropriate offset,
1962 // translating the bytes.
1963 //
1964 // Load input bytes - only 28 bytes. Mask the first load to
1965 // not load into the full register.
1966 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit);
1967
1968 // Move 3-byte chunks of input (12 bytes) into 16 bytes,
1969 // ordering by:
1970 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks
1971 // for easy masking
1972 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
1973
1974 __ addl(start_offset, 24);
1975
1976 // Load masking register for first and third (and multiples)
1977 // 6-bit values.
1978 __ movl(rax, 0x003f03f0);
1979 __ movdl(xmm6, rax);
1980 __ vpbroadcastd(xmm6, xmm6, Assembler::AVX_256bit);
1981 // Multiplication constant for "shifting" left by 4 and 8 bits
1982 __ movl(rax, 0x01000010);
1983 __ movdl(xmm5, rax);
1984 __ vpbroadcastd(xmm5, xmm5, Assembler::AVX_256bit);
1985
1986 // Isolate 6-bit chunks of interest
1987 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
1988
1989 // Load constants for encoding
1990 __ movl(rax, 0x19191919);
1991 __ movdl(xmm3, rax);
1992 __ vpbroadcastd(xmm3, xmm3, Assembler::AVX_256bit);
1993 __ movl(rax, 0x33333333);
1994 __ movdl(xmm4, rax);
1995 __ vpbroadcastd(xmm4, xmm4, Assembler::AVX_256bit);
1996
1997 // Shift output bytes 0 and 2 into proper lanes
1998 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit);
1999
2000 // Mask and shift output bytes 1 and 3 into proper lanes and
2001 // combine
2002 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2003 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2004 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2005
2006 // Find out which are 0..25. This indicates which input
2007 // values fall in the range of 'A'-'Z', which require an
2008 // additional offset (see comments above)
2009 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit);
2010 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2011 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit);
2012
2013 // Load the proper lookup table
2014 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr()));
2015 __ movl(r15, isURL);
2016 __ shll(r15, 5);
2017 __ vmovdqu(xmm2, Address(r11, r15));
2018
2019 // Shuffle the offsets based on the range calculation done
2020 // above. This allows us to add the correct offset to the
2021 // 6-bit value corresponding to the range documented above.
2022 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2023 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2024
2025 // Store the encoded bytes
2026 __ vmovdqu(Address(dest, dp), xmm0);
2027 __ addl(dp, 32);
2028
2029 __ cmpl(length, 31);
2030 __ jcc(Assembler::belowEqual, L_process3);
2031
2032 __ align32();
2033 __ BIND(L_32byteLoop);
2034
2035 // Get next 32 bytes
2036 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4));
2037
2038 __ subl(length, 24);
2039 __ addl(start_offset, 24);
2040
2041 // This logic is identical to the above, with only constant
2042 // register loads removed. Shuffle the input, mask off 6-bit
2043 // chunks, shift them into place, then add the offset to
2044 // encode.
2045 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit);
2046
2047 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit);
2048 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit);
2049 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit);
2050 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit);
2051 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2052 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit);
2053 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit);
2054 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit);
2055 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit);
2056 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit);
2057
2058 // Store the encoded bytes
2059 __ vmovdqu(Address(dest, dp), xmm0);
2060 __ addl(dp, 32);
2061
2062 __ cmpl(length, 31);
2063 __ jcc(Assembler::above, L_32byteLoop);
2064
2065 __ BIND(L_process3);
2066 __ vzeroupper();
2067 } else {
2068 __ BIND(L_process3);
2069 }
2070
2071 __ cmpl(length, 3);
2072 __ jcc(Assembler::below, L_exit);
2073
2074 // Load the encoding table based on isURL
2075 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr()));
2076 __ movl(r15, isURL);
2077 __ shll(r15, 6);
2078 __ addptr(r11, r15);
2079
2080 __ BIND(L_processdata);
2081
2082 // Load 3 bytes
2083 __ load_unsigned_byte(r15, Address(source, start_offset));
2084 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1));
2085 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2));
2086
2087 // Build a 32-bit word with bytes 1, 2, 0, 1
2088 __ movl(rax, r10);
2089 __ shll(r10, 24);
2090 __ orl(rax, r10);
2091
2092 __ subl(length, 3);
2093
2094 __ shll(r15, 8);
2095 __ shll(r13, 16);
2096 __ orl(rax, r15);
2097
2098 __ addl(start_offset, 3);
2099
2100 __ orl(rax, r13);
2101 // At this point, rax contains | byte1 | byte2 | byte0 | byte1
2102 // r13 has byte2 << 16 - need low-order 6 bits to translate.
2103 // This translated byte is the fourth output byte.
2104 __ shrl(r13, 16);
2105 __ andl(r13, 0x3f);
2106
2107 // The high-order 6 bits of r15 (byte0) is translated.
2108 // The translated byte is the first output byte.
2109 __ shrl(r15, 10);
2110
2111 __ load_unsigned_byte(r13, Address(r11, r13));
2112 __ load_unsigned_byte(r15, Address(r11, r15));
2113
2114 __ movb(Address(dest, dp, Address::times_1, 3), r13);
2115
2116 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0.
2117 // This translated byte is the second output byte.
2118 __ shrl(rax, 4);
2119 __ movl(r10, rax);
2120 __ andl(rax, 0x3f);
2121
2122 __ movb(Address(dest, dp, Address::times_1, 0), r15);
2123
2124 __ load_unsigned_byte(rax, Address(r11, rax));
2125
2126 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2.
2127 // This translated byte is the third output byte.
2128 __ shrl(r10, 18);
2129 __ andl(r10, 0x3f);
2130
2131 __ load_unsigned_byte(r10, Address(r11, r10));
2132
2133 __ movb(Address(dest, dp, Address::times_1, 1), rax);
2134 __ movb(Address(dest, dp, Address::times_1, 2), r10);
2135
2136 __ addl(dp, 4);
2137 __ cmpl(length, 3);
2138 __ jcc(Assembler::aboveEqual, L_processdata);
2139
2140 __ BIND(L_exit);
2141 __ pop_ppx(r15);
2142 __ pop_ppx(r14);
2143 __ pop_ppx(r13);
2144 __ pop_ppx(r12);
2145 __ leave();
2146 __ ret(0);
2147
2148 return start;
2149 }
2150
2151 // base64 AVX512vbmi tables
2152 address StubGenerator::base64_vbmi_lookup_lo_addr() {
2153 __ align64();
2154 StubId stub_id = StubId::stubgen_lookup_lo_base64_id;
2155 StubCodeMark mark(this, stub_id);
2156 address start = __ pc();
2157
2158 assert(((unsigned long long)start & 0x3f) == 0,
2159 "Alignment problem (0x%08llx)", (unsigned long long)start);
2160 __ emit_data64(0x8080808080808080, relocInfo::none);
2161 __ emit_data64(0x8080808080808080, relocInfo::none);
2162 __ emit_data64(0x8080808080808080, relocInfo::none);
2163 __ emit_data64(0x8080808080808080, relocInfo::none);
2164 __ emit_data64(0x8080808080808080, relocInfo::none);
2165 __ emit_data64(0x3f8080803e808080, relocInfo::none);
2166 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2167 __ emit_data64(0x8080808080803d3c, relocInfo::none);
2168
2169 return start;
2170 }
2171
2172 address StubGenerator::base64_vbmi_lookup_hi_addr() {
2173 __ align64();
2174 StubId stub_id = StubId::stubgen_lookup_hi_base64_id;
2175 StubCodeMark mark(this, stub_id);
2176 address start = __ pc();
2177
2178 assert(((unsigned long long)start & 0x3f) == 0,
2179 "Alignment problem (0x%08llx)", (unsigned long long)start);
2180 __ emit_data64(0x0605040302010080, relocInfo::none);
2181 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2182 __ emit_data64(0x161514131211100f, relocInfo::none);
2183 __ emit_data64(0x8080808080191817, relocInfo::none);
2184 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2185 __ emit_data64(0x2827262524232221, relocInfo::none);
2186 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2187 __ emit_data64(0x8080808080333231, relocInfo::none);
2188
2189 return start;
2190 }
2191 address StubGenerator::base64_vbmi_lookup_lo_url_addr() {
2192 __ align64();
2193 StubId stub_id = StubId::stubgen_lookup_lo_base64url_id;
2194 StubCodeMark mark(this, stub_id);
2195 address start = __ pc();
2196
2197 assert(((unsigned long long)start & 0x3f) == 0,
2198 "Alignment problem (0x%08llx)", (unsigned long long)start);
2199 __ emit_data64(0x8080808080808080, relocInfo::none);
2200 __ emit_data64(0x8080808080808080, relocInfo::none);
2201 __ emit_data64(0x8080808080808080, relocInfo::none);
2202 __ emit_data64(0x8080808080808080, relocInfo::none);
2203 __ emit_data64(0x8080808080808080, relocInfo::none);
2204 __ emit_data64(0x80803e8080808080, relocInfo::none);
2205 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2206 __ emit_data64(0x8080808080803d3c, relocInfo::none);
2207
2208 return start;
2209 }
2210
2211 address StubGenerator::base64_vbmi_lookup_hi_url_addr() {
2212 __ align64();
2213 StubId stub_id = StubId::stubgen_lookup_hi_base64url_id;
2214 StubCodeMark mark(this, stub_id);
2215 address start = __ pc();
2216
2217 assert(((unsigned long long)start & 0x3f) == 0,
2218 "Alignment problem (0x%08llx)", (unsigned long long)start);
2219 __ emit_data64(0x0605040302010080, relocInfo::none);
2220 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2221 __ emit_data64(0x161514131211100f, relocInfo::none);
2222 __ emit_data64(0x3f80808080191817, relocInfo::none);
2223 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none);
2224 __ emit_data64(0x2827262524232221, relocInfo::none);
2225 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2226 __ emit_data64(0x8080808080333231, relocInfo::none);
2227
2228 return start;
2229 }
2230
2231 address StubGenerator::base64_vbmi_pack_vec_addr() {
2232 __ align64();
2233 StubId stub_id = StubId::stubgen_pack_vec_base64_id;
2234 StubCodeMark mark(this, stub_id);
2235 address start = __ pc();
2236
2237 assert(((unsigned long long)start & 0x3f) == 0,
2238 "Alignment problem (0x%08llx)", (unsigned long long)start);
2239 __ emit_data64(0x090a040506000102, relocInfo::none);
2240 __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2241 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2242 __ emit_data64(0x292a242526202122, relocInfo::none);
2243 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2244 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2245 __ emit_data64(0x0000000000000000, relocInfo::none);
2246 __ emit_data64(0x0000000000000000, relocInfo::none);
2247
2248 return start;
2249 }
2250
2251 address StubGenerator::base64_vbmi_join_0_1_addr() {
2252 __ align64();
2253 StubId stub_id = StubId::stubgen_join_0_1_base64_id;
2254 StubCodeMark mark(this, stub_id);
2255 address start = __ pc();
2256
2257 assert(((unsigned long long)start & 0x3f) == 0,
2258 "Alignment problem (0x%08llx)", (unsigned long long)start);
2259 __ emit_data64(0x090a040506000102, relocInfo::none);
2260 __ emit_data64(0x161011120c0d0e08, relocInfo::none);
2261 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2262 __ emit_data64(0x292a242526202122, relocInfo::none);
2263 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2264 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2265 __ emit_data64(0x494a444546404142, relocInfo::none);
2266 __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2267
2268 return start;
2269 }
2270
2271 address StubGenerator::base64_vbmi_join_1_2_addr() {
2272 __ align64();
2273 StubId stub_id = StubId::stubgen_join_1_2_base64_id;
2274 StubCodeMark mark(this, stub_id);
2275 address start = __ pc();
2276
2277 assert(((unsigned long long)start & 0x3f) == 0,
2278 "Alignment problem (0x%08llx)", (unsigned long long)start);
2279 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none);
2280 __ emit_data64(0x292a242526202122, relocInfo::none);
2281 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2282 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2283 __ emit_data64(0x494a444546404142, relocInfo::none);
2284 __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2285 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2286 __ emit_data64(0x696a646566606162, relocInfo::none);
2287
2288 return start;
2289 }
2290
2291 address StubGenerator::base64_vbmi_join_2_3_addr() {
2292 __ align64();
2293 StubId stub_id = StubId::stubgen_join_2_3_base64_id;
2294 StubCodeMark mark(this, stub_id);
2295 address start = __ pc();
2296
2297 assert(((unsigned long long)start & 0x3f) == 0,
2298 "Alignment problem (0x%08llx)", (unsigned long long)start);
2299 __ emit_data64(0x363031322c2d2e28, relocInfo::none);
2300 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none);
2301 __ emit_data64(0x494a444546404142, relocInfo::none);
2302 __ emit_data64(0x565051524c4d4e48, relocInfo::none);
2303 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none);
2304 __ emit_data64(0x696a646566606162, relocInfo::none);
2305 __ emit_data64(0x767071726c6d6e68, relocInfo::none);
2306 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none);
2307
2308 return start;
2309 }
2310
2311 address StubGenerator::base64_AVX2_decode_tables_addr() {
2312 __ align64();
2313 StubId stub_id = StubId::stubgen_avx2_decode_tables_base64_id;
2314 StubCodeMark mark(this, stub_id);
2315 address start = __ pc();
2316
2317 assert(((unsigned long long)start & 0x3f) == 0,
2318 "Alignment problem (0x%08llx)", (unsigned long long)start);
2319 __ emit_data(0x2f2f2f2f, relocInfo::none, 0);
2320 __ emit_data(0x5f5f5f5f, relocInfo::none, 0); // for URL
2321
2322 __ emit_data(0xffffffff, relocInfo::none, 0);
2323 __ emit_data(0xfcfcfcfc, relocInfo::none, 0); // for URL
2324
2325 // Permute table
2326 __ emit_data64(0x0000000100000000, relocInfo::none);
2327 __ emit_data64(0x0000000400000002, relocInfo::none);
2328 __ emit_data64(0x0000000600000005, relocInfo::none);
2329 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2330
2331 // Shuffle table
2332 __ emit_data64(0x090a040506000102, relocInfo::none);
2333 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2334 __ emit_data64(0x090a040506000102, relocInfo::none);
2335 __ emit_data64(0xffffffff0c0d0e08, relocInfo::none);
2336
2337 // merge table
2338 __ emit_data(0x01400140, relocInfo::none, 0);
2339
2340 // merge multiplier
2341 __ emit_data(0x00011000, relocInfo::none, 0);
2342
2343 return start;
2344 }
2345
2346 address StubGenerator::base64_AVX2_decode_LUT_tables_addr() {
2347 __ align64();
2348 StubId stub_id = StubId::stubgen_avx2_decode_lut_tables_base64_id;
2349 StubCodeMark mark(this, stub_id);
2350 address start = __ pc();
2351
2352 assert(((unsigned long long)start & 0x3f) == 0,
2353 "Alignment problem (0x%08llx)", (unsigned long long)start);
2354 // lut_lo
2355 __ emit_data64(0x1111111111111115, relocInfo::none);
2356 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2357 __ emit_data64(0x1111111111111115, relocInfo::none);
2358 __ emit_data64(0x1a1b1b1b1a131111, relocInfo::none);
2359
2360 // lut_roll
2361 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2362 __ emit_data64(0x0000000000000000, relocInfo::none);
2363 __ emit_data64(0xb9b9bfbf04131000, relocInfo::none);
2364 __ emit_data64(0x0000000000000000, relocInfo::none);
2365
2366 // lut_lo URL
2367 __ emit_data64(0x1111111111111115, relocInfo::none);
2368 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2369 __ emit_data64(0x1111111111111115, relocInfo::none);
2370 __ emit_data64(0x1b1b1a1b1b131111, relocInfo::none);
2371
2372 // lut_roll URL
2373 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2374 __ emit_data64(0x0000000000000000, relocInfo::none);
2375 __ emit_data64(0xb9b9bfbf0411e000, relocInfo::none);
2376 __ emit_data64(0x0000000000000000, relocInfo::none);
2377
2378 // lut_hi
2379 __ emit_data64(0x0804080402011010, relocInfo::none);
2380 __ emit_data64(0x1010101010101010, relocInfo::none);
2381 __ emit_data64(0x0804080402011010, relocInfo::none);
2382 __ emit_data64(0x1010101010101010, relocInfo::none);
2383
2384 return start;
2385 }
2386
2387 address StubGenerator::base64_decoding_table_addr() {
2388 StubId stub_id = StubId::stubgen_decoding_table_base64_id;
2389 StubCodeMark mark(this, stub_id);
2390 address start = __ pc();
2391
2392 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2393 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2394 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2395 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2396 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2397 __ emit_data64(0x3fffffff3effffff, relocInfo::none);
2398 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2399 __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2400 __ emit_data64(0x06050403020100ff, relocInfo::none);
2401 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2402 __ emit_data64(0x161514131211100f, relocInfo::none);
2403 __ emit_data64(0xffffffffff191817, relocInfo::none);
2404 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2405 __ emit_data64(0x2827262524232221, relocInfo::none);
2406 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2407 __ emit_data64(0xffffffffff333231, relocInfo::none);
2408 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2409 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2410 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2411 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2412 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2413 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2414 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2415 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2416 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2417 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2418 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2419 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2420 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2421 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2422 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2423 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2424
2425 // URL table
2426 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2427 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2428 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2429 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2430 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2431 __ emit_data64(0xffff3effffffffff, relocInfo::none);
2432 __ emit_data64(0x3b3a393837363534, relocInfo::none);
2433 __ emit_data64(0xffffffffffff3d3c, relocInfo::none);
2434 __ emit_data64(0x06050403020100ff, relocInfo::none);
2435 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none);
2436 __ emit_data64(0x161514131211100f, relocInfo::none);
2437 __ emit_data64(0x3fffffffff191817, relocInfo::none);
2438 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none);
2439 __ emit_data64(0x2827262524232221, relocInfo::none);
2440 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none);
2441 __ emit_data64(0xffffffffff333231, relocInfo::none);
2442 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2443 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2444 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2445 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2446 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2447 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2448 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2449 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2450 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2451 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2452 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2453 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2454 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2455 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2456 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2457 __ emit_data64(0xffffffffffffffff, relocInfo::none);
2458
2459 return start;
2460 }
2461
2462
2463 // Code for generating Base64 decoding.
2464 //
2465 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109.
2466 //
2467 // Intrinsic function prototype in Base64.java:
2468 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) {
2469 address StubGenerator::generate_base64_decodeBlock() {
2470 __ align(CodeEntryAlignment);
2471 StubId stub_id = StubId::stubgen_base64_decodeBlock_id;
2472 StubCodeMark mark(this, stub_id);
2473 address start = __ pc();
2474
2475 __ enter();
2476
2477 // Save callee-saved registers before using them
2478 __ push_ppx(r12);
2479 __ push_ppx(r13);
2480 __ push_ppx(r14);
2481 __ push_ppx(r15);
2482 __ push_ppx(rbx);
2483
2484 // arguments
2485 const Register source = c_rarg0; // Source Array
2486 const Register start_offset = c_rarg1; // start offset
2487 const Register end_offset = c_rarg2; // end offset
2488 const Register dest = c_rarg3; // destination array
2489 const Register isMIME = rbx;
2490
2491 #ifndef _WIN64
2492 const Register dp = c_rarg4; // Position for writing to dest array
2493 const Register isURL = c_rarg5;// Base64 or URL character set
2494 __ movl(isMIME, Address(rbp, 2 * wordSize));
2495 #else
2496 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64
2497 const Address isURL_mem(rbp, 7 * wordSize);
2498 const Register isURL = r10; // pick the volatile windows register
2499 const Register dp = r12;
2500 __ movl(dp, dp_mem);
2501 __ movl(isURL, isURL_mem);
2502 __ movl(isMIME, Address(rbp, 8 * wordSize));
2503 #endif
2504
2505 const XMMRegister lookup_lo = xmm5;
2506 const XMMRegister lookup_hi = xmm6;
2507 const XMMRegister errorvec = xmm7;
2508 const XMMRegister pack16_op = xmm9;
2509 const XMMRegister pack32_op = xmm8;
2510 const XMMRegister input0 = xmm3;
2511 const XMMRegister input1 = xmm20;
2512 const XMMRegister input2 = xmm21;
2513 const XMMRegister input3 = xmm19;
2514 const XMMRegister join01 = xmm12;
2515 const XMMRegister join12 = xmm11;
2516 const XMMRegister join23 = xmm10;
2517 const XMMRegister translated0 = xmm2;
2518 const XMMRegister translated1 = xmm1;
2519 const XMMRegister translated2 = xmm0;
2520 const XMMRegister translated3 = xmm4;
2521
2522 const XMMRegister merged0 = xmm2;
2523 const XMMRegister merged1 = xmm1;
2524 const XMMRegister merged2 = xmm0;
2525 const XMMRegister merged3 = xmm4;
2526 const XMMRegister merge_ab_bc0 = xmm2;
2527 const XMMRegister merge_ab_bc1 = xmm1;
2528 const XMMRegister merge_ab_bc2 = xmm0;
2529 const XMMRegister merge_ab_bc3 = xmm4;
2530
2531 const XMMRegister pack24bits = xmm4;
2532
2533 const Register length = r14;
2534 const Register output_size = r13;
2535 const Register output_mask = r15;
2536 const KRegister input_mask = k1;
2537
2538 const XMMRegister input_initial_valid_b64 = xmm0;
2539 const XMMRegister tmp = xmm10;
2540 const XMMRegister mask = xmm0;
2541 const XMMRegister invalid_b64 = xmm1;
2542
2543 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL;
2544 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce;
2545 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero, L_lastChunk;
2546
2547 // calculate length from offsets
2548 __ movl(length, end_offset);
2549 __ subl(length, start_offset);
2550 __ push_ppx(dest); // Save for return value calc
2551
2552 // If AVX512 VBMI not supported, just compile non-AVX code
2553 if(VM_Version::supports_avx512_vbmi() &&
2554 VM_Version::supports_avx512bw()) {
2555 __ cmpl(length, 31); // 32-bytes is break-even for AVX-512
2556 __ jcc(Assembler::lessEqual, L_lastChunk);
2557
2558 __ cmpl(isMIME, 0);
2559 __ jcc(Assembler::notEqual, L_lastChunk);
2560
2561 // Load lookup tables based on isURL
2562 __ cmpl(isURL, 0);
2563 __ jcc(Assembler::notZero, L_loadURL);
2564
2565 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13);
2566 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13);
2567
2568 __ BIND(L_continue);
2569
2570 __ movl(r15, 0x01400140);
2571 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit);
2572
2573 __ movl(r15, 0x00011000);
2574 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit);
2575
2576 __ cmpl(length, 0xff);
2577 __ jcc(Assembler::lessEqual, L_process64);
2578
2579 // load masks required for decoding data
2580 __ BIND(L_processdata);
2581 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13);
2582 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13);
2583 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13);
2584
2585 __ align32();
2586 __ BIND(L_process256);
2587 // Grab input data
2588 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit);
2589 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit);
2590 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit);
2591 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit);
2592
2593 // Copy the low part of the lookup table into the destination of the permutation
2594 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2595 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit);
2596 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit);
2597 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit);
2598
2599 // Translate the base64 input into "decoded" bytes
2600 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2601 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit);
2602 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit);
2603 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit);
2604
2605 // OR all of the translations together to check for errors (high-order bit of byte set)
2606 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit);
2607
2608 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit);
2609 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit);
2610 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit);
2611
2612 // Check if there was an error - if so, try 64-byte chunks
2613 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2614 __ kortestql(k3, k3);
2615 __ jcc(Assembler::notZero, L_process64);
2616
2617 // The merging and shuffling happens here
2618 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa]
2619 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd]
2620 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40
2621 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2622 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit);
2623 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit);
2624 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit);
2625
2626 // Now do the same with packed 16-bit values.
2627 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb]
2628 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12
2629 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd]
2630 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2631 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit);
2632 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit);
2633 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit);
2634
2635 // The join vectors specify which byte from which vector goes into the outputs
2636 // One of every 4 bytes in the extended vector is zero, so we pack them into their
2637 // final positions in the register for storing (256 bytes in, 192 bytes out)
2638 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit);
2639 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit);
2640 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit);
2641
2642 // Store result
2643 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit);
2644 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit);
2645 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit);
2646
2647 __ addptr(source, 0x100);
2648 __ addptr(dest, 0xc0);
2649 __ subl(length, 0x100);
2650 __ cmpl(length, 64 * 4);
2651 __ jcc(Assembler::greaterEqual, L_process256);
2652
2653 // At this point, we've decoded 64 * 4 * n bytes.
2654 // The remaining length will be <= 64 * 4 - 1.
2655 // UNLESS there was an error decoding the first 256-byte chunk. In this
2656 // case, the length will be arbitrarily long.
2657 //
2658 // Note that this will be the path for MIME-encoded strings.
2659
2660 __ BIND(L_process64);
2661
2662 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13);
2663
2664 __ cmpl(length, 63);
2665 __ jcc(Assembler::lessEqual, L_finalBit);
2666
2667 __ mov64(rax, 0x0000ffffffffffff);
2668 __ kmovql(k2, rax);
2669
2670 __ align32();
2671 __ BIND(L_process64Loop);
2672
2673 // Handle first 64-byte block
2674
2675 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit);
2676 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit);
2677 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit);
2678
2679 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit);
2680
2681 // Check for error and bomb out before updating dest
2682 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit);
2683 __ kortestql(k3, k3);
2684 __ jcc(Assembler::notZero, L_exit);
2685
2686 // Pack output register, selecting correct byte ordering
2687 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit);
2688 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit);
2689 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit);
2690
2691 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit);
2692
2693 __ subl(length, 64);
2694 __ addptr(source, 64);
2695 __ addptr(dest, 48);
2696
2697 __ cmpl(length, 64);
2698 __ jcc(Assembler::greaterEqual, L_process64Loop);
2699
2700 __ cmpl(length, 0);
2701 __ jcc(Assembler::lessEqual, L_exit);
2702
2703 __ BIND(L_finalBit);
2704 // Now have 1 to 63 bytes left to decode
2705
2706 // I was going to let Java take care of the final fragment
2707 // however it will repeatedly call this routine for every 4 bytes
2708 // of input data, so handle the rest here.
2709 __ movq(rax, -1);
2710 __ bzhiq(rax, rax, length); // Input mask in rax
2711
2712 __ movl(output_size, length);
2713 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length)
2714 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0));
2715 // output_size in r13
2716
2717 // Strip pad characters, if any, and adjust length and mask
2718 __ addq(length, start_offset);
2719 __ cmpb(Address(source, length, Address::times_1, -1), '=');
2720 __ jcc(Assembler::equal, L_padding);
2721
2722 __ BIND(L_donePadding);
2723 __ subq(length, start_offset);
2724
2725 // Output size is (64 - output_size), output mask is (all 1s >> output_size).
2726 __ kmovql(input_mask, rax);
2727 __ movq(output_mask, -1);
2728 __ bzhiq(output_mask, output_mask, output_size);
2729
2730 // Load initial input with all valid base64 characters. Will be used
2731 // in merging source bytes to avoid masking when determining if an error occurred.
2732 __ movl(rax, 0x61616161);
2733 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit);
2734
2735 // A register containing all invalid base64 decoded values
2736 __ movl(rax, 0x80808080);
2737 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit);
2738
2739 // input_mask is in k1
2740 // output_size is in r13
2741 // output_mask is in r15
2742 // zmm0 - free
2743 // zmm1 - 0x00011000
2744 // zmm2 - 0x01400140
2745 // zmm3 - errorvec
2746 // zmm4 - pack vector
2747 // zmm5 - lookup_lo
2748 // zmm6 - lookup_hi
2749 // zmm7 - errorvec
2750 // zmm8 - 0x61616161
2751 // zmm9 - 0x80808080
2752
2753 // Load only the bytes from source, merging into our "fully-valid" register
2754 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit);
2755
2756 // Decode all bytes within our merged input
2757 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit);
2758 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit);
2759 __ evporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit);
2760
2761 // Check for error. Compare (decoded | initial) to all invalid.
2762 // If any bytes have their high-order bit set, then we have an error.
2763 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit);
2764 __ kortestql(k2, k2);
2765
2766 // If we have an error, use the brute force loop to decode what we can (4-byte chunks).
2767 __ jcc(Assembler::notZero, L_bruteForce);
2768
2769 // Shuffle output bytes
2770 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit);
2771 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit);
2772
2773 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit);
2774 __ kmovql(k1, output_mask);
2775 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit);
2776
2777 __ addptr(dest, output_size);
2778
2779 __ BIND(L_exit);
2780 __ vzeroupper();
2781 __ pop_ppx(rax); // Get original dest value
2782 __ subptr(dest, rax); // Number of bytes converted
2783 __ movptr(rax, dest);
2784 __ pop_ppx(rbx);
2785 __ pop_ppx(r15);
2786 __ pop_ppx(r14);
2787 __ pop_ppx(r13);
2788 __ pop_ppx(r12);
2789 __ leave();
2790 __ ret(0);
2791
2792 __ BIND(L_loadURL);
2793 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13);
2794 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13);
2795 __ jmp(L_continue);
2796
2797 __ BIND(L_padding);
2798 __ decrementq(output_size, 1);
2799 __ shrq(rax, 1);
2800
2801 __ cmpb(Address(source, length, Address::times_1, -2), '=');
2802 __ jcc(Assembler::notEqual, L_donePadding);
2803
2804 __ decrementq(output_size, 1);
2805 __ shrq(rax, 1);
2806 __ jmp(L_donePadding);
2807
2808 __ align32();
2809 __ BIND(L_bruteForce);
2810 } // End of if(avx512_vbmi)
2811
2812 if (VM_Version::supports_avx2()) {
2813 Label L_tailProc, L_topLoop, L_enterLoop;
2814
2815 __ cmpl(isMIME, 0);
2816 __ jcc(Assembler::notEqual, L_lastChunk);
2817
2818 // Check for buffer too small (for algorithm)
2819 __ subl(length, 0x2c);
2820 __ jcc(Assembler::less, L_tailProc);
2821
2822 __ shll(isURL, 2);
2823
2824 // Algorithm adapted from https://arxiv.org/abs/1704.00605, "Faster Base64
2825 // Encoding and Decoding using AVX2 Instructions". URL modifications added.
2826
2827 // Set up constants
2828 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_tables_addr()));
2829 __ vpbroadcastd(xmm4, Address(r13, isURL, Address::times_1), Assembler::AVX_256bit); // 2F or 5F
2830 __ vpbroadcastd(xmm10, Address(r13, isURL, Address::times_1, 0x08), Assembler::AVX_256bit); // -1 or -4
2831 __ vmovdqu(xmm12, Address(r13, 0x10)); // permute
2832 __ vmovdqu(xmm13, Address(r13, 0x30)); // shuffle
2833 __ vpbroadcastd(xmm7, Address(r13, 0x50), Assembler::AVX_256bit); // merge
2834 __ vpbroadcastd(xmm6, Address(r13, 0x54), Assembler::AVX_256bit); // merge mult
2835
2836 __ lea(r13, ExternalAddress(StubRoutines::x86::base64_AVX2_decode_LUT_tables_addr()));
2837 __ shll(isURL, 4);
2838 __ vmovdqu(xmm11, Address(r13, isURL, Address::times_1, 0x00)); // lut_lo
2839 __ vmovdqu(xmm8, Address(r13, isURL, Address::times_1, 0x20)); // lut_roll
2840 __ shrl(isURL, 6); // restore isURL
2841 __ vmovdqu(xmm9, Address(r13, 0x80)); // lut_hi
2842 __ jmp(L_enterLoop);
2843
2844 __ align32();
2845 __ bind(L_topLoop);
2846 // Add in the offset value (roll) to get 6-bit out values
2847 __ vpaddb(xmm0, xmm0, xmm2, Assembler::AVX_256bit);
2848 // Merge and permute the output bits into appropriate output byte lanes
2849 __ vpmaddubsw(xmm0, xmm0, xmm7, Assembler::AVX_256bit);
2850 __ vpmaddwd(xmm0, xmm0, xmm6, Assembler::AVX_256bit);
2851 __ vpshufb(xmm0, xmm0, xmm13, Assembler::AVX_256bit);
2852 __ vpermd(xmm0, xmm12, xmm0, Assembler::AVX_256bit);
2853 // Store the output bytes
2854 __ vmovdqu(Address(dest, dp, Address::times_1, 0), xmm0);
2855 __ addptr(source, 0x20);
2856 __ addptr(dest, 0x18);
2857 __ subl(length, 0x20);
2858 __ jcc(Assembler::less, L_tailProc);
2859
2860 __ bind(L_enterLoop);
2861
2862 // Load in encoded string (32 bytes)
2863 __ vmovdqu(xmm2, Address(source, start_offset, Address::times_1, 0x0));
2864 // Extract the high nibble for indexing into the lut tables. High 4 bits are don't care.
2865 __ vpsrld(xmm1, xmm2, 0x4, Assembler::AVX_256bit);
2866 __ vpand(xmm1, xmm4, xmm1, Assembler::AVX_256bit);
2867 // Extract the low nibble. 5F/2F will isolate the low-order 4 bits. High 4 bits are don't care.
2868 __ vpand(xmm3, xmm2, xmm4, Assembler::AVX_256bit);
2869 // Check for special-case (0x2F or 0x5F (URL))
2870 __ vpcmpeqb(xmm0, xmm4, xmm2, Assembler::AVX_256bit);
2871 // Get the bitset based on the low nibble. vpshufb uses low-order 4 bits only.
2872 __ vpshufb(xmm3, xmm11, xmm3, Assembler::AVX_256bit);
2873 // Get the bit value of the high nibble
2874 __ vpshufb(xmm5, xmm9, xmm1, Assembler::AVX_256bit);
2875 // Make sure 2F / 5F shows as valid
2876 __ vpandn(xmm3, xmm0, xmm3, Assembler::AVX_256bit);
2877 // Make adjustment for roll index. For non-URL, this is a no-op,
2878 // for URL, this adjusts by -4. This is to properly index the
2879 // roll value for 2F / 5F.
2880 __ vpand(xmm0, xmm0, xmm10, Assembler::AVX_256bit);
2881 // If the and of the two is non-zero, we have an invalid input character
2882 __ vptest(xmm3, xmm5);
2883 // Extract the "roll" value - value to add to the input to get 6-bit out value
2884 __ vpaddb(xmm0, xmm0, xmm1, Assembler::AVX_256bit); // Handle 2F / 5F
2885 __ vpshufb(xmm0, xmm8, xmm0, Assembler::AVX_256bit);
2886 __ jcc(Assembler::equal, L_topLoop); // Fall through on error
2887
2888 __ bind(L_tailProc);
2889
2890 __ addl(length, 0x2c);
2891
2892 __ vzeroupper();
2893 }
2894
2895 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output
2896
2897 // Register state (Linux):
2898 // r12-15 - saved on stack
2899 // rdi - src
2900 // rsi - sp
2901 // rdx - sl
2902 // rcx - dst
2903 // r8 - dp
2904 // r9 - isURL
2905
2906 // Register state (Windows):
2907 // r12-15 - saved on stack
2908 // rcx - src
2909 // rdx - sp
2910 // r8 - sl
2911 // r9 - dst
2912 // r12 - dp
2913 // r10 - isURL
2914
2915 // Registers (common):
2916 // length (r14) - bytes in src
2917
2918 const Register decode_table = r11;
2919 const Register out_byte_count = rbx;
2920 const Register byte1 = r13;
2921 const Register byte2 = r15;
2922 const Register byte3 = WIN64_ONLY(r8) NOT_WIN64(rdx);
2923 const Register byte4 = WIN64_ONLY(r10) NOT_WIN64(r9);
2924
2925 __ bind(L_lastChunk);
2926
2927 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks
2928 __ cmpl(length, 0);
2929 __ jcc(Assembler::lessEqual, L_exit_no_vzero);
2930
2931 __ shll(isURL, 8); // index into decode table based on isURL
2932 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr()));
2933 __ addptr(decode_table, isURL);
2934
2935 __ jmp(L_bottomLoop);
2936
2937 __ align32();
2938 __ BIND(L_forceLoop);
2939 __ shll(byte1, 18);
2940 __ shll(byte2, 12);
2941 __ shll(byte3, 6);
2942 __ orl(byte1, byte2);
2943 __ orl(byte1, byte3);
2944 __ orl(byte1, byte4);
2945
2946 __ addptr(source, 4);
2947
2948 __ movb(Address(dest, dp, Address::times_1, 2), byte1);
2949 __ shrl(byte1, 8);
2950 __ movb(Address(dest, dp, Address::times_1, 1), byte1);
2951 __ shrl(byte1, 8);
2952 __ movb(Address(dest, dp, Address::times_1, 0), byte1);
2953
2954 __ addptr(dest, 3);
2955 __ decrementl(length, 1);
2956 __ jcc(Assembler::zero, L_exit_no_vzero);
2957
2958 __ BIND(L_bottomLoop);
2959 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00));
2960 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01));
2961 __ load_signed_byte(byte1, Address(decode_table, byte1));
2962 __ load_signed_byte(byte2, Address(decode_table, byte2));
2963 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02));
2964 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03));
2965 __ load_signed_byte(byte3, Address(decode_table, byte3));
2966 __ load_signed_byte(byte4, Address(decode_table, byte4));
2967
2968 __ mov(rax, byte1);
2969 __ orl(rax, byte2);
2970 __ orl(rax, byte3);
2971 __ orl(rax, byte4);
2972 __ jcc(Assembler::positive, L_forceLoop);
2973
2974 __ BIND(L_exit_no_vzero);
2975 __ pop_ppx(rax); // Get original dest value
2976 __ subptr(dest, rax); // Number of bytes converted
2977 __ movptr(rax, dest);
2978 __ pop_ppx(rbx);
2979 __ pop_ppx(r15);
2980 __ pop_ppx(r14);
2981 __ pop_ppx(r13);
2982 __ pop_ppx(r12);
2983 __ leave();
2984 __ ret(0);
2985
2986 return start;
2987 }
2988
2989
2990 /**
2991 * Arguments:
2992 *
2993 * Inputs:
2994 * c_rarg0 - int crc
2995 * c_rarg1 - byte* buf
2996 * c_rarg2 - int length
2997 *
2998 * Output:
2999 * rax - int crc result
3000 */
3001 address StubGenerator::generate_updateBytesCRC32() {
3002 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3003
3004 __ align(CodeEntryAlignment);
3005 StubId stub_id = StubId::stubgen_updateBytesCRC32_id;
3006 StubCodeMark mark(this, stub_id);
3007
3008 address start = __ pc();
3009
3010 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3011 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3012 // rscratch1: r10
3013 const Register crc = c_rarg0; // crc
3014 const Register buf = c_rarg1; // source java byte array address
3015 const Register len = c_rarg2; // length
3016 const Register table = c_rarg3; // crc_table address (reuse register)
3017 const Register tmp1 = r11;
3018 const Register tmp2 = r10;
3019 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax);
3020
3021 BLOCK_COMMENT("Entry:");
3022 __ enter(); // required for proper stackwalking of RuntimeStub frame
3023
3024 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3025 VM_Version::supports_avx512bw() &&
3026 VM_Version::supports_avx512vl()) {
3027 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value.
3028 // However, the constant table for CRC32-C assumes the original crc value. Account for this
3029 // difference before calling and after returning.
3030 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr()));
3031 __ notl(crc);
3032 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2);
3033 __ notl(crc);
3034 } else {
3035 __ kernel_crc32(crc, buf, len, table, tmp1);
3036 }
3037
3038 __ movl(rax, crc);
3039 __ vzeroupper();
3040 __ leave(); // required for proper stackwalking of RuntimeStub frame
3041 __ ret(0);
3042
3043 return start;
3044 }
3045
3046 /**
3047 * Arguments:
3048 *
3049 * Inputs:
3050 * c_rarg0 - int crc
3051 * c_rarg1 - byte* buf
3052 * c_rarg2 - long length
3053 * c_rarg3 - table_start - optional (present only when doing a library_call,
3054 * not used by x86 algorithm)
3055 *
3056 * Output:
3057 * rax - int crc result
3058 */
3059 address StubGenerator::generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3060 assert(UseCRC32CIntrinsics, "need SSE4_2");
3061 __ align(CodeEntryAlignment);
3062 StubId stub_id = StubId::stubgen_updateBytesCRC32C_id;
3063 StubCodeMark mark(this, stub_id);
3064 address start = __ pc();
3065
3066 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs
3067 //Windows RCX RDX R8 R9 none none XMM0..XMM3
3068 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7
3069 const Register crc = c_rarg0; // crc
3070 const Register buf = c_rarg1; // source java byte array address
3071 const Register len = c_rarg2; // length
3072 const Register a = rax;
3073 const Register j = r9;
3074 const Register k = r10;
3075 const Register l = r11;
3076 #ifdef _WIN64
3077 const Register y = rdi;
3078 const Register z = rsi;
3079 #else
3080 const Register y = rcx;
3081 const Register z = r8;
3082 #endif
3083 assert_different_registers(crc, buf, len, a, j, k, l, y, z);
3084
3085 BLOCK_COMMENT("Entry:");
3086 __ enter(); // required for proper stackwalking of RuntimeStub frame
3087 Label L_continue;
3088
3089 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() &&
3090 VM_Version::supports_avx512bw() &&
3091 VM_Version::supports_avx512vl()) {
3092 Label L_doSmall;
3093
3094 __ cmpl(len, 384);
3095 __ jcc(Assembler::lessEqual, L_doSmall);
3096
3097 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr()));
3098 __ kernel_crc32_avx512(crc, buf, len, j, l, k);
3099
3100 __ jmp(L_continue);
3101
3102 __ bind(L_doSmall);
3103 }
3104 #ifdef _WIN64
3105 __ push_ppx(y);
3106 __ push_ppx(z);
3107 #endif
3108 __ crc32c_ipl_alg2_alt2(crc, buf, len,
3109 a, j, k,
3110 l, y, z,
3111 c_farg0, c_farg1, c_farg2,
3112 is_pclmulqdq_supported);
3113 #ifdef _WIN64
3114 __ pop_ppx(z);
3115 __ pop_ppx(y);
3116 #endif
3117
3118 __ bind(L_continue);
3119 __ movl(rax, crc);
3120 __ vzeroupper();
3121 __ leave(); // required for proper stackwalking of RuntimeStub frame
3122 __ ret(0);
3123
3124 return start;
3125 }
3126
3127
3128 /**
3129 * Arguments:
3130 *
3131 * Input:
3132 * c_rarg0 - x address
3133 * c_rarg1 - x length
3134 * c_rarg2 - y address
3135 * c_rarg3 - y length
3136 * not Win64
3137 * c_rarg4 - z address
3138 * Win64
3139 * rsp+40 - z address
3140 */
3141 address StubGenerator::generate_multiplyToLen() {
3142 __ align(CodeEntryAlignment);
3143 StubId stub_id = StubId::stubgen_multiplyToLen_id;
3144 StubCodeMark mark(this, stub_id);
3145 address start = __ pc();
3146
3147 if (AOTCodeCache::load_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start)) {
3148 return start;
3149 }
3150
3151 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3152 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3153 const Register x = rdi;
3154 const Register xlen = rax;
3155 const Register y = rsi;
3156 const Register ylen = rcx;
3157 const Register z = r8;
3158
3159 // Next registers will be saved on stack in multiply_to_len().
3160 const Register tmp0 = r11;
3161 const Register tmp1 = r12;
3162 const Register tmp2 = r13;
3163 const Register tmp3 = r14;
3164 const Register tmp4 = r15;
3165 const Register tmp5 = rbx;
3166
3167 BLOCK_COMMENT("Entry:");
3168 __ enter(); // required for proper stackwalking of RuntimeStub frame
3169
3170 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
3171 // ylen => rcx, z => r8
3172 // r9 and r10 may be used to save non-volatile registers
3173 #ifdef _WIN64
3174 // last argument (#4) is on stack on Win64
3175 __ movptr(z, Address(rsp, 6 * wordSize));
3176 #endif
3177
3178 __ movptr(xlen, rsi);
3179 __ movptr(y, rdx);
3180 __ multiply_to_len(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3181
3182 restore_arg_regs();
3183
3184 __ leave(); // required for proper stackwalking of RuntimeStub frame
3185 __ ret(0);
3186
3187 AOTCodeCache::store_stub(this, vmIntrinsics::_multiplyToLen, "multiplyToLen", start);
3188 return start;
3189 }
3190
3191 /**
3192 * Arguments:
3193 *
3194 * Input:
3195 * c_rarg0 - obja address
3196 * c_rarg1 - objb address
3197 * c_rarg3 - length length
3198 * c_rarg4 - scale log2_array_indxscale
3199 *
3200 * Output:
3201 * rax - int >= mismatched index, < 0 bitwise complement of tail
3202 */
3203 address StubGenerator::generate_vectorizedMismatch() {
3204 __ align(CodeEntryAlignment);
3205 StubId stub_id = StubId::stubgen_vectorizedMismatch_id;
3206 StubCodeMark mark(this, stub_id);
3207 address start = __ pc();
3208
3209 BLOCK_COMMENT("Entry:");
3210 __ enter();
3211
3212 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3213 const Register scale = c_rarg0; //rcx, will exchange with r9
3214 const Register objb = c_rarg1; //rdx
3215 const Register length = c_rarg2; //r8
3216 const Register obja = c_rarg3; //r9
3217 __ xchgq(obja, scale); //now obja and scale contains the correct contents
3218
3219 const Register tmp1 = r10;
3220 const Register tmp2 = r11;
3221 #endif
3222 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3223 const Register obja = c_rarg0; //U:rdi
3224 const Register objb = c_rarg1; //U:rsi
3225 const Register length = c_rarg2; //U:rdx
3226 const Register scale = c_rarg3; //U:rcx
3227 const Register tmp1 = r8;
3228 const Register tmp2 = r9;
3229 #endif
3230 const Register result = rax; //return value
3231 const XMMRegister vec0 = xmm0;
3232 const XMMRegister vec1 = xmm1;
3233 const XMMRegister vec2 = xmm2;
3234
3235 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2);
3236
3237 __ vzeroupper();
3238 __ leave();
3239 __ ret(0);
3240
3241 return start;
3242 }
3243
3244 /**
3245 * Arguments:
3246 *
3247 // Input:
3248 // c_rarg0 - x address
3249 // c_rarg1 - x length
3250 // c_rarg2 - z address
3251 // c_rarg3 - z length
3252 *
3253 */
3254 address StubGenerator::generate_squareToLen() {
3255
3256 __ align(CodeEntryAlignment);
3257 StubId stub_id = StubId::stubgen_squareToLen_id;
3258 StubCodeMark mark(this, stub_id);
3259 address start = __ pc();
3260
3261 if (AOTCodeCache::load_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start)) {
3262 return start;
3263 }
3264
3265 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3266 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...)
3267 const Register x = rdi;
3268 const Register len = rsi;
3269 const Register z = r8;
3270 const Register zlen = rcx;
3271
3272 const Register tmp1 = r12;
3273 const Register tmp2 = r13;
3274 const Register tmp3 = r14;
3275 const Register tmp4 = r15;
3276 const Register tmp5 = rbx;
3277
3278 BLOCK_COMMENT("Entry:");
3279 __ enter(); // required for proper stackwalking of RuntimeStub frame
3280
3281 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx
3282 // zlen => rcx
3283 // r9 and r10 may be used to save non-volatile registers
3284 __ movptr(r8, rdx);
3285 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3286
3287 restore_arg_regs();
3288
3289 __ leave(); // required for proper stackwalking of RuntimeStub frame
3290 __ ret(0);
3291
3292 AOTCodeCache::store_stub(this, vmIntrinsics::_squareToLen, "squareToLen", start);
3293 return start;
3294 }
3295
3296 address StubGenerator::generate_method_entry_barrier() {
3297 __ align(CodeEntryAlignment);
3298 StubId stub_id = StubId::stubgen_method_entry_barrier_id;
3299 StubCodeMark mark(this, stub_id);
3300 address start = __ pc();
3301
3302 Label deoptimize_label;
3303
3304 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing
3305
3306 BLOCK_COMMENT("Entry:");
3307 __ enter(); // save rbp
3308
3309 // save c_rarg0, because we want to use that value.
3310 // We could do without it but then we depend on the number of slots used by pusha
3311 __ push_ppx(c_rarg0);
3312
3313 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address
3314
3315 __ pusha();
3316
3317 // The method may have floats as arguments, and we must spill them before calling
3318 // the VM runtime.
3319 assert(Argument::n_float_register_parameters_j == 8, "Assumption");
3320 const int xmm_size = wordSize * 2;
3321 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j;
3322 __ subptr(rsp, xmm_spill_size);
3323 __ movdqu(Address(rsp, xmm_size * 7), xmm7);
3324 __ movdqu(Address(rsp, xmm_size * 6), xmm6);
3325 __ movdqu(Address(rsp, xmm_size * 5), xmm5);
3326 __ movdqu(Address(rsp, xmm_size * 4), xmm4);
3327 __ movdqu(Address(rsp, xmm_size * 3), xmm3);
3328 __ movdqu(Address(rsp, xmm_size * 2), xmm2);
3329 __ movdqu(Address(rsp, xmm_size * 1), xmm1);
3330 __ movdqu(Address(rsp, xmm_size * 0), xmm0);
3331
3332 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1);
3333
3334 __ movdqu(xmm0, Address(rsp, xmm_size * 0));
3335 __ movdqu(xmm1, Address(rsp, xmm_size * 1));
3336 __ movdqu(xmm2, Address(rsp, xmm_size * 2));
3337 __ movdqu(xmm3, Address(rsp, xmm_size * 3));
3338 __ movdqu(xmm4, Address(rsp, xmm_size * 4));
3339 __ movdqu(xmm5, Address(rsp, xmm_size * 5));
3340 __ movdqu(xmm6, Address(rsp, xmm_size * 6));
3341 __ movdqu(xmm7, Address(rsp, xmm_size * 7));
3342 __ addptr(rsp, xmm_spill_size);
3343
3344 __ cmpl(rax, 1); // 1 means deoptimize
3345 __ jcc(Assembler::equal, deoptimize_label);
3346
3347 __ popa();
3348 __ pop_ppx(c_rarg0);
3349
3350 __ leave();
3351
3352 __ addptr(rsp, 1 * wordSize); // cookie
3353 __ ret(0);
3354
3355
3356 __ BIND(deoptimize_label);
3357
3358 __ popa();
3359 __ pop_ppx(c_rarg0);
3360
3361 __ leave();
3362
3363 // this can be taken out, but is good for verification purposes. getting a SIGSEGV
3364 // here while still having a correct stack is valuable
3365 __ testptr(rsp, Address(rsp, 0));
3366
3367 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier
3368 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point
3369
3370 return start;
3371 }
3372
3373 /**
3374 * Arguments:
3375 *
3376 * Input:
3377 * c_rarg0 - out address
3378 * c_rarg1 - in address
3379 * c_rarg2 - offset
3380 * c_rarg3 - len
3381 * not Win64
3382 * c_rarg4 - k
3383 * Win64
3384 * rsp+40 - k
3385 */
3386 address StubGenerator::generate_mulAdd() {
3387 __ align(CodeEntryAlignment);
3388 StubId stub_id = StubId::stubgen_mulAdd_id;
3389 StubCodeMark mark(this, stub_id);
3390 address start = __ pc();
3391
3392 if (AOTCodeCache::load_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start)) {
3393 return start;
3394 }
3395
3396 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
3397 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
3398 const Register out = rdi;
3399 const Register in = rsi;
3400 const Register offset = r11;
3401 const Register len = rcx;
3402 const Register k = r8;
3403
3404 // Next registers will be saved on stack in mul_add().
3405 const Register tmp1 = r12;
3406 const Register tmp2 = r13;
3407 const Register tmp3 = r14;
3408 const Register tmp4 = r15;
3409 const Register tmp5 = rbx;
3410
3411 BLOCK_COMMENT("Entry:");
3412 __ enter(); // required for proper stackwalking of RuntimeStub frame
3413
3414 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx
3415 // len => rcx, k => r8
3416 // r9 and r10 may be used to save non-volatile registers
3417 #ifdef _WIN64
3418 // last argument is on stack on Win64
3419 __ movl(k, Address(rsp, 6 * wordSize));
3420 #endif
3421 __ movptr(r11, rdx); // move offset in rdx to offset(r11)
3422 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax);
3423
3424 restore_arg_regs();
3425
3426 __ leave(); // required for proper stackwalking of RuntimeStub frame
3427 __ ret(0);
3428
3429 AOTCodeCache::store_stub(this, vmIntrinsics::_mulAdd, "mulAdd", start);
3430 return start;
3431 }
3432
3433 address StubGenerator::generate_bigIntegerRightShift() {
3434 __ align(CodeEntryAlignment);
3435 StubId stub_id = StubId::stubgen_bigIntegerRightShiftWorker_id;
3436 StubCodeMark mark(this, stub_id);
3437 address start = __ pc();
3438
3439 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3440 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3441 const Register newArr = rdi;
3442 const Register oldArr = rsi;
3443 const Register newIdx = rdx;
3444 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3445 const Register totalNumIter = r8;
3446
3447 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3448 // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3449 const Register tmp1 = r11; // Caller save.
3450 const Register tmp2 = rax; // Caller save.
3451 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save.
3452 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save.
3453 const Register tmp5 = r14; // Callee save.
3454 const Register tmp6 = r15;
3455
3456 const XMMRegister x0 = xmm0;
3457 const XMMRegister x1 = xmm1;
3458 const XMMRegister x2 = xmm2;
3459
3460 BLOCK_COMMENT("Entry:");
3461 __ enter(); // required for proper stackwalking of RuntimeStub frame
3462
3463 #ifdef _WIN64
3464 setup_arg_regs(4);
3465 // For windows, since last argument is on stack, we need to move it to the appropriate register.
3466 __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3467 // Save callee save registers.
3468 __ push_ppx(tmp3);
3469 __ push_ppx(tmp4);
3470 #endif
3471 __ push_ppx(tmp5);
3472
3473 // Rename temps used throughout the code.
3474 const Register idx = tmp1;
3475 const Register nIdx = tmp2;
3476
3477 __ xorl(idx, idx);
3478
3479 // Start right shift from end of the array.
3480 // For example, if #iteration = 4 and newIdx = 1
3481 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32)
3482 // if #iteration = 4 and newIdx = 0
3483 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32)
3484 __ movl(idx, totalNumIter);
3485 __ movl(nIdx, idx);
3486 __ addl(nIdx, newIdx);
3487
3488 // If vectorization is enabled, check if the number of iterations is at least 64
3489 // If not, then go to ShifTwo processing 2 iterations
3490 if (VM_Version::supports_avx512_vbmi2()) {
3491 __ cmpptr(totalNumIter, (AVX3Threshold/64));
3492 __ jcc(Assembler::less, ShiftTwo);
3493
3494 if (AVX3Threshold < 16 * 64) {
3495 __ cmpl(totalNumIter, 16);
3496 __ jcc(Assembler::less, ShiftTwo);
3497 }
3498 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3499 __ subl(idx, 16);
3500 __ subl(nIdx, 16);
3501 __ BIND(Shift512Loop);
3502 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit);
3503 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3504 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit);
3505 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit);
3506 __ subl(nIdx, 16);
3507 __ subl(idx, 16);
3508 __ jcc(Assembler::greaterEqual, Shift512Loop);
3509 __ addl(idx, 16);
3510 __ addl(nIdx, 16);
3511 }
3512 __ BIND(ShiftTwo);
3513 __ cmpl(idx, 2);
3514 __ jcc(Assembler::less, ShiftOne);
3515 __ subl(idx, 2);
3516 __ subl(nIdx, 2);
3517 __ BIND(ShiftTwoLoop);
3518 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8));
3519 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3520 __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3521 __ shrdl(tmp5, tmp4);
3522 __ shrdl(tmp4, tmp3);
3523 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5);
3524 __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3525 __ subl(nIdx, 2);
3526 __ subl(idx, 2);
3527 __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3528 __ addl(idx, 2);
3529 __ addl(nIdx, 2);
3530
3531 // Do the last iteration
3532 __ BIND(ShiftOne);
3533 __ cmpl(idx, 1);
3534 __ jcc(Assembler::less, Exit);
3535 __ subl(idx, 1);
3536 __ subl(nIdx, 1);
3537 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4));
3538 __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3539 __ shrdl(tmp4, tmp3);
3540 __ movl(Address(newArr, nIdx, Address::times_4), tmp4);
3541 __ BIND(Exit);
3542 __ vzeroupper();
3543 // Restore callee save registers.
3544 __ pop_ppx(tmp5);
3545 #ifdef _WIN64
3546 __ pop_ppx(tmp4);
3547 __ pop_ppx(tmp3);
3548 restore_arg_regs();
3549 #endif
3550 __ leave(); // required for proper stackwalking of RuntimeStub frame
3551 __ ret(0);
3552
3553 return start;
3554 }
3555
3556 /**
3557 * Arguments:
3558 *
3559 * Input:
3560 * c_rarg0 - newArr address
3561 * c_rarg1 - oldArr address
3562 * c_rarg2 - newIdx
3563 * c_rarg3 - shiftCount
3564 * not Win64
3565 * c_rarg4 - numIter
3566 * Win64
3567 * rsp40 - numIter
3568 */
3569 address StubGenerator::generate_bigIntegerLeftShift() {
3570 __ align(CodeEntryAlignment);
3571 StubId stub_id = StubId::stubgen_bigIntegerLeftShiftWorker_id;
3572 StubCodeMark mark(this, stub_id);
3573 address start = __ pc();
3574
3575 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit;
3576 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8.
3577 const Register newArr = rdi;
3578 const Register oldArr = rsi;
3579 const Register newIdx = rdx;
3580 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift.
3581 const Register totalNumIter = r8;
3582 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps.
3583 // For everything else, we prefer using r9 and r10 since we do not have to save them before use.
3584 const Register tmp1 = r11; // Caller save.
3585 const Register tmp2 = rax; // Caller save.
3586 const Register tmp3 = WIN64_ONLY(r12) NOT_WIN64(r9); // Windows: Callee save. Linux: Caller save.
3587 const Register tmp4 = WIN64_ONLY(r13) NOT_WIN64(r10); // Windows: Callee save. Linux: Caller save.
3588 const Register tmp5 = r14; // Callee save.
3589
3590 const XMMRegister x0 = xmm0;
3591 const XMMRegister x1 = xmm1;
3592 const XMMRegister x2 = xmm2;
3593 BLOCK_COMMENT("Entry:");
3594 __ enter(); // required for proper stackwalking of RuntimeStub frame
3595
3596 #ifdef _WIN64
3597 setup_arg_regs(4);
3598 // For windows, since last argument is on stack, we need to move it to the appropriate register.
3599 __ movl(totalNumIter, Address(rsp, 6 * wordSize));
3600 // Save callee save registers.
3601 __ push_ppx(tmp3);
3602 __ push_ppx(tmp4);
3603 #endif
3604 __ push_ppx(tmp5);
3605
3606 // Rename temps used throughout the code
3607 const Register idx = tmp1;
3608 const Register numIterTmp = tmp2;
3609
3610 // Start idx from zero.
3611 __ xorl(idx, idx);
3612 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays.
3613 __ lea(newArr, Address(newArr, newIdx, Address::times_4));
3614 __ movl(numIterTmp, totalNumIter);
3615
3616 // If vectorization is enabled, check if the number of iterations is at least 64
3617 // If not, then go to ShiftTwo shifting two numbers at a time
3618 if (VM_Version::supports_avx512_vbmi2()) {
3619 __ cmpl(totalNumIter, (AVX3Threshold/64));
3620 __ jcc(Assembler::less, ShiftTwo);
3621
3622 if (AVX3Threshold < 16 * 64) {
3623 __ cmpl(totalNumIter, 16);
3624 __ jcc(Assembler::less, ShiftTwo);
3625 }
3626 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit);
3627 __ subl(numIterTmp, 16);
3628 __ BIND(Shift512Loop);
3629 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit);
3630 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit);
3631 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit);
3632 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit);
3633 __ addl(idx, 16);
3634 __ subl(numIterTmp, 16);
3635 __ jcc(Assembler::greaterEqual, Shift512Loop);
3636 __ addl(numIterTmp, 16);
3637 }
3638 __ BIND(ShiftTwo);
3639 __ cmpl(totalNumIter, 1);
3640 __ jcc(Assembler::less, Exit);
3641 __ movl(tmp3, Address(oldArr, idx, Address::times_4));
3642 __ subl(numIterTmp, 2);
3643 __ jcc(Assembler::less, ShiftOne);
3644
3645 __ BIND(ShiftTwoLoop);
3646 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3647 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8));
3648 __ shldl(tmp3, tmp4);
3649 __ shldl(tmp4, tmp5);
3650 __ movl(Address(newArr, idx, Address::times_4), tmp3);
3651 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4);
3652 __ movl(tmp3, tmp5);
3653 __ addl(idx, 2);
3654 __ subl(numIterTmp, 2);
3655 __ jcc(Assembler::greaterEqual, ShiftTwoLoop);
3656
3657 // Do the last iteration
3658 __ BIND(ShiftOne);
3659 __ addl(numIterTmp, 2);
3660 __ cmpl(numIterTmp, 1);
3661 __ jcc(Assembler::less, Exit);
3662 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4));
3663 __ shldl(tmp3, tmp4);
3664 __ movl(Address(newArr, idx, Address::times_4), tmp3);
3665
3666 __ BIND(Exit);
3667 __ vzeroupper();
3668 // Restore callee save registers.
3669 __ pop_ppx(tmp5);
3670 #ifdef _WIN64
3671 __ pop_ppx(tmp4);
3672 __ pop_ppx(tmp3);
3673 restore_arg_regs();
3674 #endif
3675 __ leave(); // required for proper stackwalking of RuntimeStub frame
3676 __ ret(0);
3677
3678 return start;
3679 }
3680
3681 void StubGenerator::generate_libm_stubs() {
3682 if (UseLibmIntrinsic && InlineIntrinsics) {
3683 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
3684 StubRoutines::_dsin = generate_libmSin(); // from stubGenerator_x86_64_sin.cpp
3685 }
3686 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
3687 StubRoutines::_dcos = generate_libmCos(); // from stubGenerator_x86_64_cos.cpp
3688 }
3689 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
3690 StubRoutines::_dtan = generate_libmTan(); // from stubGenerator_x86_64_tan.cpp
3691 }
3692 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsinh)) {
3693 StubRoutines::_dsinh = generate_libmSinh(); // from stubGenerator_x86_64_sinh.cpp
3694 }
3695 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtanh)) {
3696 StubRoutines::_dtanh = generate_libmTanh(); // from stubGenerator_x86_64_tanh.cpp
3697 }
3698 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcbrt)) {
3699 StubRoutines::_dcbrt = generate_libmCbrt(); // from stubGenerator_x86_64_cbrt.cpp
3700 }
3701 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
3702 StubRoutines::_dexp = generate_libmExp(); // from stubGenerator_x86_64_exp.cpp
3703 }
3704 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
3705 StubRoutines::_dpow = generate_libmPow(); // from stubGenerator_x86_64_pow.cpp
3706 }
3707 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
3708 StubRoutines::_dlog = generate_libmLog(); // from stubGenerator_x86_64_log.cpp
3709 }
3710 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
3711 StubRoutines::_dlog10 = generate_libmLog10(); // from stubGenerator_x86_64_log.cpp
3712 }
3713 }
3714 }
3715
3716 /**
3717 * Arguments:
3718 *
3719 * Input:
3720 * c_rarg0 - float16 jshort
3721 *
3722 * Output:
3723 * xmm0 - float
3724 */
3725 address StubGenerator::generate_float16ToFloat() {
3726 StubId stub_id = StubId::stubgen_hf2f_id;
3727 StubCodeMark mark(this, stub_id);
3728
3729 address start = __ pc();
3730
3731 BLOCK_COMMENT("Entry:");
3732 // No need for RuntimeStub frame since it is called only during JIT compilation
3733
3734 // Load value into xmm0 and convert
3735 __ flt16_to_flt(xmm0, c_rarg0);
3736
3737 __ ret(0);
3738
3739 return start;
3740 }
3741
3742 /**
3743 * Arguments:
3744 *
3745 * Input:
3746 * xmm0 - float
3747 *
3748 * Output:
3749 * rax - float16 jshort
3750 */
3751 address StubGenerator::generate_floatToFloat16() {
3752 StubId stub_id = StubId::stubgen_f2hf_id;
3753 StubCodeMark mark(this, stub_id);
3754
3755 address start = __ pc();
3756
3757 BLOCK_COMMENT("Entry:");
3758 // No need for RuntimeStub frame since it is called only during JIT compilation
3759
3760 // Convert and put result into rax
3761 __ flt_to_flt16(rax, xmm0, xmm1);
3762
3763 __ ret(0);
3764
3765 return start;
3766 }
3767
3768 address StubGenerator::generate_cont_thaw(StubId stub_id) {
3769 if (!Continuations::enabled()) return nullptr;
3770
3771 bool return_barrier;
3772 bool return_barrier_exception;
3773 Continuation::thaw_kind kind;
3774
3775 switch (stub_id) {
3776 case StubId::stubgen_cont_thaw_id:
3777 return_barrier = false;
3778 return_barrier_exception = false;
3779 kind = Continuation::thaw_top;
3780 break;
3781 case StubId::stubgen_cont_returnBarrier_id:
3782 return_barrier = true;
3783 return_barrier_exception = false;
3784 kind = Continuation::thaw_return_barrier;
3785 break;
3786 case StubId::stubgen_cont_returnBarrierExc_id:
3787 return_barrier = true;
3788 return_barrier_exception = true;
3789 kind = Continuation::thaw_return_barrier_exception;
3790 break;
3791 default:
3792 ShouldNotReachHere();
3793 }
3794 StubCodeMark mark(this, stub_id);
3795 address start = __ pc();
3796
3797 // TODO: Handle Valhalla return types. May require generating different return barriers.
3798
3799 if (!return_barrier) {
3800 // Pop return address. If we don't do this, we get a drift,
3801 // where the bottom-most frozen frame continuously grows.
3802 __ pop(c_rarg3);
3803 } else {
3804 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3805 }
3806
3807 #ifdef ASSERT
3808 {
3809 Label L_good_sp;
3810 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3811 __ jcc(Assembler::equal, L_good_sp);
3812 __ stop("Incorrect rsp at thaw entry");
3813 __ BIND(L_good_sp);
3814 }
3815 #endif // ASSERT
3816
3817 if (return_barrier) {
3818 // Preserve possible return value from a method returning to the return barrier.
3819 __ push_ppx(rax);
3820 __ push_d(xmm0);
3821 }
3822
3823 __ movptr(c_rarg0, r15_thread);
3824 __ movptr(c_rarg1, (return_barrier ? 1 : 0));
3825 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Continuation::prepare_thaw), 2);
3826 __ movptr(rbx, rax);
3827
3828 if (return_barrier) {
3829 // Restore return value from a method returning to the return barrier.
3830 // No safepoint in the call to thaw, so even an oop return value should be OK.
3831 __ pop_d(xmm0);
3832 __ pop_ppx(rax);
3833 }
3834
3835 #ifdef ASSERT
3836 {
3837 Label L_good_sp;
3838 __ cmpptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3839 __ jcc(Assembler::equal, L_good_sp);
3840 __ stop("Incorrect rsp after prepare thaw");
3841 __ BIND(L_good_sp);
3842 }
3843 #endif // ASSERT
3844
3845 // rbx contains the size of the frames to thaw, 0 if overflow or no more frames
3846 Label L_thaw_success;
3847 __ testptr(rbx, rbx);
3848 __ jccb(Assembler::notZero, L_thaw_success);
3849 __ jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
3850 __ bind(L_thaw_success);
3851
3852 // Make room for the thawed frames and align the stack.
3853 __ subptr(rsp, rbx);
3854 __ andptr(rsp, -StackAlignmentInBytes);
3855
3856 if (return_barrier) {
3857 // Preserve possible return value from a method returning to the return barrier. (Again.)
3858 __ push_ppx(rax);
3859 __ push_d(xmm0);
3860 }
3861
3862 // If we want, we can templatize thaw by kind, and have three different entries.
3863 __ movptr(c_rarg0, r15_thread);
3864 __ movptr(c_rarg1, kind);
3865 __ call_VM_leaf(Continuation::thaw_entry(), 2);
3866 __ movptr(rbx, rax);
3867
3868 if (return_barrier) {
3869 // Restore return value from a method returning to the return barrier. (Again.)
3870 // No safepoint in the call to thaw, so even an oop return value should be OK.
3871 __ pop_d(xmm0);
3872 __ pop_ppx(rax);
3873 } else {
3874 // Return 0 (success) from doYield.
3875 __ xorptr(rax, rax);
3876 }
3877
3878 // After thawing, rbx is the SP of the yielding frame.
3879 // Move there, and then to saved RBP slot.
3880 __ movptr(rsp, rbx);
3881 __ subptr(rsp, 2*wordSize);
3882
3883 if (return_barrier_exception) {
3884 __ movptr(c_rarg0, r15_thread);
3885 __ movptr(c_rarg1, Address(rsp, wordSize)); // return address
3886
3887 // rax still holds the original exception oop, save it before the call
3888 __ push_ppx(rax);
3889
3890 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 2);
3891 __ movptr(rbx, rax);
3892
3893 // Continue at exception handler:
3894 // rax: exception oop
3895 // rbx: exception handler
3896 // rdx: exception pc
3897 __ pop_ppx(rax);
3898 __ verify_oop(rax);
3899 __ pop(rbp); // pop out RBP here too
3900 __ pop(rdx);
3901 __ jmp(rbx);
3902 } else {
3903 // We are "returning" into the topmost thawed frame; see Thaw::push_return_frame
3904 __ pop(rbp);
3905 __ ret(0);
3906 }
3907
3908 return start;
3909 }
3910
3911 address StubGenerator::generate_cont_thaw() {
3912 return generate_cont_thaw(StubId::stubgen_cont_thaw_id);
3913 }
3914
3915 // TODO: will probably need multiple return barriers depending on return type
3916
3917 address StubGenerator::generate_cont_returnBarrier() {
3918 return generate_cont_thaw(StubId::stubgen_cont_returnBarrier_id);
3919 }
3920
3921 address StubGenerator::generate_cont_returnBarrier_exception() {
3922 return generate_cont_thaw(StubId::stubgen_cont_returnBarrierExc_id);
3923 }
3924
3925 address StubGenerator::generate_cont_preempt_stub() {
3926 if (!Continuations::enabled()) return nullptr;
3927 StubId stub_id = StubId::stubgen_cont_preempt_id;
3928 StubCodeMark mark(this, stub_id);
3929 address start = __ pc();
3930
3931 __ reset_last_Java_frame(true);
3932
3933 // Set rsp to enterSpecial frame, i.e. remove all frames copied into the heap.
3934 __ movptr(rsp, Address(r15_thread, JavaThread::cont_entry_offset()));
3935
3936 Label preemption_cancelled;
3937 __ movbool(rscratch1, Address(r15_thread, JavaThread::preemption_cancelled_offset()));
3938 __ testbool(rscratch1);
3939 __ jcc(Assembler::notZero, preemption_cancelled);
3940
3941 // Remove enterSpecial frame from the stack and return to Continuation.run() to unmount.
3942 SharedRuntime::continuation_enter_cleanup(_masm);
3943 __ pop(rbp);
3944 __ ret(0);
3945
3946 // We acquired the monitor after freezing the frames so call thaw to continue execution.
3947 __ bind(preemption_cancelled);
3948 __ movbool(Address(r15_thread, JavaThread::preemption_cancelled_offset()), false);
3949 __ lea(rbp, Address(rsp, checked_cast<int32_t>(ContinuationEntry::size())));
3950 __ movptr(rscratch1, ExternalAddress(ContinuationEntry::thaw_call_pc_address()));
3951 __ jmp(rscratch1);
3952
3953 return start;
3954 }
3955
3956 // exception handler for upcall stubs
3957 address StubGenerator::generate_upcall_stub_exception_handler() {
3958 StubId stub_id = StubId::stubgen_upcall_stub_exception_handler_id;
3959 StubCodeMark mark(this, stub_id);
3960 address start = __ pc();
3961
3962 // native caller has no idea how to handle exceptions
3963 // we just crash here. Up to callee to catch exceptions.
3964 __ verify_oop(rax);
3965 __ vzeroupper();
3966 __ mov(c_rarg0, rax);
3967 __ andptr(rsp, -StackAlignmentInBytes); // align stack as required by ABI
3968 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3969 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, UpcallLinker::handle_uncaught_exception)));
3970 __ should_not_reach_here();
3971
3972 return start;
3973 }
3974
3975 // load Method* target of MethodHandle
3976 // j_rarg0 = jobject receiver
3977 // rbx = result
3978 address StubGenerator::generate_upcall_stub_load_target() {
3979 StubId stub_id = StubId::stubgen_upcall_stub_load_target_id;
3980 StubCodeMark mark(this, stub_id);
3981 address start = __ pc();
3982
3983 __ resolve_global_jobject(j_rarg0, rscratch1);
3984 // Load target method from receiver
3985 __ load_heap_oop(rbx, Address(j_rarg0, java_lang_invoke_MethodHandle::form_offset()), rscratch1);
3986 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_LambdaForm::vmentry_offset()), rscratch1);
3987 __ load_heap_oop(rbx, Address(rbx, java_lang_invoke_MemberName::method_offset()), rscratch1);
3988 __ access_load_at(T_ADDRESS, IN_HEAP, rbx,
3989 Address(rbx, java_lang_invoke_ResolvedMethodName::vmtarget_offset()),
3990 noreg);
3991 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // just in case callee is deoptimized
3992
3993 __ ret(0);
3994
3995 return start;
3996 }
3997
3998 void StubGenerator::generate_lookup_secondary_supers_table_stub() {
3999 StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_id;
4000 StubCodeMark mark(this, stub_id);
4001
4002 const Register
4003 r_super_klass = rax,
4004 r_sub_klass = rsi,
4005 result = rdi;
4006
4007 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
4008 StubRoutines::_lookup_secondary_supers_table_stubs[slot] = __ pc();
4009 __ lookup_secondary_supers_table_const(r_sub_klass, r_super_klass,
4010 rdx, rcx, rbx, r11, // temps
4011 result,
4012 slot);
4013 __ ret(0);
4014 }
4015 }
4016
4017 // Slow path implementation for UseSecondarySupersTable.
4018 address StubGenerator::generate_lookup_secondary_supers_table_slow_path_stub() {
4019 StubId stub_id = StubId::stubgen_lookup_secondary_supers_table_slow_path_id;
4020 StubCodeMark mark(this, stub_id);
4021
4022 address start = __ pc();
4023
4024 const Register
4025 r_super_klass = rax,
4026 r_array_base = rbx,
4027 r_array_index = rdx,
4028 r_sub_klass = rsi,
4029 r_bitmap = r11,
4030 result = rdi;
4031
4032 Label L_success;
4033 __ lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, r_bitmap,
4034 rcx, rdi, // temps
4035 &L_success);
4036 // bind(L_failure);
4037 __ movl(result, 1);
4038 __ ret(0);
4039
4040 __ bind(L_success);
4041 __ movl(result, 0);
4042 __ ret(0);
4043
4044 return start;
4045 }
4046
4047 void StubGenerator::create_control_words() {
4048 // Round to nearest, 64-bit mode, exceptions masked, flags specialized
4049 StubRoutines::x86::_mxcsr_std = EnableX86ECoreOpts ? 0x1FBF : 0x1F80;
4050 // Round to zero, 64-bit mode, exceptions masked, flags specialized
4051 StubRoutines::x86::_mxcsr_rz = EnableX86ECoreOpts ? 0x7FBF : 0x7F80;
4052 }
4053
4054 // Initialization
4055 void StubGenerator::generate_preuniverse_stubs() {
4056 // atomic calls
4057 StubRoutines::_fence_entry = generate_orderaccess_fence();
4058 }
4059
4060 void StubGenerator::generate_initial_stubs() {
4061 // Generates all stubs and initializes the entry points
4062
4063 // This platform-specific settings are needed by generate_call_stub()
4064 create_control_words();
4065
4066 // Initialize table for unsafe copy memeory check.
4067 if (UnsafeMemoryAccess::_table == nullptr) {
4068 UnsafeMemoryAccess::create_table(16 + 4); // 16 for copyMemory; 4 for setMemory
4069 }
4070
4071 // entry points that exist in all platforms Note: This is code
4072 // that could be shared among different platforms - however the
4073 // benefit seems to be smaller than the disadvantage of having a
4074 // much more complicated generator structure. See also comment in
4075 // stubRoutines.hpp.
4076
4077 StubRoutines::_forward_exception_entry = generate_forward_exception();
4078
4079 StubRoutines::_call_stub_entry =
4080 generate_call_stub(StubRoutines::_call_stub_return_address);
4081
4082 // is referenced by megamorphic call
4083 StubRoutines::_catch_exception_entry = generate_catch_exception();
4084
4085 // platform dependent
4086 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
4087
4088 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
4089 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
4090 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
4091 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
4092
4093 StubRoutines::x86::_float_sign_mask = generate_fp_mask(StubId::stubgen_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4094 StubRoutines::x86::_float_sign_flip = generate_fp_mask(StubId::stubgen_float_sign_flip_id, 0x8000000080000000);
4095 StubRoutines::x86::_double_sign_mask = generate_fp_mask(StubId::stubgen_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4096 StubRoutines::x86::_double_sign_flip = generate_fp_mask(StubId::stubgen_double_sign_flip_id, 0x8000000000000000);
4097
4098 if (UseCRC32Intrinsics) {
4099 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
4100 }
4101
4102 if (UseCRC32CIntrinsics) {
4103 bool supports_clmul = VM_Version::supports_clmul();
4104 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
4105 }
4106
4107 if (VM_Version::supports_float16()) {
4108 // For results consistency both intrinsics should be enabled.
4109 // vmIntrinsics checks InlineIntrinsics flag, no need to check it here.
4110 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_float16ToFloat) &&
4111 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_floatToFloat16)) {
4112 StubRoutines::_hf2f = generate_float16ToFloat();
4113 StubRoutines::_f2hf = generate_floatToFloat16();
4114 }
4115 }
4116
4117 generate_libm_stubs();
4118
4119 StubRoutines::_fmod = generate_libmFmod(); // from stubGenerator_x86_64_fmod.cpp
4120 }
4121
4122 void StubGenerator::generate_continuation_stubs() {
4123 // Continuation stubs:
4124 StubRoutines::_cont_thaw = generate_cont_thaw();
4125 StubRoutines::_cont_returnBarrier = generate_cont_returnBarrier();
4126 StubRoutines::_cont_returnBarrierExc = generate_cont_returnBarrier_exception();
4127 StubRoutines::_cont_preempt_stub = generate_cont_preempt_stub();
4128 }
4129
4130 void StubGenerator::generate_final_stubs() {
4131 // Generates the rest of stubs and initializes the entry points
4132
4133 // support for verify_oop (must happen after universe_init)
4134 if (VerifyOops) {
4135 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
4136 }
4137
4138 // arraycopy stubs used by compilers
4139 generate_arraycopy_stubs();
4140
4141 StubRoutines::_method_entry_barrier = generate_method_entry_barrier();
4142
4143 #ifdef COMPILER2
4144 if (UseSecondarySupersTable) {
4145 StubRoutines::_lookup_secondary_supers_table_slow_path_stub = generate_lookup_secondary_supers_table_slow_path_stub();
4146 if (! InlineSecondarySupersTest) {
4147 generate_lookup_secondary_supers_table_stub();
4148 }
4149 }
4150 #endif // COMPILER2
4151
4152 if (UseVectorizedMismatchIntrinsic) {
4153 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch();
4154 }
4155
4156 StubRoutines::_upcall_stub_exception_handler = generate_upcall_stub_exception_handler();
4157 StubRoutines::_upcall_stub_load_target = generate_upcall_stub_load_target();
4158 }
4159
4160 void StubGenerator::generate_compiler_stubs() {
4161 #if COMPILER2_OR_JVMCI
4162
4163 // Entry points that are C2 compiler specific.
4164
4165 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask(StubId::stubgen_vector_float_sign_mask_id, 0x7FFFFFFF7FFFFFFF);
4166 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask(StubId::stubgen_vector_float_sign_flip_id, 0x8000000080000000);
4167 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask(StubId::stubgen_vector_double_sign_mask_id, 0x7FFFFFFFFFFFFFFF);
4168 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask(StubId::stubgen_vector_double_sign_flip_id, 0x8000000000000000);
4169 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask(StubId::stubgen_vector_all_bits_set_id, 0xFFFFFFFFFFFFFFFF);
4170 StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask(StubId::stubgen_vector_int_mask_cmp_bits_id, 0x0000000100000001);
4171 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_short_to_byte_mask_id, 0x00ff00ff00ff00ff);
4172 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask();
4173 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask(StubId::stubgen_vector_int_to_byte_mask_id, 0x000000ff000000ff);
4174 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask(StubId::stubgen_vector_int_to_short_mask_id, 0x0000ffff0000ffff);
4175 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_32_bit_mask_id, Assembler::AVX_512bit,
4176 0xFFFFFFFF, 0, 0, 0);
4177 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32(StubId::stubgen_vector_64_bit_mask_id, Assembler::AVX_512bit,
4178 0xFFFFFFFF, 0xFFFFFFFF, 0, 0);
4179 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_int_shuffle_mask_id, 0x0302010003020100);
4180 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask();
4181 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_short_shuffle_mask_id, 0x0100010001000100);
4182 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask(StubId::stubgen_vector_long_shuffle_mask_id, 0x0000000100000000);
4183 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask(StubId::stubgen_vector_long_sign_mask_id, 0x8000000000000000);
4184 StubRoutines::x86::_vector_iota_indices = generate_iota_indices();
4185 StubRoutines::x86::_vector_count_leading_zeros_lut = generate_count_leading_zeros_lut();
4186 StubRoutines::x86::_vector_reverse_bit_lut = generate_vector_reverse_bit_lut();
4187 StubRoutines::x86::_vector_reverse_byte_perm_mask_long = generate_vector_reverse_byte_perm_mask_long();
4188 StubRoutines::x86::_vector_reverse_byte_perm_mask_int = generate_vector_reverse_byte_perm_mask_int();
4189 StubRoutines::x86::_vector_reverse_byte_perm_mask_short = generate_vector_reverse_byte_perm_mask_short();
4190
4191 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512vl()) {
4192 StubRoutines::x86::_compress_perm_table32 = generate_compress_perm_table(StubId::stubgen_compress_perm_table32_id);
4193 StubRoutines::x86::_compress_perm_table64 = generate_compress_perm_table(StubId::stubgen_compress_perm_table64_id);
4194 StubRoutines::x86::_expand_perm_table32 = generate_expand_perm_table(StubId::stubgen_expand_perm_table32_id);
4195 StubRoutines::x86::_expand_perm_table64 = generate_expand_perm_table(StubId::stubgen_expand_perm_table64_id);
4196 }
4197
4198 if (VM_Version::supports_avx2() && !VM_Version::supports_avx512_vpopcntdq()) {
4199 // lut implementation influenced by counting 1s algorithm from section 5-1 of Hackers' Delight.
4200 StubRoutines::x86::_vector_popcount_lut = generate_popcount_avx_lut();
4201 }
4202
4203 generate_aes_stubs();
4204
4205 generate_ghash_stubs();
4206
4207 generate_chacha_stubs();
4208
4209 generate_kyber_stubs();
4210
4211 generate_dilithium_stubs();
4212
4213 generate_sha3_stubs();
4214
4215 // data cache line writeback
4216 StubRoutines::_data_cache_writeback = generate_data_cache_writeback();
4217 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync();
4218
4219 #ifdef COMPILER2
4220 if ((UseAVX == 2) && EnableX86ECoreOpts) {
4221 generate_string_indexof(StubRoutines::_string_indexof_array);
4222 }
4223 #endif
4224
4225 if (UseAdler32Intrinsics) {
4226 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
4227 }
4228
4229 if (UsePoly1305Intrinsics) {
4230 StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
4231 }
4232
4233 if (UseIntPolyIntrinsics) {
4234 StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256();
4235 StubRoutines::_intpoly_assign = generate_intpoly_assign();
4236 }
4237
4238 if (UseMD5Intrinsics) {
4239 StubRoutines::_md5_implCompress = generate_md5_implCompress(StubId::stubgen_md5_implCompress_id);
4240 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(StubId::stubgen_md5_implCompressMB_id);
4241 }
4242
4243 if (UseSHA1Intrinsics) {
4244 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
4245 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
4246 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(StubId::stubgen_sha1_implCompress_id);
4247 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(StubId::stubgen_sha1_implCompressMB_id);
4248 }
4249
4250 if (UseSHA256Intrinsics) {
4251 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
4252 char* dst = (char*)StubRoutines::x86::_k256_W;
4253 char* src = (char*)StubRoutines::x86::_k256;
4254 for (int ii = 0; ii < 16; ++ii) {
4255 memcpy(dst + 32 * ii, src + 16 * ii, 16);
4256 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16);
4257 }
4258 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W;
4259 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
4260 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(StubId::stubgen_sha256_implCompress_id);
4261 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(StubId::stubgen_sha256_implCompressMB_id);
4262 }
4263
4264 if (UseSHA512Intrinsics) {
4265 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W;
4266 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512();
4267 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(StubId::stubgen_sha512_implCompress_id);
4268 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(StubId::stubgen_sha512_implCompressMB_id);
4269 }
4270
4271 if (UseBASE64Intrinsics) {
4272 if(VM_Version::supports_avx2()) {
4273 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr();
4274 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr();
4275 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr();
4276 StubRoutines::x86::_avx2_decode_tables_base64 = base64_AVX2_decode_tables_addr();
4277 StubRoutines::x86::_avx2_decode_lut_tables_base64 = base64_AVX2_decode_LUT_tables_addr();
4278 }
4279 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr();
4280 if (VM_Version::supports_avx512_vbmi()) {
4281 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr();
4282 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr();
4283 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr();
4284 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr();
4285 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr();
4286 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr();
4287 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr();
4288 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr();
4289 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr();
4290 }
4291 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr();
4292 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock();
4293 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock();
4294 }
4295
4296 #ifdef COMPILER2
4297 if (UseMultiplyToLenIntrinsic) {
4298 StubRoutines::_multiplyToLen = generate_multiplyToLen();
4299 }
4300 if (UseSquareToLenIntrinsic) {
4301 StubRoutines::_squareToLen = generate_squareToLen();
4302 }
4303 if (UseMulAddIntrinsic) {
4304 StubRoutines::_mulAdd = generate_mulAdd();
4305 }
4306 if (VM_Version::supports_avx512_vbmi2()) {
4307 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
4308 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
4309 }
4310 if (UseMontgomeryMultiplyIntrinsic) {
4311 StubRoutines::_montgomeryMultiply
4312 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
4313 }
4314 if (UseMontgomerySquareIntrinsic) {
4315 StubRoutines::_montgomerySquare
4316 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
4317 }
4318
4319 // Load x86_64_sort library on supported hardware to enable SIMD sort and partition intrinsics
4320
4321 if (VM_Version::supports_avx512dq() || VM_Version::supports_avx2()) {
4322 void *libsimdsort = nullptr;
4323 char ebuf_[1024];
4324 char dll_name_simd_sort[JVM_MAXPATHLEN];
4325 if (os::dll_locate_lib(dll_name_simd_sort, sizeof(dll_name_simd_sort), Arguments::get_dll_dir(), "simdsort")) {
4326 libsimdsort = os::dll_load(dll_name_simd_sort, ebuf_, sizeof ebuf_);
4327 }
4328 // Get addresses for SIMD sort and partition routines
4329 if (libsimdsort != nullptr) {
4330 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "simdsort" JNI_LIB_SUFFIX, p2i(libsimdsort));
4331
4332 os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_sort" : "avx2_sort");
4333 StubRoutines::_array_sort = (address)os::dll_lookup(libsimdsort, ebuf_);
4334
4335 os::snprintf_checked(ebuf_, sizeof(ebuf_), VM_Version::supports_avx512_simd_sort() ? "avx512_partition" : "avx2_partition");
4336 StubRoutines::_array_partition = (address)os::dll_lookup(libsimdsort, ebuf_);
4337 }
4338 }
4339
4340 #endif // COMPILER2
4341 #endif // COMPILER2_OR_JVMCI
4342 }
4343
4344 StubGenerator::StubGenerator(CodeBuffer* code, BlobId blob_id) : StubCodeGenerator(code, blob_id) {
4345 switch(blob_id) {
4346 case BlobId::stubgen_preuniverse_id:
4347 generate_preuniverse_stubs();
4348 break;
4349 case BlobId::stubgen_initial_id:
4350 generate_initial_stubs();
4351 break;
4352 case BlobId::stubgen_continuation_id:
4353 generate_continuation_stubs();
4354 break;
4355 case BlobId::stubgen_compiler_id:
4356 generate_compiler_stubs();
4357 break;
4358 case BlobId::stubgen_final_id:
4359 generate_final_stubs();
4360 break;
4361 default:
4362 fatal("unexpected blob id: %s", StubInfo::name(blob_id));
4363 break;
4364 };
4365 }
4366
4367 void StubGenerator_generate(CodeBuffer* code, BlobId blob_id) {
4368 StubGenerator g(code, blob_id);
4369 }
4370
4371 #undef __