1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "compiler/disassembler.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "gc/shared/gc_globals.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodCounters.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "oops/resolvedMethodEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/safepointMechanism.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "runtime/stubRoutines.hpp" 48 #include "runtime/synchronizer.hpp" 49 #include "utilities/macros.hpp" 50 51 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 52 53 // Global Register Names 54 static const Register rbcp = r13; 55 static const Register rlocals = r14; 56 57 // Address Computation: local variables 58 static inline Address iaddress(int n) { 59 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 60 } 61 62 static inline Address laddress(int n) { 63 return iaddress(n + 1); 64 } 65 66 static inline Address faddress(int n) { 67 return iaddress(n); 68 } 69 70 static inline Address daddress(int n) { 71 return laddress(n); 72 } 73 74 static inline Address aaddress(int n) { 75 return iaddress(n); 76 } 77 78 static inline Address iaddress(Register r) { 79 return Address(rlocals, r, Address::times_ptr); 80 } 81 82 static inline Address laddress(Register r) { 83 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 84 } 85 86 static inline Address faddress(Register r) { 87 return iaddress(r); 88 } 89 90 static inline Address daddress(Register r) { 91 return laddress(r); 92 } 93 94 static inline Address aaddress(Register r) { 95 return iaddress(r); 96 } 97 98 99 // expression stack 100 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 101 // data beyond the rsp which is potentially unsafe in an MT environment; 102 // an interrupt may overwrite that data.) 103 static inline Address at_rsp () { 104 return Address(rsp, 0); 105 } 106 107 // At top of Java expression stack which may be different than esp(). It 108 // isn't for category 1 objects. 109 static inline Address at_tos () { 110 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 111 } 112 113 static inline Address at_tos_p1() { 114 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 115 } 116 117 static inline Address at_tos_p2() { 118 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 119 } 120 121 // Condition conversion 122 static Assembler::Condition j_not(TemplateTable::Condition cc) { 123 switch (cc) { 124 case TemplateTable::equal : return Assembler::notEqual; 125 case TemplateTable::not_equal : return Assembler::equal; 126 case TemplateTable::less : return Assembler::greaterEqual; 127 case TemplateTable::less_equal : return Assembler::greater; 128 case TemplateTable::greater : return Assembler::lessEqual; 129 case TemplateTable::greater_equal: return Assembler::less; 130 } 131 ShouldNotReachHere(); 132 return Assembler::zero; 133 } 134 135 136 137 // Miscellaneous helper routines 138 // Store an oop (or null) at the address described by obj. 139 // If val == noreg this means store a null 140 141 142 static void do_oop_store(InterpreterMacroAssembler* _masm, 143 Address dst, 144 Register val, 145 DecoratorSet decorators = 0) { 146 assert(val == noreg || val == rax, "parameter is just for looks"); 147 __ store_heap_oop(dst, val, rscratch2, r9, r8, decorators); 148 } 149 150 static void do_oop_load(InterpreterMacroAssembler* _masm, 151 Address src, 152 Register dst, 153 DecoratorSet decorators = 0) { 154 __ load_heap_oop(dst, src, rdx, rbx, decorators); 155 } 156 157 Address TemplateTable::at_bcp(int offset) { 158 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 159 return Address(rbcp, offset); 160 } 161 162 163 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 164 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 165 int byte_no) { 166 if (!RewriteBytecodes) return; 167 Label L_patch_done; 168 169 switch (bc) { 170 case Bytecodes::_fast_aputfield: 171 case Bytecodes::_fast_bputfield: 172 case Bytecodes::_fast_zputfield: 173 case Bytecodes::_fast_cputfield: 174 case Bytecodes::_fast_dputfield: 175 case Bytecodes::_fast_fputfield: 176 case Bytecodes::_fast_iputfield: 177 case Bytecodes::_fast_lputfield: 178 case Bytecodes::_fast_sputfield: 179 { 180 // We skip bytecode quickening for putfield instructions when 181 // the put_code written to the constant pool cache is zero. 182 // This is required so that every execution of this instruction 183 // calls out to InterpreterRuntime::resolve_get_put to do 184 // additional, required work. 185 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 186 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 187 __ load_field_entry(temp_reg, bc_reg); 188 if (byte_no == f1_byte) { 189 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 190 } else { 191 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 192 } 193 194 __ movl(bc_reg, bc); 195 __ cmpl(temp_reg, (int) 0); 196 __ jcc(Assembler::zero, L_patch_done); // don't patch 197 } 198 break; 199 default: 200 assert(byte_no == -1, "sanity"); 201 // the pair bytecodes have already done the load. 202 if (load_bc_into_bc_reg) { 203 __ movl(bc_reg, bc); 204 } 205 } 206 207 if (JvmtiExport::can_post_breakpoint()) { 208 Label L_fast_patch; 209 // if a breakpoint is present we can't rewrite the stream directly 210 __ movzbl(temp_reg, at_bcp(0)); 211 __ cmpl(temp_reg, Bytecodes::_breakpoint); 212 __ jcc(Assembler::notEqual, L_fast_patch); 213 __ get_method(temp_reg); 214 // Let breakpoint table handling rewrite to quicker bytecode 215 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 216 #ifndef ASSERT 217 __ jmpb(L_patch_done); 218 #else 219 __ jmp(L_patch_done); 220 #endif 221 __ bind(L_fast_patch); 222 } 223 224 #ifdef ASSERT 225 Label L_okay; 226 __ load_unsigned_byte(temp_reg, at_bcp(0)); 227 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 228 __ jcc(Assembler::equal, L_okay); 229 __ cmpl(temp_reg, bc_reg); 230 __ jcc(Assembler::equal, L_okay); 231 __ stop("patching the wrong bytecode"); 232 __ bind(L_okay); 233 #endif 234 235 // patch bytecode 236 __ movb(at_bcp(0), bc_reg); 237 __ bind(L_patch_done); 238 } 239 // Individual instructions 240 241 242 void TemplateTable::nop() { 243 transition(vtos, vtos); 244 // nothing to do 245 } 246 247 void TemplateTable::shouldnotreachhere() { 248 transition(vtos, vtos); 249 __ stop("shouldnotreachhere bytecode"); 250 } 251 252 void TemplateTable::aconst_null() { 253 transition(vtos, atos); 254 __ xorl(rax, rax); 255 } 256 257 void TemplateTable::iconst(int value) { 258 transition(vtos, itos); 259 if (value == 0) { 260 __ xorl(rax, rax); 261 } else { 262 __ movl(rax, value); 263 } 264 } 265 266 void TemplateTable::lconst(int value) { 267 transition(vtos, ltos); 268 if (value == 0) { 269 __ xorl(rax, rax); 270 } else { 271 __ movl(rax, value); 272 } 273 } 274 275 276 277 void TemplateTable::fconst(int value) { 278 transition(vtos, ftos); 279 if (UseSSE >= 1) { 280 static float one = 1.0f, two = 2.0f; 281 switch (value) { 282 case 0: 283 __ xorps(xmm0, xmm0); 284 break; 285 case 1: 286 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 287 break; 288 case 2: 289 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 290 break; 291 default: 292 ShouldNotReachHere(); 293 break; 294 } 295 } else { 296 ShouldNotReachHere(); 297 } 298 } 299 300 void TemplateTable::dconst(int value) { 301 transition(vtos, dtos); 302 if (UseSSE >= 2) { 303 static double one = 1.0; 304 switch (value) { 305 case 0: 306 __ xorpd(xmm0, xmm0); 307 break; 308 case 1: 309 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 310 break; 311 default: 312 ShouldNotReachHere(); 313 break; 314 } 315 } else { 316 ShouldNotReachHere(); 317 } 318 } 319 320 void TemplateTable::bipush() { 321 transition(vtos, itos); 322 __ load_signed_byte(rax, at_bcp(1)); 323 } 324 325 void TemplateTable::sipush() { 326 transition(vtos, itos); 327 __ load_unsigned_short(rax, at_bcp(1)); 328 __ bswapl(rax); 329 __ sarl(rax, 16); 330 } 331 332 void TemplateTable::ldc(LdcType type) { 333 transition(vtos, vtos); 334 Register rarg = c_rarg1; 335 Label call_ldc, notFloat, notClass, notInt, Done; 336 337 if (is_ldc_wide(type)) { 338 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 339 } else { 340 __ load_unsigned_byte(rbx, at_bcp(1)); 341 } 342 343 __ get_cpool_and_tags(rcx, rax); 344 const int base_offset = ConstantPool::header_size() * wordSize; 345 const int tags_offset = Array<u1>::base_offset_in_bytes(); 346 347 // get type 348 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 349 350 // unresolved class - get the resolved class 351 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 352 __ jccb(Assembler::equal, call_ldc); 353 354 // unresolved class in error state - call into runtime to throw the error 355 // from the first resolution attempt 356 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 357 __ jccb(Assembler::equal, call_ldc); 358 359 // resolved class - need to call vm to get java mirror of the class 360 __ cmpl(rdx, JVM_CONSTANT_Class); 361 __ jcc(Assembler::notEqual, notClass); 362 363 __ bind(call_ldc); 364 365 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 366 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 367 368 __ push(atos); 369 __ jmp(Done); 370 371 __ bind(notClass); 372 __ cmpl(rdx, JVM_CONSTANT_Float); 373 __ jccb(Assembler::notEqual, notFloat); 374 375 // ftos 376 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 377 __ push(ftos); 378 __ jmp(Done); 379 380 __ bind(notFloat); 381 __ cmpl(rdx, JVM_CONSTANT_Integer); 382 __ jccb(Assembler::notEqual, notInt); 383 384 // itos 385 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 386 __ push(itos); 387 __ jmp(Done); 388 389 // assume the tag is for condy; if not, the VM runtime will tell us 390 __ bind(notInt); 391 condy_helper(Done); 392 393 __ bind(Done); 394 } 395 396 // Fast path for caching oop constants. 397 void TemplateTable::fast_aldc(LdcType type) { 398 transition(vtos, atos); 399 400 Register result = rax; 401 Register tmp = rdx; 402 Register rarg = c_rarg1; 403 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 404 405 Label resolved; 406 407 // We are resolved if the resolved reference cache entry contains a 408 // non-null object (String, MethodType, etc.) 409 assert_different_registers(result, tmp); 410 __ get_cache_index_at_bcp(tmp, 1, index_size); 411 __ load_resolved_reference_at_index(result, tmp); 412 __ testptr(result, result); 413 __ jcc(Assembler::notZero, resolved); 414 415 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 416 417 // first time invocation - must resolve first 418 __ movl(rarg, (int)bytecode()); 419 __ call_VM(result, entry, rarg); 420 __ bind(resolved); 421 422 { // Check for the null sentinel. 423 // If we just called the VM, it already did the mapping for us, 424 // but it's harmless to retry. 425 Label notNull; 426 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 427 __ movptr(tmp, null_sentinel); 428 __ resolve_oop_handle(tmp, rscratch2); 429 __ cmpoop(tmp, result); 430 __ jccb(Assembler::notEqual, notNull); 431 __ xorptr(result, result); // null object reference 432 __ bind(notNull); 433 } 434 435 if (VerifyOops) { 436 __ verify_oop(result); 437 } 438 } 439 440 void TemplateTable::ldc2_w() { 441 transition(vtos, vtos); 442 Label notDouble, notLong, Done; 443 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 444 445 __ get_cpool_and_tags(rcx, rax); 446 const int base_offset = ConstantPool::header_size() * wordSize; 447 const int tags_offset = Array<u1>::base_offset_in_bytes(); 448 449 // get type 450 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 451 __ cmpl(rdx, JVM_CONSTANT_Double); 452 __ jccb(Assembler::notEqual, notDouble); 453 454 // dtos 455 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 456 __ push(dtos); 457 458 __ jmp(Done); 459 __ bind(notDouble); 460 __ cmpl(rdx, JVM_CONSTANT_Long); 461 __ jccb(Assembler::notEqual, notLong); 462 463 // ltos 464 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 465 __ push(ltos); 466 __ jmp(Done); 467 468 __ bind(notLong); 469 condy_helper(Done); 470 471 __ bind(Done); 472 } 473 474 void TemplateTable::condy_helper(Label& Done) { 475 const Register obj = rax; 476 const Register off = rbx; 477 const Register flags = rcx; 478 const Register rarg = c_rarg1; 479 __ movl(rarg, (int)bytecode()); 480 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 481 __ get_vm_result_2(flags); 482 // VMr = obj = base address to find primitive value to push 483 // VMr2 = flags = (tos, off) using format of CPCE::_flags 484 __ movl(off, flags); 485 __ andl(off, ConstantPoolCache::field_index_mask); 486 const Address field(obj, off, Address::times_1, 0*wordSize); 487 488 // What sort of thing are we loading? 489 __ shrl(flags, ConstantPoolCache::tos_state_shift); 490 __ andl(flags, ConstantPoolCache::tos_state_mask); 491 492 switch (bytecode()) { 493 case Bytecodes::_ldc: 494 case Bytecodes::_ldc_w: 495 { 496 // tos in (itos, ftos, stos, btos, ctos, ztos) 497 Label notInt, notFloat, notShort, notByte, notChar, notBool; 498 __ cmpl(flags, itos); 499 __ jccb(Assembler::notEqual, notInt); 500 // itos 501 __ movl(rax, field); 502 __ push(itos); 503 __ jmp(Done); 504 505 __ bind(notInt); 506 __ cmpl(flags, ftos); 507 __ jccb(Assembler::notEqual, notFloat); 508 // ftos 509 __ load_float(field); 510 __ push(ftos); 511 __ jmp(Done); 512 513 __ bind(notFloat); 514 __ cmpl(flags, stos); 515 __ jccb(Assembler::notEqual, notShort); 516 // stos 517 __ load_signed_short(rax, field); 518 __ push(stos); 519 __ jmp(Done); 520 521 __ bind(notShort); 522 __ cmpl(flags, btos); 523 __ jccb(Assembler::notEqual, notByte); 524 // btos 525 __ load_signed_byte(rax, field); 526 __ push(btos); 527 __ jmp(Done); 528 529 __ bind(notByte); 530 __ cmpl(flags, ctos); 531 __ jccb(Assembler::notEqual, notChar); 532 // ctos 533 __ load_unsigned_short(rax, field); 534 __ push(ctos); 535 __ jmp(Done); 536 537 __ bind(notChar); 538 __ cmpl(flags, ztos); 539 __ jccb(Assembler::notEqual, notBool); 540 // ztos 541 __ load_signed_byte(rax, field); 542 __ push(ztos); 543 __ jmp(Done); 544 545 __ bind(notBool); 546 break; 547 } 548 549 case Bytecodes::_ldc2_w: 550 { 551 Label notLong, notDouble; 552 __ cmpl(flags, ltos); 553 __ jccb(Assembler::notEqual, notLong); 554 // ltos 555 // Loading high word first because movptr clobbers rax 556 __ movptr(rax, field); 557 __ push(ltos); 558 __ jmp(Done); 559 560 __ bind(notLong); 561 __ cmpl(flags, dtos); 562 __ jccb(Assembler::notEqual, notDouble); 563 // dtos 564 __ load_double(field); 565 __ push(dtos); 566 __ jmp(Done); 567 568 __ bind(notDouble); 569 break; 570 } 571 572 default: 573 ShouldNotReachHere(); 574 } 575 576 __ stop("bad ldc/condy"); 577 } 578 579 void TemplateTable::locals_index(Register reg, int offset) { 580 __ load_unsigned_byte(reg, at_bcp(offset)); 581 __ negptr(reg); 582 } 583 584 void TemplateTable::iload() { 585 iload_internal(); 586 } 587 588 void TemplateTable::nofast_iload() { 589 iload_internal(may_not_rewrite); 590 } 591 592 void TemplateTable::iload_internal(RewriteControl rc) { 593 transition(vtos, itos); 594 if (RewriteFrequentPairs && rc == may_rewrite) { 595 Label rewrite, done; 596 const Register bc = c_rarg3; 597 assert(rbx != bc, "register damaged"); 598 599 // get next byte 600 __ load_unsigned_byte(rbx, 601 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 602 // if _iload, wait to rewrite to iload2. We only want to rewrite the 603 // last two iloads in a pair. Comparing against fast_iload means that 604 // the next bytecode is neither an iload or a caload, and therefore 605 // an iload pair. 606 __ cmpl(rbx, Bytecodes::_iload); 607 __ jcc(Assembler::equal, done); 608 609 __ cmpl(rbx, Bytecodes::_fast_iload); 610 __ movl(bc, Bytecodes::_fast_iload2); 611 612 __ jccb(Assembler::equal, rewrite); 613 614 // if _caload, rewrite to fast_icaload 615 __ cmpl(rbx, Bytecodes::_caload); 616 __ movl(bc, Bytecodes::_fast_icaload); 617 __ jccb(Assembler::equal, rewrite); 618 619 // rewrite so iload doesn't check again. 620 __ movl(bc, Bytecodes::_fast_iload); 621 622 // rewrite 623 // bc: fast bytecode 624 __ bind(rewrite); 625 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 626 __ bind(done); 627 } 628 629 // Get the local value into tos 630 locals_index(rbx); 631 __ movl(rax, iaddress(rbx)); 632 } 633 634 void TemplateTable::fast_iload2() { 635 transition(vtos, itos); 636 locals_index(rbx); 637 __ movl(rax, iaddress(rbx)); 638 __ push(itos); 639 locals_index(rbx, 3); 640 __ movl(rax, iaddress(rbx)); 641 } 642 643 void TemplateTable::fast_iload() { 644 transition(vtos, itos); 645 locals_index(rbx); 646 __ movl(rax, iaddress(rbx)); 647 } 648 649 void TemplateTable::lload() { 650 transition(vtos, ltos); 651 locals_index(rbx); 652 __ movptr(rax, laddress(rbx)); 653 } 654 655 void TemplateTable::fload() { 656 transition(vtos, ftos); 657 locals_index(rbx); 658 __ load_float(faddress(rbx)); 659 } 660 661 void TemplateTable::dload() { 662 transition(vtos, dtos); 663 locals_index(rbx); 664 __ load_double(daddress(rbx)); 665 } 666 667 void TemplateTable::aload() { 668 transition(vtos, atos); 669 locals_index(rbx); 670 __ movptr(rax, aaddress(rbx)); 671 } 672 673 void TemplateTable::locals_index_wide(Register reg) { 674 __ load_unsigned_short(reg, at_bcp(2)); 675 __ bswapl(reg); 676 __ shrl(reg, 16); 677 __ negptr(reg); 678 } 679 680 void TemplateTable::wide_iload() { 681 transition(vtos, itos); 682 locals_index_wide(rbx); 683 __ movl(rax, iaddress(rbx)); 684 } 685 686 void TemplateTable::wide_lload() { 687 transition(vtos, ltos); 688 locals_index_wide(rbx); 689 __ movptr(rax, laddress(rbx)); 690 } 691 692 void TemplateTable::wide_fload() { 693 transition(vtos, ftos); 694 locals_index_wide(rbx); 695 __ load_float(faddress(rbx)); 696 } 697 698 void TemplateTable::wide_dload() { 699 transition(vtos, dtos); 700 locals_index_wide(rbx); 701 __ load_double(daddress(rbx)); 702 } 703 704 void TemplateTable::wide_aload() { 705 transition(vtos, atos); 706 locals_index_wide(rbx); 707 __ movptr(rax, aaddress(rbx)); 708 } 709 710 void TemplateTable::index_check(Register array, Register index) { 711 // Pop ptr into array 712 __ pop_ptr(array); 713 index_check_without_pop(array, index); 714 } 715 716 void TemplateTable::index_check_without_pop(Register array, Register index) { 717 // destroys rbx 718 // sign extend index for use by indexed load 719 __ movl2ptr(index, index); 720 // check index 721 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 722 if (index != rbx) { 723 // ??? convention: move aberrant index into rbx for exception message 724 assert(rbx != array, "different registers"); 725 __ movl(rbx, index); 726 } 727 Label skip; 728 __ jccb(Assembler::below, skip); 729 // Pass array to create more detailed exceptions. 730 __ mov(c_rarg1, array); 731 __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 732 __ bind(skip); 733 } 734 735 void TemplateTable::iaload() { 736 transition(itos, itos); 737 // rax: index 738 // rdx: array 739 index_check(rdx, rax); // kills rbx 740 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 741 Address(rdx, rax, Address::times_4, 742 arrayOopDesc::base_offset_in_bytes(T_INT)), 743 noreg, noreg); 744 } 745 746 void TemplateTable::laload() { 747 transition(itos, ltos); 748 // rax: index 749 // rdx: array 750 index_check(rdx, rax); // kills rbx 751 // rbx,: index 752 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 753 Address(rdx, rbx, Address::times_8, 754 arrayOopDesc::base_offset_in_bytes(T_LONG)), 755 noreg, noreg); 756 } 757 758 759 760 void TemplateTable::faload() { 761 transition(itos, ftos); 762 // rax: index 763 // rdx: array 764 index_check(rdx, rax); // kills rbx 765 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 766 Address(rdx, rax, 767 Address::times_4, 768 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 769 noreg, noreg); 770 } 771 772 void TemplateTable::daload() { 773 transition(itos, dtos); 774 // rax: index 775 // rdx: array 776 index_check(rdx, rax); // kills rbx 777 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 778 Address(rdx, rax, 779 Address::times_8, 780 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 781 noreg, noreg); 782 } 783 784 void TemplateTable::aaload() { 785 transition(itos, atos); 786 // rax: index 787 // rdx: array 788 index_check(rdx, rax); // kills rbx 789 do_oop_load(_masm, 790 Address(rdx, rax, 791 UseCompressedOops ? Address::times_4 : Address::times_ptr, 792 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 793 rax, 794 IS_ARRAY); 795 } 796 797 void TemplateTable::baload() { 798 transition(itos, itos); 799 // rax: index 800 // rdx: array 801 index_check(rdx, rax); // kills rbx 802 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 803 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 804 noreg, noreg); 805 } 806 807 void TemplateTable::caload() { 808 transition(itos, itos); 809 // rax: index 810 // rdx: array 811 index_check(rdx, rax); // kills rbx 812 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 813 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 814 noreg, noreg); 815 } 816 817 // iload followed by caload frequent pair 818 void TemplateTable::fast_icaload() { 819 transition(vtos, itos); 820 // load index out of locals 821 locals_index(rbx); 822 __ movl(rax, iaddress(rbx)); 823 824 // rax: index 825 // rdx: array 826 index_check(rdx, rax); // kills rbx 827 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 828 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 829 noreg, noreg); 830 } 831 832 833 void TemplateTable::saload() { 834 transition(itos, itos); 835 // rax: index 836 // rdx: array 837 index_check(rdx, rax); // kills rbx 838 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 839 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 840 noreg, noreg); 841 } 842 843 void TemplateTable::iload(int n) { 844 transition(vtos, itos); 845 __ movl(rax, iaddress(n)); 846 } 847 848 void TemplateTable::lload(int n) { 849 transition(vtos, ltos); 850 __ movptr(rax, laddress(n)); 851 } 852 853 void TemplateTable::fload(int n) { 854 transition(vtos, ftos); 855 __ load_float(faddress(n)); 856 } 857 858 void TemplateTable::dload(int n) { 859 transition(vtos, dtos); 860 __ load_double(daddress(n)); 861 } 862 863 void TemplateTable::aload(int n) { 864 transition(vtos, atos); 865 __ movptr(rax, aaddress(n)); 866 } 867 868 void TemplateTable::aload_0() { 869 aload_0_internal(); 870 } 871 872 void TemplateTable::nofast_aload_0() { 873 aload_0_internal(may_not_rewrite); 874 } 875 876 void TemplateTable::aload_0_internal(RewriteControl rc) { 877 transition(vtos, atos); 878 // According to bytecode histograms, the pairs: 879 // 880 // _aload_0, _fast_igetfield 881 // _aload_0, _fast_agetfield 882 // _aload_0, _fast_fgetfield 883 // 884 // occur frequently. If RewriteFrequentPairs is set, the (slow) 885 // _aload_0 bytecode checks if the next bytecode is either 886 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 887 // rewrites the current bytecode into a pair bytecode; otherwise it 888 // rewrites the current bytecode into _fast_aload_0 that doesn't do 889 // the pair check anymore. 890 // 891 // Note: If the next bytecode is _getfield, the rewrite must be 892 // delayed, otherwise we may miss an opportunity for a pair. 893 // 894 // Also rewrite frequent pairs 895 // aload_0, aload_1 896 // aload_0, iload_1 897 // These bytecodes with a small amount of code are most profitable 898 // to rewrite 899 if (RewriteFrequentPairs && rc == may_rewrite) { 900 Label rewrite, done; 901 902 const Register bc = c_rarg3; 903 assert(rbx != bc, "register damaged"); 904 905 // get next byte 906 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 907 908 // if _getfield then wait with rewrite 909 __ cmpl(rbx, Bytecodes::_getfield); 910 __ jcc(Assembler::equal, done); 911 912 // if _igetfield then rewrite to _fast_iaccess_0 913 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 914 __ cmpl(rbx, Bytecodes::_fast_igetfield); 915 __ movl(bc, Bytecodes::_fast_iaccess_0); 916 __ jccb(Assembler::equal, rewrite); 917 918 // if _agetfield then rewrite to _fast_aaccess_0 919 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 920 __ cmpl(rbx, Bytecodes::_fast_agetfield); 921 __ movl(bc, Bytecodes::_fast_aaccess_0); 922 __ jccb(Assembler::equal, rewrite); 923 924 // if _fgetfield then rewrite to _fast_faccess_0 925 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 926 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 927 __ movl(bc, Bytecodes::_fast_faccess_0); 928 __ jccb(Assembler::equal, rewrite); 929 930 // else rewrite to _fast_aload0 931 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 932 __ movl(bc, Bytecodes::_fast_aload_0); 933 934 // rewrite 935 // bc: fast bytecode 936 __ bind(rewrite); 937 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 938 939 __ bind(done); 940 } 941 942 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 943 aload(0); 944 } 945 946 void TemplateTable::istore() { 947 transition(itos, vtos); 948 locals_index(rbx); 949 __ movl(iaddress(rbx), rax); 950 } 951 952 953 void TemplateTable::lstore() { 954 transition(ltos, vtos); 955 locals_index(rbx); 956 __ movptr(laddress(rbx), rax); 957 } 958 959 void TemplateTable::fstore() { 960 transition(ftos, vtos); 961 locals_index(rbx); 962 __ store_float(faddress(rbx)); 963 } 964 965 void TemplateTable::dstore() { 966 transition(dtos, vtos); 967 locals_index(rbx); 968 __ store_double(daddress(rbx)); 969 } 970 971 void TemplateTable::astore() { 972 transition(vtos, vtos); 973 __ pop_ptr(rax); 974 locals_index(rbx); 975 __ movptr(aaddress(rbx), rax); 976 } 977 978 void TemplateTable::wide_istore() { 979 transition(vtos, vtos); 980 __ pop_i(); 981 locals_index_wide(rbx); 982 __ movl(iaddress(rbx), rax); 983 } 984 985 void TemplateTable::wide_lstore() { 986 transition(vtos, vtos); 987 __ pop_l(); 988 locals_index_wide(rbx); 989 __ movptr(laddress(rbx), rax); 990 } 991 992 void TemplateTable::wide_fstore() { 993 transition(vtos, vtos); 994 __ pop_f(xmm0); 995 locals_index_wide(rbx); 996 __ movflt(faddress(rbx), xmm0); 997 } 998 999 void TemplateTable::wide_dstore() { 1000 transition(vtos, vtos); 1001 __ pop_d(xmm0); 1002 locals_index_wide(rbx); 1003 __ movdbl(daddress(rbx), xmm0); 1004 } 1005 1006 void TemplateTable::wide_astore() { 1007 transition(vtos, vtos); 1008 __ pop_ptr(rax); 1009 locals_index_wide(rbx); 1010 __ movptr(aaddress(rbx), rax); 1011 } 1012 1013 void TemplateTable::iastore() { 1014 transition(itos, vtos); 1015 __ pop_i(rbx); 1016 // rax: value 1017 // rbx: index 1018 // rdx: array 1019 index_check(rdx, rbx); // prefer index in rbx 1020 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1021 Address(rdx, rbx, Address::times_4, 1022 arrayOopDesc::base_offset_in_bytes(T_INT)), 1023 rax, noreg, noreg, noreg); 1024 } 1025 1026 void TemplateTable::lastore() { 1027 transition(ltos, vtos); 1028 __ pop_i(rbx); 1029 // rax,: low(value) 1030 // rcx: array 1031 // rdx: high(value) 1032 index_check(rcx, rbx); // prefer index in rbx, 1033 // rbx,: index 1034 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1035 Address(rcx, rbx, Address::times_8, 1036 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1037 noreg /* ltos */, noreg, noreg, noreg); 1038 } 1039 1040 1041 void TemplateTable::fastore() { 1042 transition(ftos, vtos); 1043 __ pop_i(rbx); 1044 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1045 // rbx: index 1046 // rdx: array 1047 index_check(rdx, rbx); // prefer index in rbx 1048 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1049 Address(rdx, rbx, Address::times_4, 1050 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1051 noreg /* ftos */, noreg, noreg, noreg); 1052 } 1053 1054 void TemplateTable::dastore() { 1055 transition(dtos, vtos); 1056 __ pop_i(rbx); 1057 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1058 // rbx: index 1059 // rdx: array 1060 index_check(rdx, rbx); // prefer index in rbx 1061 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1062 Address(rdx, rbx, Address::times_8, 1063 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1064 noreg /* dtos */, noreg, noreg, noreg); 1065 } 1066 1067 void TemplateTable::aastore() { 1068 Label is_null, ok_is_subtype, done; 1069 transition(vtos, vtos); 1070 // stack: ..., array, index, value 1071 __ movptr(rax, at_tos()); // value 1072 __ movl(rcx, at_tos_p1()); // index 1073 __ movptr(rdx, at_tos_p2()); // array 1074 1075 Address element_address(rdx, rcx, 1076 UseCompressedOops? Address::times_4 : Address::times_ptr, 1077 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1078 1079 index_check_without_pop(rdx, rcx); // kills rbx 1080 __ testptr(rax, rax); 1081 __ jcc(Assembler::zero, is_null); 1082 1083 // Move subklass into rbx 1084 __ load_klass(rbx, rax, rscratch1); 1085 // Move superklass into rax 1086 __ load_klass(rax, rdx, rscratch1); 1087 __ movptr(rax, Address(rax, 1088 ObjArrayKlass::element_klass_offset())); 1089 1090 // Generate subtype check. Blows rcx, rdi 1091 // Superklass in rax. Subklass in rbx. 1092 __ gen_subtype_check(rbx, ok_is_subtype); 1093 1094 // Come here on failure 1095 // object is at TOS 1096 __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry)); 1097 1098 // Come here on success 1099 __ bind(ok_is_subtype); 1100 1101 // Get the value we will store 1102 __ movptr(rax, at_tos()); 1103 __ movl(rcx, at_tos_p1()); // index 1104 // Now store using the appropriate barrier 1105 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1106 __ jmp(done); 1107 1108 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1109 __ bind(is_null); 1110 __ profile_null_seen(rbx); 1111 1112 // Store a null 1113 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1114 1115 // Pop stack arguments 1116 __ bind(done); 1117 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1118 } 1119 1120 void TemplateTable::bastore() { 1121 transition(itos, vtos); 1122 __ pop_i(rbx); 1123 // rax: value 1124 // rbx: index 1125 // rdx: array 1126 index_check(rdx, rbx); // prefer index in rbx 1127 // Need to check whether array is boolean or byte 1128 // since both types share the bastore bytecode. 1129 __ load_klass(rcx, rdx, rscratch1); 1130 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1131 int diffbit = Klass::layout_helper_boolean_diffbit(); 1132 __ testl(rcx, diffbit); 1133 Label L_skip; 1134 __ jccb(Assembler::zero, L_skip); 1135 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1136 __ bind(L_skip); 1137 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1138 Address(rdx, rbx,Address::times_1, 1139 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1140 rax, noreg, noreg, noreg); 1141 } 1142 1143 void TemplateTable::castore() { 1144 transition(itos, vtos); 1145 __ pop_i(rbx); 1146 // rax: value 1147 // rbx: index 1148 // rdx: array 1149 index_check(rdx, rbx); // prefer index in rbx 1150 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1151 Address(rdx, rbx, Address::times_2, 1152 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1153 rax, noreg, noreg, noreg); 1154 } 1155 1156 1157 void TemplateTable::sastore() { 1158 castore(); 1159 } 1160 1161 void TemplateTable::istore(int n) { 1162 transition(itos, vtos); 1163 __ movl(iaddress(n), rax); 1164 } 1165 1166 void TemplateTable::lstore(int n) { 1167 transition(ltos, vtos); 1168 __ movptr(laddress(n), rax); 1169 } 1170 1171 void TemplateTable::fstore(int n) { 1172 transition(ftos, vtos); 1173 __ store_float(faddress(n)); 1174 } 1175 1176 void TemplateTable::dstore(int n) { 1177 transition(dtos, vtos); 1178 __ store_double(daddress(n)); 1179 } 1180 1181 1182 void TemplateTable::astore(int n) { 1183 transition(vtos, vtos); 1184 __ pop_ptr(rax); 1185 __ movptr(aaddress(n), rax); 1186 } 1187 1188 void TemplateTable::pop() { 1189 transition(vtos, vtos); 1190 __ addptr(rsp, Interpreter::stackElementSize); 1191 } 1192 1193 void TemplateTable::pop2() { 1194 transition(vtos, vtos); 1195 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1196 } 1197 1198 1199 void TemplateTable::dup() { 1200 transition(vtos, vtos); 1201 __ load_ptr(0, rax); 1202 __ push_ptr(rax); 1203 // stack: ..., a, a 1204 } 1205 1206 void TemplateTable::dup_x1() { 1207 transition(vtos, vtos); 1208 // stack: ..., a, b 1209 __ load_ptr( 0, rax); // load b 1210 __ load_ptr( 1, rcx); // load a 1211 __ store_ptr(1, rax); // store b 1212 __ store_ptr(0, rcx); // store a 1213 __ push_ptr(rax); // push b 1214 // stack: ..., b, a, b 1215 } 1216 1217 void TemplateTable::dup_x2() { 1218 transition(vtos, vtos); 1219 // stack: ..., a, b, c 1220 __ load_ptr( 0, rax); // load c 1221 __ load_ptr( 2, rcx); // load a 1222 __ store_ptr(2, rax); // store c in a 1223 __ push_ptr(rax); // push c 1224 // stack: ..., c, b, c, c 1225 __ load_ptr( 2, rax); // load b 1226 __ store_ptr(2, rcx); // store a in b 1227 // stack: ..., c, a, c, c 1228 __ store_ptr(1, rax); // store b in c 1229 // stack: ..., c, a, b, c 1230 } 1231 1232 void TemplateTable::dup2() { 1233 transition(vtos, vtos); 1234 // stack: ..., a, b 1235 __ load_ptr(1, rax); // load a 1236 __ push_ptr(rax); // push a 1237 __ load_ptr(1, rax); // load b 1238 __ push_ptr(rax); // push b 1239 // stack: ..., a, b, a, b 1240 } 1241 1242 1243 void TemplateTable::dup2_x1() { 1244 transition(vtos, vtos); 1245 // stack: ..., a, b, c 1246 __ load_ptr( 0, rcx); // load c 1247 __ load_ptr( 1, rax); // load b 1248 __ push_ptr(rax); // push b 1249 __ push_ptr(rcx); // push c 1250 // stack: ..., a, b, c, b, c 1251 __ store_ptr(3, rcx); // store c in b 1252 // stack: ..., a, c, c, b, c 1253 __ load_ptr( 4, rcx); // load a 1254 __ store_ptr(2, rcx); // store a in 2nd c 1255 // stack: ..., a, c, a, b, c 1256 __ store_ptr(4, rax); // store b in a 1257 // stack: ..., b, c, a, b, c 1258 } 1259 1260 void TemplateTable::dup2_x2() { 1261 transition(vtos, vtos); 1262 // stack: ..., a, b, c, d 1263 __ load_ptr( 0, rcx); // load d 1264 __ load_ptr( 1, rax); // load c 1265 __ push_ptr(rax); // push c 1266 __ push_ptr(rcx); // push d 1267 // stack: ..., a, b, c, d, c, d 1268 __ load_ptr( 4, rax); // load b 1269 __ store_ptr(2, rax); // store b in d 1270 __ store_ptr(4, rcx); // store d in b 1271 // stack: ..., a, d, c, b, c, d 1272 __ load_ptr( 5, rcx); // load a 1273 __ load_ptr( 3, rax); // load c 1274 __ store_ptr(3, rcx); // store a in c 1275 __ store_ptr(5, rax); // store c in a 1276 // stack: ..., c, d, a, b, c, d 1277 } 1278 1279 void TemplateTable::swap() { 1280 transition(vtos, vtos); 1281 // stack: ..., a, b 1282 __ load_ptr( 1, rcx); // load a 1283 __ load_ptr( 0, rax); // load b 1284 __ store_ptr(0, rcx); // store a in b 1285 __ store_ptr(1, rax); // store b in a 1286 // stack: ..., b, a 1287 } 1288 1289 void TemplateTable::iop2(Operation op) { 1290 transition(itos, itos); 1291 switch (op) { 1292 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1293 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1294 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1295 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1296 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1297 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1298 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1299 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1300 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1301 default : ShouldNotReachHere(); 1302 } 1303 } 1304 1305 void TemplateTable::lop2(Operation op) { 1306 transition(ltos, ltos); 1307 switch (op) { 1308 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1309 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1310 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1311 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1312 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1313 default : ShouldNotReachHere(); 1314 } 1315 } 1316 1317 void TemplateTable::idiv() { 1318 transition(itos, itos); 1319 __ movl(rcx, rax); 1320 __ pop_i(rax); 1321 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1322 // they are not equal, one could do a normal division (no correction 1323 // needed), which may speed up this implementation for the common case. 1324 // (see also JVM spec., p.243 & p.271) 1325 __ corrected_idivl(rcx); 1326 } 1327 1328 void TemplateTable::irem() { 1329 transition(itos, itos); 1330 __ movl(rcx, rax); 1331 __ pop_i(rax); 1332 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1333 // they are not equal, one could do a normal division (no correction 1334 // needed), which may speed up this implementation for the common case. 1335 // (see also JVM spec., p.243 & p.271) 1336 __ corrected_idivl(rcx); 1337 __ movl(rax, rdx); 1338 } 1339 1340 void TemplateTable::lmul() { 1341 transition(ltos, ltos); 1342 __ pop_l(rdx); 1343 __ imulq(rax, rdx); 1344 } 1345 1346 void TemplateTable::ldiv() { 1347 transition(ltos, ltos); 1348 __ mov(rcx, rax); 1349 __ pop_l(rax); 1350 // generate explicit div0 check 1351 __ testq(rcx, rcx); 1352 __ jump_cc(Assembler::zero, 1353 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1354 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1355 // they are not equal, one could do a normal division (no correction 1356 // needed), which may speed up this implementation for the common case. 1357 // (see also JVM spec., p.243 & p.271) 1358 __ corrected_idivq(rcx); // kills rbx 1359 } 1360 1361 void TemplateTable::lrem() { 1362 transition(ltos, ltos); 1363 __ mov(rcx, rax); 1364 __ pop_l(rax); 1365 __ testq(rcx, rcx); 1366 __ jump_cc(Assembler::zero, 1367 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1368 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1369 // they are not equal, one could do a normal division (no correction 1370 // needed), which may speed up this implementation for the common case. 1371 // (see also JVM spec., p.243 & p.271) 1372 __ corrected_idivq(rcx); // kills rbx 1373 __ mov(rax, rdx); 1374 } 1375 1376 void TemplateTable::lshl() { 1377 transition(itos, ltos); 1378 __ movl(rcx, rax); // get shift count 1379 __ pop_l(rax); // get shift value 1380 __ shlq(rax); 1381 } 1382 1383 void TemplateTable::lshr() { 1384 transition(itos, ltos); 1385 __ movl(rcx, rax); // get shift count 1386 __ pop_l(rax); // get shift value 1387 __ sarq(rax); 1388 } 1389 1390 void TemplateTable::lushr() { 1391 transition(itos, ltos); 1392 __ movl(rcx, rax); // get shift count 1393 __ pop_l(rax); // get shift value 1394 __ shrq(rax); 1395 } 1396 1397 void TemplateTable::fop2(Operation op) { 1398 transition(ftos, ftos); 1399 1400 if (UseSSE >= 1) { 1401 switch (op) { 1402 case add: 1403 __ addss(xmm0, at_rsp()); 1404 __ addptr(rsp, Interpreter::stackElementSize); 1405 break; 1406 case sub: 1407 __ movflt(xmm1, xmm0); 1408 __ pop_f(xmm0); 1409 __ subss(xmm0, xmm1); 1410 break; 1411 case mul: 1412 __ mulss(xmm0, at_rsp()); 1413 __ addptr(rsp, Interpreter::stackElementSize); 1414 break; 1415 case div: 1416 __ movflt(xmm1, xmm0); 1417 __ pop_f(xmm0); 1418 __ divss(xmm0, xmm1); 1419 break; 1420 case rem: 1421 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1422 // modulo operation. The frem method calls the function 1423 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1424 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1425 // (signalling or quiet) is returned. 1426 __ movflt(xmm1, xmm0); 1427 __ pop_f(xmm0); 1428 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1429 break; 1430 default: 1431 ShouldNotReachHere(); 1432 break; 1433 } 1434 } else { 1435 ShouldNotReachHere(); 1436 } 1437 } 1438 1439 void TemplateTable::dop2(Operation op) { 1440 transition(dtos, dtos); 1441 if (UseSSE >= 2) { 1442 switch (op) { 1443 case add: 1444 __ addsd(xmm0, at_rsp()); 1445 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1446 break; 1447 case sub: 1448 __ movdbl(xmm1, xmm0); 1449 __ pop_d(xmm0); 1450 __ subsd(xmm0, xmm1); 1451 break; 1452 case mul: 1453 __ mulsd(xmm0, at_rsp()); 1454 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1455 break; 1456 case div: 1457 __ movdbl(xmm1, xmm0); 1458 __ pop_d(xmm0); 1459 __ divsd(xmm0, xmm1); 1460 break; 1461 case rem: 1462 // Similar to fop2(), the modulo operation is performed using the 1463 // SharedRuntime::drem method on x86_64 platforms for the same reasons 1464 // as mentioned in fop2(). 1465 __ movdbl(xmm1, xmm0); 1466 __ pop_d(xmm0); 1467 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1468 break; 1469 default: 1470 ShouldNotReachHere(); 1471 break; 1472 } 1473 } else { 1474 ShouldNotReachHere(); 1475 } 1476 } 1477 1478 void TemplateTable::ineg() { 1479 transition(itos, itos); 1480 __ negl(rax); 1481 } 1482 1483 void TemplateTable::lneg() { 1484 transition(ltos, ltos); 1485 __ negq(rax); 1486 } 1487 1488 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1489 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1490 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1491 // of 128-bits operands for SSE instructions. 1492 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1493 // Store the value to a 128-bits operand. 1494 operand[0] = lo; 1495 operand[1] = hi; 1496 return operand; 1497 } 1498 1499 // Buffer for 128-bits masks used by SSE instructions. 1500 static jlong float_signflip_pool[2*2]; 1501 static jlong double_signflip_pool[2*2]; 1502 1503 void TemplateTable::fneg() { 1504 transition(ftos, ftos); 1505 if (UseSSE >= 1) { 1506 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1507 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1508 } else { 1509 ShouldNotReachHere(); 1510 } 1511 } 1512 1513 void TemplateTable::dneg() { 1514 transition(dtos, dtos); 1515 if (UseSSE >= 2) { 1516 static jlong *double_signflip = 1517 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1518 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1519 } else { 1520 ShouldNotReachHere(); 1521 } 1522 } 1523 1524 void TemplateTable::iinc() { 1525 transition(vtos, vtos); 1526 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1527 locals_index(rbx); 1528 __ addl(iaddress(rbx), rdx); 1529 } 1530 1531 void TemplateTable::wide_iinc() { 1532 transition(vtos, vtos); 1533 __ movl(rdx, at_bcp(4)); // get constant 1534 locals_index_wide(rbx); 1535 __ bswapl(rdx); // swap bytes & sign-extend constant 1536 __ sarl(rdx, 16); 1537 __ addl(iaddress(rbx), rdx); 1538 // Note: should probably use only one movl to get both 1539 // the index and the constant -> fix this 1540 } 1541 1542 void TemplateTable::convert() { 1543 // Checking 1544 #ifdef ASSERT 1545 { 1546 TosState tos_in = ilgl; 1547 TosState tos_out = ilgl; 1548 switch (bytecode()) { 1549 case Bytecodes::_i2l: // fall through 1550 case Bytecodes::_i2f: // fall through 1551 case Bytecodes::_i2d: // fall through 1552 case Bytecodes::_i2b: // fall through 1553 case Bytecodes::_i2c: // fall through 1554 case Bytecodes::_i2s: tos_in = itos; break; 1555 case Bytecodes::_l2i: // fall through 1556 case Bytecodes::_l2f: // fall through 1557 case Bytecodes::_l2d: tos_in = ltos; break; 1558 case Bytecodes::_f2i: // fall through 1559 case Bytecodes::_f2l: // fall through 1560 case Bytecodes::_f2d: tos_in = ftos; break; 1561 case Bytecodes::_d2i: // fall through 1562 case Bytecodes::_d2l: // fall through 1563 case Bytecodes::_d2f: tos_in = dtos; break; 1564 default : ShouldNotReachHere(); 1565 } 1566 switch (bytecode()) { 1567 case Bytecodes::_l2i: // fall through 1568 case Bytecodes::_f2i: // fall through 1569 case Bytecodes::_d2i: // fall through 1570 case Bytecodes::_i2b: // fall through 1571 case Bytecodes::_i2c: // fall through 1572 case Bytecodes::_i2s: tos_out = itos; break; 1573 case Bytecodes::_i2l: // fall through 1574 case Bytecodes::_f2l: // fall through 1575 case Bytecodes::_d2l: tos_out = ltos; break; 1576 case Bytecodes::_i2f: // fall through 1577 case Bytecodes::_l2f: // fall through 1578 case Bytecodes::_d2f: tos_out = ftos; break; 1579 case Bytecodes::_i2d: // fall through 1580 case Bytecodes::_l2d: // fall through 1581 case Bytecodes::_f2d: tos_out = dtos; break; 1582 default : ShouldNotReachHere(); 1583 } 1584 transition(tos_in, tos_out); 1585 } 1586 #endif // ASSERT 1587 1588 static const int64_t is_nan = 0x8000000000000000L; 1589 1590 // Conversion 1591 switch (bytecode()) { 1592 case Bytecodes::_i2l: 1593 __ movslq(rax, rax); 1594 break; 1595 case Bytecodes::_i2f: 1596 __ cvtsi2ssl(xmm0, rax); 1597 break; 1598 case Bytecodes::_i2d: 1599 __ cvtsi2sdl(xmm0, rax); 1600 break; 1601 case Bytecodes::_i2b: 1602 __ movsbl(rax, rax); 1603 break; 1604 case Bytecodes::_i2c: 1605 __ movzwl(rax, rax); 1606 break; 1607 case Bytecodes::_i2s: 1608 __ movswl(rax, rax); 1609 break; 1610 case Bytecodes::_l2i: 1611 __ movl(rax, rax); 1612 break; 1613 case Bytecodes::_l2f: 1614 __ cvtsi2ssq(xmm0, rax); 1615 break; 1616 case Bytecodes::_l2d: 1617 __ cvtsi2sdq(xmm0, rax); 1618 break; 1619 case Bytecodes::_f2i: 1620 { 1621 Label L; 1622 __ cvttss2sil(rax, xmm0); 1623 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1624 __ jcc(Assembler::notEqual, L); 1625 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1626 __ bind(L); 1627 } 1628 break; 1629 case Bytecodes::_f2l: 1630 { 1631 Label L; 1632 __ cvttss2siq(rax, xmm0); 1633 // NaN or overflow/underflow? 1634 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1635 __ jcc(Assembler::notEqual, L); 1636 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1637 __ bind(L); 1638 } 1639 break; 1640 case Bytecodes::_f2d: 1641 __ cvtss2sd(xmm0, xmm0); 1642 break; 1643 case Bytecodes::_d2i: 1644 { 1645 Label L; 1646 __ cvttsd2sil(rax, xmm0); 1647 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1648 __ jcc(Assembler::notEqual, L); 1649 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1650 __ bind(L); 1651 } 1652 break; 1653 case Bytecodes::_d2l: 1654 { 1655 Label L; 1656 __ cvttsd2siq(rax, xmm0); 1657 // NaN or overflow/underflow? 1658 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1659 __ jcc(Assembler::notEqual, L); 1660 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1661 __ bind(L); 1662 } 1663 break; 1664 case Bytecodes::_d2f: 1665 __ cvtsd2ss(xmm0, xmm0); 1666 break; 1667 default: 1668 ShouldNotReachHere(); 1669 } 1670 } 1671 1672 void TemplateTable::lcmp() { 1673 transition(ltos, itos); 1674 Label done; 1675 __ pop_l(rdx); 1676 __ cmpq(rdx, rax); 1677 __ movl(rax, -1); 1678 __ jccb(Assembler::less, done); 1679 __ setb(Assembler::notEqual, rax); 1680 __ movzbl(rax, rax); 1681 __ bind(done); 1682 } 1683 1684 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1685 if ((is_float && UseSSE >= 1) || 1686 (!is_float && UseSSE >= 2)) { 1687 Label done; 1688 if (is_float) { 1689 // XXX get rid of pop here, use ... reg, mem32 1690 __ pop_f(xmm1); 1691 __ ucomiss(xmm1, xmm0); 1692 } else { 1693 // XXX get rid of pop here, use ... reg, mem64 1694 __ pop_d(xmm1); 1695 __ ucomisd(xmm1, xmm0); 1696 } 1697 if (unordered_result < 0) { 1698 __ movl(rax, -1); 1699 __ jccb(Assembler::parity, done); 1700 __ jccb(Assembler::below, done); 1701 __ setb(Assembler::notEqual, rdx); 1702 __ movzbl(rax, rdx); 1703 } else { 1704 __ movl(rax, 1); 1705 __ jccb(Assembler::parity, done); 1706 __ jccb(Assembler::above, done); 1707 __ movl(rax, 0); 1708 __ jccb(Assembler::equal, done); 1709 __ decrementl(rax); 1710 } 1711 __ bind(done); 1712 } else { 1713 ShouldNotReachHere(); 1714 } 1715 } 1716 1717 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1718 __ get_method(rcx); // rcx holds method 1719 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 1720 // holds bumped taken count 1721 1722 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1723 InvocationCounter::counter_offset(); 1724 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1725 InvocationCounter::counter_offset(); 1726 1727 // Load up edx with the branch displacement 1728 if (is_wide) { 1729 __ movl(rdx, at_bcp(1)); 1730 } else { 1731 __ load_signed_short(rdx, at_bcp(1)); 1732 } 1733 __ bswapl(rdx); 1734 1735 if (!is_wide) { 1736 __ sarl(rdx, 16); 1737 } 1738 __ movl2ptr(rdx, rdx); 1739 1740 // Handle all the JSR stuff here, then exit. 1741 // It's much shorter and cleaner than intermingling with the non-JSR 1742 // normal-branch stuff occurring below. 1743 if (is_jsr) { 1744 // Pre-load the next target bytecode into rbx 1745 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 1746 1747 // compute return address as bci in rax 1748 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1749 in_bytes(ConstMethod::codes_offset()))); 1750 __ subptr(rax, Address(rcx, Method::const_offset())); 1751 // Adjust the bcp in r13 by the displacement in rdx 1752 __ addptr(rbcp, rdx); 1753 // jsr returns atos that is not an oop 1754 __ push_i(rax); 1755 __ dispatch_only(vtos, true); 1756 return; 1757 } 1758 1759 // Normal (non-jsr) branch handling 1760 1761 // Adjust the bcp in r13 by the displacement in rdx 1762 __ addptr(rbcp, rdx); 1763 1764 assert(UseLoopCounter || !UseOnStackReplacement, 1765 "on-stack-replacement requires loop counters"); 1766 Label backedge_counter_overflow; 1767 Label dispatch; 1768 if (UseLoopCounter) { 1769 // increment backedge counter for backward branches 1770 // rax: MDO 1771 // rbx: MDO bumped taken-count 1772 // rcx: method 1773 // rdx: target offset 1774 // r13: target bcp 1775 // r14: locals pointer 1776 __ testl(rdx, rdx); // check if forward or backward branch 1777 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1778 1779 // check if MethodCounters exists 1780 Label has_counters; 1781 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1782 __ testptr(rax, rax); 1783 __ jcc(Assembler::notZero, has_counters); 1784 __ push(rdx); 1785 __ push(rcx); 1786 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1787 rcx); 1788 __ pop(rcx); 1789 __ pop(rdx); 1790 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1791 __ testptr(rax, rax); 1792 __ jcc(Assembler::zero, dispatch); 1793 __ bind(has_counters); 1794 1795 Label no_mdo; 1796 if (ProfileInterpreter) { 1797 // Are we profiling? 1798 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1799 __ testptr(rbx, rbx); 1800 __ jccb(Assembler::zero, no_mdo); 1801 // Increment the MDO backedge counter 1802 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1803 in_bytes(InvocationCounter::counter_offset())); 1804 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 1805 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 1806 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1807 __ jmp(dispatch); 1808 } 1809 __ bind(no_mdo); 1810 // Increment backedge counter in MethodCounters* 1811 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1812 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 1813 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 1814 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1815 __ bind(dispatch); 1816 } 1817 1818 // Pre-load the next target bytecode into rbx 1819 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 1820 1821 // continue with the bytecode @ target 1822 // rax: return bci for jsr's, unused otherwise 1823 // rbx: target bytecode 1824 // r13: target bcp 1825 __ dispatch_only(vtos, true); 1826 1827 if (UseLoopCounter) { 1828 if (UseOnStackReplacement) { 1829 Label set_mdp; 1830 // invocation counter overflow 1831 __ bind(backedge_counter_overflow); 1832 __ negptr(rdx); 1833 __ addptr(rdx, rbcp); // branch bcp 1834 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1835 __ call_VM(noreg, 1836 CAST_FROM_FN_PTR(address, 1837 InterpreterRuntime::frequency_counter_overflow), 1838 rdx); 1839 1840 // rax: osr nmethod (osr ok) or null (osr not possible) 1841 // rdx: scratch 1842 // r14: locals pointer 1843 // r13: bcp 1844 __ testptr(rax, rax); // test result 1845 __ jcc(Assembler::zero, dispatch); // no osr if null 1846 // nmethod may have been invalidated (VM may block upon call_VM return) 1847 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 1848 __ jcc(Assembler::notEqual, dispatch); 1849 1850 // We have the address of an on stack replacement routine in rax. 1851 // In preparation of invoking it, first we must migrate the locals 1852 // and monitors from off the interpreter frame on the stack. 1853 // Ensure to save the osr nmethod over the migration call, 1854 // it will be preserved in rbx. 1855 __ mov(rbx, rax); 1856 1857 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1858 1859 // rax is OSR buffer, move it to expected parameter location 1860 __ mov(j_rarg0, rax); 1861 // We use j_rarg definitions here so that registers don't conflict as parameter 1862 // registers change across platforms as we are in the midst of a calling 1863 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1864 1865 const Register retaddr = j_rarg2; 1866 const Register sender_sp = j_rarg1; 1867 1868 // pop the interpreter frame 1869 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1870 __ leave(); // remove frame anchor 1871 __ pop(retaddr); // get return address 1872 __ mov(rsp, sender_sp); // set sp to sender sp 1873 // Ensure compiled code always sees stack at proper alignment 1874 __ andptr(rsp, -(StackAlignmentInBytes)); 1875 1876 // unlike x86 we need no specialized return from compiled code 1877 // to the interpreter or the call stub. 1878 1879 // push the return address 1880 __ push(retaddr); 1881 1882 // and begin the OSR nmethod 1883 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 1884 } 1885 } 1886 } 1887 1888 void TemplateTable::if_0cmp(Condition cc) { 1889 transition(itos, vtos); 1890 // assume branch is more often taken than not (loops use backward branches) 1891 Label not_taken; 1892 __ testl(rax, rax); 1893 __ jcc(j_not(cc), not_taken); 1894 branch(false, false); 1895 __ bind(not_taken); 1896 __ profile_not_taken_branch(rax); 1897 } 1898 1899 void TemplateTable::if_icmp(Condition cc) { 1900 transition(itos, vtos); 1901 // assume branch is more often taken than not (loops use backward branches) 1902 Label not_taken; 1903 __ pop_i(rdx); 1904 __ cmpl(rdx, rax); 1905 __ jcc(j_not(cc), not_taken); 1906 branch(false, false); 1907 __ bind(not_taken); 1908 __ profile_not_taken_branch(rax); 1909 } 1910 1911 void TemplateTable::if_nullcmp(Condition cc) { 1912 transition(atos, vtos); 1913 // assume branch is more often taken than not (loops use backward branches) 1914 Label not_taken; 1915 __ testptr(rax, rax); 1916 __ jcc(j_not(cc), not_taken); 1917 branch(false, false); 1918 __ bind(not_taken); 1919 __ profile_not_taken_branch(rax); 1920 } 1921 1922 void TemplateTable::if_acmp(Condition cc) { 1923 transition(atos, vtos); 1924 // assume branch is more often taken than not (loops use backward branches) 1925 Label not_taken; 1926 __ pop_ptr(rdx); 1927 __ cmpoop(rdx, rax); 1928 __ jcc(j_not(cc), not_taken); 1929 branch(false, false); 1930 __ bind(not_taken); 1931 __ profile_not_taken_branch(rax); 1932 } 1933 1934 void TemplateTable::ret() { 1935 transition(vtos, vtos); 1936 locals_index(rbx); 1937 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 1938 __ profile_ret(rbx, rcx); 1939 __ get_method(rax); 1940 __ movptr(rbcp, Address(rax, Method::const_offset())); 1941 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 1942 ConstMethod::codes_offset())); 1943 __ dispatch_next(vtos, 0, true); 1944 } 1945 1946 void TemplateTable::wide_ret() { 1947 transition(vtos, vtos); 1948 locals_index_wide(rbx); 1949 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 1950 __ profile_ret(rbx, rcx); 1951 __ get_method(rax); 1952 __ movptr(rbcp, Address(rax, Method::const_offset())); 1953 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 1954 __ dispatch_next(vtos, 0, true); 1955 } 1956 1957 void TemplateTable::tableswitch() { 1958 Label default_case, continue_execution; 1959 transition(itos, vtos); 1960 1961 // align r13/rsi 1962 __ lea(rbx, at_bcp(BytesPerInt)); 1963 __ andptr(rbx, -BytesPerInt); 1964 // load lo & hi 1965 __ movl(rcx, Address(rbx, BytesPerInt)); 1966 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 1967 __ bswapl(rcx); 1968 __ bswapl(rdx); 1969 // check against lo & hi 1970 __ cmpl(rax, rcx); 1971 __ jcc(Assembler::less, default_case); 1972 __ cmpl(rax, rdx); 1973 __ jcc(Assembler::greater, default_case); 1974 // lookup dispatch offset 1975 __ subl(rax, rcx); 1976 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1977 __ profile_switch_case(rax, rbx, rcx); 1978 // continue execution 1979 __ bind(continue_execution); 1980 __ bswapl(rdx); 1981 __ movl2ptr(rdx, rdx); 1982 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 1983 __ addptr(rbcp, rdx); 1984 __ dispatch_only(vtos, true); 1985 // handle default 1986 __ bind(default_case); 1987 __ profile_switch_default(rax); 1988 __ movl(rdx, Address(rbx, 0)); 1989 __ jmp(continue_execution); 1990 } 1991 1992 void TemplateTable::lookupswitch() { 1993 transition(itos, itos); 1994 __ stop("lookupswitch bytecode should have been rewritten"); 1995 } 1996 1997 void TemplateTable::fast_linearswitch() { 1998 transition(itos, vtos); 1999 Label loop_entry, loop, found, continue_execution; 2000 // bswap rax so we can avoid bswapping the table entries 2001 __ bswapl(rax); 2002 // align r13 2003 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2004 // this instruction (change offsets 2005 // below) 2006 __ andptr(rbx, -BytesPerInt); 2007 // set counter 2008 __ movl(rcx, Address(rbx, BytesPerInt)); 2009 __ bswapl(rcx); 2010 __ jmpb(loop_entry); 2011 // table search 2012 __ bind(loop); 2013 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2014 __ jcc(Assembler::equal, found); 2015 __ bind(loop_entry); 2016 __ decrementl(rcx); 2017 __ jcc(Assembler::greaterEqual, loop); 2018 // default case 2019 __ profile_switch_default(rax); 2020 __ movl(rdx, Address(rbx, 0)); 2021 __ jmp(continue_execution); 2022 // entry found -> get offset 2023 __ bind(found); 2024 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2025 __ profile_switch_case(rcx, rax, rbx); 2026 // continue execution 2027 __ bind(continue_execution); 2028 __ bswapl(rdx); 2029 __ movl2ptr(rdx, rdx); 2030 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2031 __ addptr(rbcp, rdx); 2032 __ dispatch_only(vtos, true); 2033 } 2034 2035 void TemplateTable::fast_binaryswitch() { 2036 transition(itos, vtos); 2037 // Implementation using the following core algorithm: 2038 // 2039 // int binary_search(int key, LookupswitchPair* array, int n) { 2040 // // Binary search according to "Methodik des Programmierens" by 2041 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2042 // int i = 0; 2043 // int j = n; 2044 // while (i+1 < j) { 2045 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2046 // // with Q: for all i: 0 <= i < n: key < a[i] 2047 // // where a stands for the array and assuming that the (inexisting) 2048 // // element a[n] is infinitely big. 2049 // int h = (i + j) >> 1; 2050 // // i < h < j 2051 // if (key < array[h].fast_match()) { 2052 // j = h; 2053 // } else { 2054 // i = h; 2055 // } 2056 // } 2057 // // R: a[i] <= key < a[i+1] or Q 2058 // // (i.e., if key is within array, i is the correct index) 2059 // return i; 2060 // } 2061 2062 // Register allocation 2063 const Register key = rax; // already set (tosca) 2064 const Register array = rbx; 2065 const Register i = rcx; 2066 const Register j = rdx; 2067 const Register h = rdi; 2068 const Register temp = rsi; 2069 2070 // Find array start 2071 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2072 // get rid of this 2073 // instruction (change 2074 // offsets below) 2075 __ andptr(array, -BytesPerInt); 2076 2077 // Initialize i & j 2078 __ xorl(i, i); // i = 0; 2079 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2080 2081 // Convert j into native byteordering 2082 __ bswapl(j); 2083 2084 // And start 2085 Label entry; 2086 __ jmp(entry); 2087 2088 // binary search loop 2089 { 2090 Label loop; 2091 __ bind(loop); 2092 // int h = (i + j) >> 1; 2093 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2094 __ sarl(h, 1); // h = (i + j) >> 1; 2095 // if (key < array[h].fast_match()) { 2096 // j = h; 2097 // } else { 2098 // i = h; 2099 // } 2100 // Convert array[h].match to native byte-ordering before compare 2101 __ movl(temp, Address(array, h, Address::times_8)); 2102 __ bswapl(temp); 2103 __ cmpl(key, temp); 2104 // j = h if (key < array[h].fast_match()) 2105 __ cmov32(Assembler::less, j, h); 2106 // i = h if (key >= array[h].fast_match()) 2107 __ cmov32(Assembler::greaterEqual, i, h); 2108 // while (i+1 < j) 2109 __ bind(entry); 2110 __ leal(h, Address(i, 1)); // i+1 2111 __ cmpl(h, j); // i+1 < j 2112 __ jcc(Assembler::less, loop); 2113 } 2114 2115 // end of binary search, result index is i (must check again!) 2116 Label default_case; 2117 // Convert array[i].match to native byte-ordering before compare 2118 __ movl(temp, Address(array, i, Address::times_8)); 2119 __ bswapl(temp); 2120 __ cmpl(key, temp); 2121 __ jcc(Assembler::notEqual, default_case); 2122 2123 // entry found -> j = offset 2124 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2125 __ profile_switch_case(i, key, array); 2126 __ bswapl(j); 2127 __ movslq(j, j); 2128 2129 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2130 __ addptr(rbcp, j); 2131 __ dispatch_only(vtos, true); 2132 2133 // default case -> j = default offset 2134 __ bind(default_case); 2135 __ profile_switch_default(i); 2136 __ movl(j, Address(array, -2 * BytesPerInt)); 2137 __ bswapl(j); 2138 __ movslq(j, j); 2139 2140 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2141 __ addptr(rbcp, j); 2142 __ dispatch_only(vtos, true); 2143 } 2144 2145 void TemplateTable::_return(TosState state) { 2146 transition(state, state); 2147 2148 assert(_desc->calls_vm(), 2149 "inconsistent calls_vm information"); // call in remove_activation 2150 2151 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2152 assert(state == vtos, "only valid state"); 2153 Register robj = c_rarg1; 2154 __ movptr(robj, aaddress(0)); 2155 __ load_klass(rdi, robj, rscratch1); 2156 __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer); 2157 Label skip_register_finalizer; 2158 __ jcc(Assembler::zero, skip_register_finalizer); 2159 2160 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2161 2162 __ bind(skip_register_finalizer); 2163 } 2164 2165 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2166 Label no_safepoint; 2167 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2168 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2169 __ jcc(Assembler::zero, no_safepoint); 2170 __ push(state); 2171 __ push_cont_fastpath(); 2172 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2173 InterpreterRuntime::at_safepoint)); 2174 __ pop_cont_fastpath(); 2175 __ pop(state); 2176 __ bind(no_safepoint); 2177 } 2178 2179 // Narrow result if state is itos but result type is smaller. 2180 // Need to narrow in the return bytecode rather than in generate_return_entry 2181 // since compiled code callers expect the result to already be narrowed. 2182 if (state == itos) { 2183 __ narrow(rax); 2184 } 2185 __ remove_activation(state, rbcp); 2186 2187 __ jmp(rbcp); 2188 } 2189 2190 // ---------------------------------------------------------------------------- 2191 // Volatile variables demand their effects be made known to all CPU's 2192 // in order. Store buffers on most chips allow reads & writes to 2193 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2194 // without some kind of memory barrier (i.e., it's not sufficient that 2195 // the interpreter does not reorder volatile references, the hardware 2196 // also must not reorder them). 2197 // 2198 // According to the new Java Memory Model (JMM): 2199 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2200 // writes act as acquire & release, so: 2201 // (2) A read cannot let unrelated NON-volatile memory refs that 2202 // happen after the read float up to before the read. It's OK for 2203 // non-volatile memory refs that happen before the volatile read to 2204 // float down below it. 2205 // (3) Similar a volatile write cannot let unrelated NON-volatile 2206 // memory refs that happen BEFORE the write float down to after the 2207 // write. It's OK for non-volatile memory refs that happen after the 2208 // volatile write to float up before it. 2209 // 2210 // We only put in barriers around volatile refs (they are expensive), 2211 // not _between_ memory refs (that would require us to track the 2212 // flavor of the previous memory refs). Requirements (2) and (3) 2213 // require some barriers before volatile stores and after volatile 2214 // loads. These nearly cover requirement (1) but miss the 2215 // volatile-store-volatile-load case. This final case is placed after 2216 // volatile-stores although it could just as well go before 2217 // volatile-loads. 2218 2219 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2220 // Helper function to insert a is-volatile test and memory barrier 2221 __ membar(order_constraint); 2222 } 2223 2224 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2225 Register cache, 2226 Register index) { 2227 const Register temp = rbx; 2228 assert_different_registers(cache, index, temp); 2229 2230 Label L_clinit_barrier_slow; 2231 Label resolved; 2232 2233 Bytecodes::Code code = bytecode(); 2234 2235 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2236 2237 __ load_method_entry(cache, index); 2238 switch(byte_no) { 2239 case f1_byte: 2240 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2241 break; 2242 case f2_byte: 2243 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2244 break; 2245 default: 2246 ShouldNotReachHere(); 2247 } 2248 __ cmpl(temp, code); // have we resolved this bytecode? 2249 __ jcc(Assembler::equal, resolved); 2250 2251 // resolve first time through 2252 // Class initialization barrier slow path lands here as well. 2253 __ bind(L_clinit_barrier_slow); 2254 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2255 __ movl(temp, code); 2256 __ call_VM(noreg, entry, temp); 2257 // Update registers with resolved info 2258 __ load_method_entry(cache, index); 2259 2260 __ bind(resolved); 2261 2262 // Class initialization barrier for static methods 2263 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2264 const Register method = temp; 2265 const Register klass = temp; 2266 2267 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2268 __ load_method_holder(klass, method); 2269 __ clinit_barrier(klass, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2270 } 2271 } 2272 2273 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2274 Register cache, 2275 Register index) { 2276 const Register temp = rbx; 2277 assert_different_registers(cache, index, temp); 2278 2279 Label L_clinit_barrier_slow; 2280 Label resolved; 2281 2282 Bytecodes::Code code = bytecode(); 2283 switch (code) { 2284 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2285 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2286 default: break; 2287 } 2288 2289 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2290 __ load_field_entry(cache, index); 2291 if (byte_no == f1_byte) { 2292 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2293 } else { 2294 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2295 } 2296 __ cmpl(temp, code); // have we resolved this bytecode? 2297 __ jcc(Assembler::equal, resolved); 2298 2299 // resolve first time through 2300 __ bind(L_clinit_barrier_slow); 2301 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2302 __ movl(temp, code); 2303 __ call_VM(noreg, entry, temp); 2304 // Update registers with resolved info 2305 __ load_field_entry(cache, index); 2306 2307 __ bind(resolved); 2308 2309 // Class initialization barrier for static fields 2310 if (VM_Version::supports_fast_class_init_checks() && 2311 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) { 2312 const Register field_holder = temp; 2313 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2314 assert(thread != noreg, "x86_32 not supported"); 2315 2316 __ movptr(field_holder, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 2317 __ clinit_barrier(field_holder, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2318 } 2319 } 2320 2321 void TemplateTable::load_resolved_field_entry(Register obj, 2322 Register cache, 2323 Register tos_state, 2324 Register offset, 2325 Register flags, 2326 bool is_static = false) { 2327 assert_different_registers(cache, tos_state, flags, offset); 2328 2329 // Field offset 2330 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2331 2332 // Flags 2333 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2334 2335 // TOS state 2336 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2337 2338 // Klass overwrite register 2339 if (is_static) { 2340 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2341 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2342 __ movptr(obj, Address(obj, mirror_offset)); 2343 __ resolve_oop_handle(obj, rscratch2); 2344 } 2345 2346 } 2347 2348 void TemplateTable::load_invokedynamic_entry(Register method) { 2349 // setup registers 2350 const Register appendix = rax; 2351 const Register cache = rcx; 2352 const Register index = rdx; 2353 assert_different_registers(method, appendix, cache, index); 2354 2355 __ save_bcp(); 2356 2357 Label resolved; 2358 2359 __ load_resolved_indy_entry(cache, index); 2360 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2361 2362 // Compare the method to zero 2363 __ testptr(method, method); 2364 __ jcc(Assembler::notZero, resolved); 2365 2366 Bytecodes::Code code = bytecode(); 2367 2368 // Call to the interpreter runtime to resolve invokedynamic 2369 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2370 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2371 __ call_VM(noreg, entry, method); 2372 // Update registers with resolved info 2373 __ load_resolved_indy_entry(cache, index); 2374 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2375 2376 #ifdef ASSERT 2377 __ testptr(method, method); 2378 __ jcc(Assembler::notZero, resolved); 2379 __ stop("Should be resolved by now"); 2380 #endif // ASSERT 2381 __ bind(resolved); 2382 2383 Label L_no_push; 2384 // Check if there is an appendix 2385 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2386 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2387 __ jcc(Assembler::zero, L_no_push); 2388 2389 // Get appendix 2390 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2391 // Push the appendix as a trailing parameter 2392 // since the parameter_size includes it. 2393 __ load_resolved_reference_at_index(appendix, index); 2394 __ verify_oop(appendix); 2395 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2396 __ bind(L_no_push); 2397 2398 // compute return type 2399 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2400 // load return address 2401 { 2402 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2403 ExternalAddress table(table_addr); 2404 __ lea(rscratch1, table); 2405 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2406 } 2407 2408 // push return address 2409 __ push(index); 2410 } 2411 2412 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2413 Register method, 2414 Register flags) { 2415 // setup registers 2416 const Register index = rdx; 2417 assert_different_registers(cache, index); 2418 assert_different_registers(method, cache, flags); 2419 2420 // determine constant pool cache field offsets 2421 resolve_cache_and_index_for_method(f1_byte, cache, index); 2422 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2423 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2424 } 2425 2426 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2427 Register method, 2428 Register ref_index, 2429 Register flags) { 2430 // setup registers 2431 const Register index = rdx; 2432 assert_different_registers(cache, index); 2433 assert_different_registers(cache, method, ref_index, flags); 2434 2435 // determine constant pool cache field offsets 2436 resolve_cache_and_index_for_method(f1_byte, cache, index); 2437 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2438 2439 // Maybe push appendix 2440 Label L_no_push; 2441 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift)); 2442 __ jcc(Assembler::zero, L_no_push); 2443 // invokehandle uses an index into the resolved references array 2444 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2445 // Push the appendix as a trailing parameter. 2446 // This must be done before we get the receiver, 2447 // since the parameter_size includes it. 2448 Register appendix = method; 2449 __ load_resolved_reference_at_index(appendix, ref_index); 2450 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2451 __ bind(L_no_push); 2452 2453 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2454 } 2455 2456 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2457 Register klass, 2458 Register method_or_table_index, 2459 Register flags) { 2460 // setup registers 2461 const Register index = rdx; 2462 assert_different_registers(cache, klass, method_or_table_index, flags); 2463 2464 // determine constant pool cache field offsets 2465 resolve_cache_and_index_for_method(f1_byte, cache, index); 2466 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2467 2468 // Invokeinterface can behave in different ways: 2469 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2470 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2471 // vtable index is placed in the register. 2472 // Otherwise, the registers will be populated with the klass and method. 2473 2474 Label NotVirtual; Label NotVFinal; Label Done; 2475 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift); 2476 __ jcc(Assembler::zero, NotVirtual); 2477 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2478 __ jcc(Assembler::zero, NotVFinal); 2479 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2480 __ jmp(Done); 2481 2482 __ bind(NotVFinal); 2483 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2484 __ jmp(Done); 2485 2486 __ bind(NotVirtual); 2487 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2488 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2489 __ bind(Done); 2490 } 2491 2492 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2493 Register method_or_table_index, 2494 Register flags) { 2495 // setup registers 2496 const Register index = rdx; 2497 assert_different_registers(index, cache); 2498 assert_different_registers(method_or_table_index, cache, flags); 2499 2500 // determine constant pool cache field offsets 2501 resolve_cache_and_index_for_method(f2_byte, cache, index); 2502 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2503 2504 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2505 Label isVFinal; Label Done; 2506 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2507 __ jcc(Assembler::notZero, isVFinal); 2508 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2509 __ jmp(Done); 2510 __ bind(isVFinal); 2511 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2512 __ bind(Done); 2513 } 2514 2515 // The registers cache and index expected to be set before call. 2516 // Correct values of the cache and index registers are preserved. 2517 void TemplateTable::jvmti_post_field_access(Register cache, 2518 Register index, 2519 bool is_static, 2520 bool has_tos) { 2521 if (JvmtiExport::can_post_field_access()) { 2522 // Check to see if a field access watch has been set before we take 2523 // the time to call into the VM. 2524 Label L1; 2525 assert_different_registers(cache, index, rax); 2526 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2527 __ testl(rax,rax); 2528 __ jcc(Assembler::zero, L1); 2529 2530 // cache entry pointer 2531 __ load_field_entry(cache, index); 2532 if (is_static) { 2533 __ xorptr(rax, rax); // null object reference 2534 } else { 2535 __ pop(atos); // Get the object 2536 __ verify_oop(rax); 2537 __ push(atos); // Restore stack state 2538 } 2539 // rax,: object pointer or null 2540 // cache: cache entry pointer 2541 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2542 rax, cache); 2543 2544 __ load_field_entry(cache, index); 2545 __ bind(L1); 2546 } 2547 } 2548 2549 void TemplateTable::pop_and_check_object(Register r) { 2550 __ pop_ptr(r); 2551 __ null_check(r); // for field access must check obj. 2552 __ verify_oop(r); 2553 } 2554 2555 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2556 transition(vtos, vtos); 2557 2558 const Register obj = c_rarg3; 2559 const Register cache = rcx; 2560 const Register index = rdx; 2561 const Register off = rbx; 2562 const Register tos_state = rax; 2563 const Register flags = rdx; 2564 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2565 2566 resolve_cache_and_index_for_field(byte_no, cache, index); 2567 jvmti_post_field_access(cache, index, is_static, false); 2568 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2569 2570 if (!is_static) pop_and_check_object(obj); 2571 2572 const Address field(obj, off, Address::times_1, 0*wordSize); 2573 2574 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2575 2576 // Make sure we don't need to mask edx after the above shift 2577 assert(btos == 0, "change code, btos != 0"); 2578 __ testl(tos_state, tos_state); 2579 __ jcc(Assembler::notZero, notByte); 2580 2581 // btos 2582 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2583 __ push(btos); 2584 // Rewrite bytecode to be faster 2585 if (!is_static && rc == may_rewrite) { 2586 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2587 } 2588 __ jmp(Done); 2589 2590 __ bind(notByte); 2591 __ cmpl(tos_state, ztos); 2592 __ jcc(Assembler::notEqual, notBool); 2593 2594 // ztos (same code as btos) 2595 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 2596 __ push(ztos); 2597 // Rewrite bytecode to be faster 2598 if (!is_static && rc == may_rewrite) { 2599 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2600 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2601 } 2602 __ jmp(Done); 2603 2604 __ bind(notBool); 2605 __ cmpl(tos_state, atos); 2606 __ jcc(Assembler::notEqual, notObj); 2607 // atos 2608 do_oop_load(_masm, field, rax); 2609 __ push(atos); 2610 if (!is_static && rc == may_rewrite) { 2611 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2612 } 2613 __ jmp(Done); 2614 2615 __ bind(notObj); 2616 __ cmpl(tos_state, itos); 2617 __ jcc(Assembler::notEqual, notInt); 2618 // itos 2619 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 2620 __ push(itos); 2621 // Rewrite bytecode to be faster 2622 if (!is_static && rc == may_rewrite) { 2623 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2624 } 2625 __ jmp(Done); 2626 2627 __ bind(notInt); 2628 __ cmpl(tos_state, ctos); 2629 __ jcc(Assembler::notEqual, notChar); 2630 // ctos 2631 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 2632 __ push(ctos); 2633 // Rewrite bytecode to be faster 2634 if (!is_static && rc == may_rewrite) { 2635 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2636 } 2637 __ jmp(Done); 2638 2639 __ bind(notChar); 2640 __ cmpl(tos_state, stos); 2641 __ jcc(Assembler::notEqual, notShort); 2642 // stos 2643 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 2644 __ push(stos); 2645 // Rewrite bytecode to be faster 2646 if (!is_static && rc == may_rewrite) { 2647 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2648 } 2649 __ jmp(Done); 2650 2651 __ bind(notShort); 2652 __ cmpl(tos_state, ltos); 2653 __ jcc(Assembler::notEqual, notLong); 2654 // ltos 2655 // Generate code as if volatile (x86_32). There just aren't enough registers to 2656 // save that information and this code is faster than the test. 2657 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 2658 __ push(ltos); 2659 // Rewrite bytecode to be faster 2660 if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2661 __ jmp(Done); 2662 2663 __ bind(notLong); 2664 __ cmpl(tos_state, ftos); 2665 __ jcc(Assembler::notEqual, notFloat); 2666 // ftos 2667 2668 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2669 __ push(ftos); 2670 // Rewrite bytecode to be faster 2671 if (!is_static && rc == may_rewrite) { 2672 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2673 } 2674 __ jmp(Done); 2675 2676 __ bind(notFloat); 2677 #ifdef ASSERT 2678 Label notDouble; 2679 __ cmpl(tos_state, dtos); 2680 __ jcc(Assembler::notEqual, notDouble); 2681 #endif 2682 // dtos 2683 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2684 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 2685 __ push(dtos); 2686 // Rewrite bytecode to be faster 2687 if (!is_static && rc == may_rewrite) { 2688 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2689 } 2690 #ifdef ASSERT 2691 __ jmp(Done); 2692 2693 __ bind(notDouble); 2694 __ stop("Bad state"); 2695 #endif 2696 2697 __ bind(Done); 2698 // [jk] not needed currently 2699 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2700 // Assembler::LoadStore)); 2701 } 2702 2703 void TemplateTable::getfield(int byte_no) { 2704 getfield_or_static(byte_no, false); 2705 } 2706 2707 void TemplateTable::nofast_getfield(int byte_no) { 2708 getfield_or_static(byte_no, false, may_not_rewrite); 2709 } 2710 2711 void TemplateTable::getstatic(int byte_no) { 2712 getfield_or_static(byte_no, true); 2713 } 2714 2715 2716 // The registers cache and index expected to be set before call. 2717 // The function may destroy various registers, just not the cache and index registers. 2718 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2719 // Cache is rcx and index is rdx 2720 const Register entry = c_rarg2; // ResolvedFieldEntry 2721 const Register obj = c_rarg1; // Object pointer 2722 const Register value = c_rarg3; // JValue object 2723 2724 if (JvmtiExport::can_post_field_modification()) { 2725 // Check to see if a field modification watch has been set before 2726 // we take the time to call into the VM. 2727 Label L1; 2728 assert_different_registers(cache, obj, rax); 2729 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2730 __ testl(rax, rax); 2731 __ jcc(Assembler::zero, L1); 2732 2733 __ mov(entry, cache); 2734 2735 if (is_static) { 2736 // Life is simple. Null out the object pointer. 2737 __ xorl(obj, obj); 2738 2739 } else { 2740 // Life is harder. The stack holds the value on top, followed by 2741 // the object. We don't know the size of the value, though; it 2742 // could be one or two words depending on its type. As a result, 2743 // we must find the type to determine where the object is. 2744 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset()))); 2745 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue 2746 __ cmpl(value, ltos); 2747 __ cmovptr(Assembler::equal, 2748 obj, at_tos_p2()); // ltos (two word jvalue) 2749 __ cmpl(value, dtos); 2750 __ cmovptr(Assembler::equal, 2751 obj, at_tos_p2()); // dtos (two word jvalue) 2752 } 2753 2754 // object (tos) 2755 __ mov(value, rsp); 2756 // obj: object pointer set up above (null if static) 2757 // cache: field entry pointer 2758 // value: jvalue object on the stack 2759 __ call_VM(noreg, 2760 CAST_FROM_FN_PTR(address, 2761 InterpreterRuntime::post_field_modification), 2762 obj, entry, value); 2763 // Reload field entry 2764 __ load_field_entry(cache, index); 2765 __ bind(L1); 2766 } 2767 } 2768 2769 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2770 transition(vtos, vtos); 2771 2772 const Register obj = rcx; 2773 const Register cache = rcx; 2774 const Register index = rdx; 2775 const Register tos_state = rdx; 2776 const Register off = rbx; 2777 const Register flags = rax; 2778 2779 resolve_cache_and_index_for_field(byte_no, cache, index); 2780 jvmti_post_field_mod(cache, index, is_static); 2781 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2782 2783 // [jk] not needed currently 2784 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2785 // Assembler::StoreStore)); 2786 2787 Label notVolatile, Done; 2788 2789 // Check for volatile store 2790 __ andl(flags, (1 << ResolvedFieldEntry::is_volatile_shift)); 2791 __ testl(flags, flags); 2792 __ jcc(Assembler::zero, notVolatile); 2793 2794 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 2795 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2796 Assembler::StoreStore)); 2797 __ jmp(Done); 2798 __ bind(notVolatile); 2799 2800 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 2801 2802 __ bind(Done); 2803 } 2804 2805 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 2806 Register obj, Register off, Register tos_state) { 2807 2808 // field addresses 2809 const Address field(obj, off, Address::times_1, 0*wordSize); 2810 2811 Label notByte, notBool, notInt, notShort, notChar, 2812 notLong, notFloat, notObj; 2813 Label Done; 2814 2815 const Register bc = c_rarg3; 2816 2817 // Test TOS state 2818 __ testl(tos_state, tos_state); 2819 __ jcc(Assembler::notZero, notByte); 2820 2821 // btos 2822 { 2823 __ pop(btos); 2824 if (!is_static) pop_and_check_object(obj); 2825 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 2826 if (!is_static && rc == may_rewrite) { 2827 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 2828 } 2829 __ jmp(Done); 2830 } 2831 2832 __ bind(notByte); 2833 __ cmpl(tos_state, ztos); 2834 __ jcc(Assembler::notEqual, notBool); 2835 2836 // ztos 2837 { 2838 __ pop(ztos); 2839 if (!is_static) pop_and_check_object(obj); 2840 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 2841 if (!is_static && rc == may_rewrite) { 2842 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 2843 } 2844 __ jmp(Done); 2845 } 2846 2847 __ bind(notBool); 2848 __ cmpl(tos_state, atos); 2849 __ jcc(Assembler::notEqual, notObj); 2850 2851 // atos 2852 { 2853 __ pop(atos); 2854 if (!is_static) pop_and_check_object(obj); 2855 // Store into the field 2856 do_oop_store(_masm, field, rax); 2857 if (!is_static && rc == may_rewrite) { 2858 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2859 } 2860 __ jmp(Done); 2861 } 2862 2863 __ bind(notObj); 2864 __ cmpl(tos_state, itos); 2865 __ jcc(Assembler::notEqual, notInt); 2866 2867 // itos 2868 { 2869 __ pop(itos); 2870 if (!is_static) pop_and_check_object(obj); 2871 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 2872 if (!is_static && rc == may_rewrite) { 2873 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 2874 } 2875 __ jmp(Done); 2876 } 2877 2878 __ bind(notInt); 2879 __ cmpl(tos_state, ctos); 2880 __ jcc(Assembler::notEqual, notChar); 2881 2882 // ctos 2883 { 2884 __ pop(ctos); 2885 if (!is_static) pop_and_check_object(obj); 2886 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 2887 if (!is_static && rc == may_rewrite) { 2888 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 2889 } 2890 __ jmp(Done); 2891 } 2892 2893 __ bind(notChar); 2894 __ cmpl(tos_state, stos); 2895 __ jcc(Assembler::notEqual, notShort); 2896 2897 // stos 2898 { 2899 __ pop(stos); 2900 if (!is_static) pop_and_check_object(obj); 2901 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 2902 if (!is_static && rc == may_rewrite) { 2903 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 2904 } 2905 __ jmp(Done); 2906 } 2907 2908 __ bind(notShort); 2909 __ cmpl(tos_state, ltos); 2910 __ jcc(Assembler::notEqual, notLong); 2911 2912 // ltos 2913 { 2914 __ pop(ltos); 2915 if (!is_static) pop_and_check_object(obj); 2916 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 2917 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 2918 if (!is_static && rc == may_rewrite) { 2919 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 2920 } 2921 __ jmp(Done); 2922 } 2923 2924 __ bind(notLong); 2925 __ cmpl(tos_state, ftos); 2926 __ jcc(Assembler::notEqual, notFloat); 2927 2928 // ftos 2929 { 2930 __ pop(ftos); 2931 if (!is_static) pop_and_check_object(obj); 2932 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2933 if (!is_static && rc == may_rewrite) { 2934 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 2935 } 2936 __ jmp(Done); 2937 } 2938 2939 __ bind(notFloat); 2940 #ifdef ASSERT 2941 Label notDouble; 2942 __ cmpl(tos_state, dtos); 2943 __ jcc(Assembler::notEqual, notDouble); 2944 #endif 2945 2946 // dtos 2947 { 2948 __ pop(dtos); 2949 if (!is_static) pop_and_check_object(obj); 2950 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2951 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 2952 if (!is_static && rc == may_rewrite) { 2953 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 2954 } 2955 } 2956 2957 #ifdef ASSERT 2958 __ jmp(Done); 2959 2960 __ bind(notDouble); 2961 __ stop("Bad state"); 2962 #endif 2963 2964 __ bind(Done); 2965 } 2966 2967 void TemplateTable::putfield(int byte_no) { 2968 putfield_or_static(byte_no, false); 2969 } 2970 2971 void TemplateTable::nofast_putfield(int byte_no) { 2972 putfield_or_static(byte_no, false, may_not_rewrite); 2973 } 2974 2975 void TemplateTable::putstatic(int byte_no) { 2976 putfield_or_static(byte_no, true); 2977 } 2978 2979 void TemplateTable::jvmti_post_fast_field_mod() { 2980 2981 const Register scratch = c_rarg3; 2982 2983 if (JvmtiExport::can_post_field_modification()) { 2984 // Check to see if a field modification watch has been set before 2985 // we take the time to call into the VM. 2986 Label L2; 2987 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2988 __ testl(scratch, scratch); 2989 __ jcc(Assembler::zero, L2); 2990 __ pop_ptr(rbx); // copy the object pointer from tos 2991 __ verify_oop(rbx); 2992 __ push_ptr(rbx); // put the object pointer back on tos 2993 // Save tos values before call_VM() clobbers them. Since we have 2994 // to do it for every data type, we use the saved values as the 2995 // jvalue object. 2996 switch (bytecode()) { // load values into the jvalue object 2997 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 2998 case Bytecodes::_fast_bputfield: // fall through 2999 case Bytecodes::_fast_zputfield: // fall through 3000 case Bytecodes::_fast_sputfield: // fall through 3001 case Bytecodes::_fast_cputfield: // fall through 3002 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3003 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3004 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3005 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3006 3007 default: 3008 ShouldNotReachHere(); 3009 } 3010 __ mov(scratch, rsp); // points to jvalue on the stack 3011 // access constant pool cache entry 3012 __ load_field_entry(c_rarg2, rax); 3013 __ verify_oop(rbx); 3014 // rbx: object pointer copied above 3015 // c_rarg2: cache entry pointer 3016 // c_rarg3: jvalue object on the stack 3017 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3); 3018 3019 switch (bytecode()) { // restore tos values 3020 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3021 case Bytecodes::_fast_bputfield: // fall through 3022 case Bytecodes::_fast_zputfield: // fall through 3023 case Bytecodes::_fast_sputfield: // fall through 3024 case Bytecodes::_fast_cputfield: // fall through 3025 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3026 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3027 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3028 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3029 default: break; 3030 } 3031 __ bind(L2); 3032 } 3033 } 3034 3035 void TemplateTable::fast_storefield(TosState state) { 3036 transition(state, vtos); 3037 3038 Register cache = rcx; 3039 3040 Label notVolatile, Done; 3041 3042 jvmti_post_fast_field_mod(); 3043 3044 __ push(rax); 3045 __ load_field_entry(rcx, rax); 3046 load_resolved_field_entry(noreg, cache, rax, rbx, rdx); 3047 // RBX: field offset, RAX: TOS, RDX: flags 3048 __ andl(rdx, (1 << ResolvedFieldEntry::is_volatile_shift)); 3049 __ pop(rax); 3050 3051 // Get object from stack 3052 pop_and_check_object(rcx); 3053 3054 // field address 3055 const Address field(rcx, rbx, Address::times_1); 3056 3057 // Check for volatile store 3058 __ testl(rdx, rdx); 3059 __ jcc(Assembler::zero, notVolatile); 3060 3061 fast_storefield_helper(field, rax); 3062 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3063 Assembler::StoreStore)); 3064 __ jmp(Done); 3065 __ bind(notVolatile); 3066 3067 fast_storefield_helper(field, rax); 3068 3069 __ bind(Done); 3070 } 3071 3072 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3073 3074 // access field 3075 switch (bytecode()) { 3076 case Bytecodes::_fast_aputfield: 3077 do_oop_store(_masm, field, rax); 3078 break; 3079 case Bytecodes::_fast_lputfield: 3080 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3081 break; 3082 case Bytecodes::_fast_iputfield: 3083 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3084 break; 3085 case Bytecodes::_fast_zputfield: 3086 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3087 break; 3088 case Bytecodes::_fast_bputfield: 3089 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3090 break; 3091 case Bytecodes::_fast_sputfield: 3092 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3093 break; 3094 case Bytecodes::_fast_cputfield: 3095 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3096 break; 3097 case Bytecodes::_fast_fputfield: 3098 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3099 break; 3100 case Bytecodes::_fast_dputfield: 3101 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3102 break; 3103 default: 3104 ShouldNotReachHere(); 3105 } 3106 } 3107 3108 void TemplateTable::fast_accessfield(TosState state) { 3109 transition(atos, state); 3110 3111 // Do the JVMTI work here to avoid disturbing the register state below 3112 if (JvmtiExport::can_post_field_access()) { 3113 // Check to see if a field access watch has been set before we 3114 // take the time to call into the VM. 3115 Label L1; 3116 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3117 __ testl(rcx, rcx); 3118 __ jcc(Assembler::zero, L1); 3119 // access constant pool cache entry 3120 __ load_field_entry(c_rarg2, rcx); 3121 __ verify_oop(rax); 3122 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3123 __ mov(c_rarg1, rax); 3124 // c_rarg1: object pointer copied above 3125 // c_rarg2: cache entry pointer 3126 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2); 3127 __ pop_ptr(rax); // restore object pointer 3128 __ bind(L1); 3129 } 3130 3131 // access constant pool cache 3132 __ load_field_entry(rcx, rbx); 3133 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3134 3135 // rax: object 3136 __ verify_oop(rax); 3137 __ null_check(rax); 3138 Address field(rax, rbx, Address::times_1); 3139 3140 // access field 3141 switch (bytecode()) { 3142 case Bytecodes::_fast_agetfield: 3143 do_oop_load(_masm, field, rax); 3144 __ verify_oop(rax); 3145 break; 3146 case Bytecodes::_fast_lgetfield: 3147 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3148 break; 3149 case Bytecodes::_fast_igetfield: 3150 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3151 break; 3152 case Bytecodes::_fast_bgetfield: 3153 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3154 break; 3155 case Bytecodes::_fast_sgetfield: 3156 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3157 break; 3158 case Bytecodes::_fast_cgetfield: 3159 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3160 break; 3161 case Bytecodes::_fast_fgetfield: 3162 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3163 break; 3164 case Bytecodes::_fast_dgetfield: 3165 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3166 break; 3167 default: 3168 ShouldNotReachHere(); 3169 } 3170 // [jk] not needed currently 3171 // Label notVolatile; 3172 // __ testl(rdx, rdx); 3173 // __ jcc(Assembler::zero, notVolatile); 3174 // __ membar(Assembler::LoadLoad); 3175 // __ bind(notVolatile); 3176 } 3177 3178 void TemplateTable::fast_xaccess(TosState state) { 3179 transition(vtos, state); 3180 3181 // get receiver 3182 __ movptr(rax, aaddress(0)); 3183 // access constant pool cache 3184 __ load_field_entry(rcx, rdx, 2); 3185 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3186 3187 // make sure exception is reported in correct bcp range (getfield is 3188 // next instruction) 3189 __ increment(rbcp); 3190 __ null_check(rax); 3191 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3192 switch (state) { 3193 case itos: 3194 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3195 break; 3196 case atos: 3197 do_oop_load(_masm, field, rax); 3198 __ verify_oop(rax); 3199 break; 3200 case ftos: 3201 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3202 break; 3203 default: 3204 ShouldNotReachHere(); 3205 } 3206 3207 // [jk] not needed currently 3208 // Label notVolatile; 3209 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3210 // in_bytes(ConstantPoolCache::base_offset() + 3211 // ConstantPoolCacheEntry::flags_offset()))); 3212 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3213 // __ testl(rdx, 0x1); 3214 // __ jcc(Assembler::zero, notVolatile); 3215 // __ membar(Assembler::LoadLoad); 3216 // __ bind(notVolatile); 3217 3218 __ decrement(rbcp); 3219 } 3220 3221 //----------------------------------------------------------------------------- 3222 // Calls 3223 3224 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) { 3225 // determine flags 3226 const Bytecodes::Code code = bytecode(); 3227 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3228 assert_different_registers(recv, flags); 3229 3230 // save 'interpreter return address' 3231 __ save_bcp(); 3232 3233 // Save flags and load TOS 3234 __ movl(rbcp, flags); 3235 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3236 3237 // load receiver if needed (after appendix is pushed so parameter size is correct) 3238 // Note: no return address pushed yet 3239 if (load_receiver) { 3240 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3241 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3242 const int receiver_is_at_end = -1; // back off one slot to get receiver 3243 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3244 __ movptr(recv, recv_addr); 3245 __ verify_oop(recv); 3246 } 3247 3248 // load return address 3249 { 3250 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3251 ExternalAddress table(table_addr); 3252 __ lea(rscratch1, table); 3253 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3254 } 3255 3256 // push return address 3257 __ push(flags); 3258 3259 // Restore flags value from the constant pool cache entry, and restore rsi 3260 // for later null checks. r13 is the bytecode pointer 3261 __ movl(flags, rbcp); 3262 __ restore_bcp(); 3263 } 3264 3265 void TemplateTable::invokevirtual_helper(Register index, 3266 Register recv, 3267 Register flags) { 3268 // Uses temporary registers rax, rdx 3269 assert_different_registers(index, recv, rax, rdx); 3270 assert(index == rbx, ""); 3271 assert(recv == rcx, ""); 3272 3273 // Test for an invoke of a final method 3274 Label notFinal; 3275 __ movl(rax, flags); 3276 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3277 __ jcc(Assembler::zero, notFinal); 3278 3279 const Register method = index; // method must be rbx 3280 assert(method == rbx, 3281 "Method* must be rbx for interpreter calling convention"); 3282 3283 // do the call - the index is actually the method to call 3284 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3285 3286 // It's final, need a null check here! 3287 __ null_check(recv); 3288 3289 // profile this call 3290 __ profile_final_call(rax); 3291 __ profile_arguments_type(rax, method, rbcp, true); 3292 3293 __ jump_from_interpreted(method, rax); 3294 3295 __ bind(notFinal); 3296 3297 // get receiver klass 3298 __ load_klass(rax, recv, rscratch1); 3299 3300 // profile this call 3301 __ profile_virtual_call(rax, rlocals, rdx); 3302 // get target Method* & entry point 3303 __ lookup_virtual_method(rax, index, method); 3304 3305 __ profile_arguments_type(rdx, method, rbcp, true); 3306 __ jump_from_interpreted(method, rdx); 3307 } 3308 3309 void TemplateTable::invokevirtual(int byte_no) { 3310 transition(vtos, vtos); 3311 assert(byte_no == f2_byte, "use this argument"); 3312 3313 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry* 3314 rbx, // Method or itable index 3315 rdx); // Flags 3316 prepare_invoke(rcx, // ResolvedMethodEntry* 3317 rcx, // Receiver 3318 rdx); // flags 3319 3320 // rbx: index 3321 // rcx: receiver 3322 // rdx: flags 3323 invokevirtual_helper(rbx, rcx, rdx); 3324 } 3325 3326 void TemplateTable::invokespecial(int byte_no) { 3327 transition(vtos, vtos); 3328 assert(byte_no == f1_byte, "use this argument"); 3329 3330 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3331 rbx, // Method* 3332 rdx); // flags 3333 prepare_invoke(rcx, 3334 rcx, // get receiver also for null check 3335 rdx); // flags 3336 3337 __ verify_oop(rcx); 3338 __ null_check(rcx); 3339 // do the call 3340 __ profile_call(rax); 3341 __ profile_arguments_type(rax, rbx, rbcp, false); 3342 __ jump_from_interpreted(rbx, rax); 3343 } 3344 3345 void TemplateTable::invokestatic(int byte_no) { 3346 transition(vtos, vtos); 3347 assert(byte_no == f1_byte, "use this argument"); 3348 3349 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3350 rbx, // Method* 3351 rdx // flags 3352 ); 3353 prepare_invoke(rcx, rcx, rdx); // cache and flags 3354 3355 // do the call 3356 __ profile_call(rax); 3357 __ profile_arguments_type(rax, rbx, rbcp, false); 3358 __ jump_from_interpreted(rbx, rax); 3359 } 3360 3361 3362 void TemplateTable::fast_invokevfinal(int byte_no) { 3363 transition(vtos, vtos); 3364 assert(byte_no == f2_byte, "use this argument"); 3365 __ stop("fast_invokevfinal not used on x86"); 3366 } 3367 3368 3369 void TemplateTable::invokeinterface(int byte_no) { 3370 transition(vtos, vtos); 3371 assert(byte_no == f1_byte, "use this argument"); 3372 3373 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry* 3374 rax, // Klass* 3375 rbx, // Method* or itable/vtable index 3376 rdx); // flags 3377 prepare_invoke(rcx, rcx, rdx); // receiver, flags 3378 3379 // First check for Object case, then private interface method, 3380 // then regular interface method. 3381 3382 // Special case of invokeinterface called for virtual method of 3383 // java.lang.Object. See cpCache.cpp for details. 3384 Label notObjectMethod; 3385 __ movl(rlocals, rdx); 3386 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift)); 3387 __ jcc(Assembler::zero, notObjectMethod); 3388 3389 invokevirtual_helper(rbx, rcx, rdx); 3390 // no return from above 3391 __ bind(notObjectMethod); 3392 3393 Label no_such_interface; // for receiver subtype check 3394 Register recvKlass; // used for exception processing 3395 3396 // Check for private method invocation - indicated by vfinal 3397 Label notVFinal; 3398 __ movl(rlocals, rdx); 3399 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3400 __ jcc(Assembler::zero, notVFinal); 3401 3402 // Get receiver klass into rlocals - also a null check 3403 __ load_klass(rlocals, rcx, rscratch1); 3404 3405 Label subtype; 3406 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3407 // If we get here the typecheck failed 3408 recvKlass = rdx; 3409 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3410 __ jmp(no_such_interface); 3411 3412 __ bind(subtype); 3413 3414 // do the call - rbx is actually the method to call 3415 3416 __ profile_final_call(rdx); 3417 __ profile_arguments_type(rdx, rbx, rbcp, true); 3418 3419 __ jump_from_interpreted(rbx, rdx); 3420 // no return from above 3421 __ bind(notVFinal); 3422 3423 // Get receiver klass into rdx - also a null check 3424 __ restore_locals(); // restore r14 3425 __ load_klass(rdx, rcx, rscratch1); 3426 3427 Label no_such_method; 3428 3429 // Preserve method for throw_AbstractMethodErrorVerbose. 3430 __ mov(rcx, rbx); 3431 // Receiver subtype check against REFC. 3432 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3433 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3434 rdx, rax, noreg, 3435 // outputs: scan temp. reg, scan temp. reg 3436 rbcp, rlocals, 3437 no_such_interface, 3438 /*return_method=*/false); 3439 3440 // profile this call 3441 __ restore_bcp(); // rbcp was destroyed by receiver type check 3442 __ profile_virtual_call(rdx, rbcp, rlocals); 3443 3444 // Get declaring interface class from method, and itable index 3445 __ load_method_holder(rax, rbx); 3446 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3447 __ subl(rbx, Method::itable_index_max); 3448 __ negl(rbx); 3449 3450 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3451 __ mov(rlocals, rdx); 3452 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3453 rlocals, rax, rbx, 3454 // outputs: method, scan temp. reg 3455 rbx, rbcp, 3456 no_such_interface); 3457 3458 // rbx: Method* to call 3459 // rcx: receiver 3460 // Check for abstract method error 3461 // Note: This should be done more efficiently via a throw_abstract_method_error 3462 // interpreter entry point and a conditional jump to it in case of a null 3463 // method. 3464 __ testptr(rbx, rbx); 3465 __ jcc(Assembler::zero, no_such_method); 3466 3467 __ profile_arguments_type(rdx, rbx, rbcp, true); 3468 3469 // do the call 3470 // rcx: receiver 3471 // rbx,: Method* 3472 __ jump_from_interpreted(rbx, rdx); 3473 __ should_not_reach_here(); 3474 3475 // exception handling code follows... 3476 // note: must restore interpreter registers to canonical 3477 // state for exception handling to work correctly! 3478 3479 __ bind(no_such_method); 3480 // throw exception 3481 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3482 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3483 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3484 // Pass arguments for generating a verbose error message. 3485 recvKlass = c_rarg1; 3486 Register method = c_rarg2; 3487 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3488 if (method != rcx) { __ movq(method, rcx); } 3489 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3490 recvKlass, method); 3491 // The call_VM checks for exception, so we should never return here. 3492 __ should_not_reach_here(); 3493 3494 __ bind(no_such_interface); 3495 // throw exception 3496 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3497 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3498 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3499 // Pass arguments for generating a verbose error message. 3500 if (recvKlass != rdx) { 3501 __ movq(recvKlass, rdx); 3502 } 3503 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3504 recvKlass, rax); 3505 // the call_VM checks for exception, so we should never return here. 3506 __ should_not_reach_here(); 3507 } 3508 3509 void TemplateTable::invokehandle(int byte_no) { 3510 transition(vtos, vtos); 3511 assert(byte_no == f1_byte, "use this argument"); 3512 const Register rbx_method = rbx; 3513 const Register rax_mtype = rax; 3514 const Register rcx_recv = rcx; 3515 const Register rdx_flags = rdx; 3516 3517 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags); 3518 prepare_invoke(rcx, rcx_recv, rdx_flags); 3519 3520 __ verify_method_ptr(rbx_method); 3521 __ verify_oop(rcx_recv); 3522 __ null_check(rcx_recv); 3523 3524 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3525 // rbx: MH.invokeExact_MT method 3526 3527 // Note: rax_mtype is already pushed (if necessary) 3528 3529 // FIXME: profile the LambdaForm also 3530 __ profile_final_call(rax); 3531 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3532 3533 __ jump_from_interpreted(rbx_method, rdx); 3534 } 3535 3536 void TemplateTable::invokedynamic(int byte_no) { 3537 transition(vtos, vtos); 3538 assert(byte_no == f1_byte, "use this argument"); 3539 3540 const Register rbx_method = rbx; 3541 const Register rax_callsite = rax; 3542 3543 load_invokedynamic_entry(rbx_method); 3544 // rax: CallSite object (from cpool->resolved_references[]) 3545 // rbx: MH.linkToCallSite method 3546 3547 // Note: rax_callsite is already pushed 3548 3549 // %%% should make a type profile for any invokedynamic that takes a ref argument 3550 // profile this call 3551 __ profile_call(rbcp); 3552 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3553 3554 __ verify_oop(rax_callsite); 3555 3556 __ jump_from_interpreted(rbx_method, rdx); 3557 } 3558 3559 //----------------------------------------------------------------------------- 3560 // Allocation 3561 3562 void TemplateTable::_new() { 3563 transition(vtos, atos); 3564 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3565 Label slow_case; 3566 Label slow_case_no_pop; 3567 Label done; 3568 Label initialize_header; 3569 3570 __ get_cpool_and_tags(rcx, rax); 3571 3572 // Make sure the class we're about to instantiate has been resolved. 3573 // This is done before loading InstanceKlass to be consistent with the order 3574 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3575 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3576 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3577 __ jcc(Assembler::notEqual, slow_case_no_pop); 3578 3579 // get InstanceKlass 3580 __ load_resolved_klass_at_index(rcx, rcx, rdx); 3581 __ push(rcx); // save the contexts of klass for initializing the header 3582 3583 // make sure klass is initialized 3584 // init_state needs acquire, but x86 is TSO, and so we are already good. 3585 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks"); 3586 __ clinit_barrier(rcx, nullptr /*L_fast_path*/, &slow_case); 3587 3588 // get instance_size in InstanceKlass (scaled to a count of bytes) 3589 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3590 // test to see if it is malformed in some way 3591 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3592 __ jcc(Assembler::notZero, slow_case); 3593 3594 // Allocate the instance: 3595 // If TLAB is enabled: 3596 // Try to allocate in the TLAB. 3597 // If fails, go to the slow path. 3598 // Initialize the allocation. 3599 // Exit. 3600 // 3601 // Go to slow path. 3602 3603 if (UseTLAB) { 3604 __ tlab_allocate(r15_thread, rax, rdx, 0, rcx, rbx, slow_case); 3605 if (ZeroTLAB) { 3606 // the fields have been already cleared 3607 __ jmp(initialize_header); 3608 } 3609 3610 // The object is initialized before the header. If the object size is 3611 // zero, go directly to the header initialization. 3612 if (UseCompactObjectHeaders) { 3613 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3614 __ decrement(rdx, oopDesc::base_offset_in_bytes()); 3615 } else { 3616 __ decrement(rdx, sizeof(oopDesc)); 3617 } 3618 __ jcc(Assembler::zero, initialize_header); 3619 3620 // Initialize topmost object field, divide rdx by 8, check if odd and 3621 // test if zero. 3622 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3623 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3624 3625 // rdx must have been multiple of 8 3626 #ifdef ASSERT 3627 // make sure rdx was multiple of 8 3628 Label L; 3629 // Ignore partial flag stall after shrl() since it is debug VM 3630 __ jcc(Assembler::carryClear, L); 3631 __ stop("object size is not multiple of 2 - adjust this code"); 3632 __ bind(L); 3633 // rdx must be > 0, no extra check needed here 3634 #endif 3635 3636 // initialize remaining object fields: rdx was a multiple of 8 3637 { Label loop; 3638 __ bind(loop); 3639 int header_size_bytes = oopDesc::header_size() * HeapWordSize; 3640 assert(is_aligned(header_size_bytes, BytesPerLong), "oop header size must be 8-byte-aligned"); 3641 __ movptr(Address(rax, rdx, Address::times_8, header_size_bytes - 1*oopSize), rcx); 3642 __ decrement(rdx); 3643 __ jcc(Assembler::notZero, loop); 3644 } 3645 3646 // initialize object header only. 3647 __ bind(initialize_header); 3648 if (UseCompactObjectHeaders) { 3649 __ pop(rcx); // get saved klass back in the register. 3650 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 3651 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rbx); 3652 } else { 3653 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 3654 (intptr_t)markWord::prototype().value()); // header 3655 __ pop(rcx); // get saved klass back in the register. 3656 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 3657 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 3658 __ store_klass(rax, rcx, rscratch1); // klass 3659 } 3660 3661 if (DTraceAllocProbes) { 3662 // Trigger dtrace event for fastpath 3663 __ push(atos); 3664 __ call_VM_leaf( 3665 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 3666 __ pop(atos); 3667 } 3668 3669 __ jmp(done); 3670 } 3671 3672 // slow case 3673 __ bind(slow_case); 3674 __ pop(rcx); // restore stack pointer to what it was when we came in. 3675 __ bind(slow_case_no_pop); 3676 3677 __ get_constant_pool(c_rarg1); 3678 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3679 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3680 __ verify_oop(rax); 3681 3682 // continue 3683 __ bind(done); 3684 } 3685 3686 void TemplateTable::newarray() { 3687 transition(itos, atos); 3688 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3689 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3690 c_rarg1, rax); 3691 } 3692 3693 void TemplateTable::anewarray() { 3694 transition(itos, atos); 3695 3696 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3697 __ get_constant_pool(c_rarg1); 3698 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3699 c_rarg1, c_rarg2, rax); 3700 } 3701 3702 void TemplateTable::arraylength() { 3703 transition(atos, itos); 3704 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3705 } 3706 3707 void TemplateTable::checkcast() { 3708 transition(atos, atos); 3709 Label done, is_null, ok_is_subtype, quicked, resolved; 3710 __ testptr(rax, rax); // object is in rax 3711 __ jcc(Assembler::zero, is_null); 3712 3713 // Get cpool & tags index 3714 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3715 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3716 // See if bytecode has already been quicked 3717 __ cmpb(Address(rdx, rbx, 3718 Address::times_1, 3719 Array<u1>::base_offset_in_bytes()), 3720 JVM_CONSTANT_Class); 3721 __ jcc(Assembler::equal, quicked); 3722 __ push(atos); // save receiver for result, and for GC 3723 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3724 3725 // vm_result_2 has metadata result 3726 __ get_vm_result_2(rax); 3727 3728 __ pop_ptr(rdx); // restore receiver 3729 __ jmpb(resolved); 3730 3731 // Get superklass in rax and subklass in rbx 3732 __ bind(quicked); 3733 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3734 __ load_resolved_klass_at_index(rax, rcx, rbx); 3735 3736 __ bind(resolved); 3737 __ load_klass(rbx, rdx, rscratch1); 3738 3739 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3740 // Superklass in rax. Subklass in rbx. 3741 __ gen_subtype_check(rbx, ok_is_subtype); 3742 3743 // Come here on failure 3744 __ push_ptr(rdx); 3745 // object is at TOS 3746 __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry)); 3747 3748 // Come here on success 3749 __ bind(ok_is_subtype); 3750 __ mov(rax, rdx); // Restore object in rdx 3751 3752 // Collect counts on whether this check-cast sees nulls a lot or not. 3753 if (ProfileInterpreter) { 3754 __ jmp(done); 3755 __ bind(is_null); 3756 __ profile_null_seen(rcx); 3757 } else { 3758 __ bind(is_null); // same as 'done' 3759 } 3760 __ bind(done); 3761 } 3762 3763 void TemplateTable::instanceof() { 3764 transition(atos, itos); 3765 Label done, is_null, ok_is_subtype, quicked, resolved; 3766 __ testptr(rax, rax); 3767 __ jcc(Assembler::zero, is_null); 3768 3769 // Get cpool & tags index 3770 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3771 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3772 // See if bytecode has already been quicked 3773 __ cmpb(Address(rdx, rbx, 3774 Address::times_1, 3775 Array<u1>::base_offset_in_bytes()), 3776 JVM_CONSTANT_Class); 3777 __ jcc(Assembler::equal, quicked); 3778 3779 __ push(atos); // save receiver for result, and for GC 3780 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3781 3782 // vm_result_2 has metadata result 3783 __ get_vm_result_2(rax); 3784 3785 __ pop_ptr(rdx); // restore receiver 3786 __ verify_oop(rdx); 3787 __ load_klass(rdx, rdx, rscratch1); 3788 __ jmpb(resolved); 3789 3790 // Get superklass in rax and subklass in rdx 3791 __ bind(quicked); 3792 __ load_klass(rdx, rax, rscratch1); 3793 __ load_resolved_klass_at_index(rax, rcx, rbx); 3794 3795 __ bind(resolved); 3796 3797 // Generate subtype check. Blows rcx, rdi 3798 // Superklass in rax. Subklass in rdx. 3799 __ gen_subtype_check(rdx, ok_is_subtype); 3800 3801 // Come here on failure 3802 __ xorl(rax, rax); 3803 __ jmpb(done); 3804 // Come here on success 3805 __ bind(ok_is_subtype); 3806 __ movl(rax, 1); 3807 3808 // Collect counts on whether this test sees nulls a lot or not. 3809 if (ProfileInterpreter) { 3810 __ jmp(done); 3811 __ bind(is_null); 3812 __ profile_null_seen(rcx); 3813 } else { 3814 __ bind(is_null); // same as 'done' 3815 } 3816 __ bind(done); 3817 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 3818 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 3819 } 3820 3821 3822 //---------------------------------------------------------------------------------------------------- 3823 // Breakpoints 3824 void TemplateTable::_breakpoint() { 3825 // Note: We get here even if we are single stepping.. 3826 // jbug insists on setting breakpoints at every bytecode 3827 // even if we are in single step mode. 3828 3829 transition(vtos, vtos); 3830 3831 // get the unpatched byte code 3832 __ get_method(c_rarg1); 3833 __ call_VM(noreg, 3834 CAST_FROM_FN_PTR(address, 3835 InterpreterRuntime::get_original_bytecode_at), 3836 c_rarg1, rbcp); 3837 __ mov(rbx, rax); // why? 3838 3839 // post the breakpoint event 3840 __ get_method(c_rarg1); 3841 __ call_VM(noreg, 3842 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3843 c_rarg1, rbcp); 3844 3845 // complete the execution of original bytecode 3846 __ dispatch_only_normal(vtos); 3847 } 3848 3849 //----------------------------------------------------------------------------- 3850 // Exceptions 3851 3852 void TemplateTable::athrow() { 3853 transition(atos, vtos); 3854 __ null_check(rax); 3855 __ jump(RuntimeAddress(Interpreter::throw_exception_entry())); 3856 } 3857 3858 //----------------------------------------------------------------------------- 3859 // Synchronization 3860 // 3861 // Note: monitorenter & exit are symmetric routines; which is reflected 3862 // in the assembly code structure as well 3863 // 3864 // Stack layout: 3865 // 3866 // [expressions ] <--- rsp = expression stack top 3867 // .. 3868 // [expressions ] 3869 // [monitor entry] <--- monitor block top = expression stack bot 3870 // .. 3871 // [monitor entry] 3872 // [frame data ] <--- monitor block bot 3873 // ... 3874 // [saved rbp ] <--- rbp 3875 void TemplateTable::monitorenter() { 3876 transition(atos, vtos); 3877 3878 // check for null object 3879 __ null_check(rax); 3880 3881 const Address monitor_block_top( 3882 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3883 const Address monitor_block_bot( 3884 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3885 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3886 3887 Label allocated; 3888 3889 Register rtop = c_rarg3; 3890 Register rbot = c_rarg2; 3891 Register rmon = c_rarg1; 3892 3893 // initialize entry pointer 3894 __ xorl(rmon, rmon); // points to free slot or null 3895 3896 // find a free slot in the monitor block (result in rmon) 3897 { 3898 Label entry, loop, exit; 3899 __ movptr(rtop, monitor_block_top); // derelativize pointer 3900 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 3901 // rtop points to current entry, starting with top-most entry 3902 3903 __ lea(rbot, monitor_block_bot); // points to word before bottom 3904 // of monitor block 3905 __ jmpb(entry); 3906 3907 __ bind(loop); 3908 // check if current entry is used 3909 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 3910 // if not used then remember entry in rmon 3911 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 3912 // check if current entry is for same object 3913 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 3914 // if same object then stop searching 3915 __ jccb(Assembler::equal, exit); 3916 // otherwise advance to next entry 3917 __ addptr(rtop, entry_size); 3918 __ bind(entry); 3919 // check if bottom reached 3920 __ cmpptr(rtop, rbot); 3921 // if not at bottom then check this entry 3922 __ jcc(Assembler::notEqual, loop); 3923 __ bind(exit); 3924 } 3925 3926 __ testptr(rmon, rmon); // check if a slot has been found 3927 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 3928 3929 // allocate one if there's no free slot 3930 { 3931 Label entry, loop; 3932 // 1. compute new pointers // rsp: old expression stack top 3933 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 3934 __ lea(rmon, Address(rbp, rmon, Address::times_ptr)); 3935 __ subptr(rsp, entry_size); // move expression stack top 3936 __ subptr(rmon, entry_size); // move expression stack bottom 3937 __ mov(rtop, rsp); // set start value for copy loop 3938 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom 3939 __ jmp(entry); 3940 // 2. move expression stack contents 3941 __ bind(loop); 3942 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 3943 // word from old location 3944 __ movptr(Address(rtop, 0), rbot); // and store it at new location 3945 __ addptr(rtop, wordSize); // advance to next word 3946 __ bind(entry); 3947 __ cmpptr(rtop, rmon); // check if bottom reached 3948 __ jcc(Assembler::notEqual, loop); // if not at bottom then 3949 // copy next word 3950 } 3951 3952 // call run-time routine 3953 // rmon: points to monitor entry 3954 __ bind(allocated); 3955 3956 // Increment bcp to point to the next bytecode, so exception 3957 // handling for async. exceptions work correctly. 3958 // The object has already been popped from the stack, so the 3959 // expression stack looks correct. 3960 __ increment(rbcp); 3961 3962 // store object 3963 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 3964 __ lock_object(rmon); 3965 3966 // check to make sure this monitor doesn't cause stack overflow after locking 3967 __ save_bcp(); // in case of exception 3968 __ generate_stack_overflow_check(0); 3969 3970 // The bcp has already been incremented. Just need to dispatch to 3971 // next instruction. 3972 __ dispatch_next(vtos); 3973 } 3974 3975 void TemplateTable::monitorexit() { 3976 transition(atos, vtos); 3977 3978 // check for null object 3979 __ null_check(rax); 3980 3981 const Address monitor_block_top( 3982 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3983 const Address monitor_block_bot( 3984 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3985 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3986 3987 Register rtop = c_rarg1; 3988 Register rbot = c_rarg2; 3989 3990 Label found; 3991 3992 // find matching slot 3993 { 3994 Label entry, loop; 3995 __ movptr(rtop, monitor_block_top); // derelativize pointer 3996 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 3997 // rtop points to current entry, starting with top-most entry 3998 3999 __ lea(rbot, monitor_block_bot); // points to word before bottom 4000 // of monitor block 4001 __ jmpb(entry); 4002 4003 __ bind(loop); 4004 // check if current entry is for same object 4005 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4006 // if same object then stop searching 4007 __ jcc(Assembler::equal, found); 4008 // otherwise advance to next entry 4009 __ addptr(rtop, entry_size); 4010 __ bind(entry); 4011 // check if bottom reached 4012 __ cmpptr(rtop, rbot); 4013 // if not at bottom then check this entry 4014 __ jcc(Assembler::notEqual, loop); 4015 } 4016 4017 // error handling. Unlocking was not block-structured 4018 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4019 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4020 __ should_not_reach_here(); 4021 4022 // call run-time routine 4023 __ bind(found); 4024 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4025 __ unlock_object(rtop); 4026 __ pop_ptr(rax); // discard object 4027 } 4028 4029 // Wide instructions 4030 void TemplateTable::wide() { 4031 transition(vtos, vtos); 4032 __ load_unsigned_byte(rbx, at_bcp(1)); 4033 ExternalAddress wtable((address)Interpreter::_wentry_point); 4034 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4035 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4036 } 4037 4038 // Multi arrays 4039 void TemplateTable::multianewarray() { 4040 transition(vtos, atos); 4041 4042 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4043 // last dim is on top of stack; we want address of first one: 4044 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4045 // the latter wordSize to point to the beginning of the array. 4046 __ lea(c_rarg1, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4047 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), c_rarg1); 4048 __ load_unsigned_byte(rbx, at_bcp(3)); 4049 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4050 }