1 /*
2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "ci/ciUtilities.hpp"
36 #include "compiler/compilerDefinitions.inline.hpp"
37 #include "compiler/compilerOracle.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/c1/barrierSetC1.hpp"
40 #include "oops/klass.inline.hpp"
41 #include "oops/methodCounters.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/vm_version.hpp"
45 #include "utilities/bitMap.inline.hpp"
46 #include "utilities/macros.hpp"
47 #include "utilities/powerOfTwo.hpp"
48
49 #ifdef ASSERT
50 #define __ gen()->lir(__FILE__, __LINE__)->
51 #else
52 #define __ gen()->lir()->
53 #endif
54
55 #ifndef PATCHED_ADDR
56 #define PATCHED_ADDR (max_jint)
57 #endif
58
59 void PhiResolverState::reset() {
60 _virtual_operands.clear();
61 _other_operands.clear();
62 _vreg_table.clear();
63 }
64
65
66 //--------------------------------------------------------------
67 // PhiResolver
68
69 // Resolves cycles:
70 //
71 // r1 := r2 becomes temp := r1
72 // r2 := r1 r1 := r2
73 // r2 := temp
74 // and orders moves:
75 //
76 // r2 := r3 becomes r1 := r2
77 // r1 := r2 r2 := r3
78
79 PhiResolver::PhiResolver(LIRGenerator* gen)
80 : _gen(gen)
81 , _state(gen->resolver_state())
82 , _loop(nullptr)
83 , _temp(LIR_OprFact::illegalOpr)
84 {
85 // reinitialize the shared state arrays
86 _state.reset();
87 }
88
89
90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
91 assert(src->is_valid(), "");
92 assert(dest->is_valid(), "");
93 __ move(src, dest);
94 }
95
96
97 void PhiResolver::move_temp_to(LIR_Opr dest) {
98 assert(_temp->is_valid(), "");
99 emit_move(_temp, dest);
100 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
101 }
102
103
104 void PhiResolver::move_to_temp(LIR_Opr src) {
105 assert(_temp->is_illegal(), "");
106 _temp = _gen->new_register(src->type());
107 emit_move(src, _temp);
108 }
109
110
111 // Traverse assignment graph in depth first order and generate moves in post order
112 // ie. two assignments: b := c, a := b start with node c:
113 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
114 // Generates moves in this order: move b to a and move c to b
115 // ie. cycle a := b, b := a start with node a
116 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
117 // Generates moves in this order: move b to temp, move a to b, move temp to a
118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
119 if (!dest->visited()) {
120 dest->set_visited();
121 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
122 move(dest, dest->destination_at(i));
123 }
124 } else if (!dest->start_node()) {
125 // cylce in graph detected
126 assert(_loop == nullptr, "only one loop valid!");
127 _loop = dest;
128 move_to_temp(src->operand());
129 return;
130 } // else dest is a start node
131
132 if (!dest->assigned()) {
133 if (_loop == dest) {
134 move_temp_to(dest->operand());
135 dest->set_assigned();
136 } else if (src != nullptr) {
137 emit_move(src->operand(), dest->operand());
138 dest->set_assigned();
139 }
140 }
141 }
142
143
144 PhiResolver::~PhiResolver() {
145 int i;
146 // resolve any cycles in moves from and to virtual registers
147 for (i = virtual_operands().length() - 1; i >= 0; i --) {
148 ResolveNode* node = virtual_operands().at(i);
149 if (!node->visited()) {
150 _loop = nullptr;
151 move(nullptr, node);
152 node->set_start_node();
153 assert(_temp->is_illegal(), "move_temp_to() call missing");
154 }
155 }
156
157 // generate move for move from non virtual register to abitrary destination
158 for (i = other_operands().length() - 1; i >= 0; i --) {
159 ResolveNode* node = other_operands().at(i);
160 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
161 emit_move(node->operand(), node->destination_at(j)->operand());
162 }
163 }
164 }
165
166
167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
168 ResolveNode* node;
169 if (opr->is_virtual()) {
170 int vreg_num = opr->vreg_number();
171 node = vreg_table().at_grow(vreg_num, nullptr);
172 assert(node == nullptr || node->operand() == opr, "");
173 if (node == nullptr) {
174 node = new ResolveNode(opr);
175 vreg_table().at_put(vreg_num, node);
176 }
177 // Make sure that all virtual operands show up in the list when
178 // they are used as the source of a move.
179 if (source && !virtual_operands().contains(node)) {
180 virtual_operands().append(node);
181 }
182 } else {
183 assert(source, "");
184 node = new ResolveNode(opr);
185 other_operands().append(node);
186 }
187 return node;
188 }
189
190
191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
192 assert(dest->is_virtual(), "");
193 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
194 assert(src->is_valid(), "");
195 assert(dest->is_valid(), "");
196 ResolveNode* source = source_node(src);
197 source->append(destination_node(dest));
198 }
199
200
201 //--------------------------------------------------------------
202 // LIRItem
203
204 void LIRItem::set_result(LIR_Opr opr) {
205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
206 value()->set_operand(opr);
207
208 #ifdef ASSERT
209 if (opr->is_virtual()) {
210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
211 }
212 #endif
213
214 _result = opr;
215 }
216
217 void LIRItem::load_item() {
218 if (result()->is_illegal()) {
219 // update the items result
220 _result = value()->operand();
221 }
222 if (!result()->is_register()) {
223 LIR_Opr reg = _gen->new_register(value()->type());
224 __ move(result(), reg);
225 if (result()->is_constant()) {
226 _result = reg;
227 } else {
228 set_result(reg);
229 }
230 }
231 }
232
233
234 void LIRItem::load_for_store(BasicType type) {
235 if (_gen->can_store_as_constant(value(), type)) {
236 _result = value()->operand();
237 if (!_result->is_constant()) {
238 _result = LIR_OprFact::value_type(value()->type());
239 }
240 } else if (type == T_BYTE || type == T_BOOLEAN) {
241 load_byte_item();
242 } else {
243 load_item();
244 }
245 }
246
247 void LIRItem::load_item_force(LIR_Opr reg) {
248 LIR_Opr r = result();
249 if (r != reg) {
250 #if !defined(ARM) && !defined(E500V2)
251 if (r->type() != reg->type()) {
252 // moves between different types need an intervening spill slot
253 r = _gen->force_to_spill(r, reg->type());
254 }
255 #endif
256 __ move(r, reg);
257 _result = reg;
258 }
259 }
260
261 ciObject* LIRItem::get_jobject_constant() const {
262 ObjectType* oc = type()->as_ObjectType();
263 if (oc) {
264 return oc->constant_value();
265 }
266 return nullptr;
267 }
268
269
270 jint LIRItem::get_jint_constant() const {
271 assert(is_constant() && value() != nullptr, "");
272 assert(type()->as_IntConstant() != nullptr, "type check");
273 return type()->as_IntConstant()->value();
274 }
275
276
277 jint LIRItem::get_address_constant() const {
278 assert(is_constant() && value() != nullptr, "");
279 assert(type()->as_AddressConstant() != nullptr, "type check");
280 return type()->as_AddressConstant()->value();
281 }
282
283
284 jfloat LIRItem::get_jfloat_constant() const {
285 assert(is_constant() && value() != nullptr, "");
286 assert(type()->as_FloatConstant() != nullptr, "type check");
287 return type()->as_FloatConstant()->value();
288 }
289
290
291 jdouble LIRItem::get_jdouble_constant() const {
292 assert(is_constant() && value() != nullptr, "");
293 assert(type()->as_DoubleConstant() != nullptr, "type check");
294 return type()->as_DoubleConstant()->value();
295 }
296
297
298 jlong LIRItem::get_jlong_constant() const {
299 assert(is_constant() && value() != nullptr, "");
300 assert(type()->as_LongConstant() != nullptr, "type check");
301 return type()->as_LongConstant()->value();
302 }
303
304
305
306 //--------------------------------------------------------------
307
308
309 void LIRGenerator::block_do_prolog(BlockBegin* block) {
310 #ifndef PRODUCT
311 if (PrintIRWithLIR) {
312 block->print();
313 }
314 #endif
315
316 // set up the list of LIR instructions
317 assert(block->lir() == nullptr, "LIR list already computed for this block");
318 _lir = new LIR_List(compilation(), block);
319 block->set_lir(_lir);
320
321 __ branch_destination(block->label());
322
323 if (LIRTraceExecution &&
324 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
325 !block->is_set(BlockBegin::exception_entry_flag)) {
326 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
327 trace_block_entry(block);
328 }
329 }
330
331
332 void LIRGenerator::block_do_epilog(BlockBegin* block) {
333 #ifndef PRODUCT
334 if (PrintIRWithLIR) {
335 tty->cr();
336 }
337 #endif
338
339 // LIR_Opr for unpinned constants shouldn't be referenced by other
340 // blocks so clear them out after processing the block.
341 for (int i = 0; i < _unpinned_constants.length(); i++) {
342 _unpinned_constants.at(i)->clear_operand();
343 }
344 _unpinned_constants.trunc_to(0);
345
346 // clear our any registers for other local constants
347 _constants.trunc_to(0);
348 _reg_for_constants.trunc_to(0);
349 }
350
351
352 void LIRGenerator::block_do(BlockBegin* block) {
353 CHECK_BAILOUT();
354
355 block_do_prolog(block);
356 set_block(block);
357
358 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
359 if (instr->is_pinned()) do_root(instr);
360 }
361
362 set_block(nullptr);
363 block_do_epilog(block);
364 }
365
366
367 //-------------------------LIRGenerator-----------------------------
368
369 // This is where the tree-walk starts; instr must be root;
370 void LIRGenerator::do_root(Value instr) {
371 CHECK_BAILOUT();
372
373 InstructionMark im(compilation(), instr);
374
375 assert(instr->is_pinned(), "use only with roots");
376 assert(instr->subst() == instr, "shouldn't have missed substitution");
377
378 instr->visit(this);
379
380 assert(!instr->has_uses() || instr->operand()->is_valid() ||
381 instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
382 }
383
384
385 // This is called for each node in tree; the walk stops if a root is reached
386 void LIRGenerator::walk(Value instr) {
387 InstructionMark im(compilation(), instr);
388 //stop walk when encounter a root
389 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
390 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
391 } else {
392 assert(instr->subst() == instr, "shouldn't have missed substitution");
393 instr->visit(this);
394 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
395 }
396 }
397
398
399 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
400 assert(state != nullptr, "state must be defined");
401
402 #ifndef PRODUCT
403 state->verify();
404 #endif
405
406 ValueStack* s = state;
407 for_each_state(s) {
408 if (s->kind() == ValueStack::EmptyExceptionState ||
409 s->kind() == ValueStack::CallerEmptyExceptionState)
410 {
411 #ifdef ASSERT
412 int index;
413 Value value;
414 for_each_stack_value(s, index, value) {
415 fatal("state must be empty");
416 }
417 for_each_local_value(s, index, value) {
418 fatal("state must be empty");
419 }
420 #endif
421 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
422 continue;
423 }
424
425 int index;
426 Value value;
427 for_each_stack_value(s, index, value) {
428 assert(value->subst() == value, "missed substitution");
429 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
430 walk(value);
431 assert(value->operand()->is_valid(), "must be evaluated now");
432 }
433 }
434
435 int bci = s->bci();
436 IRScope* scope = s->scope();
437 ciMethod* method = scope->method();
438
439 MethodLivenessResult liveness = method->liveness_at_bci(bci);
440 if (bci == SynchronizationEntryBCI) {
441 if (x->as_ExceptionObject() || x->as_Throw()) {
442 // all locals are dead on exit from the synthetic unlocker
443 liveness.clear();
444 } else {
445 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
446 }
447 }
448 if (!liveness.is_valid()) {
449 // Degenerate or breakpointed method.
450 bailout("Degenerate or breakpointed method");
451 } else {
452 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
453 for_each_local_value(s, index, value) {
454 assert(value->subst() == value, "missed substitution");
455 if (liveness.at(index) && !value->type()->is_illegal()) {
456 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
457 walk(value);
458 assert(value->operand()->is_valid(), "must be evaluated now");
459 }
460 } else {
461 // null out this local so that linear scan can assume that all non-null values are live.
462 s->invalidate_local(index);
463 }
464 }
465 }
466 }
467
468 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
469 }
470
471
472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
473 return state_for(x, x->exception_state());
474 }
475
476
477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
478 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
479 * is active and the class hasn't yet been resolved we need to emit a patch that resolves
480 * the class. */
481 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
482 assert(info != nullptr, "info must be set if class is not loaded");
483 __ klass2reg_patch(nullptr, r, info);
484 } else {
485 // no patching needed
486 __ metadata2reg(obj->constant_encoding(), r);
487 }
488 }
489
490
491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
492 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
493 CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
494 if (index->is_constant()) {
495 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
496 index->as_jint(), null_check_info);
497 __ branch(lir_cond_belowEqual, stub); // forward branch
498 } else {
499 cmp_reg_mem(lir_cond_aboveEqual, index, array,
500 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
501 __ branch(lir_cond_aboveEqual, stub); // forward branch
502 }
503 }
504
505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
506 LIR_Opr result_op = result;
507 LIR_Opr left_op = left;
508 LIR_Opr right_op = right;
509
510 if (two_operand_lir_form && left_op != result_op) {
511 assert(right_op != result_op, "malformed");
512 __ move(left_op, result_op);
513 left_op = result_op;
514 }
515
516 switch(code) {
517 case Bytecodes::_dadd:
518 case Bytecodes::_fadd:
519 case Bytecodes::_ladd:
520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
521 case Bytecodes::_fmul:
522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
523
524 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
525
526 case Bytecodes::_imul:
527 {
528 bool did_strength_reduce = false;
529
530 if (right->is_constant()) {
531 jint c = right->as_jint();
532 if (c > 0 && is_power_of_2(c)) {
533 // do not need tmp here
534 __ shift_left(left_op, exact_log2(c), result_op);
535 did_strength_reduce = true;
536 } else {
537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
538 }
539 }
540 // we couldn't strength reduce so just emit the multiply
541 if (!did_strength_reduce) {
542 __ mul(left_op, right_op, result_op);
543 }
544 }
545 break;
546
547 case Bytecodes::_dsub:
548 case Bytecodes::_fsub:
549 case Bytecodes::_lsub:
550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
551
552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
553 // ldiv and lrem are implemented with a direct runtime call
554
555 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
556
557 case Bytecodes::_drem:
558 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
559
560 default: ShouldNotReachHere();
561 }
562 }
563
564
565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
566 arithmetic_op(code, result, left, right, tmp);
567 }
568
569
570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
571 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
572 }
573
574
575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
576 arithmetic_op(code, result, left, right, tmp);
577 }
578
579
580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
581
582 if (two_operand_lir_form && value != result_op
583 // Only 32bit right shifts require two operand form on S390.
584 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
585 assert(count != result_op, "malformed");
586 __ move(value, result_op);
587 value = result_op;
588 }
589
590 assert(count->is_constant() || count->is_register(), "must be");
591 switch(code) {
592 case Bytecodes::_ishl:
593 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
594 case Bytecodes::_ishr:
595 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
596 case Bytecodes::_iushr:
597 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
598 default: ShouldNotReachHere();
599 }
600 }
601
602
603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
604 if (two_operand_lir_form && left_op != result_op) {
605 assert(right_op != result_op, "malformed");
606 __ move(left_op, result_op);
607 left_op = result_op;
608 }
609
610 switch(code) {
611 case Bytecodes::_iand:
612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
613
614 case Bytecodes::_ior:
615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
616
617 case Bytecodes::_ixor:
618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
619
620 default: ShouldNotReachHere();
621 }
622 }
623
624
625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
626 // for slow path, use debug info for state after successful locking
627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
628 __ load_stack_address_monitor(monitor_no, lock);
629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
631 }
632
633
634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
635 // setup registers
636 LIR_Opr hdr = lock;
637 lock = new_hdr;
638 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
639 __ load_stack_address_monitor(monitor_no, lock);
640 __ unlock_object(hdr, object, lock, scratch, slow_path);
641 }
642
643 #ifndef PRODUCT
644 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
645 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
646 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
647 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
648 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
649 }
650 }
651 #endif
652
653 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
654 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
655 // If klass is not loaded we do not know if the klass has finalizers:
656 if (UseFastNewInstance && klass->is_loaded()
657 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
658
659 StubId stub_id = klass->is_initialized() ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
660
661 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
662
663 assert(klass->is_loaded(), "must be loaded");
664 // allocate space for instance
665 assert(klass->size_helper() > 0, "illegal instance size");
666 const int instance_size = align_object_size(klass->size_helper());
667 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
668 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
669 } else {
670 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
671 __ branch(lir_cond_always, slow_path);
672 __ branch_destination(slow_path->continuation());
673 }
674 }
675
676
677 static bool is_constant_zero(Instruction* inst) {
678 IntConstant* c = inst->type()->as_IntConstant();
679 if (c) {
680 return (c->value() == 0);
681 }
682 return false;
683 }
684
685
686 static bool positive_constant(Instruction* inst) {
687 IntConstant* c = inst->type()->as_IntConstant();
688 if (c) {
689 return (c->value() >= 0);
690 }
691 return false;
692 }
693
694
695 static ciArrayKlass* as_array_klass(ciType* type) {
696 if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
697 return (ciArrayKlass*)type;
698 } else {
699 return nullptr;
700 }
701 }
702
703 static ciType* phi_declared_type(Phi* phi) {
704 ciType* t = phi->operand_at(0)->declared_type();
705 if (t == nullptr) {
706 return nullptr;
707 }
708 for(int i = 1; i < phi->operand_count(); i++) {
709 if (t != phi->operand_at(i)->declared_type()) {
710 return nullptr;
711 }
712 }
713 return t;
714 }
715
716 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
717 Instruction* src = x->argument_at(0);
718 Instruction* src_pos = x->argument_at(1);
719 Instruction* dst = x->argument_at(2);
720 Instruction* dst_pos = x->argument_at(3);
721 Instruction* length = x->argument_at(4);
722
723 // first try to identify the likely type of the arrays involved
724 ciArrayKlass* expected_type = nullptr;
725 bool is_exact = false, src_objarray = false, dst_objarray = false;
726 {
727 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
728 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
729 Phi* phi;
730 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
731 src_declared_type = as_array_klass(phi_declared_type(phi));
732 }
733 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
734 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
735 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
736 dst_declared_type = as_array_klass(phi_declared_type(phi));
737 }
738
739 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
740 // the types exactly match so the type is fully known
741 is_exact = true;
742 expected_type = src_exact_type;
743 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
744 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
745 ciArrayKlass* src_type = nullptr;
746 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
747 src_type = (ciArrayKlass*) src_exact_type;
748 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
749 src_type = (ciArrayKlass*) src_declared_type;
750 }
751 if (src_type != nullptr) {
752 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
753 is_exact = true;
754 expected_type = dst_type;
755 }
756 }
757 }
758 // at least pass along a good guess
759 if (expected_type == nullptr) expected_type = dst_exact_type;
760 if (expected_type == nullptr) expected_type = src_declared_type;
761 if (expected_type == nullptr) expected_type = dst_declared_type;
762
763 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
764 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
765 }
766
767 // if a probable array type has been identified, figure out if any
768 // of the required checks for a fast case can be elided.
769 int flags = LIR_OpArrayCopy::all_flags;
770
771 if (!src_objarray)
772 flags &= ~LIR_OpArrayCopy::src_objarray;
773 if (!dst_objarray)
774 flags &= ~LIR_OpArrayCopy::dst_objarray;
775
776 if (!x->arg_needs_null_check(0))
777 flags &= ~LIR_OpArrayCopy::src_null_check;
778 if (!x->arg_needs_null_check(2))
779 flags &= ~LIR_OpArrayCopy::dst_null_check;
780
781
782 if (expected_type != nullptr) {
783 Value length_limit = nullptr;
784
785 IfOp* ifop = length->as_IfOp();
786 if (ifop != nullptr) {
787 // look for expressions like min(v, a.length) which ends up as
788 // x > y ? y : x or x >= y ? y : x
789 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
790 ifop->x() == ifop->fval() &&
791 ifop->y() == ifop->tval()) {
792 length_limit = ifop->y();
793 }
794 }
795
796 // try to skip null checks and range checks
797 NewArray* src_array = src->as_NewArray();
798 if (src_array != nullptr) {
799 flags &= ~LIR_OpArrayCopy::src_null_check;
800 if (length_limit != nullptr &&
801 src_array->length() == length_limit &&
802 is_constant_zero(src_pos)) {
803 flags &= ~LIR_OpArrayCopy::src_range_check;
804 }
805 }
806
807 NewArray* dst_array = dst->as_NewArray();
808 if (dst_array != nullptr) {
809 flags &= ~LIR_OpArrayCopy::dst_null_check;
810 if (length_limit != nullptr &&
811 dst_array->length() == length_limit &&
812 is_constant_zero(dst_pos)) {
813 flags &= ~LIR_OpArrayCopy::dst_range_check;
814 }
815 }
816
817 // check from incoming constant values
818 if (positive_constant(src_pos))
819 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
820 if (positive_constant(dst_pos))
821 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
822 if (positive_constant(length))
823 flags &= ~LIR_OpArrayCopy::length_positive_check;
824
825 // see if the range check can be elided, which might also imply
826 // that src or dst is non-null.
827 ArrayLength* al = length->as_ArrayLength();
828 if (al != nullptr) {
829 if (al->array() == src) {
830 // it's the length of the source array
831 flags &= ~LIR_OpArrayCopy::length_positive_check;
832 flags &= ~LIR_OpArrayCopy::src_null_check;
833 if (is_constant_zero(src_pos))
834 flags &= ~LIR_OpArrayCopy::src_range_check;
835 }
836 if (al->array() == dst) {
837 // it's the length of the destination array
838 flags &= ~LIR_OpArrayCopy::length_positive_check;
839 flags &= ~LIR_OpArrayCopy::dst_null_check;
840 if (is_constant_zero(dst_pos))
841 flags &= ~LIR_OpArrayCopy::dst_range_check;
842 }
843 }
844 if (is_exact) {
845 flags &= ~LIR_OpArrayCopy::type_check;
846 }
847 }
848
849 IntConstant* src_int = src_pos->type()->as_IntConstant();
850 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
851 if (src_int && dst_int) {
852 int s_offs = src_int->value();
853 int d_offs = dst_int->value();
854 if (src_int->value() >= dst_int->value()) {
855 flags &= ~LIR_OpArrayCopy::overlapping;
856 }
857 if (expected_type != nullptr) {
858 BasicType t = expected_type->element_type()->basic_type();
859 int element_size = type2aelembytes(t);
860 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
861 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
862 flags &= ~LIR_OpArrayCopy::unaligned;
863 }
864 }
865 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
866 // src and dest positions are the same, or dst is zero so assume
867 // nonoverlapping copy.
868 flags &= ~LIR_OpArrayCopy::overlapping;
869 }
870
871 if (src == dst) {
872 // moving within a single array so no type checks are needed
873 if (flags & LIR_OpArrayCopy::type_check) {
874 flags &= ~LIR_OpArrayCopy::type_check;
875 }
876 }
877 *flagsp = flags;
878 *expected_typep = (ciArrayKlass*)expected_type;
879 }
880
881
882 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
883 assert(type2size[t] == type2size[value->type()],
884 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
885 if (!value->is_register()) {
886 // force into a register
887 LIR_Opr r = new_register(value->type());
888 __ move(value, r);
889 value = r;
890 }
891
892 // create a spill location
893 LIR_Opr tmp = new_register(t);
894 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
895
896 // move from register to spill
897 __ move(value, tmp);
898 return tmp;
899 }
900
901 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
902 if (if_instr->should_profile()) {
903 ciMethod* method = if_instr->profiled_method();
904 assert(method != nullptr, "method should be set if branch is profiled");
905 ciMethodData* md = method->method_data_or_null();
906 assert(md != nullptr, "Sanity");
907 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
908 assert(data != nullptr, "must have profiling data");
909 assert(data->is_BranchData(), "need BranchData for two-way branches");
910 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
911 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
912 if (if_instr->is_swapped()) {
913 int t = taken_count_offset;
914 taken_count_offset = not_taken_count_offset;
915 not_taken_count_offset = t;
916 }
917
918 LIR_Opr md_reg = new_register(T_METADATA);
919 __ metadata2reg(md->constant_encoding(), md_reg);
920
921 LIR_Opr data_offset_reg = new_pointer_register();
922 __ cmove(lir_cond(cond),
923 LIR_OprFact::intptrConst(taken_count_offset),
924 LIR_OprFact::intptrConst(not_taken_count_offset),
925 data_offset_reg, as_BasicType(if_instr->x()->type()));
926
927 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
928 LIR_Opr data_reg = new_pointer_register();
929 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
930 __ move(data_addr, data_reg);
931 // Use leal instead of add to avoid destroying condition codes on x86
932 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
933 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
934 __ move(data_reg, data_addr);
935 }
936 }
937
938 // Phi technique:
939 // This is about passing live values from one basic block to the other.
940 // In code generated with Java it is rather rare that more than one
941 // value is on the stack from one basic block to the other.
942 // We optimize our technique for efficient passing of one value
943 // (of type long, int, double..) but it can be extended.
944 // When entering or leaving a basic block, all registers and all spill
945 // slots are release and empty. We use the released registers
946 // and spill slots to pass the live values from one block
947 // to the other. The topmost value, i.e., the value on TOS of expression
948 // stack is passed in registers. All other values are stored in spilling
949 // area. Every Phi has an index which designates its spill slot
950 // At exit of a basic block, we fill the register(s) and spill slots.
951 // At entry of a basic block, the block_prolog sets up the content of phi nodes
952 // and locks necessary registers and spilling slots.
953
954
955 // move current value to referenced phi function
956 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
957 Phi* phi = sux_val->as_Phi();
958 // cur_val can be null without phi being null in conjunction with inlining
959 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
960 if (phi->is_local()) {
961 for (int i = 0; i < phi->operand_count(); i++) {
962 Value op = phi->operand_at(i);
963 if (op != nullptr && op->type()->is_illegal()) {
964 bailout("illegal phi operand");
965 }
966 }
967 }
968 Phi* cur_phi = cur_val->as_Phi();
969 if (cur_phi != nullptr && cur_phi->is_illegal()) {
970 // Phi and local would need to get invalidated
971 // (which is unexpected for Linear Scan).
972 // But this case is very rare so we simply bail out.
973 bailout("propagation of illegal phi");
974 return;
975 }
976 LIR_Opr operand = cur_val->operand();
977 if (operand->is_illegal()) {
978 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
979 "these can be produced lazily");
980 operand = operand_for_instruction(cur_val);
981 }
982 resolver->move(operand, operand_for_instruction(phi));
983 }
984 }
985
986
987 // Moves all stack values into their PHI position
988 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
989 BlockBegin* bb = block();
990 if (bb->number_of_sux() == 1) {
991 BlockBegin* sux = bb->sux_at(0);
992 assert(sux->number_of_preds() > 0, "invalid CFG");
993
994 // a block with only one predecessor never has phi functions
995 if (sux->number_of_preds() > 1) {
996 PhiResolver resolver(this);
997
998 ValueStack* sux_state = sux->state();
999 Value sux_value;
1000 int index;
1001
1002 assert(cur_state->scope() == sux_state->scope(), "not matching");
1003 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1004 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1005
1006 for_each_stack_value(sux_state, index, sux_value) {
1007 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1008 }
1009
1010 for_each_local_value(sux_state, index, sux_value) {
1011 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1012 }
1013
1014 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1015 }
1016 }
1017 }
1018
1019
1020 LIR_Opr LIRGenerator::new_register(BasicType type) {
1021 int vreg_num = _virtual_register_number;
1022 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1023 // a few extra registers before we really run out which helps to avoid to trip over assertions.
1024 if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1025 bailout("out of virtual registers in LIR generator");
1026 if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1027 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1028 _virtual_register_number = LIR_Opr::vreg_base;
1029 vreg_num = LIR_Opr::vreg_base;
1030 }
1031 }
1032 _virtual_register_number += 1;
1033 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1034 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1035 return vreg;
1036 }
1037
1038
1039 // Try to lock using register in hint
1040 LIR_Opr LIRGenerator::rlock(Value instr) {
1041 return new_register(instr->type());
1042 }
1043
1044
1045 // does an rlock and sets result
1046 LIR_Opr LIRGenerator::rlock_result(Value x) {
1047 LIR_Opr reg = rlock(x);
1048 set_result(x, reg);
1049 return reg;
1050 }
1051
1052
1053 // does an rlock and sets result
1054 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1055 LIR_Opr reg;
1056 switch (type) {
1057 case T_BYTE:
1058 case T_BOOLEAN:
1059 reg = rlock_byte(type);
1060 break;
1061 default:
1062 reg = rlock(x);
1063 break;
1064 }
1065
1066 set_result(x, reg);
1067 return reg;
1068 }
1069
1070
1071 //---------------------------------------------------------------------
1072 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1073 ObjectType* oc = value->type()->as_ObjectType();
1074 if (oc) {
1075 return oc->constant_value();
1076 }
1077 return nullptr;
1078 }
1079
1080
1081 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1082 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1083 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1084
1085 // no moves are created for phi functions at the begin of exception
1086 // handlers, so assign operands manually here
1087 for_each_phi_fun(block(), phi,
1088 if (!phi->is_illegal()) { operand_for_instruction(phi); });
1089
1090 LIR_Opr thread_reg = getThreadPointer();
1091 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1092 exceptionOopOpr());
1093 __ move_wide(LIR_OprFact::oopConst(nullptr),
1094 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1095 __ move_wide(LIR_OprFact::oopConst(nullptr),
1096 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1097
1098 LIR_Opr result = new_register(T_OBJECT);
1099 __ move(exceptionOopOpr(), result);
1100 set_result(x, result);
1101 }
1102
1103
1104 //----------------------------------------------------------------------
1105 //----------------------------------------------------------------------
1106 //----------------------------------------------------------------------
1107 //----------------------------------------------------------------------
1108 // visitor functions
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113
1114 void LIRGenerator::do_Phi(Phi* x) {
1115 // phi functions are never visited directly
1116 ShouldNotReachHere();
1117 }
1118
1119
1120 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1121 void LIRGenerator::do_Constant(Constant* x) {
1122 if (x->state_before() != nullptr) {
1123 // Any constant with a ValueStack requires patching so emit the patch here
1124 LIR_Opr reg = rlock_result(x);
1125 CodeEmitInfo* info = state_for(x, x->state_before());
1126 __ oop2reg_patch(nullptr, reg, info);
1127 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1128 if (!x->is_pinned()) {
1129 // unpinned constants are handled specially so that they can be
1130 // put into registers when they are used multiple times within a
1131 // block. After the block completes their operand will be
1132 // cleared so that other blocks can't refer to that register.
1133 set_result(x, load_constant(x));
1134 } else {
1135 LIR_Opr res = x->operand();
1136 if (!res->is_valid()) {
1137 res = LIR_OprFact::value_type(x->type());
1138 }
1139 if (res->is_constant()) {
1140 LIR_Opr reg = rlock_result(x);
1141 __ move(res, reg);
1142 } else {
1143 set_result(x, res);
1144 }
1145 }
1146 } else {
1147 set_result(x, LIR_OprFact::value_type(x->type()));
1148 }
1149 }
1150
1151
1152 void LIRGenerator::do_Local(Local* x) {
1153 // operand_for_instruction has the side effect of setting the result
1154 // so there's no need to do it here.
1155 operand_for_instruction(x);
1156 }
1157
1158
1159 void LIRGenerator::do_Return(Return* x) {
1160 if (compilation()->env()->dtrace_method_probes()) {
1161 BasicTypeList signature;
1162 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1163 signature.append(T_METADATA); // Method*
1164 LIR_OprList* args = new LIR_OprList();
1165 args->append(getThreadPointer());
1166 LIR_Opr meth = new_register(T_METADATA);
1167 __ metadata2reg(method()->constant_encoding(), meth);
1168 args->append(meth);
1169 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1170 }
1171
1172 if (x->type()->is_void()) {
1173 __ return_op(LIR_OprFact::illegalOpr);
1174 } else {
1175 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1176 LIRItem result(x->result(), this);
1177
1178 result.load_item_force(reg);
1179 __ return_op(result.result());
1180 }
1181 set_no_result(x);
1182 }
1183
1184 // Example: ref.get()
1185 // Combination of LoadField and g1 pre-write barrier
1186 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1187
1188 const int referent_offset = java_lang_ref_Reference::referent_offset();
1189
1190 assert(x->number_of_arguments() == 1, "wrong type");
1191
1192 LIRItem reference(x->argument_at(0), this);
1193 reference.load_item();
1194
1195 // need to perform the null check on the reference object
1196 CodeEmitInfo* info = nullptr;
1197 if (x->needs_null_check()) {
1198 info = state_for(x);
1199 }
1200
1201 LIR_Opr result = rlock_result(x, T_OBJECT);
1202 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1203 reference, LIR_OprFact::intConst(referent_offset), result,
1204 nullptr, info);
1205 }
1206
1207 // Example: clazz.isInstance(object)
1208 void LIRGenerator::do_isInstance(Intrinsic* x) {
1209 assert(x->number_of_arguments() == 2, "wrong type");
1210
1211 LIRItem clazz(x->argument_at(0), this);
1212 LIRItem object(x->argument_at(1), this);
1213 clazz.load_item();
1214 object.load_item();
1215 LIR_Opr result = rlock_result(x);
1216
1217 // need to perform null check on clazz
1218 if (x->needs_null_check()) {
1219 CodeEmitInfo* info = state_for(x);
1220 __ null_check(clazz.result(), info);
1221 }
1222
1223 address pd_instanceof_fn = isInstance_entry();
1224 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1225 pd_instanceof_fn,
1226 x->type(),
1227 nullptr); // null CodeEmitInfo results in a leaf call
1228 __ move(call_result, result);
1229 }
1230
1231 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1232 __ load_klass(obj, klass, null_check_info);
1233 }
1234
1235 // Example: object.getClass ()
1236 void LIRGenerator::do_getClass(Intrinsic* x) {
1237 assert(x->number_of_arguments() == 1, "wrong type");
1238
1239 LIRItem rcvr(x->argument_at(0), this);
1240 rcvr.load_item();
1241 LIR_Opr temp = new_register(T_ADDRESS);
1242 LIR_Opr result = rlock_result(x);
1243
1244 // need to perform the null check on the rcvr
1245 CodeEmitInfo* info = nullptr;
1246 if (x->needs_null_check()) {
1247 info = state_for(x);
1248 }
1249
1250 LIR_Opr klass = new_register(T_METADATA);
1251 load_klass(rcvr.result(), klass, info);
1252 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1253 // mirror = ((OopHandle)mirror)->resolve();
1254 access_load(IN_NATIVE, T_OBJECT,
1255 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1256 }
1257
1258 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1259 assert(x->number_of_arguments() == 3, "wrong type");
1260 LIR_Opr result_reg = rlock_result(x);
1261
1262 LIRItem value(x->argument_at(2), this);
1263 value.load_item();
1264
1265 LIR_Opr klass = new_register(T_METADATA);
1266 load_klass(value.result(), klass, nullptr);
1267 LIR_Opr layout = new_register(T_INT);
1268 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1269
1270 LabelObj* L_done = new LabelObj();
1271 LabelObj* L_array = new LabelObj();
1272
1273 __ cmp(lir_cond_lessEqual, layout, 0);
1274 __ branch(lir_cond_lessEqual, L_array->label());
1275
1276 // Instance case: the layout helper gives us instance size almost directly,
1277 // but we need to mask out the _lh_instance_slow_path_bit.
1278
1279 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1280
1281 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1282 __ logical_and(layout, mask, layout);
1283 __ convert(Bytecodes::_i2l, layout, result_reg);
1284
1285 __ branch(lir_cond_always, L_done->label());
1286
1287 // Array case: size is round(header + element_size*arraylength).
1288 // Since arraylength is different for every array instance, we have to
1289 // compute the whole thing at runtime.
1290
1291 __ branch_destination(L_array->label());
1292
1293 int round_mask = MinObjAlignmentInBytes - 1;
1294
1295 // Figure out header sizes first.
1296 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1297 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1298
1299 LIR_Opr header_size = new_register(T_INT);
1300 __ move(layout, header_size);
1301 LIR_Opr tmp = new_register(T_INT);
1302 __ unsigned_shift_right(header_size, hss, header_size, tmp);
1303 __ logical_and(header_size, hsm, header_size);
1304 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1305
1306 // Figure out the array length in bytes
1307 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1308 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1309 __ logical_and(layout, l2esm, layout);
1310
1311 LIR_Opr length_int = new_register(T_INT);
1312 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1313
1314 #ifdef _LP64
1315 LIR_Opr length = new_register(T_LONG);
1316 __ convert(Bytecodes::_i2l, length_int, length);
1317 #endif
1318
1319 // Shift-left awkwardness. Normally it is just:
1320 // __ shift_left(length, layout, length);
1321 // But C1 cannot perform shift_left with non-constant count, so we end up
1322 // doing the per-bit loop dance here. x86_32 also does not know how to shift
1323 // longs, so we have to act on ints.
1324 LabelObj* L_shift_loop = new LabelObj();
1325 LabelObj* L_shift_exit = new LabelObj();
1326
1327 __ branch_destination(L_shift_loop->label());
1328 __ cmp(lir_cond_equal, layout, 0);
1329 __ branch(lir_cond_equal, L_shift_exit->label());
1330
1331 #ifdef _LP64
1332 __ shift_left(length, 1, length);
1333 #else
1334 __ shift_left(length_int, 1, length_int);
1335 #endif
1336
1337 __ sub(layout, LIR_OprFact::intConst(1), layout);
1338
1339 __ branch(lir_cond_always, L_shift_loop->label());
1340 __ branch_destination(L_shift_exit->label());
1341
1342 // Mix all up, round, and push to the result.
1343 #ifdef _LP64
1344 LIR_Opr header_size_long = new_register(T_LONG);
1345 __ convert(Bytecodes::_i2l, header_size, header_size_long);
1346 __ add(length, header_size_long, length);
1347 if (round_mask != 0) {
1348 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1349 __ logical_and(length, round_mask_opr, length);
1350 }
1351 __ move(length, result_reg);
1352 #else
1353 __ add(length_int, header_size, length_int);
1354 if (round_mask != 0) {
1355 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1356 __ logical_and(length_int, round_mask_opr, length_int);
1357 }
1358 __ convert(Bytecodes::_i2l, length_int, result_reg);
1359 #endif
1360
1361 __ branch_destination(L_done->label());
1362 }
1363
1364 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1365 do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1366 }
1367
1368 // Example: Thread.currentCarrierThread()
1369 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1370 do_JavaThreadField(x, JavaThread::threadObj_offset());
1371 }
1372
1373 void LIRGenerator::do_vthread(Intrinsic* x) {
1374 do_JavaThreadField(x, JavaThread::vthread_offset());
1375 }
1376
1377 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1378 assert(x->number_of_arguments() == 0, "wrong type");
1379 LIR_Opr temp = new_register(T_ADDRESS);
1380 LIR_Opr reg = rlock_result(x);
1381 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1382 access_load(IN_NATIVE, T_OBJECT,
1383 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1384 }
1385
1386 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1387 assert(x->number_of_arguments() == 1, "wrong type");
1388 LIRItem receiver(x->argument_at(0), this);
1389
1390 receiver.load_item();
1391 BasicTypeList signature;
1392 signature.append(T_OBJECT); // receiver
1393 LIR_OprList* args = new LIR_OprList();
1394 args->append(receiver.result());
1395 CodeEmitInfo* info = state_for(x, x->state());
1396 call_runtime(&signature, args,
1397 CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1398 voidType, info);
1399
1400 set_no_result(x);
1401 }
1402
1403
1404 //------------------------local access--------------------------------------
1405
1406 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1407 if (x->operand()->is_illegal()) {
1408 Constant* c = x->as_Constant();
1409 if (c != nullptr) {
1410 x->set_operand(LIR_OprFact::value_type(c->type()));
1411 } else {
1412 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1413 // allocate a virtual register for this local or phi
1414 x->set_operand(rlock(x));
1415 #ifdef ASSERT
1416 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1417 #endif
1418 }
1419 }
1420 return x->operand();
1421 }
1422
1423 #ifdef ASSERT
1424 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1425 if (reg_num < _instruction_for_operand.length()) {
1426 return _instruction_for_operand.at(reg_num);
1427 }
1428 return nullptr;
1429 }
1430 #endif
1431
1432 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1433 if (_vreg_flags.size_in_bits() == 0) {
1434 BitMap2D temp(100, num_vreg_flags);
1435 _vreg_flags = temp;
1436 }
1437 _vreg_flags.at_put_grow(vreg_num, f, true);
1438 }
1439
1440 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1441 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1442 return false;
1443 }
1444 return _vreg_flags.at(vreg_num, f);
1445 }
1446
1447
1448 // Block local constant handling. This code is useful for keeping
1449 // unpinned constants and constants which aren't exposed in the IR in
1450 // registers. Unpinned Constant instructions have their operands
1451 // cleared when the block is finished so that other blocks can't end
1452 // up referring to their registers.
1453
1454 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1455 assert(!x->is_pinned(), "only for unpinned constants");
1456 _unpinned_constants.append(x);
1457 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1458 }
1459
1460
1461 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1462 BasicType t = c->type();
1463 for (int i = 0; i < _constants.length(); i++) {
1464 LIR_Const* other = _constants.at(i);
1465 if (t == other->type()) {
1466 switch (t) {
1467 case T_INT:
1468 case T_FLOAT:
1469 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1470 break;
1471 case T_LONG:
1472 case T_DOUBLE:
1473 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1474 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1475 break;
1476 case T_OBJECT:
1477 if (c->as_jobject() != other->as_jobject()) continue;
1478 break;
1479 default:
1480 break;
1481 }
1482 return _reg_for_constants.at(i);
1483 }
1484 }
1485
1486 LIR_Opr result = new_register(t);
1487 __ move((LIR_Opr)c, result);
1488 _constants.append(c);
1489 _reg_for_constants.append(result);
1490 return result;
1491 }
1492
1493 //------------------------field access--------------------------------------
1494
1495 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1496 assert(x->number_of_arguments() == 4, "wrong type");
1497 LIRItem obj (x->argument_at(0), this); // object
1498 LIRItem offset(x->argument_at(1), this); // offset of field
1499 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1500 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1501 assert(obj.type()->tag() == objectTag, "invalid type");
1502 assert(cmp.type()->tag() == type->tag(), "invalid type");
1503 assert(val.type()->tag() == type->tag(), "invalid type");
1504
1505 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1506 obj, offset, cmp, val);
1507 set_result(x, result);
1508 }
1509
1510 // Comment copied form templateTable_i486.cpp
1511 // ----------------------------------------------------------------------------
1512 // Volatile variables demand their effects be made known to all CPU's in
1513 // order. Store buffers on most chips allow reads & writes to reorder; the
1514 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1515 // memory barrier (i.e., it's not sufficient that the interpreter does not
1516 // reorder volatile references, the hardware also must not reorder them).
1517 //
1518 // According to the new Java Memory Model (JMM):
1519 // (1) All volatiles are serialized wrt to each other.
1520 // ALSO reads & writes act as acquire & release, so:
1521 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1522 // the read float up to before the read. It's OK for non-volatile memory refs
1523 // that happen before the volatile read to float down below it.
1524 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1525 // that happen BEFORE the write float down to after the write. It's OK for
1526 // non-volatile memory refs that happen after the volatile write to float up
1527 // before it.
1528 //
1529 // We only put in barriers around volatile refs (they are expensive), not
1530 // _between_ memory refs (that would require us to track the flavor of the
1531 // previous memory refs). Requirements (2) and (3) require some barriers
1532 // before volatile stores and after volatile loads. These nearly cover
1533 // requirement (1) but miss the volatile-store-volatile-load case. This final
1534 // case is placed after volatile-stores although it could just as well go
1535 // before volatile-loads.
1536
1537
1538 void LIRGenerator::do_StoreField(StoreField* x) {
1539 bool needs_patching = x->needs_patching();
1540 bool is_volatile = x->field()->is_volatile();
1541 BasicType field_type = x->field_type();
1542
1543 CodeEmitInfo* info = nullptr;
1544 if (needs_patching) {
1545 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1546 info = state_for(x, x->state_before());
1547 } else if (x->needs_null_check()) {
1548 NullCheck* nc = x->explicit_null_check();
1549 if (nc == nullptr) {
1550 info = state_for(x);
1551 } else {
1552 info = state_for(nc);
1553 }
1554 }
1555
1556 LIRItem object(x->obj(), this);
1557 LIRItem value(x->value(), this);
1558
1559 object.load_item();
1560
1561 if (is_volatile || needs_patching) {
1562 // load item if field is volatile (fewer special cases for volatiles)
1563 // load item if field not initialized
1564 // load item if field not constant
1565 // because of code patching we cannot inline constants
1566 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1567 value.load_byte_item();
1568 } else {
1569 value.load_item();
1570 }
1571 } else {
1572 value.load_for_store(field_type);
1573 }
1574
1575 set_no_result(x);
1576
1577 #ifndef PRODUCT
1578 if (PrintNotLoaded && needs_patching) {
1579 tty->print_cr(" ###class not loaded at store_%s bci %d",
1580 x->is_static() ? "static" : "field", x->printable_bci());
1581 }
1582 #endif
1583
1584 if (x->needs_null_check() &&
1585 (needs_patching ||
1586 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1587 // Emit an explicit null check because the offset is too large.
1588 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1589 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1590 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1591 }
1592
1593 DecoratorSet decorators = IN_HEAP;
1594 if (is_volatile) {
1595 decorators |= MO_SEQ_CST;
1596 }
1597 if (needs_patching) {
1598 decorators |= C1_NEEDS_PATCHING;
1599 }
1600
1601 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1602 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1603 }
1604
1605 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1606 assert(x->is_pinned(),"");
1607 bool needs_range_check = x->compute_needs_range_check();
1608 bool use_length = x->length() != nullptr;
1609 bool obj_store = is_reference_type(x->elt_type());
1610 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1611 !get_jobject_constant(x->value())->is_null_object() ||
1612 x->should_profile());
1613
1614 LIRItem array(x->array(), this);
1615 LIRItem index(x->index(), this);
1616 LIRItem value(x->value(), this);
1617 LIRItem length(this);
1618
1619 array.load_item();
1620 index.load_nonconstant();
1621
1622 if (use_length && needs_range_check) {
1623 length.set_instruction(x->length());
1624 length.load_item();
1625
1626 }
1627 if (needs_store_check || x->check_boolean()) {
1628 value.load_item();
1629 } else {
1630 value.load_for_store(x->elt_type());
1631 }
1632
1633 set_no_result(x);
1634
1635 // the CodeEmitInfo must be duplicated for each different
1636 // LIR-instruction because spilling can occur anywhere between two
1637 // instructions and so the debug information must be different
1638 CodeEmitInfo* range_check_info = state_for(x);
1639 CodeEmitInfo* null_check_info = nullptr;
1640 if (x->needs_null_check()) {
1641 null_check_info = new CodeEmitInfo(range_check_info);
1642 }
1643
1644 if (needs_range_check) {
1645 if (use_length) {
1646 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1647 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1648 } else {
1649 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1650 // range_check also does the null check
1651 null_check_info = nullptr;
1652 }
1653 }
1654
1655 if (GenerateArrayStoreCheck && needs_store_check) {
1656 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1657 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1658 }
1659
1660 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1661 if (x->check_boolean()) {
1662 decorators |= C1_MASK_BOOLEAN;
1663 }
1664
1665 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1666 nullptr, null_check_info);
1667 }
1668
1669 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1670 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1671 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1672 decorators |= ACCESS_READ;
1673 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1674 if (access.is_raw()) {
1675 _barrier_set->BarrierSetC1::load_at(access, result);
1676 } else {
1677 _barrier_set->load_at(access, result);
1678 }
1679 }
1680
1681 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1682 LIR_Opr addr, LIR_Opr result) {
1683 decorators |= ACCESS_READ;
1684 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1685 access.set_resolved_addr(addr);
1686 if (access.is_raw()) {
1687 _barrier_set->BarrierSetC1::load(access, result);
1688 } else {
1689 _barrier_set->load(access, result);
1690 }
1691 }
1692
1693 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1694 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1695 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1696 decorators |= ACCESS_WRITE;
1697 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1698 if (access.is_raw()) {
1699 _barrier_set->BarrierSetC1::store_at(access, value);
1700 } else {
1701 _barrier_set->store_at(access, value);
1702 }
1703 }
1704
1705 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1706 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1707 decorators |= ACCESS_READ;
1708 decorators |= ACCESS_WRITE;
1709 // Atomic operations are SEQ_CST by default
1710 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1711 LIRAccess access(this, decorators, base, offset, type);
1712 if (access.is_raw()) {
1713 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1714 } else {
1715 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1716 }
1717 }
1718
1719 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1720 LIRItem& base, LIRItem& offset, LIRItem& value) {
1721 decorators |= ACCESS_READ;
1722 decorators |= ACCESS_WRITE;
1723 // Atomic operations are SEQ_CST by default
1724 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1725 LIRAccess access(this, decorators, base, offset, type);
1726 if (access.is_raw()) {
1727 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1728 } else {
1729 return _barrier_set->atomic_xchg_at(access, value);
1730 }
1731 }
1732
1733 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1734 LIRItem& base, LIRItem& offset, LIRItem& value) {
1735 decorators |= ACCESS_READ;
1736 decorators |= ACCESS_WRITE;
1737 // Atomic operations are SEQ_CST by default
1738 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1739 LIRAccess access(this, decorators, base, offset, type);
1740 if (access.is_raw()) {
1741 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1742 } else {
1743 return _barrier_set->atomic_add_at(access, value);
1744 }
1745 }
1746
1747 void LIRGenerator::do_LoadField(LoadField* x) {
1748 bool needs_patching = x->needs_patching();
1749 bool is_volatile = x->field()->is_volatile();
1750 BasicType field_type = x->field_type();
1751
1752 CodeEmitInfo* info = nullptr;
1753 if (needs_patching) {
1754 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1755 info = state_for(x, x->state_before());
1756 } else if (x->needs_null_check()) {
1757 NullCheck* nc = x->explicit_null_check();
1758 if (nc == nullptr) {
1759 info = state_for(x);
1760 } else {
1761 info = state_for(nc);
1762 }
1763 }
1764
1765 LIRItem object(x->obj(), this);
1766
1767 object.load_item();
1768
1769 #ifndef PRODUCT
1770 if (PrintNotLoaded && needs_patching) {
1771 tty->print_cr(" ###class not loaded at load_%s bci %d",
1772 x->is_static() ? "static" : "field", x->printable_bci());
1773 }
1774 #endif
1775
1776 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1777 if (x->needs_null_check() &&
1778 (needs_patching ||
1779 MacroAssembler::needs_explicit_null_check(x->offset()) ||
1780 stress_deopt)) {
1781 LIR_Opr obj = object.result();
1782 if (stress_deopt) {
1783 obj = new_register(T_OBJECT);
1784 __ move(LIR_OprFact::oopConst(nullptr), obj);
1785 }
1786 // Emit an explicit null check because the offset is too large.
1787 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1788 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1789 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1790 }
1791
1792 DecoratorSet decorators = IN_HEAP;
1793 if (is_volatile) {
1794 decorators |= MO_SEQ_CST;
1795 }
1796 if (needs_patching) {
1797 decorators |= C1_NEEDS_PATCHING;
1798 }
1799
1800 LIR_Opr result = rlock_result(x, field_type);
1801 access_load_at(decorators, field_type,
1802 object, LIR_OprFact::intConst(x->offset()), result,
1803 info ? new CodeEmitInfo(info) : nullptr, info);
1804 }
1805
1806 // int/long jdk.internal.util.Preconditions.checkIndex
1807 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1808 assert(x->number_of_arguments() == 3, "wrong type");
1809 LIRItem index(x->argument_at(0), this);
1810 LIRItem length(x->argument_at(1), this);
1811 LIRItem oobef(x->argument_at(2), this);
1812
1813 index.load_item();
1814 length.load_item();
1815 oobef.load_item();
1816
1817 LIR_Opr result = rlock_result(x);
1818 // x->state() is created from copy_state_for_exception, it does not contains arguments
1819 // we should prepare them before entering into interpreter mode due to deoptimization.
1820 ValueStack* state = x->state();
1821 for (int i = 0; i < x->number_of_arguments(); i++) {
1822 Value arg = x->argument_at(i);
1823 state->push(arg->type(), arg);
1824 }
1825 CodeEmitInfo* info = state_for(x, state);
1826
1827 LIR_Opr len = length.result();
1828 LIR_Opr zero;
1829 if (type == T_INT) {
1830 zero = LIR_OprFact::intConst(0);
1831 if (length.result()->is_constant()){
1832 len = LIR_OprFact::intConst(length.result()->as_jint());
1833 }
1834 } else {
1835 assert(type == T_LONG, "sanity check");
1836 zero = LIR_OprFact::longConst(0);
1837 if (length.result()->is_constant()){
1838 len = LIR_OprFact::longConst(length.result()->as_jlong());
1839 }
1840 }
1841 // C1 can not handle the case that comparing index with constant value while condition
1842 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1843 LIR_Opr zero_reg = new_register(type);
1844 __ move(zero, zero_reg);
1845 #if defined(X86) && !defined(_LP64)
1846 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1847 LIR_Opr index_copy = new_register(index.type());
1848 // index >= 0
1849 __ move(index.result(), index_copy);
1850 __ cmp(lir_cond_less, index_copy, zero_reg);
1851 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1852 Deoptimization::Action_make_not_entrant));
1853 // index < length
1854 __ move(index.result(), index_copy);
1855 __ cmp(lir_cond_greaterEqual, index_copy, len);
1856 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1857 Deoptimization::Action_make_not_entrant));
1858 #else
1859 // index >= 0
1860 __ cmp(lir_cond_less, index.result(), zero_reg);
1861 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1862 Deoptimization::Action_make_not_entrant));
1863 // index < length
1864 __ cmp(lir_cond_greaterEqual, index.result(), len);
1865 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1866 Deoptimization::Action_make_not_entrant));
1867 #endif
1868 __ move(index.result(), result);
1869 }
1870
1871 //------------------------array access--------------------------------------
1872
1873
1874 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1875 LIRItem array(x->array(), this);
1876 array.load_item();
1877 LIR_Opr reg = rlock_result(x);
1878
1879 CodeEmitInfo* info = nullptr;
1880 if (x->needs_null_check()) {
1881 NullCheck* nc = x->explicit_null_check();
1882 if (nc == nullptr) {
1883 info = state_for(x);
1884 } else {
1885 info = state_for(nc);
1886 }
1887 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1888 LIR_Opr obj = new_register(T_OBJECT);
1889 __ move(LIR_OprFact::oopConst(nullptr), obj);
1890 __ null_check(obj, new CodeEmitInfo(info));
1891 }
1892 }
1893 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1894 }
1895
1896
1897 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1898 bool use_length = x->length() != nullptr;
1899 LIRItem array(x->array(), this);
1900 LIRItem index(x->index(), this);
1901 LIRItem length(this);
1902 bool needs_range_check = x->compute_needs_range_check();
1903
1904 if (use_length && needs_range_check) {
1905 length.set_instruction(x->length());
1906 length.load_item();
1907 }
1908
1909 array.load_item();
1910 if (index.is_constant() && can_inline_as_constant(x->index())) {
1911 // let it be a constant
1912 index.dont_load_item();
1913 } else {
1914 index.load_item();
1915 }
1916
1917 CodeEmitInfo* range_check_info = state_for(x);
1918 CodeEmitInfo* null_check_info = nullptr;
1919 if (x->needs_null_check()) {
1920 NullCheck* nc = x->explicit_null_check();
1921 if (nc != nullptr) {
1922 null_check_info = state_for(nc);
1923 } else {
1924 null_check_info = range_check_info;
1925 }
1926 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1927 LIR_Opr obj = new_register(T_OBJECT);
1928 __ move(LIR_OprFact::oopConst(nullptr), obj);
1929 __ null_check(obj, new CodeEmitInfo(null_check_info));
1930 }
1931 }
1932
1933 if (needs_range_check) {
1934 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1935 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1936 } else if (use_length) {
1937 // TODO: use a (modified) version of array_range_check that does not require a
1938 // constant length to be loaded to a register
1939 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1940 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1941 } else {
1942 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1943 // The range check performs the null check, so clear it out for the load
1944 null_check_info = nullptr;
1945 }
1946 }
1947
1948 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1949
1950 LIR_Opr result = rlock_result(x, x->elt_type());
1951 access_load_at(decorators, x->elt_type(),
1952 array, index.result(), result,
1953 nullptr, null_check_info);
1954 }
1955
1956
1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
1958 if (x->can_trap()) {
1959 LIRItem value(x->obj(), this);
1960 value.load_item();
1961 CodeEmitInfo* info = state_for(x);
1962 __ null_check(value.result(), info);
1963 }
1964 }
1965
1966
1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
1968 LIRItem value(x->obj(), this);
1969 value.load_item();
1970 // the result is the same as from the node we are casting
1971 set_result(x, value.result());
1972 }
1973
1974
1975 void LIRGenerator::do_Throw(Throw* x) {
1976 LIRItem exception(x->exception(), this);
1977 exception.load_item();
1978 set_no_result(x);
1979 LIR_Opr exception_opr = exception.result();
1980 CodeEmitInfo* info = state_for(x, x->state());
1981
1982 #ifndef PRODUCT
1983 if (PrintC1Statistics) {
1984 increment_counter(Runtime1::throw_count_address(), T_INT);
1985 }
1986 #endif
1987
1988 // check if the instruction has an xhandler in any of the nested scopes
1989 bool unwind = false;
1990 if (info->exception_handlers()->length() == 0) {
1991 // this throw is not inside an xhandler
1992 unwind = true;
1993 } else {
1994 // get some idea of the throw type
1995 bool type_is_exact = true;
1996 ciType* throw_type = x->exception()->exact_type();
1997 if (throw_type == nullptr) {
1998 type_is_exact = false;
1999 throw_type = x->exception()->declared_type();
2000 }
2001 if (throw_type != nullptr && throw_type->is_instance_klass()) {
2002 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2003 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2004 }
2005 }
2006
2007 // do null check before moving exception oop into fixed register
2008 // to avoid a fixed interval with an oop during the null check.
2009 // Use a copy of the CodeEmitInfo because debug information is
2010 // different for null_check and throw.
2011 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2012 // if the exception object wasn't created using new then it might be null.
2013 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2014 }
2015
2016 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2017 // we need to go through the exception lookup path to get JVMTI
2018 // notification done
2019 unwind = false;
2020 }
2021
2022 // move exception oop into fixed register
2023 __ move(exception_opr, exceptionOopOpr());
2024
2025 if (unwind) {
2026 __ unwind_exception(exceptionOopOpr());
2027 } else {
2028 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2029 }
2030 }
2031
2032
2033 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2034 BasicType type = x->basic_type();
2035 LIRItem src(x->object(), this);
2036 LIRItem off(x->offset(), this);
2037
2038 off.load_item();
2039 src.load_item();
2040
2041 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2042
2043 if (x->is_volatile()) {
2044 decorators |= MO_SEQ_CST;
2045 }
2046 if (type == T_BOOLEAN) {
2047 decorators |= C1_MASK_BOOLEAN;
2048 }
2049 if (is_reference_type(type)) {
2050 decorators |= ON_UNKNOWN_OOP_REF;
2051 }
2052
2053 LIR_Opr result = rlock_result(x, type);
2054 if (!x->is_raw()) {
2055 access_load_at(decorators, type, src, off.result(), result);
2056 } else {
2057 // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2058 // It reads the value from [src + offset] directly.
2059 #ifdef _LP64
2060 LIR_Opr offset = new_register(T_LONG);
2061 __ convert(Bytecodes::_i2l, off.result(), offset);
2062 #else
2063 LIR_Opr offset = off.result();
2064 #endif
2065 LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2066 if (is_reference_type(type)) {
2067 __ move_wide(addr, result);
2068 } else {
2069 __ move(addr, result);
2070 }
2071 }
2072 }
2073
2074
2075 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2076 BasicType type = x->basic_type();
2077 LIRItem src(x->object(), this);
2078 LIRItem off(x->offset(), this);
2079 LIRItem data(x->value(), this);
2080
2081 src.load_item();
2082 if (type == T_BOOLEAN || type == T_BYTE) {
2083 data.load_byte_item();
2084 } else {
2085 data.load_item();
2086 }
2087 off.load_item();
2088
2089 set_no_result(x);
2090
2091 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2092 if (is_reference_type(type)) {
2093 decorators |= ON_UNKNOWN_OOP_REF;
2094 }
2095 if (x->is_volatile()) {
2096 decorators |= MO_SEQ_CST;
2097 }
2098 access_store_at(decorators, type, src, off.result(), data.result());
2099 }
2100
2101 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2102 BasicType type = x->basic_type();
2103 LIRItem src(x->object(), this);
2104 LIRItem off(x->offset(), this);
2105 LIRItem value(x->value(), this);
2106
2107 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2108
2109 if (is_reference_type(type)) {
2110 decorators |= ON_UNKNOWN_OOP_REF;
2111 }
2112
2113 LIR_Opr result;
2114 if (x->is_add()) {
2115 result = access_atomic_add_at(decorators, type, src, off, value);
2116 } else {
2117 result = access_atomic_xchg_at(decorators, type, src, off, value);
2118 }
2119 set_result(x, result);
2120 }
2121
2122 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2123 int lng = x->length();
2124
2125 for (int i = 0; i < lng; i++) {
2126 C1SwitchRange* one_range = x->at(i);
2127 int low_key = one_range->low_key();
2128 int high_key = one_range->high_key();
2129 BlockBegin* dest = one_range->sux();
2130 if (low_key == high_key) {
2131 __ cmp(lir_cond_equal, value, low_key);
2132 __ branch(lir_cond_equal, dest);
2133 } else if (high_key - low_key == 1) {
2134 __ cmp(lir_cond_equal, value, low_key);
2135 __ branch(lir_cond_equal, dest);
2136 __ cmp(lir_cond_equal, value, high_key);
2137 __ branch(lir_cond_equal, dest);
2138 } else {
2139 LabelObj* L = new LabelObj();
2140 __ cmp(lir_cond_less, value, low_key);
2141 __ branch(lir_cond_less, L->label());
2142 __ cmp(lir_cond_lessEqual, value, high_key);
2143 __ branch(lir_cond_lessEqual, dest);
2144 __ branch_destination(L->label());
2145 }
2146 }
2147 __ jump(default_sux);
2148 }
2149
2150
2151 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2152 SwitchRangeList* res = new SwitchRangeList();
2153 int len = x->length();
2154 if (len > 0) {
2155 BlockBegin* sux = x->sux_at(0);
2156 int low = x->lo_key();
2157 BlockBegin* default_sux = x->default_sux();
2158 C1SwitchRange* range = new C1SwitchRange(low, sux);
2159 for (int i = 0; i < len; i++) {
2160 int key = low + i;
2161 BlockBegin* new_sux = x->sux_at(i);
2162 if (sux == new_sux) {
2163 // still in same range
2164 range->set_high_key(key);
2165 } else {
2166 // skip tests which explicitly dispatch to the default
2167 if (sux != default_sux) {
2168 res->append(range);
2169 }
2170 range = new C1SwitchRange(key, new_sux);
2171 }
2172 sux = new_sux;
2173 }
2174 if (res->length() == 0 || res->last() != range) res->append(range);
2175 }
2176 return res;
2177 }
2178
2179
2180 // we expect the keys to be sorted by increasing value
2181 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2182 SwitchRangeList* res = new SwitchRangeList();
2183 int len = x->length();
2184 if (len > 0) {
2185 BlockBegin* default_sux = x->default_sux();
2186 int key = x->key_at(0);
2187 BlockBegin* sux = x->sux_at(0);
2188 C1SwitchRange* range = new C1SwitchRange(key, sux);
2189 for (int i = 1; i < len; i++) {
2190 int new_key = x->key_at(i);
2191 BlockBegin* new_sux = x->sux_at(i);
2192 if (key+1 == new_key && sux == new_sux) {
2193 // still in same range
2194 range->set_high_key(new_key);
2195 } else {
2196 // skip tests which explicitly dispatch to the default
2197 if (range->sux() != default_sux) {
2198 res->append(range);
2199 }
2200 range = new C1SwitchRange(new_key, new_sux);
2201 }
2202 key = new_key;
2203 sux = new_sux;
2204 }
2205 if (res->length() == 0 || res->last() != range) res->append(range);
2206 }
2207 return res;
2208 }
2209
2210
2211 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2212 LIRItem tag(x->tag(), this);
2213 tag.load_item();
2214 set_no_result(x);
2215
2216 if (x->is_safepoint()) {
2217 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2218 }
2219
2220 // move values into phi locations
2221 move_to_phi(x->state());
2222
2223 int lo_key = x->lo_key();
2224 int len = x->length();
2225 assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2226 LIR_Opr value = tag.result();
2227
2228 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2229 ciMethod* method = x->state()->scope()->method();
2230 ciMethodData* md = method->method_data_or_null();
2231 assert(md != nullptr, "Sanity");
2232 ciProfileData* data = md->bci_to_data(x->state()->bci());
2233 assert(data != nullptr, "must have profiling data");
2234 assert(data->is_MultiBranchData(), "bad profile data?");
2235 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2236 LIR_Opr md_reg = new_register(T_METADATA);
2237 __ metadata2reg(md->constant_encoding(), md_reg);
2238 LIR_Opr data_offset_reg = new_pointer_register();
2239 LIR_Opr tmp_reg = new_pointer_register();
2240
2241 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2242 for (int i = 0; i < len; i++) {
2243 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2244 __ cmp(lir_cond_equal, value, i + lo_key);
2245 __ move(data_offset_reg, tmp_reg);
2246 __ cmove(lir_cond_equal,
2247 LIR_OprFact::intptrConst(count_offset),
2248 tmp_reg,
2249 data_offset_reg, T_INT);
2250 }
2251
2252 LIR_Opr data_reg = new_pointer_register();
2253 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2254 __ move(data_addr, data_reg);
2255 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2256 __ move(data_reg, data_addr);
2257 }
2258
2259 if (UseTableRanges) {
2260 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2261 } else {
2262 for (int i = 0; i < len; i++) {
2263 __ cmp(lir_cond_equal, value, i + lo_key);
2264 __ branch(lir_cond_equal, x->sux_at(i));
2265 }
2266 __ jump(x->default_sux());
2267 }
2268 }
2269
2270
2271 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2272 LIRItem tag(x->tag(), this);
2273 tag.load_item();
2274 set_no_result(x);
2275
2276 if (x->is_safepoint()) {
2277 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2278 }
2279
2280 // move values into phi locations
2281 move_to_phi(x->state());
2282
2283 LIR_Opr value = tag.result();
2284 int len = x->length();
2285
2286 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2287 ciMethod* method = x->state()->scope()->method();
2288 ciMethodData* md = method->method_data_or_null();
2289 assert(md != nullptr, "Sanity");
2290 ciProfileData* data = md->bci_to_data(x->state()->bci());
2291 assert(data != nullptr, "must have profiling data");
2292 assert(data->is_MultiBranchData(), "bad profile data?");
2293 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2294 LIR_Opr md_reg = new_register(T_METADATA);
2295 __ metadata2reg(md->constant_encoding(), md_reg);
2296 LIR_Opr data_offset_reg = new_pointer_register();
2297 LIR_Opr tmp_reg = new_pointer_register();
2298
2299 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2300 for (int i = 0; i < len; i++) {
2301 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2302 __ cmp(lir_cond_equal, value, x->key_at(i));
2303 __ move(data_offset_reg, tmp_reg);
2304 __ cmove(lir_cond_equal,
2305 LIR_OprFact::intptrConst(count_offset),
2306 tmp_reg,
2307 data_offset_reg, T_INT);
2308 }
2309
2310 LIR_Opr data_reg = new_pointer_register();
2311 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2312 __ move(data_addr, data_reg);
2313 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2314 __ move(data_reg, data_addr);
2315 }
2316
2317 if (UseTableRanges) {
2318 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2319 } else {
2320 int len = x->length();
2321 for (int i = 0; i < len; i++) {
2322 __ cmp(lir_cond_equal, value, x->key_at(i));
2323 __ branch(lir_cond_equal, x->sux_at(i));
2324 }
2325 __ jump(x->default_sux());
2326 }
2327 }
2328
2329
2330 void LIRGenerator::do_Goto(Goto* x) {
2331 set_no_result(x);
2332
2333 if (block()->next()->as_OsrEntry()) {
2334 // need to free up storage used for OSR entry point
2335 LIR_Opr osrBuffer = block()->next()->operand();
2336 BasicTypeList signature;
2337 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2338 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2339 __ move(osrBuffer, cc->args()->at(0));
2340 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2341 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2342 }
2343
2344 if (x->is_safepoint()) {
2345 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2346
2347 // increment backedge counter if needed
2348 CodeEmitInfo* info = state_for(x, state);
2349 increment_backedge_counter(info, x->profiled_bci());
2350 CodeEmitInfo* safepoint_info = state_for(x, state);
2351 __ safepoint(safepoint_poll_register(), safepoint_info);
2352 }
2353
2354 // Gotos can be folded Ifs, handle this case.
2355 if (x->should_profile()) {
2356 ciMethod* method = x->profiled_method();
2357 assert(method != nullptr, "method should be set if branch is profiled");
2358 ciMethodData* md = method->method_data_or_null();
2359 assert(md != nullptr, "Sanity");
2360 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2361 assert(data != nullptr, "must have profiling data");
2362 int offset;
2363 if (x->direction() == Goto::taken) {
2364 assert(data->is_BranchData(), "need BranchData for two-way branches");
2365 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2366 } else if (x->direction() == Goto::not_taken) {
2367 assert(data->is_BranchData(), "need BranchData for two-way branches");
2368 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2369 } else {
2370 assert(data->is_JumpData(), "need JumpData for branches");
2371 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2372 }
2373 LIR_Opr md_reg = new_register(T_METADATA);
2374 __ metadata2reg(md->constant_encoding(), md_reg);
2375
2376 increment_counter(new LIR_Address(md_reg, offset,
2377 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2378 }
2379
2380 // emit phi-instruction move after safepoint since this simplifies
2381 // describing the state as the safepoint.
2382 move_to_phi(x->state());
2383
2384 __ jump(x->default_sux());
2385 }
2386
2387 /**
2388 * Emit profiling code if needed for arguments, parameters, return value types
2389 *
2390 * @param md MDO the code will update at runtime
2391 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2392 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2393 * @param profiled_k current profile
2394 * @param obj IR node for the object to be profiled
2395 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2396 * Set once we find an update to make and use for next ones.
2397 * @param not_null true if we know obj cannot be null
2398 * @param signature_at_call_k signature at call for obj
2399 * @param callee_signature_k signature of callee for obj
2400 * at call and callee signatures differ at method handle call
2401 * @return the only klass we know will ever be seen at this profile point
2402 */
2403 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2404 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2405 ciKlass* callee_signature_k) {
2406 ciKlass* result = nullptr;
2407 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2408 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2409 // known not to be null or null bit already set and already set to
2410 // unknown: nothing we can do to improve profiling
2411 if (!do_null && !do_update) {
2412 return result;
2413 }
2414
2415 ciKlass* exact_klass = nullptr;
2416 Compilation* comp = Compilation::current();
2417 if (do_update) {
2418 // try to find exact type, using CHA if possible, so that loading
2419 // the klass from the object can be avoided
2420 ciType* type = obj->exact_type();
2421 if (type == nullptr) {
2422 type = obj->declared_type();
2423 type = comp->cha_exact_type(type);
2424 }
2425 assert(type == nullptr || type->is_klass(), "type should be class");
2426 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2427
2428 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2429 }
2430
2431 if (!do_null && !do_update) {
2432 return result;
2433 }
2434
2435 ciKlass* exact_signature_k = nullptr;
2436 if (do_update) {
2437 // Is the type from the signature exact (the only one possible)?
2438 exact_signature_k = signature_at_call_k->exact_klass();
2439 if (exact_signature_k == nullptr) {
2440 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2441 } else {
2442 result = exact_signature_k;
2443 // Known statically. No need to emit any code: prevent
2444 // LIR_Assembler::emit_profile_type() from emitting useless code
2445 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2446 }
2447 // exact_klass and exact_signature_k can be both non null but
2448 // different if exact_klass is loaded after the ciObject for
2449 // exact_signature_k is created.
2450 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2451 // sometimes the type of the signature is better than the best type
2452 // the compiler has
2453 exact_klass = exact_signature_k;
2454 }
2455 if (callee_signature_k != nullptr &&
2456 callee_signature_k != signature_at_call_k) {
2457 ciKlass* improved_klass = callee_signature_k->exact_klass();
2458 if (improved_klass == nullptr) {
2459 improved_klass = comp->cha_exact_type(callee_signature_k);
2460 }
2461 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2462 exact_klass = exact_signature_k;
2463 }
2464 }
2465 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2466 }
2467
2468 if (!do_null && !do_update) {
2469 return result;
2470 }
2471
2472 if (mdp == LIR_OprFact::illegalOpr) {
2473 mdp = new_register(T_METADATA);
2474 __ metadata2reg(md->constant_encoding(), mdp);
2475 if (md_base_offset != 0) {
2476 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2477 mdp = new_pointer_register();
2478 __ leal(LIR_OprFact::address(base_type_address), mdp);
2479 }
2480 }
2481 LIRItem value(obj, this);
2482 value.load_item();
2483 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2484 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2485 return result;
2486 }
2487
2488 // profile parameters on entry to the root of the compilation
2489 void LIRGenerator::profile_parameters(Base* x) {
2490 if (compilation()->profile_parameters()) {
2491 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2492 ciMethodData* md = scope()->method()->method_data_or_null();
2493 assert(md != nullptr, "Sanity");
2494
2495 if (md->parameters_type_data() != nullptr) {
2496 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2497 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2498 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2499 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2500 LIR_Opr src = args->at(i);
2501 assert(!src->is_illegal(), "check");
2502 BasicType t = src->type();
2503 if (is_reference_type(t)) {
2504 intptr_t profiled_k = parameters->type(j);
2505 Local* local = x->state()->local_at(java_index)->as_Local();
2506 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2507 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2508 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2509 // If the profile is known statically set it once for all and do not emit any code
2510 if (exact != nullptr) {
2511 md->set_parameter_type(j, exact);
2512 }
2513 j++;
2514 }
2515 java_index += type2size[t];
2516 }
2517 }
2518 }
2519 }
2520
2521 void LIRGenerator::do_Base(Base* x) {
2522 __ std_entry(LIR_OprFact::illegalOpr);
2523 // Emit moves from physical registers / stack slots to virtual registers
2524 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2525 IRScope* irScope = compilation()->hir()->top_scope();
2526 int java_index = 0;
2527 for (int i = 0; i < args->length(); i++) {
2528 LIR_Opr src = args->at(i);
2529 assert(!src->is_illegal(), "check");
2530 BasicType t = src->type();
2531
2532 // Types which are smaller than int are passed as int, so
2533 // correct the type which passed.
2534 switch (t) {
2535 case T_BYTE:
2536 case T_BOOLEAN:
2537 case T_SHORT:
2538 case T_CHAR:
2539 t = T_INT;
2540 break;
2541 default:
2542 break;
2543 }
2544
2545 LIR_Opr dest = new_register(t);
2546 __ move(src, dest);
2547
2548 // Assign new location to Local instruction for this local
2549 Local* local = x->state()->local_at(java_index)->as_Local();
2550 assert(local != nullptr, "Locals for incoming arguments must have been created");
2551 #ifndef __SOFTFP__
2552 // The java calling convention passes double as long and float as int.
2553 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2554 #endif // __SOFTFP__
2555 local->set_operand(dest);
2556 #ifdef ASSERT
2557 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2558 #endif
2559 java_index += type2size[t];
2560 }
2561
2562 if (compilation()->env()->dtrace_method_probes()) {
2563 BasicTypeList signature;
2564 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2565 signature.append(T_METADATA); // Method*
2566 LIR_OprList* args = new LIR_OprList();
2567 args->append(getThreadPointer());
2568 LIR_Opr meth = new_register(T_METADATA);
2569 __ metadata2reg(method()->constant_encoding(), meth);
2570 args->append(meth);
2571 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2572 }
2573
2574 if (method()->is_synchronized()) {
2575 LIR_Opr obj;
2576 if (method()->is_static()) {
2577 obj = new_register(T_OBJECT);
2578 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2579 } else {
2580 Local* receiver = x->state()->local_at(0)->as_Local();
2581 assert(receiver != nullptr, "must already exist");
2582 obj = receiver->operand();
2583 }
2584 assert(obj->is_valid(), "must be valid");
2585
2586 if (method()->is_synchronized()) {
2587 LIR_Opr lock = syncLockOpr();
2588 __ load_stack_address_monitor(0, lock);
2589
2590 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2591 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2592
2593 // receiver is guaranteed non-null so don't need CodeEmitInfo
2594 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2595 }
2596 }
2597 // increment invocation counters if needed
2598 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2599 profile_parameters(x);
2600 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2601 increment_invocation_counter(info);
2602 }
2603
2604 // all blocks with a successor must end with an unconditional jump
2605 // to the successor even if they are consecutive
2606 __ jump(x->default_sux());
2607 }
2608
2609
2610 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2611 // construct our frame and model the production of incoming pointer
2612 // to the OSR buffer.
2613 __ osr_entry(LIR_Assembler::osrBufferPointer());
2614 LIR_Opr result = rlock_result(x);
2615 __ move(LIR_Assembler::osrBufferPointer(), result);
2616 }
2617
2618
2619 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2620 assert(args->length() == arg_list->length(),
2621 "args=%d, arg_list=%d", args->length(), arg_list->length());
2622 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2623 LIRItem* param = args->at(i);
2624 LIR_Opr loc = arg_list->at(i);
2625 if (loc->is_register()) {
2626 param->load_item_force(loc);
2627 } else {
2628 LIR_Address* addr = loc->as_address_ptr();
2629 param->load_for_store(addr->type());
2630 if (addr->type() == T_OBJECT) {
2631 __ move_wide(param->result(), addr);
2632 } else
2633 __ move(param->result(), addr);
2634 }
2635 }
2636
2637 if (x->has_receiver()) {
2638 LIRItem* receiver = args->at(0);
2639 LIR_Opr loc = arg_list->at(0);
2640 if (loc->is_register()) {
2641 receiver->load_item_force(loc);
2642 } else {
2643 assert(loc->is_address(), "just checking");
2644 receiver->load_for_store(T_OBJECT);
2645 __ move_wide(receiver->result(), loc->as_address_ptr());
2646 }
2647 }
2648 }
2649
2650
2651 // Visits all arguments, returns appropriate items without loading them
2652 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2653 LIRItemList* argument_items = new LIRItemList();
2654 if (x->has_receiver()) {
2655 LIRItem* receiver = new LIRItem(x->receiver(), this);
2656 argument_items->append(receiver);
2657 }
2658 for (int i = 0; i < x->number_of_arguments(); i++) {
2659 LIRItem* param = new LIRItem(x->argument_at(i), this);
2660 argument_items->append(param);
2661 }
2662 return argument_items;
2663 }
2664
2665
2666 // The invoke with receiver has following phases:
2667 // a) traverse and load/lock receiver;
2668 // b) traverse all arguments -> item-array (invoke_visit_argument)
2669 // c) push receiver on stack
2670 // d) load each of the items and push on stack
2671 // e) unlock receiver
2672 // f) move receiver into receiver-register %o0
2673 // g) lock result registers and emit call operation
2674 //
2675 // Before issuing a call, we must spill-save all values on stack
2676 // that are in caller-save register. "spill-save" moves those registers
2677 // either in a free callee-save register or spills them if no free
2678 // callee save register is available.
2679 //
2680 // The problem is where to invoke spill-save.
2681 // - if invoked between e) and f), we may lock callee save
2682 // register in "spill-save" that destroys the receiver register
2683 // before f) is executed
2684 // - if we rearrange f) to be earlier (by loading %o0) it
2685 // may destroy a value on the stack that is currently in %o0
2686 // and is waiting to be spilled
2687 // - if we keep the receiver locked while doing spill-save,
2688 // we cannot spill it as it is spill-locked
2689 //
2690 void LIRGenerator::do_Invoke(Invoke* x) {
2691 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2692
2693 LIR_OprList* arg_list = cc->args();
2694 LIRItemList* args = invoke_visit_arguments(x);
2695 LIR_Opr receiver = LIR_OprFact::illegalOpr;
2696
2697 // setup result register
2698 LIR_Opr result_register = LIR_OprFact::illegalOpr;
2699 if (x->type() != voidType) {
2700 result_register = result_register_for(x->type());
2701 }
2702
2703 CodeEmitInfo* info = state_for(x, x->state());
2704
2705 invoke_load_arguments(x, args, arg_list);
2706
2707 if (x->has_receiver()) {
2708 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2709 receiver = args->at(0)->result();
2710 }
2711
2712 // emit invoke code
2713 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2714
2715 ciMethod* target = x->target();
2716 switch (x->code()) {
2717 case Bytecodes::_invokestatic:
2718 __ call_static(target, result_register,
2719 SharedRuntime::get_resolve_static_call_stub(),
2720 arg_list, info);
2721 break;
2722 case Bytecodes::_invokespecial:
2723 case Bytecodes::_invokevirtual:
2724 case Bytecodes::_invokeinterface:
2725 // for loaded and final (method or class) target we still produce an inline cache,
2726 // in order to be able to call mixed mode
2727 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2728 __ call_opt_virtual(target, receiver, result_register,
2729 SharedRuntime::get_resolve_opt_virtual_call_stub(),
2730 arg_list, info);
2731 } else {
2732 __ call_icvirtual(target, receiver, result_register,
2733 SharedRuntime::get_resolve_virtual_call_stub(),
2734 arg_list, info);
2735 }
2736 break;
2737 case Bytecodes::_invokedynamic: {
2738 __ call_dynamic(target, receiver, result_register,
2739 SharedRuntime::get_resolve_static_call_stub(),
2740 arg_list, info);
2741 break;
2742 }
2743 default:
2744 fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2745 break;
2746 }
2747
2748 if (result_register->is_valid()) {
2749 LIR_Opr result = rlock_result(x);
2750 __ move(result_register, result);
2751 }
2752 }
2753
2754
2755 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2756 assert(x->number_of_arguments() == 1, "wrong type");
2757 LIRItem value (x->argument_at(0), this);
2758 LIR_Opr reg = rlock_result(x);
2759 value.load_item();
2760 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2761 __ move(tmp, reg);
2762 }
2763
2764
2765
2766 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2767 void LIRGenerator::do_IfOp(IfOp* x) {
2768 #ifdef ASSERT
2769 {
2770 ValueTag xtag = x->x()->type()->tag();
2771 ValueTag ttag = x->tval()->type()->tag();
2772 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2773 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2774 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2775 }
2776 #endif
2777
2778 LIRItem left(x->x(), this);
2779 LIRItem right(x->y(), this);
2780 left.load_item();
2781 if (can_inline_as_constant(right.value())) {
2782 right.dont_load_item();
2783 } else {
2784 right.load_item();
2785 }
2786
2787 LIRItem t_val(x->tval(), this);
2788 LIRItem f_val(x->fval(), this);
2789 t_val.dont_load_item();
2790 f_val.dont_load_item();
2791 LIR_Opr reg = rlock_result(x);
2792
2793 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2794 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2795 }
2796
2797 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2798 assert(x->number_of_arguments() == 0, "wrong type");
2799 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2800 BasicTypeList signature;
2801 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2802 LIR_Opr reg = result_register_for(x->type());
2803 __ call_runtime_leaf(routine, getThreadTemp(),
2804 reg, new LIR_OprList());
2805 LIR_Opr result = rlock_result(x);
2806 __ move(reg, result);
2807 }
2808
2809
2810
2811 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2812 switch (x->id()) {
2813 case vmIntrinsics::_intBitsToFloat :
2814 case vmIntrinsics::_doubleToRawLongBits :
2815 case vmIntrinsics::_longBitsToDouble :
2816 case vmIntrinsics::_floatToRawIntBits : {
2817 do_FPIntrinsics(x);
2818 break;
2819 }
2820
2821 #ifdef JFR_HAVE_INTRINSICS
2822 case vmIntrinsics::_counterTime:
2823 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2824 break;
2825 #endif
2826
2827 case vmIntrinsics::_currentTimeMillis:
2828 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2829 break;
2830
2831 case vmIntrinsics::_nanoTime:
2832 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2833 break;
2834
2835 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
2836 case vmIntrinsics::_isInstance: do_isInstance(x); break;
2837 case vmIntrinsics::_getClass: do_getClass(x); break;
2838 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
2839 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2840 case vmIntrinsics::_currentThread: do_vthread(x); break;
2841 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2842
2843 case vmIntrinsics::_dlog: // fall through
2844 case vmIntrinsics::_dlog10: // fall through
2845 case vmIntrinsics::_dabs: // fall through
2846 case vmIntrinsics::_dsqrt: // fall through
2847 case vmIntrinsics::_dsqrt_strict: // fall through
2848 case vmIntrinsics::_dtan: // fall through
2849 case vmIntrinsics::_dsinh: // fall through
2850 case vmIntrinsics::_dtanh: // fall through
2851 case vmIntrinsics::_dsin : // fall through
2852 case vmIntrinsics::_dcos : // fall through
2853 case vmIntrinsics::_dcbrt : // fall through
2854 case vmIntrinsics::_dexp : // fall through
2855 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
2856 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
2857
2858 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
2859 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
2860
2861 // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2862 case vmIntrinsics::_floatToFloat16: // fall through
2863 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2864
2865 case vmIntrinsics::_Preconditions_checkIndex:
2866 do_PreconditionsCheckIndex(x, T_INT);
2867 break;
2868 case vmIntrinsics::_Preconditions_checkLongIndex:
2869 do_PreconditionsCheckIndex(x, T_LONG);
2870 break;
2871
2872 case vmIntrinsics::_compareAndSetReference:
2873 do_CompareAndSwap(x, objectType);
2874 break;
2875 case vmIntrinsics::_compareAndSetInt:
2876 do_CompareAndSwap(x, intType);
2877 break;
2878 case vmIntrinsics::_compareAndSetLong:
2879 do_CompareAndSwap(x, longType);
2880 break;
2881
2882 case vmIntrinsics::_loadFence :
2883 __ membar_acquire();
2884 break;
2885 case vmIntrinsics::_storeFence:
2886 __ membar_release();
2887 break;
2888 case vmIntrinsics::_storeStoreFence:
2889 __ membar_storestore();
2890 break;
2891 case vmIntrinsics::_fullFence :
2892 __ membar();
2893 break;
2894 case vmIntrinsics::_onSpinWait:
2895 __ on_spin_wait();
2896 break;
2897 case vmIntrinsics::_Reference_get0:
2898 do_Reference_get0(x);
2899 break;
2900
2901 case vmIntrinsics::_updateCRC32:
2902 case vmIntrinsics::_updateBytesCRC32:
2903 case vmIntrinsics::_updateByteBufferCRC32:
2904 do_update_CRC32(x);
2905 break;
2906
2907 case vmIntrinsics::_updateBytesCRC32C:
2908 case vmIntrinsics::_updateDirectByteBufferCRC32C:
2909 do_update_CRC32C(x);
2910 break;
2911
2912 case vmIntrinsics::_vectorizedMismatch:
2913 do_vectorizedMismatch(x);
2914 break;
2915
2916 case vmIntrinsics::_blackhole:
2917 do_blackhole(x);
2918 break;
2919
2920 default: ShouldNotReachHere(); break;
2921 }
2922 }
2923
2924 void LIRGenerator::profile_arguments(ProfileCall* x) {
2925 if (compilation()->profile_arguments()) {
2926 int bci = x->bci_of_invoke();
2927 ciMethodData* md = x->method()->method_data_or_null();
2928 assert(md != nullptr, "Sanity");
2929 ciProfileData* data = md->bci_to_data(bci);
2930 if (data != nullptr) {
2931 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
2932 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
2933 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
2934 int base_offset = md->byte_offset_of_slot(data, extra);
2935 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2936 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
2937
2938 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2939 int start = 0;
2940 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
2941 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
2942 // first argument is not profiled at call (method handle invoke)
2943 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
2944 start = 1;
2945 }
2946 ciSignature* callee_signature = x->callee()->signature();
2947 // method handle call to virtual method
2948 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
2949 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
2950
2951 bool ignored_will_link;
2952 ciSignature* signature_at_call = nullptr;
2953 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
2954 ciSignatureStream signature_at_call_stream(signature_at_call);
2955
2956 // if called through method handle invoke, some arguments may have been popped
2957 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
2958 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
2959 ciKlass* exact = profile_type(md, base_offset, off,
2960 args->type(i), x->profiled_arg_at(i+start), mdp,
2961 !x->arg_needs_null_check(i+start),
2962 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
2963 if (exact != nullptr) {
2964 md->set_argument_type(bci, i, exact);
2965 }
2966 }
2967 } else {
2968 #ifdef ASSERT
2969 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
2970 int n = x->nb_profiled_args();
2971 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
2972 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
2973 "only at JSR292 bytecodes");
2974 #endif
2975 }
2976 }
2977 }
2978 }
2979
2980 // profile parameters on entry to an inlined method
2981 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
2982 if (compilation()->profile_parameters() && x->inlined()) {
2983 ciMethodData* md = x->callee()->method_data_or_null();
2984 if (md != nullptr) {
2985 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2986 if (parameters_type_data != nullptr) {
2987 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2988 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2989 bool has_receiver = !x->callee()->is_static();
2990 ciSignature* sig = x->callee()->signature();
2991 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
2992 int i = 0; // to iterate on the Instructions
2993 Value arg = x->recv();
2994 bool not_null = false;
2995 int bci = x->bci_of_invoke();
2996 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2997 // The first parameter is the receiver so that's what we start
2998 // with if it exists. One exception is method handle call to
2999 // virtual method: the receiver is in the args list
3000 if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3001 i = 1;
3002 arg = x->profiled_arg_at(0);
3003 not_null = !x->arg_needs_null_check(0);
3004 }
3005 int k = 0; // to iterate on the profile data
3006 for (;;) {
3007 intptr_t profiled_k = parameters->type(k);
3008 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3009 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3010 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3011 // If the profile is known statically set it once for all and do not emit any code
3012 if (exact != nullptr) {
3013 md->set_parameter_type(k, exact);
3014 }
3015 k++;
3016 if (k >= parameters_type_data->number_of_parameters()) {
3017 #ifdef ASSERT
3018 int extra = 0;
3019 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3020 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3021 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3022 extra += 1;
3023 }
3024 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3025 #endif
3026 break;
3027 }
3028 arg = x->profiled_arg_at(i);
3029 not_null = !x->arg_needs_null_check(i);
3030 i++;
3031 }
3032 }
3033 }
3034 }
3035 }
3036
3037 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3038 // Need recv in a temporary register so it interferes with the other temporaries
3039 LIR_Opr recv = LIR_OprFact::illegalOpr;
3040 LIR_Opr mdo = new_register(T_METADATA);
3041 // tmp is used to hold the counters on SPARC
3042 LIR_Opr tmp = new_pointer_register();
3043
3044 if (x->nb_profiled_args() > 0) {
3045 profile_arguments(x);
3046 }
3047
3048 // profile parameters on inlined method entry including receiver
3049 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3050 profile_parameters_at_call(x);
3051 }
3052
3053 if (x->recv() != nullptr) {
3054 LIRItem value(x->recv(), this);
3055 value.load_item();
3056 recv = new_register(T_OBJECT);
3057 __ move(value.result(), recv);
3058 }
3059 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3060 }
3061
3062 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3063 int bci = x->bci_of_invoke();
3064 ciMethodData* md = x->method()->method_data_or_null();
3065 assert(md != nullptr, "Sanity");
3066 ciProfileData* data = md->bci_to_data(bci);
3067 if (data != nullptr) {
3068 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3069 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3070 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3071
3072 bool ignored_will_link;
3073 ciSignature* signature_at_call = nullptr;
3074 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3075
3076 // The offset within the MDO of the entry to update may be too large
3077 // to be used in load/store instructions on some platforms. So have
3078 // profile_type() compute the address of the profile in a register.
3079 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3080 ret->type(), x->ret(), mdp,
3081 !x->needs_null_check(),
3082 signature_at_call->return_type()->as_klass(),
3083 x->callee()->signature()->return_type()->as_klass());
3084 if (exact != nullptr) {
3085 md->set_return_type(bci, exact);
3086 }
3087 }
3088 }
3089
3090 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3091 // We can safely ignore accessors here, since c2 will inline them anyway,
3092 // accessors are also always mature.
3093 if (!x->inlinee()->is_accessor()) {
3094 CodeEmitInfo* info = state_for(x, x->state(), true);
3095 // Notify the runtime very infrequently only to take care of counter overflows
3096 int freq_log = Tier23InlineeNotifyFreqLog;
3097 double scale;
3098 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3099 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3100 }
3101 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3102 }
3103 }
3104
3105 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3106 if (compilation()->is_profiling()) {
3107 #if defined(X86) && !defined(_LP64)
3108 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3109 LIR_Opr left_copy = new_register(left->type());
3110 __ move(left, left_copy);
3111 __ cmp(cond, left_copy, right);
3112 #else
3113 __ cmp(cond, left, right);
3114 #endif
3115 LIR_Opr step = new_register(T_INT);
3116 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3117 LIR_Opr zero = LIR_OprFact::intConst(0);
3118 __ cmove(cond,
3119 (left_bci < bci) ? plus_one : zero,
3120 (right_bci < bci) ? plus_one : zero,
3121 step, left->type());
3122 increment_backedge_counter(info, step, bci);
3123 }
3124 }
3125
3126
3127 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3128 int freq_log = 0;
3129 int level = compilation()->env()->comp_level();
3130 if (level == CompLevel_limited_profile) {
3131 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3132 } else if (level == CompLevel_full_profile) {
3133 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3134 } else {
3135 ShouldNotReachHere();
3136 }
3137 // Increment the appropriate invocation/backedge counter and notify the runtime.
3138 double scale;
3139 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3140 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3141 }
3142 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3143 }
3144
3145 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3146 ciMethod *method, LIR_Opr step, int frequency,
3147 int bci, bool backedge, bool notify) {
3148 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3149 int level = _compilation->env()->comp_level();
3150 assert(level > CompLevel_simple, "Shouldn't be here");
3151
3152 int offset = -1;
3153 LIR_Opr counter_holder;
3154 if (level == CompLevel_limited_profile) {
3155 MethodCounters* counters_adr = method->ensure_method_counters();
3156 if (counters_adr == nullptr) {
3157 bailout("method counters allocation failed");
3158 return;
3159 }
3160 counter_holder = new_pointer_register();
3161 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3162 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3163 MethodCounters::invocation_counter_offset());
3164 } else if (level == CompLevel_full_profile) {
3165 counter_holder = new_register(T_METADATA);
3166 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3167 MethodData::invocation_counter_offset());
3168 ciMethodData* md = method->method_data_or_null();
3169 assert(md != nullptr, "Sanity");
3170 __ metadata2reg(md->constant_encoding(), counter_holder);
3171 } else {
3172 ShouldNotReachHere();
3173 }
3174 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3175 LIR_Opr result = new_register(T_INT);
3176 __ load(counter, result);
3177 __ add(result, step, result);
3178 __ store(result, counter);
3179 if (notify && (!backedge || UseOnStackReplacement)) {
3180 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3181 // The bci for info can point to cmp for if's we want the if bci
3182 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3183 int freq = frequency << InvocationCounter::count_shift;
3184 if (freq == 0) {
3185 if (!step->is_constant()) {
3186 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3187 __ branch(lir_cond_notEqual, overflow);
3188 } else {
3189 __ branch(lir_cond_always, overflow);
3190 }
3191 } else {
3192 LIR_Opr mask = load_immediate(freq, T_INT);
3193 if (!step->is_constant()) {
3194 // If step is 0, make sure the overflow check below always fails
3195 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3196 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3197 }
3198 __ logical_and(result, mask, result);
3199 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3200 __ branch(lir_cond_equal, overflow);
3201 }
3202 __ branch_destination(overflow->continuation());
3203 }
3204 }
3205
3206 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3207 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3208 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3209
3210 if (x->pass_thread()) {
3211 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3212 args->append(getThreadPointer());
3213 }
3214
3215 for (int i = 0; i < x->number_of_arguments(); i++) {
3216 Value a = x->argument_at(i);
3217 LIRItem* item = new LIRItem(a, this);
3218 item->load_item();
3219 args->append(item->result());
3220 signature->append(as_BasicType(a->type()));
3221 }
3222
3223 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3224 if (x->type() == voidType) {
3225 set_no_result(x);
3226 } else {
3227 __ move(result, rlock_result(x));
3228 }
3229 }
3230
3231 #ifdef ASSERT
3232 void LIRGenerator::do_Assert(Assert *x) {
3233 ValueTag tag = x->x()->type()->tag();
3234 If::Condition cond = x->cond();
3235
3236 LIRItem xitem(x->x(), this);
3237 LIRItem yitem(x->y(), this);
3238 LIRItem* xin = &xitem;
3239 LIRItem* yin = &yitem;
3240
3241 assert(tag == intTag, "Only integer assertions are valid!");
3242
3243 xin->load_item();
3244 yin->dont_load_item();
3245
3246 set_no_result(x);
3247
3248 LIR_Opr left = xin->result();
3249 LIR_Opr right = yin->result();
3250
3251 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3252 }
3253 #endif
3254
3255 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3256
3257
3258 Instruction *a = x->x();
3259 Instruction *b = x->y();
3260 if (!a || StressRangeCheckElimination) {
3261 assert(!b || StressRangeCheckElimination, "B must also be null");
3262
3263 CodeEmitInfo *info = state_for(x, x->state());
3264 CodeStub* stub = new PredicateFailedStub(info);
3265
3266 __ jump(stub);
3267 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3268 int a_int = a->type()->as_IntConstant()->value();
3269 int b_int = b->type()->as_IntConstant()->value();
3270
3271 bool ok = false;
3272
3273 switch(x->cond()) {
3274 case Instruction::eql: ok = (a_int == b_int); break;
3275 case Instruction::neq: ok = (a_int != b_int); break;
3276 case Instruction::lss: ok = (a_int < b_int); break;
3277 case Instruction::leq: ok = (a_int <= b_int); break;
3278 case Instruction::gtr: ok = (a_int > b_int); break;
3279 case Instruction::geq: ok = (a_int >= b_int); break;
3280 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3281 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3282 default: ShouldNotReachHere();
3283 }
3284
3285 if (ok) {
3286
3287 CodeEmitInfo *info = state_for(x, x->state());
3288 CodeStub* stub = new PredicateFailedStub(info);
3289
3290 __ jump(stub);
3291 }
3292 } else {
3293
3294 ValueTag tag = x->x()->type()->tag();
3295 If::Condition cond = x->cond();
3296 LIRItem xitem(x->x(), this);
3297 LIRItem yitem(x->y(), this);
3298 LIRItem* xin = &xitem;
3299 LIRItem* yin = &yitem;
3300
3301 assert(tag == intTag, "Only integer deoptimizations are valid!");
3302
3303 xin->load_item();
3304 yin->dont_load_item();
3305 set_no_result(x);
3306
3307 LIR_Opr left = xin->result();
3308 LIR_Opr right = yin->result();
3309
3310 CodeEmitInfo *info = state_for(x, x->state());
3311 CodeStub* stub = new PredicateFailedStub(info);
3312
3313 __ cmp(lir_cond(cond), left, right);
3314 __ branch(lir_cond(cond), stub);
3315 }
3316 }
3317
3318 void LIRGenerator::do_blackhole(Intrinsic *x) {
3319 assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3320 for (int c = 0; c < x->number_of_arguments(); c++) {
3321 // Load the argument
3322 LIRItem vitem(x->argument_at(c), this);
3323 vitem.load_item();
3324 // ...and leave it unused.
3325 }
3326 }
3327
3328 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3329 LIRItemList args(1);
3330 LIRItem value(arg1, this);
3331 args.append(&value);
3332 BasicTypeList signature;
3333 signature.append(as_BasicType(arg1->type()));
3334
3335 return call_runtime(&signature, &args, entry, result_type, info);
3336 }
3337
3338
3339 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3340 LIRItemList args(2);
3341 LIRItem value1(arg1, this);
3342 LIRItem value2(arg2, this);
3343 args.append(&value1);
3344 args.append(&value2);
3345 BasicTypeList signature;
3346 signature.append(as_BasicType(arg1->type()));
3347 signature.append(as_BasicType(arg2->type()));
3348
3349 return call_runtime(&signature, &args, entry, result_type, info);
3350 }
3351
3352
3353 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3354 address entry, ValueType* result_type, CodeEmitInfo* info) {
3355 // get a result register
3356 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3357 LIR_Opr result = LIR_OprFact::illegalOpr;
3358 if (result_type->tag() != voidTag) {
3359 result = new_register(result_type);
3360 phys_reg = result_register_for(result_type);
3361 }
3362
3363 // move the arguments into the correct location
3364 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3365 assert(cc->length() == args->length(), "argument mismatch");
3366 for (int i = 0; i < args->length(); i++) {
3367 LIR_Opr arg = args->at(i);
3368 LIR_Opr loc = cc->at(i);
3369 if (loc->is_register()) {
3370 __ move(arg, loc);
3371 } else {
3372 LIR_Address* addr = loc->as_address_ptr();
3373 // if (!can_store_as_constant(arg)) {
3374 // LIR_Opr tmp = new_register(arg->type());
3375 // __ move(arg, tmp);
3376 // arg = tmp;
3377 // }
3378 __ move(arg, addr);
3379 }
3380 }
3381
3382 if (info) {
3383 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3384 } else {
3385 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3386 }
3387 if (result->is_valid()) {
3388 __ move(phys_reg, result);
3389 }
3390 return result;
3391 }
3392
3393
3394 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3395 address entry, ValueType* result_type, CodeEmitInfo* info) {
3396 // get a result register
3397 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3398 LIR_Opr result = LIR_OprFact::illegalOpr;
3399 if (result_type->tag() != voidTag) {
3400 result = new_register(result_type);
3401 phys_reg = result_register_for(result_type);
3402 }
3403
3404 // move the arguments into the correct location
3405 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3406
3407 assert(cc->length() == args->length(), "argument mismatch");
3408 for (int i = 0; i < args->length(); i++) {
3409 LIRItem* arg = args->at(i);
3410 LIR_Opr loc = cc->at(i);
3411 if (loc->is_register()) {
3412 arg->load_item_force(loc);
3413 } else {
3414 LIR_Address* addr = loc->as_address_ptr();
3415 arg->load_for_store(addr->type());
3416 __ move(arg->result(), addr);
3417 }
3418 }
3419
3420 if (info) {
3421 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3422 } else {
3423 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3424 }
3425 if (result->is_valid()) {
3426 __ move(phys_reg, result);
3427 }
3428 return result;
3429 }
3430
3431 void LIRGenerator::do_MemBar(MemBar* x) {
3432 LIR_Code code = x->code();
3433 switch(code) {
3434 case lir_membar_acquire : __ membar_acquire(); break;
3435 case lir_membar_release : __ membar_release(); break;
3436 case lir_membar : __ membar(); break;
3437 case lir_membar_loadload : __ membar_loadload(); break;
3438 case lir_membar_storestore: __ membar_storestore(); break;
3439 case lir_membar_loadstore : __ membar_loadstore(); break;
3440 case lir_membar_storeload : __ membar_storeload(); break;
3441 default : ShouldNotReachHere(); break;
3442 }
3443 }
3444
3445 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3446 LIR_Opr value_fixed = rlock_byte(T_BYTE);
3447 if (two_operand_lir_form) {
3448 __ move(value, value_fixed);
3449 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3450 } else {
3451 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3452 }
3453 LIR_Opr klass = new_register(T_METADATA);
3454 load_klass(array, klass, null_check_info);
3455 null_check_info = nullptr;
3456 LIR_Opr layout = new_register(T_INT);
3457 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3458 int diffbit = Klass::layout_helper_boolean_diffbit();
3459 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3460 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3461 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3462 value = value_fixed;
3463 return value;
3464 }