1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 // no precompiled headers 27 #include "asm/macroAssembler.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/vtableStubs.hpp" 31 #include "code/nativeInst.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "jvm.h" 34 #include "memory/allocation.inline.hpp" 35 #include "os_linux.hpp" 36 #include "os_posix.hpp" 37 #include "prims/jniFastGetField.hpp" 38 #include "prims/jvm_misc.hpp" 39 #include "runtime/arguments.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/interfaceSupport.inline.hpp" 42 #include "runtime/java.hpp" 43 #include "runtime/javaCalls.hpp" 44 #include "runtime/mutexLocker.hpp" 45 #include "runtime/osThread.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/javaThread.hpp" 50 #include "runtime/timer.hpp" 51 #include "signals_posix.hpp" 52 #include "utilities/debug.hpp" 53 #include "utilities/events.hpp" 54 #include "utilities/vmError.hpp" 55 56 // put OS-includes here 57 # include <sys/types.h> 58 # include <sys/mman.h> 59 # include <pthread.h> 60 # include <signal.h> 61 # include <errno.h> 62 # include <dlfcn.h> 63 # include <stdlib.h> 64 # include <stdio.h> 65 # include <unistd.h> 66 # include <sys/resource.h> 67 # include <pthread.h> 68 # include <sys/stat.h> 69 # include <sys/time.h> 70 # include <sys/utsname.h> 71 # include <sys/socket.h> 72 # include <sys/wait.h> 73 # include <pwd.h> 74 # include <poll.h> 75 # include <ucontext.h> 76 77 #define REG_FP 29 78 #define REG_LR 30 79 80 NOINLINE address os::current_stack_pointer() { 81 return (address)__builtin_frame_address(0); 82 } 83 84 char* os::non_memory_address_word() { 85 // Must never look like an address returned by reserve_memory, 86 // even in its subfields (as defined by the CPU immediate fields, 87 // if the CPU splits constants across multiple instructions). 88 89 return (char*) 0xffffffffffff; 90 } 91 92 address os::Posix::ucontext_get_pc(const ucontext_t * uc) { 93 return (address)uc->uc_mcontext.pc; 94 } 95 96 void os::Posix::ucontext_set_pc(ucontext_t * uc, address pc) { 97 uc->uc_mcontext.pc = (intptr_t)pc; 98 } 99 100 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) { 101 return (intptr_t*)uc->uc_mcontext.sp; 102 } 103 104 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) { 105 return (intptr_t*)uc->uc_mcontext.regs[REG_FP]; 106 } 107 108 address os::fetch_frame_from_context(const void* ucVoid, 109 intptr_t** ret_sp, intptr_t** ret_fp) { 110 111 address epc; 112 const ucontext_t* uc = (const ucontext_t*)ucVoid; 113 114 if (uc != nullptr) { 115 epc = os::Posix::ucontext_get_pc(uc); 116 if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc); 117 if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc); 118 } else { 119 epc = nullptr; 120 if (ret_sp) *ret_sp = (intptr_t *)nullptr; 121 if (ret_fp) *ret_fp = (intptr_t *)nullptr; 122 } 123 124 return epc; 125 } 126 127 frame os::fetch_frame_from_context(const void* ucVoid) { 128 intptr_t* sp; 129 intptr_t* fp; 130 address epc = fetch_frame_from_context(ucVoid, &sp, &fp); 131 if (!is_readable_pointer(epc)) { 132 // Try to recover from calling into bad memory 133 // Assume new frame has not been set up, the same as 134 // compiled frame stack bang 135 return fetch_compiled_frame_from_context(ucVoid); 136 } 137 return frame(sp, fp, epc); 138 } 139 140 frame os::fetch_compiled_frame_from_context(const void* ucVoid) { 141 const ucontext_t* uc = (const ucontext_t*)ucVoid; 142 // In compiled code, the stack banging is performed before LR 143 // has been saved in the frame. LR is live, and SP and FP 144 // belong to the caller. 145 intptr_t* fp = os::Linux::ucontext_get_fp(uc); 146 intptr_t* sp = os::Linux::ucontext_get_sp(uc); 147 address pc = (address)(uc->uc_mcontext.regs[REG_LR] 148 - NativeInstruction::instruction_size); 149 return frame(sp, fp, pc); 150 } 151 152 // By default, gcc always saves frame pointer rfp on this stack. This 153 // may get turned off by -fomit-frame-pointer. 154 // The "Procedure Call Standard for the Arm 64-bit Architecture" doesn't 155 // specify a location for the frame record within a stack frame (6.4.6). 156 // GCC currently chooses to save it at the top of the frame (lowest address). 157 // This means that using fr->sender_sp() to set the caller's frame _unextended_sp, 158 // as we do in x86, is wrong. Using fr->link() instead only makes sense for 159 // native frames. Setting a correct value for _unextended_sp is important 160 // if this value is later used to get that frame's caller. This will happen 161 // if we end up calling frame::sender_for_compiled_frame(), which will be the 162 // case if the _pc is associated with a CodeBlob that has a _frame_size > 0 163 // (nmethod, runtime stub, safepoint stub, etc). 164 frame os::get_sender_for_C_frame(frame* fr) { 165 address pc = fr->sender_pc(); 166 CodeBlob* cb = CodeCache::find_blob(pc); 167 bool use_codeblob = cb != nullptr && cb->frame_size() > 0; 168 assert(!use_codeblob || !Interpreter::contains(pc), "should not be an interpreter frame"); 169 intptr_t* sender_sp = use_codeblob ? (fr->link() + frame::metadata_words - cb->frame_size()) : fr->link(); 170 return frame(sender_sp, sender_sp, fr->link(), pc, cb, true /* allow_cb_null */); 171 } 172 173 NOINLINE frame os::current_frame() { 174 intptr_t *fp = *(intptr_t **)__builtin_frame_address(0); 175 frame myframe((intptr_t*)os::current_stack_pointer(), 176 (intptr_t*)fp, 177 CAST_FROM_FN_PTR(address, os::current_frame)); 178 if (os::is_first_C_frame(&myframe)) { 179 // stack is not walkable 180 return frame(); 181 } else { 182 return os::get_sender_for_C_frame(&myframe); 183 } 184 } 185 186 bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info, 187 ucontext_t* uc, JavaThread* thread) { 188 189 /* 190 NOTE: does not seem to work on linux. 191 if (info == nullptr || info->si_code <= 0 || info->si_code == SI_NOINFO) { 192 // can't decode this kind of signal 193 info = nullptr; 194 } else { 195 assert(sig == info->si_signo, "bad siginfo"); 196 } 197 */ 198 // decide if this trap can be handled by a stub 199 address stub = nullptr; 200 201 address pc = nullptr; 202 203 //%note os_trap_1 204 if (info != nullptr && uc != nullptr && thread != nullptr) { 205 pc = (address) os::Posix::ucontext_get_pc(uc); 206 207 address addr = (address) info->si_addr; 208 209 // Make sure the high order byte is sign extended, as it may be masked away by the hardware. 210 if ((uintptr_t(addr) & (uintptr_t(1) << 55)) != 0) { 211 addr = address(uintptr_t(addr) | (uintptr_t(0xFF) << 56)); 212 } 213 214 // Handle ALL stack overflow variations here 215 if (sig == SIGSEGV) { 216 // check if fault address is within thread stack 217 if (thread->is_in_full_stack(addr)) { 218 if (os::Posix::handle_stack_overflow(thread, addr, pc, uc, &stub)) { 219 return true; // continue 220 } 221 } 222 } 223 224 if (thread->thread_state() == _thread_in_Java) { 225 // Java thread running in Java code => find exception handler if any 226 // a fault inside compiled code, the interpreter, or a stub 227 228 // Handle signal from NativeJump::patch_verified_entry(). 229 if ((sig == SIGILL || sig == SIGTRAP) 230 && nativeInstruction_at(pc)->is_sigill_not_entrant()) { 231 if (TraceTraps) { 232 tty->print_cr("trap: not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL"); 233 } 234 stub = SharedRuntime::get_handle_wrong_method_stub(); 235 } else if (sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) { 236 stub = SharedRuntime::get_poll_stub(pc); 237 } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) { 238 // BugId 4454115: A read from a MappedByteBuffer can fault 239 // here if the underlying file has been truncated. 240 // Do not crash the VM in such a case. 241 CodeBlob* cb = CodeCache::find_blob(pc); 242 nmethod* nm = (cb != nullptr) ? cb->as_nmethod_or_null() : nullptr; 243 bool is_unsafe_memory_access = (thread->doing_unsafe_access() && UnsafeMemoryAccess::contains_pc(pc)); 244 if ((nm != nullptr && nm->has_unsafe_access()) || is_unsafe_memory_access) { 245 address next_pc = pc + NativeCall::instruction_size; 246 if (is_unsafe_memory_access) { 247 next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc); 248 } 249 stub = SharedRuntime::handle_unsafe_access(thread, next_pc); 250 } 251 } else if (sig == SIGILL && nativeInstruction_at(pc)->is_stop()) { 252 // Pull a pointer to the error message out of the instruction 253 // stream. 254 const uint64_t *detail_msg_ptr 255 = (uint64_t*)(pc + NativeInstruction::instruction_size); 256 const char *detail_msg = (const char *)*detail_msg_ptr; 257 const char *msg = "stop"; 258 if (TraceTraps) { 259 tty->print_cr("trap: %s: (SIGILL)", msg); 260 } 261 262 // End life with a fatal error, message and detail message and the context. 263 // Note: no need to do any post-processing here (e.g. signal chaining) 264 VMError::report_and_die(thread, uc, nullptr, 0, msg, "%s", detail_msg); 265 266 ShouldNotReachHere(); 267 268 } 269 else 270 271 if (sig == SIGFPE && 272 (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) { 273 stub = 274 SharedRuntime:: 275 continuation_for_implicit_exception(thread, 276 pc, 277 SharedRuntime:: 278 IMPLICIT_DIVIDE_BY_ZERO); 279 } else if (sig == SIGSEGV && 280 MacroAssembler::uses_implicit_null_check((void*)addr)) { 281 // Determination of interpreter/vtable stub/compiled code null exception 282 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); 283 } 284 } else if ((thread->thread_state() == _thread_in_vm || 285 thread->thread_state() == _thread_in_native) && 286 sig == SIGBUS && /* info->si_code == BUS_OBJERR && */ 287 thread->doing_unsafe_access()) { 288 address next_pc = pc + NativeCall::instruction_size; 289 if (UnsafeMemoryAccess::contains_pc(pc)) { 290 next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc); 291 } 292 stub = SharedRuntime::handle_unsafe_access(thread, next_pc); 293 } 294 295 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in 296 // and the heap gets shrunk before the field access. 297 if ((sig == SIGSEGV) || (sig == SIGBUS)) { 298 address addr = JNI_FastGetField::find_slowcase_pc(pc); 299 if (addr != (address)-1) { 300 stub = addr; 301 } 302 } 303 } 304 305 if (stub != nullptr) { 306 // save all thread context in case we need to restore it 307 if (thread != nullptr) thread->set_saved_exception_pc(pc); 308 309 os::Posix::ucontext_set_pc(uc, stub); 310 return true; 311 } 312 313 return false; // Mute compiler 314 } 315 316 void os::Linux::init_thread_fpu_state(void) { 317 } 318 319 int os::Linux::get_fpu_control_word(void) { 320 return 0; 321 } 322 323 void os::Linux::set_fpu_control_word(int fpu_control) { 324 } 325 326 //////////////////////////////////////////////////////////////////////////////// 327 // thread stack 328 329 // Minimum usable stack sizes required to get to user code. Space for 330 // HotSpot guard pages is added later. 331 size_t os::_compiler_thread_min_stack_allowed = 72 * K; 332 size_t os::_java_thread_min_stack_allowed = 72 * K; 333 size_t os::_vm_internal_thread_min_stack_allowed = 72 * K; 334 335 // return default stack size for thr_type 336 size_t os::Posix::default_stack_size(os::ThreadType thr_type) { 337 // default stack size (compiler thread needs larger stack) 338 size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); 339 return s; 340 } 341 342 ///////////////////////////////////////////////////////////////////////////// 343 // helper functions for fatal error handler 344 345 void os::print_context(outputStream *st, const void *context) { 346 if (context == nullptr) return; 347 348 const ucontext_t *uc = (const ucontext_t*)context; 349 350 st->print_cr("Registers:"); 351 for (int r = 0; r < 31; r++) { 352 st->print_cr( "R%d=" INTPTR_FORMAT, r, (uintptr_t)uc->uc_mcontext.regs[r]); 353 } 354 st->cr(); 355 } 356 357 void os::print_tos_pc(outputStream *st, const void *context) { 358 if (context == nullptr) return; 359 360 const ucontext_t* uc = (const ucontext_t*)context; 361 362 address sp = (address)os::Linux::ucontext_get_sp(uc); 363 print_tos(st, sp); 364 st->cr(); 365 366 // Note: it may be unsafe to inspect memory near pc. For example, pc may 367 // point to garbage if entry point in an nmethod is corrupted. Leave 368 // this at the end, and hope for the best. 369 address pc = os::fetch_frame_from_context(uc).pc(); 370 print_instructions(st, pc); 371 st->cr(); 372 } 373 374 void os::print_register_info(outputStream *st, const void *context, int& continuation) { 375 const int register_count = 32 /* r0-r31 */; 376 int n = continuation; 377 assert(n >= 0 && n <= register_count, "Invalid continuation value"); 378 if (context == nullptr || n == register_count) { 379 return; 380 } 381 382 const ucontext_t *uc = (const ucontext_t*)context; 383 while (n < register_count) { 384 // Update continuation with next index before printing location 385 continuation = n + 1; 386 st->print("R%-2d=", n); 387 print_location(st, uc->uc_mcontext.regs[n]); 388 ++n; 389 } 390 } 391 392 void os::setup_fpu() { 393 } 394 395 #ifndef PRODUCT 396 void os::verify_stack_alignment() { 397 assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); 398 } 399 #endif 400 401 int os::extra_bang_size_in_bytes() { 402 // AArch64 does not require the additional stack bang. 403 return 0; 404 } 405 406 static inline void atomic_copy64(const volatile void *src, volatile void *dst) { 407 *(jlong *) dst = *(const jlong *) src; 408 } 409 410 extern "C" { 411 int SpinPause() { 412 using spin_wait_func_ptr_t = void (*)(); 413 spin_wait_func_ptr_t func = CAST_TO_FN_PTR(spin_wait_func_ptr_t, StubRoutines::aarch64::spin_wait()); 414 assert(func != nullptr, "StubRoutines::aarch64::spin_wait must not be null."); 415 (*func)(); 416 // If StubRoutines::aarch64::spin_wait consists of only a RET, 417 // SpinPause can be considered as implemented. There will be a sequence 418 // of instructions for: 419 // - call of SpinPause 420 // - load of StubRoutines::aarch64::spin_wait stub pointer 421 // - indirect call of the stub 422 // - return from the stub 423 // - return from SpinPause 424 // So '1' always is returned. 425 return 1; 426 } 427 428 void _Copy_conjoint_jshorts_atomic(const jshort* from, jshort* to, size_t count) { 429 if (from > to) { 430 const jshort *end = from + count; 431 while (from < end) 432 *(to++) = *(from++); 433 } 434 else if (from < to) { 435 const jshort *end = from; 436 from += count - 1; 437 to += count - 1; 438 while (from >= end) 439 *(to--) = *(from--); 440 } 441 } 442 void _Copy_conjoint_jints_atomic(const jint* from, jint* to, size_t count) { 443 if (from > to) { 444 const jint *end = from + count; 445 while (from < end) 446 *(to++) = *(from++); 447 } 448 else if (from < to) { 449 const jint *end = from; 450 from += count - 1; 451 to += count - 1; 452 while (from >= end) 453 *(to--) = *(from--); 454 } 455 } 456 457 void _Copy_conjoint_jlongs_atomic(const jlong* from, jlong* to, size_t count) { 458 if (from > to) { 459 const jlong *end = from + count; 460 while (from < end) 461 atomic_copy64(from++, to++); 462 } 463 else if (from < to) { 464 const jlong *end = from; 465 from += count - 1; 466 to += count - 1; 467 while (from >= end) 468 atomic_copy64(from--, to--); 469 } 470 } 471 472 void _Copy_arrayof_conjoint_bytes(const HeapWord* from, 473 HeapWord* to, 474 size_t count) { 475 memmove(to, from, count); 476 } 477 void _Copy_arrayof_conjoint_jshorts(const HeapWord* from, 478 HeapWord* to, 479 size_t count) { 480 memmove(to, from, count * 2); 481 } 482 void _Copy_arrayof_conjoint_jints(const HeapWord* from, 483 HeapWord* to, 484 size_t count) { 485 memmove(to, from, count * 4); 486 } 487 void _Copy_arrayof_conjoint_jlongs(const HeapWord* from, 488 HeapWord* to, 489 size_t count) { 490 memmove(to, from, count * 8); 491 } 492 };