1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "compiler/disassembler.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "gc/shared/gc_globals.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodCounters.hpp" 36 #include "oops/methodData.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "oops/resolvedMethodEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/safepointMechanism.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "runtime/stubRoutines.hpp" 48 #include "runtime/synchronizer.hpp" 49 #include "utilities/macros.hpp" 50 51 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 52 53 // Global Register Names 54 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 55 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 56 57 // Address Computation: local variables 58 static inline Address iaddress(int n) { 59 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 60 } 61 62 static inline Address laddress(int n) { 63 return iaddress(n + 1); 64 } 65 66 #ifndef _LP64 67 static inline Address haddress(int n) { 68 return iaddress(n + 0); 69 } 70 #endif 71 72 static inline Address faddress(int n) { 73 return iaddress(n); 74 } 75 76 static inline Address daddress(int n) { 77 return laddress(n); 78 } 79 80 static inline Address aaddress(int n) { 81 return iaddress(n); 82 } 83 84 static inline Address iaddress(Register r) { 85 return Address(rlocals, r, Address::times_ptr); 86 } 87 88 static inline Address laddress(Register r) { 89 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 90 } 91 92 #ifndef _LP64 93 static inline Address haddress(Register r) { 94 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 95 } 96 #endif 97 98 static inline Address faddress(Register r) { 99 return iaddress(r); 100 } 101 102 static inline Address daddress(Register r) { 103 return laddress(r); 104 } 105 106 static inline Address aaddress(Register r) { 107 return iaddress(r); 108 } 109 110 111 // expression stack 112 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 113 // data beyond the rsp which is potentially unsafe in an MT environment; 114 // an interrupt may overwrite that data.) 115 static inline Address at_rsp () { 116 return Address(rsp, 0); 117 } 118 119 // At top of Java expression stack which may be different than esp(). It 120 // isn't for category 1 objects. 121 static inline Address at_tos () { 122 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 123 } 124 125 static inline Address at_tos_p1() { 126 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 127 } 128 129 static inline Address at_tos_p2() { 130 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 131 } 132 133 // Condition conversion 134 static Assembler::Condition j_not(TemplateTable::Condition cc) { 135 switch (cc) { 136 case TemplateTable::equal : return Assembler::notEqual; 137 case TemplateTable::not_equal : return Assembler::equal; 138 case TemplateTable::less : return Assembler::greaterEqual; 139 case TemplateTable::less_equal : return Assembler::greater; 140 case TemplateTable::greater : return Assembler::lessEqual; 141 case TemplateTable::greater_equal: return Assembler::less; 142 } 143 ShouldNotReachHere(); 144 return Assembler::zero; 145 } 146 147 148 149 // Miscellaneous helper routines 150 // Store an oop (or null) at the address described by obj. 151 // If val == noreg this means store a null 152 153 154 static void do_oop_store(InterpreterMacroAssembler* _masm, 155 Address dst, 156 Register val, 157 DecoratorSet decorators = 0) { 158 assert(val == noreg || val == rax, "parameter is just for looks"); 159 __ store_heap_oop(dst, val, 160 NOT_LP64(rdx) LP64_ONLY(rscratch2), 161 NOT_LP64(rbx) LP64_ONLY(r9), 162 NOT_LP64(rsi) LP64_ONLY(r8), decorators); 163 } 164 165 static void do_oop_load(InterpreterMacroAssembler* _masm, 166 Address src, 167 Register dst, 168 DecoratorSet decorators = 0) { 169 __ load_heap_oop(dst, src, rdx, rbx, decorators); 170 } 171 172 Address TemplateTable::at_bcp(int offset) { 173 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 174 return Address(rbcp, offset); 175 } 176 177 178 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 179 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 180 int byte_no) { 181 if (!RewriteBytecodes) return; 182 Label L_patch_done; 183 184 switch (bc) { 185 case Bytecodes::_fast_aputfield: 186 case Bytecodes::_fast_bputfield: 187 case Bytecodes::_fast_zputfield: 188 case Bytecodes::_fast_cputfield: 189 case Bytecodes::_fast_dputfield: 190 case Bytecodes::_fast_fputfield: 191 case Bytecodes::_fast_iputfield: 192 case Bytecodes::_fast_lputfield: 193 case Bytecodes::_fast_sputfield: 194 { 195 // We skip bytecode quickening for putfield instructions when 196 // the put_code written to the constant pool cache is zero. 197 // This is required so that every execution of this instruction 198 // calls out to InterpreterRuntime::resolve_get_put to do 199 // additional, required work. 200 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 201 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 202 __ load_field_entry(temp_reg, bc_reg); 203 if (byte_no == f1_byte) { 204 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 205 } else { 206 __ load_unsigned_byte(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 207 } 208 209 __ movl(bc_reg, bc); 210 __ cmpl(temp_reg, (int) 0); 211 __ jcc(Assembler::zero, L_patch_done); // don't patch 212 } 213 break; 214 default: 215 assert(byte_no == -1, "sanity"); 216 // the pair bytecodes have already done the load. 217 if (load_bc_into_bc_reg) { 218 __ movl(bc_reg, bc); 219 } 220 } 221 222 if (JvmtiExport::can_post_breakpoint()) { 223 Label L_fast_patch; 224 // if a breakpoint is present we can't rewrite the stream directly 225 __ movzbl(temp_reg, at_bcp(0)); 226 __ cmpl(temp_reg, Bytecodes::_breakpoint); 227 __ jcc(Assembler::notEqual, L_fast_patch); 228 __ get_method(temp_reg); 229 // Let breakpoint table handling rewrite to quicker bytecode 230 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 231 #ifndef ASSERT 232 __ jmpb(L_patch_done); 233 #else 234 __ jmp(L_patch_done); 235 #endif 236 __ bind(L_fast_patch); 237 } 238 239 #ifdef ASSERT 240 Label L_okay; 241 __ load_unsigned_byte(temp_reg, at_bcp(0)); 242 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 243 __ jcc(Assembler::equal, L_okay); 244 __ cmpl(temp_reg, bc_reg); 245 __ jcc(Assembler::equal, L_okay); 246 __ stop("patching the wrong bytecode"); 247 __ bind(L_okay); 248 #endif 249 250 // patch bytecode 251 __ movb(at_bcp(0), bc_reg); 252 __ bind(L_patch_done); 253 } 254 // Individual instructions 255 256 257 void TemplateTable::nop() { 258 transition(vtos, vtos); 259 // nothing to do 260 } 261 262 void TemplateTable::shouldnotreachhere() { 263 transition(vtos, vtos); 264 __ stop("shouldnotreachhere bytecode"); 265 } 266 267 void TemplateTable::aconst_null() { 268 transition(vtos, atos); 269 __ xorl(rax, rax); 270 } 271 272 void TemplateTable::iconst(int value) { 273 transition(vtos, itos); 274 if (value == 0) { 275 __ xorl(rax, rax); 276 } else { 277 __ movl(rax, value); 278 } 279 } 280 281 void TemplateTable::lconst(int value) { 282 transition(vtos, ltos); 283 if (value == 0) { 284 __ xorl(rax, rax); 285 } else { 286 __ movl(rax, value); 287 } 288 #ifndef _LP64 289 assert(value >= 0, "check this code"); 290 __ xorptr(rdx, rdx); 291 #endif 292 } 293 294 295 296 void TemplateTable::fconst(int value) { 297 transition(vtos, ftos); 298 if (UseSSE >= 1) { 299 static float one = 1.0f, two = 2.0f; 300 switch (value) { 301 case 0: 302 __ xorps(xmm0, xmm0); 303 break; 304 case 1: 305 __ movflt(xmm0, ExternalAddress((address) &one), rscratch1); 306 break; 307 case 2: 308 __ movflt(xmm0, ExternalAddress((address) &two), rscratch1); 309 break; 310 default: 311 ShouldNotReachHere(); 312 break; 313 } 314 } else { 315 #ifdef _LP64 316 ShouldNotReachHere(); 317 #else 318 if (value == 0) { __ fldz(); 319 } else if (value == 1) { __ fld1(); 320 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 321 } else { ShouldNotReachHere(); 322 } 323 #endif // _LP64 324 } 325 } 326 327 void TemplateTable::dconst(int value) { 328 transition(vtos, dtos); 329 if (UseSSE >= 2) { 330 static double one = 1.0; 331 switch (value) { 332 case 0: 333 __ xorpd(xmm0, xmm0); 334 break; 335 case 1: 336 __ movdbl(xmm0, ExternalAddress((address) &one), rscratch1); 337 break; 338 default: 339 ShouldNotReachHere(); 340 break; 341 } 342 } else { 343 #ifdef _LP64 344 ShouldNotReachHere(); 345 #else 346 if (value == 0) { __ fldz(); 347 } else if (value == 1) { __ fld1(); 348 } else { ShouldNotReachHere(); 349 } 350 #endif 351 } 352 } 353 354 void TemplateTable::bipush() { 355 transition(vtos, itos); 356 __ load_signed_byte(rax, at_bcp(1)); 357 } 358 359 void TemplateTable::sipush() { 360 transition(vtos, itos); 361 __ load_unsigned_short(rax, at_bcp(1)); 362 __ bswapl(rax); 363 __ sarl(rax, 16); 364 } 365 366 void TemplateTable::ldc(LdcType type) { 367 transition(vtos, vtos); 368 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 369 Label call_ldc, notFloat, notClass, notInt, Done; 370 371 if (is_ldc_wide(type)) { 372 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 373 } else { 374 __ load_unsigned_byte(rbx, at_bcp(1)); 375 } 376 377 __ get_cpool_and_tags(rcx, rax); 378 const int base_offset = ConstantPool::header_size() * wordSize; 379 const int tags_offset = Array<u1>::base_offset_in_bytes(); 380 381 // get type 382 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 383 384 // unresolved class - get the resolved class 385 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 386 __ jccb(Assembler::equal, call_ldc); 387 388 // unresolved class in error state - call into runtime to throw the error 389 // from the first resolution attempt 390 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 391 __ jccb(Assembler::equal, call_ldc); 392 393 // resolved class - need to call vm to get java mirror of the class 394 __ cmpl(rdx, JVM_CONSTANT_Class); 395 __ jcc(Assembler::notEqual, notClass); 396 397 __ bind(call_ldc); 398 399 __ movl(rarg, is_ldc_wide(type) ? 1 : 0); 400 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 401 402 __ push(atos); 403 __ jmp(Done); 404 405 __ bind(notClass); 406 __ cmpl(rdx, JVM_CONSTANT_Float); 407 __ jccb(Assembler::notEqual, notFloat); 408 409 // ftos 410 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 411 __ push(ftos); 412 __ jmp(Done); 413 414 __ bind(notFloat); 415 __ cmpl(rdx, JVM_CONSTANT_Integer); 416 __ jccb(Assembler::notEqual, notInt); 417 418 // itos 419 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 420 __ push(itos); 421 __ jmp(Done); 422 423 // assume the tag is for condy; if not, the VM runtime will tell us 424 __ bind(notInt); 425 condy_helper(Done); 426 427 __ bind(Done); 428 } 429 430 // Fast path for caching oop constants. 431 void TemplateTable::fast_aldc(LdcType type) { 432 transition(vtos, atos); 433 434 Register result = rax; 435 Register tmp = rdx; 436 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 437 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 438 439 Label resolved; 440 441 // We are resolved if the resolved reference cache entry contains a 442 // non-null object (String, MethodType, etc.) 443 assert_different_registers(result, tmp); 444 __ get_cache_index_at_bcp(tmp, 1, index_size); 445 __ load_resolved_reference_at_index(result, tmp); 446 __ testptr(result, result); 447 __ jcc(Assembler::notZero, resolved); 448 449 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 450 451 // first time invocation - must resolve first 452 __ movl(rarg, (int)bytecode()); 453 __ call_VM(result, entry, rarg); 454 __ bind(resolved); 455 456 { // Check for the null sentinel. 457 // If we just called the VM, it already did the mapping for us, 458 // but it's harmless to retry. 459 Label notNull; 460 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 461 __ movptr(tmp, null_sentinel); 462 __ resolve_oop_handle(tmp, rscratch2); 463 __ cmpoop(tmp, result); 464 __ jccb(Assembler::notEqual, notNull); 465 __ xorptr(result, result); // null object reference 466 __ bind(notNull); 467 } 468 469 if (VerifyOops) { 470 __ verify_oop(result); 471 } 472 } 473 474 void TemplateTable::ldc2_w() { 475 transition(vtos, vtos); 476 Label notDouble, notLong, Done; 477 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 478 479 __ get_cpool_and_tags(rcx, rax); 480 const int base_offset = ConstantPool::header_size() * wordSize; 481 const int tags_offset = Array<u1>::base_offset_in_bytes(); 482 483 // get type 484 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 485 __ cmpl(rdx, JVM_CONSTANT_Double); 486 __ jccb(Assembler::notEqual, notDouble); 487 488 // dtos 489 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 490 __ push(dtos); 491 492 __ jmp(Done); 493 __ bind(notDouble); 494 __ cmpl(rdx, JVM_CONSTANT_Long); 495 __ jccb(Assembler::notEqual, notLong); 496 497 // ltos 498 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 499 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 500 __ push(ltos); 501 __ jmp(Done); 502 503 __ bind(notLong); 504 condy_helper(Done); 505 506 __ bind(Done); 507 } 508 509 void TemplateTable::condy_helper(Label& Done) { 510 const Register obj = rax; 511 const Register off = rbx; 512 const Register flags = rcx; 513 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 514 __ movl(rarg, (int)bytecode()); 515 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 516 #ifndef _LP64 517 // borrow rdi from locals 518 __ get_thread(rdi); 519 __ get_vm_result_2(flags, rdi); 520 __ restore_locals(); 521 #else 522 __ get_vm_result_2(flags, r15_thread); 523 #endif 524 // VMr = obj = base address to find primitive value to push 525 // VMr2 = flags = (tos, off) using format of CPCE::_flags 526 __ movl(off, flags); 527 __ andl(off, ConstantPoolCache::field_index_mask); 528 const Address field(obj, off, Address::times_1, 0*wordSize); 529 530 // What sort of thing are we loading? 531 __ shrl(flags, ConstantPoolCache::tos_state_shift); 532 __ andl(flags, ConstantPoolCache::tos_state_mask); 533 534 switch (bytecode()) { 535 case Bytecodes::_ldc: 536 case Bytecodes::_ldc_w: 537 { 538 // tos in (itos, ftos, stos, btos, ctos, ztos) 539 Label notInt, notFloat, notShort, notByte, notChar, notBool; 540 __ cmpl(flags, itos); 541 __ jccb(Assembler::notEqual, notInt); 542 // itos 543 __ movl(rax, field); 544 __ push(itos); 545 __ jmp(Done); 546 547 __ bind(notInt); 548 __ cmpl(flags, ftos); 549 __ jccb(Assembler::notEqual, notFloat); 550 // ftos 551 __ load_float(field); 552 __ push(ftos); 553 __ jmp(Done); 554 555 __ bind(notFloat); 556 __ cmpl(flags, stos); 557 __ jccb(Assembler::notEqual, notShort); 558 // stos 559 __ load_signed_short(rax, field); 560 __ push(stos); 561 __ jmp(Done); 562 563 __ bind(notShort); 564 __ cmpl(flags, btos); 565 __ jccb(Assembler::notEqual, notByte); 566 // btos 567 __ load_signed_byte(rax, field); 568 __ push(btos); 569 __ jmp(Done); 570 571 __ bind(notByte); 572 __ cmpl(flags, ctos); 573 __ jccb(Assembler::notEqual, notChar); 574 // ctos 575 __ load_unsigned_short(rax, field); 576 __ push(ctos); 577 __ jmp(Done); 578 579 __ bind(notChar); 580 __ cmpl(flags, ztos); 581 __ jccb(Assembler::notEqual, notBool); 582 // ztos 583 __ load_signed_byte(rax, field); 584 __ push(ztos); 585 __ jmp(Done); 586 587 __ bind(notBool); 588 break; 589 } 590 591 case Bytecodes::_ldc2_w: 592 { 593 Label notLong, notDouble; 594 __ cmpl(flags, ltos); 595 __ jccb(Assembler::notEqual, notLong); 596 // ltos 597 // Loading high word first because movptr clobbers rax 598 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 599 __ movptr(rax, field); 600 __ push(ltos); 601 __ jmp(Done); 602 603 __ bind(notLong); 604 __ cmpl(flags, dtos); 605 __ jccb(Assembler::notEqual, notDouble); 606 // dtos 607 __ load_double(field); 608 __ push(dtos); 609 __ jmp(Done); 610 611 __ bind(notDouble); 612 break; 613 } 614 615 default: 616 ShouldNotReachHere(); 617 } 618 619 __ stop("bad ldc/condy"); 620 } 621 622 void TemplateTable::locals_index(Register reg, int offset) { 623 __ load_unsigned_byte(reg, at_bcp(offset)); 624 __ negptr(reg); 625 } 626 627 void TemplateTable::iload() { 628 iload_internal(); 629 } 630 631 void TemplateTable::nofast_iload() { 632 iload_internal(may_not_rewrite); 633 } 634 635 void TemplateTable::iload_internal(RewriteControl rc) { 636 transition(vtos, itos); 637 if (RewriteFrequentPairs && rc == may_rewrite) { 638 Label rewrite, done; 639 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 640 LP64_ONLY(assert(rbx != bc, "register damaged")); 641 642 // get next byte 643 __ load_unsigned_byte(rbx, 644 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 645 // if _iload, wait to rewrite to iload2. We only want to rewrite the 646 // last two iloads in a pair. Comparing against fast_iload means that 647 // the next bytecode is neither an iload or a caload, and therefore 648 // an iload pair. 649 __ cmpl(rbx, Bytecodes::_iload); 650 __ jcc(Assembler::equal, done); 651 652 __ cmpl(rbx, Bytecodes::_fast_iload); 653 __ movl(bc, Bytecodes::_fast_iload2); 654 655 __ jccb(Assembler::equal, rewrite); 656 657 // if _caload, rewrite to fast_icaload 658 __ cmpl(rbx, Bytecodes::_caload); 659 __ movl(bc, Bytecodes::_fast_icaload); 660 __ jccb(Assembler::equal, rewrite); 661 662 // rewrite so iload doesn't check again. 663 __ movl(bc, Bytecodes::_fast_iload); 664 665 // rewrite 666 // bc: fast bytecode 667 __ bind(rewrite); 668 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 669 __ bind(done); 670 } 671 672 // Get the local value into tos 673 locals_index(rbx); 674 __ movl(rax, iaddress(rbx)); 675 } 676 677 void TemplateTable::fast_iload2() { 678 transition(vtos, itos); 679 locals_index(rbx); 680 __ movl(rax, iaddress(rbx)); 681 __ push(itos); 682 locals_index(rbx, 3); 683 __ movl(rax, iaddress(rbx)); 684 } 685 686 void TemplateTable::fast_iload() { 687 transition(vtos, itos); 688 locals_index(rbx); 689 __ movl(rax, iaddress(rbx)); 690 } 691 692 void TemplateTable::lload() { 693 transition(vtos, ltos); 694 locals_index(rbx); 695 __ movptr(rax, laddress(rbx)); 696 NOT_LP64(__ movl(rdx, haddress(rbx))); 697 } 698 699 void TemplateTable::fload() { 700 transition(vtos, ftos); 701 locals_index(rbx); 702 __ load_float(faddress(rbx)); 703 } 704 705 void TemplateTable::dload() { 706 transition(vtos, dtos); 707 locals_index(rbx); 708 __ load_double(daddress(rbx)); 709 } 710 711 void TemplateTable::aload() { 712 transition(vtos, atos); 713 locals_index(rbx); 714 __ movptr(rax, aaddress(rbx)); 715 } 716 717 void TemplateTable::locals_index_wide(Register reg) { 718 __ load_unsigned_short(reg, at_bcp(2)); 719 __ bswapl(reg); 720 __ shrl(reg, 16); 721 __ negptr(reg); 722 } 723 724 void TemplateTable::wide_iload() { 725 transition(vtos, itos); 726 locals_index_wide(rbx); 727 __ movl(rax, iaddress(rbx)); 728 } 729 730 void TemplateTable::wide_lload() { 731 transition(vtos, ltos); 732 locals_index_wide(rbx); 733 __ movptr(rax, laddress(rbx)); 734 NOT_LP64(__ movl(rdx, haddress(rbx))); 735 } 736 737 void TemplateTable::wide_fload() { 738 transition(vtos, ftos); 739 locals_index_wide(rbx); 740 __ load_float(faddress(rbx)); 741 } 742 743 void TemplateTable::wide_dload() { 744 transition(vtos, dtos); 745 locals_index_wide(rbx); 746 __ load_double(daddress(rbx)); 747 } 748 749 void TemplateTable::wide_aload() { 750 transition(vtos, atos); 751 locals_index_wide(rbx); 752 __ movptr(rax, aaddress(rbx)); 753 } 754 755 void TemplateTable::index_check(Register array, Register index) { 756 // Pop ptr into array 757 __ pop_ptr(array); 758 index_check_without_pop(array, index); 759 } 760 761 void TemplateTable::index_check_without_pop(Register array, Register index) { 762 // destroys rbx 763 // sign extend index for use by indexed load 764 __ movl2ptr(index, index); 765 // check index 766 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 767 if (index != rbx) { 768 // ??? convention: move aberrant index into rbx for exception message 769 assert(rbx != array, "different registers"); 770 __ movl(rbx, index); 771 } 772 Label skip; 773 __ jccb(Assembler::below, skip); 774 // Pass array to create more detailed exceptions. 775 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 776 __ jump(RuntimeAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 777 __ bind(skip); 778 } 779 780 void TemplateTable::iaload() { 781 transition(itos, itos); 782 // rax: index 783 // rdx: array 784 index_check(rdx, rax); // kills rbx 785 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 786 Address(rdx, rax, Address::times_4, 787 arrayOopDesc::base_offset_in_bytes(T_INT)), 788 noreg, noreg); 789 } 790 791 void TemplateTable::laload() { 792 transition(itos, ltos); 793 // rax: index 794 // rdx: array 795 index_check(rdx, rax); // kills rbx 796 NOT_LP64(__ mov(rbx, rax)); 797 // rbx,: index 798 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 799 Address(rdx, rbx, Address::times_8, 800 arrayOopDesc::base_offset_in_bytes(T_LONG)), 801 noreg, noreg); 802 } 803 804 805 806 void TemplateTable::faload() { 807 transition(itos, ftos); 808 // rax: index 809 // rdx: array 810 index_check(rdx, rax); // kills rbx 811 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 812 Address(rdx, rax, 813 Address::times_4, 814 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 815 noreg, noreg); 816 } 817 818 void TemplateTable::daload() { 819 transition(itos, dtos); 820 // rax: index 821 // rdx: array 822 index_check(rdx, rax); // kills rbx 823 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 824 Address(rdx, rax, 825 Address::times_8, 826 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 827 noreg, noreg); 828 } 829 830 void TemplateTable::aaload() { 831 transition(itos, atos); 832 // rax: index 833 // rdx: array 834 index_check(rdx, rax); // kills rbx 835 do_oop_load(_masm, 836 Address(rdx, rax, 837 UseCompressedOops ? Address::times_4 : Address::times_ptr, 838 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 839 rax, 840 IS_ARRAY); 841 } 842 843 void TemplateTable::baload() { 844 transition(itos, itos); 845 // rax: index 846 // rdx: array 847 index_check(rdx, rax); // kills rbx 848 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 849 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 850 noreg, noreg); 851 } 852 853 void TemplateTable::caload() { 854 transition(itos, itos); 855 // rax: index 856 // rdx: array 857 index_check(rdx, rax); // kills rbx 858 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 859 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 860 noreg, noreg); 861 } 862 863 // iload followed by caload frequent pair 864 void TemplateTable::fast_icaload() { 865 transition(vtos, itos); 866 // load index out of locals 867 locals_index(rbx); 868 __ movl(rax, iaddress(rbx)); 869 870 // rax: index 871 // rdx: array 872 index_check(rdx, rax); // kills rbx 873 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 874 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 875 noreg, noreg); 876 } 877 878 879 void TemplateTable::saload() { 880 transition(itos, itos); 881 // rax: index 882 // rdx: array 883 index_check(rdx, rax); // kills rbx 884 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 885 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 886 noreg, noreg); 887 } 888 889 void TemplateTable::iload(int n) { 890 transition(vtos, itos); 891 __ movl(rax, iaddress(n)); 892 } 893 894 void TemplateTable::lload(int n) { 895 transition(vtos, ltos); 896 __ movptr(rax, laddress(n)); 897 NOT_LP64(__ movptr(rdx, haddress(n))); 898 } 899 900 void TemplateTable::fload(int n) { 901 transition(vtos, ftos); 902 __ load_float(faddress(n)); 903 } 904 905 void TemplateTable::dload(int n) { 906 transition(vtos, dtos); 907 __ load_double(daddress(n)); 908 } 909 910 void TemplateTable::aload(int n) { 911 transition(vtos, atos); 912 __ movptr(rax, aaddress(n)); 913 } 914 915 void TemplateTable::aload_0() { 916 aload_0_internal(); 917 } 918 919 void TemplateTable::nofast_aload_0() { 920 aload_0_internal(may_not_rewrite); 921 } 922 923 void TemplateTable::aload_0_internal(RewriteControl rc) { 924 transition(vtos, atos); 925 // According to bytecode histograms, the pairs: 926 // 927 // _aload_0, _fast_igetfield 928 // _aload_0, _fast_agetfield 929 // _aload_0, _fast_fgetfield 930 // 931 // occur frequently. If RewriteFrequentPairs is set, the (slow) 932 // _aload_0 bytecode checks if the next bytecode is either 933 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 934 // rewrites the current bytecode into a pair bytecode; otherwise it 935 // rewrites the current bytecode into _fast_aload_0 that doesn't do 936 // the pair check anymore. 937 // 938 // Note: If the next bytecode is _getfield, the rewrite must be 939 // delayed, otherwise we may miss an opportunity for a pair. 940 // 941 // Also rewrite frequent pairs 942 // aload_0, aload_1 943 // aload_0, iload_1 944 // These bytecodes with a small amount of code are most profitable 945 // to rewrite 946 if (RewriteFrequentPairs && rc == may_rewrite) { 947 Label rewrite, done; 948 949 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 950 LP64_ONLY(assert(rbx != bc, "register damaged")); 951 952 // get next byte 953 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 954 955 // if _getfield then wait with rewrite 956 __ cmpl(rbx, Bytecodes::_getfield); 957 __ jcc(Assembler::equal, done); 958 959 // if _igetfield then rewrite to _fast_iaccess_0 960 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 961 __ cmpl(rbx, Bytecodes::_fast_igetfield); 962 __ movl(bc, Bytecodes::_fast_iaccess_0); 963 __ jccb(Assembler::equal, rewrite); 964 965 // if _agetfield then rewrite to _fast_aaccess_0 966 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 967 __ cmpl(rbx, Bytecodes::_fast_agetfield); 968 __ movl(bc, Bytecodes::_fast_aaccess_0); 969 __ jccb(Assembler::equal, rewrite); 970 971 // if _fgetfield then rewrite to _fast_faccess_0 972 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 973 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 974 __ movl(bc, Bytecodes::_fast_faccess_0); 975 __ jccb(Assembler::equal, rewrite); 976 977 // else rewrite to _fast_aload0 978 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 979 __ movl(bc, Bytecodes::_fast_aload_0); 980 981 // rewrite 982 // bc: fast bytecode 983 __ bind(rewrite); 984 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 985 986 __ bind(done); 987 } 988 989 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 990 aload(0); 991 } 992 993 void TemplateTable::istore() { 994 transition(itos, vtos); 995 locals_index(rbx); 996 __ movl(iaddress(rbx), rax); 997 } 998 999 1000 void TemplateTable::lstore() { 1001 transition(ltos, vtos); 1002 locals_index(rbx); 1003 __ movptr(laddress(rbx), rax); 1004 NOT_LP64(__ movptr(haddress(rbx), rdx)); 1005 } 1006 1007 void TemplateTable::fstore() { 1008 transition(ftos, vtos); 1009 locals_index(rbx); 1010 __ store_float(faddress(rbx)); 1011 } 1012 1013 void TemplateTable::dstore() { 1014 transition(dtos, vtos); 1015 locals_index(rbx); 1016 __ store_double(daddress(rbx)); 1017 } 1018 1019 void TemplateTable::astore() { 1020 transition(vtos, vtos); 1021 __ pop_ptr(rax); 1022 locals_index(rbx); 1023 __ movptr(aaddress(rbx), rax); 1024 } 1025 1026 void TemplateTable::wide_istore() { 1027 transition(vtos, vtos); 1028 __ pop_i(); 1029 locals_index_wide(rbx); 1030 __ movl(iaddress(rbx), rax); 1031 } 1032 1033 void TemplateTable::wide_lstore() { 1034 transition(vtos, vtos); 1035 NOT_LP64(__ pop_l(rax, rdx)); 1036 LP64_ONLY(__ pop_l()); 1037 locals_index_wide(rbx); 1038 __ movptr(laddress(rbx), rax); 1039 NOT_LP64(__ movl(haddress(rbx), rdx)); 1040 } 1041 1042 void TemplateTable::wide_fstore() { 1043 #ifdef _LP64 1044 transition(vtos, vtos); 1045 __ pop_f(xmm0); 1046 locals_index_wide(rbx); 1047 __ movflt(faddress(rbx), xmm0); 1048 #else 1049 wide_istore(); 1050 #endif 1051 } 1052 1053 void TemplateTable::wide_dstore() { 1054 #ifdef _LP64 1055 transition(vtos, vtos); 1056 __ pop_d(xmm0); 1057 locals_index_wide(rbx); 1058 __ movdbl(daddress(rbx), xmm0); 1059 #else 1060 wide_lstore(); 1061 #endif 1062 } 1063 1064 void TemplateTable::wide_astore() { 1065 transition(vtos, vtos); 1066 __ pop_ptr(rax); 1067 locals_index_wide(rbx); 1068 __ movptr(aaddress(rbx), rax); 1069 } 1070 1071 void TemplateTable::iastore() { 1072 transition(itos, vtos); 1073 __ pop_i(rbx); 1074 // rax: value 1075 // rbx: index 1076 // rdx: array 1077 index_check(rdx, rbx); // prefer index in rbx 1078 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1079 Address(rdx, rbx, Address::times_4, 1080 arrayOopDesc::base_offset_in_bytes(T_INT)), 1081 rax, noreg, noreg, noreg); 1082 } 1083 1084 void TemplateTable::lastore() { 1085 transition(ltos, vtos); 1086 __ pop_i(rbx); 1087 // rax,: low(value) 1088 // rcx: array 1089 // rdx: high(value) 1090 index_check(rcx, rbx); // prefer index in rbx, 1091 // rbx,: index 1092 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1093 Address(rcx, rbx, Address::times_8, 1094 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1095 noreg /* ltos */, noreg, noreg, noreg); 1096 } 1097 1098 1099 void TemplateTable::fastore() { 1100 transition(ftos, vtos); 1101 __ pop_i(rbx); 1102 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1103 // rbx: index 1104 // rdx: array 1105 index_check(rdx, rbx); // prefer index in rbx 1106 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1107 Address(rdx, rbx, Address::times_4, 1108 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1109 noreg /* ftos */, noreg, noreg, noreg); 1110 } 1111 1112 void TemplateTable::dastore() { 1113 transition(dtos, vtos); 1114 __ pop_i(rbx); 1115 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1116 // rbx: index 1117 // rdx: array 1118 index_check(rdx, rbx); // prefer index in rbx 1119 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1120 Address(rdx, rbx, Address::times_8, 1121 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1122 noreg /* dtos */, noreg, noreg, noreg); 1123 } 1124 1125 void TemplateTable::aastore() { 1126 Label is_null, ok_is_subtype, done; 1127 transition(vtos, vtos); 1128 // stack: ..., array, index, value 1129 __ movptr(rax, at_tos()); // value 1130 __ movl(rcx, at_tos_p1()); // index 1131 __ movptr(rdx, at_tos_p2()); // array 1132 1133 Address element_address(rdx, rcx, 1134 UseCompressedOops? Address::times_4 : Address::times_ptr, 1135 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1136 1137 index_check_without_pop(rdx, rcx); // kills rbx 1138 __ testptr(rax, rax); 1139 __ jcc(Assembler::zero, is_null); 1140 1141 // Move subklass into rbx 1142 __ load_klass(rbx, rax, rscratch1); 1143 // Move superklass into rax 1144 __ load_klass(rax, rdx, rscratch1); 1145 __ movptr(rax, Address(rax, 1146 ObjArrayKlass::element_klass_offset())); 1147 1148 // Generate subtype check. Blows rcx, rdi 1149 // Superklass in rax. Subklass in rbx. 1150 __ gen_subtype_check(rbx, ok_is_subtype); 1151 1152 // Come here on failure 1153 // object is at TOS 1154 __ jump(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry)); 1155 1156 // Come here on success 1157 __ bind(ok_is_subtype); 1158 1159 // Get the value we will store 1160 __ movptr(rax, at_tos()); 1161 __ movl(rcx, at_tos_p1()); // index 1162 // Now store using the appropriate barrier 1163 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1164 __ jmp(done); 1165 1166 // Have a null in rax, rdx=array, ecx=index. Store null at ary[idx] 1167 __ bind(is_null); 1168 __ profile_null_seen(rbx); 1169 1170 // Store a null 1171 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1172 1173 // Pop stack arguments 1174 __ bind(done); 1175 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1176 } 1177 1178 void TemplateTable::bastore() { 1179 transition(itos, vtos); 1180 __ pop_i(rbx); 1181 // rax: value 1182 // rbx: index 1183 // rdx: array 1184 index_check(rdx, rbx); // prefer index in rbx 1185 // Need to check whether array is boolean or byte 1186 // since both types share the bastore bytecode. 1187 __ load_klass(rcx, rdx, rscratch1); 1188 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1189 int diffbit = Klass::layout_helper_boolean_diffbit(); 1190 __ testl(rcx, diffbit); 1191 Label L_skip; 1192 __ jccb(Assembler::zero, L_skip); 1193 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1194 __ bind(L_skip); 1195 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1196 Address(rdx, rbx,Address::times_1, 1197 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1198 rax, noreg, noreg, noreg); 1199 } 1200 1201 void TemplateTable::castore() { 1202 transition(itos, vtos); 1203 __ pop_i(rbx); 1204 // rax: value 1205 // rbx: index 1206 // rdx: array 1207 index_check(rdx, rbx); // prefer index in rbx 1208 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1209 Address(rdx, rbx, Address::times_2, 1210 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1211 rax, noreg, noreg, noreg); 1212 } 1213 1214 1215 void TemplateTable::sastore() { 1216 castore(); 1217 } 1218 1219 void TemplateTable::istore(int n) { 1220 transition(itos, vtos); 1221 __ movl(iaddress(n), rax); 1222 } 1223 1224 void TemplateTable::lstore(int n) { 1225 transition(ltos, vtos); 1226 __ movptr(laddress(n), rax); 1227 NOT_LP64(__ movptr(haddress(n), rdx)); 1228 } 1229 1230 void TemplateTable::fstore(int n) { 1231 transition(ftos, vtos); 1232 __ store_float(faddress(n)); 1233 } 1234 1235 void TemplateTable::dstore(int n) { 1236 transition(dtos, vtos); 1237 __ store_double(daddress(n)); 1238 } 1239 1240 1241 void TemplateTable::astore(int n) { 1242 transition(vtos, vtos); 1243 __ pop_ptr(rax); 1244 __ movptr(aaddress(n), rax); 1245 } 1246 1247 void TemplateTable::pop() { 1248 transition(vtos, vtos); 1249 __ addptr(rsp, Interpreter::stackElementSize); 1250 } 1251 1252 void TemplateTable::pop2() { 1253 transition(vtos, vtos); 1254 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1255 } 1256 1257 1258 void TemplateTable::dup() { 1259 transition(vtos, vtos); 1260 __ load_ptr(0, rax); 1261 __ push_ptr(rax); 1262 // stack: ..., a, a 1263 } 1264 1265 void TemplateTable::dup_x1() { 1266 transition(vtos, vtos); 1267 // stack: ..., a, b 1268 __ load_ptr( 0, rax); // load b 1269 __ load_ptr( 1, rcx); // load a 1270 __ store_ptr(1, rax); // store b 1271 __ store_ptr(0, rcx); // store a 1272 __ push_ptr(rax); // push b 1273 // stack: ..., b, a, b 1274 } 1275 1276 void TemplateTable::dup_x2() { 1277 transition(vtos, vtos); 1278 // stack: ..., a, b, c 1279 __ load_ptr( 0, rax); // load c 1280 __ load_ptr( 2, rcx); // load a 1281 __ store_ptr(2, rax); // store c in a 1282 __ push_ptr(rax); // push c 1283 // stack: ..., c, b, c, c 1284 __ load_ptr( 2, rax); // load b 1285 __ store_ptr(2, rcx); // store a in b 1286 // stack: ..., c, a, c, c 1287 __ store_ptr(1, rax); // store b in c 1288 // stack: ..., c, a, b, c 1289 } 1290 1291 void TemplateTable::dup2() { 1292 transition(vtos, vtos); 1293 // stack: ..., a, b 1294 __ load_ptr(1, rax); // load a 1295 __ push_ptr(rax); // push a 1296 __ load_ptr(1, rax); // load b 1297 __ push_ptr(rax); // push b 1298 // stack: ..., a, b, a, b 1299 } 1300 1301 1302 void TemplateTable::dup2_x1() { 1303 transition(vtos, vtos); 1304 // stack: ..., a, b, c 1305 __ load_ptr( 0, rcx); // load c 1306 __ load_ptr( 1, rax); // load b 1307 __ push_ptr(rax); // push b 1308 __ push_ptr(rcx); // push c 1309 // stack: ..., a, b, c, b, c 1310 __ store_ptr(3, rcx); // store c in b 1311 // stack: ..., a, c, c, b, c 1312 __ load_ptr( 4, rcx); // load a 1313 __ store_ptr(2, rcx); // store a in 2nd c 1314 // stack: ..., a, c, a, b, c 1315 __ store_ptr(4, rax); // store b in a 1316 // stack: ..., b, c, a, b, c 1317 } 1318 1319 void TemplateTable::dup2_x2() { 1320 transition(vtos, vtos); 1321 // stack: ..., a, b, c, d 1322 __ load_ptr( 0, rcx); // load d 1323 __ load_ptr( 1, rax); // load c 1324 __ push_ptr(rax); // push c 1325 __ push_ptr(rcx); // push d 1326 // stack: ..., a, b, c, d, c, d 1327 __ load_ptr( 4, rax); // load b 1328 __ store_ptr(2, rax); // store b in d 1329 __ store_ptr(4, rcx); // store d in b 1330 // stack: ..., a, d, c, b, c, d 1331 __ load_ptr( 5, rcx); // load a 1332 __ load_ptr( 3, rax); // load c 1333 __ store_ptr(3, rcx); // store a in c 1334 __ store_ptr(5, rax); // store c in a 1335 // stack: ..., c, d, a, b, c, d 1336 } 1337 1338 void TemplateTable::swap() { 1339 transition(vtos, vtos); 1340 // stack: ..., a, b 1341 __ load_ptr( 1, rcx); // load a 1342 __ load_ptr( 0, rax); // load b 1343 __ store_ptr(0, rcx); // store a in b 1344 __ store_ptr(1, rax); // store b in a 1345 // stack: ..., b, a 1346 } 1347 1348 void TemplateTable::iop2(Operation op) { 1349 transition(itos, itos); 1350 switch (op) { 1351 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1352 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1353 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1354 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1355 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1356 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1357 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1358 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1359 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1360 default : ShouldNotReachHere(); 1361 } 1362 } 1363 1364 void TemplateTable::lop2(Operation op) { 1365 transition(ltos, ltos); 1366 #ifdef _LP64 1367 switch (op) { 1368 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1369 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1370 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1371 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1372 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1373 default : ShouldNotReachHere(); 1374 } 1375 #else 1376 __ pop_l(rbx, rcx); 1377 switch (op) { 1378 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1379 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1380 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1381 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1382 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1383 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1384 default : ShouldNotReachHere(); 1385 } 1386 #endif 1387 } 1388 1389 void TemplateTable::idiv() { 1390 transition(itos, itos); 1391 __ movl(rcx, rax); 1392 __ pop_i(rax); 1393 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1394 // they are not equal, one could do a normal division (no correction 1395 // needed), which may speed up this implementation for the common case. 1396 // (see also JVM spec., p.243 & p.271) 1397 __ corrected_idivl(rcx); 1398 } 1399 1400 void TemplateTable::irem() { 1401 transition(itos, itos); 1402 __ movl(rcx, rax); 1403 __ pop_i(rax); 1404 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1405 // they are not equal, one could do a normal division (no correction 1406 // needed), which may speed up this implementation for the common case. 1407 // (see also JVM spec., p.243 & p.271) 1408 __ corrected_idivl(rcx); 1409 __ movl(rax, rdx); 1410 } 1411 1412 void TemplateTable::lmul() { 1413 transition(ltos, ltos); 1414 #ifdef _LP64 1415 __ pop_l(rdx); 1416 __ imulq(rax, rdx); 1417 #else 1418 __ pop_l(rbx, rcx); 1419 __ push(rcx); __ push(rbx); 1420 __ push(rdx); __ push(rax); 1421 __ lmul(2 * wordSize, 0); 1422 __ addptr(rsp, 4 * wordSize); // take off temporaries 1423 #endif 1424 } 1425 1426 void TemplateTable::ldiv() { 1427 transition(ltos, ltos); 1428 #ifdef _LP64 1429 __ mov(rcx, rax); 1430 __ pop_l(rax); 1431 // generate explicit div0 check 1432 __ testq(rcx, rcx); 1433 __ jump_cc(Assembler::zero, 1434 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1435 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1436 // they are not equal, one could do a normal division (no correction 1437 // needed), which may speed up this implementation for the common case. 1438 // (see also JVM spec., p.243 & p.271) 1439 __ corrected_idivq(rcx); // kills rbx 1440 #else 1441 __ pop_l(rbx, rcx); 1442 __ push(rcx); __ push(rbx); 1443 __ push(rdx); __ push(rax); 1444 // check if y = 0 1445 __ orl(rax, rdx); 1446 __ jump_cc(Assembler::zero, 1447 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1448 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1449 __ addptr(rsp, 4 * wordSize); // take off temporaries 1450 #endif 1451 } 1452 1453 void TemplateTable::lrem() { 1454 transition(ltos, ltos); 1455 #ifdef _LP64 1456 __ mov(rcx, rax); 1457 __ pop_l(rax); 1458 __ testq(rcx, rcx); 1459 __ jump_cc(Assembler::zero, 1460 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1461 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1462 // they are not equal, one could do a normal division (no correction 1463 // needed), which may speed up this implementation for the common case. 1464 // (see also JVM spec., p.243 & p.271) 1465 __ corrected_idivq(rcx); // kills rbx 1466 __ mov(rax, rdx); 1467 #else 1468 __ pop_l(rbx, rcx); 1469 __ push(rcx); __ push(rbx); 1470 __ push(rdx); __ push(rax); 1471 // check if y = 0 1472 __ orl(rax, rdx); 1473 __ jump_cc(Assembler::zero, 1474 RuntimeAddress(Interpreter::_throw_ArithmeticException_entry)); 1475 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1476 __ addptr(rsp, 4 * wordSize); 1477 #endif 1478 } 1479 1480 void TemplateTable::lshl() { 1481 transition(itos, ltos); 1482 __ movl(rcx, rax); // get shift count 1483 #ifdef _LP64 1484 __ pop_l(rax); // get shift value 1485 __ shlq(rax); 1486 #else 1487 __ pop_l(rax, rdx); // get shift value 1488 __ lshl(rdx, rax); 1489 #endif 1490 } 1491 1492 void TemplateTable::lshr() { 1493 #ifdef _LP64 1494 transition(itos, ltos); 1495 __ movl(rcx, rax); // get shift count 1496 __ pop_l(rax); // get shift value 1497 __ sarq(rax); 1498 #else 1499 transition(itos, ltos); 1500 __ mov(rcx, rax); // get shift count 1501 __ pop_l(rax, rdx); // get shift value 1502 __ lshr(rdx, rax, true); 1503 #endif 1504 } 1505 1506 void TemplateTable::lushr() { 1507 transition(itos, ltos); 1508 #ifdef _LP64 1509 __ movl(rcx, rax); // get shift count 1510 __ pop_l(rax); // get shift value 1511 __ shrq(rax); 1512 #else 1513 __ mov(rcx, rax); // get shift count 1514 __ pop_l(rax, rdx); // get shift value 1515 __ lshr(rdx, rax); 1516 #endif 1517 } 1518 1519 void TemplateTable::fop2(Operation op) { 1520 transition(ftos, ftos); 1521 1522 if (UseSSE >= 1) { 1523 switch (op) { 1524 case add: 1525 __ addss(xmm0, at_rsp()); 1526 __ addptr(rsp, Interpreter::stackElementSize); 1527 break; 1528 case sub: 1529 __ movflt(xmm1, xmm0); 1530 __ pop_f(xmm0); 1531 __ subss(xmm0, xmm1); 1532 break; 1533 case mul: 1534 __ mulss(xmm0, at_rsp()); 1535 __ addptr(rsp, Interpreter::stackElementSize); 1536 break; 1537 case div: 1538 __ movflt(xmm1, xmm0); 1539 __ pop_f(xmm0); 1540 __ divss(xmm0, xmm1); 1541 break; 1542 case rem: 1543 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1544 // modulo operation. The frem method calls the function 1545 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1546 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1547 // (signalling or quiet) is returned. 1548 // 1549 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1550 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1551 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1552 // The fprem instruction used on x86_32 is functionally equivalent to 1553 // SharedRuntime::frem in that it returns a NaN. 1554 #ifdef _LP64 1555 __ movflt(xmm1, xmm0); 1556 __ pop_f(xmm0); 1557 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1558 #else // !_LP64 1559 __ push_f(xmm0); 1560 __ pop_f(); 1561 __ fld_s(at_rsp()); 1562 __ fremr(rax); 1563 __ f2ieee(); 1564 __ pop(rax); // pop second operand off the stack 1565 __ push_f(); 1566 __ pop_f(xmm0); 1567 #endif // _LP64 1568 break; 1569 default: 1570 ShouldNotReachHere(); 1571 break; 1572 } 1573 } else { 1574 #ifdef _LP64 1575 ShouldNotReachHere(); 1576 #else // !_LP64 1577 switch (op) { 1578 case add: __ fadd_s (at_rsp()); break; 1579 case sub: __ fsubr_s(at_rsp()); break; 1580 case mul: __ fmul_s (at_rsp()); break; 1581 case div: __ fdivr_s(at_rsp()); break; 1582 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1583 default : ShouldNotReachHere(); 1584 } 1585 __ f2ieee(); 1586 __ pop(rax); // pop second operand off the stack 1587 #endif // _LP64 1588 } 1589 } 1590 1591 void TemplateTable::dop2(Operation op) { 1592 transition(dtos, dtos); 1593 if (UseSSE >= 2) { 1594 switch (op) { 1595 case add: 1596 __ addsd(xmm0, at_rsp()); 1597 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1598 break; 1599 case sub: 1600 __ movdbl(xmm1, xmm0); 1601 __ pop_d(xmm0); 1602 __ subsd(xmm0, xmm1); 1603 break; 1604 case mul: 1605 __ mulsd(xmm0, at_rsp()); 1606 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1607 break; 1608 case div: 1609 __ movdbl(xmm1, xmm0); 1610 __ pop_d(xmm0); 1611 __ divsd(xmm0, xmm1); 1612 break; 1613 case rem: 1614 // Similar to fop2(), the modulo operation is performed using the 1615 // SharedRuntime::drem method (on x86_64 platforms) or using the 1616 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1617 #ifdef _LP64 1618 __ movdbl(xmm1, xmm0); 1619 __ pop_d(xmm0); 1620 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1621 #else // !_LP64 1622 __ push_d(xmm0); 1623 __ pop_d(); 1624 __ fld_d(at_rsp()); 1625 __ fremr(rax); 1626 __ d2ieee(); 1627 __ pop(rax); 1628 __ pop(rdx); 1629 __ push_d(); 1630 __ pop_d(xmm0); 1631 #endif // _LP64 1632 break; 1633 default: 1634 ShouldNotReachHere(); 1635 break; 1636 } 1637 } else { 1638 #ifdef _LP64 1639 ShouldNotReachHere(); 1640 #else // !_LP64 1641 switch (op) { 1642 case add: __ fadd_d (at_rsp()); break; 1643 case sub: __ fsubr_d(at_rsp()); break; 1644 case mul: { 1645 // strict semantics 1646 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1647 __ fmulp(); 1648 __ fmul_d (at_rsp()); 1649 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1650 __ fmulp(); 1651 break; 1652 } 1653 case div: { 1654 // strict semantics 1655 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1656 __ fmul_d (at_rsp()); 1657 __ fdivrp(); 1658 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1659 __ fmulp(); 1660 break; 1661 } 1662 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1663 default : ShouldNotReachHere(); 1664 } 1665 __ d2ieee(); 1666 // Pop double precision number from rsp. 1667 __ pop(rax); 1668 __ pop(rdx); 1669 #endif // _LP64 1670 } 1671 } 1672 1673 void TemplateTable::ineg() { 1674 transition(itos, itos); 1675 __ negl(rax); 1676 } 1677 1678 void TemplateTable::lneg() { 1679 transition(ltos, ltos); 1680 LP64_ONLY(__ negq(rax)); 1681 NOT_LP64(__ lneg(rdx, rax)); 1682 } 1683 1684 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1685 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1686 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1687 // of 128-bits operands for SSE instructions. 1688 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1689 // Store the value to a 128-bits operand. 1690 operand[0] = lo; 1691 operand[1] = hi; 1692 return operand; 1693 } 1694 1695 // Buffer for 128-bits masks used by SSE instructions. 1696 static jlong float_signflip_pool[2*2]; 1697 static jlong double_signflip_pool[2*2]; 1698 1699 void TemplateTable::fneg() { 1700 transition(ftos, ftos); 1701 if (UseSSE >= 1) { 1702 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1703 __ xorps(xmm0, ExternalAddress((address) float_signflip), rscratch1); 1704 } else { 1705 LP64_ONLY(ShouldNotReachHere()); 1706 NOT_LP64(__ fchs()); 1707 } 1708 } 1709 1710 void TemplateTable::dneg() { 1711 transition(dtos, dtos); 1712 if (UseSSE >= 2) { 1713 static jlong *double_signflip = 1714 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1715 __ xorpd(xmm0, ExternalAddress((address) double_signflip), rscratch1); 1716 } else { 1717 #ifdef _LP64 1718 ShouldNotReachHere(); 1719 #else 1720 __ fchs(); 1721 #endif 1722 } 1723 } 1724 1725 void TemplateTable::iinc() { 1726 transition(vtos, vtos); 1727 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1728 locals_index(rbx); 1729 __ addl(iaddress(rbx), rdx); 1730 } 1731 1732 void TemplateTable::wide_iinc() { 1733 transition(vtos, vtos); 1734 __ movl(rdx, at_bcp(4)); // get constant 1735 locals_index_wide(rbx); 1736 __ bswapl(rdx); // swap bytes & sign-extend constant 1737 __ sarl(rdx, 16); 1738 __ addl(iaddress(rbx), rdx); 1739 // Note: should probably use only one movl to get both 1740 // the index and the constant -> fix this 1741 } 1742 1743 void TemplateTable::convert() { 1744 #ifdef _LP64 1745 // Checking 1746 #ifdef ASSERT 1747 { 1748 TosState tos_in = ilgl; 1749 TosState tos_out = ilgl; 1750 switch (bytecode()) { 1751 case Bytecodes::_i2l: // fall through 1752 case Bytecodes::_i2f: // fall through 1753 case Bytecodes::_i2d: // fall through 1754 case Bytecodes::_i2b: // fall through 1755 case Bytecodes::_i2c: // fall through 1756 case Bytecodes::_i2s: tos_in = itos; break; 1757 case Bytecodes::_l2i: // fall through 1758 case Bytecodes::_l2f: // fall through 1759 case Bytecodes::_l2d: tos_in = ltos; break; 1760 case Bytecodes::_f2i: // fall through 1761 case Bytecodes::_f2l: // fall through 1762 case Bytecodes::_f2d: tos_in = ftos; break; 1763 case Bytecodes::_d2i: // fall through 1764 case Bytecodes::_d2l: // fall through 1765 case Bytecodes::_d2f: tos_in = dtos; break; 1766 default : ShouldNotReachHere(); 1767 } 1768 switch (bytecode()) { 1769 case Bytecodes::_l2i: // fall through 1770 case Bytecodes::_f2i: // fall through 1771 case Bytecodes::_d2i: // fall through 1772 case Bytecodes::_i2b: // fall through 1773 case Bytecodes::_i2c: // fall through 1774 case Bytecodes::_i2s: tos_out = itos; break; 1775 case Bytecodes::_i2l: // fall through 1776 case Bytecodes::_f2l: // fall through 1777 case Bytecodes::_d2l: tos_out = ltos; break; 1778 case Bytecodes::_i2f: // fall through 1779 case Bytecodes::_l2f: // fall through 1780 case Bytecodes::_d2f: tos_out = ftos; break; 1781 case Bytecodes::_i2d: // fall through 1782 case Bytecodes::_l2d: // fall through 1783 case Bytecodes::_f2d: tos_out = dtos; break; 1784 default : ShouldNotReachHere(); 1785 } 1786 transition(tos_in, tos_out); 1787 } 1788 #endif // ASSERT 1789 1790 static const int64_t is_nan = 0x8000000000000000L; 1791 1792 // Conversion 1793 switch (bytecode()) { 1794 case Bytecodes::_i2l: 1795 __ movslq(rax, rax); 1796 break; 1797 case Bytecodes::_i2f: 1798 __ cvtsi2ssl(xmm0, rax); 1799 break; 1800 case Bytecodes::_i2d: 1801 __ cvtsi2sdl(xmm0, rax); 1802 break; 1803 case Bytecodes::_i2b: 1804 __ movsbl(rax, rax); 1805 break; 1806 case Bytecodes::_i2c: 1807 __ movzwl(rax, rax); 1808 break; 1809 case Bytecodes::_i2s: 1810 __ movswl(rax, rax); 1811 break; 1812 case Bytecodes::_l2i: 1813 __ movl(rax, rax); 1814 break; 1815 case Bytecodes::_l2f: 1816 __ cvtsi2ssq(xmm0, rax); 1817 break; 1818 case Bytecodes::_l2d: 1819 __ cvtsi2sdq(xmm0, rax); 1820 break; 1821 case Bytecodes::_f2i: 1822 { 1823 Label L; 1824 __ cvttss2sil(rax, xmm0); 1825 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1826 __ jcc(Assembler::notEqual, L); 1827 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1828 __ bind(L); 1829 } 1830 break; 1831 case Bytecodes::_f2l: 1832 { 1833 Label L; 1834 __ cvttss2siq(rax, xmm0); 1835 // NaN or overflow/underflow? 1836 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1837 __ jcc(Assembler::notEqual, L); 1838 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1839 __ bind(L); 1840 } 1841 break; 1842 case Bytecodes::_f2d: 1843 __ cvtss2sd(xmm0, xmm0); 1844 break; 1845 case Bytecodes::_d2i: 1846 { 1847 Label L; 1848 __ cvttsd2sil(rax, xmm0); 1849 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1850 __ jcc(Assembler::notEqual, L); 1851 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1852 __ bind(L); 1853 } 1854 break; 1855 case Bytecodes::_d2l: 1856 { 1857 Label L; 1858 __ cvttsd2siq(rax, xmm0); 1859 // NaN or overflow/underflow? 1860 __ cmp64(rax, ExternalAddress((address) &is_nan), rscratch1); 1861 __ jcc(Assembler::notEqual, L); 1862 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1863 __ bind(L); 1864 } 1865 break; 1866 case Bytecodes::_d2f: 1867 __ cvtsd2ss(xmm0, xmm0); 1868 break; 1869 default: 1870 ShouldNotReachHere(); 1871 } 1872 #else // !_LP64 1873 // Checking 1874 #ifdef ASSERT 1875 { TosState tos_in = ilgl; 1876 TosState tos_out = ilgl; 1877 switch (bytecode()) { 1878 case Bytecodes::_i2l: // fall through 1879 case Bytecodes::_i2f: // fall through 1880 case Bytecodes::_i2d: // fall through 1881 case Bytecodes::_i2b: // fall through 1882 case Bytecodes::_i2c: // fall through 1883 case Bytecodes::_i2s: tos_in = itos; break; 1884 case Bytecodes::_l2i: // fall through 1885 case Bytecodes::_l2f: // fall through 1886 case Bytecodes::_l2d: tos_in = ltos; break; 1887 case Bytecodes::_f2i: // fall through 1888 case Bytecodes::_f2l: // fall through 1889 case Bytecodes::_f2d: tos_in = ftos; break; 1890 case Bytecodes::_d2i: // fall through 1891 case Bytecodes::_d2l: // fall through 1892 case Bytecodes::_d2f: tos_in = dtos; break; 1893 default : ShouldNotReachHere(); 1894 } 1895 switch (bytecode()) { 1896 case Bytecodes::_l2i: // fall through 1897 case Bytecodes::_f2i: // fall through 1898 case Bytecodes::_d2i: // fall through 1899 case Bytecodes::_i2b: // fall through 1900 case Bytecodes::_i2c: // fall through 1901 case Bytecodes::_i2s: tos_out = itos; break; 1902 case Bytecodes::_i2l: // fall through 1903 case Bytecodes::_f2l: // fall through 1904 case Bytecodes::_d2l: tos_out = ltos; break; 1905 case Bytecodes::_i2f: // fall through 1906 case Bytecodes::_l2f: // fall through 1907 case Bytecodes::_d2f: tos_out = ftos; break; 1908 case Bytecodes::_i2d: // fall through 1909 case Bytecodes::_l2d: // fall through 1910 case Bytecodes::_f2d: tos_out = dtos; break; 1911 default : ShouldNotReachHere(); 1912 } 1913 transition(tos_in, tos_out); 1914 } 1915 #endif // ASSERT 1916 1917 // Conversion 1918 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1919 switch (bytecode()) { 1920 case Bytecodes::_i2l: 1921 __ extend_sign(rdx, rax); 1922 break; 1923 case Bytecodes::_i2f: 1924 if (UseSSE >= 1) { 1925 __ cvtsi2ssl(xmm0, rax); 1926 } else { 1927 __ push(rax); // store int on tos 1928 __ fild_s(at_rsp()); // load int to ST0 1929 __ f2ieee(); // truncate to float size 1930 __ pop(rcx); // adjust rsp 1931 } 1932 break; 1933 case Bytecodes::_i2d: 1934 if (UseSSE >= 2) { 1935 __ cvtsi2sdl(xmm0, rax); 1936 } else { 1937 __ push(rax); // add one slot for d2ieee() 1938 __ push(rax); // store int on tos 1939 __ fild_s(at_rsp()); // load int to ST0 1940 __ d2ieee(); // truncate to double size 1941 __ pop(rcx); // adjust rsp 1942 __ pop(rcx); 1943 } 1944 break; 1945 case Bytecodes::_i2b: 1946 __ shll(rax, 24); // truncate upper 24 bits 1947 __ sarl(rax, 24); // and sign-extend byte 1948 LP64_ONLY(__ movsbl(rax, rax)); 1949 break; 1950 case Bytecodes::_i2c: 1951 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1952 LP64_ONLY(__ movzwl(rax, rax)); 1953 break; 1954 case Bytecodes::_i2s: 1955 __ shll(rax, 16); // truncate upper 16 bits 1956 __ sarl(rax, 16); // and sign-extend short 1957 LP64_ONLY(__ movswl(rax, rax)); 1958 break; 1959 case Bytecodes::_l2i: 1960 /* nothing to do */ 1961 break; 1962 case Bytecodes::_l2f: 1963 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1964 // 64-bit long values to floats. On 32-bit platforms it is not possible 1965 // to use that instruction with 64-bit operands, therefore the FPU is 1966 // used to perform the conversion. 1967 __ push(rdx); // store long on tos 1968 __ push(rax); 1969 __ fild_d(at_rsp()); // load long to ST0 1970 __ f2ieee(); // truncate to float size 1971 __ pop(rcx); // adjust rsp 1972 __ pop(rcx); 1973 if (UseSSE >= 1) { 1974 __ push_f(); 1975 __ pop_f(xmm0); 1976 } 1977 break; 1978 case Bytecodes::_l2d: 1979 // On 32-bit platforms the FPU is used for conversion because on 1980 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1981 // instruction with 64-bit operands. 1982 __ push(rdx); // store long on tos 1983 __ push(rax); 1984 __ fild_d(at_rsp()); // load long to ST0 1985 __ d2ieee(); // truncate to double size 1986 __ pop(rcx); // adjust rsp 1987 __ pop(rcx); 1988 if (UseSSE >= 2) { 1989 __ push_d(); 1990 __ pop_d(xmm0); 1991 } 1992 break; 1993 case Bytecodes::_f2i: 1994 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1995 // as it returns 0 for any NaN. 1996 if (UseSSE >= 1) { 1997 __ push_f(xmm0); 1998 } else { 1999 __ push(rcx); // reserve space for argument 2000 __ fstp_s(at_rsp()); // pass float argument on stack 2001 } 2002 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 2003 break; 2004 case Bytecodes::_f2l: 2005 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 2006 // as it returns 0 for any NaN. 2007 if (UseSSE >= 1) { 2008 __ push_f(xmm0); 2009 } else { 2010 __ push(rcx); // reserve space for argument 2011 __ fstp_s(at_rsp()); // pass float argument on stack 2012 } 2013 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2014 break; 2015 case Bytecodes::_f2d: 2016 if (UseSSE < 1) { 2017 /* nothing to do */ 2018 } else if (UseSSE == 1) { 2019 __ push_f(xmm0); 2020 __ pop_f(); 2021 } else { // UseSSE >= 2 2022 __ cvtss2sd(xmm0, xmm0); 2023 } 2024 break; 2025 case Bytecodes::_d2i: 2026 if (UseSSE >= 2) { 2027 __ push_d(xmm0); 2028 } else { 2029 __ push(rcx); // reserve space for argument 2030 __ push(rcx); 2031 __ fstp_d(at_rsp()); // pass double argument on stack 2032 } 2033 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2034 break; 2035 case Bytecodes::_d2l: 2036 if (UseSSE >= 2) { 2037 __ push_d(xmm0); 2038 } else { 2039 __ push(rcx); // reserve space for argument 2040 __ push(rcx); 2041 __ fstp_d(at_rsp()); // pass double argument on stack 2042 } 2043 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2044 break; 2045 case Bytecodes::_d2f: 2046 if (UseSSE <= 1) { 2047 __ push(rcx); // reserve space for f2ieee() 2048 __ f2ieee(); // truncate to float size 2049 __ pop(rcx); // adjust rsp 2050 if (UseSSE == 1) { 2051 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2052 // the conversion is performed using the FPU in this case. 2053 __ push_f(); 2054 __ pop_f(xmm0); 2055 } 2056 } else { // UseSSE >= 2 2057 __ cvtsd2ss(xmm0, xmm0); 2058 } 2059 break; 2060 default : 2061 ShouldNotReachHere(); 2062 } 2063 #endif // _LP64 2064 } 2065 2066 void TemplateTable::lcmp() { 2067 transition(ltos, itos); 2068 #ifdef _LP64 2069 Label done; 2070 __ pop_l(rdx); 2071 __ cmpq(rdx, rax); 2072 __ movl(rax, -1); 2073 __ jccb(Assembler::less, done); 2074 __ setb(Assembler::notEqual, rax); 2075 __ movzbl(rax, rax); 2076 __ bind(done); 2077 #else 2078 2079 // y = rdx:rax 2080 __ pop_l(rbx, rcx); // get x = rcx:rbx 2081 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2082 __ mov(rax, rcx); 2083 #endif 2084 } 2085 2086 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2087 if ((is_float && UseSSE >= 1) || 2088 (!is_float && UseSSE >= 2)) { 2089 Label done; 2090 if (is_float) { 2091 // XXX get rid of pop here, use ... reg, mem32 2092 __ pop_f(xmm1); 2093 __ ucomiss(xmm1, xmm0); 2094 } else { 2095 // XXX get rid of pop here, use ... reg, mem64 2096 __ pop_d(xmm1); 2097 __ ucomisd(xmm1, xmm0); 2098 } 2099 if (unordered_result < 0) { 2100 __ movl(rax, -1); 2101 __ jccb(Assembler::parity, done); 2102 __ jccb(Assembler::below, done); 2103 __ setb(Assembler::notEqual, rdx); 2104 __ movzbl(rax, rdx); 2105 } else { 2106 __ movl(rax, 1); 2107 __ jccb(Assembler::parity, done); 2108 __ jccb(Assembler::above, done); 2109 __ movl(rax, 0); 2110 __ jccb(Assembler::equal, done); 2111 __ decrementl(rax); 2112 } 2113 __ bind(done); 2114 } else { 2115 #ifdef _LP64 2116 ShouldNotReachHere(); 2117 #else // !_LP64 2118 if (is_float) { 2119 __ fld_s(at_rsp()); 2120 } else { 2121 __ fld_d(at_rsp()); 2122 __ pop(rdx); 2123 } 2124 __ pop(rcx); 2125 __ fcmp2int(rax, unordered_result < 0); 2126 #endif // _LP64 2127 } 2128 } 2129 2130 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2131 __ get_method(rcx); // rcx holds method 2132 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2133 // holds bumped taken count 2134 2135 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2136 InvocationCounter::counter_offset(); 2137 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2138 InvocationCounter::counter_offset(); 2139 2140 // Load up edx with the branch displacement 2141 if (is_wide) { 2142 __ movl(rdx, at_bcp(1)); 2143 } else { 2144 __ load_signed_short(rdx, at_bcp(1)); 2145 } 2146 __ bswapl(rdx); 2147 2148 if (!is_wide) { 2149 __ sarl(rdx, 16); 2150 } 2151 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2152 2153 // Handle all the JSR stuff here, then exit. 2154 // It's much shorter and cleaner than intermingling with the non-JSR 2155 // normal-branch stuff occurring below. 2156 if (is_jsr) { 2157 // Pre-load the next target bytecode into rbx 2158 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2159 2160 // compute return address as bci in rax 2161 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2162 in_bytes(ConstMethod::codes_offset()))); 2163 __ subptr(rax, Address(rcx, Method::const_offset())); 2164 // Adjust the bcp in r13 by the displacement in rdx 2165 __ addptr(rbcp, rdx); 2166 // jsr returns atos that is not an oop 2167 __ push_i(rax); 2168 __ dispatch_only(vtos, true); 2169 return; 2170 } 2171 2172 // Normal (non-jsr) branch handling 2173 2174 // Adjust the bcp in r13 by the displacement in rdx 2175 __ addptr(rbcp, rdx); 2176 2177 assert(UseLoopCounter || !UseOnStackReplacement, 2178 "on-stack-replacement requires loop counters"); 2179 Label backedge_counter_overflow; 2180 Label dispatch; 2181 if (UseLoopCounter) { 2182 // increment backedge counter for backward branches 2183 // rax: MDO 2184 // rbx: MDO bumped taken-count 2185 // rcx: method 2186 // rdx: target offset 2187 // r13: target bcp 2188 // r14: locals pointer 2189 __ testl(rdx, rdx); // check if forward or backward branch 2190 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2191 2192 // check if MethodCounters exists 2193 Label has_counters; 2194 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2195 __ testptr(rax, rax); 2196 __ jcc(Assembler::notZero, has_counters); 2197 __ push(rdx); 2198 __ push(rcx); 2199 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2200 rcx); 2201 __ pop(rcx); 2202 __ pop(rdx); 2203 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2204 __ testptr(rax, rax); 2205 __ jcc(Assembler::zero, dispatch); 2206 __ bind(has_counters); 2207 2208 Label no_mdo; 2209 if (ProfileInterpreter) { 2210 // Are we profiling? 2211 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2212 __ testptr(rbx, rbx); 2213 __ jccb(Assembler::zero, no_mdo); 2214 // Increment the MDO backedge counter 2215 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2216 in_bytes(InvocationCounter::counter_offset())); 2217 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2218 __ increment_mask_and_jump(mdo_backedge_counter, mask, rax, 2219 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2220 __ jmp(dispatch); 2221 } 2222 __ bind(no_mdo); 2223 // Increment backedge counter in MethodCounters* 2224 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2225 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2226 __ increment_mask_and_jump(Address(rcx, be_offset), mask, rax, 2227 UseOnStackReplacement ? &backedge_counter_overflow : nullptr); 2228 __ bind(dispatch); 2229 } 2230 2231 // Pre-load the next target bytecode into rbx 2232 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2233 2234 // continue with the bytecode @ target 2235 // rax: return bci for jsr's, unused otherwise 2236 // rbx: target bytecode 2237 // r13: target bcp 2238 __ dispatch_only(vtos, true); 2239 2240 if (UseLoopCounter) { 2241 if (UseOnStackReplacement) { 2242 Label set_mdp; 2243 // invocation counter overflow 2244 __ bind(backedge_counter_overflow); 2245 __ negptr(rdx); 2246 __ addptr(rdx, rbcp); // branch bcp 2247 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2248 __ call_VM(noreg, 2249 CAST_FROM_FN_PTR(address, 2250 InterpreterRuntime::frequency_counter_overflow), 2251 rdx); 2252 2253 // rax: osr nmethod (osr ok) or null (osr not possible) 2254 // rdx: scratch 2255 // r14: locals pointer 2256 // r13: bcp 2257 __ testptr(rax, rax); // test result 2258 __ jcc(Assembler::zero, dispatch); // no osr if null 2259 // nmethod may have been invalidated (VM may block upon call_VM return) 2260 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2261 __ jcc(Assembler::notEqual, dispatch); 2262 2263 // We have the address of an on stack replacement routine in rax. 2264 // In preparation of invoking it, first we must migrate the locals 2265 // and monitors from off the interpreter frame on the stack. 2266 // Ensure to save the osr nmethod over the migration call, 2267 // it will be preserved in rbx. 2268 __ mov(rbx, rax); 2269 2270 NOT_LP64(__ get_thread(rcx)); 2271 2272 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2273 2274 // rax is OSR buffer, move it to expected parameter location 2275 LP64_ONLY(__ mov(j_rarg0, rax)); 2276 NOT_LP64(__ mov(rcx, rax)); 2277 // We use j_rarg definitions here so that registers don't conflict as parameter 2278 // registers change across platforms as we are in the midst of a calling 2279 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2280 2281 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2282 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2283 2284 // pop the interpreter frame 2285 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2286 __ leave(); // remove frame anchor 2287 __ pop(retaddr); // get return address 2288 __ mov(rsp, sender_sp); // set sp to sender sp 2289 // Ensure compiled code always sees stack at proper alignment 2290 __ andptr(rsp, -(StackAlignmentInBytes)); 2291 2292 // unlike x86 we need no specialized return from compiled code 2293 // to the interpreter or the call stub. 2294 2295 // push the return address 2296 __ push(retaddr); 2297 2298 // and begin the OSR nmethod 2299 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2300 } 2301 } 2302 } 2303 2304 void TemplateTable::if_0cmp(Condition cc) { 2305 transition(itos, vtos); 2306 // assume branch is more often taken than not (loops use backward branches) 2307 Label not_taken; 2308 __ testl(rax, rax); 2309 __ jcc(j_not(cc), not_taken); 2310 branch(false, false); 2311 __ bind(not_taken); 2312 __ profile_not_taken_branch(rax); 2313 } 2314 2315 void TemplateTable::if_icmp(Condition cc) { 2316 transition(itos, vtos); 2317 // assume branch is more often taken than not (loops use backward branches) 2318 Label not_taken; 2319 __ pop_i(rdx); 2320 __ cmpl(rdx, rax); 2321 __ jcc(j_not(cc), not_taken); 2322 branch(false, false); 2323 __ bind(not_taken); 2324 __ profile_not_taken_branch(rax); 2325 } 2326 2327 void TemplateTable::if_nullcmp(Condition cc) { 2328 transition(atos, vtos); 2329 // assume branch is more often taken than not (loops use backward branches) 2330 Label not_taken; 2331 __ testptr(rax, rax); 2332 __ jcc(j_not(cc), not_taken); 2333 branch(false, false); 2334 __ bind(not_taken); 2335 __ profile_not_taken_branch(rax); 2336 } 2337 2338 void TemplateTable::if_acmp(Condition cc) { 2339 transition(atos, vtos); 2340 // assume branch is more often taken than not (loops use backward branches) 2341 Label not_taken; 2342 __ pop_ptr(rdx); 2343 __ cmpoop(rdx, rax); 2344 __ jcc(j_not(cc), not_taken); 2345 branch(false, false); 2346 __ bind(not_taken); 2347 __ profile_not_taken_branch(rax); 2348 } 2349 2350 void TemplateTable::ret() { 2351 transition(vtos, vtos); 2352 locals_index(rbx); 2353 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2354 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2355 __ profile_ret(rbx, rcx); 2356 __ get_method(rax); 2357 __ movptr(rbcp, Address(rax, Method::const_offset())); 2358 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2359 ConstMethod::codes_offset())); 2360 __ dispatch_next(vtos, 0, true); 2361 } 2362 2363 void TemplateTable::wide_ret() { 2364 transition(vtos, vtos); 2365 locals_index_wide(rbx); 2366 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2367 __ profile_ret(rbx, rcx); 2368 __ get_method(rax); 2369 __ movptr(rbcp, Address(rax, Method::const_offset())); 2370 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2371 __ dispatch_next(vtos, 0, true); 2372 } 2373 2374 void TemplateTable::tableswitch() { 2375 Label default_case, continue_execution; 2376 transition(itos, vtos); 2377 2378 // align r13/rsi 2379 __ lea(rbx, at_bcp(BytesPerInt)); 2380 __ andptr(rbx, -BytesPerInt); 2381 // load lo & hi 2382 __ movl(rcx, Address(rbx, BytesPerInt)); 2383 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2384 __ bswapl(rcx); 2385 __ bswapl(rdx); 2386 // check against lo & hi 2387 __ cmpl(rax, rcx); 2388 __ jcc(Assembler::less, default_case); 2389 __ cmpl(rax, rdx); 2390 __ jcc(Assembler::greater, default_case); 2391 // lookup dispatch offset 2392 __ subl(rax, rcx); 2393 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2394 __ profile_switch_case(rax, rbx, rcx); 2395 // continue execution 2396 __ bind(continue_execution); 2397 __ bswapl(rdx); 2398 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2399 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2400 __ addptr(rbcp, rdx); 2401 __ dispatch_only(vtos, true); 2402 // handle default 2403 __ bind(default_case); 2404 __ profile_switch_default(rax); 2405 __ movl(rdx, Address(rbx, 0)); 2406 __ jmp(continue_execution); 2407 } 2408 2409 void TemplateTable::lookupswitch() { 2410 transition(itos, itos); 2411 __ stop("lookupswitch bytecode should have been rewritten"); 2412 } 2413 2414 void TemplateTable::fast_linearswitch() { 2415 transition(itos, vtos); 2416 Label loop_entry, loop, found, continue_execution; 2417 // bswap rax so we can avoid bswapping the table entries 2418 __ bswapl(rax); 2419 // align r13 2420 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2421 // this instruction (change offsets 2422 // below) 2423 __ andptr(rbx, -BytesPerInt); 2424 // set counter 2425 __ movl(rcx, Address(rbx, BytesPerInt)); 2426 __ bswapl(rcx); 2427 __ jmpb(loop_entry); 2428 // table search 2429 __ bind(loop); 2430 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2431 __ jcc(Assembler::equal, found); 2432 __ bind(loop_entry); 2433 __ decrementl(rcx); 2434 __ jcc(Assembler::greaterEqual, loop); 2435 // default case 2436 __ profile_switch_default(rax); 2437 __ movl(rdx, Address(rbx, 0)); 2438 __ jmp(continue_execution); 2439 // entry found -> get offset 2440 __ bind(found); 2441 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2442 __ profile_switch_case(rcx, rax, rbx); 2443 // continue execution 2444 __ bind(continue_execution); 2445 __ bswapl(rdx); 2446 __ movl2ptr(rdx, rdx); 2447 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2448 __ addptr(rbcp, rdx); 2449 __ dispatch_only(vtos, true); 2450 } 2451 2452 void TemplateTable::fast_binaryswitch() { 2453 transition(itos, vtos); 2454 // Implementation using the following core algorithm: 2455 // 2456 // int binary_search(int key, LookupswitchPair* array, int n) { 2457 // // Binary search according to "Methodik des Programmierens" by 2458 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2459 // int i = 0; 2460 // int j = n; 2461 // while (i+1 < j) { 2462 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2463 // // with Q: for all i: 0 <= i < n: key < a[i] 2464 // // where a stands for the array and assuming that the (inexisting) 2465 // // element a[n] is infinitely big. 2466 // int h = (i + j) >> 1; 2467 // // i < h < j 2468 // if (key < array[h].fast_match()) { 2469 // j = h; 2470 // } else { 2471 // i = h; 2472 // } 2473 // } 2474 // // R: a[i] <= key < a[i+1] or Q 2475 // // (i.e., if key is within array, i is the correct index) 2476 // return i; 2477 // } 2478 2479 // Register allocation 2480 const Register key = rax; // already set (tosca) 2481 const Register array = rbx; 2482 const Register i = rcx; 2483 const Register j = rdx; 2484 const Register h = rdi; 2485 const Register temp = rsi; 2486 2487 // Find array start 2488 NOT_LP64(__ save_bcp()); 2489 2490 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2491 // get rid of this 2492 // instruction (change 2493 // offsets below) 2494 __ andptr(array, -BytesPerInt); 2495 2496 // Initialize i & j 2497 __ xorl(i, i); // i = 0; 2498 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2499 2500 // Convert j into native byteordering 2501 __ bswapl(j); 2502 2503 // And start 2504 Label entry; 2505 __ jmp(entry); 2506 2507 // binary search loop 2508 { 2509 Label loop; 2510 __ bind(loop); 2511 // int h = (i + j) >> 1; 2512 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2513 __ sarl(h, 1); // h = (i + j) >> 1; 2514 // if (key < array[h].fast_match()) { 2515 // j = h; 2516 // } else { 2517 // i = h; 2518 // } 2519 // Convert array[h].match to native byte-ordering before compare 2520 __ movl(temp, Address(array, h, Address::times_8)); 2521 __ bswapl(temp); 2522 __ cmpl(key, temp); 2523 // j = h if (key < array[h].fast_match()) 2524 __ cmov32(Assembler::less, j, h); 2525 // i = h if (key >= array[h].fast_match()) 2526 __ cmov32(Assembler::greaterEqual, i, h); 2527 // while (i+1 < j) 2528 __ bind(entry); 2529 __ leal(h, Address(i, 1)); // i+1 2530 __ cmpl(h, j); // i+1 < j 2531 __ jcc(Assembler::less, loop); 2532 } 2533 2534 // end of binary search, result index is i (must check again!) 2535 Label default_case; 2536 // Convert array[i].match to native byte-ordering before compare 2537 __ movl(temp, Address(array, i, Address::times_8)); 2538 __ bswapl(temp); 2539 __ cmpl(key, temp); 2540 __ jcc(Assembler::notEqual, default_case); 2541 2542 // entry found -> j = offset 2543 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2544 __ profile_switch_case(i, key, array); 2545 __ bswapl(j); 2546 LP64_ONLY(__ movslq(j, j)); 2547 2548 NOT_LP64(__ restore_bcp()); 2549 NOT_LP64(__ restore_locals()); // restore rdi 2550 2551 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2552 __ addptr(rbcp, j); 2553 __ dispatch_only(vtos, true); 2554 2555 // default case -> j = default offset 2556 __ bind(default_case); 2557 __ profile_switch_default(i); 2558 __ movl(j, Address(array, -2 * BytesPerInt)); 2559 __ bswapl(j); 2560 LP64_ONLY(__ movslq(j, j)); 2561 2562 NOT_LP64(__ restore_bcp()); 2563 NOT_LP64(__ restore_locals()); 2564 2565 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2566 __ addptr(rbcp, j); 2567 __ dispatch_only(vtos, true); 2568 } 2569 2570 void TemplateTable::_return(TosState state) { 2571 transition(state, state); 2572 2573 assert(_desc->calls_vm(), 2574 "inconsistent calls_vm information"); // call in remove_activation 2575 2576 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2577 assert(state == vtos, "only valid state"); 2578 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2579 __ movptr(robj, aaddress(0)); 2580 __ load_klass(rdi, robj, rscratch1); 2581 __ testb(Address(rdi, Klass::misc_flags_offset()), KlassFlags::_misc_has_finalizer); 2582 Label skip_register_finalizer; 2583 __ jcc(Assembler::zero, skip_register_finalizer); 2584 2585 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2586 2587 __ bind(skip_register_finalizer); 2588 } 2589 2590 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2591 Label no_safepoint; 2592 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2593 #ifdef _LP64 2594 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2595 #else 2596 const Register thread = rdi; 2597 __ get_thread(thread); 2598 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2599 #endif 2600 __ jcc(Assembler::zero, no_safepoint); 2601 __ push(state); 2602 __ push_cont_fastpath(); 2603 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2604 InterpreterRuntime::at_safepoint)); 2605 __ pop_cont_fastpath(); 2606 __ pop(state); 2607 __ bind(no_safepoint); 2608 } 2609 2610 // Narrow result if state is itos but result type is smaller. 2611 // Need to narrow in the return bytecode rather than in generate_return_entry 2612 // since compiled code callers expect the result to already be narrowed. 2613 if (state == itos) { 2614 __ narrow(rax); 2615 } 2616 __ remove_activation(state, rbcp); 2617 2618 __ jmp(rbcp); 2619 } 2620 2621 // ---------------------------------------------------------------------------- 2622 // Volatile variables demand their effects be made known to all CPU's 2623 // in order. Store buffers on most chips allow reads & writes to 2624 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2625 // without some kind of memory barrier (i.e., it's not sufficient that 2626 // the interpreter does not reorder volatile references, the hardware 2627 // also must not reorder them). 2628 // 2629 // According to the new Java Memory Model (JMM): 2630 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2631 // writes act as acquire & release, so: 2632 // (2) A read cannot let unrelated NON-volatile memory refs that 2633 // happen after the read float up to before the read. It's OK for 2634 // non-volatile memory refs that happen before the volatile read to 2635 // float down below it. 2636 // (3) Similar a volatile write cannot let unrelated NON-volatile 2637 // memory refs that happen BEFORE the write float down to after the 2638 // write. It's OK for non-volatile memory refs that happen after the 2639 // volatile write to float up before it. 2640 // 2641 // We only put in barriers around volatile refs (they are expensive), 2642 // not _between_ memory refs (that would require us to track the 2643 // flavor of the previous memory refs). Requirements (2) and (3) 2644 // require some barriers before volatile stores and after volatile 2645 // loads. These nearly cover requirement (1) but miss the 2646 // volatile-store-volatile-load case. This final case is placed after 2647 // volatile-stores although it could just as well go before 2648 // volatile-loads. 2649 2650 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2651 // Helper function to insert a is-volatile test and memory barrier 2652 __ membar(order_constraint); 2653 } 2654 2655 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2656 Register cache, 2657 Register index) { 2658 const Register temp = rbx; 2659 assert_different_registers(cache, index, temp); 2660 2661 Label L_clinit_barrier_slow; 2662 Label resolved; 2663 2664 Bytecodes::Code code = bytecode(); 2665 2666 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2667 2668 __ load_method_entry(cache, index); 2669 switch(byte_no) { 2670 case f1_byte: 2671 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode1_offset()))); 2672 break; 2673 case f2_byte: 2674 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedMethodEntry::bytecode2_offset()))); 2675 break; 2676 default: 2677 ShouldNotReachHere(); 2678 } 2679 __ cmpl(temp, code); // have we resolved this bytecode? 2680 __ jcc(Assembler::equal, resolved); 2681 2682 // resolve first time through 2683 // Class initialization barrier slow path lands here as well. 2684 __ bind(L_clinit_barrier_slow); 2685 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2686 __ movl(temp, code); 2687 __ call_VM(noreg, entry, temp); 2688 // Update registers with resolved info 2689 __ load_method_entry(cache, index); 2690 2691 __ bind(resolved); 2692 2693 // Class initialization barrier for static methods 2694 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2695 const Register method = temp; 2696 const Register klass = temp; 2697 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2698 assert(thread != noreg, "x86_32 not supported"); 2699 2700 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2701 __ load_method_holder(klass, method); 2702 __ clinit_barrier(klass, thread, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2703 } 2704 } 2705 2706 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2707 Register cache, 2708 Register index) { 2709 const Register temp = rbx; 2710 assert_different_registers(cache, index, temp); 2711 2712 Label L_clinit_barrier_slow; 2713 Label resolved; 2714 2715 Bytecodes::Code code = bytecode(); 2716 switch (code) { 2717 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2718 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2719 default: break; 2720 } 2721 2722 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2723 __ load_field_entry(cache, index); 2724 if (byte_no == f1_byte) { 2725 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2726 } else { 2727 __ load_unsigned_byte(temp, Address(cache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2728 } 2729 __ cmpl(temp, code); // have we resolved this bytecode? 2730 __ jcc(Assembler::equal, resolved); 2731 2732 // resolve first time through 2733 __ bind(L_clinit_barrier_slow); 2734 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2735 __ movl(temp, code); 2736 __ call_VM(noreg, entry, temp); 2737 // Update registers with resolved info 2738 __ load_field_entry(cache, index); 2739 2740 __ bind(resolved); 2741 2742 // Class initialization barrier for static fields 2743 if (VM_Version::supports_fast_class_init_checks() && 2744 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) { 2745 const Register field_holder = temp; 2746 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2747 assert(thread != noreg, "x86_32 not supported"); 2748 2749 __ movptr(field_holder, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 2750 __ clinit_barrier(field_holder, thread, nullptr /*L_fast_path*/, &L_clinit_barrier_slow); 2751 } 2752 } 2753 2754 void TemplateTable::load_resolved_field_entry(Register obj, 2755 Register cache, 2756 Register tos_state, 2757 Register offset, 2758 Register flags, 2759 bool is_static = false) { 2760 assert_different_registers(cache, tos_state, flags, offset); 2761 2762 // Field offset 2763 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2764 2765 // Flags 2766 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2767 2768 // TOS state 2769 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2770 2771 // Klass overwrite register 2772 if (is_static) { 2773 __ movptr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2774 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2775 __ movptr(obj, Address(obj, mirror_offset)); 2776 __ resolve_oop_handle(obj, rscratch2); 2777 } 2778 2779 } 2780 2781 void TemplateTable::load_invokedynamic_entry(Register method) { 2782 // setup registers 2783 const Register appendix = rax; 2784 const Register cache = rcx; 2785 const Register index = rdx; 2786 assert_different_registers(method, appendix, cache, index); 2787 2788 __ save_bcp(); 2789 2790 Label resolved; 2791 2792 __ load_resolved_indy_entry(cache, index); 2793 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2794 2795 // Compare the method to zero 2796 __ testptr(method, method); 2797 __ jcc(Assembler::notZero, resolved); 2798 2799 Bytecodes::Code code = bytecode(); 2800 2801 // Call to the interpreter runtime to resolve invokedynamic 2802 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2803 __ movl(method, code); // this is essentially Bytecodes::_invokedynamic 2804 __ call_VM(noreg, entry, method); 2805 // Update registers with resolved info 2806 __ load_resolved_indy_entry(cache, index); 2807 __ movptr(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2808 2809 #ifdef ASSERT 2810 __ testptr(method, method); 2811 __ jcc(Assembler::notZero, resolved); 2812 __ stop("Should be resolved by now"); 2813 #endif // ASSERT 2814 __ bind(resolved); 2815 2816 Label L_no_push; 2817 // Check if there is an appendix 2818 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2819 __ testl(index, (1 << ResolvedIndyEntry::has_appendix_shift)); 2820 __ jcc(Assembler::zero, L_no_push); 2821 2822 // Get appendix 2823 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2824 // Push the appendix as a trailing parameter 2825 // since the parameter_size includes it. 2826 __ load_resolved_reference_at_index(appendix, index); 2827 __ verify_oop(appendix); 2828 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2829 __ bind(L_no_push); 2830 2831 // compute return type 2832 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2833 // load return address 2834 { 2835 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2836 ExternalAddress table(table_addr); 2837 #ifdef _LP64 2838 __ lea(rscratch1, table); 2839 __ movptr(index, Address(rscratch1, index, Address::times_ptr)); 2840 #else 2841 __ movptr(index, ArrayAddress(table, Address(noreg, index, Address::times_ptr))); 2842 #endif // _LP64 2843 } 2844 2845 // push return address 2846 __ push(index); 2847 } 2848 2849 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2850 Register method, 2851 Register flags) { 2852 // setup registers 2853 const Register index = rdx; 2854 assert_different_registers(cache, index); 2855 assert_different_registers(method, cache, flags); 2856 2857 // determine constant pool cache field offsets 2858 resolve_cache_and_index_for_method(f1_byte, cache, index); 2859 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2860 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2861 } 2862 2863 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2864 Register method, 2865 Register ref_index, 2866 Register flags) { 2867 // setup registers 2868 const Register index = rdx; 2869 assert_different_registers(cache, index); 2870 assert_different_registers(cache, method, ref_index, flags); 2871 2872 // determine constant pool cache field offsets 2873 resolve_cache_and_index_for_method(f1_byte, cache, index); 2874 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2875 2876 // Maybe push appendix 2877 Label L_no_push; 2878 __ testl(flags, (1 << ResolvedMethodEntry::has_appendix_shift)); 2879 __ jcc(Assembler::zero, L_no_push); 2880 // invokehandle uses an index into the resolved references array 2881 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2882 // Push the appendix as a trailing parameter. 2883 // This must be done before we get the receiver, 2884 // since the parameter_size includes it. 2885 Register appendix = method; 2886 __ load_resolved_reference_at_index(appendix, ref_index); 2887 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2888 __ bind(L_no_push); 2889 2890 __ movptr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2891 } 2892 2893 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2894 Register klass, 2895 Register method_or_table_index, 2896 Register flags) { 2897 // setup registers 2898 const Register index = rdx; 2899 assert_different_registers(cache, klass, method_or_table_index, flags); 2900 2901 // determine constant pool cache field offsets 2902 resolve_cache_and_index_for_method(f1_byte, cache, index); 2903 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2904 2905 // Invokeinterface can behave in different ways: 2906 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2907 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2908 // vtable index is placed in the register. 2909 // Otherwise, the registers will be populated with the klass and method. 2910 2911 Label NotVirtual; Label NotVFinal; Label Done; 2912 __ testl(flags, 1 << ResolvedMethodEntry::is_forced_virtual_shift); 2913 __ jcc(Assembler::zero, NotVirtual); 2914 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2915 __ jcc(Assembler::zero, NotVFinal); 2916 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2917 __ jmp(Done); 2918 2919 __ bind(NotVFinal); 2920 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2921 __ jmp(Done); 2922 2923 __ bind(NotVirtual); 2924 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2925 __ movptr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2926 __ bind(Done); 2927 } 2928 2929 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2930 Register method_or_table_index, 2931 Register flags) { 2932 // setup registers 2933 const Register index = rdx; 2934 assert_different_registers(index, cache); 2935 assert_different_registers(method_or_table_index, cache, flags); 2936 2937 // determine constant pool cache field offsets 2938 resolve_cache_and_index_for_method(f2_byte, cache, index); 2939 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2940 2941 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2942 Label isVFinal; Label Done; 2943 __ testl(flags, (1 << ResolvedMethodEntry::is_vfinal_shift)); 2944 __ jcc(Assembler::notZero, isVFinal); 2945 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2946 __ jmp(Done); 2947 __ bind(isVFinal); 2948 __ movptr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2949 __ bind(Done); 2950 } 2951 2952 // The registers cache and index expected to be set before call. 2953 // Correct values of the cache and index registers are preserved. 2954 void TemplateTable::jvmti_post_field_access(Register cache, 2955 Register index, 2956 bool is_static, 2957 bool has_tos) { 2958 if (JvmtiExport::can_post_field_access()) { 2959 // Check to see if a field access watch has been set before we take 2960 // the time to call into the VM. 2961 Label L1; 2962 assert_different_registers(cache, index, rax); 2963 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2964 __ testl(rax,rax); 2965 __ jcc(Assembler::zero, L1); 2966 2967 // cache entry pointer 2968 __ load_field_entry(cache, index); 2969 if (is_static) { 2970 __ xorptr(rax, rax); // null object reference 2971 } else { 2972 __ pop(atos); // Get the object 2973 __ verify_oop(rax); 2974 __ push(atos); // Restore stack state 2975 } 2976 // rax,: object pointer or null 2977 // cache: cache entry pointer 2978 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2979 rax, cache); 2980 2981 __ load_field_entry(cache, index); 2982 __ bind(L1); 2983 } 2984 } 2985 2986 void TemplateTable::pop_and_check_object(Register r) { 2987 __ pop_ptr(r); 2988 __ null_check(r); // for field access must check obj. 2989 __ verify_oop(r); 2990 } 2991 2992 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2993 transition(vtos, vtos); 2994 2995 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2996 const Register cache = rcx; 2997 const Register index = rdx; 2998 const Register off = rbx; 2999 const Register tos_state = rax; 3000 const Register flags = rdx; 3001 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 3002 3003 resolve_cache_and_index_for_field(byte_no, cache, index); 3004 jvmti_post_field_access(cache, index, is_static, false); 3005 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 3006 3007 if (!is_static) pop_and_check_object(obj); 3008 3009 const Address field(obj, off, Address::times_1, 0*wordSize); 3010 3011 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 3012 3013 // Make sure we don't need to mask edx after the above shift 3014 assert(btos == 0, "change code, btos != 0"); 3015 __ testl(tos_state, tos_state); 3016 __ jcc(Assembler::notZero, notByte); 3017 3018 // btos 3019 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3020 __ push(btos); 3021 // Rewrite bytecode to be faster 3022 if (!is_static && rc == may_rewrite) { 3023 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 3024 } 3025 __ jmp(Done); 3026 3027 __ bind(notByte); 3028 __ cmpl(tos_state, ztos); 3029 __ jcc(Assembler::notEqual, notBool); 3030 3031 // ztos (same code as btos) 3032 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 3033 __ push(ztos); 3034 // Rewrite bytecode to be faster 3035 if (!is_static && rc == may_rewrite) { 3036 // use btos rewriting, no truncating to t/f bit is needed for getfield. 3037 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 3038 } 3039 __ jmp(Done); 3040 3041 __ bind(notBool); 3042 __ cmpl(tos_state, atos); 3043 __ jcc(Assembler::notEqual, notObj); 3044 // atos 3045 do_oop_load(_masm, field, rax); 3046 __ push(atos); 3047 if (!is_static && rc == may_rewrite) { 3048 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 3049 } 3050 __ jmp(Done); 3051 3052 __ bind(notObj); 3053 __ cmpl(tos_state, itos); 3054 __ jcc(Assembler::notEqual, notInt); 3055 // itos 3056 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3057 __ push(itos); 3058 // Rewrite bytecode to be faster 3059 if (!is_static && rc == may_rewrite) { 3060 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 3061 } 3062 __ jmp(Done); 3063 3064 __ bind(notInt); 3065 __ cmpl(tos_state, ctos); 3066 __ jcc(Assembler::notEqual, notChar); 3067 // ctos 3068 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3069 __ push(ctos); 3070 // Rewrite bytecode to be faster 3071 if (!is_static && rc == may_rewrite) { 3072 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 3073 } 3074 __ jmp(Done); 3075 3076 __ bind(notChar); 3077 __ cmpl(tos_state, stos); 3078 __ jcc(Assembler::notEqual, notShort); 3079 // stos 3080 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3081 __ push(stos); 3082 // Rewrite bytecode to be faster 3083 if (!is_static && rc == may_rewrite) { 3084 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 3085 } 3086 __ jmp(Done); 3087 3088 __ bind(notShort); 3089 __ cmpl(tos_state, ltos); 3090 __ jcc(Assembler::notEqual, notLong); 3091 // ltos 3092 // Generate code as if volatile (x86_32). There just aren't enough registers to 3093 // save that information and this code is faster than the test. 3094 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 3095 __ push(ltos); 3096 // Rewrite bytecode to be faster 3097 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 3098 __ jmp(Done); 3099 3100 __ bind(notLong); 3101 __ cmpl(tos_state, ftos); 3102 __ jcc(Assembler::notEqual, notFloat); 3103 // ftos 3104 3105 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3106 __ push(ftos); 3107 // Rewrite bytecode to be faster 3108 if (!is_static && rc == may_rewrite) { 3109 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 3110 } 3111 __ jmp(Done); 3112 3113 __ bind(notFloat); 3114 #ifdef ASSERT 3115 Label notDouble; 3116 __ cmpl(tos_state, dtos); 3117 __ jcc(Assembler::notEqual, notDouble); 3118 #endif 3119 // dtos 3120 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3121 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 3122 __ push(dtos); 3123 // Rewrite bytecode to be faster 3124 if (!is_static && rc == may_rewrite) { 3125 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 3126 } 3127 #ifdef ASSERT 3128 __ jmp(Done); 3129 3130 __ bind(notDouble); 3131 __ stop("Bad state"); 3132 #endif 3133 3134 __ bind(Done); 3135 // [jk] not needed currently 3136 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 3137 // Assembler::LoadStore)); 3138 } 3139 3140 void TemplateTable::getfield(int byte_no) { 3141 getfield_or_static(byte_no, false); 3142 } 3143 3144 void TemplateTable::nofast_getfield(int byte_no) { 3145 getfield_or_static(byte_no, false, may_not_rewrite); 3146 } 3147 3148 void TemplateTable::getstatic(int byte_no) { 3149 getfield_or_static(byte_no, true); 3150 } 3151 3152 3153 // The registers cache and index expected to be set before call. 3154 // The function may destroy various registers, just not the cache and index registers. 3155 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 3156 // Cache is rcx and index is rdx 3157 const Register entry = LP64_ONLY(c_rarg2) NOT_LP64(rax); // ResolvedFieldEntry 3158 const Register obj = LP64_ONLY(c_rarg1) NOT_LP64(rbx); // Object pointer 3159 const Register value = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // JValue object 3160 3161 if (JvmtiExport::can_post_field_modification()) { 3162 // Check to see if a field modification watch has been set before 3163 // we take the time to call into the VM. 3164 Label L1; 3165 assert_different_registers(cache, obj, rax); 3166 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3167 __ testl(rax, rax); 3168 __ jcc(Assembler::zero, L1); 3169 3170 __ mov(entry, cache); 3171 3172 if (is_static) { 3173 // Life is simple. Null out the object pointer. 3174 __ xorl(obj, obj); 3175 3176 } else { 3177 // Life is harder. The stack holds the value on top, followed by 3178 // the object. We don't know the size of the value, though; it 3179 // could be one or two words depending on its type. As a result, 3180 // we must find the type to determine where the object is. 3181 #ifndef _LP64 3182 Label two_word, valsize_known; 3183 #endif 3184 __ load_unsigned_byte(value, Address(entry, in_bytes(ResolvedFieldEntry::type_offset()))); 3185 #ifdef _LP64 3186 __ movptr(obj, at_tos_p1()); // initially assume a one word jvalue 3187 __ cmpl(value, ltos); 3188 __ cmovptr(Assembler::equal, 3189 obj, at_tos_p2()); // ltos (two word jvalue) 3190 __ cmpl(value, dtos); 3191 __ cmovptr(Assembler::equal, 3192 obj, at_tos_p2()); // dtos (two word jvalue) 3193 #else 3194 __ mov(obj, rsp); 3195 __ cmpl(value, ltos); 3196 __ jccb(Assembler::equal, two_word); 3197 __ cmpl(value, dtos); 3198 __ jccb(Assembler::equal, two_word); 3199 __ addptr(obj, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3200 __ jmpb(valsize_known); 3201 3202 __ bind(two_word); 3203 __ addptr(obj, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3204 3205 __ bind(valsize_known); 3206 // setup object pointer 3207 __ movptr(obj, Address(obj, 0)); 3208 #endif 3209 } 3210 3211 // object (tos) 3212 __ mov(value, rsp); 3213 // obj: object pointer set up above (null if static) 3214 // cache: field entry pointer 3215 // value: jvalue object on the stack 3216 __ call_VM(noreg, 3217 CAST_FROM_FN_PTR(address, 3218 InterpreterRuntime::post_field_modification), 3219 obj, entry, value); 3220 // Reload field entry 3221 __ load_field_entry(cache, index); 3222 __ bind(L1); 3223 } 3224 } 3225 3226 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3227 transition(vtos, vtos); 3228 3229 const Register obj = rcx; 3230 const Register cache = rcx; 3231 const Register index = rdx; 3232 const Register tos_state = rdx; 3233 const Register off = rbx; 3234 const Register flags = rax; 3235 3236 resolve_cache_and_index_for_field(byte_no, cache, index); 3237 jvmti_post_field_mod(cache, index, is_static); 3238 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 3239 3240 // [jk] not needed currently 3241 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3242 // Assembler::StoreStore)); 3243 3244 Label notVolatile, Done; 3245 3246 // Check for volatile store 3247 __ andl(flags, (1 << ResolvedFieldEntry::is_volatile_shift)); 3248 __ testl(flags, flags); 3249 __ jcc(Assembler::zero, notVolatile); 3250 3251 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 3252 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3253 Assembler::StoreStore)); 3254 __ jmp(Done); 3255 __ bind(notVolatile); 3256 3257 putfield_or_static_helper(byte_no, is_static, rc, obj, off, tos_state); 3258 3259 __ bind(Done); 3260 } 3261 3262 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3263 Register obj, Register off, Register tos_state) { 3264 3265 // field addresses 3266 const Address field(obj, off, Address::times_1, 0*wordSize); 3267 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3268 3269 Label notByte, notBool, notInt, notShort, notChar, 3270 notLong, notFloat, notObj; 3271 Label Done; 3272 3273 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3274 3275 // Test TOS state 3276 __ testl(tos_state, tos_state); 3277 __ jcc(Assembler::notZero, notByte); 3278 3279 // btos 3280 { 3281 __ pop(btos); 3282 if (!is_static) pop_and_check_object(obj); 3283 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3284 if (!is_static && rc == may_rewrite) { 3285 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3286 } 3287 __ jmp(Done); 3288 } 3289 3290 __ bind(notByte); 3291 __ cmpl(tos_state, ztos); 3292 __ jcc(Assembler::notEqual, notBool); 3293 3294 // ztos 3295 { 3296 __ pop(ztos); 3297 if (!is_static) pop_and_check_object(obj); 3298 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3299 if (!is_static && rc == may_rewrite) { 3300 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3301 } 3302 __ jmp(Done); 3303 } 3304 3305 __ bind(notBool); 3306 __ cmpl(tos_state, atos); 3307 __ jcc(Assembler::notEqual, notObj); 3308 3309 // atos 3310 { 3311 __ pop(atos); 3312 if (!is_static) pop_and_check_object(obj); 3313 // Store into the field 3314 do_oop_store(_masm, field, rax); 3315 if (!is_static && rc == may_rewrite) { 3316 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3317 } 3318 __ jmp(Done); 3319 } 3320 3321 __ bind(notObj); 3322 __ cmpl(tos_state, itos); 3323 __ jcc(Assembler::notEqual, notInt); 3324 3325 // itos 3326 { 3327 __ pop(itos); 3328 if (!is_static) pop_and_check_object(obj); 3329 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3330 if (!is_static && rc == may_rewrite) { 3331 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3332 } 3333 __ jmp(Done); 3334 } 3335 3336 __ bind(notInt); 3337 __ cmpl(tos_state, ctos); 3338 __ jcc(Assembler::notEqual, notChar); 3339 3340 // ctos 3341 { 3342 __ pop(ctos); 3343 if (!is_static) pop_and_check_object(obj); 3344 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3345 if (!is_static && rc == may_rewrite) { 3346 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3347 } 3348 __ jmp(Done); 3349 } 3350 3351 __ bind(notChar); 3352 __ cmpl(tos_state, stos); 3353 __ jcc(Assembler::notEqual, notShort); 3354 3355 // stos 3356 { 3357 __ pop(stos); 3358 if (!is_static) pop_and_check_object(obj); 3359 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3360 if (!is_static && rc == may_rewrite) { 3361 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3362 } 3363 __ jmp(Done); 3364 } 3365 3366 __ bind(notShort); 3367 __ cmpl(tos_state, ltos); 3368 __ jcc(Assembler::notEqual, notLong); 3369 3370 // ltos 3371 { 3372 __ pop(ltos); 3373 if (!is_static) pop_and_check_object(obj); 3374 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3375 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg, noreg); 3376 #ifdef _LP64 3377 if (!is_static && rc == may_rewrite) { 3378 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3379 } 3380 #endif // _LP64 3381 __ jmp(Done); 3382 } 3383 3384 __ bind(notLong); 3385 __ cmpl(tos_state, ftos); 3386 __ jcc(Assembler::notEqual, notFloat); 3387 3388 // ftos 3389 { 3390 __ pop(ftos); 3391 if (!is_static) pop_and_check_object(obj); 3392 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3393 if (!is_static && rc == may_rewrite) { 3394 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3395 } 3396 __ jmp(Done); 3397 } 3398 3399 __ bind(notFloat); 3400 #ifdef ASSERT 3401 Label notDouble; 3402 __ cmpl(tos_state, dtos); 3403 __ jcc(Assembler::notEqual, notDouble); 3404 #endif 3405 3406 // dtos 3407 { 3408 __ pop(dtos); 3409 if (!is_static) pop_and_check_object(obj); 3410 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3411 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg, noreg); 3412 if (!is_static && rc == may_rewrite) { 3413 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3414 } 3415 } 3416 3417 #ifdef ASSERT 3418 __ jmp(Done); 3419 3420 __ bind(notDouble); 3421 __ stop("Bad state"); 3422 #endif 3423 3424 __ bind(Done); 3425 } 3426 3427 void TemplateTable::putfield(int byte_no) { 3428 putfield_or_static(byte_no, false); 3429 } 3430 3431 void TemplateTable::nofast_putfield(int byte_no) { 3432 putfield_or_static(byte_no, false, may_not_rewrite); 3433 } 3434 3435 void TemplateTable::putstatic(int byte_no) { 3436 putfield_or_static(byte_no, true); 3437 } 3438 3439 void TemplateTable::jvmti_post_fast_field_mod() { 3440 3441 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3442 3443 if (JvmtiExport::can_post_field_modification()) { 3444 // Check to see if a field modification watch has been set before 3445 // we take the time to call into the VM. 3446 Label L2; 3447 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3448 __ testl(scratch, scratch); 3449 __ jcc(Assembler::zero, L2); 3450 __ pop_ptr(rbx); // copy the object pointer from tos 3451 __ verify_oop(rbx); 3452 __ push_ptr(rbx); // put the object pointer back on tos 3453 // Save tos values before call_VM() clobbers them. Since we have 3454 // to do it for every data type, we use the saved values as the 3455 // jvalue object. 3456 switch (bytecode()) { // load values into the jvalue object 3457 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3458 case Bytecodes::_fast_bputfield: // fall through 3459 case Bytecodes::_fast_zputfield: // fall through 3460 case Bytecodes::_fast_sputfield: // fall through 3461 case Bytecodes::_fast_cputfield: // fall through 3462 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3463 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3464 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3465 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3466 3467 default: 3468 ShouldNotReachHere(); 3469 } 3470 __ mov(scratch, rsp); // points to jvalue on the stack 3471 // access constant pool cache entry 3472 LP64_ONLY(__ load_field_entry(c_rarg2, rax)); 3473 NOT_LP64(__ load_field_entry(rax, rdx)); 3474 __ verify_oop(rbx); 3475 // rbx: object pointer copied above 3476 // c_rarg2: cache entry pointer 3477 // c_rarg3: jvalue object on the stack 3478 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3479 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3480 3481 switch (bytecode()) { // restore tos values 3482 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3483 case Bytecodes::_fast_bputfield: // fall through 3484 case Bytecodes::_fast_zputfield: // fall through 3485 case Bytecodes::_fast_sputfield: // fall through 3486 case Bytecodes::_fast_cputfield: // fall through 3487 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3488 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3489 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3490 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3491 default: break; 3492 } 3493 __ bind(L2); 3494 } 3495 } 3496 3497 void TemplateTable::fast_storefield(TosState state) { 3498 transition(state, vtos); 3499 3500 Register cache = rcx; 3501 3502 Label notVolatile, Done; 3503 3504 jvmti_post_fast_field_mod(); 3505 3506 __ push(rax); 3507 __ load_field_entry(rcx, rax); 3508 load_resolved_field_entry(noreg, cache, rax, rbx, rdx); 3509 // RBX: field offset, RAX: TOS, RDX: flags 3510 __ andl(rdx, (1 << ResolvedFieldEntry::is_volatile_shift)); 3511 __ pop(rax); 3512 3513 // Get object from stack 3514 pop_and_check_object(rcx); 3515 3516 // field address 3517 const Address field(rcx, rbx, Address::times_1); 3518 3519 // Check for volatile store 3520 __ testl(rdx, rdx); 3521 __ jcc(Assembler::zero, notVolatile); 3522 3523 fast_storefield_helper(field, rax); 3524 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3525 Assembler::StoreStore)); 3526 __ jmp(Done); 3527 __ bind(notVolatile); 3528 3529 fast_storefield_helper(field, rax); 3530 3531 __ bind(Done); 3532 } 3533 3534 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3535 3536 // access field 3537 switch (bytecode()) { 3538 case Bytecodes::_fast_aputfield: 3539 do_oop_store(_masm, field, rax); 3540 break; 3541 case Bytecodes::_fast_lputfield: 3542 #ifdef _LP64 3543 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg, noreg); 3544 #else 3545 __ stop("should not be rewritten"); 3546 #endif 3547 break; 3548 case Bytecodes::_fast_iputfield: 3549 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg, noreg); 3550 break; 3551 case Bytecodes::_fast_zputfield: 3552 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg, noreg); 3553 break; 3554 case Bytecodes::_fast_bputfield: 3555 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg, noreg); 3556 break; 3557 case Bytecodes::_fast_sputfield: 3558 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg, noreg); 3559 break; 3560 case Bytecodes::_fast_cputfield: 3561 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg, noreg); 3562 break; 3563 case Bytecodes::_fast_fputfield: 3564 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg, noreg); 3565 break; 3566 case Bytecodes::_fast_dputfield: 3567 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg, noreg); 3568 break; 3569 default: 3570 ShouldNotReachHere(); 3571 } 3572 } 3573 3574 void TemplateTable::fast_accessfield(TosState state) { 3575 transition(atos, state); 3576 3577 // Do the JVMTI work here to avoid disturbing the register state below 3578 if (JvmtiExport::can_post_field_access()) { 3579 // Check to see if a field access watch has been set before we 3580 // take the time to call into the VM. 3581 Label L1; 3582 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3583 __ testl(rcx, rcx); 3584 __ jcc(Assembler::zero, L1); 3585 // access constant pool cache entry 3586 LP64_ONLY(__ load_field_entry(c_rarg2, rcx)); 3587 NOT_LP64(__ load_field_entry(rcx, rdx)); 3588 __ verify_oop(rax); 3589 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3590 LP64_ONLY(__ mov(c_rarg1, rax)); 3591 // c_rarg1: object pointer copied above 3592 // c_rarg2: cache entry pointer 3593 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3594 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3595 __ pop_ptr(rax); // restore object pointer 3596 __ bind(L1); 3597 } 3598 3599 // access constant pool cache 3600 __ load_field_entry(rcx, rbx); 3601 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3602 3603 // rax: object 3604 __ verify_oop(rax); 3605 __ null_check(rax); 3606 Address field(rax, rbx, Address::times_1); 3607 3608 // access field 3609 switch (bytecode()) { 3610 case Bytecodes::_fast_agetfield: 3611 do_oop_load(_masm, field, rax); 3612 __ verify_oop(rax); 3613 break; 3614 case Bytecodes::_fast_lgetfield: 3615 #ifdef _LP64 3616 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3617 #else 3618 __ stop("should not be rewritten"); 3619 #endif 3620 break; 3621 case Bytecodes::_fast_igetfield: 3622 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3623 break; 3624 case Bytecodes::_fast_bgetfield: 3625 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3626 break; 3627 case Bytecodes::_fast_sgetfield: 3628 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3629 break; 3630 case Bytecodes::_fast_cgetfield: 3631 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3632 break; 3633 case Bytecodes::_fast_fgetfield: 3634 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3635 break; 3636 case Bytecodes::_fast_dgetfield: 3637 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3638 break; 3639 default: 3640 ShouldNotReachHere(); 3641 } 3642 // [jk] not needed currently 3643 // Label notVolatile; 3644 // __ testl(rdx, rdx); 3645 // __ jcc(Assembler::zero, notVolatile); 3646 // __ membar(Assembler::LoadLoad); 3647 // __ bind(notVolatile); 3648 } 3649 3650 void TemplateTable::fast_xaccess(TosState state) { 3651 transition(vtos, state); 3652 3653 // get receiver 3654 __ movptr(rax, aaddress(0)); 3655 // access constant pool cache 3656 __ load_field_entry(rcx, rdx, 2); 3657 __ load_sized_value(rbx, Address(rcx, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3658 3659 // make sure exception is reported in correct bcp range (getfield is 3660 // next instruction) 3661 __ increment(rbcp); 3662 __ null_check(rax); 3663 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3664 switch (state) { 3665 case itos: 3666 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3667 break; 3668 case atos: 3669 do_oop_load(_masm, field, rax); 3670 __ verify_oop(rax); 3671 break; 3672 case ftos: 3673 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3674 break; 3675 default: 3676 ShouldNotReachHere(); 3677 } 3678 3679 // [jk] not needed currently 3680 // Label notVolatile; 3681 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3682 // in_bytes(ConstantPoolCache::base_offset() + 3683 // ConstantPoolCacheEntry::flags_offset()))); 3684 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3685 // __ testl(rdx, 0x1); 3686 // __ jcc(Assembler::zero, notVolatile); 3687 // __ membar(Assembler::LoadLoad); 3688 // __ bind(notVolatile); 3689 3690 __ decrement(rbcp); 3691 } 3692 3693 //----------------------------------------------------------------------------- 3694 // Calls 3695 3696 void TemplateTable::prepare_invoke(Register cache, Register recv, Register flags) { 3697 // determine flags 3698 const Bytecodes::Code code = bytecode(); 3699 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3700 assert_different_registers(recv, flags); 3701 3702 // save 'interpreter return address' 3703 __ save_bcp(); 3704 3705 // Save flags and load TOS 3706 __ movl(rbcp, flags); 3707 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3708 3709 // load receiver if needed (after appendix is pushed so parameter size is correct) 3710 // Note: no return address pushed yet 3711 if (load_receiver) { 3712 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3713 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3714 const int receiver_is_at_end = -1; // back off one slot to get receiver 3715 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3716 __ movptr(recv, recv_addr); 3717 __ verify_oop(recv); 3718 } 3719 3720 // load return address 3721 { 3722 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3723 ExternalAddress table(table_addr); 3724 #ifdef _LP64 3725 __ lea(rscratch1, table); 3726 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3727 #else 3728 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 3729 #endif // _LP64 3730 } 3731 3732 // push return address 3733 __ push(flags); 3734 3735 // Restore flags value from the constant pool cache entry, and restore rsi 3736 // for later null checks. r13 is the bytecode pointer 3737 __ movl(flags, rbcp); 3738 __ restore_bcp(); 3739 } 3740 3741 void TemplateTable::invokevirtual_helper(Register index, 3742 Register recv, 3743 Register flags) { 3744 // Uses temporary registers rax, rdx 3745 assert_different_registers(index, recv, rax, rdx); 3746 assert(index == rbx, ""); 3747 assert(recv == rcx, ""); 3748 3749 // Test for an invoke of a final method 3750 Label notFinal; 3751 __ movl(rax, flags); 3752 __ andl(rax, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3753 __ jcc(Assembler::zero, notFinal); 3754 3755 const Register method = index; // method must be rbx 3756 assert(method == rbx, 3757 "Method* must be rbx for interpreter calling convention"); 3758 3759 // do the call - the index is actually the method to call 3760 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3761 3762 // It's final, need a null check here! 3763 __ null_check(recv); 3764 3765 // profile this call 3766 __ profile_final_call(rax); 3767 __ profile_arguments_type(rax, method, rbcp, true); 3768 3769 __ jump_from_interpreted(method, rax); 3770 3771 __ bind(notFinal); 3772 3773 // get receiver klass 3774 __ load_klass(rax, recv, rscratch1); 3775 3776 // profile this call 3777 __ profile_virtual_call(rax, rlocals, rdx); 3778 // get target Method* & entry point 3779 __ lookup_virtual_method(rax, index, method); 3780 3781 __ profile_arguments_type(rdx, method, rbcp, true); 3782 __ jump_from_interpreted(method, rdx); 3783 } 3784 3785 void TemplateTable::invokevirtual(int byte_no) { 3786 transition(vtos, vtos); 3787 assert(byte_no == f2_byte, "use this argument"); 3788 3789 load_resolved_method_entry_virtual(rcx, // ResolvedMethodEntry* 3790 rbx, // Method or itable index 3791 rdx); // Flags 3792 prepare_invoke(rcx, // ResolvedMethodEntry* 3793 rcx, // Receiver 3794 rdx); // flags 3795 3796 // rbx: index 3797 // rcx: receiver 3798 // rdx: flags 3799 invokevirtual_helper(rbx, rcx, rdx); 3800 } 3801 3802 void TemplateTable::invokespecial(int byte_no) { 3803 transition(vtos, vtos); 3804 assert(byte_no == f1_byte, "use this argument"); 3805 3806 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3807 rbx, // Method* 3808 rdx); // flags 3809 prepare_invoke(rcx, 3810 rcx, // get receiver also for null check 3811 rdx); // flags 3812 3813 __ verify_oop(rcx); 3814 __ null_check(rcx); 3815 // do the call 3816 __ profile_call(rax); 3817 __ profile_arguments_type(rax, rbx, rbcp, false); 3818 __ jump_from_interpreted(rbx, rax); 3819 } 3820 3821 void TemplateTable::invokestatic(int byte_no) { 3822 transition(vtos, vtos); 3823 assert(byte_no == f1_byte, "use this argument"); 3824 3825 load_resolved_method_entry_special_or_static(rcx, // ResolvedMethodEntry* 3826 rbx, // Method* 3827 rdx // flags 3828 ); 3829 prepare_invoke(rcx, rcx, rdx); // cache and flags 3830 3831 // do the call 3832 __ profile_call(rax); 3833 __ profile_arguments_type(rax, rbx, rbcp, false); 3834 __ jump_from_interpreted(rbx, rax); 3835 } 3836 3837 3838 void TemplateTable::fast_invokevfinal(int byte_no) { 3839 transition(vtos, vtos); 3840 assert(byte_no == f2_byte, "use this argument"); 3841 __ stop("fast_invokevfinal not used on x86"); 3842 } 3843 3844 3845 void TemplateTable::invokeinterface(int byte_no) { 3846 transition(vtos, vtos); 3847 assert(byte_no == f1_byte, "use this argument"); 3848 3849 load_resolved_method_entry_interface(rcx, // ResolvedMethodEntry* 3850 rax, // Klass* 3851 rbx, // Method* or itable/vtable index 3852 rdx); // flags 3853 prepare_invoke(rcx, rcx, rdx); // receiver, flags 3854 3855 // First check for Object case, then private interface method, 3856 // then regular interface method. 3857 3858 // Special case of invokeinterface called for virtual method of 3859 // java.lang.Object. See cpCache.cpp for details. 3860 Label notObjectMethod; 3861 __ movl(rlocals, rdx); 3862 __ andl(rlocals, (1 << ResolvedMethodEntry::is_forced_virtual_shift)); 3863 __ jcc(Assembler::zero, notObjectMethod); 3864 3865 invokevirtual_helper(rbx, rcx, rdx); 3866 // no return from above 3867 __ bind(notObjectMethod); 3868 3869 Label no_such_interface; // for receiver subtype check 3870 Register recvKlass; // used for exception processing 3871 3872 // Check for private method invocation - indicated by vfinal 3873 Label notVFinal; 3874 __ movl(rlocals, rdx); 3875 __ andl(rlocals, (1 << ResolvedMethodEntry::is_vfinal_shift)); 3876 __ jcc(Assembler::zero, notVFinal); 3877 3878 // Get receiver klass into rlocals - also a null check 3879 __ load_klass(rlocals, rcx, rscratch1); 3880 3881 Label subtype; 3882 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3883 // If we get here the typecheck failed 3884 recvKlass = rdx; 3885 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3886 __ jmp(no_such_interface); 3887 3888 __ bind(subtype); 3889 3890 // do the call - rbx is actually the method to call 3891 3892 __ profile_final_call(rdx); 3893 __ profile_arguments_type(rdx, rbx, rbcp, true); 3894 3895 __ jump_from_interpreted(rbx, rdx); 3896 // no return from above 3897 __ bind(notVFinal); 3898 3899 // Get receiver klass into rdx - also a null check 3900 __ restore_locals(); // restore r14 3901 __ load_klass(rdx, rcx, rscratch1); 3902 3903 Label no_such_method; 3904 3905 // Preserve method for throw_AbstractMethodErrorVerbose. 3906 __ mov(rcx, rbx); 3907 // Receiver subtype check against REFC. 3908 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3909 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3910 rdx, rax, noreg, 3911 // outputs: scan temp. reg, scan temp. reg 3912 rbcp, rlocals, 3913 no_such_interface, 3914 /*return_method=*/false); 3915 3916 // profile this call 3917 __ restore_bcp(); // rbcp was destroyed by receiver type check 3918 __ profile_virtual_call(rdx, rbcp, rlocals); 3919 3920 // Get declaring interface class from method, and itable index 3921 __ load_method_holder(rax, rbx); 3922 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3923 __ subl(rbx, Method::itable_index_max); 3924 __ negl(rbx); 3925 3926 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3927 __ mov(rlocals, rdx); 3928 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3929 rlocals, rax, rbx, 3930 // outputs: method, scan temp. reg 3931 rbx, rbcp, 3932 no_such_interface); 3933 3934 // rbx: Method* to call 3935 // rcx: receiver 3936 // Check for abstract method error 3937 // Note: This should be done more efficiently via a throw_abstract_method_error 3938 // interpreter entry point and a conditional jump to it in case of a null 3939 // method. 3940 __ testptr(rbx, rbx); 3941 __ jcc(Assembler::zero, no_such_method); 3942 3943 __ profile_arguments_type(rdx, rbx, rbcp, true); 3944 3945 // do the call 3946 // rcx: receiver 3947 // rbx,: Method* 3948 __ jump_from_interpreted(rbx, rdx); 3949 __ should_not_reach_here(); 3950 3951 // exception handling code follows... 3952 // note: must restore interpreter registers to canonical 3953 // state for exception handling to work correctly! 3954 3955 __ bind(no_such_method); 3956 // throw exception 3957 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3958 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3959 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3960 // Pass arguments for generating a verbose error message. 3961 #ifdef _LP64 3962 recvKlass = c_rarg1; 3963 Register method = c_rarg2; 3964 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3965 if (method != rcx) { __ movq(method, rcx); } 3966 #else 3967 recvKlass = rdx; 3968 Register method = rcx; 3969 #endif 3970 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3971 recvKlass, method); 3972 // The call_VM checks for exception, so we should never return here. 3973 __ should_not_reach_here(); 3974 3975 __ bind(no_such_interface); 3976 // throw exception 3977 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3978 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3979 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3980 // Pass arguments for generating a verbose error message. 3981 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3982 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3983 recvKlass, rax); 3984 // the call_VM checks for exception, so we should never return here. 3985 __ should_not_reach_here(); 3986 } 3987 3988 void TemplateTable::invokehandle(int byte_no) { 3989 transition(vtos, vtos); 3990 assert(byte_no == f1_byte, "use this argument"); 3991 const Register rbx_method = rbx; 3992 const Register rax_mtype = rax; 3993 const Register rcx_recv = rcx; 3994 const Register rdx_flags = rdx; 3995 3996 load_resolved_method_entry_handle(rcx, rbx_method, rax_mtype, rdx_flags); 3997 prepare_invoke(rcx, rcx_recv, rdx_flags); 3998 3999 __ verify_method_ptr(rbx_method); 4000 __ verify_oop(rcx_recv); 4001 __ null_check(rcx_recv); 4002 4003 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 4004 // rbx: MH.invokeExact_MT method 4005 4006 // Note: rax_mtype is already pushed (if necessary) 4007 4008 // FIXME: profile the LambdaForm also 4009 __ profile_final_call(rax); 4010 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 4011 4012 __ jump_from_interpreted(rbx_method, rdx); 4013 } 4014 4015 void TemplateTable::invokedynamic(int byte_no) { 4016 transition(vtos, vtos); 4017 assert(byte_no == f1_byte, "use this argument"); 4018 4019 const Register rbx_method = rbx; 4020 const Register rax_callsite = rax; 4021 4022 load_invokedynamic_entry(rbx_method); 4023 // rax: CallSite object (from cpool->resolved_references[]) 4024 // rbx: MH.linkToCallSite method 4025 4026 // Note: rax_callsite is already pushed 4027 4028 // %%% should make a type profile for any invokedynamic that takes a ref argument 4029 // profile this call 4030 __ profile_call(rbcp); 4031 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 4032 4033 __ verify_oop(rax_callsite); 4034 4035 __ jump_from_interpreted(rbx_method, rdx); 4036 } 4037 4038 //----------------------------------------------------------------------------- 4039 // Allocation 4040 4041 void TemplateTable::_new() { 4042 transition(vtos, atos); 4043 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 4044 Label slow_case; 4045 Label slow_case_no_pop; 4046 Label done; 4047 Label initialize_header; 4048 4049 __ get_cpool_and_tags(rcx, rax); 4050 4051 // Make sure the class we're about to instantiate has been resolved. 4052 // This is done before loading InstanceKlass to be consistent with the order 4053 // how Constant Pool is updated (see ConstantPool::klass_at_put) 4054 const int tags_offset = Array<u1>::base_offset_in_bytes(); 4055 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 4056 __ jcc(Assembler::notEqual, slow_case_no_pop); 4057 4058 // get InstanceKlass 4059 __ load_resolved_klass_at_index(rcx, rcx, rdx); 4060 __ push(rcx); // save the contexts of klass for initializing the header 4061 4062 // make sure klass is initialized 4063 // init_state needs acquire, but x86 is TSO, and so we are already good. 4064 #ifdef _LP64 4065 assert(VM_Version::supports_fast_class_init_checks(), "must support fast class initialization checks"); 4066 __ clinit_barrier(rcx, r15_thread, nullptr /*L_fast_path*/, &slow_case); 4067 #else 4068 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4069 __ jcc(Assembler::notEqual, slow_case); 4070 #endif 4071 4072 // get instance_size in InstanceKlass (scaled to a count of bytes) 4073 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 4074 // test to see if it is malformed in some way 4075 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 4076 __ jcc(Assembler::notZero, slow_case); 4077 4078 // Allocate the instance: 4079 // If TLAB is enabled: 4080 // Try to allocate in the TLAB. 4081 // If fails, go to the slow path. 4082 // Initialize the allocation. 4083 // Exit. 4084 // 4085 // Go to slow path. 4086 4087 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 4088 4089 if (UseTLAB) { 4090 NOT_LP64(__ get_thread(thread);) 4091 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 4092 if (ZeroTLAB) { 4093 // the fields have been already cleared 4094 __ jmp(initialize_header); 4095 } 4096 4097 // The object is initialized before the header. If the object size is 4098 // zero, go directly to the header initialization. 4099 if (UseCompactObjectHeaders) { 4100 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 4101 __ decrement(rdx, oopDesc::base_offset_in_bytes()); 4102 } else { 4103 __ decrement(rdx, sizeof(oopDesc)); 4104 } 4105 __ jcc(Assembler::zero, initialize_header); 4106 4107 // Initialize topmost object field, divide rdx by 8, check if odd and 4108 // test if zero. 4109 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4110 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4111 4112 // rdx must have been multiple of 8 4113 #ifdef ASSERT 4114 // make sure rdx was multiple of 8 4115 Label L; 4116 // Ignore partial flag stall after shrl() since it is debug VM 4117 __ jcc(Assembler::carryClear, L); 4118 __ stop("object size is not multiple of 2 - adjust this code"); 4119 __ bind(L); 4120 // rdx must be > 0, no extra check needed here 4121 #endif 4122 4123 // initialize remaining object fields: rdx was a multiple of 8 4124 { Label loop; 4125 __ bind(loop); 4126 int header_size_bytes = oopDesc::header_size() * HeapWordSize; 4127 assert(is_aligned(header_size_bytes, BytesPerLong), "oop header size must be 8-byte-aligned"); 4128 __ movptr(Address(rax, rdx, Address::times_8, header_size_bytes - 1*oopSize), rcx); 4129 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, header_size_bytes - 2*oopSize), rcx)); 4130 __ decrement(rdx); 4131 __ jcc(Assembler::notZero, loop); 4132 } 4133 4134 // initialize object header only. 4135 __ bind(initialize_header); 4136 if (UseCompactObjectHeaders) { 4137 __ pop(rcx); // get saved klass back in the register. 4138 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4139 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rbx); 4140 } else { 4141 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 4142 (intptr_t)markWord::prototype().value()); // header 4143 __ pop(rcx); // get saved klass back in the register. 4144 #ifdef _LP64 4145 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4146 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4147 #endif 4148 __ store_klass(rax, rcx, rscratch1); // klass 4149 } 4150 4151 if (DTraceAllocProbes) { 4152 // Trigger dtrace event for fastpath 4153 __ push(atos); 4154 __ call_VM_leaf( 4155 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), rax); 4156 __ pop(atos); 4157 } 4158 4159 __ jmp(done); 4160 } 4161 4162 // slow case 4163 __ bind(slow_case); 4164 __ pop(rcx); // restore stack pointer to what it was when we came in. 4165 __ bind(slow_case_no_pop); 4166 4167 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4168 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4169 4170 __ get_constant_pool(rarg1); 4171 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4172 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4173 __ verify_oop(rax); 4174 4175 // continue 4176 __ bind(done); 4177 } 4178 4179 void TemplateTable::newarray() { 4180 transition(itos, atos); 4181 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4182 __ load_unsigned_byte(rarg1, at_bcp(1)); 4183 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4184 rarg1, rax); 4185 } 4186 4187 void TemplateTable::anewarray() { 4188 transition(itos, atos); 4189 4190 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4191 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4192 4193 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4194 __ get_constant_pool(rarg1); 4195 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4196 rarg1, rarg2, rax); 4197 } 4198 4199 void TemplateTable::arraylength() { 4200 transition(atos, itos); 4201 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4202 } 4203 4204 void TemplateTable::checkcast() { 4205 transition(atos, atos); 4206 Label done, is_null, ok_is_subtype, quicked, resolved; 4207 __ testptr(rax, rax); // object is in rax 4208 __ jcc(Assembler::zero, is_null); 4209 4210 // Get cpool & tags index 4211 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4212 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4213 // See if bytecode has already been quicked 4214 __ cmpb(Address(rdx, rbx, 4215 Address::times_1, 4216 Array<u1>::base_offset_in_bytes()), 4217 JVM_CONSTANT_Class); 4218 __ jcc(Assembler::equal, quicked); 4219 __ push(atos); // save receiver for result, and for GC 4220 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4221 4222 // vm_result_2 has metadata result 4223 #ifndef _LP64 4224 // borrow rdi from locals 4225 __ get_thread(rdi); 4226 __ get_vm_result_2(rax, rdi); 4227 __ restore_locals(); 4228 #else 4229 __ get_vm_result_2(rax, r15_thread); 4230 #endif 4231 4232 __ pop_ptr(rdx); // restore receiver 4233 __ jmpb(resolved); 4234 4235 // Get superklass in rax and subklass in rbx 4236 __ bind(quicked); 4237 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4238 __ load_resolved_klass_at_index(rax, rcx, rbx); 4239 4240 __ bind(resolved); 4241 __ load_klass(rbx, rdx, rscratch1); 4242 4243 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4244 // Superklass in rax. Subklass in rbx. 4245 __ gen_subtype_check(rbx, ok_is_subtype); 4246 4247 // Come here on failure 4248 __ push_ptr(rdx); 4249 // object is at TOS 4250 __ jump(RuntimeAddress(Interpreter::_throw_ClassCastException_entry)); 4251 4252 // Come here on success 4253 __ bind(ok_is_subtype); 4254 __ mov(rax, rdx); // Restore object in rdx 4255 4256 // Collect counts on whether this check-cast sees nulls a lot or not. 4257 if (ProfileInterpreter) { 4258 __ jmp(done); 4259 __ bind(is_null); 4260 __ profile_null_seen(rcx); 4261 } else { 4262 __ bind(is_null); // same as 'done' 4263 } 4264 __ bind(done); 4265 } 4266 4267 void TemplateTable::instanceof() { 4268 transition(atos, itos); 4269 Label done, is_null, ok_is_subtype, quicked, resolved; 4270 __ testptr(rax, rax); 4271 __ jcc(Assembler::zero, is_null); 4272 4273 // Get cpool & tags index 4274 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4275 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4276 // See if bytecode has already been quicked 4277 __ cmpb(Address(rdx, rbx, 4278 Address::times_1, 4279 Array<u1>::base_offset_in_bytes()), 4280 JVM_CONSTANT_Class); 4281 __ jcc(Assembler::equal, quicked); 4282 4283 __ push(atos); // save receiver for result, and for GC 4284 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4285 // vm_result_2 has metadata result 4286 4287 #ifndef _LP64 4288 // borrow rdi from locals 4289 __ get_thread(rdi); 4290 __ get_vm_result_2(rax, rdi); 4291 __ restore_locals(); 4292 #else 4293 __ get_vm_result_2(rax, r15_thread); 4294 #endif 4295 4296 __ pop_ptr(rdx); // restore receiver 4297 __ verify_oop(rdx); 4298 __ load_klass(rdx, rdx, rscratch1); 4299 __ jmpb(resolved); 4300 4301 // Get superklass in rax and subklass in rdx 4302 __ bind(quicked); 4303 __ load_klass(rdx, rax, rscratch1); 4304 __ load_resolved_klass_at_index(rax, rcx, rbx); 4305 4306 __ bind(resolved); 4307 4308 // Generate subtype check. Blows rcx, rdi 4309 // Superklass in rax. Subklass in rdx. 4310 __ gen_subtype_check(rdx, ok_is_subtype); 4311 4312 // Come here on failure 4313 __ xorl(rax, rax); 4314 __ jmpb(done); 4315 // Come here on success 4316 __ bind(ok_is_subtype); 4317 __ movl(rax, 1); 4318 4319 // Collect counts on whether this test sees nulls a lot or not. 4320 if (ProfileInterpreter) { 4321 __ jmp(done); 4322 __ bind(is_null); 4323 __ profile_null_seen(rcx); 4324 } else { 4325 __ bind(is_null); // same as 'done' 4326 } 4327 __ bind(done); 4328 // rax = 0: obj == nullptr or obj is not an instanceof the specified klass 4329 // rax = 1: obj != nullptr and obj is an instanceof the specified klass 4330 } 4331 4332 4333 //---------------------------------------------------------------------------------------------------- 4334 // Breakpoints 4335 void TemplateTable::_breakpoint() { 4336 // Note: We get here even if we are single stepping.. 4337 // jbug insists on setting breakpoints at every bytecode 4338 // even if we are in single step mode. 4339 4340 transition(vtos, vtos); 4341 4342 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4343 4344 // get the unpatched byte code 4345 __ get_method(rarg); 4346 __ call_VM(noreg, 4347 CAST_FROM_FN_PTR(address, 4348 InterpreterRuntime::get_original_bytecode_at), 4349 rarg, rbcp); 4350 __ mov(rbx, rax); // why? 4351 4352 // post the breakpoint event 4353 __ get_method(rarg); 4354 __ call_VM(noreg, 4355 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4356 rarg, rbcp); 4357 4358 // complete the execution of original bytecode 4359 __ dispatch_only_normal(vtos); 4360 } 4361 4362 //----------------------------------------------------------------------------- 4363 // Exceptions 4364 4365 void TemplateTable::athrow() { 4366 transition(atos, vtos); 4367 __ null_check(rax); 4368 __ jump(RuntimeAddress(Interpreter::throw_exception_entry())); 4369 } 4370 4371 //----------------------------------------------------------------------------- 4372 // Synchronization 4373 // 4374 // Note: monitorenter & exit are symmetric routines; which is reflected 4375 // in the assembly code structure as well 4376 // 4377 // Stack layout: 4378 // 4379 // [expressions ] <--- rsp = expression stack top 4380 // .. 4381 // [expressions ] 4382 // [monitor entry] <--- monitor block top = expression stack bot 4383 // .. 4384 // [monitor entry] 4385 // [frame data ] <--- monitor block bot 4386 // ... 4387 // [saved rbp ] <--- rbp 4388 void TemplateTable::monitorenter() { 4389 transition(atos, vtos); 4390 4391 // check for null object 4392 __ null_check(rax); 4393 4394 const Address monitor_block_top( 4395 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4396 const Address monitor_block_bot( 4397 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4398 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4399 4400 Label allocated; 4401 4402 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4403 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4404 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4405 4406 // initialize entry pointer 4407 __ xorl(rmon, rmon); // points to free slot or null 4408 4409 // find a free slot in the monitor block (result in rmon) 4410 { 4411 Label entry, loop, exit; 4412 __ movptr(rtop, monitor_block_top); // derelativize pointer 4413 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 4414 // rtop points to current entry, starting with top-most entry 4415 4416 __ lea(rbot, monitor_block_bot); // points to word before bottom 4417 // of monitor block 4418 __ jmpb(entry); 4419 4420 __ bind(loop); 4421 // check if current entry is used 4422 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset()), NULL_WORD); 4423 // if not used then remember entry in rmon 4424 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4425 // check if current entry is for same object 4426 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4427 // if same object then stop searching 4428 __ jccb(Assembler::equal, exit); 4429 // otherwise advance to next entry 4430 __ addptr(rtop, entry_size); 4431 __ bind(entry); 4432 // check if bottom reached 4433 __ cmpptr(rtop, rbot); 4434 // if not at bottom then check this entry 4435 __ jcc(Assembler::notEqual, loop); 4436 __ bind(exit); 4437 } 4438 4439 __ testptr(rmon, rmon); // check if a slot has been found 4440 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4441 4442 // allocate one if there's no free slot 4443 { 4444 Label entry, loop; 4445 // 1. compute new pointers // rsp: old expression stack top 4446 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4447 __ lea(rmon, Address(rbp, rmon, Address::times_ptr)); 4448 __ subptr(rsp, entry_size); // move expression stack top 4449 __ subptr(rmon, entry_size); // move expression stack bottom 4450 __ mov(rtop, rsp); // set start value for copy loop 4451 __ subptr(monitor_block_bot, entry_size / wordSize); // set new monitor block bottom 4452 __ jmp(entry); 4453 // 2. move expression stack contents 4454 __ bind(loop); 4455 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4456 // word from old location 4457 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4458 __ addptr(rtop, wordSize); // advance to next word 4459 __ bind(entry); 4460 __ cmpptr(rtop, rmon); // check if bottom reached 4461 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4462 // copy next word 4463 } 4464 4465 // call run-time routine 4466 // rmon: points to monitor entry 4467 __ bind(allocated); 4468 4469 // Increment bcp to point to the next bytecode, so exception 4470 // handling for async. exceptions work correctly. 4471 // The object has already been popped from the stack, so the 4472 // expression stack looks correct. 4473 __ increment(rbcp); 4474 4475 // store object 4476 __ movptr(Address(rmon, BasicObjectLock::obj_offset()), rax); 4477 __ lock_object(rmon); 4478 4479 // check to make sure this monitor doesn't cause stack overflow after locking 4480 __ save_bcp(); // in case of exception 4481 __ generate_stack_overflow_check(0); 4482 4483 // The bcp has already been incremented. Just need to dispatch to 4484 // next instruction. 4485 __ dispatch_next(vtos); 4486 } 4487 4488 void TemplateTable::monitorexit() { 4489 transition(atos, vtos); 4490 4491 // check for null object 4492 __ null_check(rax); 4493 4494 const Address monitor_block_top( 4495 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4496 const Address monitor_block_bot( 4497 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4498 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 4499 4500 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4501 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4502 4503 Label found; 4504 4505 // find matching slot 4506 { 4507 Label entry, loop; 4508 __ movptr(rtop, monitor_block_top); // derelativize pointer 4509 __ lea(rtop, Address(rbp, rtop, Address::times_ptr)); 4510 // rtop points to current entry, starting with top-most entry 4511 4512 __ lea(rbot, monitor_block_bot); // points to word before bottom 4513 // of monitor block 4514 __ jmpb(entry); 4515 4516 __ bind(loop); 4517 // check if current entry is for same object 4518 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset())); 4519 // if same object then stop searching 4520 __ jcc(Assembler::equal, found); 4521 // otherwise advance to next entry 4522 __ addptr(rtop, entry_size); 4523 __ bind(entry); 4524 // check if bottom reached 4525 __ cmpptr(rtop, rbot); 4526 // if not at bottom then check this entry 4527 __ jcc(Assembler::notEqual, loop); 4528 } 4529 4530 // error handling. Unlocking was not block-structured 4531 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4532 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4533 __ should_not_reach_here(); 4534 4535 // call run-time routine 4536 __ bind(found); 4537 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4538 __ unlock_object(rtop); 4539 __ pop_ptr(rax); // discard object 4540 } 4541 4542 // Wide instructions 4543 void TemplateTable::wide() { 4544 transition(vtos, vtos); 4545 __ load_unsigned_byte(rbx, at_bcp(1)); 4546 ExternalAddress wtable((address)Interpreter::_wentry_point); 4547 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)), rscratch1); 4548 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4549 } 4550 4551 // Multi arrays 4552 void TemplateTable::multianewarray() { 4553 transition(vtos, atos); 4554 4555 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4556 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4557 // last dim is on top of stack; we want address of first one: 4558 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4559 // the latter wordSize to point to the beginning of the array. 4560 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4561 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4562 __ load_unsigned_byte(rbx, at_bcp(3)); 4563 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4564 }