1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef CPU_X86_VM_VERSION_X86_HPP 26 #define CPU_X86_VM_VERSION_X86_HPP 27 28 #include "runtime/abstract_vm_version.hpp" 29 #include "utilities/debug.hpp" 30 #include "utilities/macros.hpp" 31 #include "utilities/sizes.hpp" 32 33 class stringStream; 34 35 class VM_Version : public Abstract_VM_Version { 36 friend class VMStructs; 37 friend class JVMCIVMStructs; 38 39 public: 40 // cpuid result register layouts. These are all unions of a uint32_t 41 // (in case anyone wants access to the register as a whole) and a bitfield. 42 43 union StdCpuid1Eax { 44 uint32_t value; 45 struct { 46 uint32_t stepping : 4, 47 model : 4, 48 family : 4, 49 proc_type : 2, 50 : 2, 51 ext_model : 4, 52 ext_family : 8, 53 : 4; 54 } bits; 55 }; 56 57 union StdCpuid1Ebx { // example, unused 58 uint32_t value; 59 struct { 60 uint32_t brand_id : 8, 61 clflush_size : 8, 62 threads_per_cpu : 8, 63 apic_id : 8; 64 } bits; 65 }; 66 67 union StdCpuid1Ecx { 68 uint32_t value; 69 struct { 70 uint32_t sse3 : 1, 71 clmul : 1, 72 : 1, 73 monitor : 1, 74 : 1, 75 vmx : 1, 76 : 1, 77 est : 1, 78 : 1, 79 ssse3 : 1, 80 cid : 1, 81 : 1, 82 fma : 1, 83 cmpxchg16: 1, 84 : 4, 85 dca : 1, 86 sse4_1 : 1, 87 sse4_2 : 1, 88 : 2, 89 popcnt : 1, 90 : 1, 91 aes : 1, 92 : 1, 93 osxsave : 1, 94 avx : 1, 95 f16c : 1, 96 : 1, 97 hv : 1; 98 } bits; 99 }; 100 101 union StdCpuid1Edx { 102 uint32_t value; 103 struct { 104 uint32_t : 4, 105 tsc : 1, 106 : 3, 107 cmpxchg8 : 1, 108 : 6, 109 cmov : 1, 110 : 3, 111 clflush : 1, 112 : 3, 113 mmx : 1, 114 fxsr : 1, 115 sse : 1, 116 sse2 : 1, 117 : 1, 118 ht : 1, 119 : 3; 120 } bits; 121 }; 122 123 union DcpCpuid4Eax { 124 uint32_t value; 125 struct { 126 uint32_t cache_type : 5, 127 : 21, 128 cores_per_cpu : 6; 129 } bits; 130 }; 131 132 union DcpCpuid4Ebx { 133 uint32_t value; 134 struct { 135 uint32_t L1_line_size : 12, 136 partitions : 10, 137 associativity : 10; 138 } bits; 139 }; 140 141 union TplCpuidBEbx { 142 uint32_t value; 143 struct { 144 uint32_t logical_cpus : 16, 145 : 16; 146 } bits; 147 }; 148 149 union ExtCpuid1Ecx { 150 uint32_t value; 151 struct { 152 uint32_t LahfSahf : 1, 153 CmpLegacy : 1, 154 : 3, 155 lzcnt : 1, 156 sse4a : 1, 157 misalignsse : 1, 158 prefetchw : 1, 159 : 23; 160 } bits; 161 }; 162 163 union ExtCpuid1Edx { 164 uint32_t value; 165 struct { 166 uint32_t : 22, 167 mmx_amd : 1, 168 mmx : 1, 169 fxsr : 1, 170 fxsr_opt : 1, 171 pdpe1gb : 1, 172 rdtscp : 1, 173 : 1, 174 long_mode : 1, 175 tdnow2 : 1, 176 tdnow : 1; 177 } bits; 178 }; 179 180 union ExtCpuid5Ex { 181 uint32_t value; 182 struct { 183 uint32_t L1_line_size : 8, 184 L1_tag_lines : 8, 185 L1_assoc : 8, 186 L1_size : 8; 187 } bits; 188 }; 189 190 union ExtCpuid7Edx { 191 uint32_t value; 192 struct { 193 uint32_t : 8, 194 tsc_invariance : 1, 195 : 23; 196 } bits; 197 }; 198 199 union ExtCpuid8Ecx { 200 uint32_t value; 201 struct { 202 uint32_t threads_per_cpu : 8, 203 : 24; 204 } bits; 205 }; 206 207 union SefCpuid7Eax { 208 uint32_t value; 209 }; 210 211 union SefCpuid7Ebx { 212 uint32_t value; 213 struct { 214 uint32_t fsgsbase : 1, 215 : 2, 216 bmi1 : 1, 217 : 1, 218 avx2 : 1, 219 : 2, 220 bmi2 : 1, 221 erms : 1, 222 : 1, 223 rtm : 1, 224 : 4, 225 avx512f : 1, 226 avx512dq : 1, 227 : 1, 228 adx : 1, 229 : 1, 230 avx512ifma : 1, 231 : 1, 232 clflushopt : 1, 233 clwb : 1, 234 : 1, 235 avx512pf : 1, 236 avx512er : 1, 237 avx512cd : 1, 238 sha : 1, 239 avx512bw : 1, 240 avx512vl : 1; 241 } bits; 242 }; 243 244 union SefCpuid7Ecx { 245 uint32_t value; 246 struct { 247 uint32_t prefetchwt1 : 1, 248 avx512_vbmi : 1, 249 umip : 1, 250 pku : 1, 251 ospke : 1, 252 : 1, 253 avx512_vbmi2 : 1, 254 cet_ss : 1, 255 gfni : 1, 256 vaes : 1, 257 avx512_vpclmulqdq : 1, 258 avx512_vnni : 1, 259 avx512_bitalg : 1, 260 : 1, 261 avx512_vpopcntdq : 1, 262 : 1, 263 : 1, 264 mawau : 5, 265 rdpid : 1, 266 : 9; 267 } bits; 268 }; 269 270 union SefCpuid7Edx { 271 uint32_t value; 272 struct { 273 uint32_t : 2, 274 avx512_4vnniw : 1, 275 avx512_4fmaps : 1, 276 fast_short_rep_mov : 1, 277 : 9, 278 serialize : 1, 279 hybrid: 1, 280 : 4, 281 cet_ibt : 1, 282 : 2, 283 avx512_fp16 : 1, 284 : 8; 285 } bits; 286 }; 287 288 union SefCpuid7SubLeaf1Eax { 289 uint32_t value; 290 struct { 291 uint32_t sha512 : 1, 292 : 22, 293 avx_ifma : 1, 294 : 8; 295 } bits; 296 }; 297 298 union SefCpuid7SubLeaf1Edx { 299 uint32_t value; 300 struct { 301 uint32_t : 19, 302 avx10 : 1, 303 : 1, 304 apx_f : 1, 305 : 10; 306 } bits; 307 }; 308 309 union StdCpuidEax29Ecx0 { 310 uint32_t value; 311 struct { 312 uint32_t apx_nci_ndd_nf : 1, 313 : 31; 314 } bits; 315 }; 316 317 union StdCpuid24MainLeafEax { 318 uint32_t value; 319 struct { 320 uint32_t sub_leaves_cnt : 31; 321 } bits; 322 }; 323 324 union StdCpuid24MainLeafEbx { 325 uint32_t value; 326 struct { 327 uint32_t avx10_converged_isa_version : 8, 328 : 8, 329 : 2, 330 avx10_vlen_512 : 1, 331 : 13; 332 } bits; 333 }; 334 335 union ExtCpuid1EEbx { 336 uint32_t value; 337 struct { 338 uint32_t : 8, 339 threads_per_core : 8, 340 : 16; 341 } bits; 342 }; 343 344 union XemXcr0Eax { 345 uint32_t value; 346 struct { 347 uint32_t x87 : 1, 348 sse : 1, 349 ymm : 1, 350 bndregs : 1, 351 bndcsr : 1, 352 opmask : 1, 353 zmm512 : 1, 354 zmm32 : 1, 355 : 11, 356 apx_f : 1, 357 : 12; 358 } bits; 359 }; 360 361 protected: 362 static int _cpu; 363 static int _model; 364 static int _stepping; 365 366 static bool _has_intel_jcc_erratum; 367 368 static address _cpuinfo_segv_addr; // address of instruction which causes SEGV 369 static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV 370 static address _cpuinfo_segv_addr_apx; // address of instruction which causes APX specific SEGV 371 static address _cpuinfo_cont_addr_apx; // address of instruction after the one which causes APX specific SEGV 372 373 /* 374 * Update following files when declaring new flags: 375 * test/lib-test/jdk/test/whitebox/CPUInfoTest.java 376 * src/jdk.internal.vm.ci/share/classes/jdk/vm/ci/amd64/AMD64.java 377 */ 378 enum Feature_Flag { 379 #define CPU_FEATURE_FLAGS(decl) \ 380 decl(CX8, cx8, 0) /* next bits are from cpuid 1 (EDX) */ \ 381 decl(CMOV, cmov, 1) \ 382 decl(FXSR, fxsr, 2) \ 383 decl(HT, ht, 3) \ 384 \ 385 decl(MMX, mmx, 4) \ 386 decl(3DNOW_PREFETCH, 3dnowpref, 5) /* Processor supports 3dnow prefetch and prefetchw instructions */ \ 387 /* may not necessarily support other 3dnow instructions */ \ 388 decl(SSE, sse, 6) \ 389 decl(SSE2, sse2, 7) \ 390 \ 391 decl(SSE3, sse3, 8 ) /* SSE3 comes from cpuid 1 (ECX) */ \ 392 decl(SSSE3, ssse3, 9 ) \ 393 decl(SSE4A, sse4a, 10) \ 394 decl(SSE4_1, sse4.1, 11) \ 395 \ 396 decl(SSE4_2, sse4.2, 12) \ 397 decl(POPCNT, popcnt, 13) \ 398 decl(LZCNT, lzcnt, 14) \ 399 decl(TSC, tsc, 15) \ 400 \ 401 decl(TSCINV_BIT, tscinvbit, 16) \ 402 decl(TSCINV, tscinv, 17) \ 403 decl(AVX, avx, 18) \ 404 decl(AVX2, avx2, 19) \ 405 \ 406 decl(AES, aes, 20) \ 407 decl(ERMS, erms, 21) /* enhanced 'rep movsb/stosb' instructions */ \ 408 decl(CLMUL, clmul, 22) /* carryless multiply for CRC */ \ 409 decl(BMI1, bmi1, 23) \ 410 \ 411 decl(BMI2, bmi2, 24) \ 412 decl(RTM, rtm, 25) /* Restricted Transactional Memory instructions */ \ 413 decl(ADX, adx, 26) \ 414 decl(AVX512F, avx512f, 27) /* AVX 512bit foundation instructions */ \ 415 \ 416 decl(AVX512DQ, avx512dq, 28) \ 417 decl(AVX512PF, avx512pf, 29) \ 418 decl(AVX512ER, avx512er, 30) \ 419 decl(AVX512CD, avx512cd, 31) \ 420 \ 421 decl(AVX512BW, avx512bw, 32) /* Byte and word vector instructions */ \ 422 decl(AVX512VL, avx512vl, 33) /* EVEX instructions with smaller vector length */ \ 423 decl(SHA, sha, 34) /* SHA instructions */ \ 424 decl(FMA, fma, 35) /* FMA instructions */ \ 425 \ 426 decl(VZEROUPPER, vzeroupper, 36) /* Vzeroupper instruction */ \ 427 decl(AVX512_VPOPCNTDQ, avx512_vpopcntdq, 37) /* Vector popcount */ \ 428 decl(AVX512_VPCLMULQDQ, avx512_vpclmulqdq, 38) /* Vector carryless multiplication */ \ 429 decl(AVX512_VAES, avx512_vaes, 39) /* Vector AES instruction */ \ 430 \ 431 decl(AVX512_VNNI, avx512_vnni, 40) /* Vector Neural Network Instructions */ \ 432 decl(FLUSH, clflush, 41) /* flush instruction */ \ 433 decl(FLUSHOPT, clflushopt, 42) /* flusopth instruction */ \ 434 decl(CLWB, clwb, 43) /* clwb instruction */ \ 435 \ 436 decl(AVX512_VBMI2, avx512_vbmi2, 44) /* VBMI2 shift left double instructions */ \ 437 decl(AVX512_VBMI, avx512_vbmi, 45) /* Vector BMI instructions */ \ 438 decl(HV, hv, 46) /* Hypervisor instructions */ \ 439 decl(SERIALIZE, serialize, 47) /* CPU SERIALIZE */ \ 440 decl(RDTSCP, rdtscp, 48) /* RDTSCP instruction */ \ 441 decl(RDPID, rdpid, 49) /* RDPID instruction */ \ 442 decl(FSRM, fsrm, 50) /* Fast Short REP MOV */ \ 443 decl(GFNI, gfni, 51) /* Vector GFNI instructions */ \ 444 decl(AVX512_BITALG, avx512_bitalg, 52) /* Vector sub-word popcount and bit gather instructions */\ 445 decl(F16C, f16c, 53) /* Half-precision and single precision FP conversion instructions*/ \ 446 decl(PKU, pku, 54) /* Protection keys for user-mode pages */ \ 447 decl(OSPKE, ospke, 55) /* OS enables protection keys */ \ 448 decl(CET_IBT, cet_ibt, 56) /* Control Flow Enforcement - Indirect Branch Tracking */ \ 449 decl(CET_SS, cet_ss, 57) /* Control Flow Enforcement - Shadow Stack */ \ 450 decl(AVX512_IFMA, avx512_ifma, 58) /* Integer Vector FMA instructions*/ \ 451 decl(AVX_IFMA, avx_ifma, 59) /* 256-bit VEX-coded variant of AVX512-IFMA*/ \ 452 decl(APX_F, apx_f, 60) /* Intel Advanced Performance Extensions*/ \ 453 decl(SHA512, sha512, 61) /* SHA512 instructions*/ \ 454 decl(AVX512_FP16, avx512_fp16, 62) /* AVX512 FP16 ISA support*/ \ 455 decl(AVX10_1, avx10_1, 63) /* AVX10 512 bit vector ISA Version 1 support*/ \ 456 decl(AVX10_2, avx10_2, 64) /* AVX10 512 bit vector ISA Version 2 support*/ \ 457 decl(HYBRID, hybrid, 65) /* Hybrid architecture */ 458 459 #define DECLARE_CPU_FEATURE_FLAG(id, name, bit) CPU_##id = (bit), 460 CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_FLAG) 461 #undef DECLARE_CPU_FEATURE_FLAG 462 MAX_CPU_FEATURES 463 }; 464 465 class VM_Features { 466 friend class VMStructs; 467 friend class JVMCIVMStructs; 468 469 private: 470 uint64_t _features_bitmap[(MAX_CPU_FEATURES / BitsPerLong) + 1]; 471 472 STATIC_ASSERT(sizeof(_features_bitmap) * BitsPerByte >= MAX_CPU_FEATURES); 473 474 // Number of 8-byte elements in _bitmap. 475 constexpr static int features_bitmap_element_count() { 476 return sizeof(_features_bitmap) / sizeof(uint64_t); 477 } 478 479 constexpr static int features_bitmap_element_shift_count() { 480 return LogBitsPerLong; 481 } 482 483 constexpr static uint64_t features_bitmap_element_mask() { 484 return (1ULL << features_bitmap_element_shift_count()) - 1; 485 } 486 487 static int index(Feature_Flag feature) { 488 int idx = feature >> features_bitmap_element_shift_count(); 489 assert(idx < features_bitmap_element_count(), "Features array index out of bounds"); 490 return idx; 491 } 492 493 static uint64_t bit_mask(Feature_Flag feature) { 494 return (1ULL << (feature & features_bitmap_element_mask())); 495 } 496 497 static int _features_bitmap_size; // for JVMCI purposes 498 499 public: 500 VM_Features() { 501 for (int i = 0; i < features_bitmap_element_count(); i++) { 502 _features_bitmap[i] = 0; 503 } 504 } 505 506 void set_feature(Feature_Flag feature) { 507 int idx = index(feature); 508 _features_bitmap[idx] |= bit_mask(feature); 509 } 510 511 void clear_feature(VM_Version::Feature_Flag feature) { 512 int idx = index(feature); 513 _features_bitmap[idx] &= ~bit_mask(feature); 514 } 515 516 bool supports_feature(VM_Version::Feature_Flag feature) { 517 int idx = index(feature); 518 return (_features_bitmap[idx] & bit_mask(feature)) != 0; 519 } 520 521 bool supports_features(VM_Features* features_to_test) { 522 for (int i = 0; i < features_bitmap_element_count(); i++) { 523 if ((_features_bitmap[i] & features_to_test->_features_bitmap[i]) != features_to_test->_features_bitmap[i]) { 524 return false; 525 } 526 } 527 return true; 528 } 529 }; 530 531 // CPU feature flags vector, can be affected by VM settings. 532 static VM_Features _features; 533 534 // Original CPU feature flags vector, not affected by VM settings. 535 static VM_Features _cpu_features; 536 537 static const char* _features_names[]; 538 539 static void clear_cpu_features() { 540 _features = VM_Features(); 541 _cpu_features = VM_Features(); 542 } 543 544 enum Extended_Family { 545 // AMD 546 CPU_FAMILY_AMD_11H = 0x11, 547 CPU_FAMILY_AMD_17H = 0x17, /* Zen1 & Zen2 */ 548 CPU_FAMILY_AMD_19H = 0x19, /* Zen3 & Zen4 */ 549 // ZX 550 CPU_FAMILY_ZX_CORE_F6 = 6, 551 CPU_FAMILY_ZX_CORE_F7 = 7, 552 // Intel 553 CPU_FAMILY_INTEL_CORE = 6, 554 CPU_MODEL_NEHALEM = 0x1e, 555 CPU_MODEL_NEHALEM_EP = 0x1a, 556 CPU_MODEL_NEHALEM_EX = 0x2e, 557 CPU_MODEL_WESTMERE = 0x25, 558 CPU_MODEL_WESTMERE_EP = 0x2c, 559 CPU_MODEL_WESTMERE_EX = 0x2f, 560 CPU_MODEL_SANDYBRIDGE = 0x2a, 561 CPU_MODEL_SANDYBRIDGE_EP = 0x2d, 562 CPU_MODEL_IVYBRIDGE_EP = 0x3a, 563 CPU_MODEL_HASWELL_E3 = 0x3c, 564 CPU_MODEL_HASWELL_E7 = 0x3f, 565 CPU_MODEL_BROADWELL = 0x3d, 566 CPU_MODEL_SKYLAKE = 0x55 567 }; 568 569 // cpuid information block. All info derived from executing cpuid with 570 // various function numbers is stored here. Intel and AMD info is 571 // merged in this block: accessor methods disentangle it. 572 // 573 // The info block is laid out in subblocks of 4 dwords corresponding to 574 // eax, ebx, ecx and edx, whether or not they contain anything useful. 575 class CpuidInfo { 576 public: 577 // cpuid function 0 578 uint32_t std_max_function; 579 uint32_t std_vendor_name_0; 580 uint32_t std_vendor_name_1; 581 uint32_t std_vendor_name_2; 582 583 // cpuid function 1 584 StdCpuid1Eax std_cpuid1_eax; 585 StdCpuid1Ebx std_cpuid1_ebx; 586 StdCpuid1Ecx std_cpuid1_ecx; 587 StdCpuid1Edx std_cpuid1_edx; 588 589 // cpuid function 4 (deterministic cache parameters) 590 DcpCpuid4Eax dcp_cpuid4_eax; 591 DcpCpuid4Ebx dcp_cpuid4_ebx; 592 uint32_t dcp_cpuid4_ecx; // unused currently 593 uint32_t dcp_cpuid4_edx; // unused currently 594 595 // cpuid function 7 (structured extended features enumeration leaf) 596 // eax = 7, ecx = 0 597 SefCpuid7Eax sef_cpuid7_eax; 598 SefCpuid7Ebx sef_cpuid7_ebx; 599 SefCpuid7Ecx sef_cpuid7_ecx; 600 SefCpuid7Edx sef_cpuid7_edx; 601 602 // cpuid function 7 (structured extended features enumeration sub-leaf 1) 603 // eax = 7, ecx = 1 604 SefCpuid7SubLeaf1Eax sefsl1_cpuid7_eax; 605 SefCpuid7SubLeaf1Edx sefsl1_cpuid7_edx; 606 607 // cpuid function 24 converged vector ISA main leaf 608 // eax = 24, ecx = 0 609 StdCpuid24MainLeafEax std_cpuid24_eax; 610 StdCpuid24MainLeafEbx std_cpuid24_ebx; 611 612 // cpuid function 0x29 APX Advanced Performance Extensions Leaf 613 // eax = 0x29, ecx = 0 614 StdCpuidEax29Ecx0 std_cpuid29_ebx; 615 616 // cpuid function 0xB (processor topology) 617 // ecx = 0 618 uint32_t tpl_cpuidB0_eax; 619 TplCpuidBEbx tpl_cpuidB0_ebx; 620 uint32_t tpl_cpuidB0_ecx; // unused currently 621 uint32_t tpl_cpuidB0_edx; // unused currently 622 623 // ecx = 1 624 uint32_t tpl_cpuidB1_eax; 625 TplCpuidBEbx tpl_cpuidB1_ebx; 626 uint32_t tpl_cpuidB1_ecx; // unused currently 627 uint32_t tpl_cpuidB1_edx; // unused currently 628 629 // ecx = 2 630 uint32_t tpl_cpuidB2_eax; 631 TplCpuidBEbx tpl_cpuidB2_ebx; 632 uint32_t tpl_cpuidB2_ecx; // unused currently 633 uint32_t tpl_cpuidB2_edx; // unused currently 634 635 // cpuid function 0x80000000 // example, unused 636 uint32_t ext_max_function; 637 uint32_t ext_vendor_name_0; 638 uint32_t ext_vendor_name_1; 639 uint32_t ext_vendor_name_2; 640 641 // cpuid function 0x80000001 642 uint32_t ext_cpuid1_eax; // reserved 643 uint32_t ext_cpuid1_ebx; // reserved 644 ExtCpuid1Ecx ext_cpuid1_ecx; 645 ExtCpuid1Edx ext_cpuid1_edx; 646 647 // cpuid functions 0x80000002 thru 0x80000004: example, unused 648 uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3; 649 uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7; 650 uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11; 651 652 // cpuid function 0x80000005 // AMD L1, Intel reserved 653 uint32_t ext_cpuid5_eax; // unused currently 654 uint32_t ext_cpuid5_ebx; // reserved 655 ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD) 656 ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD) 657 658 // cpuid function 0x80000007 659 uint32_t ext_cpuid7_eax; // reserved 660 uint32_t ext_cpuid7_ebx; // reserved 661 uint32_t ext_cpuid7_ecx; // reserved 662 ExtCpuid7Edx ext_cpuid7_edx; // tscinv 663 664 // cpuid function 0x80000008 665 uint32_t ext_cpuid8_eax; // unused currently 666 uint32_t ext_cpuid8_ebx; // reserved 667 ExtCpuid8Ecx ext_cpuid8_ecx; 668 uint32_t ext_cpuid8_edx; // reserved 669 670 // cpuid function 0x8000001E // AMD 17h 671 uint32_t ext_cpuid1E_eax; 672 ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h) 673 uint32_t ext_cpuid1E_ecx; 674 uint32_t ext_cpuid1E_edx; // unused currently 675 676 // extended control register XCR0 (the XFEATURE_ENABLED_MASK register) 677 XemXcr0Eax xem_xcr0_eax; 678 uint32_t xem_xcr0_edx; // reserved 679 680 // Space to save ymm registers after signal handle 681 int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15 682 683 // Space to save zmm registers after signal handle 684 int zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31 685 686 // Space to save apx registers after signal handle 687 jlong apx_save[2]; // Save r16 and r31 688 689 VM_Features feature_flags() const; 690 691 // Asserts 692 void assert_is_initialized() const { 693 assert(std_cpuid1_eax.bits.family != 0, "VM_Version not initialized"); 694 } 695 696 // Extractors 697 uint32_t extended_cpu_family() const { 698 uint32_t result = std_cpuid1_eax.bits.family; 699 result += std_cpuid1_eax.bits.ext_family; 700 return result; 701 } 702 703 uint32_t extended_cpu_model() const { 704 uint32_t result = std_cpuid1_eax.bits.model; 705 result |= std_cpuid1_eax.bits.ext_model << 4; 706 return result; 707 } 708 709 uint32_t cpu_stepping() const { 710 uint32_t result = std_cpuid1_eax.bits.stepping; 711 return result; 712 } 713 }; 714 715 private: 716 // The actual cpuid info block 717 static CpuidInfo _cpuid_info; 718 719 // Extractors and predicates 720 static uint logical_processor_count() { 721 uint result = threads_per_core(); 722 return result; 723 } 724 725 static bool compute_has_intel_jcc_erratum(); 726 727 static bool os_supports_avx_vectors(); 728 static bool os_supports_apx_egprs(); 729 static void get_processor_features(); 730 731 public: 732 // Offsets for cpuid asm stub 733 static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); } 734 static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); } 735 static ByteSize std_cpuid24_offset() { return byte_offset_of(CpuidInfo, std_cpuid24_eax); } 736 static ByteSize std_cpuid29_offset() { return byte_offset_of(CpuidInfo, std_cpuid29_ebx); } 737 static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); } 738 static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); } 739 static ByteSize sefsl1_cpuid7_offset() { return byte_offset_of(CpuidInfo, sefsl1_cpuid7_eax); } 740 static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); } 741 static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); } 742 static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); } 743 static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); } 744 static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); } 745 static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); } 746 static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); } 747 static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); } 748 static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); } 749 static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); } 750 static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); } 751 static ByteSize apx_save_offset() { return byte_offset_of(CpuidInfo, apx_save); } 752 753 // The value used to check ymm register after signal handle 754 static int ymm_test_value() { return 0xCAFEBABE; } 755 static jlong egpr_test_value() { return 0xCAFEBABECAFEBABELL; } 756 757 static void get_cpu_info_wrapper(); 758 static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; } 759 static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; } 760 static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; } 761 static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; } 762 763 static void set_cpuinfo_segv_addr_apx(address pc) { _cpuinfo_segv_addr_apx = pc; } 764 static bool is_cpuinfo_segv_addr_apx(address pc) { return _cpuinfo_segv_addr_apx == pc; } 765 static void set_cpuinfo_cont_addr_apx(address pc) { _cpuinfo_cont_addr_apx = pc; } 766 static address cpuinfo_cont_addr_apx() { return _cpuinfo_cont_addr_apx; } 767 768 static void clear_apx_test_state(); 769 770 static void clean_cpuFeatures() { 771 VM_Version::clear_cpu_features(); 772 } 773 static void set_avx_cpuFeatures() { 774 _features.set_feature(CPU_SSE); 775 _features.set_feature(CPU_SSE2); 776 _features.set_feature(CPU_AVX); 777 _features.set_feature(CPU_VZEROUPPER); 778 } 779 static void set_evex_cpuFeatures() { 780 _features.set_feature(CPU_AVX10_1); 781 _features.set_feature(CPU_AVX512F); 782 _features.set_feature(CPU_SSE); 783 _features.set_feature(CPU_SSE2); 784 _features.set_feature(CPU_VZEROUPPER); 785 } 786 static void set_apx_cpuFeatures() { 787 _features.set_feature(CPU_APX_F); 788 } 789 static void set_bmi_cpuFeatures() { 790 _features.set_feature(CPU_BMI1); 791 _features.set_feature(CPU_BMI2); 792 _features.set_feature(CPU_LZCNT); 793 _features.set_feature(CPU_POPCNT); 794 } 795 796 // Initialization 797 static void initialize(); 798 799 // Override Abstract_VM_Version implementation 800 static void print_platform_virtualization_info(outputStream*); 801 802 // 803 // Processor family: 804 // 3 - 386 805 // 4 - 486 806 // 5 - Pentium 807 // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon, 808 // Pentium M, Core Solo, Core Duo, Core2 Duo 809 // family 6 model: 9, 13, 14, 15 810 // 0x0f - Pentium 4, Opteron 811 // 812 // Note: The cpu family should be used to select between 813 // instruction sequences which are valid on all Intel 814 // processors. Use the feature test functions below to 815 // determine whether a particular instruction is supported. 816 // 817 static void assert_is_initialized() { _cpuid_info.assert_is_initialized(); } 818 static uint32_t extended_cpu_family() { return _cpuid_info.extended_cpu_family(); } 819 static uint32_t extended_cpu_model() { return _cpuid_info.extended_cpu_model(); } 820 static uint32_t cpu_stepping() { return _cpuid_info.cpu_stepping(); } 821 static int cpu_family() { return _cpu;} 822 static bool is_P6() { return cpu_family() >= 6; } 823 static bool is_intel_server_family() { return cpu_family() == 6 || cpu_family() == 19; } 824 static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA' 825 static bool is_hygon() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH' 826 static bool is_amd_family() { return is_amd() || is_hygon(); } 827 static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG' 828 static bool is_zx() { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS ' 829 static bool is_atom_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton 830 static bool is_knights_family() { return UseKNLSetting || ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi 831 832 static bool supports_processor_topology() { 833 return (_cpuid_info.std_max_function >= 0xB) && 834 // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level. 835 // Some cpus have max cpuid >= 0xB but do not support processor topology. 836 (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0); 837 } 838 839 static uint cores_per_cpu(); 840 static uint threads_per_core(); 841 static uint L1_line_size(); 842 843 static uint prefetch_data_size() { 844 return L1_line_size(); 845 } 846 847 // 848 // Feature identification which can be affected by VM settings 849 // 850 static bool supports_cmov() { return _features.supports_feature(CPU_CMOV); } 851 static bool supports_fxsr() { return _features.supports_feature(CPU_FXSR); } 852 static bool supports_ht() { return _features.supports_feature(CPU_HT); } 853 static bool supports_mmx() { return _features.supports_feature(CPU_MMX); } 854 static bool supports_sse() { return _features.supports_feature(CPU_SSE); } 855 static bool supports_sse2() { return _features.supports_feature(CPU_SSE2); } 856 static bool supports_sse3() { return _features.supports_feature(CPU_SSE3); } 857 static bool supports_ssse3() { return _features.supports_feature(CPU_SSSE3); } 858 static bool supports_sse4_1() { return _features.supports_feature(CPU_SSE4_1); } 859 static bool supports_sse4_2() { return _features.supports_feature(CPU_SSE4_2); } 860 static bool supports_popcnt() { return _features.supports_feature(CPU_POPCNT); } 861 static bool supports_avx() { return _features.supports_feature(CPU_AVX); } 862 static bool supports_avx2() { return _features.supports_feature(CPU_AVX2); } 863 static bool supports_tsc() { return _features.supports_feature(CPU_TSC); } 864 static bool supports_rdtscp() { return _features.supports_feature(CPU_RDTSCP); } 865 static bool supports_rdpid() { return _features.supports_feature(CPU_RDPID); } 866 static bool supports_aes() { return _features.supports_feature(CPU_AES); } 867 static bool supports_erms() { return _features.supports_feature(CPU_ERMS); } 868 static bool supports_fsrm() { return _features.supports_feature(CPU_FSRM); } 869 static bool supports_clmul() { return _features.supports_feature(CPU_CLMUL); } 870 static bool supports_rtm() { return _features.supports_feature(CPU_RTM); } 871 static bool supports_bmi1() { return _features.supports_feature(CPU_BMI1); } 872 static bool supports_bmi2() { return _features.supports_feature(CPU_BMI2); } 873 static bool supports_adx() { return _features.supports_feature(CPU_ADX); } 874 static bool supports_evex() { return _features.supports_feature(CPU_AVX512F); } 875 static bool supports_avx512dq() { return _features.supports_feature(CPU_AVX512DQ); } 876 static bool supports_avx512ifma() { return _features.supports_feature(CPU_AVX512_IFMA); } 877 static bool supports_avxifma() { return _features.supports_feature(CPU_AVX_IFMA); } 878 static bool supports_avx512pf() { return _features.supports_feature(CPU_AVX512PF); } 879 static bool supports_avx512er() { return _features.supports_feature(CPU_AVX512ER); } 880 static bool supports_avx512cd() { return _features.supports_feature(CPU_AVX512CD); } 881 static bool supports_avx512bw() { return _features.supports_feature(CPU_AVX512BW); } 882 static bool supports_avx512vl() { return _features.supports_feature(CPU_AVX512VL); } 883 static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); } 884 static bool supports_avx512bwdq() { return (supports_evex() && supports_avx512bw() && supports_avx512dq()); } 885 static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); } 886 static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() && 887 supports_avx512bw() && supports_avx512dq()); } 888 static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); } 889 static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); } 890 static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); } 891 static bool supports_apx_f() { return _features.supports_feature(CPU_APX_F); } 892 static bool supports_avxonly() { return ((supports_avx2() || supports_avx()) && !supports_evex()); } 893 static bool supports_sha() { return _features.supports_feature(CPU_SHA); } 894 static bool supports_fma() { return _features.supports_feature(CPU_FMA) && supports_avx(); } 895 static bool supports_vzeroupper() { return _features.supports_feature(CPU_VZEROUPPER); } 896 static bool supports_avx512_vpopcntdq() { return _features.supports_feature(CPU_AVX512_VPOPCNTDQ); } 897 static bool supports_avx512_vpclmulqdq() { return _features.supports_feature(CPU_AVX512_VPCLMULQDQ); } 898 static bool supports_avx512_vaes() { return _features.supports_feature(CPU_AVX512_VAES); } 899 static bool supports_gfni() { return _features.supports_feature(CPU_GFNI); } 900 static bool supports_avx512_vnni() { return _features.supports_feature(CPU_AVX512_VNNI); } 901 static bool supports_avx512_bitalg() { return _features.supports_feature(CPU_AVX512_BITALG); } 902 static bool supports_avx512_vbmi() { return _features.supports_feature(CPU_AVX512_VBMI); } 903 static bool supports_avx512_vbmi2() { return _features.supports_feature(CPU_AVX512_VBMI2); } 904 static bool supports_avx512_fp16() { return _features.supports_feature(CPU_AVX512_FP16); } 905 static bool supports_hv() { return _features.supports_feature(CPU_HV); } 906 static bool supports_serialize() { return _features.supports_feature(CPU_SERIALIZE); } 907 static bool supports_hybrid() { return _features.supports_feature(CPU_HYBRID); } 908 static bool supports_f16c() { return _features.supports_feature(CPU_F16C); } 909 static bool supports_pku() { return _features.supports_feature(CPU_PKU); } 910 static bool supports_ospke() { return _features.supports_feature(CPU_OSPKE); } 911 static bool supports_cet_ss() { return _features.supports_feature(CPU_CET_SS); } 912 static bool supports_cet_ibt() { return _features.supports_feature(CPU_CET_IBT); } 913 static bool supports_sha512() { return _features.supports_feature(CPU_SHA512); } 914 915 // IntelĀ® AVX10 introduces a versioned approach for enumeration that is monotonically increasing, inclusive, 916 // and supporting all vector lengths. Feature set supported by an AVX10 vector ISA version is also supported 917 // by all the versions above it. 918 static bool supports_avx10_1() { return _features.supports_feature(CPU_AVX10_1);} 919 static bool supports_avx10_2() { return _features.supports_feature(CPU_AVX10_2);} 920 921 // 922 // Feature identification not affected by VM flags 923 // 924 static bool cpu_supports_evex() { return _cpu_features.supports_feature(CPU_AVX512F); } 925 926 static bool supports_avx512_simd_sort() { 927 if (supports_avx512dq()) { 928 // Disable AVX512 version of SIMD Sort on AMD Zen4 Processors. 929 if (is_amd() && cpu_family() == CPU_FAMILY_AMD_19H) { 930 return false; 931 } 932 return true; 933 } 934 return false; 935 } 936 937 // Intel features 938 static bool is_intel_family_core() { return is_intel() && 939 extended_cpu_family() == CPU_FAMILY_INTEL_CORE; } 940 941 static bool is_intel_skylake() { return is_intel_family_core() && 942 extended_cpu_model() == CPU_MODEL_SKYLAKE; } 943 944 #ifdef COMPILER2 945 // Determine if it's running on Cascade Lake using default options. 946 static bool is_default_intel_cascade_lake(); 947 #endif 948 949 static bool is_intel_cascade_lake(); 950 951 static int avx3_threshold(); 952 953 static bool is_intel_tsc_synched_at_init(); 954 955 static void insert_features_names(VM_Version::VM_Features features, stringStream& ss); 956 957 // This checks if the JVM is potentially affected by an erratum on Intel CPUs (SKX102) 958 // that causes unpredictable behaviour when jcc crosses 64 byte boundaries. Its microcode 959 // mitigation causes regressions when jumps or fused conditional branches cross or end at 960 // 32 byte boundaries. 961 static bool has_intel_jcc_erratum() { return _has_intel_jcc_erratum; } 962 963 // AMD features 964 static bool supports_3dnow_prefetch() { return _features.supports_feature(CPU_3DNOW_PREFETCH); } 965 static bool supports_lzcnt() { return _features.supports_feature(CPU_LZCNT); } 966 static bool supports_sse4a() { return _features.supports_feature(CPU_SSE4A); } 967 968 static bool is_amd_Barcelona() { return is_amd() && 969 extended_cpu_family() == CPU_FAMILY_AMD_11H; } 970 971 // Intel and AMD newer cores support fast timestamps well 972 static bool supports_tscinv_bit() { 973 return _features.supports_feature(CPU_TSCINV_BIT); 974 } 975 static bool supports_tscinv() { 976 return _features.supports_feature(CPU_TSCINV); 977 } 978 979 // Intel Core and newer cpus have fast IDIV instruction (excluding Atom). 980 static bool has_fast_idiv() { return is_intel() && is_intel_server_family() && 981 supports_sse3() && _model != 0x1C; } 982 983 static bool supports_compare_and_exchange() { return true; } 984 985 static int allocate_prefetch_distance(bool use_watermark_prefetch); 986 987 // SSE2 and later processors implement a 'pause' instruction 988 // that can be used for efficient implementation of 989 // the intrinsic for java.lang.Thread.onSpinWait() 990 static bool supports_on_spin_wait() { return supports_sse2(); } 991 992 // x86_64 supports fast class initialization checks 993 static bool supports_fast_class_init_checks() { 994 return true; 995 } 996 997 // x86_64 supports secondary supers table 998 constexpr static bool supports_secondary_supers_table() { 999 return true; 1000 } 1001 1002 constexpr static bool supports_stack_watermark_barrier() { 1003 return true; 1004 } 1005 1006 constexpr static bool supports_recursive_lightweight_locking() { 1007 return true; 1008 } 1009 1010 // For AVX CPUs only. f16c support is disabled if UseAVX == 0. 1011 static bool supports_float16() { 1012 return supports_f16c() || supports_avx512vl() || supports_avx512_fp16(); 1013 } 1014 1015 // Check intrinsic support 1016 static bool is_intrinsic_supported(vmIntrinsicID id); 1017 1018 // there are several insns to force cache line sync to memory which 1019 // we can use to ensure mapped non-volatile memory is up to date with 1020 // pending in-cache changes. 1021 // 1022 // 64 bit cpus always support clflush which writes back and evicts 1023 // on 32 bit cpus support is recorded via a feature flag 1024 // 1025 // clflushopt is optional and acts like clflush except it does 1026 // not synchronize with other memory ops. it needs a preceding 1027 // and trailing StoreStore fence 1028 // 1029 // clwb is an optional intel-specific instruction which 1030 // writes back without evicting the line. it also does not 1031 // synchronize with other memory ops. so, it needs preceding 1032 // and trailing StoreStore fences. 1033 1034 static bool supports_clflush(); // Can't inline due to header file conflict 1035 1036 // Note: CPU_FLUSHOPT and CPU_CLWB bits should always be zero for 32-bit 1037 static bool supports_clflushopt() { return (_features.supports_feature(CPU_FLUSHOPT)); } 1038 static bool supports_clwb() { return (_features.supports_feature(CPU_CLWB)); } 1039 1040 // Old CPUs perform lea on AGU which causes additional latency transferring the 1041 // value from/to ALU for other operations 1042 static bool supports_fast_2op_lea() { 1043 return (is_intel() && supports_avx()) || // Sandy Bridge and above 1044 (is_amd() && supports_avx()); // Jaguar and Bulldozer and above 1045 } 1046 1047 // Pre Icelake Intels suffer inefficiency regarding 3-operand lea, which contains 1048 // all of base register, index register and displacement immediate, with 3 latency. 1049 // Note that when the address contains no displacement but the base register is 1050 // rbp or r13, the machine code must contain a zero displacement immediate, 1051 // effectively transform a 2-operand lea into a 3-operand lea. This can be 1052 // replaced by add-add or lea-add 1053 static bool supports_fast_3op_lea() { 1054 return supports_fast_2op_lea() && 1055 ((is_intel() && supports_clwb() && !is_intel_skylake()) || // Icelake and above 1056 is_amd()); 1057 } 1058 1059 #ifdef __APPLE__ 1060 // Is the CPU running emulated (for example macOS Rosetta running x86_64 code on M1 ARM (aarch64) 1061 static bool is_cpu_emulated(); 1062 #endif 1063 1064 // support functions for virtualization detection 1065 private: 1066 static void check_virtualizations(); 1067 1068 static const char* cpu_family_description(void); 1069 static const char* cpu_model_description(void); 1070 static const char* cpu_brand(void); 1071 static const char* cpu_brand_string(void); 1072 1073 static int cpu_type_description(char* const buf, size_t buf_len); 1074 static int cpu_detailed_description(char* const buf, size_t buf_len); 1075 static int cpu_extended_brand_string(char* const buf, size_t buf_len); 1076 1077 static bool cpu_is_em64t(void); 1078 static bool is_netburst(void); 1079 1080 // Returns bytes written excluding termninating null byte. 1081 static size_t cpu_write_support_string(char* const buf, size_t buf_len); 1082 static void resolve_cpu_information_details(void); 1083 static int64_t max_qualified_cpu_freq_from_brand_string(void); 1084 1085 public: 1086 // Offsets for cpuid asm stub brand string 1087 static ByteSize proc_name_0_offset() { return byte_offset_of(CpuidInfo, proc_name_0); } 1088 static ByteSize proc_name_1_offset() { return byte_offset_of(CpuidInfo, proc_name_1); } 1089 static ByteSize proc_name_2_offset() { return byte_offset_of(CpuidInfo, proc_name_2); } 1090 static ByteSize proc_name_3_offset() { return byte_offset_of(CpuidInfo, proc_name_3); } 1091 static ByteSize proc_name_4_offset() { return byte_offset_of(CpuidInfo, proc_name_4); } 1092 static ByteSize proc_name_5_offset() { return byte_offset_of(CpuidInfo, proc_name_5); } 1093 static ByteSize proc_name_6_offset() { return byte_offset_of(CpuidInfo, proc_name_6); } 1094 static ByteSize proc_name_7_offset() { return byte_offset_of(CpuidInfo, proc_name_7); } 1095 static ByteSize proc_name_8_offset() { return byte_offset_of(CpuidInfo, proc_name_8); } 1096 static ByteSize proc_name_9_offset() { return byte_offset_of(CpuidInfo, proc_name_9); } 1097 static ByteSize proc_name_10_offset() { return byte_offset_of(CpuidInfo, proc_name_10); } 1098 static ByteSize proc_name_11_offset() { return byte_offset_of(CpuidInfo, proc_name_11); } 1099 1100 static int64_t maximum_qualified_cpu_frequency(void); 1101 1102 static bool supports_tscinv_ext(void); 1103 1104 static void initialize_tsc(); 1105 static void initialize_cpu_information(void); 1106 1107 static void get_cpu_features_name(void* features_buffer, stringStream& ss); 1108 static void get_missing_features_name(void* features_buffer, stringStream& ss); 1109 1110 // Returns number of bytes required to store cpu features representation 1111 static int cpu_features_size(); 1112 1113 // Stores cpu features representation in the provided buffer. This representation is arch dependent. 1114 // Size of the buffer must be same as returned by cpu_features_size() 1115 static void store_cpu_features(void* buf); 1116 1117 static bool supports_features(void* features_to_test); 1118 }; 1119 1120 #endif // CPU_X86_VM_VERSION_X86_HPP