1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "compiler/compilerOracle.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c1/barrierSetC1.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "oops/methodCounters.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/vm_version.hpp" 46 #include "utilities/bitMap.inline.hpp" 47 #include "utilities/macros.hpp" 48 #include "utilities/powerOfTwo.hpp" 49 50 #ifdef ASSERT 51 #define __ gen()->lir(__FILE__, __LINE__)-> 52 #else 53 #define __ gen()->lir()-> 54 #endif 55 56 #ifndef PATCHED_ADDR 57 #define PATCHED_ADDR (max_jint) 58 #endif 59 60 void PhiResolverState::reset() { 61 _virtual_operands.clear(); 62 _other_operands.clear(); 63 _vreg_table.clear(); 64 } 65 66 67 //-------------------------------------------------------------- 68 // PhiResolver 69 70 // Resolves cycles: 71 // 72 // r1 := r2 becomes temp := r1 73 // r2 := r1 r1 := r2 74 // r2 := temp 75 // and orders moves: 76 // 77 // r2 := r3 becomes r1 := r2 78 // r1 := r2 r2 := r3 79 80 PhiResolver::PhiResolver(LIRGenerator* gen) 81 : _gen(gen) 82 , _state(gen->resolver_state()) 83 , _loop(nullptr) 84 , _temp(LIR_OprFact::illegalOpr) 85 { 86 // reinitialize the shared state arrays 87 _state.reset(); 88 } 89 90 91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 92 assert(src->is_valid(), ""); 93 assert(dest->is_valid(), ""); 94 __ move(src, dest); 95 } 96 97 98 void PhiResolver::move_temp_to(LIR_Opr dest) { 99 assert(_temp->is_valid(), ""); 100 emit_move(_temp, dest); 101 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 102 } 103 104 105 void PhiResolver::move_to_temp(LIR_Opr src) { 106 assert(_temp->is_illegal(), ""); 107 _temp = _gen->new_register(src->type()); 108 emit_move(src, _temp); 109 } 110 111 112 // Traverse assignment graph in depth first order and generate moves in post order 113 // ie. two assignments: b := c, a := b start with node c: 114 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 115 // Generates moves in this order: move b to a and move c to b 116 // ie. cycle a := b, b := a start with node a 117 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 118 // Generates moves in this order: move b to temp, move a to b, move temp to a 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 120 if (!dest->visited()) { 121 dest->set_visited(); 122 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 123 move(dest, dest->destination_at(i)); 124 } 125 } else if (!dest->start_node()) { 126 // cylce in graph detected 127 assert(_loop == nullptr, "only one loop valid!"); 128 _loop = dest; 129 move_to_temp(src->operand()); 130 return; 131 } // else dest is a start node 132 133 if (!dest->assigned()) { 134 if (_loop == dest) { 135 move_temp_to(dest->operand()); 136 dest->set_assigned(); 137 } else if (src != nullptr) { 138 emit_move(src->operand(), dest->operand()); 139 dest->set_assigned(); 140 } 141 } 142 } 143 144 145 PhiResolver::~PhiResolver() { 146 int i; 147 // resolve any cycles in moves from and to virtual registers 148 for (i = virtual_operands().length() - 1; i >= 0; i --) { 149 ResolveNode* node = virtual_operands().at(i); 150 if (!node->visited()) { 151 _loop = nullptr; 152 move(nullptr, node); 153 node->set_start_node(); 154 assert(_temp->is_illegal(), "move_temp_to() call missing"); 155 } 156 } 157 158 // generate move for move from non virtual register to abitrary destination 159 for (i = other_operands().length() - 1; i >= 0; i --) { 160 ResolveNode* node = other_operands().at(i); 161 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 162 emit_move(node->operand(), node->destination_at(j)->operand()); 163 } 164 } 165 } 166 167 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 169 ResolveNode* node; 170 if (opr->is_virtual()) { 171 int vreg_num = opr->vreg_number(); 172 node = vreg_table().at_grow(vreg_num, nullptr); 173 assert(node == nullptr || node->operand() == opr, ""); 174 if (node == nullptr) { 175 node = new ResolveNode(opr); 176 vreg_table().at_put(vreg_num, node); 177 } 178 // Make sure that all virtual operands show up in the list when 179 // they are used as the source of a move. 180 if (source && !virtual_operands().contains(node)) { 181 virtual_operands().append(node); 182 } 183 } else { 184 assert(source, ""); 185 node = new ResolveNode(opr); 186 other_operands().append(node); 187 } 188 return node; 189 } 190 191 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 193 assert(dest->is_virtual(), ""); 194 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 195 assert(src->is_valid(), ""); 196 assert(dest->is_valid(), ""); 197 ResolveNode* source = source_node(src); 198 source->append(destination_node(dest)); 199 } 200 201 202 //-------------------------------------------------------------- 203 // LIRItem 204 205 void LIRItem::set_result(LIR_Opr opr) { 206 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 207 value()->set_operand(opr); 208 209 #ifdef ASSERT 210 if (opr->is_virtual()) { 211 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 212 } 213 #endif 214 215 _result = opr; 216 } 217 218 void LIRItem::load_item() { 219 if (result()->is_illegal()) { 220 // update the items result 221 _result = value()->operand(); 222 } 223 if (!result()->is_register()) { 224 LIR_Opr reg = _gen->new_register(value()->type()); 225 __ move(result(), reg); 226 if (result()->is_constant()) { 227 _result = reg; 228 } else { 229 set_result(reg); 230 } 231 } 232 } 233 234 235 void LIRItem::load_for_store(BasicType type) { 236 if (_gen->can_store_as_constant(value(), type)) { 237 _result = value()->operand(); 238 if (!_result->is_constant()) { 239 _result = LIR_OprFact::value_type(value()->type()); 240 } 241 } else if (type == T_BYTE || type == T_BOOLEAN) { 242 load_byte_item(); 243 } else { 244 load_item(); 245 } 246 } 247 248 void LIRItem::load_item_force(LIR_Opr reg) { 249 LIR_Opr r = result(); 250 if (r != reg) { 251 #if !defined(ARM) && !defined(E500V2) 252 if (r->type() != reg->type()) { 253 // moves between different types need an intervening spill slot 254 r = _gen->force_to_spill(r, reg->type()); 255 } 256 #endif 257 __ move(r, reg); 258 _result = reg; 259 } 260 } 261 262 ciObject* LIRItem::get_jobject_constant() const { 263 ObjectType* oc = type()->as_ObjectType(); 264 if (oc) { 265 return oc->constant_value(); 266 } 267 return nullptr; 268 } 269 270 271 jint LIRItem::get_jint_constant() const { 272 assert(is_constant() && value() != nullptr, ""); 273 assert(type()->as_IntConstant() != nullptr, "type check"); 274 return type()->as_IntConstant()->value(); 275 } 276 277 278 jint LIRItem::get_address_constant() const { 279 assert(is_constant() && value() != nullptr, ""); 280 assert(type()->as_AddressConstant() != nullptr, "type check"); 281 return type()->as_AddressConstant()->value(); 282 } 283 284 285 jfloat LIRItem::get_jfloat_constant() const { 286 assert(is_constant() && value() != nullptr, ""); 287 assert(type()->as_FloatConstant() != nullptr, "type check"); 288 return type()->as_FloatConstant()->value(); 289 } 290 291 292 jdouble LIRItem::get_jdouble_constant() const { 293 assert(is_constant() && value() != nullptr, ""); 294 assert(type()->as_DoubleConstant() != nullptr, "type check"); 295 return type()->as_DoubleConstant()->value(); 296 } 297 298 299 jlong LIRItem::get_jlong_constant() const { 300 assert(is_constant() && value() != nullptr, ""); 301 assert(type()->as_LongConstant() != nullptr, "type check"); 302 return type()->as_LongConstant()->value(); 303 } 304 305 306 307 //-------------------------------------------------------------- 308 309 310 void LIRGenerator::block_do_prolog(BlockBegin* block) { 311 #ifndef PRODUCT 312 if (PrintIRWithLIR) { 313 block->print(); 314 } 315 #endif 316 317 // set up the list of LIR instructions 318 assert(block->lir() == nullptr, "LIR list already computed for this block"); 319 _lir = new LIR_List(compilation(), block); 320 block->set_lir(_lir); 321 322 __ branch_destination(block->label()); 323 324 if (LIRTraceExecution && 325 Compilation::current()->hir()->start()->block_id() != block->block_id() && 326 !block->is_set(BlockBegin::exception_entry_flag)) { 327 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 328 trace_block_entry(block); 329 } 330 } 331 332 333 void LIRGenerator::block_do_epilog(BlockBegin* block) { 334 #ifndef PRODUCT 335 if (PrintIRWithLIR) { 336 tty->cr(); 337 } 338 #endif 339 340 // LIR_Opr for unpinned constants shouldn't be referenced by other 341 // blocks so clear them out after processing the block. 342 for (int i = 0; i < _unpinned_constants.length(); i++) { 343 _unpinned_constants.at(i)->clear_operand(); 344 } 345 _unpinned_constants.trunc_to(0); 346 347 // clear our any registers for other local constants 348 _constants.trunc_to(0); 349 _reg_for_constants.trunc_to(0); 350 } 351 352 353 void LIRGenerator::block_do(BlockBegin* block) { 354 CHECK_BAILOUT(); 355 356 block_do_prolog(block); 357 set_block(block); 358 359 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 360 if (instr->is_pinned()) do_root(instr); 361 } 362 363 set_block(nullptr); 364 block_do_epilog(block); 365 } 366 367 368 //-------------------------LIRGenerator----------------------------- 369 370 // This is where the tree-walk starts; instr must be root; 371 void LIRGenerator::do_root(Value instr) { 372 CHECK_BAILOUT(); 373 374 InstructionMark im(compilation(), instr); 375 376 assert(instr->is_pinned(), "use only with roots"); 377 assert(instr->subst() == instr, "shouldn't have missed substitution"); 378 379 instr->visit(this); 380 381 assert(!instr->has_uses() || instr->operand()->is_valid() || 382 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 383 } 384 385 386 // This is called for each node in tree; the walk stops if a root is reached 387 void LIRGenerator::walk(Value instr) { 388 InstructionMark im(compilation(), instr); 389 //stop walk when encounter a root 390 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 391 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 392 } else { 393 assert(instr->subst() == instr, "shouldn't have missed substitution"); 394 instr->visit(this); 395 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 396 } 397 } 398 399 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 401 assert(state != nullptr, "state must be defined"); 402 403 #ifndef PRODUCT 404 state->verify(); 405 #endif 406 407 ValueStack* s = state; 408 for_each_state(s) { 409 if (s->kind() == ValueStack::EmptyExceptionState || 410 s->kind() == ValueStack::CallerEmptyExceptionState) 411 { 412 #ifdef ASSERT 413 int index; 414 Value value; 415 for_each_stack_value(s, index, value) { 416 fatal("state must be empty"); 417 } 418 for_each_local_value(s, index, value) { 419 fatal("state must be empty"); 420 } 421 #endif 422 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 423 continue; 424 } 425 426 int index; 427 Value value; 428 for_each_stack_value(s, index, value) { 429 assert(value->subst() == value, "missed substitution"); 430 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 431 walk(value); 432 assert(value->operand()->is_valid(), "must be evaluated now"); 433 } 434 } 435 436 int bci = s->bci(); 437 IRScope* scope = s->scope(); 438 ciMethod* method = scope->method(); 439 440 MethodLivenessResult liveness = method->liveness_at_bci(bci); 441 if (bci == SynchronizationEntryBCI) { 442 if (x->as_ExceptionObject() || x->as_Throw()) { 443 // all locals are dead on exit from the synthetic unlocker 444 liveness.clear(); 445 } else { 446 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 447 } 448 } 449 if (!liveness.is_valid()) { 450 // Degenerate or breakpointed method. 451 bailout("Degenerate or breakpointed method"); 452 } else { 453 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 454 for_each_local_value(s, index, value) { 455 assert(value->subst() == value, "missed substitution"); 456 if (liveness.at(index) && !value->type()->is_illegal()) { 457 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 458 walk(value); 459 assert(value->operand()->is_valid(), "must be evaluated now"); 460 } 461 } else { 462 // null out this local so that linear scan can assume that all non-null values are live. 463 s->invalidate_local(index); 464 } 465 } 466 } 467 } 468 469 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 470 } 471 472 473 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 474 return state_for(x, x->exception_state()); 475 } 476 477 478 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 479 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 480 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 481 * the class. */ 482 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 483 assert(info != nullptr, "info must be set if class is not loaded"); 484 __ klass2reg_patch(nullptr, r, info); 485 } else { 486 // no patching needed 487 __ metadata2reg(obj->constant_encoding(), r); 488 } 489 } 490 491 492 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 493 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 494 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 495 if (index->is_constant()) { 496 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 497 index->as_jint(), null_check_info); 498 __ branch(lir_cond_belowEqual, stub); // forward branch 499 } else { 500 cmp_reg_mem(lir_cond_aboveEqual, index, array, 501 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 502 __ branch(lir_cond_aboveEqual, stub); // forward branch 503 } 504 } 505 506 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 507 LIR_Opr result_op = result; 508 LIR_Opr left_op = left; 509 LIR_Opr right_op = right; 510 511 if (two_operand_lir_form && left_op != result_op) { 512 assert(right_op != result_op, "malformed"); 513 __ move(left_op, result_op); 514 left_op = result_op; 515 } 516 517 switch(code) { 518 case Bytecodes::_dadd: 519 case Bytecodes::_fadd: 520 case Bytecodes::_ladd: 521 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 522 case Bytecodes::_fmul: 523 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 524 525 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 526 527 case Bytecodes::_imul: 528 { 529 bool did_strength_reduce = false; 530 531 if (right->is_constant()) { 532 jint c = right->as_jint(); 533 if (c > 0 && is_power_of_2(c)) { 534 // do not need tmp here 535 __ shift_left(left_op, exact_log2(c), result_op); 536 did_strength_reduce = true; 537 } else { 538 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 539 } 540 } 541 // we couldn't strength reduce so just emit the multiply 542 if (!did_strength_reduce) { 543 __ mul(left_op, right_op, result_op); 544 } 545 } 546 break; 547 548 case Bytecodes::_dsub: 549 case Bytecodes::_fsub: 550 case Bytecodes::_lsub: 551 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 552 553 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 554 // ldiv and lrem are implemented with a direct runtime call 555 556 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 557 558 case Bytecodes::_drem: 559 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 560 561 default: ShouldNotReachHere(); 562 } 563 } 564 565 566 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 567 arithmetic_op(code, result, left, right, tmp); 568 } 569 570 571 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 572 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 573 } 574 575 576 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 577 arithmetic_op(code, result, left, right, tmp); 578 } 579 580 581 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 582 583 if (two_operand_lir_form && value != result_op 584 // Only 32bit right shifts require two operand form on S390. 585 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 586 assert(count != result_op, "malformed"); 587 __ move(value, result_op); 588 value = result_op; 589 } 590 591 assert(count->is_constant() || count->is_register(), "must be"); 592 switch(code) { 593 case Bytecodes::_ishl: 594 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 595 case Bytecodes::_ishr: 596 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 597 case Bytecodes::_iushr: 598 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 599 default: ShouldNotReachHere(); 600 } 601 } 602 603 604 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 605 if (two_operand_lir_form && left_op != result_op) { 606 assert(right_op != result_op, "malformed"); 607 __ move(left_op, result_op); 608 left_op = result_op; 609 } 610 611 switch(code) { 612 case Bytecodes::_iand: 613 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 614 615 case Bytecodes::_ior: 616 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 617 618 case Bytecodes::_ixor: 619 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 620 621 default: ShouldNotReachHere(); 622 } 623 } 624 625 626 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 627 if (!GenerateSynchronizationCode) return; 628 // for slow path, use debug info for state after successful locking 629 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 630 __ load_stack_address_monitor(monitor_no, lock); 631 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 632 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 633 } 634 635 636 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 637 if (!GenerateSynchronizationCode) return; 638 // setup registers 639 LIR_Opr hdr = lock; 640 lock = new_hdr; 641 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 642 __ load_stack_address_monitor(monitor_no, lock); 643 __ unlock_object(hdr, object, lock, scratch, slow_path); 644 } 645 646 #ifndef PRODUCT 647 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 648 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 649 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 650 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 651 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 652 } 653 } 654 #endif 655 656 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 657 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 658 // If klass is not loaded we do not know if the klass has finalizers: 659 if (UseFastNewInstance && klass->is_loaded() 660 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 661 662 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 663 664 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 665 666 assert(klass->is_loaded(), "must be loaded"); 667 // allocate space for instance 668 assert(klass->size_helper() > 0, "illegal instance size"); 669 const int instance_size = align_object_size(klass->size_helper()); 670 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 671 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 672 } else { 673 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 674 __ branch(lir_cond_always, slow_path); 675 __ branch_destination(slow_path->continuation()); 676 } 677 } 678 679 680 static bool is_constant_zero(Instruction* inst) { 681 IntConstant* c = inst->type()->as_IntConstant(); 682 if (c) { 683 return (c->value() == 0); 684 } 685 return false; 686 } 687 688 689 static bool positive_constant(Instruction* inst) { 690 IntConstant* c = inst->type()->as_IntConstant(); 691 if (c) { 692 return (c->value() >= 0); 693 } 694 return false; 695 } 696 697 698 static ciArrayKlass* as_array_klass(ciType* type) { 699 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 700 return (ciArrayKlass*)type; 701 } else { 702 return nullptr; 703 } 704 } 705 706 static ciType* phi_declared_type(Phi* phi) { 707 ciType* t = phi->operand_at(0)->declared_type(); 708 if (t == nullptr) { 709 return nullptr; 710 } 711 for(int i = 1; i < phi->operand_count(); i++) { 712 if (t != phi->operand_at(i)->declared_type()) { 713 return nullptr; 714 } 715 } 716 return t; 717 } 718 719 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 720 Instruction* src = x->argument_at(0); 721 Instruction* src_pos = x->argument_at(1); 722 Instruction* dst = x->argument_at(2); 723 Instruction* dst_pos = x->argument_at(3); 724 Instruction* length = x->argument_at(4); 725 726 // first try to identify the likely type of the arrays involved 727 ciArrayKlass* expected_type = nullptr; 728 bool is_exact = false, src_objarray = false, dst_objarray = false; 729 { 730 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 731 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 732 Phi* phi; 733 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 734 src_declared_type = as_array_klass(phi_declared_type(phi)); 735 } 736 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 737 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 738 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 739 dst_declared_type = as_array_klass(phi_declared_type(phi)); 740 } 741 742 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 743 // the types exactly match so the type is fully known 744 is_exact = true; 745 expected_type = src_exact_type; 746 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 747 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 748 ciArrayKlass* src_type = nullptr; 749 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 750 src_type = (ciArrayKlass*) src_exact_type; 751 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 752 src_type = (ciArrayKlass*) src_declared_type; 753 } 754 if (src_type != nullptr) { 755 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 756 is_exact = true; 757 expected_type = dst_type; 758 } 759 } 760 } 761 // at least pass along a good guess 762 if (expected_type == nullptr) expected_type = dst_exact_type; 763 if (expected_type == nullptr) expected_type = src_declared_type; 764 if (expected_type == nullptr) expected_type = dst_declared_type; 765 766 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 767 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 768 } 769 770 // if a probable array type has been identified, figure out if any 771 // of the required checks for a fast case can be elided. 772 int flags = LIR_OpArrayCopy::all_flags; 773 774 if (!src_objarray) 775 flags &= ~LIR_OpArrayCopy::src_objarray; 776 if (!dst_objarray) 777 flags &= ~LIR_OpArrayCopy::dst_objarray; 778 779 if (!x->arg_needs_null_check(0)) 780 flags &= ~LIR_OpArrayCopy::src_null_check; 781 if (!x->arg_needs_null_check(2)) 782 flags &= ~LIR_OpArrayCopy::dst_null_check; 783 784 785 if (expected_type != nullptr) { 786 Value length_limit = nullptr; 787 788 IfOp* ifop = length->as_IfOp(); 789 if (ifop != nullptr) { 790 // look for expressions like min(v, a.length) which ends up as 791 // x > y ? y : x or x >= y ? y : x 792 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 793 ifop->x() == ifop->fval() && 794 ifop->y() == ifop->tval()) { 795 length_limit = ifop->y(); 796 } 797 } 798 799 // try to skip null checks and range checks 800 NewArray* src_array = src->as_NewArray(); 801 if (src_array != nullptr) { 802 flags &= ~LIR_OpArrayCopy::src_null_check; 803 if (length_limit != nullptr && 804 src_array->length() == length_limit && 805 is_constant_zero(src_pos)) { 806 flags &= ~LIR_OpArrayCopy::src_range_check; 807 } 808 } 809 810 NewArray* dst_array = dst->as_NewArray(); 811 if (dst_array != nullptr) { 812 flags &= ~LIR_OpArrayCopy::dst_null_check; 813 if (length_limit != nullptr && 814 dst_array->length() == length_limit && 815 is_constant_zero(dst_pos)) { 816 flags &= ~LIR_OpArrayCopy::dst_range_check; 817 } 818 } 819 820 // check from incoming constant values 821 if (positive_constant(src_pos)) 822 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 823 if (positive_constant(dst_pos)) 824 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 825 if (positive_constant(length)) 826 flags &= ~LIR_OpArrayCopy::length_positive_check; 827 828 // see if the range check can be elided, which might also imply 829 // that src or dst is non-null. 830 ArrayLength* al = length->as_ArrayLength(); 831 if (al != nullptr) { 832 if (al->array() == src) { 833 // it's the length of the source array 834 flags &= ~LIR_OpArrayCopy::length_positive_check; 835 flags &= ~LIR_OpArrayCopy::src_null_check; 836 if (is_constant_zero(src_pos)) 837 flags &= ~LIR_OpArrayCopy::src_range_check; 838 } 839 if (al->array() == dst) { 840 // it's the length of the destination array 841 flags &= ~LIR_OpArrayCopy::length_positive_check; 842 flags &= ~LIR_OpArrayCopy::dst_null_check; 843 if (is_constant_zero(dst_pos)) 844 flags &= ~LIR_OpArrayCopy::dst_range_check; 845 } 846 } 847 if (is_exact) { 848 flags &= ~LIR_OpArrayCopy::type_check; 849 } 850 } 851 852 IntConstant* src_int = src_pos->type()->as_IntConstant(); 853 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 854 if (src_int && dst_int) { 855 int s_offs = src_int->value(); 856 int d_offs = dst_int->value(); 857 if (src_int->value() >= dst_int->value()) { 858 flags &= ~LIR_OpArrayCopy::overlapping; 859 } 860 if (expected_type != nullptr) { 861 BasicType t = expected_type->element_type()->basic_type(); 862 int element_size = type2aelembytes(t); 863 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 864 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 865 flags &= ~LIR_OpArrayCopy::unaligned; 866 } 867 } 868 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 869 // src and dest positions are the same, or dst is zero so assume 870 // nonoverlapping copy. 871 flags &= ~LIR_OpArrayCopy::overlapping; 872 } 873 874 if (src == dst) { 875 // moving within a single array so no type checks are needed 876 if (flags & LIR_OpArrayCopy::type_check) { 877 flags &= ~LIR_OpArrayCopy::type_check; 878 } 879 } 880 *flagsp = flags; 881 *expected_typep = (ciArrayKlass*)expected_type; 882 } 883 884 885 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 886 assert(opr->is_register(), "why spill if item is not register?"); 887 888 if (strict_fp_requires_explicit_rounding) { 889 #ifdef IA32 890 if (UseSSE < 1 && opr->is_single_fpu()) { 891 LIR_Opr result = new_register(T_FLOAT); 892 set_vreg_flag(result, must_start_in_memory); 893 assert(opr->is_register(), "only a register can be spilled"); 894 assert(opr->value_type()->is_float(), "rounding only for floats available"); 895 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 896 return result; 897 } 898 #else 899 Unimplemented(); 900 #endif // IA32 901 } 902 return opr; 903 } 904 905 906 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 907 assert(type2size[t] == type2size[value->type()], 908 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 909 if (!value->is_register()) { 910 // force into a register 911 LIR_Opr r = new_register(value->type()); 912 __ move(value, r); 913 value = r; 914 } 915 916 // create a spill location 917 LIR_Opr tmp = new_register(t); 918 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 919 920 // move from register to spill 921 __ move(value, tmp); 922 return tmp; 923 } 924 925 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 926 if (if_instr->should_profile()) { 927 ciMethod* method = if_instr->profiled_method(); 928 assert(method != nullptr, "method should be set if branch is profiled"); 929 ciMethodData* md = method->method_data_or_null(); 930 assert(md != nullptr, "Sanity"); 931 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 932 assert(data != nullptr, "must have profiling data"); 933 assert(data->is_BranchData(), "need BranchData for two-way branches"); 934 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 935 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 936 if (if_instr->is_swapped()) { 937 int t = taken_count_offset; 938 taken_count_offset = not_taken_count_offset; 939 not_taken_count_offset = t; 940 } 941 942 LIR_Opr md_reg = new_register(T_METADATA); 943 __ metadata2reg(md->constant_encoding(), md_reg); 944 945 LIR_Opr data_offset_reg = new_pointer_register(); 946 __ cmove(lir_cond(cond), 947 LIR_OprFact::intptrConst(taken_count_offset), 948 LIR_OprFact::intptrConst(not_taken_count_offset), 949 data_offset_reg, as_BasicType(if_instr->x()->type())); 950 951 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 952 LIR_Opr data_reg = new_pointer_register(); 953 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 954 __ move(data_addr, data_reg); 955 // Use leal instead of add to avoid destroying condition codes on x86 956 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 957 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 958 __ move(data_reg, data_addr); 959 } 960 } 961 962 // Phi technique: 963 // This is about passing live values from one basic block to the other. 964 // In code generated with Java it is rather rare that more than one 965 // value is on the stack from one basic block to the other. 966 // We optimize our technique for efficient passing of one value 967 // (of type long, int, double..) but it can be extended. 968 // When entering or leaving a basic block, all registers and all spill 969 // slots are release and empty. We use the released registers 970 // and spill slots to pass the live values from one block 971 // to the other. The topmost value, i.e., the value on TOS of expression 972 // stack is passed in registers. All other values are stored in spilling 973 // area. Every Phi has an index which designates its spill slot 974 // At exit of a basic block, we fill the register(s) and spill slots. 975 // At entry of a basic block, the block_prolog sets up the content of phi nodes 976 // and locks necessary registers and spilling slots. 977 978 979 // move current value to referenced phi function 980 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 981 Phi* phi = sux_val->as_Phi(); 982 // cur_val can be null without phi being null in conjunction with inlining 983 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 984 if (phi->is_local()) { 985 for (int i = 0; i < phi->operand_count(); i++) { 986 Value op = phi->operand_at(i); 987 if (op != nullptr && op->type()->is_illegal()) { 988 bailout("illegal phi operand"); 989 } 990 } 991 } 992 Phi* cur_phi = cur_val->as_Phi(); 993 if (cur_phi != nullptr && cur_phi->is_illegal()) { 994 // Phi and local would need to get invalidated 995 // (which is unexpected for Linear Scan). 996 // But this case is very rare so we simply bail out. 997 bailout("propagation of illegal phi"); 998 return; 999 } 1000 LIR_Opr operand = cur_val->operand(); 1001 if (operand->is_illegal()) { 1002 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1003 "these can be produced lazily"); 1004 operand = operand_for_instruction(cur_val); 1005 } 1006 resolver->move(operand, operand_for_instruction(phi)); 1007 } 1008 } 1009 1010 1011 // Moves all stack values into their PHI position 1012 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1013 BlockBegin* bb = block(); 1014 if (bb->number_of_sux() == 1) { 1015 BlockBegin* sux = bb->sux_at(0); 1016 assert(sux->number_of_preds() > 0, "invalid CFG"); 1017 1018 // a block with only one predecessor never has phi functions 1019 if (sux->number_of_preds() > 1) { 1020 PhiResolver resolver(this); 1021 1022 ValueStack* sux_state = sux->state(); 1023 Value sux_value; 1024 int index; 1025 1026 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1027 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1028 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1029 1030 for_each_stack_value(sux_state, index, sux_value) { 1031 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1032 } 1033 1034 for_each_local_value(sux_state, index, sux_value) { 1035 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1036 } 1037 1038 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1039 } 1040 } 1041 } 1042 1043 1044 LIR_Opr LIRGenerator::new_register(BasicType type) { 1045 int vreg_num = _virtual_register_number; 1046 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1047 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1048 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1049 bailout("out of virtual registers in LIR generator"); 1050 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1051 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1052 _virtual_register_number = LIR_Opr::vreg_base; 1053 vreg_num = LIR_Opr::vreg_base; 1054 } 1055 } 1056 _virtual_register_number += 1; 1057 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1058 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1059 return vreg; 1060 } 1061 1062 1063 // Try to lock using register in hint 1064 LIR_Opr LIRGenerator::rlock(Value instr) { 1065 return new_register(instr->type()); 1066 } 1067 1068 1069 // does an rlock and sets result 1070 LIR_Opr LIRGenerator::rlock_result(Value x) { 1071 LIR_Opr reg = rlock(x); 1072 set_result(x, reg); 1073 return reg; 1074 } 1075 1076 1077 // does an rlock and sets result 1078 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1079 LIR_Opr reg; 1080 switch (type) { 1081 case T_BYTE: 1082 case T_BOOLEAN: 1083 reg = rlock_byte(type); 1084 break; 1085 default: 1086 reg = rlock(x); 1087 break; 1088 } 1089 1090 set_result(x, reg); 1091 return reg; 1092 } 1093 1094 1095 //--------------------------------------------------------------------- 1096 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1097 ObjectType* oc = value->type()->as_ObjectType(); 1098 if (oc) { 1099 return oc->constant_value(); 1100 } 1101 return nullptr; 1102 } 1103 1104 1105 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1106 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1107 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1108 1109 // no moves are created for phi functions at the begin of exception 1110 // handlers, so assign operands manually here 1111 for_each_phi_fun(block(), phi, 1112 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1113 1114 LIR_Opr thread_reg = getThreadPointer(); 1115 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1116 exceptionOopOpr()); 1117 __ move_wide(LIR_OprFact::oopConst(nullptr), 1118 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1119 __ move_wide(LIR_OprFact::oopConst(nullptr), 1120 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1121 1122 LIR_Opr result = new_register(T_OBJECT); 1123 __ move(exceptionOopOpr(), result); 1124 set_result(x, result); 1125 } 1126 1127 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 //---------------------------------------------------------------------- 1131 //---------------------------------------------------------------------- 1132 // visitor functions 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 1138 void LIRGenerator::do_Phi(Phi* x) { 1139 // phi functions are never visited directly 1140 ShouldNotReachHere(); 1141 } 1142 1143 1144 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1145 void LIRGenerator::do_Constant(Constant* x) { 1146 if (x->state_before() != nullptr) { 1147 // Any constant with a ValueStack requires patching so emit the patch here 1148 LIR_Opr reg = rlock_result(x); 1149 CodeEmitInfo* info = state_for(x, x->state_before()); 1150 __ oop2reg_patch(nullptr, reg, info); 1151 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1152 if (!x->is_pinned()) { 1153 // unpinned constants are handled specially so that they can be 1154 // put into registers when they are used multiple times within a 1155 // block. After the block completes their operand will be 1156 // cleared so that other blocks can't refer to that register. 1157 set_result(x, load_constant(x)); 1158 } else { 1159 LIR_Opr res = x->operand(); 1160 if (!res->is_valid()) { 1161 res = LIR_OprFact::value_type(x->type()); 1162 } 1163 if (res->is_constant()) { 1164 LIR_Opr reg = rlock_result(x); 1165 __ move(res, reg); 1166 } else { 1167 set_result(x, res); 1168 } 1169 } 1170 } else { 1171 set_result(x, LIR_OprFact::value_type(x->type())); 1172 } 1173 } 1174 1175 1176 void LIRGenerator::do_Local(Local* x) { 1177 // operand_for_instruction has the side effect of setting the result 1178 // so there's no need to do it here. 1179 operand_for_instruction(x); 1180 } 1181 1182 1183 void LIRGenerator::do_Return(Return* x) { 1184 if (compilation()->env()->dtrace_method_probes()) { 1185 BasicTypeList signature; 1186 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1187 signature.append(T_METADATA); // Method* 1188 LIR_OprList* args = new LIR_OprList(); 1189 args->append(getThreadPointer()); 1190 LIR_Opr meth = new_register(T_METADATA); 1191 __ metadata2reg(method()->constant_encoding(), meth); 1192 args->append(meth); 1193 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1194 } 1195 1196 if (x->type()->is_void()) { 1197 __ return_op(LIR_OprFact::illegalOpr); 1198 } else { 1199 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1200 LIRItem result(x->result(), this); 1201 1202 result.load_item_force(reg); 1203 __ return_op(result.result()); 1204 } 1205 set_no_result(x); 1206 } 1207 1208 // Example: ref.get() 1209 // Combination of LoadField and g1 pre-write barrier 1210 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1211 1212 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1213 1214 assert(x->number_of_arguments() == 1, "wrong type"); 1215 1216 LIRItem reference(x->argument_at(0), this); 1217 reference.load_item(); 1218 1219 // need to perform the null check on the reference object 1220 CodeEmitInfo* info = nullptr; 1221 if (x->needs_null_check()) { 1222 info = state_for(x); 1223 } 1224 1225 LIR_Opr result = rlock_result(x, T_OBJECT); 1226 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1227 reference, LIR_OprFact::intConst(referent_offset), result, 1228 nullptr, info); 1229 } 1230 1231 // Example: clazz.isInstance(object) 1232 void LIRGenerator::do_isInstance(Intrinsic* x) { 1233 assert(x->number_of_arguments() == 2, "wrong type"); 1234 1235 // TODO could try to substitute this node with an equivalent InstanceOf 1236 // if clazz is known to be a constant Class. This will pick up newly found 1237 // constants after HIR construction. I'll leave this to a future change. 1238 1239 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1240 // could follow the aastore example in a future change. 1241 1242 LIRItem clazz(x->argument_at(0), this); 1243 LIRItem object(x->argument_at(1), this); 1244 clazz.load_item(); 1245 object.load_item(); 1246 LIR_Opr result = rlock_result(x); 1247 1248 // need to perform null check on clazz 1249 if (x->needs_null_check()) { 1250 CodeEmitInfo* info = state_for(x); 1251 __ null_check(clazz.result(), info); 1252 } 1253 1254 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1255 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1256 x->type(), 1257 nullptr); // null CodeEmitInfo results in a leaf call 1258 __ move(call_result, result); 1259 } 1260 1261 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1262 __ load_klass(obj, klass, null_check_info); 1263 } 1264 1265 // Example: object.getClass () 1266 void LIRGenerator::do_getClass(Intrinsic* x) { 1267 assert(x->number_of_arguments() == 1, "wrong type"); 1268 1269 LIRItem rcvr(x->argument_at(0), this); 1270 rcvr.load_item(); 1271 LIR_Opr temp = new_register(T_ADDRESS); 1272 LIR_Opr result = rlock_result(x); 1273 1274 // need to perform the null check on the rcvr 1275 CodeEmitInfo* info = nullptr; 1276 if (x->needs_null_check()) { 1277 info = state_for(x); 1278 } 1279 1280 LIR_Opr klass = new_register(T_METADATA); 1281 load_klass(rcvr.result(), klass, info); 1282 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1283 // mirror = ((OopHandle)mirror)->resolve(); 1284 access_load(IN_NATIVE, T_OBJECT, 1285 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1286 } 1287 1288 // java.lang.Class::isPrimitive() 1289 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1290 assert(x->number_of_arguments() == 1, "wrong type"); 1291 1292 LIRItem rcvr(x->argument_at(0), this); 1293 rcvr.load_item(); 1294 LIR_Opr temp = new_register(T_METADATA); 1295 LIR_Opr result = rlock_result(x); 1296 1297 CodeEmitInfo* info = nullptr; 1298 if (x->needs_null_check()) { 1299 info = state_for(x); 1300 } 1301 1302 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1303 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(nullptr)); 1304 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1305 } 1306 1307 // Example: Foo.class.getModifiers() 1308 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1309 assert(x->number_of_arguments() == 1, "wrong type"); 1310 1311 LIRItem receiver(x->argument_at(0), this); 1312 receiver.load_item(); 1313 LIR_Opr result = rlock_result(x); 1314 1315 CodeEmitInfo* info = nullptr; 1316 if (x->needs_null_check()) { 1317 info = state_for(x); 1318 } 1319 1320 // While reading off the universal constant mirror is less efficient than doing 1321 // another branch and returning the constant answer, this branchless code runs into 1322 // much less risk of confusion for C1 register allocator. The choice of the universe 1323 // object here is correct as long as it returns the same modifiers we would expect 1324 // from the primitive class itself. See spec for Class.getModifiers that provides 1325 // the typed array klasses with similar modifiers as their component types. 1326 1327 Klass* univ_klass = Universe::byteArrayKlass(); 1328 assert(univ_klass->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1329 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass); 1330 1331 LIR_Opr recv_klass = new_register(T_METADATA); 1332 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1333 1334 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1335 LIR_Opr klass = new_register(T_METADATA); 1336 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(nullptr)); 1337 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1338 1339 // Get the answer. 1340 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1341 } 1342 1343 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1344 assert(x->number_of_arguments() == 3, "wrong type"); 1345 LIR_Opr result_reg = rlock_result(x); 1346 1347 LIRItem value(x->argument_at(2), this); 1348 value.load_item(); 1349 1350 LIR_Opr klass = new_register(T_METADATA); 1351 load_klass(value.result(), klass, nullptr); 1352 LIR_Opr layout = new_register(T_INT); 1353 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1354 1355 LabelObj* L_done = new LabelObj(); 1356 LabelObj* L_array = new LabelObj(); 1357 1358 __ cmp(lir_cond_lessEqual, layout, 0); 1359 __ branch(lir_cond_lessEqual, L_array->label()); 1360 1361 // Instance case: the layout helper gives us instance size almost directly, 1362 // but we need to mask out the _lh_instance_slow_path_bit. 1363 1364 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1365 1366 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1367 __ logical_and(layout, mask, layout); 1368 __ convert(Bytecodes::_i2l, layout, result_reg); 1369 1370 __ branch(lir_cond_always, L_done->label()); 1371 1372 // Array case: size is round(header + element_size*arraylength). 1373 // Since arraylength is different for every array instance, we have to 1374 // compute the whole thing at runtime. 1375 1376 __ branch_destination(L_array->label()); 1377 1378 int round_mask = MinObjAlignmentInBytes - 1; 1379 1380 // Figure out header sizes first. 1381 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1382 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1383 1384 LIR_Opr header_size = new_register(T_INT); 1385 __ move(layout, header_size); 1386 LIR_Opr tmp = new_register(T_INT); 1387 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1388 __ logical_and(header_size, hsm, header_size); 1389 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1390 1391 // Figure out the array length in bytes 1392 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1393 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1394 __ logical_and(layout, l2esm, layout); 1395 1396 LIR_Opr length_int = new_register(T_INT); 1397 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1398 1399 #ifdef _LP64 1400 LIR_Opr length = new_register(T_LONG); 1401 __ convert(Bytecodes::_i2l, length_int, length); 1402 #endif 1403 1404 // Shift-left awkwardness. Normally it is just: 1405 // __ shift_left(length, layout, length); 1406 // But C1 cannot perform shift_left with non-constant count, so we end up 1407 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1408 // longs, so we have to act on ints. 1409 LabelObj* L_shift_loop = new LabelObj(); 1410 LabelObj* L_shift_exit = new LabelObj(); 1411 1412 __ branch_destination(L_shift_loop->label()); 1413 __ cmp(lir_cond_equal, layout, 0); 1414 __ branch(lir_cond_equal, L_shift_exit->label()); 1415 1416 #ifdef _LP64 1417 __ shift_left(length, 1, length); 1418 #else 1419 __ shift_left(length_int, 1, length_int); 1420 #endif 1421 1422 __ sub(layout, LIR_OprFact::intConst(1), layout); 1423 1424 __ branch(lir_cond_always, L_shift_loop->label()); 1425 __ branch_destination(L_shift_exit->label()); 1426 1427 // Mix all up, round, and push to the result. 1428 #ifdef _LP64 1429 LIR_Opr header_size_long = new_register(T_LONG); 1430 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1431 __ add(length, header_size_long, length); 1432 if (round_mask != 0) { 1433 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1434 __ logical_and(length, round_mask_opr, length); 1435 } 1436 __ move(length, result_reg); 1437 #else 1438 __ add(length_int, header_size, length_int); 1439 if (round_mask != 0) { 1440 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1441 __ logical_and(length_int, round_mask_opr, length_int); 1442 } 1443 __ convert(Bytecodes::_i2l, length_int, result_reg); 1444 #endif 1445 1446 __ branch_destination(L_done->label()); 1447 } 1448 1449 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1450 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1451 } 1452 1453 // Example: Thread.currentCarrierThread() 1454 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1455 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1456 } 1457 1458 void LIRGenerator::do_vthread(Intrinsic* x) { 1459 do_JavaThreadField(x, JavaThread::vthread_offset()); 1460 } 1461 1462 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1463 assert(x->number_of_arguments() == 0, "wrong type"); 1464 LIR_Opr temp = new_register(T_ADDRESS); 1465 LIR_Opr reg = rlock_result(x); 1466 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1467 access_load(IN_NATIVE, T_OBJECT, 1468 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1469 } 1470 1471 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1472 assert(x->number_of_arguments() == 1, "wrong type"); 1473 LIRItem receiver(x->argument_at(0), this); 1474 1475 receiver.load_item(); 1476 BasicTypeList signature; 1477 signature.append(T_OBJECT); // receiver 1478 LIR_OprList* args = new LIR_OprList(); 1479 args->append(receiver.result()); 1480 CodeEmitInfo* info = state_for(x, x->state()); 1481 call_runtime(&signature, args, 1482 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1483 voidType, info); 1484 1485 set_no_result(x); 1486 } 1487 1488 1489 //------------------------local access-------------------------------------- 1490 1491 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1492 if (x->operand()->is_illegal()) { 1493 Constant* c = x->as_Constant(); 1494 if (c != nullptr) { 1495 x->set_operand(LIR_OprFact::value_type(c->type())); 1496 } else { 1497 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1498 // allocate a virtual register for this local or phi 1499 x->set_operand(rlock(x)); 1500 #ifdef ASSERT 1501 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1502 #endif 1503 } 1504 } 1505 return x->operand(); 1506 } 1507 1508 #ifdef ASSERT 1509 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1510 if (reg_num < _instruction_for_operand.length()) { 1511 return _instruction_for_operand.at(reg_num); 1512 } 1513 return nullptr; 1514 } 1515 #endif 1516 1517 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1518 if (_vreg_flags.size_in_bits() == 0) { 1519 BitMap2D temp(100, num_vreg_flags); 1520 _vreg_flags = temp; 1521 } 1522 _vreg_flags.at_put_grow(vreg_num, f, true); 1523 } 1524 1525 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1526 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1527 return false; 1528 } 1529 return _vreg_flags.at(vreg_num, f); 1530 } 1531 1532 1533 // Block local constant handling. This code is useful for keeping 1534 // unpinned constants and constants which aren't exposed in the IR in 1535 // registers. Unpinned Constant instructions have their operands 1536 // cleared when the block is finished so that other blocks can't end 1537 // up referring to their registers. 1538 1539 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1540 assert(!x->is_pinned(), "only for unpinned constants"); 1541 _unpinned_constants.append(x); 1542 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1543 } 1544 1545 1546 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1547 BasicType t = c->type(); 1548 for (int i = 0; i < _constants.length(); i++) { 1549 LIR_Const* other = _constants.at(i); 1550 if (t == other->type()) { 1551 switch (t) { 1552 case T_INT: 1553 case T_FLOAT: 1554 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1555 break; 1556 case T_LONG: 1557 case T_DOUBLE: 1558 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1559 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1560 break; 1561 case T_OBJECT: 1562 if (c->as_jobject() != other->as_jobject()) continue; 1563 break; 1564 default: 1565 break; 1566 } 1567 return _reg_for_constants.at(i); 1568 } 1569 } 1570 1571 LIR_Opr result = new_register(t); 1572 __ move((LIR_Opr)c, result); 1573 _constants.append(c); 1574 _reg_for_constants.append(result); 1575 return result; 1576 } 1577 1578 //------------------------field access-------------------------------------- 1579 1580 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1581 assert(x->number_of_arguments() == 4, "wrong type"); 1582 LIRItem obj (x->argument_at(0), this); // object 1583 LIRItem offset(x->argument_at(1), this); // offset of field 1584 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1585 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1586 assert(obj.type()->tag() == objectTag, "invalid type"); 1587 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1588 assert(val.type()->tag() == type->tag(), "invalid type"); 1589 1590 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1591 obj, offset, cmp, val); 1592 set_result(x, result); 1593 } 1594 1595 // Comment copied form templateTable_i486.cpp 1596 // ---------------------------------------------------------------------------- 1597 // Volatile variables demand their effects be made known to all CPU's in 1598 // order. Store buffers on most chips allow reads & writes to reorder; the 1599 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1600 // memory barrier (i.e., it's not sufficient that the interpreter does not 1601 // reorder volatile references, the hardware also must not reorder them). 1602 // 1603 // According to the new Java Memory Model (JMM): 1604 // (1) All volatiles are serialized wrt to each other. 1605 // ALSO reads & writes act as acquire & release, so: 1606 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1607 // the read float up to before the read. It's OK for non-volatile memory refs 1608 // that happen before the volatile read to float down below it. 1609 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1610 // that happen BEFORE the write float down to after the write. It's OK for 1611 // non-volatile memory refs that happen after the volatile write to float up 1612 // before it. 1613 // 1614 // We only put in barriers around volatile refs (they are expensive), not 1615 // _between_ memory refs (that would require us to track the flavor of the 1616 // previous memory refs). Requirements (2) and (3) require some barriers 1617 // before volatile stores and after volatile loads. These nearly cover 1618 // requirement (1) but miss the volatile-store-volatile-load case. This final 1619 // case is placed after volatile-stores although it could just as well go 1620 // before volatile-loads. 1621 1622 1623 void LIRGenerator::do_StoreField(StoreField* x) { 1624 bool needs_patching = x->needs_patching(); 1625 bool is_volatile = x->field()->is_volatile(); 1626 BasicType field_type = x->field_type(); 1627 1628 CodeEmitInfo* info = nullptr; 1629 if (needs_patching) { 1630 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1631 info = state_for(x, x->state_before()); 1632 } else if (x->needs_null_check()) { 1633 NullCheck* nc = x->explicit_null_check(); 1634 if (nc == nullptr) { 1635 info = state_for(x); 1636 } else { 1637 info = state_for(nc); 1638 } 1639 } 1640 1641 LIRItem object(x->obj(), this); 1642 LIRItem value(x->value(), this); 1643 1644 object.load_item(); 1645 1646 if (is_volatile || needs_patching) { 1647 // load item if field is volatile (fewer special cases for volatiles) 1648 // load item if field not initialized 1649 // load item if field not constant 1650 // because of code patching we cannot inline constants 1651 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1652 value.load_byte_item(); 1653 } else { 1654 value.load_item(); 1655 } 1656 } else { 1657 value.load_for_store(field_type); 1658 } 1659 1660 set_no_result(x); 1661 1662 #ifndef PRODUCT 1663 if (PrintNotLoaded && needs_patching) { 1664 tty->print_cr(" ###class not loaded at store_%s bci %d", 1665 x->is_static() ? "static" : "field", x->printable_bci()); 1666 } 1667 #endif 1668 1669 if (x->needs_null_check() && 1670 (needs_patching || 1671 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1672 // Emit an explicit null check because the offset is too large. 1673 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1674 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1675 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1676 } 1677 1678 DecoratorSet decorators = IN_HEAP; 1679 if (is_volatile) { 1680 decorators |= MO_SEQ_CST; 1681 } 1682 if (needs_patching) { 1683 decorators |= C1_NEEDS_PATCHING; 1684 } 1685 1686 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1687 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1688 } 1689 1690 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1691 assert(x->is_pinned(),""); 1692 bool needs_range_check = x->compute_needs_range_check(); 1693 bool use_length = x->length() != nullptr; 1694 bool obj_store = is_reference_type(x->elt_type()); 1695 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1696 !get_jobject_constant(x->value())->is_null_object() || 1697 x->should_profile()); 1698 1699 LIRItem array(x->array(), this); 1700 LIRItem index(x->index(), this); 1701 LIRItem value(x->value(), this); 1702 LIRItem length(this); 1703 1704 array.load_item(); 1705 index.load_nonconstant(); 1706 1707 if (use_length && needs_range_check) { 1708 length.set_instruction(x->length()); 1709 length.load_item(); 1710 1711 } 1712 if (needs_store_check || x->check_boolean()) { 1713 value.load_item(); 1714 } else { 1715 value.load_for_store(x->elt_type()); 1716 } 1717 1718 set_no_result(x); 1719 1720 // the CodeEmitInfo must be duplicated for each different 1721 // LIR-instruction because spilling can occur anywhere between two 1722 // instructions and so the debug information must be different 1723 CodeEmitInfo* range_check_info = state_for(x); 1724 CodeEmitInfo* null_check_info = nullptr; 1725 if (x->needs_null_check()) { 1726 null_check_info = new CodeEmitInfo(range_check_info); 1727 } 1728 1729 if (needs_range_check) { 1730 if (use_length) { 1731 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1732 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1733 } else { 1734 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1735 // range_check also does the null check 1736 null_check_info = nullptr; 1737 } 1738 } 1739 1740 if (GenerateArrayStoreCheck && needs_store_check) { 1741 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1742 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1743 } 1744 1745 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1746 if (x->check_boolean()) { 1747 decorators |= C1_MASK_BOOLEAN; 1748 } 1749 1750 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1751 nullptr, null_check_info); 1752 } 1753 1754 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1755 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1756 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1757 decorators |= ACCESS_READ; 1758 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1759 if (access.is_raw()) { 1760 _barrier_set->BarrierSetC1::load_at(access, result); 1761 } else { 1762 _barrier_set->load_at(access, result); 1763 } 1764 } 1765 1766 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1767 LIR_Opr addr, LIR_Opr result) { 1768 decorators |= ACCESS_READ; 1769 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1770 access.set_resolved_addr(addr); 1771 if (access.is_raw()) { 1772 _barrier_set->BarrierSetC1::load(access, result); 1773 } else { 1774 _barrier_set->load(access, result); 1775 } 1776 } 1777 1778 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1779 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1780 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1781 decorators |= ACCESS_WRITE; 1782 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1783 if (access.is_raw()) { 1784 _barrier_set->BarrierSetC1::store_at(access, value); 1785 } else { 1786 _barrier_set->store_at(access, value); 1787 } 1788 } 1789 1790 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1791 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1792 decorators |= ACCESS_READ; 1793 decorators |= ACCESS_WRITE; 1794 // Atomic operations are SEQ_CST by default 1795 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1796 LIRAccess access(this, decorators, base, offset, type); 1797 if (access.is_raw()) { 1798 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1799 } else { 1800 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1801 } 1802 } 1803 1804 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1805 LIRItem& base, LIRItem& offset, LIRItem& value) { 1806 decorators |= ACCESS_READ; 1807 decorators |= ACCESS_WRITE; 1808 // Atomic operations are SEQ_CST by default 1809 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1810 LIRAccess access(this, decorators, base, offset, type); 1811 if (access.is_raw()) { 1812 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1813 } else { 1814 return _barrier_set->atomic_xchg_at(access, value); 1815 } 1816 } 1817 1818 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1819 LIRItem& base, LIRItem& offset, LIRItem& value) { 1820 decorators |= ACCESS_READ; 1821 decorators |= ACCESS_WRITE; 1822 // Atomic operations are SEQ_CST by default 1823 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1824 LIRAccess access(this, decorators, base, offset, type); 1825 if (access.is_raw()) { 1826 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1827 } else { 1828 return _barrier_set->atomic_add_at(access, value); 1829 } 1830 } 1831 1832 void LIRGenerator::do_LoadField(LoadField* x) { 1833 bool needs_patching = x->needs_patching(); 1834 bool is_volatile = x->field()->is_volatile(); 1835 BasicType field_type = x->field_type(); 1836 1837 CodeEmitInfo* info = nullptr; 1838 if (needs_patching) { 1839 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1840 info = state_for(x, x->state_before()); 1841 } else if (x->needs_null_check()) { 1842 NullCheck* nc = x->explicit_null_check(); 1843 if (nc == nullptr) { 1844 info = state_for(x); 1845 } else { 1846 info = state_for(nc); 1847 } 1848 } 1849 1850 LIRItem object(x->obj(), this); 1851 1852 object.load_item(); 1853 1854 #ifndef PRODUCT 1855 if (PrintNotLoaded && needs_patching) { 1856 tty->print_cr(" ###class not loaded at load_%s bci %d", 1857 x->is_static() ? "static" : "field", x->printable_bci()); 1858 } 1859 #endif 1860 1861 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1862 if (x->needs_null_check() && 1863 (needs_patching || 1864 MacroAssembler::needs_explicit_null_check(x->offset()) || 1865 stress_deopt)) { 1866 LIR_Opr obj = object.result(); 1867 if (stress_deopt) { 1868 obj = new_register(T_OBJECT); 1869 __ move(LIR_OprFact::oopConst(nullptr), obj); 1870 } 1871 // Emit an explicit null check because the offset is too large. 1872 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1873 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1874 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1875 } 1876 1877 DecoratorSet decorators = IN_HEAP; 1878 if (is_volatile) { 1879 decorators |= MO_SEQ_CST; 1880 } 1881 if (needs_patching) { 1882 decorators |= C1_NEEDS_PATCHING; 1883 } 1884 1885 LIR_Opr result = rlock_result(x, field_type); 1886 access_load_at(decorators, field_type, 1887 object, LIR_OprFact::intConst(x->offset()), result, 1888 info ? new CodeEmitInfo(info) : nullptr, info); 1889 } 1890 1891 // int/long jdk.internal.util.Preconditions.checkIndex 1892 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1893 assert(x->number_of_arguments() == 3, "wrong type"); 1894 LIRItem index(x->argument_at(0), this); 1895 LIRItem length(x->argument_at(1), this); 1896 LIRItem oobef(x->argument_at(2), this); 1897 1898 index.load_item(); 1899 length.load_item(); 1900 oobef.load_item(); 1901 1902 LIR_Opr result = rlock_result(x); 1903 // x->state() is created from copy_state_for_exception, it does not contains arguments 1904 // we should prepare them before entering into interpreter mode due to deoptimization. 1905 ValueStack* state = x->state(); 1906 for (int i = 0; i < x->number_of_arguments(); i++) { 1907 Value arg = x->argument_at(i); 1908 state->push(arg->type(), arg); 1909 } 1910 CodeEmitInfo* info = state_for(x, state); 1911 1912 LIR_Opr len = length.result(); 1913 LIR_Opr zero; 1914 if (type == T_INT) { 1915 zero = LIR_OprFact::intConst(0); 1916 if (length.result()->is_constant()){ 1917 len = LIR_OprFact::intConst(length.result()->as_jint()); 1918 } 1919 } else { 1920 assert(type == T_LONG, "sanity check"); 1921 zero = LIR_OprFact::longConst(0); 1922 if (length.result()->is_constant()){ 1923 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1924 } 1925 } 1926 // C1 can not handle the case that comparing index with constant value while condition 1927 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1928 LIR_Opr zero_reg = new_register(type); 1929 __ move(zero, zero_reg); 1930 #if defined(X86) && !defined(_LP64) 1931 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1932 LIR_Opr index_copy = new_register(index.type()); 1933 // index >= 0 1934 __ move(index.result(), index_copy); 1935 __ cmp(lir_cond_less, index_copy, zero_reg); 1936 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1937 Deoptimization::Action_make_not_entrant)); 1938 // index < length 1939 __ move(index.result(), index_copy); 1940 __ cmp(lir_cond_greaterEqual, index_copy, len); 1941 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1942 Deoptimization::Action_make_not_entrant)); 1943 #else 1944 // index >= 0 1945 __ cmp(lir_cond_less, index.result(), zero_reg); 1946 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1947 Deoptimization::Action_make_not_entrant)); 1948 // index < length 1949 __ cmp(lir_cond_greaterEqual, index.result(), len); 1950 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1951 Deoptimization::Action_make_not_entrant)); 1952 #endif 1953 __ move(index.result(), result); 1954 } 1955 1956 //------------------------array access-------------------------------------- 1957 1958 1959 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1960 LIRItem array(x->array(), this); 1961 array.load_item(); 1962 LIR_Opr reg = rlock_result(x); 1963 1964 CodeEmitInfo* info = nullptr; 1965 if (x->needs_null_check()) { 1966 NullCheck* nc = x->explicit_null_check(); 1967 if (nc == nullptr) { 1968 info = state_for(x); 1969 } else { 1970 info = state_for(nc); 1971 } 1972 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1973 LIR_Opr obj = new_register(T_OBJECT); 1974 __ move(LIR_OprFact::oopConst(nullptr), obj); 1975 __ null_check(obj, new CodeEmitInfo(info)); 1976 } 1977 } 1978 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1979 } 1980 1981 1982 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1983 bool use_length = x->length() != nullptr; 1984 LIRItem array(x->array(), this); 1985 LIRItem index(x->index(), this); 1986 LIRItem length(this); 1987 bool needs_range_check = x->compute_needs_range_check(); 1988 1989 if (use_length && needs_range_check) { 1990 length.set_instruction(x->length()); 1991 length.load_item(); 1992 } 1993 1994 array.load_item(); 1995 if (index.is_constant() && can_inline_as_constant(x->index())) { 1996 // let it be a constant 1997 index.dont_load_item(); 1998 } else { 1999 index.load_item(); 2000 } 2001 2002 CodeEmitInfo* range_check_info = state_for(x); 2003 CodeEmitInfo* null_check_info = nullptr; 2004 if (x->needs_null_check()) { 2005 NullCheck* nc = x->explicit_null_check(); 2006 if (nc != nullptr) { 2007 null_check_info = state_for(nc); 2008 } else { 2009 null_check_info = range_check_info; 2010 } 2011 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2012 LIR_Opr obj = new_register(T_OBJECT); 2013 __ move(LIR_OprFact::oopConst(nullptr), obj); 2014 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2015 } 2016 } 2017 2018 if (needs_range_check) { 2019 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2020 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2021 } else if (use_length) { 2022 // TODO: use a (modified) version of array_range_check that does not require a 2023 // constant length to be loaded to a register 2024 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2025 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2026 } else { 2027 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2028 // The range check performs the null check, so clear it out for the load 2029 null_check_info = nullptr; 2030 } 2031 } 2032 2033 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2034 2035 LIR_Opr result = rlock_result(x, x->elt_type()); 2036 access_load_at(decorators, x->elt_type(), 2037 array, index.result(), result, 2038 nullptr, null_check_info); 2039 } 2040 2041 2042 void LIRGenerator::do_NullCheck(NullCheck* x) { 2043 if (x->can_trap()) { 2044 LIRItem value(x->obj(), this); 2045 value.load_item(); 2046 CodeEmitInfo* info = state_for(x); 2047 __ null_check(value.result(), info); 2048 } 2049 } 2050 2051 2052 void LIRGenerator::do_TypeCast(TypeCast* x) { 2053 LIRItem value(x->obj(), this); 2054 value.load_item(); 2055 // the result is the same as from the node we are casting 2056 set_result(x, value.result()); 2057 } 2058 2059 2060 void LIRGenerator::do_Throw(Throw* x) { 2061 LIRItem exception(x->exception(), this); 2062 exception.load_item(); 2063 set_no_result(x); 2064 LIR_Opr exception_opr = exception.result(); 2065 CodeEmitInfo* info = state_for(x, x->state()); 2066 2067 #ifndef PRODUCT 2068 if (PrintC1Statistics) { 2069 increment_counter(Runtime1::throw_count_address(), T_INT); 2070 } 2071 #endif 2072 2073 // check if the instruction has an xhandler in any of the nested scopes 2074 bool unwind = false; 2075 if (info->exception_handlers()->length() == 0) { 2076 // this throw is not inside an xhandler 2077 unwind = true; 2078 } else { 2079 // get some idea of the throw type 2080 bool type_is_exact = true; 2081 ciType* throw_type = x->exception()->exact_type(); 2082 if (throw_type == nullptr) { 2083 type_is_exact = false; 2084 throw_type = x->exception()->declared_type(); 2085 } 2086 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2087 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2088 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2089 } 2090 } 2091 2092 // do null check before moving exception oop into fixed register 2093 // to avoid a fixed interval with an oop during the null check. 2094 // Use a copy of the CodeEmitInfo because debug information is 2095 // different for null_check and throw. 2096 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2097 // if the exception object wasn't created using new then it might be null. 2098 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2099 } 2100 2101 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2102 // we need to go through the exception lookup path to get JVMTI 2103 // notification done 2104 unwind = false; 2105 } 2106 2107 // move exception oop into fixed register 2108 __ move(exception_opr, exceptionOopOpr()); 2109 2110 if (unwind) { 2111 __ unwind_exception(exceptionOopOpr()); 2112 } else { 2113 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2114 } 2115 } 2116 2117 2118 void LIRGenerator::do_RoundFP(RoundFP* x) { 2119 assert(strict_fp_requires_explicit_rounding, "not required"); 2120 2121 LIRItem input(x->input(), this); 2122 input.load_item(); 2123 LIR_Opr input_opr = input.result(); 2124 assert(input_opr->is_register(), "why round if value is not in a register?"); 2125 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2126 if (input_opr->is_single_fpu()) { 2127 set_result(x, round_item(input_opr)); // This code path not currently taken 2128 } else { 2129 LIR_Opr result = new_register(T_DOUBLE); 2130 set_vreg_flag(result, must_start_in_memory); 2131 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2132 set_result(x, result); 2133 } 2134 } 2135 2136 2137 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2138 BasicType type = x->basic_type(); 2139 LIRItem src(x->object(), this); 2140 LIRItem off(x->offset(), this); 2141 2142 off.load_item(); 2143 src.load_item(); 2144 2145 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2146 2147 if (x->is_volatile()) { 2148 decorators |= MO_SEQ_CST; 2149 } 2150 if (type == T_BOOLEAN) { 2151 decorators |= C1_MASK_BOOLEAN; 2152 } 2153 if (is_reference_type(type)) { 2154 decorators |= ON_UNKNOWN_OOP_REF; 2155 } 2156 2157 LIR_Opr result = rlock_result(x, type); 2158 if (!x->is_raw()) { 2159 access_load_at(decorators, type, src, off.result(), result); 2160 } else { 2161 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2162 // It reads the value from [src + offset] directly. 2163 #ifdef _LP64 2164 LIR_Opr offset = new_register(T_LONG); 2165 __ convert(Bytecodes::_i2l, off.result(), offset); 2166 #else 2167 LIR_Opr offset = off.result(); 2168 #endif 2169 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2170 if (is_reference_type(type)) { 2171 __ move_wide(addr, result); 2172 } else { 2173 __ move(addr, result); 2174 } 2175 } 2176 } 2177 2178 2179 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2180 BasicType type = x->basic_type(); 2181 LIRItem src(x->object(), this); 2182 LIRItem off(x->offset(), this); 2183 LIRItem data(x->value(), this); 2184 2185 src.load_item(); 2186 if (type == T_BOOLEAN || type == T_BYTE) { 2187 data.load_byte_item(); 2188 } else { 2189 data.load_item(); 2190 } 2191 off.load_item(); 2192 2193 set_no_result(x); 2194 2195 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2196 if (is_reference_type(type)) { 2197 decorators |= ON_UNKNOWN_OOP_REF; 2198 } 2199 if (x->is_volatile()) { 2200 decorators |= MO_SEQ_CST; 2201 } 2202 access_store_at(decorators, type, src, off.result(), data.result()); 2203 } 2204 2205 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2206 BasicType type = x->basic_type(); 2207 LIRItem src(x->object(), this); 2208 LIRItem off(x->offset(), this); 2209 LIRItem value(x->value(), this); 2210 2211 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2212 2213 if (is_reference_type(type)) { 2214 decorators |= ON_UNKNOWN_OOP_REF; 2215 } 2216 2217 LIR_Opr result; 2218 if (x->is_add()) { 2219 result = access_atomic_add_at(decorators, type, src, off, value); 2220 } else { 2221 result = access_atomic_xchg_at(decorators, type, src, off, value); 2222 } 2223 set_result(x, result); 2224 } 2225 2226 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2227 int lng = x->length(); 2228 2229 for (int i = 0; i < lng; i++) { 2230 C1SwitchRange* one_range = x->at(i); 2231 int low_key = one_range->low_key(); 2232 int high_key = one_range->high_key(); 2233 BlockBegin* dest = one_range->sux(); 2234 if (low_key == high_key) { 2235 __ cmp(lir_cond_equal, value, low_key); 2236 __ branch(lir_cond_equal, dest); 2237 } else if (high_key - low_key == 1) { 2238 __ cmp(lir_cond_equal, value, low_key); 2239 __ branch(lir_cond_equal, dest); 2240 __ cmp(lir_cond_equal, value, high_key); 2241 __ branch(lir_cond_equal, dest); 2242 } else { 2243 LabelObj* L = new LabelObj(); 2244 __ cmp(lir_cond_less, value, low_key); 2245 __ branch(lir_cond_less, L->label()); 2246 __ cmp(lir_cond_lessEqual, value, high_key); 2247 __ branch(lir_cond_lessEqual, dest); 2248 __ branch_destination(L->label()); 2249 } 2250 } 2251 __ jump(default_sux); 2252 } 2253 2254 2255 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2256 SwitchRangeList* res = new SwitchRangeList(); 2257 int len = x->length(); 2258 if (len > 0) { 2259 BlockBegin* sux = x->sux_at(0); 2260 int low = x->lo_key(); 2261 BlockBegin* default_sux = x->default_sux(); 2262 C1SwitchRange* range = new C1SwitchRange(low, sux); 2263 for (int i = 0; i < len; i++) { 2264 int key = low + i; 2265 BlockBegin* new_sux = x->sux_at(i); 2266 if (sux == new_sux) { 2267 // still in same range 2268 range->set_high_key(key); 2269 } else { 2270 // skip tests which explicitly dispatch to the default 2271 if (sux != default_sux) { 2272 res->append(range); 2273 } 2274 range = new C1SwitchRange(key, new_sux); 2275 } 2276 sux = new_sux; 2277 } 2278 if (res->length() == 0 || res->last() != range) res->append(range); 2279 } 2280 return res; 2281 } 2282 2283 2284 // we expect the keys to be sorted by increasing value 2285 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2286 SwitchRangeList* res = new SwitchRangeList(); 2287 int len = x->length(); 2288 if (len > 0) { 2289 BlockBegin* default_sux = x->default_sux(); 2290 int key = x->key_at(0); 2291 BlockBegin* sux = x->sux_at(0); 2292 C1SwitchRange* range = new C1SwitchRange(key, sux); 2293 for (int i = 1; i < len; i++) { 2294 int new_key = x->key_at(i); 2295 BlockBegin* new_sux = x->sux_at(i); 2296 if (key+1 == new_key && sux == new_sux) { 2297 // still in same range 2298 range->set_high_key(new_key); 2299 } else { 2300 // skip tests which explicitly dispatch to the default 2301 if (range->sux() != default_sux) { 2302 res->append(range); 2303 } 2304 range = new C1SwitchRange(new_key, new_sux); 2305 } 2306 key = new_key; 2307 sux = new_sux; 2308 } 2309 if (res->length() == 0 || res->last() != range) res->append(range); 2310 } 2311 return res; 2312 } 2313 2314 2315 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2316 LIRItem tag(x->tag(), this); 2317 tag.load_item(); 2318 set_no_result(x); 2319 2320 if (x->is_safepoint()) { 2321 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2322 } 2323 2324 // move values into phi locations 2325 move_to_phi(x->state()); 2326 2327 int lo_key = x->lo_key(); 2328 int len = x->length(); 2329 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2330 LIR_Opr value = tag.result(); 2331 2332 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2333 ciMethod* method = x->state()->scope()->method(); 2334 ciMethodData* md = method->method_data_or_null(); 2335 assert(md != nullptr, "Sanity"); 2336 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2337 assert(data != nullptr, "must have profiling data"); 2338 assert(data->is_MultiBranchData(), "bad profile data?"); 2339 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2340 LIR_Opr md_reg = new_register(T_METADATA); 2341 __ metadata2reg(md->constant_encoding(), md_reg); 2342 LIR_Opr data_offset_reg = new_pointer_register(); 2343 LIR_Opr tmp_reg = new_pointer_register(); 2344 2345 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2346 for (int i = 0; i < len; i++) { 2347 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2348 __ cmp(lir_cond_equal, value, i + lo_key); 2349 __ move(data_offset_reg, tmp_reg); 2350 __ cmove(lir_cond_equal, 2351 LIR_OprFact::intptrConst(count_offset), 2352 tmp_reg, 2353 data_offset_reg, T_INT); 2354 } 2355 2356 LIR_Opr data_reg = new_pointer_register(); 2357 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2358 __ move(data_addr, data_reg); 2359 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2360 __ move(data_reg, data_addr); 2361 } 2362 2363 if (UseTableRanges) { 2364 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2365 } else { 2366 for (int i = 0; i < len; i++) { 2367 __ cmp(lir_cond_equal, value, i + lo_key); 2368 __ branch(lir_cond_equal, x->sux_at(i)); 2369 } 2370 __ jump(x->default_sux()); 2371 } 2372 } 2373 2374 2375 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2376 LIRItem tag(x->tag(), this); 2377 tag.load_item(); 2378 set_no_result(x); 2379 2380 if (x->is_safepoint()) { 2381 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2382 } 2383 2384 // move values into phi locations 2385 move_to_phi(x->state()); 2386 2387 LIR_Opr value = tag.result(); 2388 int len = x->length(); 2389 2390 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2391 ciMethod* method = x->state()->scope()->method(); 2392 ciMethodData* md = method->method_data_or_null(); 2393 assert(md != nullptr, "Sanity"); 2394 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2395 assert(data != nullptr, "must have profiling data"); 2396 assert(data->is_MultiBranchData(), "bad profile data?"); 2397 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2398 LIR_Opr md_reg = new_register(T_METADATA); 2399 __ metadata2reg(md->constant_encoding(), md_reg); 2400 LIR_Opr data_offset_reg = new_pointer_register(); 2401 LIR_Opr tmp_reg = new_pointer_register(); 2402 2403 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2404 for (int i = 0; i < len; i++) { 2405 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2406 __ cmp(lir_cond_equal, value, x->key_at(i)); 2407 __ move(data_offset_reg, tmp_reg); 2408 __ cmove(lir_cond_equal, 2409 LIR_OprFact::intptrConst(count_offset), 2410 tmp_reg, 2411 data_offset_reg, T_INT); 2412 } 2413 2414 LIR_Opr data_reg = new_pointer_register(); 2415 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2416 __ move(data_addr, data_reg); 2417 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2418 __ move(data_reg, data_addr); 2419 } 2420 2421 if (UseTableRanges) { 2422 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2423 } else { 2424 int len = x->length(); 2425 for (int i = 0; i < len; i++) { 2426 __ cmp(lir_cond_equal, value, x->key_at(i)); 2427 __ branch(lir_cond_equal, x->sux_at(i)); 2428 } 2429 __ jump(x->default_sux()); 2430 } 2431 } 2432 2433 2434 void LIRGenerator::do_Goto(Goto* x) { 2435 set_no_result(x); 2436 2437 if (block()->next()->as_OsrEntry()) { 2438 // need to free up storage used for OSR entry point 2439 LIR_Opr osrBuffer = block()->next()->operand(); 2440 BasicTypeList signature; 2441 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2442 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2443 __ move(osrBuffer, cc->args()->at(0)); 2444 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2445 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2446 } 2447 2448 if (x->is_safepoint()) { 2449 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2450 2451 // increment backedge counter if needed 2452 CodeEmitInfo* info = state_for(x, state); 2453 increment_backedge_counter(info, x->profiled_bci()); 2454 CodeEmitInfo* safepoint_info = state_for(x, state); 2455 __ safepoint(safepoint_poll_register(), safepoint_info); 2456 } 2457 2458 // Gotos can be folded Ifs, handle this case. 2459 if (x->should_profile()) { 2460 ciMethod* method = x->profiled_method(); 2461 assert(method != nullptr, "method should be set if branch is profiled"); 2462 ciMethodData* md = method->method_data_or_null(); 2463 assert(md != nullptr, "Sanity"); 2464 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2465 assert(data != nullptr, "must have profiling data"); 2466 int offset; 2467 if (x->direction() == Goto::taken) { 2468 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2469 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2470 } else if (x->direction() == Goto::not_taken) { 2471 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2472 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2473 } else { 2474 assert(data->is_JumpData(), "need JumpData for branches"); 2475 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2476 } 2477 LIR_Opr md_reg = new_register(T_METADATA); 2478 __ metadata2reg(md->constant_encoding(), md_reg); 2479 2480 increment_counter(new LIR_Address(md_reg, offset, 2481 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2482 } 2483 2484 // emit phi-instruction move after safepoint since this simplifies 2485 // describing the state as the safepoint. 2486 move_to_phi(x->state()); 2487 2488 __ jump(x->default_sux()); 2489 } 2490 2491 /** 2492 * Emit profiling code if needed for arguments, parameters, return value types 2493 * 2494 * @param md MDO the code will update at runtime 2495 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2496 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2497 * @param profiled_k current profile 2498 * @param obj IR node for the object to be profiled 2499 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2500 * Set once we find an update to make and use for next ones. 2501 * @param not_null true if we know obj cannot be null 2502 * @param signature_at_call_k signature at call for obj 2503 * @param callee_signature_k signature of callee for obj 2504 * at call and callee signatures differ at method handle call 2505 * @return the only klass we know will ever be seen at this profile point 2506 */ 2507 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2508 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2509 ciKlass* callee_signature_k) { 2510 ciKlass* result = nullptr; 2511 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2512 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2513 // known not to be null or null bit already set and already set to 2514 // unknown: nothing we can do to improve profiling 2515 if (!do_null && !do_update) { 2516 return result; 2517 } 2518 2519 ciKlass* exact_klass = nullptr; 2520 Compilation* comp = Compilation::current(); 2521 if (do_update) { 2522 // try to find exact type, using CHA if possible, so that loading 2523 // the klass from the object can be avoided 2524 ciType* type = obj->exact_type(); 2525 if (type == nullptr) { 2526 type = obj->declared_type(); 2527 type = comp->cha_exact_type(type); 2528 } 2529 assert(type == nullptr || type->is_klass(), "type should be class"); 2530 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2531 2532 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2533 } 2534 2535 if (!do_null && !do_update) { 2536 return result; 2537 } 2538 2539 ciKlass* exact_signature_k = nullptr; 2540 if (do_update) { 2541 // Is the type from the signature exact (the only one possible)? 2542 exact_signature_k = signature_at_call_k->exact_klass(); 2543 if (exact_signature_k == nullptr) { 2544 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2545 } else { 2546 result = exact_signature_k; 2547 // Known statically. No need to emit any code: prevent 2548 // LIR_Assembler::emit_profile_type() from emitting useless code 2549 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2550 } 2551 // exact_klass and exact_signature_k can be both non null but 2552 // different if exact_klass is loaded after the ciObject for 2553 // exact_signature_k is created. 2554 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2555 // sometimes the type of the signature is better than the best type 2556 // the compiler has 2557 exact_klass = exact_signature_k; 2558 } 2559 if (callee_signature_k != nullptr && 2560 callee_signature_k != signature_at_call_k) { 2561 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2562 if (improved_klass == nullptr) { 2563 improved_klass = comp->cha_exact_type(callee_signature_k); 2564 } 2565 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2566 exact_klass = exact_signature_k; 2567 } 2568 } 2569 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2570 } 2571 2572 if (!do_null && !do_update) { 2573 return result; 2574 } 2575 2576 if (mdp == LIR_OprFact::illegalOpr) { 2577 mdp = new_register(T_METADATA); 2578 __ metadata2reg(md->constant_encoding(), mdp); 2579 if (md_base_offset != 0) { 2580 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2581 mdp = new_pointer_register(); 2582 __ leal(LIR_OprFact::address(base_type_address), mdp); 2583 } 2584 } 2585 LIRItem value(obj, this); 2586 value.load_item(); 2587 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2588 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2589 return result; 2590 } 2591 2592 // profile parameters on entry to the root of the compilation 2593 void LIRGenerator::profile_parameters(Base* x) { 2594 if (compilation()->profile_parameters()) { 2595 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2596 ciMethodData* md = scope()->method()->method_data_or_null(); 2597 assert(md != nullptr, "Sanity"); 2598 2599 if (md->parameters_type_data() != nullptr) { 2600 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2601 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2602 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2603 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2604 LIR_Opr src = args->at(i); 2605 assert(!src->is_illegal(), "check"); 2606 BasicType t = src->type(); 2607 if (is_reference_type(t)) { 2608 intptr_t profiled_k = parameters->type(j); 2609 Local* local = x->state()->local_at(java_index)->as_Local(); 2610 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2611 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2612 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2613 // If the profile is known statically set it once for all and do not emit any code 2614 if (exact != nullptr) { 2615 md->set_parameter_type(j, exact); 2616 } 2617 j++; 2618 } 2619 java_index += type2size[t]; 2620 } 2621 } 2622 } 2623 } 2624 2625 void LIRGenerator::do_Base(Base* x) { 2626 __ std_entry(LIR_OprFact::illegalOpr); 2627 // Emit moves from physical registers / stack slots to virtual registers 2628 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2629 IRScope* irScope = compilation()->hir()->top_scope(); 2630 int java_index = 0; 2631 for (int i = 0; i < args->length(); i++) { 2632 LIR_Opr src = args->at(i); 2633 assert(!src->is_illegal(), "check"); 2634 BasicType t = src->type(); 2635 2636 // Types which are smaller than int are passed as int, so 2637 // correct the type which passed. 2638 switch (t) { 2639 case T_BYTE: 2640 case T_BOOLEAN: 2641 case T_SHORT: 2642 case T_CHAR: 2643 t = T_INT; 2644 break; 2645 default: 2646 break; 2647 } 2648 2649 LIR_Opr dest = new_register(t); 2650 __ move(src, dest); 2651 2652 // Assign new location to Local instruction for this local 2653 Local* local = x->state()->local_at(java_index)->as_Local(); 2654 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2655 #ifndef __SOFTFP__ 2656 // The java calling convention passes double as long and float as int. 2657 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2658 #endif // __SOFTFP__ 2659 local->set_operand(dest); 2660 #ifdef ASSERT 2661 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2662 #endif 2663 java_index += type2size[t]; 2664 } 2665 2666 if (compilation()->env()->dtrace_method_probes()) { 2667 BasicTypeList signature; 2668 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2669 signature.append(T_METADATA); // Method* 2670 LIR_OprList* args = new LIR_OprList(); 2671 args->append(getThreadPointer()); 2672 LIR_Opr meth = new_register(T_METADATA); 2673 __ metadata2reg(method()->constant_encoding(), meth); 2674 args->append(meth); 2675 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2676 } 2677 2678 if (method()->is_synchronized()) { 2679 LIR_Opr obj; 2680 if (method()->is_static()) { 2681 obj = new_register(T_OBJECT); 2682 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2683 } else { 2684 Local* receiver = x->state()->local_at(0)->as_Local(); 2685 assert(receiver != nullptr, "must already exist"); 2686 obj = receiver->operand(); 2687 } 2688 assert(obj->is_valid(), "must be valid"); 2689 2690 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2691 LIR_Opr lock = syncLockOpr(); 2692 __ load_stack_address_monitor(0, lock); 2693 2694 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2695 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2696 2697 // receiver is guaranteed non-null so don't need CodeEmitInfo 2698 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2699 } 2700 } 2701 // increment invocation counters if needed 2702 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2703 profile_parameters(x); 2704 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2705 increment_invocation_counter(info); 2706 } 2707 2708 // all blocks with a successor must end with an unconditional jump 2709 // to the successor even if they are consecutive 2710 __ jump(x->default_sux()); 2711 } 2712 2713 2714 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2715 // construct our frame and model the production of incoming pointer 2716 // to the OSR buffer. 2717 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2718 LIR_Opr result = rlock_result(x); 2719 __ move(LIR_Assembler::osrBufferPointer(), result); 2720 } 2721 2722 2723 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2724 assert(args->length() == arg_list->length(), 2725 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2726 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2727 LIRItem* param = args->at(i); 2728 LIR_Opr loc = arg_list->at(i); 2729 if (loc->is_register()) { 2730 param->load_item_force(loc); 2731 } else { 2732 LIR_Address* addr = loc->as_address_ptr(); 2733 param->load_for_store(addr->type()); 2734 if (addr->type() == T_OBJECT) { 2735 __ move_wide(param->result(), addr); 2736 } else 2737 __ move(param->result(), addr); 2738 } 2739 } 2740 2741 if (x->has_receiver()) { 2742 LIRItem* receiver = args->at(0); 2743 LIR_Opr loc = arg_list->at(0); 2744 if (loc->is_register()) { 2745 receiver->load_item_force(loc); 2746 } else { 2747 assert(loc->is_address(), "just checking"); 2748 receiver->load_for_store(T_OBJECT); 2749 __ move_wide(receiver->result(), loc->as_address_ptr()); 2750 } 2751 } 2752 } 2753 2754 2755 // Visits all arguments, returns appropriate items without loading them 2756 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2757 LIRItemList* argument_items = new LIRItemList(); 2758 if (x->has_receiver()) { 2759 LIRItem* receiver = new LIRItem(x->receiver(), this); 2760 argument_items->append(receiver); 2761 } 2762 for (int i = 0; i < x->number_of_arguments(); i++) { 2763 LIRItem* param = new LIRItem(x->argument_at(i), this); 2764 argument_items->append(param); 2765 } 2766 return argument_items; 2767 } 2768 2769 2770 // The invoke with receiver has following phases: 2771 // a) traverse and load/lock receiver; 2772 // b) traverse all arguments -> item-array (invoke_visit_argument) 2773 // c) push receiver on stack 2774 // d) load each of the items and push on stack 2775 // e) unlock receiver 2776 // f) move receiver into receiver-register %o0 2777 // g) lock result registers and emit call operation 2778 // 2779 // Before issuing a call, we must spill-save all values on stack 2780 // that are in caller-save register. "spill-save" moves those registers 2781 // either in a free callee-save register or spills them if no free 2782 // callee save register is available. 2783 // 2784 // The problem is where to invoke spill-save. 2785 // - if invoked between e) and f), we may lock callee save 2786 // register in "spill-save" that destroys the receiver register 2787 // before f) is executed 2788 // - if we rearrange f) to be earlier (by loading %o0) it 2789 // may destroy a value on the stack that is currently in %o0 2790 // and is waiting to be spilled 2791 // - if we keep the receiver locked while doing spill-save, 2792 // we cannot spill it as it is spill-locked 2793 // 2794 void LIRGenerator::do_Invoke(Invoke* x) { 2795 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2796 2797 LIR_OprList* arg_list = cc->args(); 2798 LIRItemList* args = invoke_visit_arguments(x); 2799 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2800 2801 // setup result register 2802 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2803 if (x->type() != voidType) { 2804 result_register = result_register_for(x->type()); 2805 } 2806 2807 CodeEmitInfo* info = state_for(x, x->state()); 2808 2809 invoke_load_arguments(x, args, arg_list); 2810 2811 if (x->has_receiver()) { 2812 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2813 receiver = args->at(0)->result(); 2814 } 2815 2816 // emit invoke code 2817 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2818 2819 // JSR 292 2820 // Preserve the SP over MethodHandle call sites, if needed. 2821 ciMethod* target = x->target(); 2822 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2823 target->is_method_handle_intrinsic() || 2824 target->is_compiled_lambda_form()); 2825 if (is_method_handle_invoke) { 2826 info->set_is_method_handle_invoke(true); 2827 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2828 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2829 } 2830 } 2831 2832 switch (x->code()) { 2833 case Bytecodes::_invokestatic: 2834 __ call_static(target, result_register, 2835 SharedRuntime::get_resolve_static_call_stub(), 2836 arg_list, info); 2837 break; 2838 case Bytecodes::_invokespecial: 2839 case Bytecodes::_invokevirtual: 2840 case Bytecodes::_invokeinterface: 2841 // for loaded and final (method or class) target we still produce an inline cache, 2842 // in order to be able to call mixed mode 2843 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2844 __ call_opt_virtual(target, receiver, result_register, 2845 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2846 arg_list, info); 2847 } else { 2848 __ call_icvirtual(target, receiver, result_register, 2849 SharedRuntime::get_resolve_virtual_call_stub(), 2850 arg_list, info); 2851 } 2852 break; 2853 case Bytecodes::_invokedynamic: { 2854 __ call_dynamic(target, receiver, result_register, 2855 SharedRuntime::get_resolve_static_call_stub(), 2856 arg_list, info); 2857 break; 2858 } 2859 default: 2860 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2861 break; 2862 } 2863 2864 // JSR 292 2865 // Restore the SP after MethodHandle call sites, if needed. 2866 if (is_method_handle_invoke 2867 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2868 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2869 } 2870 2871 if (result_register->is_valid()) { 2872 LIR_Opr result = rlock_result(x); 2873 __ move(result_register, result); 2874 } 2875 } 2876 2877 2878 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2879 assert(x->number_of_arguments() == 1, "wrong type"); 2880 LIRItem value (x->argument_at(0), this); 2881 LIR_Opr reg = rlock_result(x); 2882 value.load_item(); 2883 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2884 __ move(tmp, reg); 2885 } 2886 2887 2888 2889 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2890 void LIRGenerator::do_IfOp(IfOp* x) { 2891 #ifdef ASSERT 2892 { 2893 ValueTag xtag = x->x()->type()->tag(); 2894 ValueTag ttag = x->tval()->type()->tag(); 2895 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2896 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2897 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2898 } 2899 #endif 2900 2901 LIRItem left(x->x(), this); 2902 LIRItem right(x->y(), this); 2903 left.load_item(); 2904 if (can_inline_as_constant(right.value())) { 2905 right.dont_load_item(); 2906 } else { 2907 right.load_item(); 2908 } 2909 2910 LIRItem t_val(x->tval(), this); 2911 LIRItem f_val(x->fval(), this); 2912 t_val.dont_load_item(); 2913 f_val.dont_load_item(); 2914 LIR_Opr reg = rlock_result(x); 2915 2916 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2917 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2918 } 2919 2920 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2921 assert(x->number_of_arguments() == 0, "wrong type"); 2922 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2923 BasicTypeList signature; 2924 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2925 LIR_Opr reg = result_register_for(x->type()); 2926 __ call_runtime_leaf(routine, getThreadTemp(), 2927 reg, new LIR_OprList()); 2928 LIR_Opr result = rlock_result(x); 2929 __ move(reg, result); 2930 } 2931 2932 2933 2934 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2935 switch (x->id()) { 2936 case vmIntrinsics::_intBitsToFloat : 2937 case vmIntrinsics::_doubleToRawLongBits : 2938 case vmIntrinsics::_longBitsToDouble : 2939 case vmIntrinsics::_floatToRawIntBits : { 2940 do_FPIntrinsics(x); 2941 break; 2942 } 2943 2944 #ifdef JFR_HAVE_INTRINSICS 2945 case vmIntrinsics::_counterTime: 2946 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2947 break; 2948 #endif 2949 2950 case vmIntrinsics::_currentTimeMillis: 2951 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2952 break; 2953 2954 case vmIntrinsics::_nanoTime: 2955 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2956 break; 2957 2958 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2959 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2960 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2961 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2962 case vmIntrinsics::_getClass: do_getClass(x); break; 2963 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2964 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2965 case vmIntrinsics::_currentThread: do_vthread(x); break; 2966 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2967 2968 case vmIntrinsics::_dlog: // fall through 2969 case vmIntrinsics::_dlog10: // fall through 2970 case vmIntrinsics::_dabs: // fall through 2971 case vmIntrinsics::_dsqrt: // fall through 2972 case vmIntrinsics::_dsqrt_strict: // fall through 2973 case vmIntrinsics::_dtan: // fall through 2974 case vmIntrinsics::_dtanh: // fall through 2975 case vmIntrinsics::_dsin : // fall through 2976 case vmIntrinsics::_dcos : // fall through 2977 case vmIntrinsics::_dexp : // fall through 2978 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2979 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2980 2981 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2982 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2983 2984 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2985 case vmIntrinsics::_floatToFloat16: // fall through 2986 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2987 2988 case vmIntrinsics::_Preconditions_checkIndex: 2989 do_PreconditionsCheckIndex(x, T_INT); 2990 break; 2991 case vmIntrinsics::_Preconditions_checkLongIndex: 2992 do_PreconditionsCheckIndex(x, T_LONG); 2993 break; 2994 2995 case vmIntrinsics::_compareAndSetReference: 2996 do_CompareAndSwap(x, objectType); 2997 break; 2998 case vmIntrinsics::_compareAndSetInt: 2999 do_CompareAndSwap(x, intType); 3000 break; 3001 case vmIntrinsics::_compareAndSetLong: 3002 do_CompareAndSwap(x, longType); 3003 break; 3004 3005 case vmIntrinsics::_loadFence : 3006 __ membar_acquire(); 3007 break; 3008 case vmIntrinsics::_storeFence: 3009 __ membar_release(); 3010 break; 3011 case vmIntrinsics::_storeStoreFence: 3012 __ membar_storestore(); 3013 break; 3014 case vmIntrinsics::_fullFence : 3015 __ membar(); 3016 break; 3017 case vmIntrinsics::_onSpinWait: 3018 __ on_spin_wait(); 3019 break; 3020 case vmIntrinsics::_Reference_get: 3021 do_Reference_get(x); 3022 break; 3023 3024 case vmIntrinsics::_updateCRC32: 3025 case vmIntrinsics::_updateBytesCRC32: 3026 case vmIntrinsics::_updateByteBufferCRC32: 3027 do_update_CRC32(x); 3028 break; 3029 3030 case vmIntrinsics::_updateBytesCRC32C: 3031 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3032 do_update_CRC32C(x); 3033 break; 3034 3035 case vmIntrinsics::_vectorizedMismatch: 3036 do_vectorizedMismatch(x); 3037 break; 3038 3039 case vmIntrinsics::_blackhole: 3040 do_blackhole(x); 3041 break; 3042 3043 default: ShouldNotReachHere(); break; 3044 } 3045 } 3046 3047 void LIRGenerator::profile_arguments(ProfileCall* x) { 3048 if (compilation()->profile_arguments()) { 3049 int bci = x->bci_of_invoke(); 3050 ciMethodData* md = x->method()->method_data_or_null(); 3051 assert(md != nullptr, "Sanity"); 3052 ciProfileData* data = md->bci_to_data(bci); 3053 if (data != nullptr) { 3054 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3055 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3056 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3057 int base_offset = md->byte_offset_of_slot(data, extra); 3058 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3059 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3060 3061 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3062 int start = 0; 3063 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3064 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3065 // first argument is not profiled at call (method handle invoke) 3066 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3067 start = 1; 3068 } 3069 ciSignature* callee_signature = x->callee()->signature(); 3070 // method handle call to virtual method 3071 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3072 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3073 3074 bool ignored_will_link; 3075 ciSignature* signature_at_call = nullptr; 3076 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3077 ciSignatureStream signature_at_call_stream(signature_at_call); 3078 3079 // if called through method handle invoke, some arguments may have been popped 3080 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3081 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3082 ciKlass* exact = profile_type(md, base_offset, off, 3083 args->type(i), x->profiled_arg_at(i+start), mdp, 3084 !x->arg_needs_null_check(i+start), 3085 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3086 if (exact != nullptr) { 3087 md->set_argument_type(bci, i, exact); 3088 } 3089 } 3090 } else { 3091 #ifdef ASSERT 3092 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3093 int n = x->nb_profiled_args(); 3094 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3095 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3096 "only at JSR292 bytecodes"); 3097 #endif 3098 } 3099 } 3100 } 3101 } 3102 3103 // profile parameters on entry to an inlined method 3104 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3105 if (compilation()->profile_parameters() && x->inlined()) { 3106 ciMethodData* md = x->callee()->method_data_or_null(); 3107 if (md != nullptr) { 3108 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3109 if (parameters_type_data != nullptr) { 3110 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3111 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3112 bool has_receiver = !x->callee()->is_static(); 3113 ciSignature* sig = x->callee()->signature(); 3114 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3115 int i = 0; // to iterate on the Instructions 3116 Value arg = x->recv(); 3117 bool not_null = false; 3118 int bci = x->bci_of_invoke(); 3119 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3120 // The first parameter is the receiver so that's what we start 3121 // with if it exists. One exception is method handle call to 3122 // virtual method: the receiver is in the args list 3123 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3124 i = 1; 3125 arg = x->profiled_arg_at(0); 3126 not_null = !x->arg_needs_null_check(0); 3127 } 3128 int k = 0; // to iterate on the profile data 3129 for (;;) { 3130 intptr_t profiled_k = parameters->type(k); 3131 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3132 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3133 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3134 // If the profile is known statically set it once for all and do not emit any code 3135 if (exact != nullptr) { 3136 md->set_parameter_type(k, exact); 3137 } 3138 k++; 3139 if (k >= parameters_type_data->number_of_parameters()) { 3140 #ifdef ASSERT 3141 int extra = 0; 3142 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3143 x->nb_profiled_args() >= TypeProfileParmsLimit && 3144 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3145 extra += 1; 3146 } 3147 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3148 #endif 3149 break; 3150 } 3151 arg = x->profiled_arg_at(i); 3152 not_null = !x->arg_needs_null_check(i); 3153 i++; 3154 } 3155 } 3156 } 3157 } 3158 } 3159 3160 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3161 // Need recv in a temporary register so it interferes with the other temporaries 3162 LIR_Opr recv = LIR_OprFact::illegalOpr; 3163 LIR_Opr mdo = new_register(T_METADATA); 3164 // tmp is used to hold the counters on SPARC 3165 LIR_Opr tmp = new_pointer_register(); 3166 3167 if (x->nb_profiled_args() > 0) { 3168 profile_arguments(x); 3169 } 3170 3171 // profile parameters on inlined method entry including receiver 3172 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3173 profile_parameters_at_call(x); 3174 } 3175 3176 if (x->recv() != nullptr) { 3177 LIRItem value(x->recv(), this); 3178 value.load_item(); 3179 recv = new_register(T_OBJECT); 3180 __ move(value.result(), recv); 3181 } 3182 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3183 } 3184 3185 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3186 int bci = x->bci_of_invoke(); 3187 ciMethodData* md = x->method()->method_data_or_null(); 3188 assert(md != nullptr, "Sanity"); 3189 ciProfileData* data = md->bci_to_data(bci); 3190 if (data != nullptr) { 3191 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3192 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3193 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3194 3195 bool ignored_will_link; 3196 ciSignature* signature_at_call = nullptr; 3197 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3198 3199 // The offset within the MDO of the entry to update may be too large 3200 // to be used in load/store instructions on some platforms. So have 3201 // profile_type() compute the address of the profile in a register. 3202 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3203 ret->type(), x->ret(), mdp, 3204 !x->needs_null_check(), 3205 signature_at_call->return_type()->as_klass(), 3206 x->callee()->signature()->return_type()->as_klass()); 3207 if (exact != nullptr) { 3208 md->set_return_type(bci, exact); 3209 } 3210 } 3211 } 3212 3213 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3214 // We can safely ignore accessors here, since c2 will inline them anyway, 3215 // accessors are also always mature. 3216 if (!x->inlinee()->is_accessor()) { 3217 CodeEmitInfo* info = state_for(x, x->state(), true); 3218 // Notify the runtime very infrequently only to take care of counter overflows 3219 int freq_log = Tier23InlineeNotifyFreqLog; 3220 double scale; 3221 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3222 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3223 } 3224 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3225 } 3226 } 3227 3228 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3229 if (compilation()->is_profiling()) { 3230 #if defined(X86) && !defined(_LP64) 3231 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3232 LIR_Opr left_copy = new_register(left->type()); 3233 __ move(left, left_copy); 3234 __ cmp(cond, left_copy, right); 3235 #else 3236 __ cmp(cond, left, right); 3237 #endif 3238 LIR_Opr step = new_register(T_INT); 3239 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3240 LIR_Opr zero = LIR_OprFact::intConst(0); 3241 __ cmove(cond, 3242 (left_bci < bci) ? plus_one : zero, 3243 (right_bci < bci) ? plus_one : zero, 3244 step, left->type()); 3245 increment_backedge_counter(info, step, bci); 3246 } 3247 } 3248 3249 3250 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3251 int freq_log = 0; 3252 int level = compilation()->env()->comp_level(); 3253 if (level == CompLevel_limited_profile) { 3254 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3255 } else if (level == CompLevel_full_profile) { 3256 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3257 } else { 3258 ShouldNotReachHere(); 3259 } 3260 // Increment the appropriate invocation/backedge counter and notify the runtime. 3261 double scale; 3262 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3263 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3264 } 3265 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3266 } 3267 3268 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3269 ciMethod *method, LIR_Opr step, int frequency, 3270 int bci, bool backedge, bool notify) { 3271 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3272 int level = _compilation->env()->comp_level(); 3273 assert(level > CompLevel_simple, "Shouldn't be here"); 3274 3275 int offset = -1; 3276 LIR_Opr counter_holder; 3277 if (level == CompLevel_limited_profile) { 3278 MethodCounters* counters_adr = method->ensure_method_counters(); 3279 if (counters_adr == nullptr) { 3280 bailout("method counters allocation failed"); 3281 return; 3282 } 3283 counter_holder = new_pointer_register(); 3284 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3285 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3286 MethodCounters::invocation_counter_offset()); 3287 } else if (level == CompLevel_full_profile) { 3288 counter_holder = new_register(T_METADATA); 3289 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3290 MethodData::invocation_counter_offset()); 3291 ciMethodData* md = method->method_data_or_null(); 3292 assert(md != nullptr, "Sanity"); 3293 __ metadata2reg(md->constant_encoding(), counter_holder); 3294 } else { 3295 ShouldNotReachHere(); 3296 } 3297 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3298 LIR_Opr result = new_register(T_INT); 3299 __ load(counter, result); 3300 __ add(result, step, result); 3301 __ store(result, counter); 3302 if (notify && (!backedge || UseOnStackReplacement)) { 3303 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3304 // The bci for info can point to cmp for if's we want the if bci 3305 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3306 int freq = frequency << InvocationCounter::count_shift; 3307 if (freq == 0) { 3308 if (!step->is_constant()) { 3309 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3310 __ branch(lir_cond_notEqual, overflow); 3311 } else { 3312 __ branch(lir_cond_always, overflow); 3313 } 3314 } else { 3315 LIR_Opr mask = load_immediate(freq, T_INT); 3316 if (!step->is_constant()) { 3317 // If step is 0, make sure the overflow check below always fails 3318 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3319 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3320 } 3321 __ logical_and(result, mask, result); 3322 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3323 __ branch(lir_cond_equal, overflow); 3324 } 3325 __ branch_destination(overflow->continuation()); 3326 } 3327 } 3328 3329 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3330 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3331 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3332 3333 if (x->pass_thread()) { 3334 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3335 args->append(getThreadPointer()); 3336 } 3337 3338 for (int i = 0; i < x->number_of_arguments(); i++) { 3339 Value a = x->argument_at(i); 3340 LIRItem* item = new LIRItem(a, this); 3341 item->load_item(); 3342 args->append(item->result()); 3343 signature->append(as_BasicType(a->type())); 3344 } 3345 3346 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3347 if (x->type() == voidType) { 3348 set_no_result(x); 3349 } else { 3350 __ move(result, rlock_result(x)); 3351 } 3352 } 3353 3354 #ifdef ASSERT 3355 void LIRGenerator::do_Assert(Assert *x) { 3356 ValueTag tag = x->x()->type()->tag(); 3357 If::Condition cond = x->cond(); 3358 3359 LIRItem xitem(x->x(), this); 3360 LIRItem yitem(x->y(), this); 3361 LIRItem* xin = &xitem; 3362 LIRItem* yin = &yitem; 3363 3364 assert(tag == intTag, "Only integer assertions are valid!"); 3365 3366 xin->load_item(); 3367 yin->dont_load_item(); 3368 3369 set_no_result(x); 3370 3371 LIR_Opr left = xin->result(); 3372 LIR_Opr right = yin->result(); 3373 3374 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3375 } 3376 #endif 3377 3378 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3379 3380 3381 Instruction *a = x->x(); 3382 Instruction *b = x->y(); 3383 if (!a || StressRangeCheckElimination) { 3384 assert(!b || StressRangeCheckElimination, "B must also be null"); 3385 3386 CodeEmitInfo *info = state_for(x, x->state()); 3387 CodeStub* stub = new PredicateFailedStub(info); 3388 3389 __ jump(stub); 3390 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3391 int a_int = a->type()->as_IntConstant()->value(); 3392 int b_int = b->type()->as_IntConstant()->value(); 3393 3394 bool ok = false; 3395 3396 switch(x->cond()) { 3397 case Instruction::eql: ok = (a_int == b_int); break; 3398 case Instruction::neq: ok = (a_int != b_int); break; 3399 case Instruction::lss: ok = (a_int < b_int); break; 3400 case Instruction::leq: ok = (a_int <= b_int); break; 3401 case Instruction::gtr: ok = (a_int > b_int); break; 3402 case Instruction::geq: ok = (a_int >= b_int); break; 3403 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3404 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3405 default: ShouldNotReachHere(); 3406 } 3407 3408 if (ok) { 3409 3410 CodeEmitInfo *info = state_for(x, x->state()); 3411 CodeStub* stub = new PredicateFailedStub(info); 3412 3413 __ jump(stub); 3414 } 3415 } else { 3416 3417 ValueTag tag = x->x()->type()->tag(); 3418 If::Condition cond = x->cond(); 3419 LIRItem xitem(x->x(), this); 3420 LIRItem yitem(x->y(), this); 3421 LIRItem* xin = &xitem; 3422 LIRItem* yin = &yitem; 3423 3424 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3425 3426 xin->load_item(); 3427 yin->dont_load_item(); 3428 set_no_result(x); 3429 3430 LIR_Opr left = xin->result(); 3431 LIR_Opr right = yin->result(); 3432 3433 CodeEmitInfo *info = state_for(x, x->state()); 3434 CodeStub* stub = new PredicateFailedStub(info); 3435 3436 __ cmp(lir_cond(cond), left, right); 3437 __ branch(lir_cond(cond), stub); 3438 } 3439 } 3440 3441 void LIRGenerator::do_blackhole(Intrinsic *x) { 3442 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3443 for (int c = 0; c < x->number_of_arguments(); c++) { 3444 // Load the argument 3445 LIRItem vitem(x->argument_at(c), this); 3446 vitem.load_item(); 3447 // ...and leave it unused. 3448 } 3449 } 3450 3451 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3452 LIRItemList args(1); 3453 LIRItem value(arg1, this); 3454 args.append(&value); 3455 BasicTypeList signature; 3456 signature.append(as_BasicType(arg1->type())); 3457 3458 return call_runtime(&signature, &args, entry, result_type, info); 3459 } 3460 3461 3462 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3463 LIRItemList args(2); 3464 LIRItem value1(arg1, this); 3465 LIRItem value2(arg2, this); 3466 args.append(&value1); 3467 args.append(&value2); 3468 BasicTypeList signature; 3469 signature.append(as_BasicType(arg1->type())); 3470 signature.append(as_BasicType(arg2->type())); 3471 3472 return call_runtime(&signature, &args, entry, result_type, info); 3473 } 3474 3475 3476 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3477 address entry, ValueType* result_type, CodeEmitInfo* info) { 3478 // get a result register 3479 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3480 LIR_Opr result = LIR_OprFact::illegalOpr; 3481 if (result_type->tag() != voidTag) { 3482 result = new_register(result_type); 3483 phys_reg = result_register_for(result_type); 3484 } 3485 3486 // move the arguments into the correct location 3487 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3488 assert(cc->length() == args->length(), "argument mismatch"); 3489 for (int i = 0; i < args->length(); i++) { 3490 LIR_Opr arg = args->at(i); 3491 LIR_Opr loc = cc->at(i); 3492 if (loc->is_register()) { 3493 __ move(arg, loc); 3494 } else { 3495 LIR_Address* addr = loc->as_address_ptr(); 3496 // if (!can_store_as_constant(arg)) { 3497 // LIR_Opr tmp = new_register(arg->type()); 3498 // __ move(arg, tmp); 3499 // arg = tmp; 3500 // } 3501 __ move(arg, addr); 3502 } 3503 } 3504 3505 if (info) { 3506 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3507 } else { 3508 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3509 } 3510 if (result->is_valid()) { 3511 __ move(phys_reg, result); 3512 } 3513 return result; 3514 } 3515 3516 3517 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3518 address entry, ValueType* result_type, CodeEmitInfo* info) { 3519 // get a result register 3520 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3521 LIR_Opr result = LIR_OprFact::illegalOpr; 3522 if (result_type->tag() != voidTag) { 3523 result = new_register(result_type); 3524 phys_reg = result_register_for(result_type); 3525 } 3526 3527 // move the arguments into the correct location 3528 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3529 3530 assert(cc->length() == args->length(), "argument mismatch"); 3531 for (int i = 0; i < args->length(); i++) { 3532 LIRItem* arg = args->at(i); 3533 LIR_Opr loc = cc->at(i); 3534 if (loc->is_register()) { 3535 arg->load_item_force(loc); 3536 } else { 3537 LIR_Address* addr = loc->as_address_ptr(); 3538 arg->load_for_store(addr->type()); 3539 __ move(arg->result(), addr); 3540 } 3541 } 3542 3543 if (info) { 3544 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3545 } else { 3546 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3547 } 3548 if (result->is_valid()) { 3549 __ move(phys_reg, result); 3550 } 3551 return result; 3552 } 3553 3554 void LIRGenerator::do_MemBar(MemBar* x) { 3555 LIR_Code code = x->code(); 3556 switch(code) { 3557 case lir_membar_acquire : __ membar_acquire(); break; 3558 case lir_membar_release : __ membar_release(); break; 3559 case lir_membar : __ membar(); break; 3560 case lir_membar_loadload : __ membar_loadload(); break; 3561 case lir_membar_storestore: __ membar_storestore(); break; 3562 case lir_membar_loadstore : __ membar_loadstore(); break; 3563 case lir_membar_storeload : __ membar_storeload(); break; 3564 default : ShouldNotReachHere(); break; 3565 } 3566 } 3567 3568 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3569 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3570 if (two_operand_lir_form) { 3571 __ move(value, value_fixed); 3572 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3573 } else { 3574 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3575 } 3576 LIR_Opr klass = new_register(T_METADATA); 3577 load_klass(array, klass, null_check_info); 3578 null_check_info = nullptr; 3579 LIR_Opr layout = new_register(T_INT); 3580 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3581 int diffbit = Klass::layout_helper_boolean_diffbit(); 3582 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3583 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3584 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3585 value = value_fixed; 3586 return value; 3587 }