1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "ci/ciObjArray.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "compiler/compilerOracle.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/c1/barrierSetC1.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "oops/methodCounters.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/vm_version.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #ifdef ASSERT 50 #define __ gen()->lir(__FILE__, __LINE__)-> 51 #else 52 #define __ gen()->lir()-> 53 #endif 54 55 #ifndef PATCHED_ADDR 56 #define PATCHED_ADDR (max_jint) 57 #endif 58 59 void PhiResolverState::reset() { 60 _virtual_operands.clear(); 61 _other_operands.clear(); 62 _vreg_table.clear(); 63 } 64 65 66 //-------------------------------------------------------------- 67 // PhiResolver 68 69 // Resolves cycles: 70 // 71 // r1 := r2 becomes temp := r1 72 // r2 := r1 r1 := r2 73 // r2 := temp 74 // and orders moves: 75 // 76 // r2 := r3 becomes r1 := r2 77 // r1 := r2 r2 := r3 78 79 PhiResolver::PhiResolver(LIRGenerator* gen) 80 : _gen(gen) 81 , _state(gen->resolver_state()) 82 , _loop(nullptr) 83 , _temp(LIR_OprFact::illegalOpr) 84 { 85 // reinitialize the shared state arrays 86 _state.reset(); 87 } 88 89 90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 91 assert(src->is_valid(), ""); 92 assert(dest->is_valid(), ""); 93 __ move(src, dest); 94 } 95 96 97 void PhiResolver::move_temp_to(LIR_Opr dest) { 98 assert(_temp->is_valid(), ""); 99 emit_move(_temp, dest); 100 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 101 } 102 103 104 void PhiResolver::move_to_temp(LIR_Opr src) { 105 assert(_temp->is_illegal(), ""); 106 _temp = _gen->new_register(src->type()); 107 emit_move(src, _temp); 108 } 109 110 111 // Traverse assignment graph in depth first order and generate moves in post order 112 // ie. two assignments: b := c, a := b start with node c: 113 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 114 // Generates moves in this order: move b to a and move c to b 115 // ie. cycle a := b, b := a start with node a 116 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 117 // Generates moves in this order: move b to temp, move a to b, move temp to a 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 119 if (!dest->visited()) { 120 dest->set_visited(); 121 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 122 move(dest, dest->destination_at(i)); 123 } 124 } else if (!dest->start_node()) { 125 // cylce in graph detected 126 assert(_loop == nullptr, "only one loop valid!"); 127 _loop = dest; 128 move_to_temp(src->operand()); 129 return; 130 } // else dest is a start node 131 132 if (!dest->assigned()) { 133 if (_loop == dest) { 134 move_temp_to(dest->operand()); 135 dest->set_assigned(); 136 } else if (src != nullptr) { 137 emit_move(src->operand(), dest->operand()); 138 dest->set_assigned(); 139 } 140 } 141 } 142 143 144 PhiResolver::~PhiResolver() { 145 int i; 146 // resolve any cycles in moves from and to virtual registers 147 for (i = virtual_operands().length() - 1; i >= 0; i --) { 148 ResolveNode* node = virtual_operands().at(i); 149 if (!node->visited()) { 150 _loop = nullptr; 151 move(nullptr, node); 152 node->set_start_node(); 153 assert(_temp->is_illegal(), "move_temp_to() call missing"); 154 } 155 } 156 157 // generate move for move from non virtual register to abitrary destination 158 for (i = other_operands().length() - 1; i >= 0; i --) { 159 ResolveNode* node = other_operands().at(i); 160 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 161 emit_move(node->operand(), node->destination_at(j)->operand()); 162 } 163 } 164 } 165 166 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 168 ResolveNode* node; 169 if (opr->is_virtual()) { 170 int vreg_num = opr->vreg_number(); 171 node = vreg_table().at_grow(vreg_num, nullptr); 172 assert(node == nullptr || node->operand() == opr, ""); 173 if (node == nullptr) { 174 node = new ResolveNode(opr); 175 vreg_table().at_put(vreg_num, node); 176 } 177 // Make sure that all virtual operands show up in the list when 178 // they are used as the source of a move. 179 if (source && !virtual_operands().contains(node)) { 180 virtual_operands().append(node); 181 } 182 } else { 183 assert(source, ""); 184 node = new ResolveNode(opr); 185 other_operands().append(node); 186 } 187 return node; 188 } 189 190 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 192 assert(dest->is_virtual(), ""); 193 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 194 assert(src->is_valid(), ""); 195 assert(dest->is_valid(), ""); 196 ResolveNode* source = source_node(src); 197 source->append(destination_node(dest)); 198 } 199 200 201 //-------------------------------------------------------------- 202 // LIRItem 203 204 void LIRItem::set_result(LIR_Opr opr) { 205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 206 value()->set_operand(opr); 207 208 #ifdef ASSERT 209 if (opr->is_virtual()) { 210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 211 } 212 #endif 213 214 _result = opr; 215 } 216 217 void LIRItem::load_item() { 218 if (result()->is_illegal()) { 219 // update the items result 220 _result = value()->operand(); 221 } 222 if (!result()->is_register()) { 223 LIR_Opr reg = _gen->new_register(value()->type()); 224 __ move(result(), reg); 225 if (result()->is_constant()) { 226 _result = reg; 227 } else { 228 set_result(reg); 229 } 230 } 231 } 232 233 234 void LIRItem::load_for_store(BasicType type) { 235 if (_gen->can_store_as_constant(value(), type)) { 236 _result = value()->operand(); 237 if (!_result->is_constant()) { 238 _result = LIR_OprFact::value_type(value()->type()); 239 } 240 } else if (type == T_BYTE || type == T_BOOLEAN) { 241 load_byte_item(); 242 } else { 243 load_item(); 244 } 245 } 246 247 void LIRItem::load_item_force(LIR_Opr reg) { 248 LIR_Opr r = result(); 249 if (r != reg) { 250 #if !defined(ARM) && !defined(E500V2) 251 if (r->type() != reg->type()) { 252 // moves between different types need an intervening spill slot 253 r = _gen->force_to_spill(r, reg->type()); 254 } 255 #endif 256 __ move(r, reg); 257 _result = reg; 258 } 259 } 260 261 ciObject* LIRItem::get_jobject_constant() const { 262 ObjectType* oc = type()->as_ObjectType(); 263 if (oc) { 264 return oc->constant_value(); 265 } 266 return nullptr; 267 } 268 269 270 jint LIRItem::get_jint_constant() const { 271 assert(is_constant() && value() != nullptr, ""); 272 assert(type()->as_IntConstant() != nullptr, "type check"); 273 return type()->as_IntConstant()->value(); 274 } 275 276 277 jint LIRItem::get_address_constant() const { 278 assert(is_constant() && value() != nullptr, ""); 279 assert(type()->as_AddressConstant() != nullptr, "type check"); 280 return type()->as_AddressConstant()->value(); 281 } 282 283 284 jfloat LIRItem::get_jfloat_constant() const { 285 assert(is_constant() && value() != nullptr, ""); 286 assert(type()->as_FloatConstant() != nullptr, "type check"); 287 return type()->as_FloatConstant()->value(); 288 } 289 290 291 jdouble LIRItem::get_jdouble_constant() const { 292 assert(is_constant() && value() != nullptr, ""); 293 assert(type()->as_DoubleConstant() != nullptr, "type check"); 294 return type()->as_DoubleConstant()->value(); 295 } 296 297 298 jlong LIRItem::get_jlong_constant() const { 299 assert(is_constant() && value() != nullptr, ""); 300 assert(type()->as_LongConstant() != nullptr, "type check"); 301 return type()->as_LongConstant()->value(); 302 } 303 304 305 306 //-------------------------------------------------------------- 307 308 309 void LIRGenerator::block_do_prolog(BlockBegin* block) { 310 #ifndef PRODUCT 311 if (PrintIRWithLIR) { 312 block->print(); 313 } 314 #endif 315 316 // set up the list of LIR instructions 317 assert(block->lir() == nullptr, "LIR list already computed for this block"); 318 _lir = new LIR_List(compilation(), block); 319 block->set_lir(_lir); 320 321 __ branch_destination(block->label()); 322 323 if (LIRTraceExecution && 324 Compilation::current()->hir()->start()->block_id() != block->block_id() && 325 !block->is_set(BlockBegin::exception_entry_flag)) { 326 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 327 trace_block_entry(block); 328 } 329 } 330 331 332 void LIRGenerator::block_do_epilog(BlockBegin* block) { 333 #ifndef PRODUCT 334 if (PrintIRWithLIR) { 335 tty->cr(); 336 } 337 #endif 338 339 // LIR_Opr for unpinned constants shouldn't be referenced by other 340 // blocks so clear them out after processing the block. 341 for (int i = 0; i < _unpinned_constants.length(); i++) { 342 _unpinned_constants.at(i)->clear_operand(); 343 } 344 _unpinned_constants.trunc_to(0); 345 346 // clear our any registers for other local constants 347 _constants.trunc_to(0); 348 _reg_for_constants.trunc_to(0); 349 } 350 351 352 void LIRGenerator::block_do(BlockBegin* block) { 353 CHECK_BAILOUT(); 354 355 block_do_prolog(block); 356 set_block(block); 357 358 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 359 if (instr->is_pinned()) do_root(instr); 360 } 361 362 set_block(nullptr); 363 block_do_epilog(block); 364 } 365 366 367 //-------------------------LIRGenerator----------------------------- 368 369 // This is where the tree-walk starts; instr must be root; 370 void LIRGenerator::do_root(Value instr) { 371 CHECK_BAILOUT(); 372 373 InstructionMark im(compilation(), instr); 374 375 assert(instr->is_pinned(), "use only with roots"); 376 assert(instr->subst() == instr, "shouldn't have missed substitution"); 377 378 instr->visit(this); 379 380 assert(!instr->has_uses() || instr->operand()->is_valid() || 381 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 382 } 383 384 385 // This is called for each node in tree; the walk stops if a root is reached 386 void LIRGenerator::walk(Value instr) { 387 InstructionMark im(compilation(), instr); 388 //stop walk when encounter a root 389 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 390 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 391 } else { 392 assert(instr->subst() == instr, "shouldn't have missed substitution"); 393 instr->visit(this); 394 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 395 } 396 } 397 398 399 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 400 assert(state != nullptr, "state must be defined"); 401 402 #ifndef PRODUCT 403 state->verify(); 404 #endif 405 406 ValueStack* s = state; 407 for_each_state(s) { 408 if (s->kind() == ValueStack::EmptyExceptionState || 409 s->kind() == ValueStack::CallerEmptyExceptionState) 410 { 411 #ifdef ASSERT 412 int index; 413 Value value; 414 for_each_stack_value(s, index, value) { 415 fatal("state must be empty"); 416 } 417 for_each_local_value(s, index, value) { 418 fatal("state must be empty"); 419 } 420 #endif 421 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 422 continue; 423 } 424 425 int index; 426 Value value; 427 for_each_stack_value(s, index, value) { 428 assert(value->subst() == value, "missed substitution"); 429 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 430 walk(value); 431 assert(value->operand()->is_valid(), "must be evaluated now"); 432 } 433 } 434 435 int bci = s->bci(); 436 IRScope* scope = s->scope(); 437 ciMethod* method = scope->method(); 438 439 MethodLivenessResult liveness = method->liveness_at_bci(bci); 440 if (bci == SynchronizationEntryBCI) { 441 if (x->as_ExceptionObject() || x->as_Throw()) { 442 // all locals are dead on exit from the synthetic unlocker 443 liveness.clear(); 444 } else { 445 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 446 } 447 } 448 if (!liveness.is_valid()) { 449 // Degenerate or breakpointed method. 450 bailout("Degenerate or breakpointed method"); 451 } else { 452 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 453 for_each_local_value(s, index, value) { 454 assert(value->subst() == value, "missed substitution"); 455 if (liveness.at(index) && !value->type()->is_illegal()) { 456 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 457 walk(value); 458 assert(value->operand()->is_valid(), "must be evaluated now"); 459 } 460 } else { 461 // null out this local so that linear scan can assume that all non-null values are live. 462 s->invalidate_local(index); 463 } 464 } 465 } 466 } 467 468 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 469 } 470 471 472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 473 return state_for(x, x->exception_state()); 474 } 475 476 477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 478 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 479 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 480 * the class. */ 481 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 482 assert(info != nullptr, "info must be set if class is not loaded"); 483 __ klass2reg_patch(nullptr, r, info); 484 } else { 485 // no patching needed 486 __ metadata2reg(obj->constant_encoding(), r); 487 } 488 } 489 490 491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 492 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 493 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 494 if (index->is_constant()) { 495 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 496 index->as_jint(), null_check_info); 497 __ branch(lir_cond_belowEqual, stub); // forward branch 498 } else { 499 cmp_reg_mem(lir_cond_aboveEqual, index, array, 500 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 501 __ branch(lir_cond_aboveEqual, stub); // forward branch 502 } 503 } 504 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 506 LIR_Opr result_op = result; 507 LIR_Opr left_op = left; 508 LIR_Opr right_op = right; 509 510 if (two_operand_lir_form && left_op != result_op) { 511 assert(right_op != result_op, "malformed"); 512 __ move(left_op, result_op); 513 left_op = result_op; 514 } 515 516 switch(code) { 517 case Bytecodes::_dadd: 518 case Bytecodes::_fadd: 519 case Bytecodes::_ladd: 520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 521 case Bytecodes::_fmul: 522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 523 524 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 525 526 case Bytecodes::_imul: 527 { 528 bool did_strength_reduce = false; 529 530 if (right->is_constant()) { 531 jint c = right->as_jint(); 532 if (c > 0 && is_power_of_2(c)) { 533 // do not need tmp here 534 __ shift_left(left_op, exact_log2(c), result_op); 535 did_strength_reduce = true; 536 } else { 537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 538 } 539 } 540 // we couldn't strength reduce so just emit the multiply 541 if (!did_strength_reduce) { 542 __ mul(left_op, right_op, result_op); 543 } 544 } 545 break; 546 547 case Bytecodes::_dsub: 548 case Bytecodes::_fsub: 549 case Bytecodes::_lsub: 550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 551 552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 553 // ldiv and lrem are implemented with a direct runtime call 554 555 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 556 557 case Bytecodes::_drem: 558 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 559 560 default: ShouldNotReachHere(); 561 } 562 } 563 564 565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 566 arithmetic_op(code, result, left, right, tmp); 567 } 568 569 570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 571 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 572 } 573 574 575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 576 arithmetic_op(code, result, left, right, tmp); 577 } 578 579 580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 581 582 if (two_operand_lir_form && value != result_op 583 // Only 32bit right shifts require two operand form on S390. 584 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 585 assert(count != result_op, "malformed"); 586 __ move(value, result_op); 587 value = result_op; 588 } 589 590 assert(count->is_constant() || count->is_register(), "must be"); 591 switch(code) { 592 case Bytecodes::_ishl: 593 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 594 case Bytecodes::_ishr: 595 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 596 case Bytecodes::_iushr: 597 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 598 default: ShouldNotReachHere(); 599 } 600 } 601 602 603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 604 if (two_operand_lir_form && left_op != result_op) { 605 assert(right_op != result_op, "malformed"); 606 __ move(left_op, result_op); 607 left_op = result_op; 608 } 609 610 switch(code) { 611 case Bytecodes::_iand: 612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 613 614 case Bytecodes::_ior: 615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 616 617 case Bytecodes::_ixor: 618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 619 620 default: ShouldNotReachHere(); 621 } 622 } 623 624 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 626 // for slow path, use debug info for state after successful locking 627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 628 __ load_stack_address_monitor(monitor_no, lock); 629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 631 } 632 633 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 635 // setup registers 636 LIR_Opr hdr = lock; 637 lock = new_hdr; 638 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 639 __ load_stack_address_monitor(monitor_no, lock); 640 __ unlock_object(hdr, object, lock, scratch, slow_path); 641 } 642 643 #ifndef PRODUCT 644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 645 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 646 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 647 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 648 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 649 } 650 } 651 #endif 652 653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 654 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 655 // If klass is not loaded we do not know if the klass has finalizers: 656 if (UseFastNewInstance && klass->is_loaded() 657 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 658 659 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id; 660 661 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 662 663 assert(klass->is_loaded(), "must be loaded"); 664 // allocate space for instance 665 assert(klass->size_helper() > 0, "illegal instance size"); 666 const int instance_size = align_object_size(klass->size_helper()); 667 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 668 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 669 } else { 670 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id); 671 __ branch(lir_cond_always, slow_path); 672 __ branch_destination(slow_path->continuation()); 673 } 674 } 675 676 677 static bool is_constant_zero(Instruction* inst) { 678 IntConstant* c = inst->type()->as_IntConstant(); 679 if (c) { 680 return (c->value() == 0); 681 } 682 return false; 683 } 684 685 686 static bool positive_constant(Instruction* inst) { 687 IntConstant* c = inst->type()->as_IntConstant(); 688 if (c) { 689 return (c->value() >= 0); 690 } 691 return false; 692 } 693 694 695 static ciArrayKlass* as_array_klass(ciType* type) { 696 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 697 return (ciArrayKlass*)type; 698 } else { 699 return nullptr; 700 } 701 } 702 703 static ciType* phi_declared_type(Phi* phi) { 704 ciType* t = phi->operand_at(0)->declared_type(); 705 if (t == nullptr) { 706 return nullptr; 707 } 708 for(int i = 1; i < phi->operand_count(); i++) { 709 if (t != phi->operand_at(i)->declared_type()) { 710 return nullptr; 711 } 712 } 713 return t; 714 } 715 716 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 717 Instruction* src = x->argument_at(0); 718 Instruction* src_pos = x->argument_at(1); 719 Instruction* dst = x->argument_at(2); 720 Instruction* dst_pos = x->argument_at(3); 721 Instruction* length = x->argument_at(4); 722 723 // first try to identify the likely type of the arrays involved 724 ciArrayKlass* expected_type = nullptr; 725 bool is_exact = false, src_objarray = false, dst_objarray = false; 726 { 727 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 728 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 729 Phi* phi; 730 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 731 src_declared_type = as_array_klass(phi_declared_type(phi)); 732 } 733 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 734 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 735 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 736 dst_declared_type = as_array_klass(phi_declared_type(phi)); 737 } 738 739 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 740 // the types exactly match so the type is fully known 741 is_exact = true; 742 expected_type = src_exact_type; 743 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 744 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 745 ciArrayKlass* src_type = nullptr; 746 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 747 src_type = (ciArrayKlass*) src_exact_type; 748 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 749 src_type = (ciArrayKlass*) src_declared_type; 750 } 751 if (src_type != nullptr) { 752 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 753 is_exact = true; 754 expected_type = dst_type; 755 } 756 } 757 } 758 // at least pass along a good guess 759 if (expected_type == nullptr) expected_type = dst_exact_type; 760 if (expected_type == nullptr) expected_type = src_declared_type; 761 if (expected_type == nullptr) expected_type = dst_declared_type; 762 763 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 764 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 765 } 766 767 // if a probable array type has been identified, figure out if any 768 // of the required checks for a fast case can be elided. 769 int flags = LIR_OpArrayCopy::all_flags; 770 771 if (!src_objarray) 772 flags &= ~LIR_OpArrayCopy::src_objarray; 773 if (!dst_objarray) 774 flags &= ~LIR_OpArrayCopy::dst_objarray; 775 776 if (!x->arg_needs_null_check(0)) 777 flags &= ~LIR_OpArrayCopy::src_null_check; 778 if (!x->arg_needs_null_check(2)) 779 flags &= ~LIR_OpArrayCopy::dst_null_check; 780 781 782 if (expected_type != nullptr) { 783 Value length_limit = nullptr; 784 785 IfOp* ifop = length->as_IfOp(); 786 if (ifop != nullptr) { 787 // look for expressions like min(v, a.length) which ends up as 788 // x > y ? y : x or x >= y ? y : x 789 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 790 ifop->x() == ifop->fval() && 791 ifop->y() == ifop->tval()) { 792 length_limit = ifop->y(); 793 } 794 } 795 796 // try to skip null checks and range checks 797 NewArray* src_array = src->as_NewArray(); 798 if (src_array != nullptr) { 799 flags &= ~LIR_OpArrayCopy::src_null_check; 800 if (length_limit != nullptr && 801 src_array->length() == length_limit && 802 is_constant_zero(src_pos)) { 803 flags &= ~LIR_OpArrayCopy::src_range_check; 804 } 805 } 806 807 NewArray* dst_array = dst->as_NewArray(); 808 if (dst_array != nullptr) { 809 flags &= ~LIR_OpArrayCopy::dst_null_check; 810 if (length_limit != nullptr && 811 dst_array->length() == length_limit && 812 is_constant_zero(dst_pos)) { 813 flags &= ~LIR_OpArrayCopy::dst_range_check; 814 } 815 } 816 817 // check from incoming constant values 818 if (positive_constant(src_pos)) 819 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 820 if (positive_constant(dst_pos)) 821 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 822 if (positive_constant(length)) 823 flags &= ~LIR_OpArrayCopy::length_positive_check; 824 825 // see if the range check can be elided, which might also imply 826 // that src or dst is non-null. 827 ArrayLength* al = length->as_ArrayLength(); 828 if (al != nullptr) { 829 if (al->array() == src) { 830 // it's the length of the source array 831 flags &= ~LIR_OpArrayCopy::length_positive_check; 832 flags &= ~LIR_OpArrayCopy::src_null_check; 833 if (is_constant_zero(src_pos)) 834 flags &= ~LIR_OpArrayCopy::src_range_check; 835 } 836 if (al->array() == dst) { 837 // it's the length of the destination array 838 flags &= ~LIR_OpArrayCopy::length_positive_check; 839 flags &= ~LIR_OpArrayCopy::dst_null_check; 840 if (is_constant_zero(dst_pos)) 841 flags &= ~LIR_OpArrayCopy::dst_range_check; 842 } 843 } 844 if (is_exact) { 845 flags &= ~LIR_OpArrayCopy::type_check; 846 } 847 } 848 849 IntConstant* src_int = src_pos->type()->as_IntConstant(); 850 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 851 if (src_int && dst_int) { 852 int s_offs = src_int->value(); 853 int d_offs = dst_int->value(); 854 if (src_int->value() >= dst_int->value()) { 855 flags &= ~LIR_OpArrayCopy::overlapping; 856 } 857 if (expected_type != nullptr) { 858 BasicType t = expected_type->element_type()->basic_type(); 859 int element_size = type2aelembytes(t); 860 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 861 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 862 flags &= ~LIR_OpArrayCopy::unaligned; 863 } 864 } 865 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 866 // src and dest positions are the same, or dst is zero so assume 867 // nonoverlapping copy. 868 flags &= ~LIR_OpArrayCopy::overlapping; 869 } 870 871 if (src == dst) { 872 // moving within a single array so no type checks are needed 873 if (flags & LIR_OpArrayCopy::type_check) { 874 flags &= ~LIR_OpArrayCopy::type_check; 875 } 876 } 877 *flagsp = flags; 878 *expected_typep = (ciArrayKlass*)expected_type; 879 } 880 881 882 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 883 assert(type2size[t] == type2size[value->type()], 884 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 885 if (!value->is_register()) { 886 // force into a register 887 LIR_Opr r = new_register(value->type()); 888 __ move(value, r); 889 value = r; 890 } 891 892 // create a spill location 893 LIR_Opr tmp = new_register(t); 894 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 895 896 // move from register to spill 897 __ move(value, tmp); 898 return tmp; 899 } 900 901 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 902 if (if_instr->should_profile()) { 903 ciMethod* method = if_instr->profiled_method(); 904 assert(method != nullptr, "method should be set if branch is profiled"); 905 ciMethodData* md = method->method_data_or_null(); 906 assert(md != nullptr, "Sanity"); 907 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 908 assert(data != nullptr, "must have profiling data"); 909 assert(data->is_BranchData(), "need BranchData for two-way branches"); 910 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 911 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 912 if (if_instr->is_swapped()) { 913 int t = taken_count_offset; 914 taken_count_offset = not_taken_count_offset; 915 not_taken_count_offset = t; 916 } 917 918 LIR_Opr md_reg = new_register(T_METADATA); 919 __ metadata2reg(md->constant_encoding(), md_reg); 920 921 LIR_Opr data_offset_reg = new_pointer_register(); 922 __ cmove(lir_cond(cond), 923 LIR_OprFact::intptrConst(taken_count_offset), 924 LIR_OprFact::intptrConst(not_taken_count_offset), 925 data_offset_reg, as_BasicType(if_instr->x()->type())); 926 927 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 928 LIR_Opr data_reg = new_pointer_register(); 929 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 930 __ move(data_addr, data_reg); 931 // Use leal instead of add to avoid destroying condition codes on x86 932 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 933 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 934 __ move(data_reg, data_addr); 935 } 936 } 937 938 // Phi technique: 939 // This is about passing live values from one basic block to the other. 940 // In code generated with Java it is rather rare that more than one 941 // value is on the stack from one basic block to the other. 942 // We optimize our technique for efficient passing of one value 943 // (of type long, int, double..) but it can be extended. 944 // When entering or leaving a basic block, all registers and all spill 945 // slots are release and empty. We use the released registers 946 // and spill slots to pass the live values from one block 947 // to the other. The topmost value, i.e., the value on TOS of expression 948 // stack is passed in registers. All other values are stored in spilling 949 // area. Every Phi has an index which designates its spill slot 950 // At exit of a basic block, we fill the register(s) and spill slots. 951 // At entry of a basic block, the block_prolog sets up the content of phi nodes 952 // and locks necessary registers and spilling slots. 953 954 955 // move current value to referenced phi function 956 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 957 Phi* phi = sux_val->as_Phi(); 958 // cur_val can be null without phi being null in conjunction with inlining 959 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 960 if (phi->is_local()) { 961 for (int i = 0; i < phi->operand_count(); i++) { 962 Value op = phi->operand_at(i); 963 if (op != nullptr && op->type()->is_illegal()) { 964 bailout("illegal phi operand"); 965 } 966 } 967 } 968 Phi* cur_phi = cur_val->as_Phi(); 969 if (cur_phi != nullptr && cur_phi->is_illegal()) { 970 // Phi and local would need to get invalidated 971 // (which is unexpected for Linear Scan). 972 // But this case is very rare so we simply bail out. 973 bailout("propagation of illegal phi"); 974 return; 975 } 976 LIR_Opr operand = cur_val->operand(); 977 if (operand->is_illegal()) { 978 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 979 "these can be produced lazily"); 980 operand = operand_for_instruction(cur_val); 981 } 982 resolver->move(operand, operand_for_instruction(phi)); 983 } 984 } 985 986 987 // Moves all stack values into their PHI position 988 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 989 BlockBegin* bb = block(); 990 if (bb->number_of_sux() == 1) { 991 BlockBegin* sux = bb->sux_at(0); 992 assert(sux->number_of_preds() > 0, "invalid CFG"); 993 994 // a block with only one predecessor never has phi functions 995 if (sux->number_of_preds() > 1) { 996 PhiResolver resolver(this); 997 998 ValueStack* sux_state = sux->state(); 999 Value sux_value; 1000 int index; 1001 1002 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1003 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1004 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1005 1006 for_each_stack_value(sux_state, index, sux_value) { 1007 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1008 } 1009 1010 for_each_local_value(sux_state, index, sux_value) { 1011 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1012 } 1013 1014 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1015 } 1016 } 1017 } 1018 1019 1020 LIR_Opr LIRGenerator::new_register(BasicType type) { 1021 int vreg_num = _virtual_register_number; 1022 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1023 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1024 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1025 bailout("out of virtual registers in LIR generator"); 1026 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1027 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1028 _virtual_register_number = LIR_Opr::vreg_base; 1029 vreg_num = LIR_Opr::vreg_base; 1030 } 1031 } 1032 _virtual_register_number += 1; 1033 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1034 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1035 return vreg; 1036 } 1037 1038 1039 // Try to lock using register in hint 1040 LIR_Opr LIRGenerator::rlock(Value instr) { 1041 return new_register(instr->type()); 1042 } 1043 1044 1045 // does an rlock and sets result 1046 LIR_Opr LIRGenerator::rlock_result(Value x) { 1047 LIR_Opr reg = rlock(x); 1048 set_result(x, reg); 1049 return reg; 1050 } 1051 1052 1053 // does an rlock and sets result 1054 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1055 LIR_Opr reg; 1056 switch (type) { 1057 case T_BYTE: 1058 case T_BOOLEAN: 1059 reg = rlock_byte(type); 1060 break; 1061 default: 1062 reg = rlock(x); 1063 break; 1064 } 1065 1066 set_result(x, reg); 1067 return reg; 1068 } 1069 1070 1071 //--------------------------------------------------------------------- 1072 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1073 ObjectType* oc = value->type()->as_ObjectType(); 1074 if (oc) { 1075 return oc->constant_value(); 1076 } 1077 return nullptr; 1078 } 1079 1080 1081 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1082 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1083 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1084 1085 // no moves are created for phi functions at the begin of exception 1086 // handlers, so assign operands manually here 1087 for_each_phi_fun(block(), phi, 1088 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1089 1090 LIR_Opr thread_reg = getThreadPointer(); 1091 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1092 exceptionOopOpr()); 1093 __ move_wide(LIR_OprFact::oopConst(nullptr), 1094 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1095 __ move_wide(LIR_OprFact::oopConst(nullptr), 1096 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1097 1098 LIR_Opr result = new_register(T_OBJECT); 1099 __ move(exceptionOopOpr(), result); 1100 set_result(x, result); 1101 } 1102 1103 1104 //---------------------------------------------------------------------- 1105 //---------------------------------------------------------------------- 1106 //---------------------------------------------------------------------- 1107 //---------------------------------------------------------------------- 1108 // visitor functions 1109 //---------------------------------------------------------------------- 1110 //---------------------------------------------------------------------- 1111 //---------------------------------------------------------------------- 1112 //---------------------------------------------------------------------- 1113 1114 void LIRGenerator::do_Phi(Phi* x) { 1115 // phi functions are never visited directly 1116 ShouldNotReachHere(); 1117 } 1118 1119 1120 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1121 void LIRGenerator::do_Constant(Constant* x) { 1122 if (x->state_before() != nullptr) { 1123 // Any constant with a ValueStack requires patching so emit the patch here 1124 LIR_Opr reg = rlock_result(x); 1125 CodeEmitInfo* info = state_for(x, x->state_before()); 1126 __ oop2reg_patch(nullptr, reg, info); 1127 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1128 if (!x->is_pinned()) { 1129 // unpinned constants are handled specially so that they can be 1130 // put into registers when they are used multiple times within a 1131 // block. After the block completes their operand will be 1132 // cleared so that other blocks can't refer to that register. 1133 set_result(x, load_constant(x)); 1134 } else { 1135 LIR_Opr res = x->operand(); 1136 if (!res->is_valid()) { 1137 res = LIR_OprFact::value_type(x->type()); 1138 } 1139 if (res->is_constant()) { 1140 LIR_Opr reg = rlock_result(x); 1141 __ move(res, reg); 1142 } else { 1143 set_result(x, res); 1144 } 1145 } 1146 } else { 1147 set_result(x, LIR_OprFact::value_type(x->type())); 1148 } 1149 } 1150 1151 1152 void LIRGenerator::do_Local(Local* x) { 1153 // operand_for_instruction has the side effect of setting the result 1154 // so there's no need to do it here. 1155 operand_for_instruction(x); 1156 } 1157 1158 1159 void LIRGenerator::do_Return(Return* x) { 1160 if (compilation()->env()->dtrace_method_probes()) { 1161 BasicTypeList signature; 1162 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1163 signature.append(T_METADATA); // Method* 1164 LIR_OprList* args = new LIR_OprList(); 1165 args->append(getThreadPointer()); 1166 LIR_Opr meth = new_register(T_METADATA); 1167 __ metadata2reg(method()->constant_encoding(), meth); 1168 args->append(meth); 1169 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1170 } 1171 1172 if (x->type()->is_void()) { 1173 __ return_op(LIR_OprFact::illegalOpr); 1174 } else { 1175 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1176 LIRItem result(x->result(), this); 1177 1178 result.load_item_force(reg); 1179 __ return_op(result.result()); 1180 } 1181 set_no_result(x); 1182 } 1183 1184 // Example: ref.get() 1185 // Combination of LoadField and g1 pre-write barrier 1186 void LIRGenerator::do_Reference_get0(Intrinsic* x) { 1187 1188 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1189 1190 assert(x->number_of_arguments() == 1, "wrong type"); 1191 1192 LIRItem reference(x->argument_at(0), this); 1193 reference.load_item(); 1194 1195 // need to perform the null check on the reference object 1196 CodeEmitInfo* info = nullptr; 1197 if (x->needs_null_check()) { 1198 info = state_for(x); 1199 } 1200 1201 LIR_Opr result = rlock_result(x, T_OBJECT); 1202 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1203 reference, LIR_OprFact::intConst(referent_offset), result, 1204 nullptr, info); 1205 } 1206 1207 // Example: clazz.isInstance(object) 1208 void LIRGenerator::do_isInstance(Intrinsic* x) { 1209 assert(x->number_of_arguments() == 2, "wrong type"); 1210 1211 LIRItem clazz(x->argument_at(0), this); 1212 LIRItem object(x->argument_at(1), this); 1213 clazz.load_item(); 1214 object.load_item(); 1215 LIR_Opr result = rlock_result(x); 1216 1217 // need to perform null check on clazz 1218 if (x->needs_null_check()) { 1219 CodeEmitInfo* info = state_for(x); 1220 __ null_check(clazz.result(), info); 1221 } 1222 1223 address pd_instanceof_fn = isInstance_entry(); 1224 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1225 pd_instanceof_fn, 1226 x->type(), 1227 nullptr); // null CodeEmitInfo results in a leaf call 1228 __ move(call_result, result); 1229 } 1230 1231 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1232 __ load_klass(obj, klass, null_check_info); 1233 } 1234 1235 // Example: object.getClass () 1236 void LIRGenerator::do_getClass(Intrinsic* x) { 1237 assert(x->number_of_arguments() == 1, "wrong type"); 1238 1239 LIRItem rcvr(x->argument_at(0), this); 1240 rcvr.load_item(); 1241 LIR_Opr temp = new_register(T_ADDRESS); 1242 LIR_Opr result = rlock_result(x); 1243 1244 // need to perform the null check on the rcvr 1245 CodeEmitInfo* info = nullptr; 1246 if (x->needs_null_check()) { 1247 info = state_for(x); 1248 } 1249 1250 LIR_Opr klass = new_register(T_METADATA); 1251 load_klass(rcvr.result(), klass, info); 1252 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1253 // mirror = ((OopHandle)mirror)->resolve(); 1254 access_load(IN_NATIVE, T_OBJECT, 1255 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1256 } 1257 1258 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1259 assert(x->number_of_arguments() == 3, "wrong type"); 1260 LIR_Opr result_reg = rlock_result(x); 1261 1262 LIRItem value(x->argument_at(2), this); 1263 value.load_item(); 1264 1265 LIR_Opr klass = new_register(T_METADATA); 1266 load_klass(value.result(), klass, nullptr); 1267 LIR_Opr layout = new_register(T_INT); 1268 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1269 1270 LabelObj* L_done = new LabelObj(); 1271 LabelObj* L_array = new LabelObj(); 1272 1273 __ cmp(lir_cond_lessEqual, layout, 0); 1274 __ branch(lir_cond_lessEqual, L_array->label()); 1275 1276 // Instance case: the layout helper gives us instance size almost directly, 1277 // but we need to mask out the _lh_instance_slow_path_bit. 1278 1279 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1280 1281 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1282 __ logical_and(layout, mask, layout); 1283 __ convert(Bytecodes::_i2l, layout, result_reg); 1284 1285 __ branch(lir_cond_always, L_done->label()); 1286 1287 // Array case: size is round(header + element_size*arraylength). 1288 // Since arraylength is different for every array instance, we have to 1289 // compute the whole thing at runtime. 1290 1291 __ branch_destination(L_array->label()); 1292 1293 int round_mask = MinObjAlignmentInBytes - 1; 1294 1295 // Figure out header sizes first. 1296 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1297 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1298 1299 LIR_Opr header_size = new_register(T_INT); 1300 __ move(layout, header_size); 1301 LIR_Opr tmp = new_register(T_INT); 1302 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1303 __ logical_and(header_size, hsm, header_size); 1304 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1305 1306 // Figure out the array length in bytes 1307 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1308 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1309 __ logical_and(layout, l2esm, layout); 1310 1311 LIR_Opr length_int = new_register(T_INT); 1312 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1313 1314 #ifdef _LP64 1315 LIR_Opr length = new_register(T_LONG); 1316 __ convert(Bytecodes::_i2l, length_int, length); 1317 #endif 1318 1319 // Shift-left awkwardness. Normally it is just: 1320 // __ shift_left(length, layout, length); 1321 // But C1 cannot perform shift_left with non-constant count, so we end up 1322 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1323 // longs, so we have to act on ints. 1324 LabelObj* L_shift_loop = new LabelObj(); 1325 LabelObj* L_shift_exit = new LabelObj(); 1326 1327 __ branch_destination(L_shift_loop->label()); 1328 __ cmp(lir_cond_equal, layout, 0); 1329 __ branch(lir_cond_equal, L_shift_exit->label()); 1330 1331 #ifdef _LP64 1332 __ shift_left(length, 1, length); 1333 #else 1334 __ shift_left(length_int, 1, length_int); 1335 #endif 1336 1337 __ sub(layout, LIR_OprFact::intConst(1), layout); 1338 1339 __ branch(lir_cond_always, L_shift_loop->label()); 1340 __ branch_destination(L_shift_exit->label()); 1341 1342 // Mix all up, round, and push to the result. 1343 #ifdef _LP64 1344 LIR_Opr header_size_long = new_register(T_LONG); 1345 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1346 __ add(length, header_size_long, length); 1347 if (round_mask != 0) { 1348 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1349 __ logical_and(length, round_mask_opr, length); 1350 } 1351 __ move(length, result_reg); 1352 #else 1353 __ add(length_int, header_size, length_int); 1354 if (round_mask != 0) { 1355 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1356 __ logical_and(length_int, round_mask_opr, length_int); 1357 } 1358 __ convert(Bytecodes::_i2l, length_int, result_reg); 1359 #endif 1360 1361 __ branch_destination(L_done->label()); 1362 } 1363 1364 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1365 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1366 } 1367 1368 // Example: Thread.currentCarrierThread() 1369 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1370 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1371 } 1372 1373 void LIRGenerator::do_vthread(Intrinsic* x) { 1374 do_JavaThreadField(x, JavaThread::vthread_offset()); 1375 } 1376 1377 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1378 assert(x->number_of_arguments() == 0, "wrong type"); 1379 LIR_Opr temp = new_register(T_ADDRESS); 1380 LIR_Opr reg = rlock_result(x); 1381 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1382 access_load(IN_NATIVE, T_OBJECT, 1383 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1384 } 1385 1386 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1387 assert(x->number_of_arguments() == 1, "wrong type"); 1388 LIRItem receiver(x->argument_at(0), this); 1389 1390 receiver.load_item(); 1391 BasicTypeList signature; 1392 signature.append(T_OBJECT); // receiver 1393 LIR_OprList* args = new LIR_OprList(); 1394 args->append(receiver.result()); 1395 CodeEmitInfo* info = state_for(x, x->state()); 1396 call_runtime(&signature, args, 1397 CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)), 1398 voidType, info); 1399 1400 set_no_result(x); 1401 } 1402 1403 1404 //------------------------local access-------------------------------------- 1405 1406 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1407 if (x->operand()->is_illegal()) { 1408 Constant* c = x->as_Constant(); 1409 if (c != nullptr) { 1410 x->set_operand(LIR_OprFact::value_type(c->type())); 1411 } else { 1412 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1413 // allocate a virtual register for this local or phi 1414 x->set_operand(rlock(x)); 1415 #ifdef ASSERT 1416 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1417 #endif 1418 } 1419 } 1420 return x->operand(); 1421 } 1422 1423 #ifdef ASSERT 1424 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1425 if (reg_num < _instruction_for_operand.length()) { 1426 return _instruction_for_operand.at(reg_num); 1427 } 1428 return nullptr; 1429 } 1430 #endif 1431 1432 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1433 if (_vreg_flags.size_in_bits() == 0) { 1434 BitMap2D temp(100, num_vreg_flags); 1435 _vreg_flags = temp; 1436 } 1437 _vreg_flags.at_put_grow(vreg_num, f, true); 1438 } 1439 1440 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1441 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1442 return false; 1443 } 1444 return _vreg_flags.at(vreg_num, f); 1445 } 1446 1447 1448 // Block local constant handling. This code is useful for keeping 1449 // unpinned constants and constants which aren't exposed in the IR in 1450 // registers. Unpinned Constant instructions have their operands 1451 // cleared when the block is finished so that other blocks can't end 1452 // up referring to their registers. 1453 1454 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1455 assert(!x->is_pinned(), "only for unpinned constants"); 1456 _unpinned_constants.append(x); 1457 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1458 } 1459 1460 1461 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1462 BasicType t = c->type(); 1463 for (int i = 0; i < _constants.length(); i++) { 1464 LIR_Const* other = _constants.at(i); 1465 if (t == other->type()) { 1466 switch (t) { 1467 case T_INT: 1468 case T_FLOAT: 1469 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1470 break; 1471 case T_LONG: 1472 case T_DOUBLE: 1473 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1474 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1475 break; 1476 case T_OBJECT: 1477 if (c->as_jobject() != other->as_jobject()) continue; 1478 break; 1479 default: 1480 break; 1481 } 1482 return _reg_for_constants.at(i); 1483 } 1484 } 1485 1486 LIR_Opr result = new_register(t); 1487 __ move((LIR_Opr)c, result); 1488 _constants.append(c); 1489 _reg_for_constants.append(result); 1490 return result; 1491 } 1492 1493 //------------------------field access-------------------------------------- 1494 1495 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1496 assert(x->number_of_arguments() == 4, "wrong type"); 1497 LIRItem obj (x->argument_at(0), this); // object 1498 LIRItem offset(x->argument_at(1), this); // offset of field 1499 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1500 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1501 assert(obj.type()->tag() == objectTag, "invalid type"); 1502 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1503 assert(val.type()->tag() == type->tag(), "invalid type"); 1504 1505 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1506 obj, offset, cmp, val); 1507 set_result(x, result); 1508 } 1509 1510 // Comment copied form templateTable_i486.cpp 1511 // ---------------------------------------------------------------------------- 1512 // Volatile variables demand their effects be made known to all CPU's in 1513 // order. Store buffers on most chips allow reads & writes to reorder; the 1514 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1515 // memory barrier (i.e., it's not sufficient that the interpreter does not 1516 // reorder volatile references, the hardware also must not reorder them). 1517 // 1518 // According to the new Java Memory Model (JMM): 1519 // (1) All volatiles are serialized wrt to each other. 1520 // ALSO reads & writes act as acquire & release, so: 1521 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1522 // the read float up to before the read. It's OK for non-volatile memory refs 1523 // that happen before the volatile read to float down below it. 1524 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1525 // that happen BEFORE the write float down to after the write. It's OK for 1526 // non-volatile memory refs that happen after the volatile write to float up 1527 // before it. 1528 // 1529 // We only put in barriers around volatile refs (they are expensive), not 1530 // _between_ memory refs (that would require us to track the flavor of the 1531 // previous memory refs). Requirements (2) and (3) require some barriers 1532 // before volatile stores and after volatile loads. These nearly cover 1533 // requirement (1) but miss the volatile-store-volatile-load case. This final 1534 // case is placed after volatile-stores although it could just as well go 1535 // before volatile-loads. 1536 1537 1538 void LIRGenerator::do_StoreField(StoreField* x) { 1539 bool needs_patching = x->needs_patching(); 1540 bool is_volatile = x->field()->is_volatile(); 1541 BasicType field_type = x->field_type(); 1542 1543 CodeEmitInfo* info = nullptr; 1544 if (needs_patching) { 1545 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1546 info = state_for(x, x->state_before()); 1547 } else if (x->needs_null_check()) { 1548 NullCheck* nc = x->explicit_null_check(); 1549 if (nc == nullptr) { 1550 info = state_for(x); 1551 } else { 1552 info = state_for(nc); 1553 } 1554 } 1555 1556 LIRItem object(x->obj(), this); 1557 LIRItem value(x->value(), this); 1558 1559 object.load_item(); 1560 1561 if (is_volatile || needs_patching) { 1562 // load item if field is volatile (fewer special cases for volatiles) 1563 // load item if field not initialized 1564 // load item if field not constant 1565 // because of code patching we cannot inline constants 1566 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1567 value.load_byte_item(); 1568 } else { 1569 value.load_item(); 1570 } 1571 } else { 1572 value.load_for_store(field_type); 1573 } 1574 1575 set_no_result(x); 1576 1577 #ifndef PRODUCT 1578 if (PrintNotLoaded && needs_patching) { 1579 tty->print_cr(" ###class not loaded at store_%s bci %d", 1580 x->is_static() ? "static" : "field", x->printable_bci()); 1581 } 1582 #endif 1583 1584 if (x->needs_null_check() && 1585 (needs_patching || 1586 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1587 // Emit an explicit null check because the offset is too large. 1588 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1589 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1590 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1591 } 1592 1593 DecoratorSet decorators = IN_HEAP; 1594 if (is_volatile) { 1595 decorators |= MO_SEQ_CST; 1596 } 1597 if (needs_patching) { 1598 decorators |= C1_NEEDS_PATCHING; 1599 } 1600 1601 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1602 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1603 } 1604 1605 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1606 assert(x->is_pinned(),""); 1607 bool needs_range_check = x->compute_needs_range_check(); 1608 bool use_length = x->length() != nullptr; 1609 bool obj_store = is_reference_type(x->elt_type()); 1610 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1611 !get_jobject_constant(x->value())->is_null_object() || 1612 x->should_profile()); 1613 1614 LIRItem array(x->array(), this); 1615 LIRItem index(x->index(), this); 1616 LIRItem value(x->value(), this); 1617 LIRItem length(this); 1618 1619 array.load_item(); 1620 index.load_nonconstant(); 1621 1622 if (use_length && needs_range_check) { 1623 length.set_instruction(x->length()); 1624 length.load_item(); 1625 1626 } 1627 if (needs_store_check || x->check_boolean()) { 1628 value.load_item(); 1629 } else { 1630 value.load_for_store(x->elt_type()); 1631 } 1632 1633 set_no_result(x); 1634 1635 // the CodeEmitInfo must be duplicated for each different 1636 // LIR-instruction because spilling can occur anywhere between two 1637 // instructions and so the debug information must be different 1638 CodeEmitInfo* range_check_info = state_for(x); 1639 CodeEmitInfo* null_check_info = nullptr; 1640 if (x->needs_null_check()) { 1641 null_check_info = new CodeEmitInfo(range_check_info); 1642 } 1643 1644 if (needs_range_check) { 1645 if (use_length) { 1646 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1647 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1648 } else { 1649 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1650 // range_check also does the null check 1651 null_check_info = nullptr; 1652 } 1653 } 1654 1655 if (GenerateArrayStoreCheck && needs_store_check) { 1656 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1657 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1658 } 1659 1660 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1661 if (x->check_boolean()) { 1662 decorators |= C1_MASK_BOOLEAN; 1663 } 1664 1665 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1666 nullptr, null_check_info); 1667 } 1668 1669 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1670 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1671 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1672 decorators |= ACCESS_READ; 1673 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1674 if (access.is_raw()) { 1675 _barrier_set->BarrierSetC1::load_at(access, result); 1676 } else { 1677 _barrier_set->load_at(access, result); 1678 } 1679 } 1680 1681 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1682 LIR_Opr addr, LIR_Opr result) { 1683 decorators |= ACCESS_READ; 1684 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1685 access.set_resolved_addr(addr); 1686 if (access.is_raw()) { 1687 _barrier_set->BarrierSetC1::load(access, result); 1688 } else { 1689 _barrier_set->load(access, result); 1690 } 1691 } 1692 1693 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1694 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1695 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1696 decorators |= ACCESS_WRITE; 1697 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1698 if (access.is_raw()) { 1699 _barrier_set->BarrierSetC1::store_at(access, value); 1700 } else { 1701 _barrier_set->store_at(access, value); 1702 } 1703 } 1704 1705 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1706 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1707 decorators |= ACCESS_READ; 1708 decorators |= ACCESS_WRITE; 1709 // Atomic operations are SEQ_CST by default 1710 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1711 LIRAccess access(this, decorators, base, offset, type); 1712 if (access.is_raw()) { 1713 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1714 } else { 1715 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1716 } 1717 } 1718 1719 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1720 LIRItem& base, LIRItem& offset, LIRItem& value) { 1721 decorators |= ACCESS_READ; 1722 decorators |= ACCESS_WRITE; 1723 // Atomic operations are SEQ_CST by default 1724 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1725 LIRAccess access(this, decorators, base, offset, type); 1726 if (access.is_raw()) { 1727 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1728 } else { 1729 return _barrier_set->atomic_xchg_at(access, value); 1730 } 1731 } 1732 1733 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1734 LIRItem& base, LIRItem& offset, LIRItem& value) { 1735 decorators |= ACCESS_READ; 1736 decorators |= ACCESS_WRITE; 1737 // Atomic operations are SEQ_CST by default 1738 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1739 LIRAccess access(this, decorators, base, offset, type); 1740 if (access.is_raw()) { 1741 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1742 } else { 1743 return _barrier_set->atomic_add_at(access, value); 1744 } 1745 } 1746 1747 void LIRGenerator::do_LoadField(LoadField* x) { 1748 bool needs_patching = x->needs_patching(); 1749 bool is_volatile = x->field()->is_volatile(); 1750 BasicType field_type = x->field_type(); 1751 1752 CodeEmitInfo* info = nullptr; 1753 if (needs_patching) { 1754 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1755 info = state_for(x, x->state_before()); 1756 } else if (x->needs_null_check()) { 1757 NullCheck* nc = x->explicit_null_check(); 1758 if (nc == nullptr) { 1759 info = state_for(x); 1760 } else { 1761 info = state_for(nc); 1762 } 1763 } 1764 1765 LIRItem object(x->obj(), this); 1766 1767 object.load_item(); 1768 1769 #ifndef PRODUCT 1770 if (PrintNotLoaded && needs_patching) { 1771 tty->print_cr(" ###class not loaded at load_%s bci %d", 1772 x->is_static() ? "static" : "field", x->printable_bci()); 1773 } 1774 #endif 1775 1776 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1777 if (x->needs_null_check() && 1778 (needs_patching || 1779 MacroAssembler::needs_explicit_null_check(x->offset()) || 1780 stress_deopt)) { 1781 LIR_Opr obj = object.result(); 1782 if (stress_deopt) { 1783 obj = new_register(T_OBJECT); 1784 __ move(LIR_OprFact::oopConst(nullptr), obj); 1785 } 1786 // Emit an explicit null check because the offset is too large. 1787 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1788 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1789 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1790 } 1791 1792 DecoratorSet decorators = IN_HEAP; 1793 if (is_volatile) { 1794 decorators |= MO_SEQ_CST; 1795 } 1796 if (needs_patching) { 1797 decorators |= C1_NEEDS_PATCHING; 1798 } 1799 1800 LIR_Opr result = rlock_result(x, field_type); 1801 access_load_at(decorators, field_type, 1802 object, LIR_OprFact::intConst(x->offset()), result, 1803 info ? new CodeEmitInfo(info) : nullptr, info); 1804 } 1805 1806 // int/long jdk.internal.util.Preconditions.checkIndex 1807 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1808 assert(x->number_of_arguments() == 3, "wrong type"); 1809 LIRItem index(x->argument_at(0), this); 1810 LIRItem length(x->argument_at(1), this); 1811 LIRItem oobef(x->argument_at(2), this); 1812 1813 index.load_item(); 1814 length.load_item(); 1815 oobef.load_item(); 1816 1817 LIR_Opr result = rlock_result(x); 1818 // x->state() is created from copy_state_for_exception, it does not contains arguments 1819 // we should prepare them before entering into interpreter mode due to deoptimization. 1820 ValueStack* state = x->state(); 1821 for (int i = 0; i < x->number_of_arguments(); i++) { 1822 Value arg = x->argument_at(i); 1823 state->push(arg->type(), arg); 1824 } 1825 CodeEmitInfo* info = state_for(x, state); 1826 1827 LIR_Opr len = length.result(); 1828 LIR_Opr zero; 1829 if (type == T_INT) { 1830 zero = LIR_OprFact::intConst(0); 1831 if (length.result()->is_constant()){ 1832 len = LIR_OprFact::intConst(length.result()->as_jint()); 1833 } 1834 } else { 1835 assert(type == T_LONG, "sanity check"); 1836 zero = LIR_OprFact::longConst(0); 1837 if (length.result()->is_constant()){ 1838 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1839 } 1840 } 1841 // C1 can not handle the case that comparing index with constant value while condition 1842 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1843 LIR_Opr zero_reg = new_register(type); 1844 __ move(zero, zero_reg); 1845 #if defined(X86) && !defined(_LP64) 1846 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1847 LIR_Opr index_copy = new_register(index.type()); 1848 // index >= 0 1849 __ move(index.result(), index_copy); 1850 __ cmp(lir_cond_less, index_copy, zero_reg); 1851 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1852 Deoptimization::Action_make_not_entrant)); 1853 // index < length 1854 __ move(index.result(), index_copy); 1855 __ cmp(lir_cond_greaterEqual, index_copy, len); 1856 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1857 Deoptimization::Action_make_not_entrant)); 1858 #else 1859 // index >= 0 1860 __ cmp(lir_cond_less, index.result(), zero_reg); 1861 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1862 Deoptimization::Action_make_not_entrant)); 1863 // index < length 1864 __ cmp(lir_cond_greaterEqual, index.result(), len); 1865 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1866 Deoptimization::Action_make_not_entrant)); 1867 #endif 1868 __ move(index.result(), result); 1869 } 1870 1871 //------------------------array access-------------------------------------- 1872 1873 1874 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1875 LIRItem array(x->array(), this); 1876 array.load_item(); 1877 LIR_Opr reg = rlock_result(x); 1878 1879 CodeEmitInfo* info = nullptr; 1880 if (x->needs_null_check()) { 1881 NullCheck* nc = x->explicit_null_check(); 1882 if (nc == nullptr) { 1883 info = state_for(x); 1884 } else { 1885 info = state_for(nc); 1886 } 1887 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1888 LIR_Opr obj = new_register(T_OBJECT); 1889 __ move(LIR_OprFact::oopConst(nullptr), obj); 1890 __ null_check(obj, new CodeEmitInfo(info)); 1891 } 1892 } 1893 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1894 } 1895 1896 1897 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1898 bool use_length = x->length() != nullptr; 1899 LIRItem array(x->array(), this); 1900 LIRItem index(x->index(), this); 1901 LIRItem length(this); 1902 bool needs_range_check = x->compute_needs_range_check(); 1903 1904 if (use_length && needs_range_check) { 1905 length.set_instruction(x->length()); 1906 length.load_item(); 1907 } 1908 1909 array.load_item(); 1910 if (index.is_constant() && can_inline_as_constant(x->index())) { 1911 // let it be a constant 1912 index.dont_load_item(); 1913 } else { 1914 index.load_item(); 1915 } 1916 1917 CodeEmitInfo* range_check_info = state_for(x); 1918 CodeEmitInfo* null_check_info = nullptr; 1919 if (x->needs_null_check()) { 1920 NullCheck* nc = x->explicit_null_check(); 1921 if (nc != nullptr) { 1922 null_check_info = state_for(nc); 1923 } else { 1924 null_check_info = range_check_info; 1925 } 1926 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1927 LIR_Opr obj = new_register(T_OBJECT); 1928 __ move(LIR_OprFact::oopConst(nullptr), obj); 1929 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1930 } 1931 } 1932 1933 if (needs_range_check) { 1934 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1935 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1936 } else if (use_length) { 1937 // TODO: use a (modified) version of array_range_check that does not require a 1938 // constant length to be loaded to a register 1939 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1940 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1941 } else { 1942 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1943 // The range check performs the null check, so clear it out for the load 1944 null_check_info = nullptr; 1945 } 1946 } 1947 1948 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1949 1950 LIR_Opr result = rlock_result(x, x->elt_type()); 1951 access_load_at(decorators, x->elt_type(), 1952 array, index.result(), result, 1953 nullptr, null_check_info); 1954 } 1955 1956 1957 void LIRGenerator::do_NullCheck(NullCheck* x) { 1958 if (x->can_trap()) { 1959 LIRItem value(x->obj(), this); 1960 value.load_item(); 1961 CodeEmitInfo* info = state_for(x); 1962 __ null_check(value.result(), info); 1963 } 1964 } 1965 1966 1967 void LIRGenerator::do_TypeCast(TypeCast* x) { 1968 LIRItem value(x->obj(), this); 1969 value.load_item(); 1970 // the result is the same as from the node we are casting 1971 set_result(x, value.result()); 1972 } 1973 1974 1975 void LIRGenerator::do_Throw(Throw* x) { 1976 LIRItem exception(x->exception(), this); 1977 exception.load_item(); 1978 set_no_result(x); 1979 LIR_Opr exception_opr = exception.result(); 1980 CodeEmitInfo* info = state_for(x, x->state()); 1981 1982 #ifndef PRODUCT 1983 if (PrintC1Statistics) { 1984 increment_counter(Runtime1::throw_count_address(), T_INT); 1985 } 1986 #endif 1987 1988 // check if the instruction has an xhandler in any of the nested scopes 1989 bool unwind = false; 1990 if (info->exception_handlers()->length() == 0) { 1991 // this throw is not inside an xhandler 1992 unwind = true; 1993 } else { 1994 // get some idea of the throw type 1995 bool type_is_exact = true; 1996 ciType* throw_type = x->exception()->exact_type(); 1997 if (throw_type == nullptr) { 1998 type_is_exact = false; 1999 throw_type = x->exception()->declared_type(); 2000 } 2001 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2002 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2003 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2004 } 2005 } 2006 2007 // do null check before moving exception oop into fixed register 2008 // to avoid a fixed interval with an oop during the null check. 2009 // Use a copy of the CodeEmitInfo because debug information is 2010 // different for null_check and throw. 2011 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2012 // if the exception object wasn't created using new then it might be null. 2013 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2014 } 2015 2016 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2017 // we need to go through the exception lookup path to get JVMTI 2018 // notification done 2019 unwind = false; 2020 } 2021 2022 // move exception oop into fixed register 2023 __ move(exception_opr, exceptionOopOpr()); 2024 2025 if (unwind) { 2026 __ unwind_exception(exceptionOopOpr()); 2027 } else { 2028 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2029 } 2030 } 2031 2032 2033 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2034 BasicType type = x->basic_type(); 2035 LIRItem src(x->object(), this); 2036 LIRItem off(x->offset(), this); 2037 2038 off.load_item(); 2039 src.load_item(); 2040 2041 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2042 2043 if (x->is_volatile()) { 2044 decorators |= MO_SEQ_CST; 2045 } 2046 if (type == T_BOOLEAN) { 2047 decorators |= C1_MASK_BOOLEAN; 2048 } 2049 if (is_reference_type(type)) { 2050 decorators |= ON_UNKNOWN_OOP_REF; 2051 } 2052 2053 LIR_Opr result = rlock_result(x, type); 2054 if (!x->is_raw()) { 2055 access_load_at(decorators, type, src, off.result(), result); 2056 } else { 2057 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2058 // It reads the value from [src + offset] directly. 2059 #ifdef _LP64 2060 LIR_Opr offset = new_register(T_LONG); 2061 __ convert(Bytecodes::_i2l, off.result(), offset); 2062 #else 2063 LIR_Opr offset = off.result(); 2064 #endif 2065 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2066 if (is_reference_type(type)) { 2067 __ move_wide(addr, result); 2068 } else { 2069 __ move(addr, result); 2070 } 2071 } 2072 } 2073 2074 2075 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2076 BasicType type = x->basic_type(); 2077 LIRItem src(x->object(), this); 2078 LIRItem off(x->offset(), this); 2079 LIRItem data(x->value(), this); 2080 2081 src.load_item(); 2082 if (type == T_BOOLEAN || type == T_BYTE) { 2083 data.load_byte_item(); 2084 } else { 2085 data.load_item(); 2086 } 2087 off.load_item(); 2088 2089 set_no_result(x); 2090 2091 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2092 if (is_reference_type(type)) { 2093 decorators |= ON_UNKNOWN_OOP_REF; 2094 } 2095 if (x->is_volatile()) { 2096 decorators |= MO_SEQ_CST; 2097 } 2098 access_store_at(decorators, type, src, off.result(), data.result()); 2099 } 2100 2101 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2102 BasicType type = x->basic_type(); 2103 LIRItem src(x->object(), this); 2104 LIRItem off(x->offset(), this); 2105 LIRItem value(x->value(), this); 2106 2107 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2108 2109 if (is_reference_type(type)) { 2110 decorators |= ON_UNKNOWN_OOP_REF; 2111 } 2112 2113 LIR_Opr result; 2114 if (x->is_add()) { 2115 result = access_atomic_add_at(decorators, type, src, off, value); 2116 } else { 2117 result = access_atomic_xchg_at(decorators, type, src, off, value); 2118 } 2119 set_result(x, result); 2120 } 2121 2122 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2123 int lng = x->length(); 2124 2125 for (int i = 0; i < lng; i++) { 2126 C1SwitchRange* one_range = x->at(i); 2127 int low_key = one_range->low_key(); 2128 int high_key = one_range->high_key(); 2129 BlockBegin* dest = one_range->sux(); 2130 if (low_key == high_key) { 2131 __ cmp(lir_cond_equal, value, low_key); 2132 __ branch(lir_cond_equal, dest); 2133 } else if (high_key - low_key == 1) { 2134 __ cmp(lir_cond_equal, value, low_key); 2135 __ branch(lir_cond_equal, dest); 2136 __ cmp(lir_cond_equal, value, high_key); 2137 __ branch(lir_cond_equal, dest); 2138 } else { 2139 LabelObj* L = new LabelObj(); 2140 __ cmp(lir_cond_less, value, low_key); 2141 __ branch(lir_cond_less, L->label()); 2142 __ cmp(lir_cond_lessEqual, value, high_key); 2143 __ branch(lir_cond_lessEqual, dest); 2144 __ branch_destination(L->label()); 2145 } 2146 } 2147 __ jump(default_sux); 2148 } 2149 2150 2151 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2152 SwitchRangeList* res = new SwitchRangeList(); 2153 int len = x->length(); 2154 if (len > 0) { 2155 BlockBegin* sux = x->sux_at(0); 2156 int low = x->lo_key(); 2157 BlockBegin* default_sux = x->default_sux(); 2158 C1SwitchRange* range = new C1SwitchRange(low, sux); 2159 for (int i = 0; i < len; i++) { 2160 int key = low + i; 2161 BlockBegin* new_sux = x->sux_at(i); 2162 if (sux == new_sux) { 2163 // still in same range 2164 range->set_high_key(key); 2165 } else { 2166 // skip tests which explicitly dispatch to the default 2167 if (sux != default_sux) { 2168 res->append(range); 2169 } 2170 range = new C1SwitchRange(key, new_sux); 2171 } 2172 sux = new_sux; 2173 } 2174 if (res->length() == 0 || res->last() != range) res->append(range); 2175 } 2176 return res; 2177 } 2178 2179 2180 // we expect the keys to be sorted by increasing value 2181 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2182 SwitchRangeList* res = new SwitchRangeList(); 2183 int len = x->length(); 2184 if (len > 0) { 2185 BlockBegin* default_sux = x->default_sux(); 2186 int key = x->key_at(0); 2187 BlockBegin* sux = x->sux_at(0); 2188 C1SwitchRange* range = new C1SwitchRange(key, sux); 2189 for (int i = 1; i < len; i++) { 2190 int new_key = x->key_at(i); 2191 BlockBegin* new_sux = x->sux_at(i); 2192 if (key+1 == new_key && sux == new_sux) { 2193 // still in same range 2194 range->set_high_key(new_key); 2195 } else { 2196 // skip tests which explicitly dispatch to the default 2197 if (range->sux() != default_sux) { 2198 res->append(range); 2199 } 2200 range = new C1SwitchRange(new_key, new_sux); 2201 } 2202 key = new_key; 2203 sux = new_sux; 2204 } 2205 if (res->length() == 0 || res->last() != range) res->append(range); 2206 } 2207 return res; 2208 } 2209 2210 2211 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2212 LIRItem tag(x->tag(), this); 2213 tag.load_item(); 2214 set_no_result(x); 2215 2216 if (x->is_safepoint()) { 2217 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2218 } 2219 2220 // move values into phi locations 2221 move_to_phi(x->state()); 2222 2223 int lo_key = x->lo_key(); 2224 int len = x->length(); 2225 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2226 LIR_Opr value = tag.result(); 2227 2228 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2229 ciMethod* method = x->state()->scope()->method(); 2230 ciMethodData* md = method->method_data_or_null(); 2231 assert(md != nullptr, "Sanity"); 2232 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2233 assert(data != nullptr, "must have profiling data"); 2234 assert(data->is_MultiBranchData(), "bad profile data?"); 2235 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2236 LIR_Opr md_reg = new_register(T_METADATA); 2237 __ metadata2reg(md->constant_encoding(), md_reg); 2238 LIR_Opr data_offset_reg = new_pointer_register(); 2239 LIR_Opr tmp_reg = new_pointer_register(); 2240 2241 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2242 for (int i = 0; i < len; i++) { 2243 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2244 __ cmp(lir_cond_equal, value, i + lo_key); 2245 __ move(data_offset_reg, tmp_reg); 2246 __ cmove(lir_cond_equal, 2247 LIR_OprFact::intptrConst(count_offset), 2248 tmp_reg, 2249 data_offset_reg, T_INT); 2250 } 2251 2252 LIR_Opr data_reg = new_pointer_register(); 2253 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2254 __ move(data_addr, data_reg); 2255 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2256 __ move(data_reg, data_addr); 2257 } 2258 2259 if (UseTableRanges) { 2260 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2261 } else { 2262 for (int i = 0; i < len; i++) { 2263 __ cmp(lir_cond_equal, value, i + lo_key); 2264 __ branch(lir_cond_equal, x->sux_at(i)); 2265 } 2266 __ jump(x->default_sux()); 2267 } 2268 } 2269 2270 2271 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2272 LIRItem tag(x->tag(), this); 2273 tag.load_item(); 2274 set_no_result(x); 2275 2276 if (x->is_safepoint()) { 2277 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2278 } 2279 2280 // move values into phi locations 2281 move_to_phi(x->state()); 2282 2283 LIR_Opr value = tag.result(); 2284 int len = x->length(); 2285 2286 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2287 ciMethod* method = x->state()->scope()->method(); 2288 ciMethodData* md = method->method_data_or_null(); 2289 assert(md != nullptr, "Sanity"); 2290 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2291 assert(data != nullptr, "must have profiling data"); 2292 assert(data->is_MultiBranchData(), "bad profile data?"); 2293 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2294 LIR_Opr md_reg = new_register(T_METADATA); 2295 __ metadata2reg(md->constant_encoding(), md_reg); 2296 LIR_Opr data_offset_reg = new_pointer_register(); 2297 LIR_Opr tmp_reg = new_pointer_register(); 2298 2299 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2300 for (int i = 0; i < len; i++) { 2301 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2302 __ cmp(lir_cond_equal, value, x->key_at(i)); 2303 __ move(data_offset_reg, tmp_reg); 2304 __ cmove(lir_cond_equal, 2305 LIR_OprFact::intptrConst(count_offset), 2306 tmp_reg, 2307 data_offset_reg, T_INT); 2308 } 2309 2310 LIR_Opr data_reg = new_pointer_register(); 2311 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2312 __ move(data_addr, data_reg); 2313 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2314 __ move(data_reg, data_addr); 2315 } 2316 2317 if (UseTableRanges) { 2318 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2319 } else { 2320 int len = x->length(); 2321 for (int i = 0; i < len; i++) { 2322 __ cmp(lir_cond_equal, value, x->key_at(i)); 2323 __ branch(lir_cond_equal, x->sux_at(i)); 2324 } 2325 __ jump(x->default_sux()); 2326 } 2327 } 2328 2329 2330 void LIRGenerator::do_Goto(Goto* x) { 2331 set_no_result(x); 2332 2333 if (block()->next()->as_OsrEntry()) { 2334 // need to free up storage used for OSR entry point 2335 LIR_Opr osrBuffer = block()->next()->operand(); 2336 BasicTypeList signature; 2337 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2338 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2339 __ move(osrBuffer, cc->args()->at(0)); 2340 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2341 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2342 } 2343 2344 if (x->is_safepoint()) { 2345 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2346 2347 // increment backedge counter if needed 2348 CodeEmitInfo* info = state_for(x, state); 2349 increment_backedge_counter(info, x->profiled_bci()); 2350 CodeEmitInfo* safepoint_info = state_for(x, state); 2351 __ safepoint(safepoint_poll_register(), safepoint_info); 2352 } 2353 2354 // Gotos can be folded Ifs, handle this case. 2355 if (x->should_profile()) { 2356 ciMethod* method = x->profiled_method(); 2357 assert(method != nullptr, "method should be set if branch is profiled"); 2358 ciMethodData* md = method->method_data_or_null(); 2359 assert(md != nullptr, "Sanity"); 2360 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2361 assert(data != nullptr, "must have profiling data"); 2362 int offset; 2363 if (x->direction() == Goto::taken) { 2364 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2365 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2366 } else if (x->direction() == Goto::not_taken) { 2367 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2368 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2369 } else { 2370 assert(data->is_JumpData(), "need JumpData for branches"); 2371 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2372 } 2373 LIR_Opr md_reg = new_register(T_METADATA); 2374 __ metadata2reg(md->constant_encoding(), md_reg); 2375 2376 increment_counter(new LIR_Address(md_reg, offset, 2377 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2378 } 2379 2380 // emit phi-instruction move after safepoint since this simplifies 2381 // describing the state as the safepoint. 2382 move_to_phi(x->state()); 2383 2384 __ jump(x->default_sux()); 2385 } 2386 2387 /** 2388 * Emit profiling code if needed for arguments, parameters, return value types 2389 * 2390 * @param md MDO the code will update at runtime 2391 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2392 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2393 * @param profiled_k current profile 2394 * @param obj IR node for the object to be profiled 2395 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2396 * Set once we find an update to make and use for next ones. 2397 * @param not_null true if we know obj cannot be null 2398 * @param signature_at_call_k signature at call for obj 2399 * @param callee_signature_k signature of callee for obj 2400 * at call and callee signatures differ at method handle call 2401 * @return the only klass we know will ever be seen at this profile point 2402 */ 2403 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2404 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2405 ciKlass* callee_signature_k) { 2406 ciKlass* result = nullptr; 2407 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2408 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2409 // known not to be null or null bit already set and already set to 2410 // unknown: nothing we can do to improve profiling 2411 if (!do_null && !do_update) { 2412 return result; 2413 } 2414 2415 ciKlass* exact_klass = nullptr; 2416 Compilation* comp = Compilation::current(); 2417 if (do_update) { 2418 // try to find exact type, using CHA if possible, so that loading 2419 // the klass from the object can be avoided 2420 ciType* type = obj->exact_type(); 2421 if (type == nullptr) { 2422 type = obj->declared_type(); 2423 type = comp->cha_exact_type(type); 2424 } 2425 assert(type == nullptr || type->is_klass(), "type should be class"); 2426 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2427 2428 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2429 } 2430 2431 if (!do_null && !do_update) { 2432 return result; 2433 } 2434 2435 ciKlass* exact_signature_k = nullptr; 2436 if (do_update) { 2437 // Is the type from the signature exact (the only one possible)? 2438 exact_signature_k = signature_at_call_k->exact_klass(); 2439 if (exact_signature_k == nullptr) { 2440 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2441 } else { 2442 result = exact_signature_k; 2443 // Known statically. No need to emit any code: prevent 2444 // LIR_Assembler::emit_profile_type() from emitting useless code 2445 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2446 } 2447 // exact_klass and exact_signature_k can be both non null but 2448 // different if exact_klass is loaded after the ciObject for 2449 // exact_signature_k is created. 2450 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2451 // sometimes the type of the signature is better than the best type 2452 // the compiler has 2453 exact_klass = exact_signature_k; 2454 } 2455 if (callee_signature_k != nullptr && 2456 callee_signature_k != signature_at_call_k) { 2457 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2458 if (improved_klass == nullptr) { 2459 improved_klass = comp->cha_exact_type(callee_signature_k); 2460 } 2461 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2462 exact_klass = exact_signature_k; 2463 } 2464 } 2465 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2466 } 2467 2468 if (!do_null && !do_update) { 2469 return result; 2470 } 2471 2472 if (mdp == LIR_OprFact::illegalOpr) { 2473 mdp = new_register(T_METADATA); 2474 __ metadata2reg(md->constant_encoding(), mdp); 2475 if (md_base_offset != 0) { 2476 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2477 mdp = new_pointer_register(); 2478 __ leal(LIR_OprFact::address(base_type_address), mdp); 2479 } 2480 } 2481 LIRItem value(obj, this); 2482 value.load_item(); 2483 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2484 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2485 return result; 2486 } 2487 2488 // profile parameters on entry to the root of the compilation 2489 void LIRGenerator::profile_parameters(Base* x) { 2490 if (compilation()->profile_parameters()) { 2491 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2492 ciMethodData* md = scope()->method()->method_data_or_null(); 2493 assert(md != nullptr, "Sanity"); 2494 2495 if (md->parameters_type_data() != nullptr) { 2496 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2497 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2498 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2499 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2500 LIR_Opr src = args->at(i); 2501 assert(!src->is_illegal(), "check"); 2502 BasicType t = src->type(); 2503 if (is_reference_type(t)) { 2504 intptr_t profiled_k = parameters->type(j); 2505 Local* local = x->state()->local_at(java_index)->as_Local(); 2506 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2507 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2508 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2509 // If the profile is known statically set it once for all and do not emit any code 2510 if (exact != nullptr) { 2511 md->set_parameter_type(j, exact); 2512 } 2513 j++; 2514 } 2515 java_index += type2size[t]; 2516 } 2517 } 2518 } 2519 } 2520 2521 void LIRGenerator::do_Base(Base* x) { 2522 __ std_entry(LIR_OprFact::illegalOpr); 2523 // Emit moves from physical registers / stack slots to virtual registers 2524 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2525 IRScope* irScope = compilation()->hir()->top_scope(); 2526 int java_index = 0; 2527 for (int i = 0; i < args->length(); i++) { 2528 LIR_Opr src = args->at(i); 2529 assert(!src->is_illegal(), "check"); 2530 BasicType t = src->type(); 2531 2532 // Types which are smaller than int are passed as int, so 2533 // correct the type which passed. 2534 switch (t) { 2535 case T_BYTE: 2536 case T_BOOLEAN: 2537 case T_SHORT: 2538 case T_CHAR: 2539 t = T_INT; 2540 break; 2541 default: 2542 break; 2543 } 2544 2545 LIR_Opr dest = new_register(t); 2546 __ move(src, dest); 2547 2548 // Assign new location to Local instruction for this local 2549 Local* local = x->state()->local_at(java_index)->as_Local(); 2550 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2551 #ifndef __SOFTFP__ 2552 // The java calling convention passes double as long and float as int. 2553 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2554 #endif // __SOFTFP__ 2555 local->set_operand(dest); 2556 #ifdef ASSERT 2557 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2558 #endif 2559 java_index += type2size[t]; 2560 } 2561 2562 if (compilation()->env()->dtrace_method_probes()) { 2563 BasicTypeList signature; 2564 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2565 signature.append(T_METADATA); // Method* 2566 LIR_OprList* args = new LIR_OprList(); 2567 args->append(getThreadPointer()); 2568 LIR_Opr meth = new_register(T_METADATA); 2569 __ metadata2reg(method()->constant_encoding(), meth); 2570 args->append(meth); 2571 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2572 } 2573 2574 if (method()->is_synchronized()) { 2575 LIR_Opr obj; 2576 if (method()->is_static()) { 2577 obj = new_register(T_OBJECT); 2578 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2579 } else { 2580 Local* receiver = x->state()->local_at(0)->as_Local(); 2581 assert(receiver != nullptr, "must already exist"); 2582 obj = receiver->operand(); 2583 } 2584 assert(obj->is_valid(), "must be valid"); 2585 2586 if (method()->is_synchronized()) { 2587 LIR_Opr lock = syncLockOpr(); 2588 __ load_stack_address_monitor(0, lock); 2589 2590 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2591 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2592 2593 // receiver is guaranteed non-null so don't need CodeEmitInfo 2594 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2595 } 2596 } 2597 // increment invocation counters if needed 2598 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2599 profile_parameters(x); 2600 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2601 increment_invocation_counter(info); 2602 } 2603 2604 // all blocks with a successor must end with an unconditional jump 2605 // to the successor even if they are consecutive 2606 __ jump(x->default_sux()); 2607 } 2608 2609 2610 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2611 // construct our frame and model the production of incoming pointer 2612 // to the OSR buffer. 2613 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2614 LIR_Opr result = rlock_result(x); 2615 __ move(LIR_Assembler::osrBufferPointer(), result); 2616 } 2617 2618 2619 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2620 assert(args->length() == arg_list->length(), 2621 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2622 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2623 LIRItem* param = args->at(i); 2624 LIR_Opr loc = arg_list->at(i); 2625 if (loc->is_register()) { 2626 param->load_item_force(loc); 2627 } else { 2628 LIR_Address* addr = loc->as_address_ptr(); 2629 param->load_for_store(addr->type()); 2630 if (addr->type() == T_OBJECT) { 2631 __ move_wide(param->result(), addr); 2632 } else 2633 __ move(param->result(), addr); 2634 } 2635 } 2636 2637 if (x->has_receiver()) { 2638 LIRItem* receiver = args->at(0); 2639 LIR_Opr loc = arg_list->at(0); 2640 if (loc->is_register()) { 2641 receiver->load_item_force(loc); 2642 } else { 2643 assert(loc->is_address(), "just checking"); 2644 receiver->load_for_store(T_OBJECT); 2645 __ move_wide(receiver->result(), loc->as_address_ptr()); 2646 } 2647 } 2648 } 2649 2650 2651 // Visits all arguments, returns appropriate items without loading them 2652 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2653 LIRItemList* argument_items = new LIRItemList(); 2654 if (x->has_receiver()) { 2655 LIRItem* receiver = new LIRItem(x->receiver(), this); 2656 argument_items->append(receiver); 2657 } 2658 for (int i = 0; i < x->number_of_arguments(); i++) { 2659 LIRItem* param = new LIRItem(x->argument_at(i), this); 2660 argument_items->append(param); 2661 } 2662 return argument_items; 2663 } 2664 2665 2666 // The invoke with receiver has following phases: 2667 // a) traverse and load/lock receiver; 2668 // b) traverse all arguments -> item-array (invoke_visit_argument) 2669 // c) push receiver on stack 2670 // d) load each of the items and push on stack 2671 // e) unlock receiver 2672 // f) move receiver into receiver-register %o0 2673 // g) lock result registers and emit call operation 2674 // 2675 // Before issuing a call, we must spill-save all values on stack 2676 // that are in caller-save register. "spill-save" moves those registers 2677 // either in a free callee-save register or spills them if no free 2678 // callee save register is available. 2679 // 2680 // The problem is where to invoke spill-save. 2681 // - if invoked between e) and f), we may lock callee save 2682 // register in "spill-save" that destroys the receiver register 2683 // before f) is executed 2684 // - if we rearrange f) to be earlier (by loading %o0) it 2685 // may destroy a value on the stack that is currently in %o0 2686 // and is waiting to be spilled 2687 // - if we keep the receiver locked while doing spill-save, 2688 // we cannot spill it as it is spill-locked 2689 // 2690 void LIRGenerator::do_Invoke(Invoke* x) { 2691 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2692 2693 LIR_OprList* arg_list = cc->args(); 2694 LIRItemList* args = invoke_visit_arguments(x); 2695 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2696 2697 // setup result register 2698 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2699 if (x->type() != voidType) { 2700 result_register = result_register_for(x->type()); 2701 } 2702 2703 CodeEmitInfo* info = state_for(x, x->state()); 2704 2705 invoke_load_arguments(x, args, arg_list); 2706 2707 if (x->has_receiver()) { 2708 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2709 receiver = args->at(0)->result(); 2710 } 2711 2712 // emit invoke code 2713 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2714 2715 // JSR 292 2716 // Preserve the SP over MethodHandle call sites, if needed. 2717 ciMethod* target = x->target(); 2718 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2719 target->is_method_handle_intrinsic() || 2720 target->is_compiled_lambda_form()); 2721 if (is_method_handle_invoke) { 2722 info->set_is_method_handle_invoke(true); 2723 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2724 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2725 } 2726 } 2727 2728 switch (x->code()) { 2729 case Bytecodes::_invokestatic: 2730 __ call_static(target, result_register, 2731 SharedRuntime::get_resolve_static_call_stub(), 2732 arg_list, info); 2733 break; 2734 case Bytecodes::_invokespecial: 2735 case Bytecodes::_invokevirtual: 2736 case Bytecodes::_invokeinterface: 2737 // for loaded and final (method or class) target we still produce an inline cache, 2738 // in order to be able to call mixed mode 2739 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2740 __ call_opt_virtual(target, receiver, result_register, 2741 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2742 arg_list, info); 2743 } else { 2744 __ call_icvirtual(target, receiver, result_register, 2745 SharedRuntime::get_resolve_virtual_call_stub(), 2746 arg_list, info); 2747 } 2748 break; 2749 case Bytecodes::_invokedynamic: { 2750 __ call_dynamic(target, receiver, result_register, 2751 SharedRuntime::get_resolve_static_call_stub(), 2752 arg_list, info); 2753 break; 2754 } 2755 default: 2756 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2757 break; 2758 } 2759 2760 // JSR 292 2761 // Restore the SP after MethodHandle call sites, if needed. 2762 if (is_method_handle_invoke 2763 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2764 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2765 } 2766 2767 if (result_register->is_valid()) { 2768 LIR_Opr result = rlock_result(x); 2769 __ move(result_register, result); 2770 } 2771 } 2772 2773 2774 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2775 assert(x->number_of_arguments() == 1, "wrong type"); 2776 LIRItem value (x->argument_at(0), this); 2777 LIR_Opr reg = rlock_result(x); 2778 value.load_item(); 2779 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2780 __ move(tmp, reg); 2781 } 2782 2783 2784 2785 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2786 void LIRGenerator::do_IfOp(IfOp* x) { 2787 #ifdef ASSERT 2788 { 2789 ValueTag xtag = x->x()->type()->tag(); 2790 ValueTag ttag = x->tval()->type()->tag(); 2791 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2792 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2793 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2794 } 2795 #endif 2796 2797 LIRItem left(x->x(), this); 2798 LIRItem right(x->y(), this); 2799 left.load_item(); 2800 if (can_inline_as_constant(right.value())) { 2801 right.dont_load_item(); 2802 } else { 2803 right.load_item(); 2804 } 2805 2806 LIRItem t_val(x->tval(), this); 2807 LIRItem f_val(x->fval(), this); 2808 t_val.dont_load_item(); 2809 f_val.dont_load_item(); 2810 LIR_Opr reg = rlock_result(x); 2811 2812 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2813 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2814 } 2815 2816 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2817 assert(x->number_of_arguments() == 0, "wrong type"); 2818 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2819 BasicTypeList signature; 2820 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2821 LIR_Opr reg = result_register_for(x->type()); 2822 __ call_runtime_leaf(routine, getThreadTemp(), 2823 reg, new LIR_OprList()); 2824 LIR_Opr result = rlock_result(x); 2825 __ move(reg, result); 2826 } 2827 2828 2829 2830 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2831 switch (x->id()) { 2832 case vmIntrinsics::_intBitsToFloat : 2833 case vmIntrinsics::_doubleToRawLongBits : 2834 case vmIntrinsics::_longBitsToDouble : 2835 case vmIntrinsics::_floatToRawIntBits : { 2836 do_FPIntrinsics(x); 2837 break; 2838 } 2839 2840 #ifdef JFR_HAVE_INTRINSICS 2841 case vmIntrinsics::_counterTime: 2842 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2843 break; 2844 #endif 2845 2846 case vmIntrinsics::_currentTimeMillis: 2847 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2848 break; 2849 2850 case vmIntrinsics::_nanoTime: 2851 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2852 break; 2853 2854 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2855 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2856 case vmIntrinsics::_getClass: do_getClass(x); break; 2857 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2858 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2859 case vmIntrinsics::_currentThread: do_vthread(x); break; 2860 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2861 2862 case vmIntrinsics::_dlog: // fall through 2863 case vmIntrinsics::_dlog10: // fall through 2864 case vmIntrinsics::_dabs: // fall through 2865 case vmIntrinsics::_dsqrt: // fall through 2866 case vmIntrinsics::_dsqrt_strict: // fall through 2867 case vmIntrinsics::_dtan: // fall through 2868 case vmIntrinsics::_dsinh: // fall through 2869 case vmIntrinsics::_dtanh: // fall through 2870 case vmIntrinsics::_dsin : // fall through 2871 case vmIntrinsics::_dcos : // fall through 2872 case vmIntrinsics::_dcbrt : // fall through 2873 case vmIntrinsics::_dexp : // fall through 2874 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2875 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2876 2877 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2878 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2879 2880 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2881 case vmIntrinsics::_floatToFloat16: // fall through 2882 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2883 2884 case vmIntrinsics::_Preconditions_checkIndex: 2885 do_PreconditionsCheckIndex(x, T_INT); 2886 break; 2887 case vmIntrinsics::_Preconditions_checkLongIndex: 2888 do_PreconditionsCheckIndex(x, T_LONG); 2889 break; 2890 2891 case vmIntrinsics::_compareAndSetReference: 2892 do_CompareAndSwap(x, objectType); 2893 break; 2894 case vmIntrinsics::_compareAndSetInt: 2895 do_CompareAndSwap(x, intType); 2896 break; 2897 case vmIntrinsics::_compareAndSetLong: 2898 do_CompareAndSwap(x, longType); 2899 break; 2900 2901 case vmIntrinsics::_loadFence : 2902 __ membar_acquire(); 2903 break; 2904 case vmIntrinsics::_storeFence: 2905 __ membar_release(); 2906 break; 2907 case vmIntrinsics::_storeStoreFence: 2908 __ membar_storestore(); 2909 break; 2910 case vmIntrinsics::_fullFence : 2911 __ membar(); 2912 break; 2913 case vmIntrinsics::_onSpinWait: 2914 __ on_spin_wait(); 2915 break; 2916 case vmIntrinsics::_Reference_get0: 2917 do_Reference_get0(x); 2918 break; 2919 2920 case vmIntrinsics::_updateCRC32: 2921 case vmIntrinsics::_updateBytesCRC32: 2922 case vmIntrinsics::_updateByteBufferCRC32: 2923 do_update_CRC32(x); 2924 break; 2925 2926 case vmIntrinsics::_updateBytesCRC32C: 2927 case vmIntrinsics::_updateDirectByteBufferCRC32C: 2928 do_update_CRC32C(x); 2929 break; 2930 2931 case vmIntrinsics::_vectorizedMismatch: 2932 do_vectorizedMismatch(x); 2933 break; 2934 2935 case vmIntrinsics::_blackhole: 2936 do_blackhole(x); 2937 break; 2938 2939 default: ShouldNotReachHere(); break; 2940 } 2941 } 2942 2943 void LIRGenerator::profile_arguments(ProfileCall* x) { 2944 if (compilation()->profile_arguments()) { 2945 int bci = x->bci_of_invoke(); 2946 ciMethodData* md = x->method()->method_data_or_null(); 2947 assert(md != nullptr, "Sanity"); 2948 ciProfileData* data = md->bci_to_data(bci); 2949 if (data != nullptr) { 2950 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 2951 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 2952 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 2953 int base_offset = md->byte_offset_of_slot(data, extra); 2954 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2955 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 2956 2957 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 2958 int start = 0; 2959 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 2960 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 2961 // first argument is not profiled at call (method handle invoke) 2962 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 2963 start = 1; 2964 } 2965 ciSignature* callee_signature = x->callee()->signature(); 2966 // method handle call to virtual method 2967 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 2968 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 2969 2970 bool ignored_will_link; 2971 ciSignature* signature_at_call = nullptr; 2972 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 2973 ciSignatureStream signature_at_call_stream(signature_at_call); 2974 2975 // if called through method handle invoke, some arguments may have been popped 2976 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 2977 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 2978 ciKlass* exact = profile_type(md, base_offset, off, 2979 args->type(i), x->profiled_arg_at(i+start), mdp, 2980 !x->arg_needs_null_check(i+start), 2981 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 2982 if (exact != nullptr) { 2983 md->set_argument_type(bci, i, exact); 2984 } 2985 } 2986 } else { 2987 #ifdef ASSERT 2988 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 2989 int n = x->nb_profiled_args(); 2990 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 2991 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 2992 "only at JSR292 bytecodes"); 2993 #endif 2994 } 2995 } 2996 } 2997 } 2998 2999 // profile parameters on entry to an inlined method 3000 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3001 if (compilation()->profile_parameters() && x->inlined()) { 3002 ciMethodData* md = x->callee()->method_data_or_null(); 3003 if (md != nullptr) { 3004 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3005 if (parameters_type_data != nullptr) { 3006 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3007 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3008 bool has_receiver = !x->callee()->is_static(); 3009 ciSignature* sig = x->callee()->signature(); 3010 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3011 int i = 0; // to iterate on the Instructions 3012 Value arg = x->recv(); 3013 bool not_null = false; 3014 int bci = x->bci_of_invoke(); 3015 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3016 // The first parameter is the receiver so that's what we start 3017 // with if it exists. One exception is method handle call to 3018 // virtual method: the receiver is in the args list 3019 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3020 i = 1; 3021 arg = x->profiled_arg_at(0); 3022 not_null = !x->arg_needs_null_check(0); 3023 } 3024 int k = 0; // to iterate on the profile data 3025 for (;;) { 3026 intptr_t profiled_k = parameters->type(k); 3027 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3028 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3029 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3030 // If the profile is known statically set it once for all and do not emit any code 3031 if (exact != nullptr) { 3032 md->set_parameter_type(k, exact); 3033 } 3034 k++; 3035 if (k >= parameters_type_data->number_of_parameters()) { 3036 #ifdef ASSERT 3037 int extra = 0; 3038 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3039 x->nb_profiled_args() >= TypeProfileParmsLimit && 3040 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3041 extra += 1; 3042 } 3043 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3044 #endif 3045 break; 3046 } 3047 arg = x->profiled_arg_at(i); 3048 not_null = !x->arg_needs_null_check(i); 3049 i++; 3050 } 3051 } 3052 } 3053 } 3054 } 3055 3056 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3057 // Need recv in a temporary register so it interferes with the other temporaries 3058 LIR_Opr recv = LIR_OprFact::illegalOpr; 3059 LIR_Opr mdo = new_register(T_METADATA); 3060 // tmp is used to hold the counters on SPARC 3061 LIR_Opr tmp = new_pointer_register(); 3062 3063 if (x->nb_profiled_args() > 0) { 3064 profile_arguments(x); 3065 } 3066 3067 // profile parameters on inlined method entry including receiver 3068 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3069 profile_parameters_at_call(x); 3070 } 3071 3072 if (x->recv() != nullptr) { 3073 LIRItem value(x->recv(), this); 3074 value.load_item(); 3075 recv = new_register(T_OBJECT); 3076 __ move(value.result(), recv); 3077 } 3078 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3079 } 3080 3081 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3082 int bci = x->bci_of_invoke(); 3083 ciMethodData* md = x->method()->method_data_or_null(); 3084 assert(md != nullptr, "Sanity"); 3085 ciProfileData* data = md->bci_to_data(bci); 3086 if (data != nullptr) { 3087 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3088 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3089 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3090 3091 bool ignored_will_link; 3092 ciSignature* signature_at_call = nullptr; 3093 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3094 3095 // The offset within the MDO of the entry to update may be too large 3096 // to be used in load/store instructions on some platforms. So have 3097 // profile_type() compute the address of the profile in a register. 3098 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3099 ret->type(), x->ret(), mdp, 3100 !x->needs_null_check(), 3101 signature_at_call->return_type()->as_klass(), 3102 x->callee()->signature()->return_type()->as_klass()); 3103 if (exact != nullptr) { 3104 md->set_return_type(bci, exact); 3105 } 3106 } 3107 } 3108 3109 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3110 // We can safely ignore accessors here, since c2 will inline them anyway, 3111 // accessors are also always mature. 3112 if (!x->inlinee()->is_accessor()) { 3113 CodeEmitInfo* info = state_for(x, x->state(), true); 3114 // Notify the runtime very infrequently only to take care of counter overflows 3115 int freq_log = Tier23InlineeNotifyFreqLog; 3116 double scale; 3117 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3118 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3119 } 3120 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3121 } 3122 } 3123 3124 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3125 if (compilation()->is_profiling()) { 3126 #if defined(X86) && !defined(_LP64) 3127 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3128 LIR_Opr left_copy = new_register(left->type()); 3129 __ move(left, left_copy); 3130 __ cmp(cond, left_copy, right); 3131 #else 3132 __ cmp(cond, left, right); 3133 #endif 3134 LIR_Opr step = new_register(T_INT); 3135 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3136 LIR_Opr zero = LIR_OprFact::intConst(0); 3137 __ cmove(cond, 3138 (left_bci < bci) ? plus_one : zero, 3139 (right_bci < bci) ? plus_one : zero, 3140 step, left->type()); 3141 increment_backedge_counter(info, step, bci); 3142 } 3143 } 3144 3145 3146 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3147 int freq_log = 0; 3148 int level = compilation()->env()->comp_level(); 3149 if (level == CompLevel_limited_profile) { 3150 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3151 } else if (level == CompLevel_full_profile) { 3152 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3153 } else { 3154 ShouldNotReachHere(); 3155 } 3156 // Increment the appropriate invocation/backedge counter and notify the runtime. 3157 double scale; 3158 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3159 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3160 } 3161 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3162 } 3163 3164 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3165 ciMethod *method, LIR_Opr step, int frequency, 3166 int bci, bool backedge, bool notify) { 3167 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3168 int level = _compilation->env()->comp_level(); 3169 assert(level > CompLevel_simple, "Shouldn't be here"); 3170 3171 int offset = -1; 3172 LIR_Opr counter_holder; 3173 if (level == CompLevel_limited_profile) { 3174 MethodCounters* counters_adr = method->ensure_method_counters(); 3175 if (counters_adr == nullptr) { 3176 bailout("method counters allocation failed"); 3177 return; 3178 } 3179 counter_holder = new_pointer_register(); 3180 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3181 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3182 MethodCounters::invocation_counter_offset()); 3183 } else if (level == CompLevel_full_profile) { 3184 counter_holder = new_register(T_METADATA); 3185 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3186 MethodData::invocation_counter_offset()); 3187 ciMethodData* md = method->method_data_or_null(); 3188 assert(md != nullptr, "Sanity"); 3189 __ metadata2reg(md->constant_encoding(), counter_holder); 3190 } else { 3191 ShouldNotReachHere(); 3192 } 3193 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3194 LIR_Opr result = new_register(T_INT); 3195 __ load(counter, result); 3196 __ add(result, step, result); 3197 __ store(result, counter); 3198 if (notify && (!backedge || UseOnStackReplacement)) { 3199 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3200 // The bci for info can point to cmp for if's we want the if bci 3201 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3202 int freq = frequency << InvocationCounter::count_shift; 3203 if (freq == 0) { 3204 if (!step->is_constant()) { 3205 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3206 __ branch(lir_cond_notEqual, overflow); 3207 } else { 3208 __ branch(lir_cond_always, overflow); 3209 } 3210 } else { 3211 LIR_Opr mask = load_immediate(freq, T_INT); 3212 if (!step->is_constant()) { 3213 // If step is 0, make sure the overflow check below always fails 3214 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3215 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3216 } 3217 __ logical_and(result, mask, result); 3218 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3219 __ branch(lir_cond_equal, overflow); 3220 } 3221 __ branch_destination(overflow->continuation()); 3222 } 3223 } 3224 3225 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3226 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3227 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3228 3229 if (x->pass_thread()) { 3230 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3231 args->append(getThreadPointer()); 3232 } 3233 3234 for (int i = 0; i < x->number_of_arguments(); i++) { 3235 Value a = x->argument_at(i); 3236 LIRItem* item = new LIRItem(a, this); 3237 item->load_item(); 3238 args->append(item->result()); 3239 signature->append(as_BasicType(a->type())); 3240 } 3241 3242 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3243 if (x->type() == voidType) { 3244 set_no_result(x); 3245 } else { 3246 __ move(result, rlock_result(x)); 3247 } 3248 } 3249 3250 #ifdef ASSERT 3251 void LIRGenerator::do_Assert(Assert *x) { 3252 ValueTag tag = x->x()->type()->tag(); 3253 If::Condition cond = x->cond(); 3254 3255 LIRItem xitem(x->x(), this); 3256 LIRItem yitem(x->y(), this); 3257 LIRItem* xin = &xitem; 3258 LIRItem* yin = &yitem; 3259 3260 assert(tag == intTag, "Only integer assertions are valid!"); 3261 3262 xin->load_item(); 3263 yin->dont_load_item(); 3264 3265 set_no_result(x); 3266 3267 LIR_Opr left = xin->result(); 3268 LIR_Opr right = yin->result(); 3269 3270 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3271 } 3272 #endif 3273 3274 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3275 3276 3277 Instruction *a = x->x(); 3278 Instruction *b = x->y(); 3279 if (!a || StressRangeCheckElimination) { 3280 assert(!b || StressRangeCheckElimination, "B must also be null"); 3281 3282 CodeEmitInfo *info = state_for(x, x->state()); 3283 CodeStub* stub = new PredicateFailedStub(info); 3284 3285 __ jump(stub); 3286 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3287 int a_int = a->type()->as_IntConstant()->value(); 3288 int b_int = b->type()->as_IntConstant()->value(); 3289 3290 bool ok = false; 3291 3292 switch(x->cond()) { 3293 case Instruction::eql: ok = (a_int == b_int); break; 3294 case Instruction::neq: ok = (a_int != b_int); break; 3295 case Instruction::lss: ok = (a_int < b_int); break; 3296 case Instruction::leq: ok = (a_int <= b_int); break; 3297 case Instruction::gtr: ok = (a_int > b_int); break; 3298 case Instruction::geq: ok = (a_int >= b_int); break; 3299 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3300 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3301 default: ShouldNotReachHere(); 3302 } 3303 3304 if (ok) { 3305 3306 CodeEmitInfo *info = state_for(x, x->state()); 3307 CodeStub* stub = new PredicateFailedStub(info); 3308 3309 __ jump(stub); 3310 } 3311 } else { 3312 3313 ValueTag tag = x->x()->type()->tag(); 3314 If::Condition cond = x->cond(); 3315 LIRItem xitem(x->x(), this); 3316 LIRItem yitem(x->y(), this); 3317 LIRItem* xin = &xitem; 3318 LIRItem* yin = &yitem; 3319 3320 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3321 3322 xin->load_item(); 3323 yin->dont_load_item(); 3324 set_no_result(x); 3325 3326 LIR_Opr left = xin->result(); 3327 LIR_Opr right = yin->result(); 3328 3329 CodeEmitInfo *info = state_for(x, x->state()); 3330 CodeStub* stub = new PredicateFailedStub(info); 3331 3332 __ cmp(lir_cond(cond), left, right); 3333 __ branch(lir_cond(cond), stub); 3334 } 3335 } 3336 3337 void LIRGenerator::do_blackhole(Intrinsic *x) { 3338 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3339 for (int c = 0; c < x->number_of_arguments(); c++) { 3340 // Load the argument 3341 LIRItem vitem(x->argument_at(c), this); 3342 vitem.load_item(); 3343 // ...and leave it unused. 3344 } 3345 } 3346 3347 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3348 LIRItemList args(1); 3349 LIRItem value(arg1, this); 3350 args.append(&value); 3351 BasicTypeList signature; 3352 signature.append(as_BasicType(arg1->type())); 3353 3354 return call_runtime(&signature, &args, entry, result_type, info); 3355 } 3356 3357 3358 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3359 LIRItemList args(2); 3360 LIRItem value1(arg1, this); 3361 LIRItem value2(arg2, this); 3362 args.append(&value1); 3363 args.append(&value2); 3364 BasicTypeList signature; 3365 signature.append(as_BasicType(arg1->type())); 3366 signature.append(as_BasicType(arg2->type())); 3367 3368 return call_runtime(&signature, &args, entry, result_type, info); 3369 } 3370 3371 3372 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3373 address entry, ValueType* result_type, CodeEmitInfo* info) { 3374 // get a result register 3375 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3376 LIR_Opr result = LIR_OprFact::illegalOpr; 3377 if (result_type->tag() != voidTag) { 3378 result = new_register(result_type); 3379 phys_reg = result_register_for(result_type); 3380 } 3381 3382 // move the arguments into the correct location 3383 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3384 assert(cc->length() == args->length(), "argument mismatch"); 3385 for (int i = 0; i < args->length(); i++) { 3386 LIR_Opr arg = args->at(i); 3387 LIR_Opr loc = cc->at(i); 3388 if (loc->is_register()) { 3389 __ move(arg, loc); 3390 } else { 3391 LIR_Address* addr = loc->as_address_ptr(); 3392 // if (!can_store_as_constant(arg)) { 3393 // LIR_Opr tmp = new_register(arg->type()); 3394 // __ move(arg, tmp); 3395 // arg = tmp; 3396 // } 3397 __ move(arg, addr); 3398 } 3399 } 3400 3401 if (info) { 3402 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3403 } else { 3404 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3405 } 3406 if (result->is_valid()) { 3407 __ move(phys_reg, result); 3408 } 3409 return result; 3410 } 3411 3412 3413 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3414 address entry, ValueType* result_type, CodeEmitInfo* info) { 3415 // get a result register 3416 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3417 LIR_Opr result = LIR_OprFact::illegalOpr; 3418 if (result_type->tag() != voidTag) { 3419 result = new_register(result_type); 3420 phys_reg = result_register_for(result_type); 3421 } 3422 3423 // move the arguments into the correct location 3424 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3425 3426 assert(cc->length() == args->length(), "argument mismatch"); 3427 for (int i = 0; i < args->length(); i++) { 3428 LIRItem* arg = args->at(i); 3429 LIR_Opr loc = cc->at(i); 3430 if (loc->is_register()) { 3431 arg->load_item_force(loc); 3432 } else { 3433 LIR_Address* addr = loc->as_address_ptr(); 3434 arg->load_for_store(addr->type()); 3435 __ move(arg->result(), addr); 3436 } 3437 } 3438 3439 if (info) { 3440 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3441 } else { 3442 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3443 } 3444 if (result->is_valid()) { 3445 __ move(phys_reg, result); 3446 } 3447 return result; 3448 } 3449 3450 void LIRGenerator::do_MemBar(MemBar* x) { 3451 LIR_Code code = x->code(); 3452 switch(code) { 3453 case lir_membar_acquire : __ membar_acquire(); break; 3454 case lir_membar_release : __ membar_release(); break; 3455 case lir_membar : __ membar(); break; 3456 case lir_membar_loadload : __ membar_loadload(); break; 3457 case lir_membar_storestore: __ membar_storestore(); break; 3458 case lir_membar_loadstore : __ membar_loadstore(); break; 3459 case lir_membar_storeload : __ membar_storeload(); break; 3460 default : ShouldNotReachHere(); break; 3461 } 3462 } 3463 3464 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3465 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3466 if (two_operand_lir_form) { 3467 __ move(value, value_fixed); 3468 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3469 } else { 3470 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3471 } 3472 LIR_Opr klass = new_register(T_METADATA); 3473 load_klass(array, klass, null_check_info); 3474 null_check_info = nullptr; 3475 LIR_Opr layout = new_register(T_INT); 3476 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3477 int diffbit = Klass::layout_helper_boolean_diffbit(); 3478 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3479 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3480 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3481 value = value_fixed; 3482 return value; 3483 }