1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "compiler/disassembler.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "gc/shared/gc_globals.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodCounters.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "oops/resolvedMethodEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/safepointMechanism.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "runtime/stubRoutines.hpp" 48 #include "runtime/synchronizer.hpp" 49 #include "utilities/macros.hpp" 50 51 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 52 53 // Global Register Names 54 static const Register rbcp = r13; 55 static const Register rlocals = r14; 56 57 // Address Computation: local variables 58 static inline Address iaddress(int n) { 59 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 60 } 61 62 static inline Address laddress(int n) { 63 return iaddress(n + 1); 64 } 65 66 static inline Address faddress(int n) { 67 return iaddress(n); 68 } 69 70 static inline Address daddress(int n) { 71 return laddress(n); 72 } 73 74 static inline Address aaddress(int n) { 75 return iaddress(n); 76 } 77 78 static inline Address iaddress(Register r) { 79 return Address(rlocals, r, Address::times_ptr); 80 } 81 82 static inline Address laddress(Register r) { 83 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 84 } 85 86 static inline Address faddress(Register r) { 87 return iaddress(r); 88 } 89 90 static inline Address daddress(Register r) { 91 return laddress(r); 92 } 93 94 static inline Address aaddress(Register r) { 95 return iaddress(r); 96 } 97 98 99 // expression stack 100 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 101 // data beyond the rsp which is potentially unsafe in an MT environment; 102 // an interrupt may overwrite that data.) 103 static inline Address at_rsp () { 104 return Address(rsp, 0); 105 } 106 107 // At top of Java expression stack which may be different than esp(). It 108 // isn't for category 1 objects. 109 static inline Address at_tos () { 110 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 111 } 112 113 static inline Address at_tos_p1() { 114 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 115 } 116 117 static inline Address at_tos_p2() { 118 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 119 } 120 121 // Condition conversion 122 static Assembler::Condition j_not(TemplateTable::Condition cc) { 123 switch (cc) { 124 case TemplateTable::equal : return Assembler::notEqual; 125 case TemplateTable::not_equal : return Assembler::equal; 126 case TemplateTable::less : return Assembler::greaterEqual; 127 case TemplateTable::less_equal : return Assembler::greater; 128 case TemplateTable::greater : return Assembler::lessEqual; 129 case TemplateTable::greater_equal: return Assembler::less; 130 } 131 ShouldNotReachHere(); 132 return Assembler::zero; 133 } 134 135 136 137 // Miscellaneous helper routines 138 // Store an oop (or null) at the address described by obj. 139 // If val == noreg this means store a null 140 141 142 static void do_oop_store(InterpreterMacroAssembler* _masm, 143 Address dst, 144 Register val, 145 DecoratorSet decorators = 0) { 146 assert(val == noreg || val == rax, "parameter is just for looks"); 147 __ store_heap_oop(dst, val, rscratch2, r9, r8, decorators); 148 } 149 150 static void do_oop_load(InterpreterMacroAssembler* _masm, 151 Address src, 152 Register dst, 153 DecoratorSet decorators = 0) { 154 __ load_heap_oop(dst, src, rdx, decorators); 155 } 156 157 Address TemplateTable::at_bcp(int offset) { 158 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 159 return Address(rbcp, offset); 160 } 161 162 163 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 164 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 165 int byte_no) { 166 if (!RewriteBytecodes) return; 167 Label L_patch_done; 168 169 switch (bc) { 170 case Bytecodes::_fast_aputfield: 171 case Bytecodes::_fast_bputfield: 172 case Bytecodes::_fast_zputfield: 173 case Bytecodes::_fast_cputfield: 174 case Bytecodes::_fast_dputfield: 175 case Bytecodes::_fast_fputfield: 176 case Bytecodes::_fast_iputfield: 177 case Bytecodes::_fast_lputfield: 178 case Bytecodes::_fast_sputfield: 179 { 180 // We skip bytecode quickening for putfield instructions when 181 // the put_code written to the constant pool cache is zero. 182 // This is required so that every execution of this instruction 183 // calls out to InterpreterRuntime::resolve_get_put to do 184 // additional, required work. 185 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 186 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 187 __ load_field_entry(temp_reg, bc_reg); 188 if (byte_no == f1_byte) { 189 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 190 } else { 191 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 192 } 193 194 __ movl(bc_reg, bc); 195 __ cmpl(temp_reg, (int) 0); 196 __ jcc(Assembler::zero, L_patch_done); // don't patch 197 } 198 break; 199 default: 200 assert(byte_no == -1, "sanity"); 201 // the pair bytecodes have already done the load. 202 if (load_bc_into_bc_reg) { 203 __ movl(bc_reg, bc); 204 } 205 } 206 207 if (JvmtiExport::can_post_breakpoint()) { 208 Label L_fast_patch; 209 // if a breakpoint is present we can't rewrite the stream directly 210 __ movzbl(temp_reg, at_bcp(0)); 211 __ cmpl(temp_reg, Bytecodes::_breakpoint); 212 __ jcc(Assembler::notEqual, L_fast_patch); 213 __ get_method(temp_reg); 214 // Let breakpoint table handling rewrite to quicker bytecode 215 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 216 #ifndef ASSERT 217 __ jmpb(L_patch_done); 218 #else 219 __ jmp(L_patch_done); 220 #endif 221 __ bind(L_fast_patch); 222 } 223 224 #ifdef ASSERT 225 Label L_okay; 226 __ load_unsigned_byte(temp_reg, at_bcp(0)); 227 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 228 __ jcc(Assembler::equal, L_okay); 229 __ cmpl(temp_reg, bc_reg); 230 __ jcc(Assembler::equal, L_okay); 231 __ stop("patching the wrong bytecode"); 232 __ bind(L_okay); 233 #endif 234 235 // patch bytecode 236 __ movb(at_bcp(0), bc_reg); 237 __ bind(L_patch_done); 238 } 239 // Individual instructions 240 241 242 void TemplateTable::nop() { 243 transition(vtos, vtos); 244 // nothing to do 245 } 246 247 void TemplateTable::shouldnotreachhere() { 248 transition(vtos, vtos); 249 __ stop("shouldnotreachhere bytecode"); 250 } 251 252 void TemplateTable::aconst_null() { 253 transition(vtos, atos); 254 __ xorl(rax, rax); 255 } 256 257 void TemplateTable::iconst(int value) { 258 transition(vtos, itos); 259 if (value == 0) { 260 __ xorl(rax, rax); 261 } else { 262 __ movl(rax, value); 263 } 264 } 265 266 void TemplateTable::lconst(int value) { 267 transition(vtos, ltos); 268 if (value == 0) { 269 __ xorl(rax, rax); 270 } else { 271 __ movl(rax, value); 272 } 273 } 274 275 276 277 void TemplateTable::fconst(int value) { 278 transition(vtos, ftos); 279 static float one = 1.0f, two = 2.0f; 280 switch (value) { 281 case 0: 282 __ xorps(xmm0, xmm0); 283 break; 284 case 1: 285 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 286 break; 287 case 2: 288 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 289 break; 290 default: 291 ShouldNotReachHere(); 292 break; 293 } 294 } 295 296 void TemplateTable::dconst(int value) { 297 transition(vtos, dtos); 298 static double one = 1.0; 299 switch (value) { 300 case 0: 301 __ xorpd(xmm0, xmm0); 302 break; 303 case 1: 304 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 305 break; 306 default: 307 ShouldNotReachHere(); 308 break; 309 } 310 } 311 312 void TemplateTable::bipush() { 313 transition(vtos, itos); 314 __ load_signed_byte(rax, at_bcp(1)); 315 } 316 317 void TemplateTable::sipush() { 318 transition(vtos, itos); 319 __ load_unsigned_short(rax, at_bcp(1)); 320 __ bswapl(rax); 321 __ sarl(rax, 16); 322 } 323 324 void TemplateTable::ldc(LdcType type) { 325 transition(vtos, vtos); 326 Register rarg = c_rarg1; 327 Label call_ldc, notFloat, notClass, notInt, Done; 328 329 if (is_ldc_wide(type)) { 330 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 331 } else { 332 __ load_unsigned_byte(rbx, at_bcp(1)); 333 } 334 335 __ get_cpool_and_tags(rcx, rax); 336 const int base_offset = ConstantPool::header_size() * wordSize; 337 const int tags_offset = Array<u1>::base_offset_in_bytes(); 338 339 // get type 340 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 341 342 // unresolved class - get the resolved class 343 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 344 __ jccb(Assembler::equal, call_ldc); 345 346 // unresolved class in error state - call into runtime to throw the error 347 // from the first resolution attempt 348 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 349 __ jccb(Assembler::equal, call_ldc); 350 351 // resolved class - need to call vm to get java mirror of the class 352 __ cmpl(rdx, JVM_CONSTANT_Class); 353 __ jcc(Assembler::notEqual, notClass); 354 355 __ bind(call_ldc); 356 357 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 358 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 359 360 __ push(atos); 361 __ jmp(Done); 362 363 __ bind(notClass); 364 __ cmpl(rdx, JVM_CONSTANT_Float); 365 __ jccb(Assembler::notEqual, notFloat); 366 367 // ftos 368 __ movflt(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset)); 369 __ push(ftos); 370 __ jmp(Done); 371 372 __ bind(notFloat); 373 __ cmpl(rdx, JVM_CONSTANT_Integer); 374 __ jccb(Assembler::notEqual, notInt); 375 376 // itos 377 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 378 __ push(itos); 379 __ jmp(Done); 380 381 // assume the tag is for condy; if not, the VM runtime will tell us 382 __ bind(notInt); 383 condy_helper(Done); 384 385 __ bind(Done); 386 } 387 388 // Fast path for caching oop constants. 389 void TemplateTable::fast_aldc(LdcType type) { 390 transition(vtos, atos); 391 392 Register result = rax; 393 Register tmp = rdx; 394 Register rarg = c_rarg1; 395 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 396 397 Label resolved; 398 399 // We are resolved if the resolved reference cache entry contains a 400 // non-null object (String, MethodType, etc.) 401 assert_different_registers(result, tmp); 402 __ get_cache_index_at_bcp(tmp, 1, index_size); 403 __ load_resolved_reference_at_index(result, tmp); 404 __ testptr(result, result); 405 __ jcc(Assembler::notZero, resolved); 406 407 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 408 409 // first time invocation - must resolve first 410 __ movl(rarg, (int)bytecode()); 411 __ call_VM(result, entry, rarg); 412 __ bind(resolved); 413 414 { // Check for the null sentinel. 415 // If we just called the VM, it already did the mapping for us, 416 // but it's harmless to retry. 417 Label notNull; 418 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 419 __ movptr(tmp, null_sentinel); 420 __ resolve_oop_handle(tmp, rscratch2); 421 __ cmpoop(tmp, result); 422 __ jccb(Assembler::notEqual, notNull); 423 __ xorptr(result, result); // null object reference 424 __ bind(notNull); 425 } 426 427 if (VerifyOops) { 428 __ verify_oop(result); 429 } 430 } 431 432 void TemplateTable::ldc2_w() { 433 transition(vtos, vtos); 434 Label notDouble, notLong, Done; 435 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 436 437 __ get_cpool_and_tags(rcx, rax); 438 const int base_offset = ConstantPool::header_size() * wordSize; 439 const int tags_offset = Array<u1>::base_offset_in_bytes(); 440 441 // get type 442 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 443 __ cmpl(rdx, JVM_CONSTANT_Double); 444 __ jccb(Assembler::notEqual, notDouble); 445 446 // dtos 447 __ movdbl(xmm0, Address(rcx, rbx, Address::times_ptr, base_offset)); 448 __ push(dtos); 449 450 __ jmp(Done); 451 __ bind(notDouble); 452 __ cmpl(rdx, JVM_CONSTANT_Long); 453 __ jccb(Assembler::notEqual, notLong); 454 455 // ltos 456 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 457 __ push(ltos); 458 __ jmp(Done); 459 460 __ bind(notLong); 461 condy_helper(Done); 462 463 __ bind(Done); 464 } 465 466 void TemplateTable::condy_helper(Label& Done) { 467 const Register obj = rax; 468 const Register off = rbx; 469 const Register flags = rcx; 470 const Register rarg = c_rarg1; 471 __ movl(rarg, (int)bytecode()); 472 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 473 __ get_vm_result_metadata(flags); 474 // VMr = obj = base address to find primitive value to push 475 // VMr2 = flags = (tos, off) using format of CPCE::_flags 476 __ movl(off, flags); 477 __ andl(off, ConstantPoolCache::field_index_mask); 478 const Address field(obj, off, Address::times_1, 0*wordSize); 479 480 // What sort of thing are we loading? 481 __ shrl(flags, ConstantPoolCache::tos_state_shift); 482 __ andl(flags, ConstantPoolCache::tos_state_mask); 483 484 switch (bytecode()) { 485 case Bytecodes::_ldc: 486 case Bytecodes::_ldc_w: 487 { 488 // tos in (itos, ftos, stos, btos, ctos, ztos) 489 Label notInt, notFloat, notShort, notByte, notChar, notBool; 490 __ cmpl(flags, itos); 491 __ jccb(Assembler::notEqual, notInt); 492 // itos 493 __ movl(rax, field); 494 __ push(itos); 495 __ jmp(Done); 496 497 __ bind(notInt); 498 __ cmpl(flags, ftos); 499 __ jccb(Assembler::notEqual, notFloat); 500 // ftos 501 __ movflt(xmm0, field); 502 __ push(ftos); 503 __ jmp(Done); 504 505 __ bind(notFloat); 506 __ cmpl(flags, stos); 507 __ jccb(Assembler::notEqual, notShort); 508 // stos 509 __ load_signed_short(rax, field); 510 __ push(stos); 511 __ jmp(Done); 512 513 __ bind(notShort); 514 __ cmpl(flags, btos); 515 __ jccb(Assembler::notEqual, notByte); 516 // btos 517 __ load_signed_byte(rax, field); 518 __ push(btos); 519 __ jmp(Done); 520 521 __ bind(notByte); 522 __ cmpl(flags, ctos); 523 __ jccb(Assembler::notEqual, notChar); 524 // ctos 525 __ load_unsigned_short(rax, field); 526 __ push(ctos); 527 __ jmp(Done); 528 529 __ bind(notChar); 530 __ cmpl(flags, ztos); 531 __ jccb(Assembler::notEqual, notBool); 532 // ztos 533 __ load_signed_byte(rax, field); 534 __ push(ztos); 535 __ jmp(Done); 536 537 __ bind(notBool); 538 break; 539 } 540 541 case Bytecodes::_ldc2_w: 542 { 543 Label notLong, notDouble; 544 __ cmpl(flags, ltos); 545 __ jccb(Assembler::notEqual, notLong); 546 // ltos 547 // Loading high word first because movptr clobbers rax 548 __ movptr(rax, field); 549 __ push(ltos); 550 __ jmp(Done); 551 552 __ bind(notLong); 553 __ cmpl(flags, dtos); 554 __ jccb(Assembler::notEqual, notDouble); 555 // dtos 556 __ movdbl(xmm0, field); 557 __ push(dtos); 558 __ jmp(Done); 559 560 __ bind(notDouble); 561 break; 562 } 563 564 default: 565 ShouldNotReachHere(); 566 } 567 568 __ stop("bad ldc/condy"); 569 } 570 571 void TemplateTable::locals_index(Register reg, int offset) { 572 __ load_unsigned_byte(reg, at_bcp(offset)); 573 __ negptr(reg); 574 } 575 576 void TemplateTable::iload() { 577 iload_internal(); 578 } 579 580 void TemplateTable::nofast_iload() { 581 iload_internal(may_not_rewrite); 582 } 583 584 void TemplateTable::iload_internal(RewriteControl rc) { 585 transition(vtos, itos); 586 if (RewriteFrequentPairs && rc == may_rewrite) { 587 Label rewrite, done; 588 const Register bc = c_rarg3; 589 assert(rbx != bc, "register damaged"); 590 591 // get next byte 592 __ load_unsigned_byte(rbx, 593 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 594 // if _iload, wait to rewrite to iload2. We only want to rewrite the 595 // last two iloads in a pair. Comparing against fast_iload means that 596 // the next bytecode is neither an iload or a caload, and therefore 597 // an iload pair. 598 __ cmpl(rbx, Bytecodes::_iload); 599 __ jcc(Assembler::equal, done); 600 601 __ cmpl(rbx, Bytecodes::_fast_iload); 602 __ movl(bc, Bytecodes::_fast_iload2); 603 604 __ jccb(Assembler::equal, rewrite); 605 606 // if _caload, rewrite to fast_icaload 607 __ cmpl(rbx, Bytecodes::_caload); 608 __ movl(bc, Bytecodes::_fast_icaload); 609 __ jccb(Assembler::equal, rewrite); 610 611 // rewrite so iload doesn't check again. 612 __ movl(bc, Bytecodes::_fast_iload); 613 614 // rewrite 615 // bc: fast bytecode 616 __ bind(rewrite); 617 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 618 __ bind(done); 619 } 620 621 // Get the local value into tos 622 locals_index(rbx); 623 __ movl(rax, iaddress(rbx)); 624 } 625 626 void TemplateTable::fast_iload2() { 627 transition(vtos, itos); 628 locals_index(rbx); 629 __ movl(rax, iaddress(rbx)); 630 __ push(itos); 631 locals_index(rbx, 3); 632 __ movl(rax, iaddress(rbx)); 633 } 634 635 void TemplateTable::fast_iload() { 636 transition(vtos, itos); 637 locals_index(rbx); 638 __ movl(rax, iaddress(rbx)); 639 } 640 641 void TemplateTable::lload() { 642 transition(vtos, ltos); 643 locals_index(rbx); 644 __ movptr(rax, laddress(rbx)); 645 } 646 647 void TemplateTable::fload() { 648 transition(vtos, ftos); 649 locals_index(rbx); 650 __ movflt(xmm0, faddress(rbx)); 651 } 652 653 void TemplateTable::dload() { 654 transition(vtos, dtos); 655 locals_index(rbx); 656 __ movdbl(xmm0, daddress(rbx)); 657 } 658 659 void TemplateTable::aload() { 660 transition(vtos, atos); 661 locals_index(rbx); 662 __ movptr(rax, aaddress(rbx)); 663 } 664 665 void TemplateTable::locals_index_wide(Register reg) { 666 __ load_unsigned_short(reg, at_bcp(2)); 667 __ bswapl(reg); 668 __ shrl(reg, 16); 669 __ negptr(reg); 670 } 671 672 void TemplateTable::wide_iload() { 673 transition(vtos, itos); 674 locals_index_wide(rbx); 675 __ movl(rax, iaddress(rbx)); 676 } 677 678 void TemplateTable::wide_lload() { 679 transition(vtos, ltos); 680 locals_index_wide(rbx); 681 __ movptr(rax, laddress(rbx)); 682 } 683 684 void TemplateTable::wide_fload() { 685 transition(vtos, ftos); 686 locals_index_wide(rbx); 687 __ movflt(xmm0, faddress(rbx)); 688 } 689 690 void TemplateTable::wide_dload() { 691 transition(vtos, dtos); 692 locals_index_wide(rbx); 693 __ movdbl(xmm0, daddress(rbx)); 694 } 695 696 void TemplateTable::wide_aload() { 697 transition(vtos, atos); 698 locals_index_wide(rbx); 699 __ movptr(rax, aaddress(rbx)); 700 } 701 702 void TemplateTable::index_check(Register array, Register index) { 703 // Pop ptr into array 704 __ pop_ptr(array); 705 index_check_without_pop(array, index); 706 } 707 708 void TemplateTable::index_check_without_pop(Register array, Register index) { 709 // destroys rbx 710 // sign extend index for use by indexed load 711 __ movl2ptr(index, index); 712 // check index 713 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 714 if (index != rbx) { 715 // ??? convention: move aberrant index into rbx for exception message 716 assert(rbx != array, "different registers"); 717 __ movl(rbx, index); 718 } 719 Label skip; 720 __ jccb(Assembler::below, skip); 721 // Pass array to create more detailed exceptions. 722 __ mov(c_rarg1, array); 723 __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 724 __ bind(skip); 725 } 726 727 void TemplateTable::iaload() { 728 transition(itos, itos); 729 // rax: index 730 // rdx: array 731 index_check(rdx, rax); // kills rbx 732 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 733 Address(rdx, rax, Address::times_4, 734 arrayOopDesc::base_offset_in_bytes(T_INT)), 735 noreg); 736 } 737 738 void TemplateTable::laload() { 739 transition(itos, ltos); 740 // rax: index 741 // rdx: array 742 index_check(rdx, rax); // kills rbx 743 // rbx,: index 744 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 745 Address(rdx, rbx, Address::times_8, 746 arrayOopDesc::base_offset_in_bytes(T_LONG)), 747 noreg); 748 } 749 750 751 752 void TemplateTable::faload() { 753 transition(itos, ftos); 754 // rax: index 755 // rdx: array 756 index_check(rdx, rax); // kills rbx 757 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 758 Address(rdx, rax, 759 Address::times_4, 760 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 761 noreg); 762 } 763 764 void TemplateTable::daload() { 765 transition(itos, dtos); 766 // rax: index 767 // rdx: array 768 index_check(rdx, rax); // kills rbx 769 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 770 Address(rdx, rax, 771 Address::times_8, 772 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 773 noreg); 774 } 775 776 void TemplateTable::aaload() { 777 transition(itos, atos); 778 // rax: index 779 // rdx: array 780 index_check(rdx, rax); // kills rbx 781 do_oop_load(_masm, 782 Address(rdx, rax, 783 UseCompressedOops ? Address::times_4 : Address::times_ptr, 784 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 785 rax, 786 IS_ARRAY); 787 } 788 789 void TemplateTable::baload() { 790 transition(itos, itos); 791 // rax: index 792 // rdx: array 793 index_check(rdx, rax); // kills rbx 794 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 795 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 796 noreg); 797 } 798 799 void TemplateTable::caload() { 800 transition(itos, itos); 801 // rax: index 802 // rdx: array 803 index_check(rdx, rax); // kills rbx 804 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 805 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 806 noreg); 807 } 808 809 // iload followed by caload frequent pair 810 void TemplateTable::fast_icaload() { 811 transition(vtos, itos); 812 // load index out of locals 813 locals_index(rbx); 814 __ movl(rax, iaddress(rbx)); 815 816 // rax: index 817 // rdx: array 818 index_check(rdx, rax); // kills rbx 819 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 820 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 821 noreg); 822 } 823 824 825 void TemplateTable::saload() { 826 transition(itos, itos); 827 // rax: index 828 // rdx: array 829 index_check(rdx, rax); // kills rbx 830 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 831 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 832 noreg); 833 } 834 835 void TemplateTable::iload(int n) { 836 transition(vtos, itos); 837 __ movl(rax, iaddress(n)); 838 } 839 840 void TemplateTable::lload(int n) { 841 transition(vtos, ltos); 842 __ movptr(rax, laddress(n)); 843 } 844 845 void TemplateTable::fload(int n) { 846 transition(vtos, ftos); 847 __ movflt(xmm0, faddress(n)); 848 } 849 850 void TemplateTable::dload(int n) { 851 transition(vtos, dtos); 852 __ movdbl(xmm0, daddress(n)); 853 } 854 855 void TemplateTable::aload(int n) { 856 transition(vtos, atos); 857 __ movptr(rax, aaddress(n)); 858 } 859 860 void TemplateTable::aload_0() { 861 aload_0_internal(); 862 } 863 864 void TemplateTable::nofast_aload_0() { 865 aload_0_internal(may_not_rewrite); 866 } 867 868 void TemplateTable::aload_0_internal(RewriteControl rc) { 869 transition(vtos, atos); 870 // According to bytecode histograms, the pairs: 871 // 872 // _aload_0, _fast_igetfield 873 // _aload_0, _fast_agetfield 874 // _aload_0, _fast_fgetfield 875 // 876 // occur frequently. If RewriteFrequentPairs is set, the (slow) 877 // _aload_0 bytecode checks if the next bytecode is either 878 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 879 // rewrites the current bytecode into a pair bytecode; otherwise it 880 // rewrites the current bytecode into _fast_aload_0 that doesn't do 881 // the pair check anymore. 882 // 883 // Note: If the next bytecode is _getfield, the rewrite must be 884 // delayed, otherwise we may miss an opportunity for a pair. 885 // 886 // Also rewrite frequent pairs 887 // aload_0, aload_1 888 // aload_0, iload_1 889 // These bytecodes with a small amount of code are most profitable 890 // to rewrite 891 if (RewriteFrequentPairs && rc == may_rewrite) { 892 Label rewrite, done; 893 894 const Register bc = c_rarg3; 895 assert(rbx != bc, "register damaged"); 896 897 // get next byte 898 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 899 900 // if _getfield then wait with rewrite 901 __ cmpl(rbx, Bytecodes::_getfield); 902 __ jcc(Assembler::equal, done); 903 904 // if _igetfield then rewrite to _fast_iaccess_0 905 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 906 __ cmpl(rbx, Bytecodes::_fast_igetfield); 907 __ movl(bc, Bytecodes::_fast_iaccess_0); 908 __ jccb(Assembler::equal, rewrite); 909 910 // if _agetfield then rewrite to _fast_aaccess_0 911 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 912 __ cmpl(rbx, Bytecodes::_fast_agetfield); 913 __ movl(bc, Bytecodes::_fast_aaccess_0); 914 __ jccb(Assembler::equal, rewrite); 915 916 // if _fgetfield then rewrite to _fast_faccess_0 917 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 918 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 919 __ movl(bc, Bytecodes::_fast_faccess_0); 920 __ jccb(Assembler::equal, rewrite); 921 922 // else rewrite to _fast_aload0 923 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 924 __ movl(bc, Bytecodes::_fast_aload_0); 925 926 // rewrite 927 // bc: fast bytecode 928 __ bind(rewrite); 929 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 930 931 __ bind(done); 932 } 933 934 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 935 aload(0); 936 } 937 938 void TemplateTable::istore() { 939 transition(itos, vtos); 940 locals_index(rbx); 941 __ movl(iaddress(rbx), rax); 942 } 943 944 945 void TemplateTable::lstore() { 946 transition(ltos, vtos); 947 locals_index(rbx); 948 __ movptr(laddress(rbx), rax); 949 } 950 951 void TemplateTable::fstore() { 952 transition(ftos, vtos); 953 locals_index(rbx); 954 __ movflt(faddress(rbx), xmm0); 955 } 956 957 void TemplateTable::dstore() { 958 transition(dtos, vtos); 959 locals_index(rbx); 960 __ movdbl(daddress(rbx), xmm0); 961 } 962 963 void TemplateTable::astore() { 964 transition(vtos, vtos); 965 __ pop_ptr(rax); 966 locals_index(rbx); 967 __ movptr(aaddress(rbx), rax); 968 } 969 970 void TemplateTable::wide_istore() { 971 transition(vtos, vtos); 972 __ pop_i(); 973 locals_index_wide(rbx); 974 __ movl(iaddress(rbx), rax); 975 } 976 977 void TemplateTable::wide_lstore() { 978 transition(vtos, vtos); 979 __ pop_l(); 980 locals_index_wide(rbx); 981 __ movptr(laddress(rbx), rax); 982 } 983 984 void TemplateTable::wide_fstore() { 985 transition(vtos, vtos); 986 __ pop_f(xmm0); 987 locals_index_wide(rbx); 988 __ movflt(faddress(rbx), xmm0); 989 } 990 991 void TemplateTable::wide_dstore() { 992 transition(vtos, vtos); 993 __ pop_d(xmm0); 994 locals_index_wide(rbx); 995 __ movdbl(daddress(rbx), xmm0); 996 } 997 998 void TemplateTable::wide_astore() { 999 transition(vtos, vtos); 1000 __ pop_ptr(rax); 1001 locals_index_wide(rbx); 1002 __ movptr(aaddress(rbx), rax); 1003 } 1004 1005 void TemplateTable::iastore() { 1006 transition(itos, vtos); 1007 __ pop_i(rbx); 1008 // rax: value 1009 // rbx: index 1010 // rdx: array 1011 index_check(rdx, rbx); // prefer index in rbx 1012 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1013 Address(rdx, rbx, Address::times_4, 1014 arrayOopDesc::base_offset_in_bytes(T_INT)), 1015 rax, noreg, noreg, noreg); 1016 } 1017 1018 void TemplateTable::lastore() { 1019 transition(ltos, vtos); 1020 __ pop_i(rbx); 1021 // rax,: low(value) 1022 // rcx: array 1023 // rdx: high(value) 1024 index_check(rcx, rbx); // prefer index in rbx, 1025 // rbx,: index 1026 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1027 Address(rcx, rbx, Address::times_8, 1028 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1029 noreg /* ltos */, noreg, noreg, noreg); 1030 } 1031 1032 1033 void TemplateTable::fastore() { 1034 transition(ftos, vtos); 1035 __ pop_i(rbx); 1036 // value is in xmm0 1037 // rbx: index 1038 // rdx: array 1039 index_check(rdx, rbx); // prefer index in rbx 1040 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1041 Address(rdx, rbx, Address::times_4, 1042 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1043 noreg /* ftos */, noreg, noreg, noreg); 1044 } 1045 1046 void TemplateTable::dastore() { 1047 transition(dtos, vtos); 1048 __ pop_i(rbx); 1049 // value is in xmm0 1050 // rbx: index 1051 // rdx: array 1052 index_check(rdx, rbx); // prefer index in rbx 1053 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1054 Address(rdx, rbx, Address::times_8, 1055 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1056 noreg /* dtos */, noreg, noreg, noreg); 1057 } 1058 1059 void TemplateTable::aastore() { 1060 Label is_null, ok_is_subtype, done; 1061 transition(vtos, vtos); 1062 // stack: ..., array, index, value 1063 __ movptr(rax, at_tos()); // value 1064 __ movl(rcx, at_tos_p1()); // index 1065 __ movptr(rdx, at_tos_p2()); // array 1066 1067 Address element_address(rdx, rcx, 1068 UseCompressedOops? Address::times_4 : Address::times_ptr, 1069 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1070 1071 index_check_without_pop(rdx, rcx); // kills rbx 1072 __ testptr(rax, rax); 1073 __ jcc(Assembler::zero, is_null); 1074 1075 // Move subklass into rbx 1076 __ load_klass(rbx, rax, rscratch1); 1077 // Move superklass into rax 1078 __ load_klass(rax, rdx, rscratch1); 1079 __ movptr(rax, Address(rax, 1080 ObjArrayKlass::element_klass_offset())); 1081 1082 // Generate subtype check. Blows rcx, rdi 1083 // Superklass in rax. Subklass in rbx. 1084 __ gen_subtype_check(rbx, ok_is_subtype); 1085 1086 // Come here on failure 1087 // object is at TOS 1088 __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry)); 1089 1090 // Come here on success 1091 __ bind(ok_is_subtype); 1092 1093 // Get the value we will store 1094 __ movptr(rax, at_tos()); 1095 __ movl(rcx, at_tos_p1()); // index 1096 // Now store using the appropriate barrier 1097 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1098 __ jmp(done); 1099 1100 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1101 __ bind(is_null); 1102 __ profile_null_seen(rbx); 1103 1104 // Store a null 1105 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1106 1107 // Pop stack arguments 1108 __ bind(done); 1109 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1110 } 1111 1112 void TemplateTable::bastore() { 1113 transition(itos, vtos); 1114 __ pop_i(rbx); 1115 // rax: value 1116 // rbx: index 1117 // rdx: array 1118 index_check(rdx, rbx); // prefer index in rbx 1119 // Need to check whether array is boolean or byte 1120 // since both types share the bastore bytecode. 1121 __ load_klass(rcx, rdx, rscratch1); 1122 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1123 int diffbit = Klass::layout_helper_boolean_diffbit(); 1124 __ testl(rcx, diffbit); 1125 Label L_skip; 1126 __ jccb(Assembler::zero, L_skip); 1127 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1128 __ bind(L_skip); 1129 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1130 Address(rdx, rbx,Address::times_1, 1131 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1132 rax, noreg, noreg, noreg); 1133 } 1134 1135 void TemplateTable::castore() { 1136 transition(itos, vtos); 1137 __ pop_i(rbx); 1138 // rax: value 1139 // rbx: index 1140 // rdx: array 1141 index_check(rdx, rbx); // prefer index in rbx 1142 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1143 Address(rdx, rbx, Address::times_2, 1144 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1145 rax, noreg, noreg, noreg); 1146 } 1147 1148 1149 void TemplateTable::sastore() { 1150 castore(); 1151 } 1152 1153 void TemplateTable::istore(int n) { 1154 transition(itos, vtos); 1155 __ movl(iaddress(n), rax); 1156 } 1157 1158 void TemplateTable::lstore(int n) { 1159 transition(ltos, vtos); 1160 __ movptr(laddress(n), rax); 1161 } 1162 1163 void TemplateTable::fstore(int n) { 1164 transition(ftos, vtos); 1165 __ movflt(faddress(n), xmm0); 1166 } 1167 1168 void TemplateTable::dstore(int n) { 1169 transition(dtos, vtos); 1170 __ movdbl(daddress(n), xmm0); 1171 } 1172 1173 1174 void TemplateTable::astore(int n) { 1175 transition(vtos, vtos); 1176 __ pop_ptr(rax); 1177 __ movptr(aaddress(n), rax); 1178 } 1179 1180 void TemplateTable::pop() { 1181 transition(vtos, vtos); 1182 __ addptr(rsp, Interpreter::stackElementSize); 1183 } 1184 1185 void TemplateTable::pop2() { 1186 transition(vtos, vtos); 1187 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1188 } 1189 1190 1191 void TemplateTable::dup() { 1192 transition(vtos, vtos); 1193 __ load_ptr(0, rax); 1194 __ push_ptr(rax); 1195 // stack: ..., a, a 1196 } 1197 1198 void TemplateTable::dup_x1() { 1199 transition(vtos, vtos); 1200 // stack: ..., a, b 1201 __ load_ptr( 0, rax); // load b 1202 __ load_ptr( 1, rcx); // load a 1203 __ store_ptr(1, rax); // store b 1204 __ store_ptr(0, rcx); // store a 1205 __ push_ptr(rax); // push b 1206 // stack: ..., b, a, b 1207 } 1208 1209 void TemplateTable::dup_x2() { 1210 transition(vtos, vtos); 1211 // stack: ..., a, b, c 1212 __ load_ptr( 0, rax); // load c 1213 __ load_ptr( 2, rcx); // load a 1214 __ store_ptr(2, rax); // store c in a 1215 __ push_ptr(rax); // push c 1216 // stack: ..., c, b, c, c 1217 __ load_ptr( 2, rax); // load b 1218 __ store_ptr(2, rcx); // store a in b 1219 // stack: ..., c, a, c, c 1220 __ store_ptr(1, rax); // store b in c 1221 // stack: ..., c, a, b, c 1222 } 1223 1224 void TemplateTable::dup2() { 1225 transition(vtos, vtos); 1226 // stack: ..., a, b 1227 __ load_ptr(1, rax); // load a 1228 __ push_ptr(rax); // push a 1229 __ load_ptr(1, rax); // load b 1230 __ push_ptr(rax); // push b 1231 // stack: ..., a, b, a, b 1232 } 1233 1234 1235 void TemplateTable::dup2_x1() { 1236 transition(vtos, vtos); 1237 // stack: ..., a, b, c 1238 __ load_ptr( 0, rcx); // load c 1239 __ load_ptr( 1, rax); // load b 1240 __ push_ptr(rax); // push b 1241 __ push_ptr(rcx); // push c 1242 // stack: ..., a, b, c, b, c 1243 __ store_ptr(3, rcx); // store c in b 1244 // stack: ..., a, c, c, b, c 1245 __ load_ptr( 4, rcx); // load a 1246 __ store_ptr(2, rcx); // store a in 2nd c 1247 // stack: ..., a, c, a, b, c 1248 __ store_ptr(4, rax); // store b in a 1249 // stack: ..., b, c, a, b, c 1250 } 1251 1252 void TemplateTable::dup2_x2() { 1253 transition(vtos, vtos); 1254 // stack: ..., a, b, c, d 1255 __ load_ptr( 0, rcx); // load d 1256 __ load_ptr( 1, rax); // load c 1257 __ push_ptr(rax); // push c 1258 __ push_ptr(rcx); // push d 1259 // stack: ..., a, b, c, d, c, d 1260 __ load_ptr( 4, rax); // load b 1261 __ store_ptr(2, rax); // store b in d 1262 __ store_ptr(4, rcx); // store d in b 1263 // stack: ..., a, d, c, b, c, d 1264 __ load_ptr( 5, rcx); // load a 1265 __ load_ptr( 3, rax); // load c 1266 __ store_ptr(3, rcx); // store a in c 1267 __ store_ptr(5, rax); // store c in a 1268 // stack: ..., c, d, a, b, c, d 1269 } 1270 1271 void TemplateTable::swap() { 1272 transition(vtos, vtos); 1273 // stack: ..., a, b 1274 __ load_ptr( 1, rcx); // load a 1275 __ load_ptr( 0, rax); // load b 1276 __ store_ptr(0, rcx); // store a in b 1277 __ store_ptr(1, rax); // store b in a 1278 // stack: ..., b, a 1279 } 1280 1281 void TemplateTable::iop2(Operation op) { 1282 transition(itos, itos); 1283 switch (op) { 1284 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1285 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1286 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1287 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1288 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1289 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1290 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1291 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1292 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1293 default : ShouldNotReachHere(); 1294 } 1295 } 1296 1297 void TemplateTable::lop2(Operation op) { 1298 transition(ltos, ltos); 1299 switch (op) { 1300 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1301 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1302 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1303 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1304 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1305 default : ShouldNotReachHere(); 1306 } 1307 } 1308 1309 void TemplateTable::idiv() { 1310 transition(itos, itos); 1311 __ movl(rcx, rax); 1312 __ pop_i(rax); 1313 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1314 // they are not equal, one could do a normal division (no correction 1315 // needed), which may speed up this implementation for the common case. 1316 // (see also JVM spec., p.243 & p.271) 1317 __ corrected_idivl(rcx); 1318 } 1319 1320 void TemplateTable::irem() { 1321 transition(itos, itos); 1322 __ movl(rcx, rax); 1323 __ pop_i(rax); 1324 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1325 // they are not equal, one could do a normal division (no correction 1326 // needed), which may speed up this implementation for the common case. 1327 // (see also JVM spec., p.243 & p.271) 1328 __ corrected_idivl(rcx); 1329 __ movl(rax, rdx); 1330 } 1331 1332 void TemplateTable::lmul() { 1333 transition(ltos, ltos); 1334 __ pop_l(rdx); 1335 __ imulq(rax, rdx); 1336 } 1337 1338 void TemplateTable::ldiv() { 1339 transition(ltos, ltos); 1340 __ mov(rcx, rax); 1341 __ pop_l(rax); 1342 // generate explicit div0 check 1343 __ testq(rcx, rcx); 1344 __ jump_cc(Assembler::zero, 1345 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1346 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1347 // they are not equal, one could do a normal division (no correction 1348 // needed), which may speed up this implementation for the common case. 1349 // (see also JVM spec., p.243 & p.271) 1350 __ corrected_idivq(rcx); // kills rbx 1351 } 1352 1353 void TemplateTable::lrem() { 1354 transition(ltos, ltos); 1355 __ mov(rcx, rax); 1356 __ pop_l(rax); 1357 __ testq(rcx, rcx); 1358 __ jump_cc(Assembler::zero, 1359 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1360 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1361 // they are not equal, one could do a normal division (no correction 1362 // needed), which may speed up this implementation for the common case. 1363 // (see also JVM spec., p.243 & p.271) 1364 __ corrected_idivq(rcx); // kills rbx 1365 __ mov(rax, rdx); 1366 } 1367 1368 void TemplateTable::lshl() { 1369 transition(itos, ltos); 1370 __ movl(rcx, rax); // get shift count 1371 __ pop_l(rax); // get shift value 1372 __ shlq(rax); 1373 } 1374 1375 void TemplateTable::lshr() { 1376 transition(itos, ltos); 1377 __ movl(rcx, rax); // get shift count 1378 __ pop_l(rax); // get shift value 1379 __ sarq(rax); 1380 } 1381 1382 void TemplateTable::lushr() { 1383 transition(itos, ltos); 1384 __ movl(rcx, rax); // get shift count 1385 __ pop_l(rax); // get shift value 1386 __ shrq(rax); 1387 } 1388 1389 void TemplateTable::fop2(Operation op) { 1390 transition(ftos, ftos); 1391 1392 switch (op) { 1393 case add: 1394 __ addss(xmm0, at_rsp()); 1395 __ addptr(rsp, Interpreter::stackElementSize); 1396 break; 1397 case sub: 1398 __ movflt(xmm1, xmm0); 1399 __ pop_f(xmm0); 1400 __ subss(xmm0, xmm1); 1401 break; 1402 case mul: 1403 __ mulss(xmm0, at_rsp()); 1404 __ addptr(rsp, Interpreter::stackElementSize); 1405 break; 1406 case div: 1407 __ movflt(xmm1, xmm0); 1408 __ pop_f(xmm0); 1409 __ divss(xmm0, xmm1); 1410 break; 1411 case rem: 1412 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1413 // modulo operation. The frem method calls the function 1414 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1415 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1416 // (signalling or quiet) is returned. 1417 __ movflt(xmm1, xmm0); 1418 __ pop_f(xmm0); 1419 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1420 break; 1421 default: 1422 ShouldNotReachHere(); 1423 break; 1424 } 1425 } 1426 1427 void TemplateTable::dop2(Operation op) { 1428 transition(dtos, dtos); 1429 switch (op) { 1430 case add: 1431 __ addsd(xmm0, at_rsp()); 1432 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1433 break; 1434 case sub: 1435 __ movdbl(xmm1, xmm0); 1436 __ pop_d(xmm0); 1437 __ subsd(xmm0, xmm1); 1438 break; 1439 case mul: 1440 __ mulsd(xmm0, at_rsp()); 1441 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1442 break; 1443 case div: 1444 __ movdbl(xmm1, xmm0); 1445 __ pop_d(xmm0); 1446 __ divsd(xmm0, xmm1); 1447 break; 1448 case rem: 1449 // Similar to fop2(), the modulo operation is performed using the 1450 // SharedRuntime::drem method on x86_64 platforms for the same reasons 1451 // as mentioned in fop2(). 1452 __ movdbl(xmm1, xmm0); 1453 __ pop_d(xmm0); 1454 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1455 break; 1456 default: 1457 ShouldNotReachHere(); 1458 break; 1459 } 1460 } 1461 1462 void TemplateTable::ineg() { 1463 transition(itos, itos); 1464 __ negl(rax); 1465 } 1466 1467 void TemplateTable::lneg() { 1468 transition(ltos, ltos); 1469 __ negq(rax); 1470 } 1471 1472 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1473 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1474 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1475 // of 128-bits operands for SSE instructions. 1476 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1477 // Store the value to a 128-bits operand. 1478 operand[0] = lo; 1479 operand[1] = hi; 1480 return operand; 1481 } 1482 1483 // Buffer for 128-bits masks used by SSE instructions. 1484 static jlong float_signflip_pool[2*2]; 1485 static jlong double_signflip_pool[2*2]; 1486 1487 void TemplateTable::fneg() { 1488 transition(ftos, ftos); 1489 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1490 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1491 } 1492 1493 void TemplateTable::dneg() { 1494 transition(dtos, dtos); 1495 static jlong *double_signflip = 1496 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1497 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1498 } 1499 1500 void TemplateTable::iinc() { 1501 transition(vtos, vtos); 1502 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1503 locals_index(rbx); 1504 __ addl(iaddress(rbx), rdx); 1505 } 1506 1507 void TemplateTable::wide_iinc() { 1508 transition(vtos, vtos); 1509 __ movl(rdx, at_bcp(4)); // get constant 1510 locals_index_wide(rbx); 1511 __ bswapl(rdx); // swap bytes & sign-extend constant 1512 __ sarl(rdx, 16); 1513 __ addl(iaddress(rbx), rdx); 1514 // Note: should probably use only one movl to get both 1515 // the index and the constant -> fix this 1516 } 1517 1518 void TemplateTable::convert() { 1519 // Checking 1520 #ifdef ASSERT 1521 { 1522 TosState tos_in = ilgl; 1523 TosState tos_out = ilgl; 1524 switch (bytecode()) { 1525 case Bytecodes::_i2l: // fall through 1526 case Bytecodes::_i2f: // fall through 1527 case Bytecodes::_i2d: // fall through 1528 case Bytecodes::_i2b: // fall through 1529 case Bytecodes::_i2c: // fall through 1530 case Bytecodes::_i2s: tos_in = itos; break; 1531 case Bytecodes::_l2i: // fall through 1532 case Bytecodes::_l2f: // fall through 1533 case Bytecodes::_l2d: tos_in = ltos; break; 1534 case Bytecodes::_f2i: // fall through 1535 case Bytecodes::_f2l: // fall through 1536 case Bytecodes::_f2d: tos_in = ftos; break; 1537 case Bytecodes::_d2i: // fall through 1538 case Bytecodes::_d2l: // fall through 1539 case Bytecodes::_d2f: tos_in = dtos; break; 1540 default : ShouldNotReachHere(); 1541 } 1542 switch (bytecode()) { 1543 case Bytecodes::_l2i: // fall through 1544 case Bytecodes::_f2i: // fall through 1545 case Bytecodes::_d2i: // fall through 1546 case Bytecodes::_i2b: // fall through 1547 case Bytecodes::_i2c: // fall through 1548 case Bytecodes::_i2s: tos_out = itos; break; 1549 case Bytecodes::_i2l: // fall through 1550 case Bytecodes::_f2l: // fall through 1551 case Bytecodes::_d2l: tos_out = ltos; break; 1552 case Bytecodes::_i2f: // fall through 1553 case Bytecodes::_l2f: // fall through 1554 case Bytecodes::_d2f: tos_out = ftos; break; 1555 case Bytecodes::_i2d: // fall through 1556 case Bytecodes::_l2d: // fall through 1557 case Bytecodes::_f2d: tos_out = dtos; break; 1558 default : ShouldNotReachHere(); 1559 } 1560 transition(tos_in, tos_out); 1561 } 1562 #endif // ASSERT 1563 1564 static const int64_t is_nan = 0x8000000000000000L; 1565 1566 // Conversion 1567 switch (bytecode()) { 1568 case Bytecodes::_i2l: 1569 __ movslq(rax, rax); 1570 break; 1571 case Bytecodes::_i2f: 1572 __ cvtsi2ssl(xmm0, rax); 1573 break; 1574 case Bytecodes::_i2d: 1575 __ cvtsi2sdl(xmm0, rax); 1576 break; 1577 case Bytecodes::_i2b: 1578 __ movsbl(rax, rax); 1579 break; 1580 case Bytecodes::_i2c: 1581 __ movzwl(rax, rax); 1582 break; 1583 case Bytecodes::_i2s: 1584 __ movswl(rax, rax); 1585 break; 1586 case Bytecodes::_l2i: 1587 __ movl(rax, rax); 1588 break; 1589 case Bytecodes::_l2f: 1590 __ cvtsi2ssq(xmm0, rax); 1591 break; 1592 case Bytecodes::_l2d: 1593 __ cvtsi2sdq(xmm0, rax); 1594 break; 1595 case Bytecodes::_f2i: 1596 { 1597 Label L; 1598 __ cvttss2sil(rax, xmm0); 1599 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1600 __ jcc(Assembler::notEqual, L); 1601 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1602 __ bind(L); 1603 } 1604 break; 1605 case Bytecodes::_f2l: 1606 { 1607 Label L; 1608 __ cvttss2siq(rax, xmm0); 1609 // NaN or overflow/underflow? 1610 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1611 __ jcc(Assembler::notEqual, L); 1612 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1613 __ bind(L); 1614 } 1615 break; 1616 case Bytecodes::_f2d: 1617 __ cvtss2sd(xmm0, xmm0); 1618 break; 1619 case Bytecodes::_d2i: 1620 { 1621 Label L; 1622 __ cvttsd2sil(rax, xmm0); 1623 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1624 __ jcc(Assembler::notEqual, L); 1625 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1626 __ bind(L); 1627 } 1628 break; 1629 case Bytecodes::_d2l: 1630 { 1631 Label L; 1632 __ cvttsd2siq(rax, xmm0); 1633 // NaN or overflow/underflow? 1634 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1635 __ jcc(Assembler::notEqual, L); 1636 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1637 __ bind(L); 1638 } 1639 break; 1640 case Bytecodes::_d2f: 1641 __ cvtsd2ss(xmm0, xmm0); 1642 break; 1643 default: 1644 ShouldNotReachHere(); 1645 } 1646 } 1647 1648 void TemplateTable::lcmp() { 1649 transition(ltos, itos); 1650 Label done; 1651 __ pop_l(rdx); 1652 __ cmpq(rdx, rax); 1653 __ movl(rax, -1); 1654 __ jccb(Assembler::less, done); 1655 __ setb(Assembler::notEqual, rax); 1656 __ movzbl(rax, rax); 1657 __ bind(done); 1658 } 1659 1660 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1661 Label done; 1662 if (is_float) { 1663 // XXX get rid of pop here, use ... reg, mem32 1664 __ pop_f(xmm1); 1665 __ ucomiss(xmm1, xmm0); 1666 } else { 1667 // XXX get rid of pop here, use ... reg, mem64 1668 __ pop_d(xmm1); 1669 __ ucomisd(xmm1, xmm0); 1670 } 1671 if (unordered_result < 0) { 1672 __ movl(rax, -1); 1673 __ jccb(Assembler::parity, done); 1674 __ jccb(Assembler::below, done); 1675 __ setb(Assembler::notEqual, rdx); 1676 __ movzbl(rax, rdx); 1677 } else { 1678 __ movl(rax, 1); 1679 __ jccb(Assembler::parity, done); 1680 __ jccb(Assembler::above, done); 1681 __ movl(rax, 0); 1682 __ jccb(Assembler::equal, done); 1683 __ decrementl(rax); 1684 } 1685 __ bind(done); 1686 } 1687 1688 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1689 __ get_method(rcx); // rcx holds method 1690 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 1691 // holds bumped taken count 1692 1693 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1694 InvocationCounter::counter_offset(); 1695 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1696 InvocationCounter::counter_offset(); 1697 1698 // Load up edx with the branch displacement 1699 if (is_wide) { 1700 __ movl(rdx, at_bcp(1)); 1701 } else { 1702 __ load_signed_short(rdx, at_bcp(1)); 1703 } 1704 __ bswapl(rdx); 1705 1706 if (!is_wide) { 1707 __ sarl(rdx, 16); 1708 } 1709 __ movl2ptr(rdx, rdx); 1710 1711 // Handle all the JSR stuff here, then exit. 1712 // It's much shorter and cleaner than intermingling with the non-JSR 1713 // normal-branch stuff occurring below. 1714 if (is_jsr) { 1715 // Pre-load the next target bytecode into rbx 1716 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 1717 1718 // compute return address as bci in rax 1719 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1720 in_bytes(ConstMethod::codes_offset()))); 1721 __ subptr(rax, Address(rcx, Method::const_offset())); 1722 // Adjust the bcp in r13 by the displacement in rdx 1723 __ addptr(rbcp, rdx); 1724 // jsr returns atos that is not an oop 1725 __ push_i(rax); 1726 __ dispatch_only(vtos, true); 1727 return; 1728 } 1729 1730 // Normal (non-jsr) branch handling 1731 1732 // Adjust the bcp in r13 by the displacement in rdx 1733 __ addptr(rbcp, rdx); 1734 1735 assert(UseLoopCounter || !UseOnStackReplacement, 1736 "on-stack-replacement requires loop counters"); 1737 Label backedge_counter_overflow; 1738 Label dispatch; 1739 if (UseLoopCounter) { 1740 // increment backedge counter for backward branches 1741 // rax: MDO 1742 // rbx: MDO bumped taken-count 1743 // rcx: method 1744 // rdx: target offset 1745 // r13: target bcp 1746 // r14: locals pointer 1747 __ testl(rdx, rdx); // check if forward or backward branch 1748 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1749 1750 // check if MethodCounters exists 1751 Label has_counters; 1752 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1753 __ testptr(rax, rax); 1754 __ jcc(Assembler::notZero, has_counters); 1755 __ push(rdx); 1756 __ push(rcx); 1757 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1758 rcx); 1759 __ pop(rcx); 1760 __ pop(rdx); 1761 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1762 __ testptr(rax, rax); 1763 __ jcc(Assembler::zero, dispatch); 1764 __ bind(has_counters); 1765 1766 Label no_mdo; 1767 if (ProfileInterpreter) { 1768 // Are we profiling? 1769 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1770 __ testptr(rbx, rbx); 1771 __ jccb(Assembler::zero, no_mdo); 1772 // Increment the MDO backedge counter 1773 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1774 in_bytes(InvocationCounter::counter_offset())); 1775 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 1776 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 1777 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1778 __ jmp(dispatch); 1779 } 1780 __ bind(no_mdo); 1781 // Increment backedge counter in MethodCounters* 1782 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1783 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 1784 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 1785 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 1786 __ bind(dispatch); 1787 } 1788 1789 // Pre-load the next target bytecode into rbx 1790 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 1791 1792 // continue with the bytecode @ target 1793 // rax: return bci for jsr's, unused otherwise 1794 // rbx: target bytecode 1795 // r13: target bcp 1796 __ dispatch_only(vtos, true); 1797 1798 if (UseLoopCounter) { 1799 if (UseOnStackReplacement) { 1800 Label set_mdp; 1801 // invocation counter overflow 1802 __ bind(backedge_counter_overflow); 1803 __ negptr(rdx); 1804 __ addptr(rdx, rbcp); // branch bcp 1805 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1806 __ call_VM(noreg, 1807 CAST_FROM_FN_PTR(address, 1808 InterpreterRuntime::frequency_counter_overflow), 1809 rdx); 1810 1811 // rax: osr nmethod (osr ok) or null (osr not possible) 1812 // rdx: scratch 1813 // r14: locals pointer 1814 // r13: bcp 1815 __ testptr(rax, rax); // test result 1816 __ jcc(Assembler::zero, dispatch); // no osr if null 1817 // nmethod may have been invalidated (VM may block upon call_VM return) 1818 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 1819 __ jcc(Assembler::notEqual, dispatch); 1820 1821 // We have the address of an on stack replacement routine in rax. 1822 // In preparation of invoking it, first we must migrate the locals 1823 // and monitors from off the interpreter frame on the stack. 1824 // Ensure to save the osr nmethod over the migration call, 1825 // it will be preserved in rbx. 1826 __ mov(rbx, rax); 1827 1828 JFR_ONLY(__ enter_jfr_critical_section();) 1829 1830 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1831 1832 // rax is OSR buffer, move it to expected parameter location 1833 __ mov(j_rarg0, rax); 1834 // We use j_rarg definitions here so that registers don't conflict as parameter 1835 // registers change across platforms as we are in the midst of a calling 1836 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1837 1838 const Register retaddr = j_rarg2; 1839 const Register sender_sp = j_rarg1; 1840 1841 // pop the interpreter frame 1842 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1843 __ leave(); // remove frame anchor 1844 JFR_ONLY(__ leave_jfr_critical_section();) 1845 __ pop(retaddr); // get return address 1846 __ mov(rsp, sender_sp); // set sp to sender sp 1847 // Ensure compiled code always sees stack at proper alignment 1848 __ andptr(rsp, -(StackAlignmentInBytes)); 1849 1850 // push the return address 1851 __ push(retaddr); 1852 1853 // and begin the OSR nmethod 1854 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 1855 } 1856 } 1857 } 1858 1859 void TemplateTable::if_0cmp(Condition cc) { 1860 transition(itos, vtos); 1861 // assume branch is more often taken than not (loops use backward branches) 1862 Label not_taken; 1863 __ testl(rax, rax); 1864 __ jcc(j_not(cc), not_taken); 1865 branch(false, false); 1866 __ bind(not_taken); 1867 __ profile_not_taken_branch(rax); 1868 } 1869 1870 void TemplateTable::if_icmp(Condition cc) { 1871 transition(itos, vtos); 1872 // assume branch is more often taken than not (loops use backward branches) 1873 Label not_taken; 1874 __ pop_i(rdx); 1875 __ cmpl(rdx, rax); 1876 __ jcc(j_not(cc), not_taken); 1877 branch(false, false); 1878 __ bind(not_taken); 1879 __ profile_not_taken_branch(rax); 1880 } 1881 1882 void TemplateTable::if_nullcmp(Condition cc) { 1883 transition(atos, vtos); 1884 // assume branch is more often taken than not (loops use backward branches) 1885 Label not_taken; 1886 __ testptr(rax, rax); 1887 __ jcc(j_not(cc), not_taken); 1888 branch(false, false); 1889 __ bind(not_taken); 1890 __ profile_not_taken_branch(rax); 1891 } 1892 1893 void TemplateTable::if_acmp(Condition cc) { 1894 transition(atos, vtos); 1895 // assume branch is more often taken than not (loops use backward branches) 1896 Label not_taken; 1897 __ pop_ptr(rdx); 1898 __ cmpoop(rdx, rax); 1899 __ jcc(j_not(cc), not_taken); 1900 branch(false, false); 1901 __ bind(not_taken); 1902 __ profile_not_taken_branch(rax); 1903 } 1904 1905 void TemplateTable::ret() { 1906 transition(vtos, vtos); 1907 locals_index(rbx); 1908 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 1909 __ profile_ret(rbx, rcx); 1910 __ get_method(rax); 1911 __ movptr(rbcp, Address(rax, Method::const_offset())); 1912 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 1913 ConstMethod::codes_offset())); 1914 __ dispatch_next(vtos, 0, true); 1915 } 1916 1917 void TemplateTable::wide_ret() { 1918 transition(vtos, vtos); 1919 locals_index_wide(rbx); 1920 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 1921 __ profile_ret(rbx, rcx); 1922 __ get_method(rax); 1923 __ movptr(rbcp, Address(rax, Method::const_offset())); 1924 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 1925 __ dispatch_next(vtos, 0, true); 1926 } 1927 1928 void TemplateTable::tableswitch() { 1929 Label default_case, continue_execution; 1930 transition(itos, vtos); 1931 1932 // align r13/rsi 1933 __ lea(rbx, at_bcp(BytesPerInt)); 1934 __ andptr(rbx, -BytesPerInt); 1935 // load lo & hi 1936 __ movl(rcx, Address(rbx, BytesPerInt)); 1937 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 1938 __ bswapl(rcx); 1939 __ bswapl(rdx); 1940 // check against lo & hi 1941 __ cmpl(rax, rcx); 1942 __ jcc(Assembler::less, default_case); 1943 __ cmpl(rax, rdx); 1944 __ jcc(Assembler::greater, default_case); 1945 // lookup dispatch offset 1946 __ subl(rax, rcx); 1947 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1948 __ profile_switch_case(rax, rbx, rcx); 1949 // continue execution 1950 __ bind(continue_execution); 1951 __ bswapl(rdx); 1952 __ movl2ptr(rdx, rdx); 1953 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 1954 __ addptr(rbcp, rdx); 1955 __ dispatch_only(vtos, true); 1956 // handle default 1957 __ bind(default_case); 1958 __ profile_switch_default(rax); 1959 __ movl(rdx, Address(rbx, 0)); 1960 __ jmp(continue_execution); 1961 } 1962 1963 void TemplateTable::lookupswitch() { 1964 transition(itos, itos); 1965 __ stop("lookupswitch bytecode should have been rewritten"); 1966 } 1967 1968 void TemplateTable::fast_linearswitch() { 1969 transition(itos, vtos); 1970 Label loop_entry, loop, found, continue_execution; 1971 // bswap rax so we can avoid bswapping the table entries 1972 __ bswapl(rax); 1973 // align r13 1974 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 1975 // this instruction (change offsets 1976 // below) 1977 __ andptr(rbx, -BytesPerInt); 1978 // set counter 1979 __ movl(rcx, Address(rbx, BytesPerInt)); 1980 __ bswapl(rcx); 1981 __ jmpb(loop_entry); 1982 // table search 1983 __ bind(loop); 1984 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 1985 __ jcc(Assembler::equal, found); 1986 __ bind(loop_entry); 1987 __ decrementl(rcx); 1988 __ jcc(Assembler::greaterEqual, loop); 1989 // default case 1990 __ profile_switch_default(rax); 1991 __ movl(rdx, Address(rbx, 0)); 1992 __ jmp(continue_execution); 1993 // entry found -> get offset 1994 __ bind(found); 1995 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 1996 __ profile_switch_case(rcx, rax, rbx); 1997 // continue execution 1998 __ bind(continue_execution); 1999 __ bswapl(rdx); 2000 __ movl2ptr(rdx, rdx); 2001 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2002 __ addptr(rbcp, rdx); 2003 __ dispatch_only(vtos, true); 2004 } 2005 2006 void TemplateTable::fast_binaryswitch() { 2007 transition(itos, vtos); 2008 // Implementation using the following core algorithm: 2009 // 2010 // int binary_search(int key, LookupswitchPair* array, int n) { 2011 // // Binary search according to "Methodik des Programmierens" by 2012 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2013 // int i = 0; 2014 // int j = n; 2015 // while (i+1 < j) { 2016 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2017 // // with Q: for all i: 0 <= i < n: key < a[i] 2018 // // where a stands for the array and assuming that the (inexisting) 2019 // // element a[n] is infinitely big. 2020 // int h = (i + j) >> 1; 2021 // // i < h < j 2022 // if (key < array[h].fast_match()) { 2023 // j = h; 2024 // } else { 2025 // i = h; 2026 // } 2027 // } 2028 // // R: a[i] <= key < a[i+1] or Q 2029 // // (i.e., if key is within array, i is the correct index) 2030 // return i; 2031 // } 2032 2033 // Register allocation 2034 const Register key = rax; // already set (tosca) 2035 const Register array = rbx; 2036 const Register i = rcx; 2037 const Register j = rdx; 2038 const Register h = rdi; 2039 const Register temp = rsi; 2040 2041 // Find array start 2042 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2043 // get rid of this 2044 // instruction (change 2045 // offsets below) 2046 __ andptr(array, -BytesPerInt); 2047 2048 // Initialize i & j 2049 __ xorl(i, i); // i = 0; 2050 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2051 2052 // Convert j into native byteordering 2053 __ bswapl(j); 2054 2055 // And start 2056 Label entry; 2057 __ jmp(entry); 2058 2059 // binary search loop 2060 { 2061 Label loop; 2062 __ bind(loop); 2063 // int h = (i + j) >> 1; 2064 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2065 __ sarl(h, 1); // h = (i + j) >> 1; 2066 // if (key < array[h].fast_match()) { 2067 // j = h; 2068 // } else { 2069 // i = h; 2070 // } 2071 // Convert array[h].match to native byte-ordering before compare 2072 __ movl(temp, Address(array, h, Address::times_8)); 2073 __ bswapl(temp); 2074 __ cmpl(key, temp); 2075 // j = h if (key < array[h].fast_match()) 2076 __ cmov32(Assembler::less, j, h); 2077 // i = h if (key >= array[h].fast_match()) 2078 __ cmov32(Assembler::greaterEqual, i, h); 2079 // while (i+1 < j) 2080 __ bind(entry); 2081 __ leal(h, Address(i, 1)); // i+1 2082 __ cmpl(h, j); // i+1 < j 2083 __ jcc(Assembler::less, loop); 2084 } 2085 2086 // end of binary search, result index is i (must check again!) 2087 Label default_case; 2088 // Convert array[i].match to native byte-ordering before compare 2089 __ movl(temp, Address(array, i, Address::times_8)); 2090 __ bswapl(temp); 2091 __ cmpl(key, temp); 2092 __ jcc(Assembler::notEqual, default_case); 2093 2094 // entry found -> j = offset 2095 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2096 __ profile_switch_case(i, key, array); 2097 __ bswapl(j); 2098 __ movslq(j, j); 2099 2100 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2101 __ addptr(rbcp, j); 2102 __ dispatch_only(vtos, true); 2103 2104 // default case -> j = default offset 2105 __ bind(default_case); 2106 __ profile_switch_default(i); 2107 __ movl(j, Address(array, -2 * BytesPerInt)); 2108 __ bswapl(j); 2109 __ movslq(j, j); 2110 2111 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2112 __ addptr(rbcp, j); 2113 __ dispatch_only(vtos, true); 2114 } 2115 2116 void TemplateTable::_return(TosState state) { 2117 transition(state, state); 2118 2119 assert(_desc->calls_vm(), 2120 "inconsistent calls_vm information"); // call in remove_activation 2121 2122 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2123 assert(state == vtos, "only valid state"); 2124 Register robj = c_rarg1; 2125 __ movptr(robj, aaddress(0)); 2126 __ load_klass(rdi, robj, rscratch1); 2127 __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer); 2128 Label skip_register_finalizer; 2129 __ jcc(Assembler::zero, skip_register_finalizer); 2130 2131 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2132 2133 __ bind(skip_register_finalizer); 2134 } 2135 2136 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2137 Label no_safepoint; 2138 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2139 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2140 __ jcc(Assembler::zero, no_safepoint); 2141 __ push(state); 2142 __ push_cont_fastpath(); 2143 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2144 InterpreterRuntime::at_safepoint)); 2145 __ pop_cont_fastpath(); 2146 __ pop(state); 2147 __ bind(no_safepoint); 2148 } 2149 2150 // Narrow result if state is itos but result type is smaller. 2151 // Need to narrow in the return bytecode rather than in generate_return_entry 2152 // since compiled code callers expect the result to already be narrowed. 2153 if (state == itos) { 2154 __ narrow(rax); 2155 } 2156 __ remove_activation(state, rbcp); 2157 2158 __ jmp(rbcp); 2159 } 2160 2161 // ---------------------------------------------------------------------------- 2162 // Volatile variables demand their effects be made known to all CPU's 2163 // in order. Store buffers on most chips allow reads & writes to 2164 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2165 // without some kind of memory barrier (i.e., it's not sufficient that 2166 // the interpreter does not reorder volatile references, the hardware 2167 // also must not reorder them). 2168 // 2169 // According to the new Java Memory Model (JMM): 2170 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2171 // writes act as acquire & release, so: 2172 // (2) A read cannot let unrelated NON-volatile memory refs that 2173 // happen after the read float up to before the read. It's OK for 2174 // non-volatile memory refs that happen before the volatile read to 2175 // float down below it. 2176 // (3) Similar a volatile write cannot let unrelated NON-volatile 2177 // memory refs that happen BEFORE the write float down to after the 2178 // write. It's OK for non-volatile memory refs that happen after the 2179 // volatile write to float up before it. 2180 // 2181 // We only put in barriers around volatile refs (they are expensive), 2182 // not _between_ memory refs (that would require us to track the 2183 // flavor of the previous memory refs). Requirements (2) and (3) 2184 // require some barriers before volatile stores and after volatile 2185 // loads. These nearly cover requirement (1) but miss the 2186 // volatile-store-volatile-load case. This final case is placed after 2187 // volatile-stores although it could just as well go before 2188 // volatile-loads. 2189 2190 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2191 // Helper function to insert a is-volatile test and memory barrier 2192 __ membar(order_constraint); 2193 } 2194 2195 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2196 Register cache, 2197 Register index) { 2198 const Register temp = rbx; 2199 assert_different_registers(cache, index, temp); 2200 2201 Label L_clinit_barrier_slow; 2202 Label resolved; 2203 2204 Bytecodes::Code code = bytecode(); 2205 2206 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2207 2208 __ load_method_entry(cache, index); 2209 switch(byte_no) { 2210 case f1_byte: 2211 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2212 break; 2213 case f2_byte: 2214 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2215 break; 2216 default: 2217 ShouldNotReachHere(); 2218 } 2219 __ cmpl(temp, code); // have we resolved this bytecode? 2220 __ jcc(Assembler::equal, resolved); 2221 2222 // resolve first time through 2223 // Class initialization barrier slow path lands here as well. 2224 __ bind(L_clinit_barrier_slow); 2225 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2226 __ movl(temp, code); 2227 __ call_VM(noreg, entry, temp); 2228 // Update registers with resolved info 2229 __ load_method_entry(cache, index); 2230 2231 __ bind(resolved); 2232 2233 // Class initialization barrier for static methods 2234 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2235 const Register method = temp; 2236 const Register klass = temp; 2237 2238 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2239 __ load_method_holder(klass, method); 2240 __ clinit_barrier(klass, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2241 } 2242 } 2243 2244 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2245 Register cache, 2246 Register index) { 2247 const Register temp = rbx; 2248 assert_different_registers(cache, index, temp); 2249 2250 Label L_clinit_barrier_slow; 2251 Label resolved; 2252 2253 Bytecodes::Code code = bytecode(); 2254 switch (code) { 2255 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2256 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2257 default: break; 2258 } 2259 2260 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2261 __ load_field_entry(cache, index); 2262 if (byte_no == f1_byte) { 2263 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2264 } else { 2265 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2266 } 2267 __ cmpl(temp, code); // have we resolved this bytecode? 2268 __ jcc(Assembler::equal, resolved); 2269 2270 // resolve first time through 2271 __ bind(L_clinit_barrier_slow); 2272 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2273 __ movl(temp, code); 2274 __ call_VM(noreg, entry, temp); 2275 // Update registers with resolved info 2276 __ load_field_entry(cache, index); 2277 2278 __ bind(resolved); 2279 2280 // Class initialization barrier for static fields 2281 if (VM_Version::supports_fast_class_init_checks() && 2282 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) { 2283 const Register field_holder = temp; 2284 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2285 assert(thread != noreg, "x86_32 not supported"); 2286 2287 __ movptr(field_holder, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 2288 __ clinit_barrier(field_holder, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2289 } 2290 } 2291 2292 void TemplateTable::load_resolved_field_entry(Register obj, 2293 Register cache, 2294 Register tos_state, 2295 Register offset, 2296 Register flags, 2297 bool is_static = false) { 2298 assert_different_registers(cache, tos_state, flags, offset); 2299 2300 // Field offset 2301 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2302 2303 // Flags 2304 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2305 2306 // TOS state 2307 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2308 2309 // Klass overwrite register 2310 if (is_static) { 2311 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2312 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2313 __ movptr(obj, Address(obj, mirror_offset)); 2314 __ resolve_oop_handle(obj, rscratch2); 2315 } 2316 2317 } 2318 2319 void TemplateTable::load_invokedynamic_entry(Register method) { 2320 // setup registers 2321 const Register appendix = rax; 2322 const Register cache = rcx; 2323 const Register index = rdx; 2324 assert_different_registers(method, appendix, cache, index); 2325 2326 __ save_bcp(); 2327 2328 Label resolved; 2329 2330 __ load_resolved_indy_entry(cache, index); 2331 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2332 2333 // Compare the method to zero 2334 __ testptr(method, method); 2335 __ jcc(Assembler::notZero, resolved); 2336 2337 Bytecodes::Code code = bytecode(); 2338 2339 // Call to the interpreter runtime to resolve invokedynamic 2340 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2341 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2342 __ call_VM(noreg, entry, method); 2343 // Update registers with resolved info 2344 __ load_resolved_indy_entry(cache, index); 2345 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2346 2347 #ifdef ASSERT 2348 __ testptr(method, method); 2349 __ jcc(Assembler::notZero, resolved); 2350 __ stop("Should be resolved by now"); 2351 #endif // ASSERT 2352 __ bind(resolved); 2353 2354 Label L_no_push; 2355 // Check if there is an appendix 2356 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2357 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2358 __ jcc(Assembler::zero, L_no_push); 2359 2360 // Get appendix 2361 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2362 // Push the appendix as a trailing parameter 2363 // since the parameter_size includes it. 2364 __ load_resolved_reference_at_index(appendix, index); 2365 __ verify_oop(appendix); 2366 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2367 __ bind(L_no_push); 2368 2369 // compute return type 2370 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2371 // load return address 2372 { 2373 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2374 ExternalAddress table(table_addr); 2375 __ lea(rscratch1, table); 2376 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2377 } 2378 2379 // push return address 2380 __ push(index); 2381 } 2382 2383 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2384 Register method, 2385 Register flags) { 2386 // setup registers 2387 const Register index = rdx; 2388 assert_different_registers(cache, index); 2389 assert_different_registers(method, cache, flags); 2390 2391 // determine constant pool cache field offsets 2392 resolve_cache_and_index_for_method(f1_byte, cache, index); 2393 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2394 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2395 } 2396 2397 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2398 Register method, 2399 Register ref_index, 2400 Register flags) { 2401 // setup registers 2402 const Register index = rdx; 2403 assert_different_registers(cache, index); 2404 assert_different_registers(cache, method, ref_index, flags); 2405 2406 // determine constant pool cache field offsets 2407 resolve_cache_and_index_for_method(f1_byte, cache, index); 2408 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2409 2410 // Maybe push appendix 2411 Label L_no_push; 2412 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift)); 2413 __ jcc(Assembler::zero, L_no_push); 2414 // invokehandle uses an index into the resolved references array 2415 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2416 // Push the appendix as a trailing parameter. 2417 // This must be done before we get the receiver, 2418 // since the parameter_size includes it. 2419 Register appendix = method; 2420 __ load_resolved_reference_at_index(appendix, ref_index); 2421 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2422 __ bind(L_no_push); 2423 2424 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2425 } 2426 2427 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2428 Register klass, 2429 Register method_or_table_index, 2430 Register flags) { 2431 // setup registers 2432 const Register index = rdx; 2433 assert_different_registers(cache, klass, method_or_table_index, flags); 2434 2435 // determine constant pool cache field offsets 2436 resolve_cache_and_index_for_method(f1_byte, cache, index); 2437 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2438 2439 // Invokeinterface can behave in different ways: 2440 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2441 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2442 // vtable index is placed in the register. 2443 // Otherwise, the registers will be populated with the klass and method. 2444 2445 Label NotVirtual; Label NotVFinal; Label Done; 2446 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift); 2447 __ jcc(Assembler::zero, NotVirtual); 2448 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2449 __ jcc(Assembler::zero, NotVFinal); 2450 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2451 __ jmp(Done); 2452 2453 __ bind(NotVFinal); 2454 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2455 __ jmp(Done); 2456 2457 __ bind(NotVirtual); 2458 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2459 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2460 __ bind(Done); 2461 } 2462 2463 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2464 Register method_or_table_index, 2465 Register flags) { 2466 // setup registers 2467 const Register index = rdx; 2468 assert_different_registers(index, cache); 2469 assert_different_registers(method_or_table_index, cache, flags); 2470 2471 // determine constant pool cache field offsets 2472 resolve_cache_and_index_for_method(f2_byte, cache, index); 2473 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2474 2475 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2476 Label isVFinal; Label Done; 2477 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2478 __ jcc(Assembler::notZero, isVFinal); 2479 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2480 __ jmp(Done); 2481 __ bind(isVFinal); 2482 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2483 __ bind(Done); 2484 } 2485 2486 // The registers cache and index expected to be set before call. 2487 // Correct values of the cache and index registers are preserved. 2488 void TemplateTable::jvmti_post_field_access(Register cache, 2489 Register index, 2490 bool is_static, 2491 bool has_tos) { 2492 if (JvmtiExport::can_post_field_access()) { 2493 // Check to see if a field access watch has been set before we take 2494 // the time to call into the VM. 2495 Label L1; 2496 assert_different_registers(cache, index, rax); 2497 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2498 __ testl(rax,rax); 2499 __ jcc(Assembler::zero, L1); 2500 2501 // cache entry pointer 2502 __ load_field_entry(cache, index); 2503 if (is_static) { 2504 __ xorptr(rax, rax); // null object reference 2505 } else { 2506 __ pop(atos); // Get the object 2507 __ verify_oop(rax); 2508 __ push(atos); // Restore stack state 2509 } 2510 // rax,: object pointer or null 2511 // cache: cache entry pointer 2512 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2513 rax, cache); 2514 2515 __ load_field_entry(cache, index); 2516 __ bind(L1); 2517 } 2518 } 2519 2520 void TemplateTable::pop_and_check_object(Register r) { 2521 __ pop_ptr(r); 2522 __ null_check(r); // for field access must check obj. 2523 __ verify_oop(r); 2524 } 2525 2526 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2527 transition(vtos, vtos); 2528 2529 const Register obj = c_rarg3; 2530 const Register cache = rcx; 2531 const Register index = rdx; 2532 const Register off = rbx; 2533 const Register tos_state = rax; 2534 const Register flags = rdx; 2535 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2536 2537 resolve_cache_and_index_for_field(byte_no, cache, index); 2538 jvmti_post_field_access(cache, index, is_static, false); 2539 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2540 2541 if (!is_static) pop_and_check_object(obj); 2542 2543 const Address field(obj, off, Address::times_1, 0*wordSize); 2544 2545 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2546 2547 // Make sure we don't need to mask edx after the above shift 2548 assert(btos == 0, "change code, btos != 0"); 2549 __ testl(tos_state, tos_state); 2550 __ jcc(Assembler::notZero, notByte); 2551 2552 // btos 2553 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg); 2554 __ push(btos); 2555 // Rewrite bytecode to be faster 2556 if (!is_static && rc == may_rewrite) { 2557 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2558 } 2559 __ jmp(Done); 2560 2561 __ bind(notByte); 2562 __ cmpl(tos_state, ztos); 2563 __ jcc(Assembler::notEqual, notBool); 2564 2565 // ztos (same code as btos) 2566 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg); 2567 __ push(ztos); 2568 // Rewrite bytecode to be faster 2569 if (!is_static && rc == may_rewrite) { 2570 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2571 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2572 } 2573 __ jmp(Done); 2574 2575 __ bind(notBool); 2576 __ cmpl(tos_state, atos); 2577 __ jcc(Assembler::notEqual, notObj); 2578 // atos 2579 do_oop_load(_masm, field, rax); 2580 __ push(atos); 2581 if (!is_static && rc == may_rewrite) { 2582 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2583 } 2584 __ jmp(Done); 2585 2586 __ bind(notObj); 2587 __ cmpl(tos_state, itos); 2588 __ jcc(Assembler::notEqual, notInt); 2589 // itos 2590 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 2591 __ push(itos); 2592 // Rewrite bytecode to be faster 2593 if (!is_static && rc == may_rewrite) { 2594 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2595 } 2596 __ jmp(Done); 2597 2598 __ bind(notInt); 2599 __ cmpl(tos_state, ctos); 2600 __ jcc(Assembler::notEqual, notChar); 2601 // ctos 2602 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg); 2603 __ push(ctos); 2604 // Rewrite bytecode to be faster 2605 if (!is_static && rc == may_rewrite) { 2606 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2607 } 2608 __ jmp(Done); 2609 2610 __ bind(notChar); 2611 __ cmpl(tos_state, stos); 2612 __ jcc(Assembler::notEqual, notShort); 2613 // stos 2614 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg); 2615 __ push(stos); 2616 // Rewrite bytecode to be faster 2617 if (!is_static && rc == may_rewrite) { 2618 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2619 } 2620 __ jmp(Done); 2621 2622 __ bind(notShort); 2623 __ cmpl(tos_state, ltos); 2624 __ jcc(Assembler::notEqual, notLong); 2625 // ltos 2626 // Generate code as if volatile (x86_32). There just aren't enough registers to 2627 // save that information and this code is faster than the test. 2628 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg); 2629 __ push(ltos); 2630 // Rewrite bytecode to be faster 2631 if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2632 __ jmp(Done); 2633 2634 __ bind(notLong); 2635 __ cmpl(tos_state, ftos); 2636 __ jcc(Assembler::notEqual, notFloat); 2637 // ftos 2638 2639 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 2640 __ push(ftos); 2641 // Rewrite bytecode to be faster 2642 if (!is_static && rc == may_rewrite) { 2643 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2644 } 2645 __ jmp(Done); 2646 2647 __ bind(notFloat); 2648 #ifdef ASSERT 2649 Label notDouble; 2650 __ cmpl(tos_state, dtos); 2651 __ jcc(Assembler::notEqual, notDouble); 2652 #endif 2653 // dtos 2654 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2655 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg); 2656 __ push(dtos); 2657 // Rewrite bytecode to be faster 2658 if (!is_static && rc == may_rewrite) { 2659 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2660 } 2661 #ifdef ASSERT 2662 __ jmp(Done); 2663 2664 __ bind(notDouble); 2665 __ stop("Bad state"); 2666 #endif 2667 2668 __ bind(Done); 2669 // [jk] not needed currently 2670 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2671 // Assembler::LoadStore)); 2672 } 2673 2674 void TemplateTable::getfield(int byte_no) { 2675 getfield_or_static(byte_no, false); 2676 } 2677 2678 void TemplateTable::nofast_getfield(int byte_no) { 2679 getfield_or_static(byte_no, false, may_not_rewrite); 2680 } 2681 2682 void TemplateTable::getstatic(int byte_no) { 2683 getfield_or_static(byte_no, true); 2684 } 2685 2686 2687 // The registers cache and index expected to be set before call. 2688 // The function may destroy various registers, just not the cache and index registers. 2689 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2690 // Cache is rcx and index is rdx 2691 const Register entry = c_rarg2; // ResolvedFieldEntry 2692 const Register obj = c_rarg1; // Object pointer 2693 const Register value = c_rarg3; // JValue object 2694 2695 if (JvmtiExport::can_post_field_modification()) { 2696 // Check to see if a field modification watch has been set before 2697 // we take the time to call into the VM. 2698 Label L1; 2699 assert_different_registers(cache, obj, rax); 2700 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2701 __ testl(rax, rax); 2702 __ jcc(Assembler::zero, L1); 2703 2704 __ mov(entry, cache); 2705 2706 if (is_static) { 2707 // Life is simple. Null out the object pointer. 2708 __ xorl(obj, obj); 2709 2710 } else { 2711 // Life is harder. The stack holds the value on top, followed by 2712 // the object. We don't know the size of the value, though; it 2713 // could be one or two words depending on its type. As a result, 2714 // we must find the type to determine where the object is. 2715 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset()))); 2716 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue 2717 __ cmpl(value, ltos); 2718 __ cmovptr(Assembler::equal, 2719 obj, at_tos_p2()); // ltos (two word jvalue) 2720 __ cmpl(value, dtos); 2721 __ cmovptr(Assembler::equal, 2722 obj, at_tos_p2()); // dtos (two word jvalue) 2723 } 2724 2725 // object (tos) 2726 __ mov(value, rsp); 2727 // obj: object pointer set up above (null if static) 2728 // cache: field entry pointer 2729 // value: jvalue object on the stack 2730 __ call_VM(noreg, 2731 CAST_FROM_FN_PTR(address, 2732 InterpreterRuntime::post_field_modification), 2733 obj, entry, value); 2734 // Reload field entry 2735 __ load_field_entry(cache, index); 2736 __ bind(L1); 2737 } 2738 } 2739 2740 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2741 transition(vtos, vtos); 2742 2743 const Register obj = rcx; 2744 const Register cache = rcx; 2745 const Register index = rdx; 2746 const Register tos_state = rdx; 2747 const Register off = rbx; 2748 const Register flags = rax; 2749 2750 resolve_cache_and_index_for_field(byte_no, cache, index); 2751 jvmti_post_field_mod(cache, index, is_static); 2752 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2753 2754 // [jk] not needed currently 2755 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2756 // Assembler::StoreStore)); 2757 2758 Label notVolatile, Done; 2759 2760 // Check for volatile store 2761 __ andl(flags, (1 << ResolvedFieldEntry::is_volatile_shift)); 2762 __ testl(flags, flags); 2763 __ jcc(Assembler::zero, notVolatile); 2764 2765 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 2766 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2767 Assembler::StoreStore)); 2768 __ jmp(Done); 2769 __ bind(notVolatile); 2770 2771 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 2772 2773 __ bind(Done); 2774 } 2775 2776 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 2777 Register obj, Register off, Register tos_state) { 2778 2779 // field addresses 2780 const Address field(obj, off, Address::times_1, 0*wordSize); 2781 2782 Label notByte, notBool, notInt, notShort, notChar, 2783 notLong, notFloat, notObj; 2784 Label Done; 2785 2786 const Register bc = c_rarg3; 2787 2788 // Test TOS state 2789 __ testl(tos_state, tos_state); 2790 __ jcc(Assembler::notZero, notByte); 2791 2792 // btos 2793 { 2794 __ pop(btos); 2795 if (!is_static) pop_and_check_object(obj); 2796 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 2797 if (!is_static && rc == may_rewrite) { 2798 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 2799 } 2800 __ jmp(Done); 2801 } 2802 2803 __ bind(notByte); 2804 __ cmpl(tos_state, ztos); 2805 __ jcc(Assembler::notEqual, notBool); 2806 2807 // ztos 2808 { 2809 __ pop(ztos); 2810 if (!is_static) pop_and_check_object(obj); 2811 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 2812 if (!is_static && rc == may_rewrite) { 2813 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 2814 } 2815 __ jmp(Done); 2816 } 2817 2818 __ bind(notBool); 2819 __ cmpl(tos_state, atos); 2820 __ jcc(Assembler::notEqual, notObj); 2821 2822 // atos 2823 { 2824 __ pop(atos); 2825 if (!is_static) pop_and_check_object(obj); 2826 // Store into the field 2827 do_oop_store(_masm, field, rax); 2828 if (!is_static && rc == may_rewrite) { 2829 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2830 } 2831 __ jmp(Done); 2832 } 2833 2834 __ bind(notObj); 2835 __ cmpl(tos_state, itos); 2836 __ jcc(Assembler::notEqual, notInt); 2837 2838 // itos 2839 { 2840 __ pop(itos); 2841 if (!is_static) pop_and_check_object(obj); 2842 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 2843 if (!is_static && rc == may_rewrite) { 2844 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 2845 } 2846 __ jmp(Done); 2847 } 2848 2849 __ bind(notInt); 2850 __ cmpl(tos_state, ctos); 2851 __ jcc(Assembler::notEqual, notChar); 2852 2853 // ctos 2854 { 2855 __ pop(ctos); 2856 if (!is_static) pop_and_check_object(obj); 2857 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 2858 if (!is_static && rc == may_rewrite) { 2859 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 2860 } 2861 __ jmp(Done); 2862 } 2863 2864 __ bind(notChar); 2865 __ cmpl(tos_state, stos); 2866 __ jcc(Assembler::notEqual, notShort); 2867 2868 // stos 2869 { 2870 __ pop(stos); 2871 if (!is_static) pop_and_check_object(obj); 2872 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 2873 if (!is_static && rc == may_rewrite) { 2874 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 2875 } 2876 __ jmp(Done); 2877 } 2878 2879 __ bind(notShort); 2880 __ cmpl(tos_state, ltos); 2881 __ jcc(Assembler::notEqual, notLong); 2882 2883 // ltos 2884 { 2885 __ pop(ltos); 2886 if (!is_static) pop_and_check_object(obj); 2887 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 2888 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 2889 if (!is_static && rc == may_rewrite) { 2890 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 2891 } 2892 __ jmp(Done); 2893 } 2894 2895 __ bind(notLong); 2896 __ cmpl(tos_state, ftos); 2897 __ jcc(Assembler::notEqual, notFloat); 2898 2899 // ftos 2900 { 2901 __ pop(ftos); 2902 if (!is_static) pop_and_check_object(obj); 2903 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2904 if (!is_static && rc == may_rewrite) { 2905 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 2906 } 2907 __ jmp(Done); 2908 } 2909 2910 __ bind(notFloat); 2911 #ifdef ASSERT 2912 Label notDouble; 2913 __ cmpl(tos_state, dtos); 2914 __ jcc(Assembler::notEqual, notDouble); 2915 #endif 2916 2917 // dtos 2918 { 2919 __ pop(dtos); 2920 if (!is_static) pop_and_check_object(obj); 2921 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2922 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 2923 if (!is_static && rc == may_rewrite) { 2924 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 2925 } 2926 } 2927 2928 #ifdef ASSERT 2929 __ jmp(Done); 2930 2931 __ bind(notDouble); 2932 __ stop("Bad state"); 2933 #endif 2934 2935 __ bind(Done); 2936 } 2937 2938 void TemplateTable::putfield(int byte_no) { 2939 putfield_or_static(byte_no, false); 2940 } 2941 2942 void TemplateTable::nofast_putfield(int byte_no) { 2943 putfield_or_static(byte_no, false, may_not_rewrite); 2944 } 2945 2946 void TemplateTable::putstatic(int byte_no) { 2947 putfield_or_static(byte_no, true); 2948 } 2949 2950 void TemplateTable::jvmti_post_fast_field_mod() { 2951 2952 const Register scratch = c_rarg3; 2953 2954 if (JvmtiExport::can_post_field_modification()) { 2955 // Check to see if a field modification watch has been set before 2956 // we take the time to call into the VM. 2957 Label L2; 2958 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2959 __ testl(scratch, scratch); 2960 __ jcc(Assembler::zero, L2); 2961 __ pop_ptr(rbx); // copy the object pointer from tos 2962 __ verify_oop(rbx); 2963 __ push_ptr(rbx); // put the object pointer back on tos 2964 // Save tos values before call_VM() clobbers them. Since we have 2965 // to do it for every data type, we use the saved values as the 2966 // jvalue object. 2967 switch (bytecode()) { // load values into the jvalue object 2968 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 2969 case Bytecodes::_fast_bputfield: // fall through 2970 case Bytecodes::_fast_zputfield: // fall through 2971 case Bytecodes::_fast_sputfield: // fall through 2972 case Bytecodes::_fast_cputfield: // fall through 2973 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 2974 case Bytecodes::_fast_dputfield: __ push(dtos); break; 2975 case Bytecodes::_fast_fputfield: __ push(ftos); break; 2976 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 2977 2978 default: 2979 ShouldNotReachHere(); 2980 } 2981 __ mov(scratch, rsp); // points to jvalue on the stack 2982 // access constant pool cache entry 2983 __ load_field_entry(c_rarg2, rax); 2984 __ verify_oop(rbx); 2985 // rbx: object pointer copied above 2986 // c_rarg2: cache entry pointer 2987 // c_rarg3: jvalue object on the stack 2988 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3); 2989 2990 switch (bytecode()) { // restore tos values 2991 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 2992 case Bytecodes::_fast_bputfield: // fall through 2993 case Bytecodes::_fast_zputfield: // fall through 2994 case Bytecodes::_fast_sputfield: // fall through 2995 case Bytecodes::_fast_cputfield: // fall through 2996 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 2997 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 2998 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 2999 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3000 default: break; 3001 } 3002 __ bind(L2); 3003 } 3004 } 3005 3006 void TemplateTable::fast_storefield(TosState state) { 3007 transition(state, vtos); 3008 3009 Register cache = rcx; 3010 3011 Label notVolatile, Done; 3012 3013 jvmti_post_fast_field_mod(); 3014 3015 __ push(rax); 3016 __ load_field_entry(rcx, rax); 3017 load_resolved_field_entry(noreg, cache, rax, rbx, rdx); 3018 // RBX: field offset, RAX: TOS, RDX: flags 3019 __ andl(rdx, (1 << ResolvedFieldEntry::is_volatile_shift)); 3020 __ pop(rax); 3021 3022 // Get object from stack 3023 pop_and_check_object(rcx); 3024 3025 // field address 3026 const Address field(rcx, rbx, Address::times_1); 3027 3028 // Check for volatile store 3029 __ testl(rdx, rdx); 3030 __ jcc(Assembler::zero, notVolatile); 3031 3032 fast_storefield_helper(field, rax); 3033 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3034 Assembler::StoreStore)); 3035 __ jmp(Done); 3036 __ bind(notVolatile); 3037 3038 fast_storefield_helper(field, rax); 3039 3040 __ bind(Done); 3041 } 3042 3043 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3044 3045 // access field 3046 switch (bytecode()) { 3047 case Bytecodes::_fast_aputfield: 3048 do_oop_store(_masm, field, rax); 3049 break; 3050 case Bytecodes::_fast_lputfield: 3051 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3052 break; 3053 case Bytecodes::_fast_iputfield: 3054 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3055 break; 3056 case Bytecodes::_fast_zputfield: 3057 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3058 break; 3059 case Bytecodes::_fast_bputfield: 3060 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3061 break; 3062 case Bytecodes::_fast_sputfield: 3063 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3064 break; 3065 case Bytecodes::_fast_cputfield: 3066 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3067 break; 3068 case Bytecodes::_fast_fputfield: 3069 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3070 break; 3071 case Bytecodes::_fast_dputfield: 3072 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3073 break; 3074 default: 3075 ShouldNotReachHere(); 3076 } 3077 } 3078 3079 void TemplateTable::fast_accessfield(TosState state) { 3080 transition(atos, state); 3081 3082 // Do the JVMTI work here to avoid disturbing the register state below 3083 if (JvmtiExport::can_post_field_access()) { 3084 // Check to see if a field access watch has been set before we 3085 // take the time to call into the VM. 3086 Label L1; 3087 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3088 __ testl(rcx, rcx); 3089 __ jcc(Assembler::zero, L1); 3090 // access constant pool cache entry 3091 __ load_field_entry(c_rarg2, rcx); 3092 __ verify_oop(rax); 3093 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3094 __ mov(c_rarg1, rax); 3095 // c_rarg1: object pointer copied above 3096 // c_rarg2: cache entry pointer 3097 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2); 3098 __ pop_ptr(rax); // restore object pointer 3099 __ bind(L1); 3100 } 3101 3102 // access constant pool cache 3103 __ load_field_entry(rcx, rbx); 3104 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3105 3106 // rax: object 3107 __ verify_oop(rax); 3108 __ null_check(rax); 3109 Address field(rax, rbx, Address::times_1); 3110 3111 // access field 3112 switch (bytecode()) { 3113 case Bytecodes::_fast_agetfield: 3114 do_oop_load(_masm, field, rax); 3115 __ verify_oop(rax); 3116 break; 3117 case Bytecodes::_fast_lgetfield: 3118 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg); 3119 break; 3120 case Bytecodes::_fast_igetfield: 3121 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 3122 break; 3123 case Bytecodes::_fast_bgetfield: 3124 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg); 3125 break; 3126 case Bytecodes::_fast_sgetfield: 3127 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg); 3128 break; 3129 case Bytecodes::_fast_cgetfield: 3130 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg); 3131 break; 3132 case Bytecodes::_fast_fgetfield: 3133 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 3134 break; 3135 case Bytecodes::_fast_dgetfield: 3136 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg); 3137 break; 3138 default: 3139 ShouldNotReachHere(); 3140 } 3141 // [jk] not needed currently 3142 // Label notVolatile; 3143 // __ testl(rdx, rdx); 3144 // __ jcc(Assembler::zero, notVolatile); 3145 // __ membar(Assembler::LoadLoad); 3146 // __ bind(notVolatile); 3147 } 3148 3149 void TemplateTable::fast_xaccess(TosState state) { 3150 transition(vtos, state); 3151 3152 // get receiver 3153 __ movptr(rax, aaddress(0)); 3154 // access constant pool cache 3155 __ load_field_entry(rcx, rdx, 2); 3156 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3157 3158 // make sure exception is reported in correct bcp range (getfield is 3159 // next instruction) 3160 __ increment(rbcp); 3161 __ null_check(rax); 3162 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3163 switch (state) { 3164 case itos: 3165 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg); 3166 break; 3167 case atos: 3168 do_oop_load(_masm, field, rax); 3169 __ verify_oop(rax); 3170 break; 3171 case ftos: 3172 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg); 3173 break; 3174 default: 3175 ShouldNotReachHere(); 3176 } 3177 3178 // [jk] not needed currently 3179 // Label notVolatile; 3180 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3181 // in_bytes(ConstantPoolCache::base_offset() + 3182 // ConstantPoolCacheEntry::flags_offset()))); 3183 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3184 // __ testl(rdx, 0x1); 3185 // __ jcc(Assembler::zero, notVolatile); 3186 // __ membar(Assembler::LoadLoad); 3187 // __ bind(notVolatile); 3188 3189 __ decrement(rbcp); 3190 } 3191 3192 //----------------------------------------------------------------------------- 3193 // Calls 3194 3195 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) { 3196 // determine flags 3197 const Bytecodes::Code code = bytecode(); 3198 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3199 assert_different_registers(recv, flags); 3200 3201 // save 'interpreter return address' 3202 __ save_bcp(); 3203 3204 // Save flags and load TOS 3205 __ movl(rbcp, flags); 3206 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3207 3208 // load receiver if needed (after appendix is pushed so parameter size is correct) 3209 // Note: no return address pushed yet 3210 if (load_receiver) { 3211 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3212 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3213 const int receiver_is_at_end = -1; // back off one slot to get receiver 3214 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3215 __ movptr(recv, recv_addr); 3216 __ verify_oop(recv); 3217 } 3218 3219 // load return address 3220 { 3221 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3222 ExternalAddress table(table_addr); 3223 __ lea(rscratch1, table); 3224 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3225 } 3226 3227 // push return address 3228 __ push(flags); 3229 3230 // Restore flags value from the constant pool cache entry, and restore rsi 3231 // for later null checks. r13 is the bytecode pointer 3232 __ movl(flags, rbcp); 3233 __ restore_bcp(); 3234 } 3235 3236 void TemplateTable::invokevirtual_helper(Register index, 3237 Register recv, 3238 Register flags) { 3239 // Uses temporary registers rax, rdx 3240 assert_different_registers(index, recv, rax, rdx); 3241 assert(index == rbx, ""); 3242 assert(recv == rcx, ""); 3243 3244 // Test for an invoke of a final method 3245 Label notFinal; 3246 __ movl(rax, flags); 3247 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3248 __ jcc(Assembler::zero, notFinal); 3249 3250 const Register method = index; // method must be rbx 3251 assert(method == rbx, 3252 "Method* must be rbx for interpreter calling convention"); 3253 3254 // do the call - the index is actually the method to call 3255 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3256 3257 // It's final, need a null check here! 3258 __ null_check(recv); 3259 3260 // profile this call 3261 __ profile_final_call(rax); 3262 __ profile_arguments_type(rax, method, rbcp, true); 3263 3264 __ jump_from_interpreted(method, rax); 3265 3266 __ bind(notFinal); 3267 3268 // get receiver klass 3269 __ load_klass(rax, recv, rscratch1); 3270 3271 // profile this call 3272 __ profile_virtual_call(rax, rlocals, rdx); 3273 // get target Method* & entry point 3274 __ lookup_virtual_method(rax, index, method); 3275 3276 __ profile_arguments_type(rdx, method, rbcp, true); 3277 __ jump_from_interpreted(method, rdx); 3278 } 3279 3280 void TemplateTable::invokevirtual(int byte_no) { 3281 transition(vtos, vtos); 3282 assert(byte_no == f2_byte, "use this argument"); 3283 3284 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry* 3285 rbx, // Method or itable index 3286 rdx); // Flags 3287 prepare_invoke(rcx, // ResolvedMethodEntry* 3288 rcx, // Receiver 3289 rdx); // flags 3290 3291 // rbx: index 3292 // rcx: receiver 3293 // rdx: flags 3294 invokevirtual_helper(rbx, rcx, rdx); 3295 } 3296 3297 void TemplateTable::invokespecial(int byte_no) { 3298 transition(vtos, vtos); 3299 assert(byte_no == f1_byte, "use this argument"); 3300 3301 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3302 rbx, // Method* 3303 rdx); // flags 3304 prepare_invoke(rcx, 3305 rcx, // get receiver also for null check 3306 rdx); // flags 3307 3308 __ verify_oop(rcx); 3309 __ null_check(rcx); 3310 // do the call 3311 __ profile_call(rax); 3312 __ profile_arguments_type(rax, rbx, rbcp, false); 3313 __ jump_from_interpreted(rbx, rax); 3314 } 3315 3316 void TemplateTable::invokestatic(int byte_no) { 3317 transition(vtos, vtos); 3318 assert(byte_no == f1_byte, "use this argument"); 3319 3320 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3321 rbx, // Method* 3322 rdx // flags 3323 ); 3324 prepare_invoke(rcx, rcx, rdx); // cache and flags 3325 3326 // do the call 3327 __ profile_call(rax); 3328 __ profile_arguments_type(rax, rbx, rbcp, false); 3329 __ jump_from_interpreted(rbx, rax); 3330 } 3331 3332 3333 void TemplateTable::fast_invokevfinal(int byte_no) { 3334 transition(vtos, vtos); 3335 assert(byte_no == f2_byte, "use this argument"); 3336 __ stop("fast_invokevfinal not used on x86"); 3337 } 3338 3339 3340 void TemplateTable::invokeinterface(int byte_no) { 3341 transition(vtos, vtos); 3342 assert(byte_no == f1_byte, "use this argument"); 3343 3344 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry* 3345 rax, // Klass* 3346 rbx, // Method* or itable/vtable index 3347 rdx); // flags 3348 prepare_invoke(rcx, rcx, rdx); // receiver, flags 3349 3350 // First check for Object case, then private interface method, 3351 // then regular interface method. 3352 3353 // Special case of invokeinterface called for virtual method of 3354 // java.lang.Object. See cpCache.cpp for details. 3355 Label notObjectMethod; 3356 __ movl(rlocals, rdx); 3357 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift)); 3358 __ jcc(Assembler::zero, notObjectMethod); 3359 3360 invokevirtual_helper(rbx, rcx, rdx); 3361 // no return from above 3362 __ bind(notObjectMethod); 3363 3364 Label no_such_interface; // for receiver subtype check 3365 Register recvKlass; // used for exception processing 3366 3367 // Check for private method invocation - indicated by vfinal 3368 Label notVFinal; 3369 __ movl(rlocals, rdx); 3370 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3371 __ jcc(Assembler::zero, notVFinal); 3372 3373 // Get receiver klass into rlocals - also a null check 3374 __ load_klass(rlocals, rcx, rscratch1); 3375 3376 Label subtype; 3377 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3378 // If we get here the typecheck failed 3379 recvKlass = rdx; 3380 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3381 __ jmp(no_such_interface); 3382 3383 __ bind(subtype); 3384 3385 // do the call - rbx is actually the method to call 3386 3387 __ profile_final_call(rdx); 3388 __ profile_arguments_type(rdx, rbx, rbcp, true); 3389 3390 __ jump_from_interpreted(rbx, rdx); 3391 // no return from above 3392 __ bind(notVFinal); 3393 3394 // Get receiver klass into rdx - also a null check 3395 __ restore_locals(); // restore r14 3396 __ load_klass(rdx, rcx, rscratch1); 3397 3398 Label no_such_method; 3399 3400 // Preserve method for throw_AbstractMethodErrorVerbose. 3401 __ mov(rcx, rbx); 3402 // Receiver subtype check against REFC. 3403 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3404 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3405 rdx, rax, noreg, 3406 // outputs: scan temp. reg, scan temp. reg 3407 rbcp, rlocals, 3408 no_such_interface, 3409 /*return_method=*/false); 3410 3411 // profile this call 3412 __ restore_bcp(); // rbcp was destroyed by receiver type check 3413 __ profile_virtual_call(rdx, rbcp, rlocals); 3414 3415 // Get declaring interface class from method, and itable index 3416 __ load_method_holder(rax, rbx); 3417 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3418 __ subl(rbx, Method::itable_index_max); 3419 __ negl(rbx); 3420 3421 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3422 __ mov(rlocals, rdx); 3423 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3424 rlocals, rax, rbx, 3425 // outputs: method, scan temp. reg 3426 rbx, rbcp, 3427 no_such_interface); 3428 3429 // rbx: Method* to call 3430 // rcx: receiver 3431 // Check for abstract method error 3432 // Note: This should be done more efficiently via a throw_abstract_method_error 3433 // interpreter entry point and a conditional jump to it in case of a null 3434 // method. 3435 __ testptr(rbx, rbx); 3436 __ jcc(Assembler::zero, no_such_method); 3437 3438 __ profile_arguments_type(rdx, rbx, rbcp, true); 3439 3440 // do the call 3441 // rcx: receiver 3442 // rbx,: Method* 3443 __ jump_from_interpreted(rbx, rdx); 3444 __ should_not_reach_here(); 3445 3446 // exception handling code follows... 3447 // note: must restore interpreter registers to canonical 3448 // state for exception handling to work correctly! 3449 3450 __ bind(no_such_method); 3451 // throw exception 3452 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3453 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3454 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3455 // Pass arguments for generating a verbose error message. 3456 recvKlass = c_rarg1; 3457 Register method = c_rarg2; 3458 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3459 if (method != rcx) { __ movq(method, rcx); } 3460 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3461 recvKlass, method); 3462 // The call_VM checks for exception, so we should never return here. 3463 __ should_not_reach_here(); 3464 3465 __ bind(no_such_interface); 3466 // throw exception 3467 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3468 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3469 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3470 // Pass arguments for generating a verbose error message. 3471 if (recvKlass != rdx) { 3472 __ movq(recvKlass, rdx); 3473 } 3474 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3475 recvKlass, rax); 3476 // the call_VM checks for exception, so we should never return here. 3477 __ should_not_reach_here(); 3478 } 3479 3480 void TemplateTable::invokehandle(int byte_no) { 3481 transition(vtos, vtos); 3482 assert(byte_no == f1_byte, "use this argument"); 3483 const Register rbx_method = rbx; 3484 const Register rax_mtype = rax; 3485 const Register rcx_recv = rcx; 3486 const Register rdx_flags = rdx; 3487 3488 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags); 3489 prepare_invoke(rcx, rcx_recv, rdx_flags); 3490 3491 __ verify_method_ptr(rbx_method); 3492 __ verify_oop(rcx_recv); 3493 __ null_check(rcx_recv); 3494 3495 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3496 // rbx: MH.invokeExact_MT method 3497 3498 // Note: rax_mtype is already pushed (if necessary) 3499 3500 // FIXME: profile the LambdaForm also 3501 __ profile_final_call(rax); 3502 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3503 3504 __ jump_from_interpreted(rbx_method, rdx); 3505 } 3506 3507 void TemplateTable::invokedynamic(int byte_no) { 3508 transition(vtos, vtos); 3509 assert(byte_no == f1_byte, "use this argument"); 3510 3511 const Register rbx_method = rbx; 3512 const Register rax_callsite = rax; 3513 3514 load_invokedynamic_entry(rbx_method); 3515 // rax: CallSite object (from cpool->resolved_references[]) 3516 // rbx: MH.linkToCallSite method 3517 3518 // Note: rax_callsite is already pushed 3519 3520 // %%% should make a type profile for any invokedynamic that takes a ref argument 3521 // profile this call 3522 __ profile_call(rbcp); 3523 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3524 3525 __ verify_oop(rax_callsite); 3526 3527 __ jump_from_interpreted(rbx_method, rdx); 3528 } 3529 3530 //----------------------------------------------------------------------------- 3531 // Allocation 3532 3533 void TemplateTable::_new() { 3534 transition(vtos, atos); 3535 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3536 Label slow_case; 3537 Label slow_case_no_pop; 3538 Label done; 3539 Label initialize_header; 3540 3541 __ get_cpool_and_tags(rcx, rax); 3542 3543 // Make sure the class we're about to instantiate has been resolved. 3544 // This is done before loading InstanceKlass to be consistent with the order 3545 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3546 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3547 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3548 __ jcc(Assembler::notEqual, slow_case_no_pop); 3549 3550 // get InstanceKlass 3551 __ load_resolved_klass_at_index(rcx, rcx, rdx); 3552 __ push(rcx); // save the contexts of klass for initializing the header 3553 3554 // make sure klass is initialized 3555 // init_state needs acquire, but x86 is TSO, and so we are already good. 3556 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks"); 3557 __ clinit_barrier(rcx, nullptr /*L_fast_path*/, &slow_case); 3558 3559 // get instance_size in InstanceKlass (scaled to a count of bytes) 3560 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3561 // test to see if it is malformed in some way 3562 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3563 __ jcc(Assembler::notZero, slow_case); 3564 3565 // Allocate the instance: 3566 // If TLAB is enabled: 3567 // Try to allocate in the TLAB. 3568 // If fails, go to the slow path. 3569 // Initialize the allocation. 3570 // Exit. 3571 // 3572 // Go to slow path. 3573 3574 if (UseTLAB) { 3575 __ tlab_allocate(rax, rdx, 0, rcx, rbx, slow_case); 3576 if (ZeroTLAB) { 3577 // the fields have been already cleared 3578 __ jmp(initialize_header); 3579 } 3580 3581 // The object is initialized before the header. If the object size is 3582 // zero, go directly to the header initialization. 3583 if (UseCompactObjectHeaders) { 3584 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3585 __ decrement(rdx, oopDesc::base_offset_in_bytes()); 3586 } else { 3587 __ decrement(rdx, sizeof(oopDesc)); 3588 } 3589 __ jcc(Assembler::zero, initialize_header); 3590 3591 // Initialize topmost object field, divide rdx by 8, check if odd and 3592 // test if zero. 3593 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3594 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3595 3596 // rdx must have been multiple of 8 3597 #ifdef ASSERT 3598 // make sure rdx was multiple of 8 3599 Label L; 3600 // Ignore partial flag stall after shrl() since it is debug VM 3601 __ jcc(Assembler::carryClear, L); 3602 __ stop("object size is not multiple of 2 - adjust this code"); 3603 __ bind(L); 3604 // rdx must be > 0, no extra check needed here 3605 #endif 3606 3607 // initialize remaining object fields: rdx was a multiple of 8 3608 { Label loop; 3609 __ bind(loop); 3610 int header_size_bytes = oopDesc::header_size() * HeapWordSize; 3611 assert(is_aligned(header_size_bytes, BytesPerLong), "oop header size must be 8-byte-aligned"); 3612 __ movptr(Address(rax, rdx, Address::times_8, header_size_bytes - 1*oopSize), rcx); 3613 __ decrement(rdx); 3614 __ jcc(Assembler::notZero, loop); 3615 } 3616 3617 // initialize object header only. 3618 __ bind(initialize_header); 3619 if (UseCompactObjectHeaders) { 3620 __ pop(rcx); // get saved klass back in the register. 3621 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 3622 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rbx); 3623 } else { 3624 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 3625 (intptr_t)markWord::prototype().value()); // header 3626 __ pop(rcx); // get saved klass back in the register. 3627 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 3628 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 3629 __ store_klass(rax, rcx, rscratch1); // klass 3630 } 3631 3632 if (DTraceAllocProbes) { 3633 // Trigger dtrace event for fastpath 3634 __ push(atos); 3635 __ call_VM_leaf( 3636 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 3637 __ pop(atos); 3638 } 3639 3640 __ jmp(done); 3641 } 3642 3643 // slow case 3644 __ bind(slow_case); 3645 __ pop(rcx); // restore stack pointer to what it was when we came in. 3646 __ bind(slow_case_no_pop); 3647 3648 __ get_constant_pool(c_rarg1); 3649 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3650 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3651 __ verify_oop(rax); 3652 3653 // continue 3654 __ bind(done); 3655 } 3656 3657 void TemplateTable::newarray() { 3658 transition(itos, atos); 3659 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3660 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3661 c_rarg1, rax); 3662 } 3663 3664 void TemplateTable::anewarray() { 3665 transition(itos, atos); 3666 3667 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3668 __ get_constant_pool(c_rarg1); 3669 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3670 c_rarg1, c_rarg2, rax); 3671 } 3672 3673 void TemplateTable::arraylength() { 3674 transition(atos, itos); 3675 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3676 } 3677 3678 void TemplateTable::checkcast() { 3679 transition(atos, atos); 3680 Label done, is_null, ok_is_subtype, quicked, resolved; 3681 __ testptr(rax, rax); // object is in rax 3682 __ jcc(Assembler::zero, is_null); 3683 3684 // Get cpool & tags index 3685 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3686 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3687 // See if bytecode has already been quicked 3688 __ cmpb(Address(rdx, rbx, 3689 Address::times_1, 3690 Array<u1>::base_offset_in_bytes()), 3691 JVM_CONSTANT_Class); 3692 __ jcc(Assembler::equal, quicked); 3693 __ push(atos); // save receiver for result, and for GC 3694 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3695 3696 __ get_vm_result_metadata(rax); 3697 3698 __ pop_ptr(rdx); // restore receiver 3699 __ jmpb(resolved); 3700 3701 // Get superklass in rax and subklass in rbx 3702 __ bind(quicked); 3703 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3704 __ load_resolved_klass_at_index(rax, rcx, rbx); 3705 3706 __ bind(resolved); 3707 __ load_klass(rbx, rdx, rscratch1); 3708 3709 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3710 // Superklass in rax. Subklass in rbx. 3711 __ gen_subtype_check(rbx, ok_is_subtype); 3712 3713 // Come here on failure 3714 __ push_ptr(rdx); 3715 // object is at TOS 3716 __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry)); 3717 3718 // Come here on success 3719 __ bind(ok_is_subtype); 3720 __ mov(rax, rdx); // Restore object in rdx 3721 3722 // Collect counts on whether this check-cast sees nulls a lot or not. 3723 if (ProfileInterpreter) { 3724 __ jmp(done); 3725 __ bind(is_null); 3726 __ profile_null_seen(rcx); 3727 } else { 3728 __ bind(is_null); // same as 'done' 3729 } 3730 __ bind(done); 3731 } 3732 3733 void TemplateTable::instanceof() { 3734 transition(atos, itos); 3735 Label done, is_null, ok_is_subtype, quicked, resolved; 3736 __ testptr(rax, rax); 3737 __ jcc(Assembler::zero, is_null); 3738 3739 // Get cpool & tags index 3740 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3741 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3742 // See if bytecode has already been quicked 3743 __ cmpb(Address(rdx, rbx, 3744 Address::times_1, 3745 Array<u1>::base_offset_in_bytes()), 3746 JVM_CONSTANT_Class); 3747 __ jcc(Assembler::equal, quicked); 3748 3749 __ push(atos); // save receiver for result, and for GC 3750 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3751 3752 __ get_vm_result_metadata(rax); 3753 3754 __ pop_ptr(rdx); // restore receiver 3755 __ verify_oop(rdx); 3756 __ load_klass(rdx, rdx, rscratch1); 3757 __ jmpb(resolved); 3758 3759 // Get superklass in rax and subklass in rdx 3760 __ bind(quicked); 3761 __ load_klass(rdx, rax, rscratch1); 3762 __ load_resolved_klass_at_index(rax, rcx, rbx); 3763 3764 __ bind(resolved); 3765 3766 // Generate subtype check. Blows rcx, rdi 3767 // Superklass in rax. Subklass in rdx. 3768 __ gen_subtype_check(rdx, ok_is_subtype); 3769 3770 // Come here on failure 3771 __ xorl(rax, rax); 3772 __ jmpb(done); 3773 // Come here on success 3774 __ bind(ok_is_subtype); 3775 __ movl(rax, 1); 3776 3777 // Collect counts on whether this test sees nulls a lot or not. 3778 if (ProfileInterpreter) { 3779 __ jmp(done); 3780 __ bind(is_null); 3781 __ profile_null_seen(rcx); 3782 } else { 3783 __ bind(is_null); // same as 'done' 3784 } 3785 __ bind(done); 3786 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 3787 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 3788 } 3789 3790 3791 //---------------------------------------------------------------------------------------------------- 3792 // Breakpoints 3793 void TemplateTable::_breakpoint() { 3794 // Note: We get here even if we are single stepping.. 3795 // jbug insists on setting breakpoints at every bytecode 3796 // even if we are in single step mode. 3797 3798 transition(vtos, vtos); 3799 3800 // get the unpatched byte code 3801 __ get_method(c_rarg1); 3802 __ call_VM(noreg, 3803 CAST_FROM_FN_PTR(address, 3804 InterpreterRuntime::get_original_bytecode_at), 3805 c_rarg1, rbcp); 3806 __ mov(rbx, rax); // why? 3807 3808 // post the breakpoint event 3809 __ get_method(c_rarg1); 3810 __ call_VM(noreg, 3811 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3812 c_rarg1, rbcp); 3813 3814 // complete the execution of original bytecode 3815 __ dispatch_only_normal(vtos); 3816 } 3817 3818 //----------------------------------------------------------------------------- 3819 // Exceptions 3820 3821 void TemplateTable::athrow() { 3822 transition(atos, vtos); 3823 __ null_check(rax); 3824 __ jump(RuntimeAddress(Interpreter::throw_exception_entry())); 3825 } 3826 3827 //----------------------------------------------------------------------------- 3828 // Synchronization 3829 // 3830 // Note: monitorenter & exit are symmetric routines; which is reflected 3831 // in the assembly code structure as well 3832 // 3833 // Stack layout: 3834 // 3835 // [expressions ] <--- rsp = expression stack top 3836 // .. 3837 // [expressions ] 3838 // [monitor entry] <--- monitor block top = expression stack bot 3839 // .. 3840 // [monitor entry] 3841 // [frame data ] <--- monitor block bot 3842 // ... 3843 // [saved rbp ] <--- rbp 3844 void TemplateTable::monitorenter() { 3845 transition(atos, vtos); 3846 3847 // check for null object 3848 __ null_check(rax); 3849 3850 const Address monitor_block_top( 3851 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3852 const Address monitor_block_bot( 3853 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3854 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3855 3856 Label allocated; 3857 3858 Register rtop = c_rarg3; 3859 Register rbot = c_rarg2; 3860 Register rmon = c_rarg1; 3861 3862 // initialize entry pointer 3863 __ xorl(rmon, rmon); // points to free slot or null 3864 3865 // find a free slot in the monitor block (result in rmon) 3866 { 3867 Label entry, loop, exit; 3868 __ movptr(rtop, monitor_block_top); // derelativize pointer 3869 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 3870 // rtop points to current entry, starting with top-most entry 3871 3872 __ lea(rbot, monitor_block_bot); // points to word before bottom 3873 // of monitor block 3874 __ jmpb(entry); 3875 3876 __ bind(loop); 3877 // check if current entry is used 3878 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 3879 // if not used then remember entry in rmon 3880 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 3881 // check if current entry is for same object 3882 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 3883 // if same object then stop searching 3884 __ jccb(Assembler::equal, exit); 3885 // otherwise advance to next entry 3886 __ addptr(rtop, entry_size); 3887 __ bind(entry); 3888 // check if bottom reached 3889 __ cmpptr(rtop, rbot); 3890 // if not at bottom then check this entry 3891 __ jcc(Assembler::notEqual, loop); 3892 __ bind(exit); 3893 } 3894 3895 __ testptr(rmon, rmon); // check if a slot has been found 3896 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 3897 3898 // allocate one if there's no free slot 3899 { 3900 Label entry, loop; 3901 // 1. compute new pointers // rsp: old expression stack top 3902 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 3903 __ lea(rmon, Address(rbp, rmon, Address::times_ptr)); 3904 __ subptr(rsp, entry_size); // move expression stack top 3905 __ subptr(rmon, entry_size); // move expression stack bottom 3906 __ mov(rtop, rsp); // set start value for copy loop 3907 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom 3908 __ jmp(entry); 3909 // 2. move expression stack contents 3910 __ bind(loop); 3911 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 3912 // word from old location 3913 __ movptr(Address(rtop, 0), rbot); // and store it at new location 3914 __ addptr(rtop, wordSize); // advance to next word 3915 __ bind(entry); 3916 __ cmpptr(rtop, rmon); // check if bottom reached 3917 __ jcc(Assembler::notEqual, loop); // if not at bottom then 3918 // copy next word 3919 } 3920 3921 // call run-time routine 3922 // rmon: points to monitor entry 3923 __ bind(allocated); 3924 3925 // Increment bcp to point to the next bytecode, so exception 3926 // handling for async. exceptions work correctly. 3927 // The object has already been popped from the stack, so the 3928 // expression stack looks correct. 3929 __ increment(rbcp); 3930 3931 // store object 3932 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 3933 __ lock_object(rmon); 3934 3935 // check to make sure this monitor doesn't cause stack overflow after locking 3936 __ save_bcp(); // in case of exception 3937 __ generate_stack_overflow_check(0); 3938 3939 // The bcp has already been incremented. Just need to dispatch to 3940 // next instruction. 3941 __ dispatch_next(vtos); 3942 } 3943 3944 void TemplateTable::monitorexit() { 3945 transition(atos, vtos); 3946 3947 // check for null object 3948 __ null_check(rax); 3949 3950 const Address monitor_block_top( 3951 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3952 const Address monitor_block_bot( 3953 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3954 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3955 3956 Register rtop = c_rarg1; 3957 Register rbot = c_rarg2; 3958 3959 Label found; 3960 3961 // find matching slot 3962 { 3963 Label entry, loop; 3964 __ movptr(rtop, monitor_block_top); // derelativize pointer 3965 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 3966 // rtop points to current entry, starting with top-most entry 3967 3968 __ lea(rbot, monitor_block_bot); // points to word before bottom 3969 // of monitor block 3970 __ jmpb(entry); 3971 3972 __ bind(loop); 3973 // check if current entry is for same object 3974 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 3975 // if same object then stop searching 3976 __ jcc(Assembler::equal, found); 3977 // otherwise advance to next entry 3978 __ addptr(rtop, entry_size); 3979 __ bind(entry); 3980 // check if bottom reached 3981 __ cmpptr(rtop, rbot); 3982 // if not at bottom then check this entry 3983 __ jcc(Assembler::notEqual, loop); 3984 } 3985 3986 // error handling. Unlocking was not block-structured 3987 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3988 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3989 __ should_not_reach_here(); 3990 3991 // call run-time routine 3992 __ bind(found); 3993 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3994 __ unlock_object(rtop); 3995 __ pop_ptr(rax); // discard object 3996 } 3997 3998 // Wide instructions 3999 void TemplateTable::wide() { 4000 transition(vtos, vtos); 4001 __ load_unsigned_byte(rbx, at_bcp(1)); 4002 ExternalAddress wtable((address)Interpreter::_wentry_point); 4003 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4004 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4005 } 4006 4007 // Multi arrays 4008 void TemplateTable::multianewarray() { 4009 transition(vtos, atos); 4010 4011 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4012 // last dim is on top of stack; we want address of first one: 4013 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4014 // the latter wordSize to point to the beginning of the array. 4015 __ lea(c_rarg1, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4016 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), c_rarg1); 4017 __ load_unsigned_byte(rbx, at_bcp(3)); 4018 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4019 }