1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "ci/ciUtilities.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 #ifdef ASSERT
  50 #define __ gen()->lir(__FILE__, __LINE__)->
  51 #else
  52 #define __ gen()->lir()->
  53 #endif
  54 
  55 #ifndef PATCHED_ADDR
  56 #define PATCHED_ADDR  (max_jint)
  57 #endif
  58 
  59 void PhiResolverState::reset() {
  60   _virtual_operands.clear();
  61   _other_operands.clear();
  62   _vreg_table.clear();
  63 }
  64 
  65 
  66 //--------------------------------------------------------------
  67 // PhiResolver
  68 
  69 // Resolves cycles:
  70 //
  71 //  r1 := r2  becomes  temp := r1
  72 //  r2 := r1           r1 := r2
  73 //                     r2 := temp
  74 // and orders moves:
  75 //
  76 //  r2 := r3  becomes  r1 := r2
  77 //  r1 := r2           r2 := r3
  78 
  79 PhiResolver::PhiResolver(LIRGenerator* gen)
  80  : _gen(gen)
  81  , _state(gen->resolver_state())
  82  , _loop(nullptr)
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset();
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == nullptr, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != nullptr) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands().at(i);
 149     if (!node->visited()) {
 150       _loop = nullptr;
 151       move(nullptr, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands().at(i);
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, nullptr);
 172     assert(node == nullptr || node->operand() == opr, "");
 173     if (node == nullptr) {
 174       node = new ResolveNode(opr);
 175       vreg_table().at_put(vreg_num, node);
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208 #ifdef ASSERT
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 211   }
 212 #endif
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {
 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {
 238       _result = LIR_OprFact::value_type(value()->type());
 239     }
 240   } else if (type == T_BYTE || type == T_BOOLEAN) {
 241     load_byte_item();
 242   } else {
 243     load_item();
 244   }
 245 }
 246 
 247 void LIRItem::load_item_force(LIR_Opr reg) {
 248   LIR_Opr r = result();
 249   if (r != reg) {
 250 #if !defined(ARM) && !defined(E500V2)
 251     if (r->type() != reg->type()) {
 252       // moves between different types need an intervening spill slot
 253       r = _gen->force_to_spill(r, reg->type());
 254     }
 255 #endif
 256     __ move(r, reg);
 257     _result = reg;
 258   }
 259 }
 260 
 261 ciObject* LIRItem::get_jobject_constant() const {
 262   ObjectType* oc = type()->as_ObjectType();
 263   if (oc) {
 264     return oc->constant_value();
 265   }
 266   return nullptr;
 267 }
 268 
 269 
 270 jint LIRItem::get_jint_constant() const {
 271   assert(is_constant() && value() != nullptr, "");
 272   assert(type()->as_IntConstant() != nullptr, "type check");
 273   return type()->as_IntConstant()->value();
 274 }
 275 
 276 
 277 jint LIRItem::get_address_constant() const {
 278   assert(is_constant() && value() != nullptr, "");
 279   assert(type()->as_AddressConstant() != nullptr, "type check");
 280   return type()->as_AddressConstant()->value();
 281 }
 282 
 283 
 284 jfloat LIRItem::get_jfloat_constant() const {
 285   assert(is_constant() && value() != nullptr, "");
 286   assert(type()->as_FloatConstant() != nullptr, "type check");
 287   return type()->as_FloatConstant()->value();
 288 }
 289 
 290 
 291 jdouble LIRItem::get_jdouble_constant() const {
 292   assert(is_constant() && value() != nullptr, "");
 293   assert(type()->as_DoubleConstant() != nullptr, "type check");
 294   return type()->as_DoubleConstant()->value();
 295 }
 296 
 297 
 298 jlong LIRItem::get_jlong_constant() const {
 299   assert(is_constant() && value() != nullptr, "");
 300   assert(type()->as_LongConstant() != nullptr, "type check");
 301   return type()->as_LongConstant()->value();
 302 }
 303 
 304 
 305 
 306 //--------------------------------------------------------------
 307 
 308 
 309 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 310 #ifndef PRODUCT
 311   if (PrintIRWithLIR) {
 312     block->print();
 313   }
 314 #endif
 315 
 316   // set up the list of LIR instructions
 317   assert(block->lir() == nullptr, "LIR list already computed for this block");
 318   _lir = new LIR_List(compilation(), block);
 319   block->set_lir(_lir);
 320 
 321   __ branch_destination(block->label());
 322 
 323   if (LIRTraceExecution &&
 324       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 325       !block->is_set(BlockBegin::exception_entry_flag)) {
 326     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 327     trace_block_entry(block);
 328   }
 329 }
 330 
 331 
 332 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 333 #ifndef PRODUCT
 334   if (PrintIRWithLIR) {
 335     tty->cr();
 336   }
 337 #endif
 338 
 339   // LIR_Opr for unpinned constants shouldn't be referenced by other
 340   // blocks so clear them out after processing the block.
 341   for (int i = 0; i < _unpinned_constants.length(); i++) {
 342     _unpinned_constants.at(i)->clear_operand();
 343   }
 344   _unpinned_constants.trunc_to(0);
 345 
 346   // clear our any registers for other local constants
 347   _constants.trunc_to(0);
 348   _reg_for_constants.trunc_to(0);
 349 }
 350 
 351 
 352 void LIRGenerator::block_do(BlockBegin* block) {
 353   CHECK_BAILOUT();
 354 
 355   block_do_prolog(block);
 356   set_block(block);
 357 
 358   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 359     if (instr->is_pinned()) do_root(instr);
 360   }
 361 
 362   set_block(nullptr);
 363   block_do_epilog(block);
 364 }
 365 
 366 
 367 //-------------------------LIRGenerator-----------------------------
 368 
 369 // This is where the tree-walk starts; instr must be root;
 370 void LIRGenerator::do_root(Value instr) {
 371   CHECK_BAILOUT();
 372 
 373   InstructionMark im(compilation(), instr);
 374 
 375   assert(instr->is_pinned(), "use only with roots");
 376   assert(instr->subst() == instr, "shouldn't have missed substitution");
 377 
 378   instr->visit(this);
 379 
 380   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 381          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 382 }
 383 
 384 
 385 // This is called for each node in tree; the walk stops if a root is reached
 386 void LIRGenerator::walk(Value instr) {
 387   InstructionMark im(compilation(), instr);
 388   //stop walk when encounter a root
 389   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 390     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 391   } else {
 392     assert(instr->subst() == instr, "shouldn't have missed substitution");
 393     instr->visit(this);
 394     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 395   }
 396 }
 397 
 398 
 399 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 400   assert(state != nullptr, "state must be defined");
 401 
 402 #ifndef PRODUCT
 403   state->verify();
 404 #endif
 405 
 406   ValueStack* s = state;
 407   for_each_state(s) {
 408     if (s->kind() == ValueStack::EmptyExceptionState ||
 409         s->kind() == ValueStack::CallerEmptyExceptionState)
 410     {
 411 #ifdef ASSERT
 412       int index;
 413       Value value;
 414       for_each_stack_value(s, index, value) {
 415         fatal("state must be empty");
 416       }
 417       for_each_local_value(s, index, value) {
 418         fatal("state must be empty");
 419       }
 420 #endif
 421       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 422       continue;
 423     }
 424 
 425     int index;
 426     Value value;
 427     for_each_stack_value(s, index, value) {
 428       assert(value->subst() == value, "missed substitution");
 429       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 430         walk(value);
 431         assert(value->operand()->is_valid(), "must be evaluated now");
 432       }
 433     }
 434 
 435     int bci = s->bci();
 436     IRScope* scope = s->scope();
 437     ciMethod* method = scope->method();
 438 
 439     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 440     if (bci == SynchronizationEntryBCI) {
 441       if (x->as_ExceptionObject() || x->as_Throw()) {
 442         // all locals are dead on exit from the synthetic unlocker
 443         liveness.clear();
 444       } else {
 445         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 446       }
 447     }
 448     if (!liveness.is_valid()) {
 449       // Degenerate or breakpointed method.
 450       bailout("Degenerate or breakpointed method");
 451     } else {
 452       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 453       for_each_local_value(s, index, value) {
 454         assert(value->subst() == value, "missed substitution");
 455         if (liveness.at(index) && !value->type()->is_illegal()) {
 456           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 457             walk(value);
 458             assert(value->operand()->is_valid(), "must be evaluated now");
 459           }
 460         } else {
 461           // null out this local so that linear scan can assume that all non-null values are live.
 462           s->invalidate_local(index);
 463         }
 464       }
 465     }
 466   }
 467 
 468   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 469 }
 470 
 471 
 472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 473   return state_for(x, x->exception_state());
 474 }
 475 
 476 
 477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 478   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 479    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 480    * the class. */
 481   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 482     assert(info != nullptr, "info must be set if class is not loaded");
 483     __ klass2reg_patch(nullptr, r, info);
 484   } else {
 485     // no patching needed
 486     __ metadata2reg(obj->constant_encoding(), r);
 487   }
 488 }
 489 
 490 
 491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 492                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 493   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 494   if (index->is_constant()) {
 495     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 496                 index->as_jint(), null_check_info);
 497     __ branch(lir_cond_belowEqual, stub); // forward branch
 498   } else {
 499     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 500                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 501     __ branch(lir_cond_aboveEqual, stub); // forward branch
 502   }
 503 }
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (two_operand_lir_form && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 525 
 526     case Bytecodes::_imul:
 527       {
 528         bool did_strength_reduce = false;
 529 
 530         if (right->is_constant()) {
 531           jint c = right->as_jint();
 532           if (c > 0 && is_power_of_2(c)) {
 533             // do not need tmp here
 534             __ shift_left(left_op, exact_log2(c), result_op);
 535             did_strength_reduce = true;
 536           } else {
 537             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 538           }
 539         }
 540         // we couldn't strength reduce so just emit the multiply
 541         if (!did_strength_reduce) {
 542           __ mul(left_op, right_op, result_op);
 543         }
 544       }
 545       break;
 546 
 547     case Bytecodes::_dsub:
 548     case Bytecodes::_fsub:
 549     case Bytecodes::_lsub:
 550     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 551 
 552     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 553     // ldiv and lrem are implemented with a direct runtime call
 554 
 555     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 556 
 557     case Bytecodes::_drem:
 558     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 559 
 560     default: ShouldNotReachHere();
 561   }
 562 }
 563 
 564 
 565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 566   arithmetic_op(code, result, left, right, tmp);
 567 }
 568 
 569 
 570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 571   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 572 }
 573 
 574 
 575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 576   arithmetic_op(code, result, left, right, tmp);
 577 }
 578 
 579 
 580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 581 
 582   if (two_operand_lir_form && value != result_op
 583       // Only 32bit right shifts require two operand form on S390.
 584       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 585     assert(count != result_op, "malformed");
 586     __ move(value, result_op);
 587     value = result_op;
 588   }
 589 
 590   assert(count->is_constant() || count->is_register(), "must be");
 591   switch(code) {
 592   case Bytecodes::_ishl:
 593   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 594   case Bytecodes::_ishr:
 595   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 596   case Bytecodes::_iushr:
 597   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 598   default: ShouldNotReachHere();
 599   }
 600 }
 601 
 602 
 603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 604   if (two_operand_lir_form && left_op != result_op) {
 605     assert(right_op != result_op, "malformed");
 606     __ move(left_op, result_op);
 607     left_op = result_op;
 608   }
 609 
 610   switch(code) {
 611     case Bytecodes::_iand:
 612     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 613 
 614     case Bytecodes::_ior:
 615     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 616 
 617     case Bytecodes::_ixor:
 618     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 619 
 620     default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 626   // for slow path, use debug info for state after successful locking
 627   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 628   __ load_stack_address_monitor(monitor_no, lock);
 629   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 630   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 631 }
 632 
 633 
 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 635   // setup registers
 636   LIR_Opr hdr = lock;
 637   lock = new_hdr;
 638   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 639   __ load_stack_address_monitor(monitor_no, lock);
 640   __ unlock_object(hdr, object, lock, scratch, slow_path);
 641 }
 642 
 643 #ifndef PRODUCT
 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 645   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 646     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 647   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 648     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 649   }
 650 }
 651 #endif
 652 
 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 654   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 655   // If klass is not loaded we do not know if the klass has finalizers:
 656   if (UseFastNewInstance && klass->is_loaded()
 657       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 658 
 659     StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 660 
 661     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 662 
 663     assert(klass->is_loaded(), "must be loaded");
 664     // allocate space for instance
 665     assert(klass->size_helper() > 0, "illegal instance size");
 666     const int instance_size = align_object_size(klass->size_helper());
 667     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 668                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 669   } else {
 670     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 671     __ branch(lir_cond_always, slow_path);
 672     __ branch_destination(slow_path->continuation());
 673   }
 674 }
 675 
 676 
 677 static bool is_constant_zero(Instruction* inst) {
 678   IntConstant* c = inst->type()->as_IntConstant();
 679   if (c) {
 680     return (c->value() == 0);
 681   }
 682   return false;
 683 }
 684 
 685 
 686 static bool positive_constant(Instruction* inst) {
 687   IntConstant* c = inst->type()->as_IntConstant();
 688   if (c) {
 689     return (c->value() >= 0);
 690   }
 691   return false;
 692 }
 693 
 694 
 695 static ciArrayKlass* as_array_klass(ciType* type) {
 696   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 697     return (ciArrayKlass*)type;
 698   } else {
 699     return nullptr;
 700   }
 701 }
 702 
 703 static ciType* phi_declared_type(Phi* phi) {
 704   ciType* t = phi->operand_at(0)->declared_type();
 705   if (t == nullptr) {
 706     return nullptr;
 707   }
 708   for(int i = 1; i < phi->operand_count(); i++) {
 709     if (t != phi->operand_at(i)->declared_type()) {
 710       return nullptr;
 711     }
 712   }
 713   return t;
 714 }
 715 
 716 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 717   Instruction* src     = x->argument_at(0);
 718   Instruction* src_pos = x->argument_at(1);
 719   Instruction* dst     = x->argument_at(2);
 720   Instruction* dst_pos = x->argument_at(3);
 721   Instruction* length  = x->argument_at(4);
 722 
 723   // first try to identify the likely type of the arrays involved
 724   ciArrayKlass* expected_type = nullptr;
 725   bool is_exact = false, src_objarray = false, dst_objarray = false;
 726   {
 727     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 728     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 729     Phi* phi;
 730     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 731       src_declared_type = as_array_klass(phi_declared_type(phi));
 732     }
 733     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 734     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 735     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 736       dst_declared_type = as_array_klass(phi_declared_type(phi));
 737     }
 738 
 739     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 740       // the types exactly match so the type is fully known
 741       is_exact = true;
 742       expected_type = src_exact_type;
 743     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 744       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 745       ciArrayKlass* src_type = nullptr;
 746       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 747         src_type = (ciArrayKlass*) src_exact_type;
 748       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 749         src_type = (ciArrayKlass*) src_declared_type;
 750       }
 751       if (src_type != nullptr) {
 752         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 753           is_exact = true;
 754           expected_type = dst_type;
 755         }
 756       }
 757     }
 758     // at least pass along a good guess
 759     if (expected_type == nullptr) expected_type = dst_exact_type;
 760     if (expected_type == nullptr) expected_type = src_declared_type;
 761     if (expected_type == nullptr) expected_type = dst_declared_type;
 762 
 763     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 764     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 765   }
 766 
 767   // if a probable array type has been identified, figure out if any
 768   // of the required checks for a fast case can be elided.
 769   int flags = LIR_OpArrayCopy::all_flags;
 770 
 771   if (!src_objarray)
 772     flags &= ~LIR_OpArrayCopy::src_objarray;
 773   if (!dst_objarray)
 774     flags &= ~LIR_OpArrayCopy::dst_objarray;
 775 
 776   if (!x->arg_needs_null_check(0))
 777     flags &= ~LIR_OpArrayCopy::src_null_check;
 778   if (!x->arg_needs_null_check(2))
 779     flags &= ~LIR_OpArrayCopy::dst_null_check;
 780 
 781 
 782   if (expected_type != nullptr) {
 783     Value length_limit = nullptr;
 784 
 785     IfOp* ifop = length->as_IfOp();
 786     if (ifop != nullptr) {
 787       // look for expressions like min(v, a.length) which ends up as
 788       //   x > y ? y : x  or  x >= y ? y : x
 789       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 790           ifop->x() == ifop->fval() &&
 791           ifop->y() == ifop->tval()) {
 792         length_limit = ifop->y();
 793       }
 794     }
 795 
 796     // try to skip null checks and range checks
 797     NewArray* src_array = src->as_NewArray();
 798     if (src_array != nullptr) {
 799       flags &= ~LIR_OpArrayCopy::src_null_check;
 800       if (length_limit != nullptr &&
 801           src_array->length() == length_limit &&
 802           is_constant_zero(src_pos)) {
 803         flags &= ~LIR_OpArrayCopy::src_range_check;
 804       }
 805     }
 806 
 807     NewArray* dst_array = dst->as_NewArray();
 808     if (dst_array != nullptr) {
 809       flags &= ~LIR_OpArrayCopy::dst_null_check;
 810       if (length_limit != nullptr &&
 811           dst_array->length() == length_limit &&
 812           is_constant_zero(dst_pos)) {
 813         flags &= ~LIR_OpArrayCopy::dst_range_check;
 814       }
 815     }
 816 
 817     // check from incoming constant values
 818     if (positive_constant(src_pos))
 819       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 820     if (positive_constant(dst_pos))
 821       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 822     if (positive_constant(length))
 823       flags &= ~LIR_OpArrayCopy::length_positive_check;
 824 
 825     // see if the range check can be elided, which might also imply
 826     // that src or dst is non-null.
 827     ArrayLength* al = length->as_ArrayLength();
 828     if (al != nullptr) {
 829       if (al->array() == src) {
 830         // it's the length of the source array
 831         flags &= ~LIR_OpArrayCopy::length_positive_check;
 832         flags &= ~LIR_OpArrayCopy::src_null_check;
 833         if (is_constant_zero(src_pos))
 834           flags &= ~LIR_OpArrayCopy::src_range_check;
 835       }
 836       if (al->array() == dst) {
 837         // it's the length of the destination array
 838         flags &= ~LIR_OpArrayCopy::length_positive_check;
 839         flags &= ~LIR_OpArrayCopy::dst_null_check;
 840         if (is_constant_zero(dst_pos))
 841           flags &= ~LIR_OpArrayCopy::dst_range_check;
 842       }
 843     }
 844     if (is_exact) {
 845       flags &= ~LIR_OpArrayCopy::type_check;
 846     }
 847   }
 848 
 849   IntConstant* src_int = src_pos->type()->as_IntConstant();
 850   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 851   if (src_int && dst_int) {
 852     int s_offs = src_int->value();
 853     int d_offs = dst_int->value();
 854     if (src_int->value() >= dst_int->value()) {
 855       flags &= ~LIR_OpArrayCopy::overlapping;
 856     }
 857     if (expected_type != nullptr) {
 858       BasicType t = expected_type->element_type()->basic_type();
 859       int element_size = type2aelembytes(t);
 860       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 861           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 862         flags &= ~LIR_OpArrayCopy::unaligned;
 863       }
 864     }
 865   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 866     // src and dest positions are the same, or dst is zero so assume
 867     // nonoverlapping copy.
 868     flags &= ~LIR_OpArrayCopy::overlapping;
 869   }
 870 
 871   if (src == dst) {
 872     // moving within a single array so no type checks are needed
 873     if (flags & LIR_OpArrayCopy::type_check) {
 874       flags &= ~LIR_OpArrayCopy::type_check;
 875     }
 876   }
 877   *flagsp = flags;
 878   *expected_typep = (ciArrayKlass*)expected_type;
 879 }
 880 
 881 
 882 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 883   assert(type2size[t] == type2size[value->type()],
 884          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 885   if (!value->is_register()) {
 886     // force into a register
 887     LIR_Opr r = new_register(value->type());
 888     __ move(value, r);
 889     value = r;
 890   }
 891 
 892   // create a spill location
 893   LIR_Opr tmp = new_register(t);
 894   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 895 
 896   // move from register to spill
 897   __ move(value, tmp);
 898   return tmp;
 899 }
 900 
 901 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 902   if (if_instr->should_profile()) {
 903     ciMethod* method = if_instr->profiled_method();
 904     assert(method != nullptr, "method should be set if branch is profiled");
 905     ciMethodData* md = method->method_data_or_null();
 906     assert(md != nullptr, "Sanity");
 907     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 908     assert(data != nullptr, "must have profiling data");
 909     assert(data->is_BranchData(), "need BranchData for two-way branches");
 910     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 911     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 912     if (if_instr->is_swapped()) {
 913       int t = taken_count_offset;
 914       taken_count_offset = not_taken_count_offset;
 915       not_taken_count_offset = t;
 916     }
 917 
 918     LIR_Opr md_reg = new_register(T_METADATA);
 919     __ metadata2reg(md->constant_encoding(), md_reg);
 920 
 921     LIR_Opr data_offset_reg = new_pointer_register();
 922     __ cmove(lir_cond(cond),
 923              LIR_OprFact::intptrConst(taken_count_offset),
 924              LIR_OprFact::intptrConst(not_taken_count_offset),
 925              data_offset_reg, as_BasicType(if_instr->x()->type()));
 926 
 927     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 928     LIR_Opr data_reg = new_pointer_register();
 929     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 930     __ move(data_addr, data_reg);
 931     // Use leal instead of add to avoid destroying condition codes on x86
 932     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 933     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 934     __ move(data_reg, data_addr);
 935   }
 936 }
 937 
 938 // Phi technique:
 939 // This is about passing live values from one basic block to the other.
 940 // In code generated with Java it is rather rare that more than one
 941 // value is on the stack from one basic block to the other.
 942 // We optimize our technique for efficient passing of one value
 943 // (of type long, int, double..) but it can be extended.
 944 // When entering or leaving a basic block, all registers and all spill
 945 // slots are release and empty. We use the released registers
 946 // and spill slots to pass the live values from one block
 947 // to the other. The topmost value, i.e., the value on TOS of expression
 948 // stack is passed in registers. All other values are stored in spilling
 949 // area. Every Phi has an index which designates its spill slot
 950 // At exit of a basic block, we fill the register(s) and spill slots.
 951 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 952 // and locks necessary registers and spilling slots.
 953 
 954 
 955 // move current value to referenced phi function
 956 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 957   Phi* phi = sux_val->as_Phi();
 958   // cur_val can be null without phi being null in conjunction with inlining
 959   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 960     if (phi->is_local()) {
 961       for (int i = 0; i < phi->operand_count(); i++) {
 962         Value op = phi->operand_at(i);
 963         if (op != nullptr && op->type()->is_illegal()) {
 964           bailout("illegal phi operand");
 965         }
 966       }
 967     }
 968     Phi* cur_phi = cur_val->as_Phi();
 969     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 970       // Phi and local would need to get invalidated
 971       // (which is unexpected for Linear Scan).
 972       // But this case is very rare so we simply bail out.
 973       bailout("propagation of illegal phi");
 974       return;
 975     }
 976     LIR_Opr operand = cur_val->operand();
 977     if (operand->is_illegal()) {
 978       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
 979              "these can be produced lazily");
 980       operand = operand_for_instruction(cur_val);
 981     }
 982     resolver->move(operand, operand_for_instruction(phi));
 983   }
 984 }
 985 
 986 
 987 // Moves all stack values into their PHI position
 988 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 989   BlockBegin* bb = block();
 990   if (bb->number_of_sux() == 1) {
 991     BlockBegin* sux = bb->sux_at(0);
 992     assert(sux->number_of_preds() > 0, "invalid CFG");
 993 
 994     // a block with only one predecessor never has phi functions
 995     if (sux->number_of_preds() > 1) {
 996       PhiResolver resolver(this);
 997 
 998       ValueStack* sux_state = sux->state();
 999       Value sux_value;
1000       int index;
1001 
1002       assert(cur_state->scope() == sux_state->scope(), "not matching");
1003       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1004       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1005 
1006       for_each_stack_value(sux_state, index, sux_value) {
1007         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1008       }
1009 
1010       for_each_local_value(sux_state, index, sux_value) {
1011         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1012       }
1013 
1014       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1015     }
1016   }
1017 }
1018 
1019 
1020 LIR_Opr LIRGenerator::new_register(BasicType type) {
1021   int vreg_num = _virtual_register_number;
1022   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1023   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1024   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1025     bailout("out of virtual registers in LIR generator");
1026     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1027       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1028       _virtual_register_number = LIR_Opr::vreg_base;
1029       vreg_num = LIR_Opr::vreg_base;
1030     }
1031   }
1032   _virtual_register_number += 1;
1033   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1034   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1035   return vreg;
1036 }
1037 
1038 
1039 // Try to lock using register in hint
1040 LIR_Opr LIRGenerator::rlock(Value instr) {
1041   return new_register(instr->type());
1042 }
1043 
1044 
1045 // does an rlock and sets result
1046 LIR_Opr LIRGenerator::rlock_result(Value x) {
1047   LIR_Opr reg = rlock(x);
1048   set_result(x, reg);
1049   return reg;
1050 }
1051 
1052 
1053 // does an rlock and sets result
1054 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1055   LIR_Opr reg;
1056   switch (type) {
1057   case T_BYTE:
1058   case T_BOOLEAN:
1059     reg = rlock_byte(type);
1060     break;
1061   default:
1062     reg = rlock(x);
1063     break;
1064   }
1065 
1066   set_result(x, reg);
1067   return reg;
1068 }
1069 
1070 
1071 //---------------------------------------------------------------------
1072 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1073   ObjectType* oc = value->type()->as_ObjectType();
1074   if (oc) {
1075     return oc->constant_value();
1076   }
1077   return nullptr;
1078 }
1079 
1080 
1081 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1082   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1083   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1084 
1085   // no moves are created for phi functions at the begin of exception
1086   // handlers, so assign operands manually here
1087   for_each_phi_fun(block(), phi,
1088                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1089 
1090   LIR_Opr thread_reg = getThreadPointer();
1091   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1092                exceptionOopOpr());
1093   __ move_wide(LIR_OprFact::oopConst(nullptr),
1094                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1095   __ move_wide(LIR_OprFact::oopConst(nullptr),
1096                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1097 
1098   LIR_Opr result = new_register(T_OBJECT);
1099   __ move(exceptionOopOpr(), result);
1100   set_result(x, result);
1101 }
1102 
1103 
1104 //----------------------------------------------------------------------
1105 //----------------------------------------------------------------------
1106 //----------------------------------------------------------------------
1107 //----------------------------------------------------------------------
1108 //                        visitor functions
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113 
1114 void LIRGenerator::do_Phi(Phi* x) {
1115   // phi functions are never visited directly
1116   ShouldNotReachHere();
1117 }
1118 
1119 
1120 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1121 void LIRGenerator::do_Constant(Constant* x) {
1122   if (x->state_before() != nullptr) {
1123     // Any constant with a ValueStack requires patching so emit the patch here
1124     LIR_Opr reg = rlock_result(x);
1125     CodeEmitInfo* info = state_for(x, x->state_before());
1126     __ oop2reg_patch(nullptr, reg, info);
1127   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1128     if (!x->is_pinned()) {
1129       // unpinned constants are handled specially so that they can be
1130       // put into registers when they are used multiple times within a
1131       // block.  After the block completes their operand will be
1132       // cleared so that other blocks can't refer to that register.
1133       set_result(x, load_constant(x));
1134     } else {
1135       LIR_Opr res = x->operand();
1136       if (!res->is_valid()) {
1137         res = LIR_OprFact::value_type(x->type());
1138       }
1139       if (res->is_constant()) {
1140         LIR_Opr reg = rlock_result(x);
1141         __ move(res, reg);
1142       } else {
1143         set_result(x, res);
1144       }
1145     }
1146   } else {
1147     set_result(x, LIR_OprFact::value_type(x->type()));
1148   }
1149 }
1150 
1151 
1152 void LIRGenerator::do_Local(Local* x) {
1153   // operand_for_instruction has the side effect of setting the result
1154   // so there's no need to do it here.
1155   operand_for_instruction(x);
1156 }
1157 
1158 
1159 void LIRGenerator::do_Return(Return* x) {
1160   if (compilation()->env()->dtrace_method_probes()) {
1161     BasicTypeList signature;
1162     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1163     signature.append(T_METADATA); // Method*
1164     LIR_OprList* args = new LIR_OprList();
1165     args->append(getThreadPointer());
1166     LIR_Opr meth = new_register(T_METADATA);
1167     __ metadata2reg(method()->constant_encoding(), meth);
1168     args->append(meth);
1169     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1170   }
1171 
1172   if (x->type()->is_void()) {
1173     __ return_op(LIR_OprFact::illegalOpr);
1174   } else {
1175     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1176     LIRItem result(x->result(), this);
1177 
1178     result.load_item_force(reg);
1179     __ return_op(result.result());
1180   }
1181   set_no_result(x);
1182 }
1183 
1184 // Example: ref.get()
1185 // Combination of LoadField and g1 pre-write barrier
1186 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1187 
1188   const int referent_offset = java_lang_ref_Reference::referent_offset();
1189 
1190   assert(x->number_of_arguments() == 1, "wrong type");
1191 
1192   LIRItem reference(x->argument_at(0), this);
1193   reference.load_item();
1194 
1195   // need to perform the null check on the reference object
1196   CodeEmitInfo* info = nullptr;
1197   if (x->needs_null_check()) {
1198     info = state_for(x);
1199   }
1200 
1201   LIR_Opr result = rlock_result(x, T_OBJECT);
1202   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1203                  reference, LIR_OprFact::intConst(referent_offset), result,
1204                  nullptr, info);
1205 }
1206 
1207 // Example: clazz.isInstance(object)
1208 void LIRGenerator::do_isInstance(Intrinsic* x) {
1209   assert(x->number_of_arguments() == 2, "wrong type");
1210 
1211   LIRItem clazz(x->argument_at(0), this);
1212   LIRItem object(x->argument_at(1), this);
1213   clazz.load_item();
1214   object.load_item();
1215   LIR_Opr result = rlock_result(x);
1216 
1217   // need to perform null check on clazz
1218   if (x->needs_null_check()) {
1219     CodeEmitInfo* info = state_for(x);
1220     __ null_check(clazz.result(), info);
1221   }
1222 
1223   address pd_instanceof_fn = isInstance_entry();
1224   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1225                                      pd_instanceof_fn,
1226                                      x->type(),
1227                                      nullptr); // null CodeEmitInfo results in a leaf call
1228   __ move(call_result, result);
1229 }
1230 
1231 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1232   __ load_klass(obj, klass, null_check_info);
1233 }
1234 
1235 // Example: object.getClass ()
1236 void LIRGenerator::do_getClass(Intrinsic* x) {
1237   assert(x->number_of_arguments() == 1, "wrong type");
1238 
1239   LIRItem rcvr(x->argument_at(0), this);
1240   rcvr.load_item();
1241   LIR_Opr temp = new_register(T_ADDRESS);
1242   LIR_Opr result = rlock_result(x);
1243 
1244   // need to perform the null check on the rcvr
1245   CodeEmitInfo* info = nullptr;
1246   if (x->needs_null_check()) {
1247     info = state_for(x);
1248   }
1249 
1250   LIR_Opr klass = new_register(T_METADATA);
1251   load_klass(rcvr.result(), klass, info);
1252   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1253   // mirror = ((OopHandle)mirror)->resolve();
1254   access_load(IN_NATIVE, T_OBJECT,
1255               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1256 }
1257 
1258 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1259   assert(x->number_of_arguments() == 3, "wrong type");
1260   LIR_Opr result_reg = rlock_result(x);
1261 
1262   LIRItem value(x->argument_at(2), this);
1263   value.load_item();
1264 
1265   LIR_Opr klass = new_register(T_METADATA);
1266   load_klass(value.result(), klass, nullptr);
1267   LIR_Opr layout = new_register(T_INT);
1268   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1269 
1270   LabelObj* L_done = new LabelObj();
1271   LabelObj* L_array = new LabelObj();
1272 
1273   __ cmp(lir_cond_lessEqual, layout, 0);
1274   __ branch(lir_cond_lessEqual, L_array->label());
1275 
1276   // Instance case: the layout helper gives us instance size almost directly,
1277   // but we need to mask out the _lh_instance_slow_path_bit.
1278 
1279   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1280 
1281   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1282   __ logical_and(layout, mask, layout);
1283   __ convert(Bytecodes::_i2l, layout, result_reg);
1284 
1285   __ branch(lir_cond_always, L_done->label());
1286 
1287   // Array case: size is round(header + element_size*arraylength).
1288   // Since arraylength is different for every array instance, we have to
1289   // compute the whole thing at runtime.
1290 
1291   __ branch_destination(L_array->label());
1292 
1293   int round_mask = MinObjAlignmentInBytes - 1;
1294 
1295   // Figure out header sizes first.
1296   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1297   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1298 
1299   LIR_Opr header_size = new_register(T_INT);
1300   __ move(layout, header_size);
1301   LIR_Opr tmp = new_register(T_INT);
1302   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1303   __ logical_and(header_size, hsm, header_size);
1304   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1305 
1306   // Figure out the array length in bytes
1307   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1308   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1309   __ logical_and(layout, l2esm, layout);
1310 
1311   LIR_Opr length_int = new_register(T_INT);
1312   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1313 
1314 #ifdef _LP64
1315   LIR_Opr length = new_register(T_LONG);
1316   __ convert(Bytecodes::_i2l, length_int, length);
1317 #endif
1318 
1319   // Shift-left awkwardness. Normally it is just:
1320   //   __ shift_left(length, layout, length);
1321   // But C1 cannot perform shift_left with non-constant count, so we end up
1322   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1323   // longs, so we have to act on ints.
1324   LabelObj* L_shift_loop = new LabelObj();
1325   LabelObj* L_shift_exit = new LabelObj();
1326 
1327   __ branch_destination(L_shift_loop->label());
1328   __ cmp(lir_cond_equal, layout, 0);
1329   __ branch(lir_cond_equal, L_shift_exit->label());
1330 
1331 #ifdef _LP64
1332   __ shift_left(length, 1, length);
1333 #else
1334   __ shift_left(length_int, 1, length_int);
1335 #endif
1336 
1337   __ sub(layout, LIR_OprFact::intConst(1), layout);
1338 
1339   __ branch(lir_cond_always, L_shift_loop->label());
1340   __ branch_destination(L_shift_exit->label());
1341 
1342   // Mix all up, round, and push to the result.
1343 #ifdef _LP64
1344   LIR_Opr header_size_long = new_register(T_LONG);
1345   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1346   __ add(length, header_size_long, length);
1347   if (round_mask != 0) {
1348     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1349     __ logical_and(length, round_mask_opr, length);
1350   }
1351   __ move(length, result_reg);
1352 #else
1353   __ add(length_int, header_size, length_int);
1354   if (round_mask != 0) {
1355     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1356     __ logical_and(length_int, round_mask_opr, length_int);
1357   }
1358   __ convert(Bytecodes::_i2l, length_int, result_reg);
1359 #endif
1360 
1361   __ branch_destination(L_done->label());
1362 }
1363 
1364 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1365   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1366 }
1367 
1368 // Example: Thread.currentCarrierThread()
1369 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1370   do_JavaThreadField(x, JavaThread::threadObj_offset());
1371 }
1372 
1373 void LIRGenerator::do_vthread(Intrinsic* x) {
1374   do_JavaThreadField(x, JavaThread::vthread_offset());
1375 }
1376 
1377 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1378   assert(x->number_of_arguments() == 0, "wrong type");
1379   LIR_Opr temp = new_register(T_ADDRESS);
1380   LIR_Opr reg = rlock_result(x);
1381   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1382   access_load(IN_NATIVE, T_OBJECT,
1383               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1384 }
1385 
1386 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1387   assert(x->number_of_arguments() == 1, "wrong type");
1388   LIRItem receiver(x->argument_at(0), this);
1389 
1390   receiver.load_item();
1391   BasicTypeList signature;
1392   signature.append(T_OBJECT); // receiver
1393   LIR_OprList* args = new LIR_OprList();
1394   args->append(receiver.result());
1395   CodeEmitInfo* info = state_for(x, x->state());
1396   call_runtime(&signature, args,
1397                CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1398                voidType, info);
1399 
1400   set_no_result(x);
1401 }
1402 
1403 
1404 //------------------------local access--------------------------------------
1405 
1406 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1407   if (x->operand()->is_illegal()) {
1408     Constant* c = x->as_Constant();
1409     if (c != nullptr) {
1410       x->set_operand(LIR_OprFact::value_type(c->type()));
1411     } else {
1412       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1413       // allocate a virtual register for this local or phi
1414       x->set_operand(rlock(x));
1415 #ifdef ASSERT
1416       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1417 #endif
1418     }
1419   }
1420   return x->operand();
1421 }
1422 
1423 #ifdef ASSERT
1424 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1425   if (reg_num < _instruction_for_operand.length()) {
1426     return _instruction_for_operand.at(reg_num);
1427   }
1428   return nullptr;
1429 }
1430 #endif
1431 
1432 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1433   if (_vreg_flags.size_in_bits() == 0) {
1434     BitMap2D temp(100, num_vreg_flags);
1435     _vreg_flags = temp;
1436   }
1437   _vreg_flags.at_put_grow(vreg_num, f, true);
1438 }
1439 
1440 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1441   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1442     return false;
1443   }
1444   return _vreg_flags.at(vreg_num, f);
1445 }
1446 
1447 
1448 // Block local constant handling.  This code is useful for keeping
1449 // unpinned constants and constants which aren't exposed in the IR in
1450 // registers.  Unpinned Constant instructions have their operands
1451 // cleared when the block is finished so that other blocks can't end
1452 // up referring to their registers.
1453 
1454 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1455   assert(!x->is_pinned(), "only for unpinned constants");
1456   _unpinned_constants.append(x);
1457   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1458 }
1459 
1460 
1461 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1462   BasicType t = c->type();
1463   for (int i = 0; i < _constants.length(); i++) {
1464     LIR_Const* other = _constants.at(i);
1465     if (t == other->type()) {
1466       switch (t) {
1467       case T_INT:
1468       case T_FLOAT:
1469         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1470         break;
1471       case T_LONG:
1472       case T_DOUBLE:
1473         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1474         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1475         break;
1476       case T_OBJECT:
1477         if (c->as_jobject() != other->as_jobject()) continue;
1478         break;
1479       default:
1480         break;
1481       }
1482       return _reg_for_constants.at(i);
1483     }
1484   }
1485 
1486   LIR_Opr result = new_register(t);
1487   __ move((LIR_Opr)c, result);
1488   _constants.append(c);
1489   _reg_for_constants.append(result);
1490   return result;
1491 }
1492 
1493 //------------------------field access--------------------------------------
1494 
1495 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1496   assert(x->number_of_arguments() == 4, "wrong type");
1497   LIRItem obj   (x->argument_at(0), this);  // object
1498   LIRItem offset(x->argument_at(1), this);  // offset of field
1499   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1500   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1501   assert(obj.type()->tag() == objectTag, "invalid type");
1502   assert(cmp.type()->tag() == type->tag(), "invalid type");
1503   assert(val.type()->tag() == type->tag(), "invalid type");
1504 
1505   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1506                                             obj, offset, cmp, val);
1507   set_result(x, result);
1508 }
1509 
1510 // Comment copied form templateTable_i486.cpp
1511 // ----------------------------------------------------------------------------
1512 // Volatile variables demand their effects be made known to all CPU's in
1513 // order.  Store buffers on most chips allow reads & writes to reorder; the
1514 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1515 // memory barrier (i.e., it's not sufficient that the interpreter does not
1516 // reorder volatile references, the hardware also must not reorder them).
1517 //
1518 // According to the new Java Memory Model (JMM):
1519 // (1) All volatiles are serialized wrt to each other.
1520 // ALSO reads & writes act as acquire & release, so:
1521 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1522 // the read float up to before the read.  It's OK for non-volatile memory refs
1523 // that happen before the volatile read to float down below it.
1524 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1525 // that happen BEFORE the write float down to after the write.  It's OK for
1526 // non-volatile memory refs that happen after the volatile write to float up
1527 // before it.
1528 //
1529 // We only put in barriers around volatile refs (they are expensive), not
1530 // _between_ memory refs (that would require us to track the flavor of the
1531 // previous memory refs).  Requirements (2) and (3) require some barriers
1532 // before volatile stores and after volatile loads.  These nearly cover
1533 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1534 // case is placed after volatile-stores although it could just as well go
1535 // before volatile-loads.
1536 
1537 
1538 void LIRGenerator::do_StoreField(StoreField* x) {
1539   bool needs_patching = x->needs_patching();
1540   bool is_volatile = x->field()->is_volatile();
1541   BasicType field_type = x->field_type();
1542 
1543   CodeEmitInfo* info = nullptr;
1544   if (needs_patching) {
1545     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1546     info = state_for(x, x->state_before());
1547   } else if (x->needs_null_check()) {
1548     NullCheck* nc = x->explicit_null_check();
1549     if (nc == nullptr) {
1550       info = state_for(x);
1551     } else {
1552       info = state_for(nc);
1553     }
1554   }
1555 
1556   LIRItem object(x->obj(), this);
1557   LIRItem value(x->value(),  this);
1558 
1559   object.load_item();
1560 
1561   if (is_volatile || needs_patching) {
1562     // load item if field is volatile (fewer special cases for volatiles)
1563     // load item if field not initialized
1564     // load item if field not constant
1565     // because of code patching we cannot inline constants
1566     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1567       value.load_byte_item();
1568     } else  {
1569       value.load_item();
1570     }
1571   } else {
1572     value.load_for_store(field_type);
1573   }
1574 
1575   set_no_result(x);
1576 
1577 #ifndef PRODUCT
1578   if (PrintNotLoaded && needs_patching) {
1579     tty->print_cr("   ###class not loaded at store_%s bci %d",
1580                   x->is_static() ?  "static" : "field", x->printable_bci());
1581   }
1582 #endif
1583 
1584   if (x->needs_null_check() &&
1585       (needs_patching ||
1586        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1587     // Emit an explicit null check because the offset is too large.
1588     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1589     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1590     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1591   }
1592 
1593   DecoratorSet decorators = IN_HEAP;
1594   if (is_volatile) {
1595     decorators |= MO_SEQ_CST;
1596   }
1597   if (needs_patching) {
1598     decorators |= C1_NEEDS_PATCHING;
1599   }
1600 
1601   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1602                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1603 }
1604 
1605 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1606   assert(x->is_pinned(),"");
1607   bool needs_range_check = x->compute_needs_range_check();
1608   bool use_length = x->length() != nullptr;
1609   bool obj_store = is_reference_type(x->elt_type());
1610   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1611                                          !get_jobject_constant(x->value())->is_null_object() ||
1612                                          x->should_profile());
1613 
1614   LIRItem array(x->array(), this);
1615   LIRItem index(x->index(), this);
1616   LIRItem value(x->value(), this);
1617   LIRItem length(this);
1618 
1619   array.load_item();
1620   index.load_nonconstant();
1621 
1622   if (use_length && needs_range_check) {
1623     length.set_instruction(x->length());
1624     length.load_item();
1625 
1626   }
1627   if (needs_store_check || x->check_boolean()) {
1628     value.load_item();
1629   } else {
1630     value.load_for_store(x->elt_type());
1631   }
1632 
1633   set_no_result(x);
1634 
1635   // the CodeEmitInfo must be duplicated for each different
1636   // LIR-instruction because spilling can occur anywhere between two
1637   // instructions and so the debug information must be different
1638   CodeEmitInfo* range_check_info = state_for(x);
1639   CodeEmitInfo* null_check_info = nullptr;
1640   if (x->needs_null_check()) {
1641     null_check_info = new CodeEmitInfo(range_check_info);
1642   }
1643 
1644   if (needs_range_check) {
1645     if (use_length) {
1646       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1647       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1648     } else {
1649       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1650       // range_check also does the null check
1651       null_check_info = nullptr;
1652     }
1653   }
1654 
1655   if (GenerateArrayStoreCheck && needs_store_check) {
1656     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1657     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1658   }
1659 
1660   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1661   if (x->check_boolean()) {
1662     decorators |= C1_MASK_BOOLEAN;
1663   }
1664 
1665   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1666                   nullptr, null_check_info);
1667 }
1668 
1669 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1670                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1671                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1672   decorators |= ACCESS_READ;
1673   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1674   if (access.is_raw()) {
1675     _barrier_set->BarrierSetC1::load_at(access, result);
1676   } else {
1677     _barrier_set->load_at(access, result);
1678   }
1679 }
1680 
1681 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1682                                LIR_Opr addr, LIR_Opr result) {
1683   decorators |= ACCESS_READ;
1684   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1685   access.set_resolved_addr(addr);
1686   if (access.is_raw()) {
1687     _barrier_set->BarrierSetC1::load(access, result);
1688   } else {
1689     _barrier_set->load(access, result);
1690   }
1691 }
1692 
1693 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1694                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1695                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1696   decorators |= ACCESS_WRITE;
1697   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1698   if (access.is_raw()) {
1699     _barrier_set->BarrierSetC1::store_at(access, value);
1700   } else {
1701     _barrier_set->store_at(access, value);
1702   }
1703 }
1704 
1705 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1706                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1707   decorators |= ACCESS_READ;
1708   decorators |= ACCESS_WRITE;
1709   // Atomic operations are SEQ_CST by default
1710   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1711   LIRAccess access(this, decorators, base, offset, type);
1712   if (access.is_raw()) {
1713     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1714   } else {
1715     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1716   }
1717 }
1718 
1719 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1720                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1721   decorators |= ACCESS_READ;
1722   decorators |= ACCESS_WRITE;
1723   // Atomic operations are SEQ_CST by default
1724   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1725   LIRAccess access(this, decorators, base, offset, type);
1726   if (access.is_raw()) {
1727     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1728   } else {
1729     return _barrier_set->atomic_xchg_at(access, value);
1730   }
1731 }
1732 
1733 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1734                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1735   decorators |= ACCESS_READ;
1736   decorators |= ACCESS_WRITE;
1737   // Atomic operations are SEQ_CST by default
1738   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1739   LIRAccess access(this, decorators, base, offset, type);
1740   if (access.is_raw()) {
1741     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1742   } else {
1743     return _barrier_set->atomic_add_at(access, value);
1744   }
1745 }
1746 
1747 void LIRGenerator::do_LoadField(LoadField* x) {
1748   bool needs_patching = x->needs_patching();
1749   bool is_volatile = x->field()->is_volatile();
1750   BasicType field_type = x->field_type();
1751 
1752   CodeEmitInfo* info = nullptr;
1753   if (needs_patching) {
1754     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1755     info = state_for(x, x->state_before());
1756   } else if (x->needs_null_check()) {
1757     NullCheck* nc = x->explicit_null_check();
1758     if (nc == nullptr) {
1759       info = state_for(x);
1760     } else {
1761       info = state_for(nc);
1762     }
1763   }
1764 
1765   LIRItem object(x->obj(), this);
1766 
1767   object.load_item();
1768 
1769 #ifndef PRODUCT
1770   if (PrintNotLoaded && needs_patching) {
1771     tty->print_cr("   ###class not loaded at load_%s bci %d",
1772                   x->is_static() ?  "static" : "field", x->printable_bci());
1773   }
1774 #endif
1775 
1776   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1777   if (x->needs_null_check() &&
1778       (needs_patching ||
1779        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1780        stress_deopt)) {
1781     LIR_Opr obj = object.result();
1782     if (stress_deopt) {
1783       obj = new_register(T_OBJECT);
1784       __ move(LIR_OprFact::oopConst(nullptr), obj);
1785     }
1786     // Emit an explicit null check because the offset is too large.
1787     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1788     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1789     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1790   }
1791 
1792   DecoratorSet decorators = IN_HEAP;
1793   if (is_volatile) {
1794     decorators |= MO_SEQ_CST;
1795   }
1796   if (needs_patching) {
1797     decorators |= C1_NEEDS_PATCHING;
1798   }
1799 
1800   LIR_Opr result = rlock_result(x, field_type);
1801   access_load_at(decorators, field_type,
1802                  object, LIR_OprFact::intConst(x->offset()), result,
1803                  info ? new CodeEmitInfo(info) : nullptr, info);
1804 }
1805 
1806 // int/long jdk.internal.util.Preconditions.checkIndex
1807 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1808   assert(x->number_of_arguments() == 3, "wrong type");
1809   LIRItem index(x->argument_at(0), this);
1810   LIRItem length(x->argument_at(1), this);
1811   LIRItem oobef(x->argument_at(2), this);
1812 
1813   index.load_item();
1814   length.load_item();
1815   oobef.load_item();
1816 
1817   LIR_Opr result = rlock_result(x);
1818   // x->state() is created from copy_state_for_exception, it does not contains arguments
1819   // we should prepare them before entering into interpreter mode due to deoptimization.
1820   ValueStack* state = x->state();
1821   for (int i = 0; i < x->number_of_arguments(); i++) {
1822     Value arg = x->argument_at(i);
1823     state->push(arg->type(), arg);
1824   }
1825   CodeEmitInfo* info = state_for(x, state);
1826 
1827   LIR_Opr len = length.result();
1828   LIR_Opr zero;
1829   if (type == T_INT) {
1830     zero = LIR_OprFact::intConst(0);
1831     if (length.result()->is_constant()){
1832       len = LIR_OprFact::intConst(length.result()->as_jint());
1833     }
1834   } else {
1835     assert(type == T_LONG, "sanity check");
1836     zero = LIR_OprFact::longConst(0);
1837     if (length.result()->is_constant()){
1838       len = LIR_OprFact::longConst(length.result()->as_jlong());
1839     }
1840   }
1841   // C1 can not handle the case that comparing index with constant value while condition
1842   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1843   LIR_Opr zero_reg = new_register(type);
1844   __ move(zero, zero_reg);
1845 #if defined(X86) && !defined(_LP64)
1846   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1847   LIR_Opr index_copy = new_register(index.type());
1848   // index >= 0
1849   __ move(index.result(), index_copy);
1850   __ cmp(lir_cond_less, index_copy, zero_reg);
1851   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1852                                                     Deoptimization::Action_make_not_entrant));
1853   // index < length
1854   __ move(index.result(), index_copy);
1855   __ cmp(lir_cond_greaterEqual, index_copy, len);
1856   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1857                                                             Deoptimization::Action_make_not_entrant));
1858 #else
1859   // index >= 0
1860   __ cmp(lir_cond_less, index.result(), zero_reg);
1861   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1862                                                     Deoptimization::Action_make_not_entrant));
1863   // index < length
1864   __ cmp(lir_cond_greaterEqual, index.result(), len);
1865   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1866                                                             Deoptimization::Action_make_not_entrant));
1867 #endif
1868   __ move(index.result(), result);
1869 }
1870 
1871 //------------------------array access--------------------------------------
1872 
1873 
1874 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1875   LIRItem array(x->array(), this);
1876   array.load_item();
1877   LIR_Opr reg = rlock_result(x);
1878 
1879   CodeEmitInfo* info = nullptr;
1880   if (x->needs_null_check()) {
1881     NullCheck* nc = x->explicit_null_check();
1882     if (nc == nullptr) {
1883       info = state_for(x);
1884     } else {
1885       info = state_for(nc);
1886     }
1887     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1888       LIR_Opr obj = new_register(T_OBJECT);
1889       __ move(LIR_OprFact::oopConst(nullptr), obj);
1890       __ null_check(obj, new CodeEmitInfo(info));
1891     }
1892   }
1893   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1894 }
1895 
1896 
1897 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1898   bool use_length = x->length() != nullptr;
1899   LIRItem array(x->array(), this);
1900   LIRItem index(x->index(), this);
1901   LIRItem length(this);
1902   bool needs_range_check = x->compute_needs_range_check();
1903 
1904   if (use_length && needs_range_check) {
1905     length.set_instruction(x->length());
1906     length.load_item();
1907   }
1908 
1909   array.load_item();
1910   if (index.is_constant() && can_inline_as_constant(x->index())) {
1911     // let it be a constant
1912     index.dont_load_item();
1913   } else {
1914     index.load_item();
1915   }
1916 
1917   CodeEmitInfo* range_check_info = state_for(x);
1918   CodeEmitInfo* null_check_info = nullptr;
1919   if (x->needs_null_check()) {
1920     NullCheck* nc = x->explicit_null_check();
1921     if (nc != nullptr) {
1922       null_check_info = state_for(nc);
1923     } else {
1924       null_check_info = range_check_info;
1925     }
1926     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1927       LIR_Opr obj = new_register(T_OBJECT);
1928       __ move(LIR_OprFact::oopConst(nullptr), obj);
1929       __ null_check(obj, new CodeEmitInfo(null_check_info));
1930     }
1931   }
1932 
1933   if (needs_range_check) {
1934     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1935       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1936     } else if (use_length) {
1937       // TODO: use a (modified) version of array_range_check that does not require a
1938       //       constant length to be loaded to a register
1939       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1940       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1941     } else {
1942       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1943       // The range check performs the null check, so clear it out for the load
1944       null_check_info = nullptr;
1945     }
1946   }
1947 
1948   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1949 
1950   LIR_Opr result = rlock_result(x, x->elt_type());
1951   access_load_at(decorators, x->elt_type(),
1952                  array, index.result(), result,
1953                  nullptr, null_check_info);
1954 }
1955 
1956 
1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
1958   if (x->can_trap()) {
1959     LIRItem value(x->obj(), this);
1960     value.load_item();
1961     CodeEmitInfo* info = state_for(x);
1962     __ null_check(value.result(), info);
1963   }
1964 }
1965 
1966 
1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
1968   LIRItem value(x->obj(), this);
1969   value.load_item();
1970   // the result is the same as from the node we are casting
1971   set_result(x, value.result());
1972 }
1973 
1974 
1975 void LIRGenerator::do_Throw(Throw* x) {
1976   LIRItem exception(x->exception(), this);
1977   exception.load_item();
1978   set_no_result(x);
1979   LIR_Opr exception_opr = exception.result();
1980   CodeEmitInfo* info = state_for(x, x->state());
1981 
1982 #ifndef PRODUCT
1983   if (PrintC1Statistics) {
1984     increment_counter(Runtime1::throw_count_address(), T_INT);
1985   }
1986 #endif
1987 
1988   // check if the instruction has an xhandler in any of the nested scopes
1989   bool unwind = false;
1990   if (info->exception_handlers()->length() == 0) {
1991     // this throw is not inside an xhandler
1992     unwind = true;
1993   } else {
1994     // get some idea of the throw type
1995     bool type_is_exact = true;
1996     ciType* throw_type = x->exception()->exact_type();
1997     if (throw_type == nullptr) {
1998       type_is_exact = false;
1999       throw_type = x->exception()->declared_type();
2000     }
2001     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2002       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2003       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2004     }
2005   }
2006 
2007   // do null check before moving exception oop into fixed register
2008   // to avoid a fixed interval with an oop during the null check.
2009   // Use a copy of the CodeEmitInfo because debug information is
2010   // different for null_check and throw.
2011   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2012     // if the exception object wasn't created using new then it might be null.
2013     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2014   }
2015 
2016   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2017     // we need to go through the exception lookup path to get JVMTI
2018     // notification done
2019     unwind = false;
2020   }
2021 
2022   // move exception oop into fixed register
2023   __ move(exception_opr, exceptionOopOpr());
2024 
2025   if (unwind) {
2026     __ unwind_exception(exceptionOopOpr());
2027   } else {
2028     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2029   }
2030 }
2031 
2032 
2033 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2034   BasicType type = x->basic_type();
2035   LIRItem src(x->object(), this);
2036   LIRItem off(x->offset(), this);
2037 
2038   off.load_item();
2039   src.load_item();
2040 
2041   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2042 
2043   if (x->is_volatile()) {
2044     decorators |= MO_SEQ_CST;
2045   }
2046   if (type == T_BOOLEAN) {
2047     decorators |= C1_MASK_BOOLEAN;
2048   }
2049   if (is_reference_type(type)) {
2050     decorators |= ON_UNKNOWN_OOP_REF;
2051   }
2052 
2053   LIR_Opr result = rlock_result(x, type);
2054   if (!x->is_raw()) {
2055     access_load_at(decorators, type, src, off.result(), result);
2056   } else {
2057     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2058     // It reads the value from [src + offset] directly.
2059 #ifdef _LP64
2060     LIR_Opr offset = new_register(T_LONG);
2061     __ convert(Bytecodes::_i2l, off.result(), offset);
2062 #else
2063     LIR_Opr offset = off.result();
2064 #endif
2065     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2066     if (is_reference_type(type)) {
2067       __ move_wide(addr, result);
2068     } else {
2069       __ move(addr, result);
2070     }
2071   }
2072 }
2073 
2074 
2075 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2076   BasicType type = x->basic_type();
2077   LIRItem src(x->object(), this);
2078   LIRItem off(x->offset(), this);
2079   LIRItem data(x->value(), this);
2080 
2081   src.load_item();
2082   if (type == T_BOOLEAN || type == T_BYTE) {
2083     data.load_byte_item();
2084   } else {
2085     data.load_item();
2086   }
2087   off.load_item();
2088 
2089   set_no_result(x);
2090 
2091   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2092   if (is_reference_type(type)) {
2093     decorators |= ON_UNKNOWN_OOP_REF;
2094   }
2095   if (x->is_volatile()) {
2096     decorators |= MO_SEQ_CST;
2097   }
2098   access_store_at(decorators, type, src, off.result(), data.result());
2099 }
2100 
2101 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2102   BasicType type = x->basic_type();
2103   LIRItem src(x->object(), this);
2104   LIRItem off(x->offset(), this);
2105   LIRItem value(x->value(), this);
2106 
2107   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2108 
2109   if (is_reference_type(type)) {
2110     decorators |= ON_UNKNOWN_OOP_REF;
2111   }
2112 
2113   LIR_Opr result;
2114   if (x->is_add()) {
2115     result = access_atomic_add_at(decorators, type, src, off, value);
2116   } else {
2117     result = access_atomic_xchg_at(decorators, type, src, off, value);
2118   }
2119   set_result(x, result);
2120 }
2121 
2122 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2123   int lng = x->length();
2124 
2125   for (int i = 0; i < lng; i++) {
2126     C1SwitchRange* one_range = x->at(i);
2127     int low_key = one_range->low_key();
2128     int high_key = one_range->high_key();
2129     BlockBegin* dest = one_range->sux();
2130     if (low_key == high_key) {
2131       __ cmp(lir_cond_equal, value, low_key);
2132       __ branch(lir_cond_equal, dest);
2133     } else if (high_key - low_key == 1) {
2134       __ cmp(lir_cond_equal, value, low_key);
2135       __ branch(lir_cond_equal, dest);
2136       __ cmp(lir_cond_equal, value, high_key);
2137       __ branch(lir_cond_equal, dest);
2138     } else {
2139       LabelObj* L = new LabelObj();
2140       __ cmp(lir_cond_less, value, low_key);
2141       __ branch(lir_cond_less, L->label());
2142       __ cmp(lir_cond_lessEqual, value, high_key);
2143       __ branch(lir_cond_lessEqual, dest);
2144       __ branch_destination(L->label());
2145     }
2146   }
2147   __ jump(default_sux);
2148 }
2149 
2150 
2151 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2152   SwitchRangeList* res = new SwitchRangeList();
2153   int len = x->length();
2154   if (len > 0) {
2155     BlockBegin* sux = x->sux_at(0);
2156     int low = x->lo_key();
2157     BlockBegin* default_sux = x->default_sux();
2158     C1SwitchRange* range = new C1SwitchRange(low, sux);
2159     for (int i = 0; i < len; i++) {
2160       int key = low + i;
2161       BlockBegin* new_sux = x->sux_at(i);
2162       if (sux == new_sux) {
2163         // still in same range
2164         range->set_high_key(key);
2165       } else {
2166         // skip tests which explicitly dispatch to the default
2167         if (sux != default_sux) {
2168           res->append(range);
2169         }
2170         range = new C1SwitchRange(key, new_sux);
2171       }
2172       sux = new_sux;
2173     }
2174     if (res->length() == 0 || res->last() != range)  res->append(range);
2175   }
2176   return res;
2177 }
2178 
2179 
2180 // we expect the keys to be sorted by increasing value
2181 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2182   SwitchRangeList* res = new SwitchRangeList();
2183   int len = x->length();
2184   if (len > 0) {
2185     BlockBegin* default_sux = x->default_sux();
2186     int key = x->key_at(0);
2187     BlockBegin* sux = x->sux_at(0);
2188     C1SwitchRange* range = new C1SwitchRange(key, sux);
2189     for (int i = 1; i < len; i++) {
2190       int new_key = x->key_at(i);
2191       BlockBegin* new_sux = x->sux_at(i);
2192       if (key+1 == new_key && sux == new_sux) {
2193         // still in same range
2194         range->set_high_key(new_key);
2195       } else {
2196         // skip tests which explicitly dispatch to the default
2197         if (range->sux() != default_sux) {
2198           res->append(range);
2199         }
2200         range = new C1SwitchRange(new_key, new_sux);
2201       }
2202       key = new_key;
2203       sux = new_sux;
2204     }
2205     if (res->length() == 0 || res->last() != range)  res->append(range);
2206   }
2207   return res;
2208 }
2209 
2210 
2211 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2212   LIRItem tag(x->tag(), this);
2213   tag.load_item();
2214   set_no_result(x);
2215 
2216   if (x->is_safepoint()) {
2217     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2218   }
2219 
2220   // move values into phi locations
2221   move_to_phi(x->state());
2222 
2223   int lo_key = x->lo_key();
2224   int len = x->length();
2225   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2226   LIR_Opr value = tag.result();
2227 
2228   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2229     ciMethod* method = x->state()->scope()->method();
2230     ciMethodData* md = method->method_data_or_null();
2231     assert(md != nullptr, "Sanity");
2232     ciProfileData* data = md->bci_to_data(x->state()->bci());
2233     assert(data != nullptr, "must have profiling data");
2234     assert(data->is_MultiBranchData(), "bad profile data?");
2235     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2236     LIR_Opr md_reg = new_register(T_METADATA);
2237     __ metadata2reg(md->constant_encoding(), md_reg);
2238     LIR_Opr data_offset_reg = new_pointer_register();
2239     LIR_Opr tmp_reg = new_pointer_register();
2240 
2241     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2242     for (int i = 0; i < len; i++) {
2243       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2244       __ cmp(lir_cond_equal, value, i + lo_key);
2245       __ move(data_offset_reg, tmp_reg);
2246       __ cmove(lir_cond_equal,
2247                LIR_OprFact::intptrConst(count_offset),
2248                tmp_reg,
2249                data_offset_reg, T_INT);
2250     }
2251 
2252     LIR_Opr data_reg = new_pointer_register();
2253     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2254     __ move(data_addr, data_reg);
2255     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2256     __ move(data_reg, data_addr);
2257   }
2258 
2259   if (UseTableRanges) {
2260     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2261   } else {
2262     for (int i = 0; i < len; i++) {
2263       __ cmp(lir_cond_equal, value, i + lo_key);
2264       __ branch(lir_cond_equal, x->sux_at(i));
2265     }
2266     __ jump(x->default_sux());
2267   }
2268 }
2269 
2270 
2271 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2272   LIRItem tag(x->tag(), this);
2273   tag.load_item();
2274   set_no_result(x);
2275 
2276   if (x->is_safepoint()) {
2277     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2278   }
2279 
2280   // move values into phi locations
2281   move_to_phi(x->state());
2282 
2283   LIR_Opr value = tag.result();
2284   int len = x->length();
2285 
2286   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2287     ciMethod* method = x->state()->scope()->method();
2288     ciMethodData* md = method->method_data_or_null();
2289     assert(md != nullptr, "Sanity");
2290     ciProfileData* data = md->bci_to_data(x->state()->bci());
2291     assert(data != nullptr, "must have profiling data");
2292     assert(data->is_MultiBranchData(), "bad profile data?");
2293     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2294     LIR_Opr md_reg = new_register(T_METADATA);
2295     __ metadata2reg(md->constant_encoding(), md_reg);
2296     LIR_Opr data_offset_reg = new_pointer_register();
2297     LIR_Opr tmp_reg = new_pointer_register();
2298 
2299     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2300     for (int i = 0; i < len; i++) {
2301       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2302       __ cmp(lir_cond_equal, value, x->key_at(i));
2303       __ move(data_offset_reg, tmp_reg);
2304       __ cmove(lir_cond_equal,
2305                LIR_OprFact::intptrConst(count_offset),
2306                tmp_reg,
2307                data_offset_reg, T_INT);
2308     }
2309 
2310     LIR_Opr data_reg = new_pointer_register();
2311     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2312     __ move(data_addr, data_reg);
2313     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2314     __ move(data_reg, data_addr);
2315   }
2316 
2317   if (UseTableRanges) {
2318     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2319   } else {
2320     int len = x->length();
2321     for (int i = 0; i < len; i++) {
2322       __ cmp(lir_cond_equal, value, x->key_at(i));
2323       __ branch(lir_cond_equal, x->sux_at(i));
2324     }
2325     __ jump(x->default_sux());
2326   }
2327 }
2328 
2329 
2330 void LIRGenerator::do_Goto(Goto* x) {
2331   set_no_result(x);
2332 
2333   if (block()->next()->as_OsrEntry()) {
2334     // need to free up storage used for OSR entry point
2335     LIR_Opr osrBuffer = block()->next()->operand();
2336     BasicTypeList signature;
2337     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2338     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2339     __ move(osrBuffer, cc->args()->at(0));
2340     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2341                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2342   }
2343 
2344   if (x->is_safepoint()) {
2345     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2346 
2347     // increment backedge counter if needed
2348     CodeEmitInfo* info = state_for(x, state);
2349     increment_backedge_counter(info, x->profiled_bci());
2350     CodeEmitInfo* safepoint_info = state_for(x, state);
2351     __ safepoint(safepoint_poll_register(), safepoint_info);
2352   }
2353 
2354   // Gotos can be folded Ifs, handle this case.
2355   if (x->should_profile()) {
2356     ciMethod* method = x->profiled_method();
2357     assert(method != nullptr, "method should be set if branch is profiled");
2358     ciMethodData* md = method->method_data_or_null();
2359     assert(md != nullptr, "Sanity");
2360     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2361     assert(data != nullptr, "must have profiling data");
2362     int offset;
2363     if (x->direction() == Goto::taken) {
2364       assert(data->is_BranchData(), "need BranchData for two-way branches");
2365       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2366     } else if (x->direction() == Goto::not_taken) {
2367       assert(data->is_BranchData(), "need BranchData for two-way branches");
2368       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2369     } else {
2370       assert(data->is_JumpData(), "need JumpData for branches");
2371       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2372     }
2373     LIR_Opr md_reg = new_register(T_METADATA);
2374     __ metadata2reg(md->constant_encoding(), md_reg);
2375 
2376     increment_counter(new LIR_Address(md_reg, offset,
2377                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2378   }
2379 
2380   // emit phi-instruction move after safepoint since this simplifies
2381   // describing the state as the safepoint.
2382   move_to_phi(x->state());
2383 
2384   __ jump(x->default_sux());
2385 }
2386 
2387 /**
2388  * Emit profiling code if needed for arguments, parameters, return value types
2389  *
2390  * @param md                    MDO the code will update at runtime
2391  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2392  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2393  * @param profiled_k            current profile
2394  * @param obj                   IR node for the object to be profiled
2395  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2396  *                              Set once we find an update to make and use for next ones.
2397  * @param not_null              true if we know obj cannot be null
2398  * @param signature_at_call_k   signature at call for obj
2399  * @param callee_signature_k    signature of callee for obj
2400  *                              at call and callee signatures differ at method handle call
2401  * @return                      the only klass we know will ever be seen at this profile point
2402  */
2403 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2404                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2405                                     ciKlass* callee_signature_k) {
2406   ciKlass* result = nullptr;
2407   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2408   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2409   // known not to be null or null bit already set and already set to
2410   // unknown: nothing we can do to improve profiling
2411   if (!do_null && !do_update) {
2412     return result;
2413   }
2414 
2415   ciKlass* exact_klass = nullptr;
2416   Compilation* comp = Compilation::current();
2417   if (do_update) {
2418     // try to find exact type, using CHA if possible, so that loading
2419     // the klass from the object can be avoided
2420     ciType* type = obj->exact_type();
2421     if (type == nullptr) {
2422       type = obj->declared_type();
2423       type = comp->cha_exact_type(type);
2424     }
2425     assert(type == nullptr || type->is_klass(), "type should be class");
2426     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2427 
2428     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2429   }
2430 
2431   if (!do_null && !do_update) {
2432     return result;
2433   }
2434 
2435   ciKlass* exact_signature_k = nullptr;
2436   if (do_update) {
2437     // Is the type from the signature exact (the only one possible)?
2438     exact_signature_k = signature_at_call_k->exact_klass();
2439     if (exact_signature_k == nullptr) {
2440       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2441     } else {
2442       result = exact_signature_k;
2443       // Known statically. No need to emit any code: prevent
2444       // LIR_Assembler::emit_profile_type() from emitting useless code
2445       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2446     }
2447     // exact_klass and exact_signature_k can be both non null but
2448     // different if exact_klass is loaded after the ciObject for
2449     // exact_signature_k is created.
2450     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2451       // sometimes the type of the signature is better than the best type
2452       // the compiler has
2453       exact_klass = exact_signature_k;
2454     }
2455     if (callee_signature_k != nullptr &&
2456         callee_signature_k != signature_at_call_k) {
2457       ciKlass* improved_klass = callee_signature_k->exact_klass();
2458       if (improved_klass == nullptr) {
2459         improved_klass = comp->cha_exact_type(callee_signature_k);
2460       }
2461       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2462         exact_klass = exact_signature_k;
2463       }
2464     }
2465     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2466   }
2467 
2468   if (!do_null && !do_update) {
2469     return result;
2470   }
2471 
2472   if (mdp == LIR_OprFact::illegalOpr) {
2473     mdp = new_register(T_METADATA);
2474     __ metadata2reg(md->constant_encoding(), mdp);
2475     if (md_base_offset != 0) {
2476       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2477       mdp = new_pointer_register();
2478       __ leal(LIR_OprFact::address(base_type_address), mdp);
2479     }
2480   }
2481   LIRItem value(obj, this);
2482   value.load_item();
2483   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2484                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2485   return result;
2486 }
2487 
2488 // profile parameters on entry to the root of the compilation
2489 void LIRGenerator::profile_parameters(Base* x) {
2490   if (compilation()->profile_parameters()) {
2491     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2492     ciMethodData* md = scope()->method()->method_data_or_null();
2493     assert(md != nullptr, "Sanity");
2494 
2495     if (md->parameters_type_data() != nullptr) {
2496       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2497       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2498       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2499       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2500         LIR_Opr src = args->at(i);
2501         assert(!src->is_illegal(), "check");
2502         BasicType t = src->type();
2503         if (is_reference_type(t)) {
2504           intptr_t profiled_k = parameters->type(j);
2505           Local* local = x->state()->local_at(java_index)->as_Local();
2506           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2507                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2508                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2509           // If the profile is known statically set it once for all and do not emit any code
2510           if (exact != nullptr) {
2511             md->set_parameter_type(j, exact);
2512           }
2513           j++;
2514         }
2515         java_index += type2size[t];
2516       }
2517     }
2518   }
2519 }
2520 
2521 void LIRGenerator::do_Base(Base* x) {
2522   __ std_entry(LIR_OprFact::illegalOpr);
2523   // Emit moves from physical registers / stack slots to virtual registers
2524   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2525   IRScope* irScope = compilation()->hir()->top_scope();
2526   int java_index = 0;
2527   for (int i = 0; i < args->length(); i++) {
2528     LIR_Opr src = args->at(i);
2529     assert(!src->is_illegal(), "check");
2530     BasicType t = src->type();
2531 
2532     // Types which are smaller than int are passed as int, so
2533     // correct the type which passed.
2534     switch (t) {
2535     case T_BYTE:
2536     case T_BOOLEAN:
2537     case T_SHORT:
2538     case T_CHAR:
2539       t = T_INT;
2540       break;
2541     default:
2542       break;
2543     }
2544 
2545     LIR_Opr dest = new_register(t);
2546     __ move(src, dest);
2547 
2548     // Assign new location to Local instruction for this local
2549     Local* local = x->state()->local_at(java_index)->as_Local();
2550     assert(local != nullptr, "Locals for incoming arguments must have been created");
2551 #ifndef __SOFTFP__
2552     // The java calling convention passes double as long and float as int.
2553     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2554 #endif // __SOFTFP__
2555     local->set_operand(dest);
2556 #ifdef ASSERT
2557     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2558 #endif
2559     java_index += type2size[t];
2560   }
2561 
2562   if (compilation()->env()->dtrace_method_probes()) {
2563     BasicTypeList signature;
2564     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2565     signature.append(T_METADATA); // Method*
2566     LIR_OprList* args = new LIR_OprList();
2567     args->append(getThreadPointer());
2568     LIR_Opr meth = new_register(T_METADATA);
2569     __ metadata2reg(method()->constant_encoding(), meth);
2570     args->append(meth);
2571     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2572   }
2573 
2574   if (method()->is_synchronized()) {
2575     LIR_Opr obj;
2576     if (method()->is_static()) {
2577       obj = new_register(T_OBJECT);
2578       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2579     } else {
2580       Local* receiver = x->state()->local_at(0)->as_Local();
2581       assert(receiver != nullptr, "must already exist");
2582       obj = receiver->operand();
2583     }
2584     assert(obj->is_valid(), "must be valid");
2585 
2586     if (method()->is_synchronized()) {
2587       LIR_Opr lock = syncLockOpr();
2588       __ load_stack_address_monitor(0, lock);
2589 
2590       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2591       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2592 
2593       // receiver is guaranteed non-null so don't need CodeEmitInfo
2594       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2595     }
2596   }
2597   // increment invocation counters if needed
2598   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2599     profile_parameters(x);
2600     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2601     increment_invocation_counter(info);
2602   }
2603 
2604   // all blocks with a successor must end with an unconditional jump
2605   // to the successor even if they are consecutive
2606   __ jump(x->default_sux());
2607 }
2608 
2609 
2610 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2611   // construct our frame and model the production of incoming pointer
2612   // to the OSR buffer.
2613   __ osr_entry(LIR_Assembler::osrBufferPointer());
2614   LIR_Opr result = rlock_result(x);
2615   __ move(LIR_Assembler::osrBufferPointer(), result);
2616 }
2617 
2618 
2619 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2620   assert(args->length() == arg_list->length(),
2621          "args=%d, arg_list=%d", args->length(), arg_list->length());
2622   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2623     LIRItem* param = args->at(i);
2624     LIR_Opr loc = arg_list->at(i);
2625     if (loc->is_register()) {
2626       param->load_item_force(loc);
2627     } else {
2628       LIR_Address* addr = loc->as_address_ptr();
2629       param->load_for_store(addr->type());
2630       if (addr->type() == T_OBJECT) {
2631         __ move_wide(param->result(), addr);
2632       } else
2633         __ move(param->result(), addr);
2634     }
2635   }
2636 
2637   if (x->has_receiver()) {
2638     LIRItem* receiver = args->at(0);
2639     LIR_Opr loc = arg_list->at(0);
2640     if (loc->is_register()) {
2641       receiver->load_item_force(loc);
2642     } else {
2643       assert(loc->is_address(), "just checking");
2644       receiver->load_for_store(T_OBJECT);
2645       __ move_wide(receiver->result(), loc->as_address_ptr());
2646     }
2647   }
2648 }
2649 
2650 
2651 // Visits all arguments, returns appropriate items without loading them
2652 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2653   LIRItemList* argument_items = new LIRItemList();
2654   if (x->has_receiver()) {
2655     LIRItem* receiver = new LIRItem(x->receiver(), this);
2656     argument_items->append(receiver);
2657   }
2658   for (int i = 0; i < x->number_of_arguments(); i++) {
2659     LIRItem* param = new LIRItem(x->argument_at(i), this);
2660     argument_items->append(param);
2661   }
2662   return argument_items;
2663 }
2664 
2665 
2666 // The invoke with receiver has following phases:
2667 //   a) traverse and load/lock receiver;
2668 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2669 //   c) push receiver on stack
2670 //   d) load each of the items and push on stack
2671 //   e) unlock receiver
2672 //   f) move receiver into receiver-register %o0
2673 //   g) lock result registers and emit call operation
2674 //
2675 // Before issuing a call, we must spill-save all values on stack
2676 // that are in caller-save register. "spill-save" moves those registers
2677 // either in a free callee-save register or spills them if no free
2678 // callee save register is available.
2679 //
2680 // The problem is where to invoke spill-save.
2681 // - if invoked between e) and f), we may lock callee save
2682 //   register in "spill-save" that destroys the receiver register
2683 //   before f) is executed
2684 // - if we rearrange f) to be earlier (by loading %o0) it
2685 //   may destroy a value on the stack that is currently in %o0
2686 //   and is waiting to be spilled
2687 // - if we keep the receiver locked while doing spill-save,
2688 //   we cannot spill it as it is spill-locked
2689 //
2690 void LIRGenerator::do_Invoke(Invoke* x) {
2691   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2692 
2693   LIR_OprList* arg_list = cc->args();
2694   LIRItemList* args = invoke_visit_arguments(x);
2695   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2696 
2697   // setup result register
2698   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2699   if (x->type() != voidType) {
2700     result_register = result_register_for(x->type());
2701   }
2702 
2703   CodeEmitInfo* info = state_for(x, x->state());
2704 
2705   invoke_load_arguments(x, args, arg_list);
2706 
2707   if (x->has_receiver()) {
2708     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2709     receiver = args->at(0)->result();
2710   }
2711 
2712   // emit invoke code
2713   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2714 
2715   // JSR 292
2716   // Preserve the SP over MethodHandle call sites, if needed.
2717   ciMethod* target = x->target();
2718   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2719                                   target->is_method_handle_intrinsic() ||
2720                                   target->is_compiled_lambda_form());
2721   if (is_method_handle_invoke) {
2722     info->set_is_method_handle_invoke(true);
2723     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2724         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2725     }
2726   }
2727 
2728   switch (x->code()) {
2729     case Bytecodes::_invokestatic:
2730       __ call_static(target, result_register,
2731                      SharedRuntime::get_resolve_static_call_stub(),
2732                      arg_list, info);
2733       break;
2734     case Bytecodes::_invokespecial:
2735     case Bytecodes::_invokevirtual:
2736     case Bytecodes::_invokeinterface:
2737       // for loaded and final (method or class) target we still produce an inline cache,
2738       // in order to be able to call mixed mode
2739       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2740         __ call_opt_virtual(target, receiver, result_register,
2741                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2742                             arg_list, info);
2743       } else {
2744         __ call_icvirtual(target, receiver, result_register,
2745                           SharedRuntime::get_resolve_virtual_call_stub(),
2746                           arg_list, info);
2747       }
2748       break;
2749     case Bytecodes::_invokedynamic: {
2750       __ call_dynamic(target, receiver, result_register,
2751                       SharedRuntime::get_resolve_static_call_stub(),
2752                       arg_list, info);
2753       break;
2754     }
2755     default:
2756       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2757       break;
2758   }
2759 
2760   // JSR 292
2761   // Restore the SP after MethodHandle call sites, if needed.
2762   if (is_method_handle_invoke
2763       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2764     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2765   }
2766 
2767   if (result_register->is_valid()) {
2768     LIR_Opr result = rlock_result(x);
2769     __ move(result_register, result);
2770   }
2771 }
2772 
2773 
2774 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2775   assert(x->number_of_arguments() == 1, "wrong type");
2776   LIRItem value       (x->argument_at(0), this);
2777   LIR_Opr reg = rlock_result(x);
2778   value.load_item();
2779   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2780   __ move(tmp, reg);
2781 }
2782 
2783 
2784 
2785 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2786 void LIRGenerator::do_IfOp(IfOp* x) {
2787 #ifdef ASSERT
2788   {
2789     ValueTag xtag = x->x()->type()->tag();
2790     ValueTag ttag = x->tval()->type()->tag();
2791     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2792     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2793     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2794   }
2795 #endif
2796 
2797   LIRItem left(x->x(), this);
2798   LIRItem right(x->y(), this);
2799   left.load_item();
2800   if (can_inline_as_constant(right.value())) {
2801     right.dont_load_item();
2802   } else {
2803     right.load_item();
2804   }
2805 
2806   LIRItem t_val(x->tval(), this);
2807   LIRItem f_val(x->fval(), this);
2808   t_val.dont_load_item();
2809   f_val.dont_load_item();
2810   LIR_Opr reg = rlock_result(x);
2811 
2812   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2813   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2814 }
2815 
2816 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2817   assert(x->number_of_arguments() == 0, "wrong type");
2818   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2819   BasicTypeList signature;
2820   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2821   LIR_Opr reg = result_register_for(x->type());
2822   __ call_runtime_leaf(routine, getThreadTemp(),
2823                        reg, new LIR_OprList());
2824   LIR_Opr result = rlock_result(x);
2825   __ move(reg, result);
2826 }
2827 
2828 
2829 
2830 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2831   switch (x->id()) {
2832   case vmIntrinsics::_intBitsToFloat      :
2833   case vmIntrinsics::_doubleToRawLongBits :
2834   case vmIntrinsics::_longBitsToDouble    :
2835   case vmIntrinsics::_floatToRawIntBits   : {
2836     do_FPIntrinsics(x);
2837     break;
2838   }
2839 
2840 #ifdef JFR_HAVE_INTRINSICS
2841   case vmIntrinsics::_counterTime:
2842     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2843     break;
2844 #endif
2845 
2846   case vmIntrinsics::_currentTimeMillis:
2847     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2848     break;
2849 
2850   case vmIntrinsics::_nanoTime:
2851     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2852     break;
2853 
2854   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2855   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2856   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2857   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2858   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2859   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2860   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2861 
2862   case vmIntrinsics::_dlog:           // fall through
2863   case vmIntrinsics::_dlog10:         // fall through
2864   case vmIntrinsics::_dabs:           // fall through
2865   case vmIntrinsics::_dsqrt:          // fall through
2866   case vmIntrinsics::_dsqrt_strict:   // fall through
2867   case vmIntrinsics::_dtan:           // fall through
2868   case vmIntrinsics::_dsinh:          // fall through
2869   case vmIntrinsics::_dtanh:          // fall through
2870   case vmIntrinsics::_dsin :          // fall through
2871   case vmIntrinsics::_dcos :          // fall through
2872   case vmIntrinsics::_dcbrt :         // fall through
2873   case vmIntrinsics::_dexp :          // fall through
2874   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2875   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2876 
2877   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2878   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2879 
2880   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2881   case vmIntrinsics::_floatToFloat16: // fall through
2882   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2883 
2884   case vmIntrinsics::_Preconditions_checkIndex:
2885     do_PreconditionsCheckIndex(x, T_INT);
2886     break;
2887   case vmIntrinsics::_Preconditions_checkLongIndex:
2888     do_PreconditionsCheckIndex(x, T_LONG);
2889     break;
2890 
2891   case vmIntrinsics::_compareAndSetReference:
2892     do_CompareAndSwap(x, objectType);
2893     break;
2894   case vmIntrinsics::_compareAndSetInt:
2895     do_CompareAndSwap(x, intType);
2896     break;
2897   case vmIntrinsics::_compareAndSetLong:
2898     do_CompareAndSwap(x, longType);
2899     break;
2900 
2901   case vmIntrinsics::_loadFence :
2902     __ membar_acquire();
2903     break;
2904   case vmIntrinsics::_storeFence:
2905     __ membar_release();
2906     break;
2907   case vmIntrinsics::_storeStoreFence:
2908     __ membar_storestore();
2909     break;
2910   case vmIntrinsics::_fullFence :
2911     __ membar();
2912     break;
2913   case vmIntrinsics::_onSpinWait:
2914     __ on_spin_wait();
2915     break;
2916   case vmIntrinsics::_Reference_get0:
2917     do_Reference_get0(x);
2918     break;
2919 
2920   case vmIntrinsics::_updateCRC32:
2921   case vmIntrinsics::_updateBytesCRC32:
2922   case vmIntrinsics::_updateByteBufferCRC32:
2923     do_update_CRC32(x);
2924     break;
2925 
2926   case vmIntrinsics::_updateBytesCRC32C:
2927   case vmIntrinsics::_updateDirectByteBufferCRC32C:
2928     do_update_CRC32C(x);
2929     break;
2930 
2931   case vmIntrinsics::_vectorizedMismatch:
2932     do_vectorizedMismatch(x);
2933     break;
2934 
2935   case vmIntrinsics::_blackhole:
2936     do_blackhole(x);
2937     break;
2938 
2939   default: ShouldNotReachHere(); break;
2940   }
2941 }
2942 
2943 void LIRGenerator::profile_arguments(ProfileCall* x) {
2944   if (compilation()->profile_arguments()) {
2945     int bci = x->bci_of_invoke();
2946     ciMethodData* md = x->method()->method_data_or_null();
2947     assert(md != nullptr, "Sanity");
2948     ciProfileData* data = md->bci_to_data(bci);
2949     if (data != nullptr) {
2950       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
2951           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
2952         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
2953         int base_offset = md->byte_offset_of_slot(data, extra);
2954         LIR_Opr mdp = LIR_OprFact::illegalOpr;
2955         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
2956 
2957         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2958         int start = 0;
2959         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
2960         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
2961           // first argument is not profiled at call (method handle invoke)
2962           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
2963           start = 1;
2964         }
2965         ciSignature* callee_signature = x->callee()->signature();
2966         // method handle call to virtual method
2967         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
2968         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
2969 
2970         bool ignored_will_link;
2971         ciSignature* signature_at_call = nullptr;
2972         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
2973         ciSignatureStream signature_at_call_stream(signature_at_call);
2974 
2975         // if called through method handle invoke, some arguments may have been popped
2976         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
2977           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
2978           ciKlass* exact = profile_type(md, base_offset, off,
2979               args->type(i), x->profiled_arg_at(i+start), mdp,
2980               !x->arg_needs_null_check(i+start),
2981               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
2982           if (exact != nullptr) {
2983             md->set_argument_type(bci, i, exact);
2984           }
2985         }
2986       } else {
2987 #ifdef ASSERT
2988         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
2989         int n = x->nb_profiled_args();
2990         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
2991             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
2992             "only at JSR292 bytecodes");
2993 #endif
2994       }
2995     }
2996   }
2997 }
2998 
2999 // profile parameters on entry to an inlined method
3000 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3001   if (compilation()->profile_parameters() && x->inlined()) {
3002     ciMethodData* md = x->callee()->method_data_or_null();
3003     if (md != nullptr) {
3004       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3005       if (parameters_type_data != nullptr) {
3006         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3007         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3008         bool has_receiver = !x->callee()->is_static();
3009         ciSignature* sig = x->callee()->signature();
3010         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3011         int i = 0; // to iterate on the Instructions
3012         Value arg = x->recv();
3013         bool not_null = false;
3014         int bci = x->bci_of_invoke();
3015         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3016         // The first parameter is the receiver so that's what we start
3017         // with if it exists. One exception is method handle call to
3018         // virtual method: the receiver is in the args list
3019         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3020           i = 1;
3021           arg = x->profiled_arg_at(0);
3022           not_null = !x->arg_needs_null_check(0);
3023         }
3024         int k = 0; // to iterate on the profile data
3025         for (;;) {
3026           intptr_t profiled_k = parameters->type(k);
3027           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3028                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3029                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3030           // If the profile is known statically set it once for all and do not emit any code
3031           if (exact != nullptr) {
3032             md->set_parameter_type(k, exact);
3033           }
3034           k++;
3035           if (k >= parameters_type_data->number_of_parameters()) {
3036 #ifdef ASSERT
3037             int extra = 0;
3038             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3039                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3040                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3041               extra += 1;
3042             }
3043             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3044 #endif
3045             break;
3046           }
3047           arg = x->profiled_arg_at(i);
3048           not_null = !x->arg_needs_null_check(i);
3049           i++;
3050         }
3051       }
3052     }
3053   }
3054 }
3055 
3056 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3057   // Need recv in a temporary register so it interferes with the other temporaries
3058   LIR_Opr recv = LIR_OprFact::illegalOpr;
3059   LIR_Opr mdo = new_register(T_METADATA);
3060   // tmp is used to hold the counters on SPARC
3061   LIR_Opr tmp = new_pointer_register();
3062 
3063   if (x->nb_profiled_args() > 0) {
3064     profile_arguments(x);
3065   }
3066 
3067   // profile parameters on inlined method entry including receiver
3068   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3069     profile_parameters_at_call(x);
3070   }
3071 
3072   if (x->recv() != nullptr) {
3073     LIRItem value(x->recv(), this);
3074     value.load_item();
3075     recv = new_register(T_OBJECT);
3076     __ move(value.result(), recv);
3077   }
3078   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3079 }
3080 
3081 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3082   int bci = x->bci_of_invoke();
3083   ciMethodData* md = x->method()->method_data_or_null();
3084   assert(md != nullptr, "Sanity");
3085   ciProfileData* data = md->bci_to_data(bci);
3086   if (data != nullptr) {
3087     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3088     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3089     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3090 
3091     bool ignored_will_link;
3092     ciSignature* signature_at_call = nullptr;
3093     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3094 
3095     // The offset within the MDO of the entry to update may be too large
3096     // to be used in load/store instructions on some platforms. So have
3097     // profile_type() compute the address of the profile in a register.
3098     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3099         ret->type(), x->ret(), mdp,
3100         !x->needs_null_check(),
3101         signature_at_call->return_type()->as_klass(),
3102         x->callee()->signature()->return_type()->as_klass());
3103     if (exact != nullptr) {
3104       md->set_return_type(bci, exact);
3105     }
3106   }
3107 }
3108 
3109 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3110   // We can safely ignore accessors here, since c2 will inline them anyway,
3111   // accessors are also always mature.
3112   if (!x->inlinee()->is_accessor()) {
3113     CodeEmitInfo* info = state_for(x, x->state(), true);
3114     // Notify the runtime very infrequently only to take care of counter overflows
3115     int freq_log = Tier23InlineeNotifyFreqLog;
3116     double scale;
3117     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3118       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3119     }
3120     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3121   }
3122 }
3123 
3124 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3125   if (compilation()->is_profiling()) {
3126 #if defined(X86) && !defined(_LP64)
3127     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3128     LIR_Opr left_copy = new_register(left->type());
3129     __ move(left, left_copy);
3130     __ cmp(cond, left_copy, right);
3131 #else
3132     __ cmp(cond, left, right);
3133 #endif
3134     LIR_Opr step = new_register(T_INT);
3135     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3136     LIR_Opr zero = LIR_OprFact::intConst(0);
3137     __ cmove(cond,
3138         (left_bci < bci) ? plus_one : zero,
3139         (right_bci < bci) ? plus_one : zero,
3140         step, left->type());
3141     increment_backedge_counter(info, step, bci);
3142   }
3143 }
3144 
3145 
3146 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3147   int freq_log = 0;
3148   int level = compilation()->env()->comp_level();
3149   if (level == CompLevel_limited_profile) {
3150     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3151   } else if (level == CompLevel_full_profile) {
3152     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3153   } else {
3154     ShouldNotReachHere();
3155   }
3156   // Increment the appropriate invocation/backedge counter and notify the runtime.
3157   double scale;
3158   if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3159     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3160   }
3161   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3162 }
3163 
3164 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3165                                                 ciMethod *method, LIR_Opr step, int frequency,
3166                                                 int bci, bool backedge, bool notify) {
3167   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3168   int level = _compilation->env()->comp_level();
3169   assert(level > CompLevel_simple, "Shouldn't be here");
3170 
3171   int offset = -1;
3172   LIR_Opr counter_holder;
3173   if (level == CompLevel_limited_profile) {
3174     MethodCounters* counters_adr = method->ensure_method_counters();
3175     if (counters_adr == nullptr) {
3176       bailout("method counters allocation failed");
3177       return;
3178     }
3179     counter_holder = new_pointer_register();
3180     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3181     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3182                                  MethodCounters::invocation_counter_offset());
3183   } else if (level == CompLevel_full_profile) {
3184     counter_holder = new_register(T_METADATA);
3185     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3186                                  MethodData::invocation_counter_offset());
3187     ciMethodData* md = method->method_data_or_null();
3188     assert(md != nullptr, "Sanity");
3189     __ metadata2reg(md->constant_encoding(), counter_holder);
3190   } else {
3191     ShouldNotReachHere();
3192   }
3193   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3194   LIR_Opr result = new_register(T_INT);
3195   __ load(counter, result);
3196   __ add(result, step, result);
3197   __ store(result, counter);
3198   if (notify && (!backedge || UseOnStackReplacement)) {
3199     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3200     // The bci for info can point to cmp for if's we want the if bci
3201     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3202     int freq = frequency << InvocationCounter::count_shift;
3203     if (freq == 0) {
3204       if (!step->is_constant()) {
3205         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3206         __ branch(lir_cond_notEqual, overflow);
3207       } else {
3208         __ branch(lir_cond_always, overflow);
3209       }
3210     } else {
3211       LIR_Opr mask = load_immediate(freq, T_INT);
3212       if (!step->is_constant()) {
3213         // If step is 0, make sure the overflow check below always fails
3214         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3215         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3216       }
3217       __ logical_and(result, mask, result);
3218       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3219       __ branch(lir_cond_equal, overflow);
3220     }
3221     __ branch_destination(overflow->continuation());
3222   }
3223 }
3224 
3225 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3226   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3227   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3228 
3229   if (x->pass_thread()) {
3230     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3231     args->append(getThreadPointer());
3232   }
3233 
3234   for (int i = 0; i < x->number_of_arguments(); i++) {
3235     Value a = x->argument_at(i);
3236     LIRItem* item = new LIRItem(a, this);
3237     item->load_item();
3238     args->append(item->result());
3239     signature->append(as_BasicType(a->type()));
3240   }
3241 
3242   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3243   if (x->type() == voidType) {
3244     set_no_result(x);
3245   } else {
3246     __ move(result, rlock_result(x));
3247   }
3248 }
3249 
3250 #ifdef ASSERT
3251 void LIRGenerator::do_Assert(Assert *x) {
3252   ValueTag tag = x->x()->type()->tag();
3253   If::Condition cond = x->cond();
3254 
3255   LIRItem xitem(x->x(), this);
3256   LIRItem yitem(x->y(), this);
3257   LIRItem* xin = &xitem;
3258   LIRItem* yin = &yitem;
3259 
3260   assert(tag == intTag, "Only integer assertions are valid!");
3261 
3262   xin->load_item();
3263   yin->dont_load_item();
3264 
3265   set_no_result(x);
3266 
3267   LIR_Opr left = xin->result();
3268   LIR_Opr right = yin->result();
3269 
3270   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3271 }
3272 #endif
3273 
3274 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3275 
3276 
3277   Instruction *a = x->x();
3278   Instruction *b = x->y();
3279   if (!a || StressRangeCheckElimination) {
3280     assert(!b || StressRangeCheckElimination, "B must also be null");
3281 
3282     CodeEmitInfo *info = state_for(x, x->state());
3283     CodeStub* stub = new PredicateFailedStub(info);
3284 
3285     __ jump(stub);
3286   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3287     int a_int = a->type()->as_IntConstant()->value();
3288     int b_int = b->type()->as_IntConstant()->value();
3289 
3290     bool ok = false;
3291 
3292     switch(x->cond()) {
3293       case Instruction::eql: ok = (a_int == b_int); break;
3294       case Instruction::neq: ok = (a_int != b_int); break;
3295       case Instruction::lss: ok = (a_int < b_int); break;
3296       case Instruction::leq: ok = (a_int <= b_int); break;
3297       case Instruction::gtr: ok = (a_int > b_int); break;
3298       case Instruction::geq: ok = (a_int >= b_int); break;
3299       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3300       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3301       default: ShouldNotReachHere();
3302     }
3303 
3304     if (ok) {
3305 
3306       CodeEmitInfo *info = state_for(x, x->state());
3307       CodeStub* stub = new PredicateFailedStub(info);
3308 
3309       __ jump(stub);
3310     }
3311   } else {
3312 
3313     ValueTag tag = x->x()->type()->tag();
3314     If::Condition cond = x->cond();
3315     LIRItem xitem(x->x(), this);
3316     LIRItem yitem(x->y(), this);
3317     LIRItem* xin = &xitem;
3318     LIRItem* yin = &yitem;
3319 
3320     assert(tag == intTag, "Only integer deoptimizations are valid!");
3321 
3322     xin->load_item();
3323     yin->dont_load_item();
3324     set_no_result(x);
3325 
3326     LIR_Opr left = xin->result();
3327     LIR_Opr right = yin->result();
3328 
3329     CodeEmitInfo *info = state_for(x, x->state());
3330     CodeStub* stub = new PredicateFailedStub(info);
3331 
3332     __ cmp(lir_cond(cond), left, right);
3333     __ branch(lir_cond(cond), stub);
3334   }
3335 }
3336 
3337 void LIRGenerator::do_blackhole(Intrinsic *x) {
3338   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3339   for (int c = 0; c < x->number_of_arguments(); c++) {
3340     // Load the argument
3341     LIRItem vitem(x->argument_at(c), this);
3342     vitem.load_item();
3343     // ...and leave it unused.
3344   }
3345 }
3346 
3347 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3348   LIRItemList args(1);
3349   LIRItem value(arg1, this);
3350   args.append(&value);
3351   BasicTypeList signature;
3352   signature.append(as_BasicType(arg1->type()));
3353 
3354   return call_runtime(&signature, &args, entry, result_type, info);
3355 }
3356 
3357 
3358 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3359   LIRItemList args(2);
3360   LIRItem value1(arg1, this);
3361   LIRItem value2(arg2, this);
3362   args.append(&value1);
3363   args.append(&value2);
3364   BasicTypeList signature;
3365   signature.append(as_BasicType(arg1->type()));
3366   signature.append(as_BasicType(arg2->type()));
3367 
3368   return call_runtime(&signature, &args, entry, result_type, info);
3369 }
3370 
3371 
3372 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3373                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3374   // get a result register
3375   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3376   LIR_Opr result = LIR_OprFact::illegalOpr;
3377   if (result_type->tag() != voidTag) {
3378     result = new_register(result_type);
3379     phys_reg = result_register_for(result_type);
3380   }
3381 
3382   // move the arguments into the correct location
3383   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3384   assert(cc->length() == args->length(), "argument mismatch");
3385   for (int i = 0; i < args->length(); i++) {
3386     LIR_Opr arg = args->at(i);
3387     LIR_Opr loc = cc->at(i);
3388     if (loc->is_register()) {
3389       __ move(arg, loc);
3390     } else {
3391       LIR_Address* addr = loc->as_address_ptr();
3392 //           if (!can_store_as_constant(arg)) {
3393 //             LIR_Opr tmp = new_register(arg->type());
3394 //             __ move(arg, tmp);
3395 //             arg = tmp;
3396 //           }
3397       __ move(arg, addr);
3398     }
3399   }
3400 
3401   if (info) {
3402     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3403   } else {
3404     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3405   }
3406   if (result->is_valid()) {
3407     __ move(phys_reg, result);
3408   }
3409   return result;
3410 }
3411 
3412 
3413 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3414                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3415   // get a result register
3416   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3417   LIR_Opr result = LIR_OprFact::illegalOpr;
3418   if (result_type->tag() != voidTag) {
3419     result = new_register(result_type);
3420     phys_reg = result_register_for(result_type);
3421   }
3422 
3423   // move the arguments into the correct location
3424   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3425 
3426   assert(cc->length() == args->length(), "argument mismatch");
3427   for (int i = 0; i < args->length(); i++) {
3428     LIRItem* arg = args->at(i);
3429     LIR_Opr loc = cc->at(i);
3430     if (loc->is_register()) {
3431       arg->load_item_force(loc);
3432     } else {
3433       LIR_Address* addr = loc->as_address_ptr();
3434       arg->load_for_store(addr->type());
3435       __ move(arg->result(), addr);
3436     }
3437   }
3438 
3439   if (info) {
3440     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3441   } else {
3442     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3443   }
3444   if (result->is_valid()) {
3445     __ move(phys_reg, result);
3446   }
3447   return result;
3448 }
3449 
3450 void LIRGenerator::do_MemBar(MemBar* x) {
3451   LIR_Code code = x->code();
3452   switch(code) {
3453   case lir_membar_acquire   : __ membar_acquire(); break;
3454   case lir_membar_release   : __ membar_release(); break;
3455   case lir_membar           : __ membar(); break;
3456   case lir_membar_loadload  : __ membar_loadload(); break;
3457   case lir_membar_storestore: __ membar_storestore(); break;
3458   case lir_membar_loadstore : __ membar_loadstore(); break;
3459   case lir_membar_storeload : __ membar_storeload(); break;
3460   default                   : ShouldNotReachHere(); break;
3461   }
3462 }
3463 
3464 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3465   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3466   if (two_operand_lir_form) {
3467     __ move(value, value_fixed);
3468     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3469   } else {
3470     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3471   }
3472   LIR_Opr klass = new_register(T_METADATA);
3473   load_klass(array, klass, null_check_info);
3474   null_check_info = nullptr;
3475   LIR_Opr layout = new_register(T_INT);
3476   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3477   int diffbit = Klass::layout_helper_boolean_diffbit();
3478   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3479   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3480   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3481   value = value_fixed;
3482   return value;
3483 }