1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "ci/ciObjArray.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "compiler/compilerOracle.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/c1/barrierSetC1.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "oops/methodCounters.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/vm_version.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #ifdef ASSERT 50 #define __ gen()->lir(__FILE__, __LINE__)-> 51 #else 52 #define __ gen()->lir()-> 53 #endif 54 55 #ifndef PATCHED_ADDR 56 #define PATCHED_ADDR (max_jint) 57 #endif 58 59 void PhiResolverState::reset() { 60 _virtual_operands.clear(); 61 _other_operands.clear(); 62 _vreg_table.clear(); 63 } 64 65 66 //-------------------------------------------------------------- 67 // PhiResolver 68 69 // Resolves cycles: 70 // 71 // r1 := r2 becomes temp := r1 72 // r2 := r1 r1 := r2 73 // r2 := temp 74 // and orders moves: 75 // 76 // r2 := r3 becomes r1 := r2 77 // r1 := r2 r2 := r3 78 79 PhiResolver::PhiResolver(LIRGenerator* gen) 80 : _gen(gen) 81 , _state(gen->resolver_state()) 82 , _loop(nullptr) 83 , _temp(LIR_OprFact::illegalOpr) 84 { 85 // reinitialize the shared state arrays 86 _state.reset(); 87 } 88 89 90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 91 assert(src->is_valid(), ""); 92 assert(dest->is_valid(), ""); 93 __ move(src, dest); 94 } 95 96 97 void PhiResolver::move_temp_to(LIR_Opr dest) { 98 assert(_temp->is_valid(), ""); 99 emit_move(_temp, dest); 100 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 101 } 102 103 104 void PhiResolver::move_to_temp(LIR_Opr src) { 105 assert(_temp->is_illegal(), ""); 106 _temp = _gen->new_register(src->type()); 107 emit_move(src, _temp); 108 } 109 110 111 // Traverse assignment graph in depth first order and generate moves in post order 112 // ie. two assignments: b := c, a := b start with node c: 113 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 114 // Generates moves in this order: move b to a and move c to b 115 // ie. cycle a := b, b := a start with node a 116 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 117 // Generates moves in this order: move b to temp, move a to b, move temp to a 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 119 if (!dest->visited()) { 120 dest->set_visited(); 121 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 122 move(dest, dest->destination_at(i)); 123 } 124 } else if (!dest->start_node()) { 125 // cylce in graph detected 126 assert(_loop == nullptr, "only one loop valid!"); 127 _loop = dest; 128 move_to_temp(src->operand()); 129 return; 130 } // else dest is a start node 131 132 if (!dest->assigned()) { 133 if (_loop == dest) { 134 move_temp_to(dest->operand()); 135 dest->set_assigned(); 136 } else if (src != nullptr) { 137 emit_move(src->operand(), dest->operand()); 138 dest->set_assigned(); 139 } 140 } 141 } 142 143 144 PhiResolver::~PhiResolver() { 145 int i; 146 // resolve any cycles in moves from and to virtual registers 147 for (i = virtual_operands().length() - 1; i >= 0; i --) { 148 ResolveNode* node = virtual_operands().at(i); 149 if (!node->visited()) { 150 _loop = nullptr; 151 move(nullptr, node); 152 node->set_start_node(); 153 assert(_temp->is_illegal(), "move_temp_to() call missing"); 154 } 155 } 156 157 // generate move for move from non virtual register to abitrary destination 158 for (i = other_operands().length() - 1; i >= 0; i --) { 159 ResolveNode* node = other_operands().at(i); 160 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 161 emit_move(node->operand(), node->destination_at(j)->operand()); 162 } 163 } 164 } 165 166 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 168 ResolveNode* node; 169 if (opr->is_virtual()) { 170 int vreg_num = opr->vreg_number(); 171 node = vreg_table().at_grow(vreg_num, nullptr); 172 assert(node == nullptr || node->operand() == opr, ""); 173 if (node == nullptr) { 174 node = new ResolveNode(opr); 175 vreg_table().at_put(vreg_num, node); 176 } 177 // Make sure that all virtual operands show up in the list when 178 // they are used as the source of a move. 179 if (source && !virtual_operands().contains(node)) { 180 virtual_operands().append(node); 181 } 182 } else { 183 assert(source, ""); 184 node = new ResolveNode(opr); 185 other_operands().append(node); 186 } 187 return node; 188 } 189 190 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 192 assert(dest->is_virtual(), ""); 193 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 194 assert(src->is_valid(), ""); 195 assert(dest->is_valid(), ""); 196 ResolveNode* source = source_node(src); 197 source->append(destination_node(dest)); 198 } 199 200 201 //-------------------------------------------------------------- 202 // LIRItem 203 204 void LIRItem::set_result(LIR_Opr opr) { 205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 206 value()->set_operand(opr); 207 208 #ifdef ASSERT 209 if (opr->is_virtual()) { 210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 211 } 212 #endif 213 214 _result = opr; 215 } 216 217 void LIRItem::load_item() { 218 if (result()->is_illegal()) { 219 // update the items result 220 _result = value()->operand(); 221 } 222 if (!result()->is_register()) { 223 LIR_Opr reg = _gen->new_register(value()->type()); 224 __ move(result(), reg); 225 if (result()->is_constant()) { 226 _result = reg; 227 } else { 228 set_result(reg); 229 } 230 } 231 } 232 233 234 void LIRItem::load_for_store(BasicType type) { 235 if (_gen->can_store_as_constant(value(), type)) { 236 _result = value()->operand(); 237 if (!_result->is_constant()) { 238 _result = LIR_OprFact::value_type(value()->type()); 239 } 240 } else if (type == T_BYTE || type == T_BOOLEAN) { 241 load_byte_item(); 242 } else { 243 load_item(); 244 } 245 } 246 247 void LIRItem::load_item_force(LIR_Opr reg) { 248 LIR_Opr r = result(); 249 if (r != reg) { 250 #if !defined(ARM) && !defined(E500V2) 251 if (r->type() != reg->type()) { 252 // moves between different types need an intervening spill slot 253 r = _gen->force_to_spill(r, reg->type()); 254 } 255 #endif 256 __ move(r, reg); 257 _result = reg; 258 } 259 } 260 261 ciObject* LIRItem::get_jobject_constant() const { 262 ObjectType* oc = type()->as_ObjectType(); 263 if (oc) { 264 return oc->constant_value(); 265 } 266 return nullptr; 267 } 268 269 270 jint LIRItem::get_jint_constant() const { 271 assert(is_constant() && value() != nullptr, ""); 272 assert(type()->as_IntConstant() != nullptr, "type check"); 273 return type()->as_IntConstant()->value(); 274 } 275 276 277 jint LIRItem::get_address_constant() const { 278 assert(is_constant() && value() != nullptr, ""); 279 assert(type()->as_AddressConstant() != nullptr, "type check"); 280 return type()->as_AddressConstant()->value(); 281 } 282 283 284 jfloat LIRItem::get_jfloat_constant() const { 285 assert(is_constant() && value() != nullptr, ""); 286 assert(type()->as_FloatConstant() != nullptr, "type check"); 287 return type()->as_FloatConstant()->value(); 288 } 289 290 291 jdouble LIRItem::get_jdouble_constant() const { 292 assert(is_constant() && value() != nullptr, ""); 293 assert(type()->as_DoubleConstant() != nullptr, "type check"); 294 return type()->as_DoubleConstant()->value(); 295 } 296 297 298 jlong LIRItem::get_jlong_constant() const { 299 assert(is_constant() && value() != nullptr, ""); 300 assert(type()->as_LongConstant() != nullptr, "type check"); 301 return type()->as_LongConstant()->value(); 302 } 303 304 305 306 //-------------------------------------------------------------- 307 308 309 void LIRGenerator::block_do_prolog(BlockBegin* block) { 310 #ifndef PRODUCT 311 if (PrintIRWithLIR) { 312 block->print(); 313 } 314 #endif 315 316 // set up the list of LIR instructions 317 assert(block->lir() == nullptr, "LIR list already computed for this block"); 318 _lir = new LIR_List(compilation(), block); 319 block->set_lir(_lir); 320 321 __ branch_destination(block->label()); 322 323 if (LIRTraceExecution && 324 Compilation::current()->hir()->start()->block_id() != block->block_id() && 325 !block->is_set(BlockBegin::exception_entry_flag)) { 326 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 327 trace_block_entry(block); 328 } 329 } 330 331 332 void LIRGenerator::block_do_epilog(BlockBegin* block) { 333 #ifndef PRODUCT 334 if (PrintIRWithLIR) { 335 tty->cr(); 336 } 337 #endif 338 339 // LIR_Opr for unpinned constants shouldn't be referenced by other 340 // blocks so clear them out after processing the block. 341 for (int i = 0; i < _unpinned_constants.length(); i++) { 342 _unpinned_constants.at(i)->clear_operand(); 343 } 344 _unpinned_constants.trunc_to(0); 345 346 // clear our any registers for other local constants 347 _constants.trunc_to(0); 348 _reg_for_constants.trunc_to(0); 349 } 350 351 352 void LIRGenerator::block_do(BlockBegin* block) { 353 CHECK_BAILOUT(); 354 355 block_do_prolog(block); 356 set_block(block); 357 358 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 359 if (instr->is_pinned()) do_root(instr); 360 } 361 362 set_block(nullptr); 363 block_do_epilog(block); 364 } 365 366 367 //-------------------------LIRGenerator----------------------------- 368 369 // This is where the tree-walk starts; instr must be root; 370 void LIRGenerator::do_root(Value instr) { 371 CHECK_BAILOUT(); 372 373 InstructionMark im(compilation(), instr); 374 375 assert(instr->is_pinned(), "use only with roots"); 376 assert(instr->subst() == instr, "shouldn't have missed substitution"); 377 378 instr->visit(this); 379 380 assert(!instr->has_uses() || instr->operand()->is_valid() || 381 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 382 } 383 384 385 // This is called for each node in tree; the walk stops if a root is reached 386 void LIRGenerator::walk(Value instr) { 387 InstructionMark im(compilation(), instr); 388 //stop walk when encounter a root 389 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 390 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 391 } else { 392 assert(instr->subst() == instr, "shouldn't have missed substitution"); 393 instr->visit(this); 394 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 395 } 396 } 397 398 399 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 400 assert(state != nullptr, "state must be defined"); 401 402 #ifndef PRODUCT 403 state->verify(); 404 #endif 405 406 ValueStack* s = state; 407 for_each_state(s) { 408 if (s->kind() == ValueStack::EmptyExceptionState || 409 s->kind() == ValueStack::CallerEmptyExceptionState) 410 { 411 #ifdef ASSERT 412 int index; 413 Value value; 414 for_each_stack_value(s, index, value) { 415 fatal("state must be empty"); 416 } 417 for_each_local_value(s, index, value) { 418 fatal("state must be empty"); 419 } 420 #endif 421 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 422 continue; 423 } 424 425 int index; 426 Value value; 427 for_each_stack_value(s, index, value) { 428 assert(value->subst() == value, "missed substitution"); 429 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 430 walk(value); 431 assert(value->operand()->is_valid(), "must be evaluated now"); 432 } 433 } 434 435 int bci = s->bci(); 436 IRScope* scope = s->scope(); 437 ciMethod* method = scope->method(); 438 439 MethodLivenessResult liveness = method->liveness_at_bci(bci); 440 if (bci == SynchronizationEntryBCI) { 441 if (x->as_ExceptionObject() || x->as_Throw()) { 442 // all locals are dead on exit from the synthetic unlocker 443 liveness.clear(); 444 } else { 445 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 446 } 447 } 448 if (!liveness.is_valid()) { 449 // Degenerate or breakpointed method. 450 bailout("Degenerate or breakpointed method"); 451 } else { 452 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 453 for_each_local_value(s, index, value) { 454 assert(value->subst() == value, "missed substitution"); 455 if (liveness.at(index) && !value->type()->is_illegal()) { 456 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 457 walk(value); 458 assert(value->operand()->is_valid(), "must be evaluated now"); 459 } 460 } else { 461 // null out this local so that linear scan can assume that all non-null values are live. 462 s->invalidate_local(index); 463 } 464 } 465 } 466 } 467 468 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 469 } 470 471 472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 473 return state_for(x, x->exception_state()); 474 } 475 476 477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 478 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 479 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 480 * the class. */ 481 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 482 assert(info != nullptr, "info must be set if class is not loaded"); 483 __ klass2reg_patch(nullptr, r, info); 484 } else { 485 // no patching needed 486 __ metadata2reg(obj->constant_encoding(), r); 487 } 488 } 489 490 491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 492 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 493 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 494 if (index->is_constant()) { 495 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 496 index->as_jint(), null_check_info); 497 __ branch(lir_cond_belowEqual, stub); // forward branch 498 } else { 499 cmp_reg_mem(lir_cond_aboveEqual, index, array, 500 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 501 __ branch(lir_cond_aboveEqual, stub); // forward branch 502 } 503 } 504 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 506 LIR_Opr result_op = result; 507 LIR_Opr left_op = left; 508 LIR_Opr right_op = right; 509 510 if (two_operand_lir_form && left_op != result_op) { 511 assert(right_op != result_op, "malformed"); 512 __ move(left_op, result_op); 513 left_op = result_op; 514 } 515 516 switch(code) { 517 case Bytecodes::_dadd: 518 case Bytecodes::_fadd: 519 case Bytecodes::_ladd: 520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 521 case Bytecodes::_fmul: 522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 523 524 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 525 526 case Bytecodes::_imul: 527 { 528 bool did_strength_reduce = false; 529 530 if (right->is_constant()) { 531 jint c = right->as_jint(); 532 if (c > 0 && is_power_of_2(c)) { 533 // do not need tmp here 534 __ shift_left(left_op, exact_log2(c), result_op); 535 did_strength_reduce = true; 536 } else { 537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 538 } 539 } 540 // we couldn't strength reduce so just emit the multiply 541 if (!did_strength_reduce) { 542 __ mul(left_op, right_op, result_op); 543 } 544 } 545 break; 546 547 case Bytecodes::_dsub: 548 case Bytecodes::_fsub: 549 case Bytecodes::_lsub: 550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 551 552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 553 // ldiv and lrem are implemented with a direct runtime call 554 555 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 556 557 case Bytecodes::_drem: 558 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 559 560 default: ShouldNotReachHere(); 561 } 562 } 563 564 565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 566 arithmetic_op(code, result, left, right, tmp); 567 } 568 569 570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 571 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 572 } 573 574 575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 576 arithmetic_op(code, result, left, right, tmp); 577 } 578 579 580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 581 582 if (two_operand_lir_form && value != result_op 583 // Only 32bit right shifts require two operand form on S390. 584 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 585 assert(count != result_op, "malformed"); 586 __ move(value, result_op); 587 value = result_op; 588 } 589 590 assert(count->is_constant() || count->is_register(), "must be"); 591 switch(code) { 592 case Bytecodes::_ishl: 593 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 594 case Bytecodes::_ishr: 595 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 596 case Bytecodes::_iushr: 597 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 598 default: ShouldNotReachHere(); 599 } 600 } 601 602 603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 604 if (two_operand_lir_form && left_op != result_op) { 605 assert(right_op != result_op, "malformed"); 606 __ move(left_op, result_op); 607 left_op = result_op; 608 } 609 610 switch(code) { 611 case Bytecodes::_iand: 612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 613 614 case Bytecodes::_ior: 615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 616 617 case Bytecodes::_ixor: 618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 619 620 default: ShouldNotReachHere(); 621 } 622 } 623 624 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 626 if (!GenerateSynchronizationCode) return; 627 // for slow path, use debug info for state after successful locking 628 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 629 __ load_stack_address_monitor(monitor_no, lock); 630 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 631 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 632 } 633 634 635 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 636 if (!GenerateSynchronizationCode) return; 637 // setup registers 638 LIR_Opr hdr = lock; 639 lock = new_hdr; 640 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 641 __ load_stack_address_monitor(monitor_no, lock); 642 __ unlock_object(hdr, object, lock, scratch, slow_path); 643 } 644 645 #ifndef PRODUCT 646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 647 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 648 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 649 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 650 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 651 } 652 } 653 #endif 654 655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 656 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 657 // If klass is not loaded we do not know if the klass has finalizers: 658 if (UseFastNewInstance && klass->is_loaded() 659 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 660 661 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 662 663 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 664 665 assert(klass->is_loaded(), "must be loaded"); 666 // allocate space for instance 667 assert(klass->size_helper() > 0, "illegal instance size"); 668 const int instance_size = align_object_size(klass->size_helper()); 669 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 670 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 671 } else { 672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 673 __ branch(lir_cond_always, slow_path); 674 __ branch_destination(slow_path->continuation()); 675 } 676 } 677 678 679 static bool is_constant_zero(Instruction* inst) { 680 IntConstant* c = inst->type()->as_IntConstant(); 681 if (c) { 682 return (c->value() == 0); 683 } 684 return false; 685 } 686 687 688 static bool positive_constant(Instruction* inst) { 689 IntConstant* c = inst->type()->as_IntConstant(); 690 if (c) { 691 return (c->value() >= 0); 692 } 693 return false; 694 } 695 696 697 static ciArrayKlass* as_array_klass(ciType* type) { 698 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 699 return (ciArrayKlass*)type; 700 } else { 701 return nullptr; 702 } 703 } 704 705 static ciType* phi_declared_type(Phi* phi) { 706 ciType* t = phi->operand_at(0)->declared_type(); 707 if (t == nullptr) { 708 return nullptr; 709 } 710 for(int i = 1; i < phi->operand_count(); i++) { 711 if (t != phi->operand_at(i)->declared_type()) { 712 return nullptr; 713 } 714 } 715 return t; 716 } 717 718 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 719 Instruction* src = x->argument_at(0); 720 Instruction* src_pos = x->argument_at(1); 721 Instruction* dst = x->argument_at(2); 722 Instruction* dst_pos = x->argument_at(3); 723 Instruction* length = x->argument_at(4); 724 725 // first try to identify the likely type of the arrays involved 726 ciArrayKlass* expected_type = nullptr; 727 bool is_exact = false, src_objarray = false, dst_objarray = false; 728 { 729 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 730 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 731 Phi* phi; 732 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 733 src_declared_type = as_array_klass(phi_declared_type(phi)); 734 } 735 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 736 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 737 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 738 dst_declared_type = as_array_klass(phi_declared_type(phi)); 739 } 740 741 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 742 // the types exactly match so the type is fully known 743 is_exact = true; 744 expected_type = src_exact_type; 745 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 746 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 747 ciArrayKlass* src_type = nullptr; 748 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 749 src_type = (ciArrayKlass*) src_exact_type; 750 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 751 src_type = (ciArrayKlass*) src_declared_type; 752 } 753 if (src_type != nullptr) { 754 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 755 is_exact = true; 756 expected_type = dst_type; 757 } 758 } 759 } 760 // at least pass along a good guess 761 if (expected_type == nullptr) expected_type = dst_exact_type; 762 if (expected_type == nullptr) expected_type = src_declared_type; 763 if (expected_type == nullptr) expected_type = dst_declared_type; 764 765 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 766 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 767 } 768 769 // if a probable array type has been identified, figure out if any 770 // of the required checks for a fast case can be elided. 771 int flags = LIR_OpArrayCopy::all_flags; 772 773 if (!src_objarray) 774 flags &= ~LIR_OpArrayCopy::src_objarray; 775 if (!dst_objarray) 776 flags &= ~LIR_OpArrayCopy::dst_objarray; 777 778 if (!x->arg_needs_null_check(0)) 779 flags &= ~LIR_OpArrayCopy::src_null_check; 780 if (!x->arg_needs_null_check(2)) 781 flags &= ~LIR_OpArrayCopy::dst_null_check; 782 783 784 if (expected_type != nullptr) { 785 Value length_limit = nullptr; 786 787 IfOp* ifop = length->as_IfOp(); 788 if (ifop != nullptr) { 789 // look for expressions like min(v, a.length) which ends up as 790 // x > y ? y : x or x >= y ? y : x 791 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 792 ifop->x() == ifop->fval() && 793 ifop->y() == ifop->tval()) { 794 length_limit = ifop->y(); 795 } 796 } 797 798 // try to skip null checks and range checks 799 NewArray* src_array = src->as_NewArray(); 800 if (src_array != nullptr) { 801 flags &= ~LIR_OpArrayCopy::src_null_check; 802 if (length_limit != nullptr && 803 src_array->length() == length_limit && 804 is_constant_zero(src_pos)) { 805 flags &= ~LIR_OpArrayCopy::src_range_check; 806 } 807 } 808 809 NewArray* dst_array = dst->as_NewArray(); 810 if (dst_array != nullptr) { 811 flags &= ~LIR_OpArrayCopy::dst_null_check; 812 if (length_limit != nullptr && 813 dst_array->length() == length_limit && 814 is_constant_zero(dst_pos)) { 815 flags &= ~LIR_OpArrayCopy::dst_range_check; 816 } 817 } 818 819 // check from incoming constant values 820 if (positive_constant(src_pos)) 821 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 822 if (positive_constant(dst_pos)) 823 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 824 if (positive_constant(length)) 825 flags &= ~LIR_OpArrayCopy::length_positive_check; 826 827 // see if the range check can be elided, which might also imply 828 // that src or dst is non-null. 829 ArrayLength* al = length->as_ArrayLength(); 830 if (al != nullptr) { 831 if (al->array() == src) { 832 // it's the length of the source array 833 flags &= ~LIR_OpArrayCopy::length_positive_check; 834 flags &= ~LIR_OpArrayCopy::src_null_check; 835 if (is_constant_zero(src_pos)) 836 flags &= ~LIR_OpArrayCopy::src_range_check; 837 } 838 if (al->array() == dst) { 839 // it's the length of the destination array 840 flags &= ~LIR_OpArrayCopy::length_positive_check; 841 flags &= ~LIR_OpArrayCopy::dst_null_check; 842 if (is_constant_zero(dst_pos)) 843 flags &= ~LIR_OpArrayCopy::dst_range_check; 844 } 845 } 846 if (is_exact) { 847 flags &= ~LIR_OpArrayCopy::type_check; 848 } 849 } 850 851 IntConstant* src_int = src_pos->type()->as_IntConstant(); 852 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 853 if (src_int && dst_int) { 854 int s_offs = src_int->value(); 855 int d_offs = dst_int->value(); 856 if (src_int->value() >= dst_int->value()) { 857 flags &= ~LIR_OpArrayCopy::overlapping; 858 } 859 if (expected_type != nullptr) { 860 BasicType t = expected_type->element_type()->basic_type(); 861 int element_size = type2aelembytes(t); 862 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 863 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 864 flags &= ~LIR_OpArrayCopy::unaligned; 865 } 866 } 867 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 868 // src and dest positions are the same, or dst is zero so assume 869 // nonoverlapping copy. 870 flags &= ~LIR_OpArrayCopy::overlapping; 871 } 872 873 if (src == dst) { 874 // moving within a single array so no type checks are needed 875 if (flags & LIR_OpArrayCopy::type_check) { 876 flags &= ~LIR_OpArrayCopy::type_check; 877 } 878 } 879 *flagsp = flags; 880 *expected_typep = (ciArrayKlass*)expected_type; 881 } 882 883 884 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 885 assert(opr->is_register(), "why spill if item is not register?"); 886 887 if (strict_fp_requires_explicit_rounding) { 888 #ifdef IA32 889 if (UseSSE < 1 && opr->is_single_fpu()) { 890 LIR_Opr result = new_register(T_FLOAT); 891 set_vreg_flag(result, must_start_in_memory); 892 assert(opr->is_register(), "only a register can be spilled"); 893 assert(opr->value_type()->is_float(), "rounding only for floats available"); 894 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 895 return result; 896 } 897 #else 898 Unimplemented(); 899 #endif // IA32 900 } 901 return opr; 902 } 903 904 905 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 906 assert(type2size[t] == type2size[value->type()], 907 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 908 if (!value->is_register()) { 909 // force into a register 910 LIR_Opr r = new_register(value->type()); 911 __ move(value, r); 912 value = r; 913 } 914 915 // create a spill location 916 LIR_Opr tmp = new_register(t); 917 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 918 919 // move from register to spill 920 __ move(value, tmp); 921 return tmp; 922 } 923 924 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 925 if (if_instr->should_profile()) { 926 ciMethod* method = if_instr->profiled_method(); 927 assert(method != nullptr, "method should be set if branch is profiled"); 928 ciMethodData* md = method->method_data_or_null(); 929 assert(md != nullptr, "Sanity"); 930 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 931 assert(data != nullptr, "must have profiling data"); 932 assert(data->is_BranchData(), "need BranchData for two-way branches"); 933 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 934 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 935 if (if_instr->is_swapped()) { 936 int t = taken_count_offset; 937 taken_count_offset = not_taken_count_offset; 938 not_taken_count_offset = t; 939 } 940 941 LIR_Opr md_reg = new_register(T_METADATA); 942 __ metadata2reg(md->constant_encoding(), md_reg); 943 944 LIR_Opr data_offset_reg = new_pointer_register(); 945 __ cmove(lir_cond(cond), 946 LIR_OprFact::intptrConst(taken_count_offset), 947 LIR_OprFact::intptrConst(not_taken_count_offset), 948 data_offset_reg, as_BasicType(if_instr->x()->type())); 949 950 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 951 LIR_Opr data_reg = new_pointer_register(); 952 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 953 __ move(data_addr, data_reg); 954 // Use leal instead of add to avoid destroying condition codes on x86 955 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 956 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 957 __ move(data_reg, data_addr); 958 } 959 } 960 961 // Phi technique: 962 // This is about passing live values from one basic block to the other. 963 // In code generated with Java it is rather rare that more than one 964 // value is on the stack from one basic block to the other. 965 // We optimize our technique for efficient passing of one value 966 // (of type long, int, double..) but it can be extended. 967 // When entering or leaving a basic block, all registers and all spill 968 // slots are release and empty. We use the released registers 969 // and spill slots to pass the live values from one block 970 // to the other. The topmost value, i.e., the value on TOS of expression 971 // stack is passed in registers. All other values are stored in spilling 972 // area. Every Phi has an index which designates its spill slot 973 // At exit of a basic block, we fill the register(s) and spill slots. 974 // At entry of a basic block, the block_prolog sets up the content of phi nodes 975 // and locks necessary registers and spilling slots. 976 977 978 // move current value to referenced phi function 979 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 980 Phi* phi = sux_val->as_Phi(); 981 // cur_val can be null without phi being null in conjunction with inlining 982 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 983 if (phi->is_local()) { 984 for (int i = 0; i < phi->operand_count(); i++) { 985 Value op = phi->operand_at(i); 986 if (op != nullptr && op->type()->is_illegal()) { 987 bailout("illegal phi operand"); 988 } 989 } 990 } 991 Phi* cur_phi = cur_val->as_Phi(); 992 if (cur_phi != nullptr && cur_phi->is_illegal()) { 993 // Phi and local would need to get invalidated 994 // (which is unexpected for Linear Scan). 995 // But this case is very rare so we simply bail out. 996 bailout("propagation of illegal phi"); 997 return; 998 } 999 LIR_Opr operand = cur_val->operand(); 1000 if (operand->is_illegal()) { 1001 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1002 "these can be produced lazily"); 1003 operand = operand_for_instruction(cur_val); 1004 } 1005 resolver->move(operand, operand_for_instruction(phi)); 1006 } 1007 } 1008 1009 1010 // Moves all stack values into their PHI position 1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1012 BlockBegin* bb = block(); 1013 if (bb->number_of_sux() == 1) { 1014 BlockBegin* sux = bb->sux_at(0); 1015 assert(sux->number_of_preds() > 0, "invalid CFG"); 1016 1017 // a block with only one predecessor never has phi functions 1018 if (sux->number_of_preds() > 1) { 1019 PhiResolver resolver(this); 1020 1021 ValueStack* sux_state = sux->state(); 1022 Value sux_value; 1023 int index; 1024 1025 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1026 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1027 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1028 1029 for_each_stack_value(sux_state, index, sux_value) { 1030 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1031 } 1032 1033 for_each_local_value(sux_state, index, sux_value) { 1034 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1035 } 1036 1037 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1038 } 1039 } 1040 } 1041 1042 1043 LIR_Opr LIRGenerator::new_register(BasicType type) { 1044 int vreg_num = _virtual_register_number; 1045 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1046 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1047 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1048 bailout("out of virtual registers in LIR generator"); 1049 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1050 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1051 _virtual_register_number = LIR_Opr::vreg_base; 1052 vreg_num = LIR_Opr::vreg_base; 1053 } 1054 } 1055 _virtual_register_number += 1; 1056 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1057 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1058 return vreg; 1059 } 1060 1061 1062 // Try to lock using register in hint 1063 LIR_Opr LIRGenerator::rlock(Value instr) { 1064 return new_register(instr->type()); 1065 } 1066 1067 1068 // does an rlock and sets result 1069 LIR_Opr LIRGenerator::rlock_result(Value x) { 1070 LIR_Opr reg = rlock(x); 1071 set_result(x, reg); 1072 return reg; 1073 } 1074 1075 1076 // does an rlock and sets result 1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1078 LIR_Opr reg; 1079 switch (type) { 1080 case T_BYTE: 1081 case T_BOOLEAN: 1082 reg = rlock_byte(type); 1083 break; 1084 default: 1085 reg = rlock(x); 1086 break; 1087 } 1088 1089 set_result(x, reg); 1090 return reg; 1091 } 1092 1093 1094 //--------------------------------------------------------------------- 1095 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1096 ObjectType* oc = value->type()->as_ObjectType(); 1097 if (oc) { 1098 return oc->constant_value(); 1099 } 1100 return nullptr; 1101 } 1102 1103 1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1105 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1106 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1107 1108 // no moves are created for phi functions at the begin of exception 1109 // handlers, so assign operands manually here 1110 for_each_phi_fun(block(), phi, 1111 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1112 1113 LIR_Opr thread_reg = getThreadPointer(); 1114 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1115 exceptionOopOpr()); 1116 __ move_wide(LIR_OprFact::oopConst(nullptr), 1117 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1118 __ move_wide(LIR_OprFact::oopConst(nullptr), 1119 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1120 1121 LIR_Opr result = new_register(T_OBJECT); 1122 __ move(exceptionOopOpr(), result); 1123 set_result(x, result); 1124 } 1125 1126 1127 //---------------------------------------------------------------------- 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 //---------------------------------------------------------------------- 1131 // visitor functions 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 1137 void LIRGenerator::do_Phi(Phi* x) { 1138 // phi functions are never visited directly 1139 ShouldNotReachHere(); 1140 } 1141 1142 1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1144 void LIRGenerator::do_Constant(Constant* x) { 1145 if (x->state_before() != nullptr) { 1146 // Any constant with a ValueStack requires patching so emit the patch here 1147 LIR_Opr reg = rlock_result(x); 1148 CodeEmitInfo* info = state_for(x, x->state_before()); 1149 __ oop2reg_patch(nullptr, reg, info); 1150 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1151 if (!x->is_pinned()) { 1152 // unpinned constants are handled specially so that they can be 1153 // put into registers when they are used multiple times within a 1154 // block. After the block completes their operand will be 1155 // cleared so that other blocks can't refer to that register. 1156 set_result(x, load_constant(x)); 1157 } else { 1158 LIR_Opr res = x->operand(); 1159 if (!res->is_valid()) { 1160 res = LIR_OprFact::value_type(x->type()); 1161 } 1162 if (res->is_constant()) { 1163 LIR_Opr reg = rlock_result(x); 1164 __ move(res, reg); 1165 } else { 1166 set_result(x, res); 1167 } 1168 } 1169 } else { 1170 set_result(x, LIR_OprFact::value_type(x->type())); 1171 } 1172 } 1173 1174 1175 void LIRGenerator::do_Local(Local* x) { 1176 // operand_for_instruction has the side effect of setting the result 1177 // so there's no need to do it here. 1178 operand_for_instruction(x); 1179 } 1180 1181 1182 void LIRGenerator::do_Return(Return* x) { 1183 if (compilation()->env()->dtrace_method_probes()) { 1184 BasicTypeList signature; 1185 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1186 signature.append(T_METADATA); // Method* 1187 LIR_OprList* args = new LIR_OprList(); 1188 args->append(getThreadPointer()); 1189 LIR_Opr meth = new_register(T_METADATA); 1190 __ metadata2reg(method()->constant_encoding(), meth); 1191 args->append(meth); 1192 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1193 } 1194 1195 if (x->type()->is_void()) { 1196 __ return_op(LIR_OprFact::illegalOpr); 1197 } else { 1198 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1199 LIRItem result(x->result(), this); 1200 1201 result.load_item_force(reg); 1202 __ return_op(result.result()); 1203 } 1204 set_no_result(x); 1205 } 1206 1207 // Example: ref.get() 1208 // Combination of LoadField and g1 pre-write barrier 1209 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1210 1211 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1212 1213 assert(x->number_of_arguments() == 1, "wrong type"); 1214 1215 LIRItem reference(x->argument_at(0), this); 1216 reference.load_item(); 1217 1218 // need to perform the null check on the reference object 1219 CodeEmitInfo* info = nullptr; 1220 if (x->needs_null_check()) { 1221 info = state_for(x); 1222 } 1223 1224 LIR_Opr result = rlock_result(x, T_OBJECT); 1225 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1226 reference, LIR_OprFact::intConst(referent_offset), result, 1227 nullptr, info); 1228 } 1229 1230 // Example: clazz.isInstance(object) 1231 void LIRGenerator::do_isInstance(Intrinsic* x) { 1232 assert(x->number_of_arguments() == 2, "wrong type"); 1233 1234 LIRItem clazz(x->argument_at(0), this); 1235 LIRItem object(x->argument_at(1), this); 1236 clazz.load_item(); 1237 object.load_item(); 1238 LIR_Opr result = rlock_result(x); 1239 1240 // need to perform null check on clazz 1241 if (x->needs_null_check()) { 1242 CodeEmitInfo* info = state_for(x); 1243 __ null_check(clazz.result(), info); 1244 } 1245 1246 address pd_instanceof_fn = isInstance_entry(); 1247 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1248 pd_instanceof_fn, 1249 x->type(), 1250 nullptr); // null CodeEmitInfo results in a leaf call 1251 __ move(call_result, result); 1252 } 1253 1254 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1255 __ load_klass(obj, klass, null_check_info); 1256 } 1257 1258 // Example: object.getClass () 1259 void LIRGenerator::do_getClass(Intrinsic* x) { 1260 assert(x->number_of_arguments() == 1, "wrong type"); 1261 1262 LIRItem rcvr(x->argument_at(0), this); 1263 rcvr.load_item(); 1264 LIR_Opr temp = new_register(T_ADDRESS); 1265 LIR_Opr result = rlock_result(x); 1266 1267 // need to perform the null check on the rcvr 1268 CodeEmitInfo* info = nullptr; 1269 if (x->needs_null_check()) { 1270 info = state_for(x); 1271 } 1272 1273 LIR_Opr klass = new_register(T_METADATA); 1274 load_klass(rcvr.result(), klass, info); 1275 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1276 // mirror = ((OopHandle)mirror)->resolve(); 1277 access_load(IN_NATIVE, T_OBJECT, 1278 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1279 } 1280 1281 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1282 assert(x->number_of_arguments() == 3, "wrong type"); 1283 LIR_Opr result_reg = rlock_result(x); 1284 1285 LIRItem value(x->argument_at(2), this); 1286 value.load_item(); 1287 1288 LIR_Opr klass = new_register(T_METADATA); 1289 load_klass(value.result(), klass, nullptr); 1290 LIR_Opr layout = new_register(T_INT); 1291 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1292 1293 LabelObj* L_done = new LabelObj(); 1294 LabelObj* L_array = new LabelObj(); 1295 1296 __ cmp(lir_cond_lessEqual, layout, 0); 1297 __ branch(lir_cond_lessEqual, L_array->label()); 1298 1299 // Instance case: the layout helper gives us instance size almost directly, 1300 // but we need to mask out the _lh_instance_slow_path_bit. 1301 1302 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1303 1304 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1305 __ logical_and(layout, mask, layout); 1306 __ convert(Bytecodes::_i2l, layout, result_reg); 1307 1308 __ branch(lir_cond_always, L_done->label()); 1309 1310 // Array case: size is round(header + element_size*arraylength). 1311 // Since arraylength is different for every array instance, we have to 1312 // compute the whole thing at runtime. 1313 1314 __ branch_destination(L_array->label()); 1315 1316 int round_mask = MinObjAlignmentInBytes - 1; 1317 1318 // Figure out header sizes first. 1319 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1320 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1321 1322 LIR_Opr header_size = new_register(T_INT); 1323 __ move(layout, header_size); 1324 LIR_Opr tmp = new_register(T_INT); 1325 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1326 __ logical_and(header_size, hsm, header_size); 1327 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1328 1329 // Figure out the array length in bytes 1330 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1331 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1332 __ logical_and(layout, l2esm, layout); 1333 1334 LIR_Opr length_int = new_register(T_INT); 1335 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1336 1337 #ifdef _LP64 1338 LIR_Opr length = new_register(T_LONG); 1339 __ convert(Bytecodes::_i2l, length_int, length); 1340 #endif 1341 1342 // Shift-left awkwardness. Normally it is just: 1343 // __ shift_left(length, layout, length); 1344 // But C1 cannot perform shift_left with non-constant count, so we end up 1345 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1346 // longs, so we have to act on ints. 1347 LabelObj* L_shift_loop = new LabelObj(); 1348 LabelObj* L_shift_exit = new LabelObj(); 1349 1350 __ branch_destination(L_shift_loop->label()); 1351 __ cmp(lir_cond_equal, layout, 0); 1352 __ branch(lir_cond_equal, L_shift_exit->label()); 1353 1354 #ifdef _LP64 1355 __ shift_left(length, 1, length); 1356 #else 1357 __ shift_left(length_int, 1, length_int); 1358 #endif 1359 1360 __ sub(layout, LIR_OprFact::intConst(1), layout); 1361 1362 __ branch(lir_cond_always, L_shift_loop->label()); 1363 __ branch_destination(L_shift_exit->label()); 1364 1365 // Mix all up, round, and push to the result. 1366 #ifdef _LP64 1367 LIR_Opr header_size_long = new_register(T_LONG); 1368 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1369 __ add(length, header_size_long, length); 1370 if (round_mask != 0) { 1371 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1372 __ logical_and(length, round_mask_opr, length); 1373 } 1374 __ move(length, result_reg); 1375 #else 1376 __ add(length_int, header_size, length_int); 1377 if (round_mask != 0) { 1378 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1379 __ logical_and(length_int, round_mask_opr, length_int); 1380 } 1381 __ convert(Bytecodes::_i2l, length_int, result_reg); 1382 #endif 1383 1384 __ branch_destination(L_done->label()); 1385 } 1386 1387 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1388 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1389 } 1390 1391 // Example: Thread.currentCarrierThread() 1392 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1393 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1394 } 1395 1396 void LIRGenerator::do_vthread(Intrinsic* x) { 1397 do_JavaThreadField(x, JavaThread::vthread_offset()); 1398 } 1399 1400 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1401 assert(x->number_of_arguments() == 0, "wrong type"); 1402 LIR_Opr temp = new_register(T_ADDRESS); 1403 LIR_Opr reg = rlock_result(x); 1404 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1405 access_load(IN_NATIVE, T_OBJECT, 1406 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1407 } 1408 1409 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1410 assert(x->number_of_arguments() == 1, "wrong type"); 1411 LIRItem receiver(x->argument_at(0), this); 1412 1413 receiver.load_item(); 1414 BasicTypeList signature; 1415 signature.append(T_OBJECT); // receiver 1416 LIR_OprList* args = new LIR_OprList(); 1417 args->append(receiver.result()); 1418 CodeEmitInfo* info = state_for(x, x->state()); 1419 call_runtime(&signature, args, 1420 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1421 voidType, info); 1422 1423 set_no_result(x); 1424 } 1425 1426 1427 //------------------------local access-------------------------------------- 1428 1429 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1430 if (x->operand()->is_illegal()) { 1431 Constant* c = x->as_Constant(); 1432 if (c != nullptr) { 1433 x->set_operand(LIR_OprFact::value_type(c->type())); 1434 } else { 1435 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1436 // allocate a virtual register for this local or phi 1437 x->set_operand(rlock(x)); 1438 #ifdef ASSERT 1439 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1440 #endif 1441 } 1442 } 1443 return x->operand(); 1444 } 1445 1446 #ifdef ASSERT 1447 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1448 if (reg_num < _instruction_for_operand.length()) { 1449 return _instruction_for_operand.at(reg_num); 1450 } 1451 return nullptr; 1452 } 1453 #endif 1454 1455 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1456 if (_vreg_flags.size_in_bits() == 0) { 1457 BitMap2D temp(100, num_vreg_flags); 1458 _vreg_flags = temp; 1459 } 1460 _vreg_flags.at_put_grow(vreg_num, f, true); 1461 } 1462 1463 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1464 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1465 return false; 1466 } 1467 return _vreg_flags.at(vreg_num, f); 1468 } 1469 1470 1471 // Block local constant handling. This code is useful for keeping 1472 // unpinned constants and constants which aren't exposed in the IR in 1473 // registers. Unpinned Constant instructions have their operands 1474 // cleared when the block is finished so that other blocks can't end 1475 // up referring to their registers. 1476 1477 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1478 assert(!x->is_pinned(), "only for unpinned constants"); 1479 _unpinned_constants.append(x); 1480 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1481 } 1482 1483 1484 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1485 BasicType t = c->type(); 1486 for (int i = 0; i < _constants.length(); i++) { 1487 LIR_Const* other = _constants.at(i); 1488 if (t == other->type()) { 1489 switch (t) { 1490 case T_INT: 1491 case T_FLOAT: 1492 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1493 break; 1494 case T_LONG: 1495 case T_DOUBLE: 1496 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1497 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1498 break; 1499 case T_OBJECT: 1500 if (c->as_jobject() != other->as_jobject()) continue; 1501 break; 1502 default: 1503 break; 1504 } 1505 return _reg_for_constants.at(i); 1506 } 1507 } 1508 1509 LIR_Opr result = new_register(t); 1510 __ move((LIR_Opr)c, result); 1511 _constants.append(c); 1512 _reg_for_constants.append(result); 1513 return result; 1514 } 1515 1516 //------------------------field access-------------------------------------- 1517 1518 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1519 assert(x->number_of_arguments() == 4, "wrong type"); 1520 LIRItem obj (x->argument_at(0), this); // object 1521 LIRItem offset(x->argument_at(1), this); // offset of field 1522 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1523 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1524 assert(obj.type()->tag() == objectTag, "invalid type"); 1525 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1526 assert(val.type()->tag() == type->tag(), "invalid type"); 1527 1528 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1529 obj, offset, cmp, val); 1530 set_result(x, result); 1531 } 1532 1533 // Comment copied form templateTable_i486.cpp 1534 // ---------------------------------------------------------------------------- 1535 // Volatile variables demand their effects be made known to all CPU's in 1536 // order. Store buffers on most chips allow reads & writes to reorder; the 1537 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1538 // memory barrier (i.e., it's not sufficient that the interpreter does not 1539 // reorder volatile references, the hardware also must not reorder them). 1540 // 1541 // According to the new Java Memory Model (JMM): 1542 // (1) All volatiles are serialized wrt to each other. 1543 // ALSO reads & writes act as acquire & release, so: 1544 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1545 // the read float up to before the read. It's OK for non-volatile memory refs 1546 // that happen before the volatile read to float down below it. 1547 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1548 // that happen BEFORE the write float down to after the write. It's OK for 1549 // non-volatile memory refs that happen after the volatile write to float up 1550 // before it. 1551 // 1552 // We only put in barriers around volatile refs (they are expensive), not 1553 // _between_ memory refs (that would require us to track the flavor of the 1554 // previous memory refs). Requirements (2) and (3) require some barriers 1555 // before volatile stores and after volatile loads. These nearly cover 1556 // requirement (1) but miss the volatile-store-volatile-load case. This final 1557 // case is placed after volatile-stores although it could just as well go 1558 // before volatile-loads. 1559 1560 1561 void LIRGenerator::do_StoreField(StoreField* x) { 1562 bool needs_patching = x->needs_patching(); 1563 bool is_volatile = x->field()->is_volatile(); 1564 BasicType field_type = x->field_type(); 1565 1566 CodeEmitInfo* info = nullptr; 1567 if (needs_patching) { 1568 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1569 info = state_for(x, x->state_before()); 1570 } else if (x->needs_null_check()) { 1571 NullCheck* nc = x->explicit_null_check(); 1572 if (nc == nullptr) { 1573 info = state_for(x); 1574 } else { 1575 info = state_for(nc); 1576 } 1577 } 1578 1579 LIRItem object(x->obj(), this); 1580 LIRItem value(x->value(), this); 1581 1582 object.load_item(); 1583 1584 if (is_volatile || needs_patching) { 1585 // load item if field is volatile (fewer special cases for volatiles) 1586 // load item if field not initialized 1587 // load item if field not constant 1588 // because of code patching we cannot inline constants 1589 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1590 value.load_byte_item(); 1591 } else { 1592 value.load_item(); 1593 } 1594 } else { 1595 value.load_for_store(field_type); 1596 } 1597 1598 set_no_result(x); 1599 1600 #ifndef PRODUCT 1601 if (PrintNotLoaded && needs_patching) { 1602 tty->print_cr(" ###class not loaded at store_%s bci %d", 1603 x->is_static() ? "static" : "field", x->printable_bci()); 1604 } 1605 #endif 1606 1607 if (x->needs_null_check() && 1608 (needs_patching || 1609 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1610 // Emit an explicit null check because the offset is too large. 1611 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1612 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1613 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1614 } 1615 1616 DecoratorSet decorators = IN_HEAP; 1617 if (is_volatile) { 1618 decorators |= MO_SEQ_CST; 1619 } 1620 if (needs_patching) { 1621 decorators |= C1_NEEDS_PATCHING; 1622 } 1623 1624 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1625 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1626 } 1627 1628 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1629 assert(x->is_pinned(),""); 1630 bool needs_range_check = x->compute_needs_range_check(); 1631 bool use_length = x->length() != nullptr; 1632 bool obj_store = is_reference_type(x->elt_type()); 1633 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1634 !get_jobject_constant(x->value())->is_null_object() || 1635 x->should_profile()); 1636 1637 LIRItem array(x->array(), this); 1638 LIRItem index(x->index(), this); 1639 LIRItem value(x->value(), this); 1640 LIRItem length(this); 1641 1642 array.load_item(); 1643 index.load_nonconstant(); 1644 1645 if (use_length && needs_range_check) { 1646 length.set_instruction(x->length()); 1647 length.load_item(); 1648 1649 } 1650 if (needs_store_check || x->check_boolean()) { 1651 value.load_item(); 1652 } else { 1653 value.load_for_store(x->elt_type()); 1654 } 1655 1656 set_no_result(x); 1657 1658 // the CodeEmitInfo must be duplicated for each different 1659 // LIR-instruction because spilling can occur anywhere between two 1660 // instructions and so the debug information must be different 1661 CodeEmitInfo* range_check_info = state_for(x); 1662 CodeEmitInfo* null_check_info = nullptr; 1663 if (x->needs_null_check()) { 1664 null_check_info = new CodeEmitInfo(range_check_info); 1665 } 1666 1667 if (needs_range_check) { 1668 if (use_length) { 1669 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1670 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1671 } else { 1672 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1673 // range_check also does the null check 1674 null_check_info = nullptr; 1675 } 1676 } 1677 1678 if (GenerateArrayStoreCheck && needs_store_check) { 1679 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1680 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1681 } 1682 1683 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1684 if (x->check_boolean()) { 1685 decorators |= C1_MASK_BOOLEAN; 1686 } 1687 1688 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1689 nullptr, null_check_info); 1690 } 1691 1692 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1693 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1694 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1695 decorators |= ACCESS_READ; 1696 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1697 if (access.is_raw()) { 1698 _barrier_set->BarrierSetC1::load_at(access, result); 1699 } else { 1700 _barrier_set->load_at(access, result); 1701 } 1702 } 1703 1704 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1705 LIR_Opr addr, LIR_Opr result) { 1706 decorators |= ACCESS_READ; 1707 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1708 access.set_resolved_addr(addr); 1709 if (access.is_raw()) { 1710 _barrier_set->BarrierSetC1::load(access, result); 1711 } else { 1712 _barrier_set->load(access, result); 1713 } 1714 } 1715 1716 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1717 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1718 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1719 decorators |= ACCESS_WRITE; 1720 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1721 if (access.is_raw()) { 1722 _barrier_set->BarrierSetC1::store_at(access, value); 1723 } else { 1724 _barrier_set->store_at(access, value); 1725 } 1726 } 1727 1728 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1729 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1730 decorators |= ACCESS_READ; 1731 decorators |= ACCESS_WRITE; 1732 // Atomic operations are SEQ_CST by default 1733 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1734 LIRAccess access(this, decorators, base, offset, type); 1735 if (access.is_raw()) { 1736 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1737 } else { 1738 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1739 } 1740 } 1741 1742 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1743 LIRItem& base, LIRItem& offset, LIRItem& value) { 1744 decorators |= ACCESS_READ; 1745 decorators |= ACCESS_WRITE; 1746 // Atomic operations are SEQ_CST by default 1747 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1748 LIRAccess access(this, decorators, base, offset, type); 1749 if (access.is_raw()) { 1750 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1751 } else { 1752 return _barrier_set->atomic_xchg_at(access, value); 1753 } 1754 } 1755 1756 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1757 LIRItem& base, LIRItem& offset, LIRItem& value) { 1758 decorators |= ACCESS_READ; 1759 decorators |= ACCESS_WRITE; 1760 // Atomic operations are SEQ_CST by default 1761 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1762 LIRAccess access(this, decorators, base, offset, type); 1763 if (access.is_raw()) { 1764 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1765 } else { 1766 return _barrier_set->atomic_add_at(access, value); 1767 } 1768 } 1769 1770 void LIRGenerator::do_LoadField(LoadField* x) { 1771 bool needs_patching = x->needs_patching(); 1772 bool is_volatile = x->field()->is_volatile(); 1773 BasicType field_type = x->field_type(); 1774 1775 CodeEmitInfo* info = nullptr; 1776 if (needs_patching) { 1777 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1778 info = state_for(x, x->state_before()); 1779 } else if (x->needs_null_check()) { 1780 NullCheck* nc = x->explicit_null_check(); 1781 if (nc == nullptr) { 1782 info = state_for(x); 1783 } else { 1784 info = state_for(nc); 1785 } 1786 } 1787 1788 LIRItem object(x->obj(), this); 1789 1790 object.load_item(); 1791 1792 #ifndef PRODUCT 1793 if (PrintNotLoaded && needs_patching) { 1794 tty->print_cr(" ###class not loaded at load_%s bci %d", 1795 x->is_static() ? "static" : "field", x->printable_bci()); 1796 } 1797 #endif 1798 1799 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1800 if (x->needs_null_check() && 1801 (needs_patching || 1802 MacroAssembler::needs_explicit_null_check(x->offset()) || 1803 stress_deopt)) { 1804 LIR_Opr obj = object.result(); 1805 if (stress_deopt) { 1806 obj = new_register(T_OBJECT); 1807 __ move(LIR_OprFact::oopConst(nullptr), obj); 1808 } 1809 // Emit an explicit null check because the offset is too large. 1810 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1811 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1812 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1813 } 1814 1815 DecoratorSet decorators = IN_HEAP; 1816 if (is_volatile) { 1817 decorators |= MO_SEQ_CST; 1818 } 1819 if (needs_patching) { 1820 decorators |= C1_NEEDS_PATCHING; 1821 } 1822 1823 LIR_Opr result = rlock_result(x, field_type); 1824 access_load_at(decorators, field_type, 1825 object, LIR_OprFact::intConst(x->offset()), result, 1826 info ? new CodeEmitInfo(info) : nullptr, info); 1827 } 1828 1829 // int/long jdk.internal.util.Preconditions.checkIndex 1830 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1831 assert(x->number_of_arguments() == 3, "wrong type"); 1832 LIRItem index(x->argument_at(0), this); 1833 LIRItem length(x->argument_at(1), this); 1834 LIRItem oobef(x->argument_at(2), this); 1835 1836 index.load_item(); 1837 length.load_item(); 1838 oobef.load_item(); 1839 1840 LIR_Opr result = rlock_result(x); 1841 // x->state() is created from copy_state_for_exception, it does not contains arguments 1842 // we should prepare them before entering into interpreter mode due to deoptimization. 1843 ValueStack* state = x->state(); 1844 for (int i = 0; i < x->number_of_arguments(); i++) { 1845 Value arg = x->argument_at(i); 1846 state->push(arg->type(), arg); 1847 } 1848 CodeEmitInfo* info = state_for(x, state); 1849 1850 LIR_Opr len = length.result(); 1851 LIR_Opr zero; 1852 if (type == T_INT) { 1853 zero = LIR_OprFact::intConst(0); 1854 if (length.result()->is_constant()){ 1855 len = LIR_OprFact::intConst(length.result()->as_jint()); 1856 } 1857 } else { 1858 assert(type == T_LONG, "sanity check"); 1859 zero = LIR_OprFact::longConst(0); 1860 if (length.result()->is_constant()){ 1861 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1862 } 1863 } 1864 // C1 can not handle the case that comparing index with constant value while condition 1865 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1866 LIR_Opr zero_reg = new_register(type); 1867 __ move(zero, zero_reg); 1868 #if defined(X86) && !defined(_LP64) 1869 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1870 LIR_Opr index_copy = new_register(index.type()); 1871 // index >= 0 1872 __ move(index.result(), index_copy); 1873 __ cmp(lir_cond_less, index_copy, zero_reg); 1874 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1875 Deoptimization::Action_make_not_entrant)); 1876 // index < length 1877 __ move(index.result(), index_copy); 1878 __ cmp(lir_cond_greaterEqual, index_copy, len); 1879 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1880 Deoptimization::Action_make_not_entrant)); 1881 #else 1882 // index >= 0 1883 __ cmp(lir_cond_less, index.result(), zero_reg); 1884 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1885 Deoptimization::Action_make_not_entrant)); 1886 // index < length 1887 __ cmp(lir_cond_greaterEqual, index.result(), len); 1888 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1889 Deoptimization::Action_make_not_entrant)); 1890 #endif 1891 __ move(index.result(), result); 1892 } 1893 1894 //------------------------array access-------------------------------------- 1895 1896 1897 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1898 LIRItem array(x->array(), this); 1899 array.load_item(); 1900 LIR_Opr reg = rlock_result(x); 1901 1902 CodeEmitInfo* info = nullptr; 1903 if (x->needs_null_check()) { 1904 NullCheck* nc = x->explicit_null_check(); 1905 if (nc == nullptr) { 1906 info = state_for(x); 1907 } else { 1908 info = state_for(nc); 1909 } 1910 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1911 LIR_Opr obj = new_register(T_OBJECT); 1912 __ move(LIR_OprFact::oopConst(nullptr), obj); 1913 __ null_check(obj, new CodeEmitInfo(info)); 1914 } 1915 } 1916 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1917 } 1918 1919 1920 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1921 bool use_length = x->length() != nullptr; 1922 LIRItem array(x->array(), this); 1923 LIRItem index(x->index(), this); 1924 LIRItem length(this); 1925 bool needs_range_check = x->compute_needs_range_check(); 1926 1927 if (use_length && needs_range_check) { 1928 length.set_instruction(x->length()); 1929 length.load_item(); 1930 } 1931 1932 array.load_item(); 1933 if (index.is_constant() && can_inline_as_constant(x->index())) { 1934 // let it be a constant 1935 index.dont_load_item(); 1936 } else { 1937 index.load_item(); 1938 } 1939 1940 CodeEmitInfo* range_check_info = state_for(x); 1941 CodeEmitInfo* null_check_info = nullptr; 1942 if (x->needs_null_check()) { 1943 NullCheck* nc = x->explicit_null_check(); 1944 if (nc != nullptr) { 1945 null_check_info = state_for(nc); 1946 } else { 1947 null_check_info = range_check_info; 1948 } 1949 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1950 LIR_Opr obj = new_register(T_OBJECT); 1951 __ move(LIR_OprFact::oopConst(nullptr), obj); 1952 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1953 } 1954 } 1955 1956 if (needs_range_check) { 1957 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1958 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1959 } else if (use_length) { 1960 // TODO: use a (modified) version of array_range_check that does not require a 1961 // constant length to be loaded to a register 1962 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1963 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1964 } else { 1965 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1966 // The range check performs the null check, so clear it out for the load 1967 null_check_info = nullptr; 1968 } 1969 } 1970 1971 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1972 1973 LIR_Opr result = rlock_result(x, x->elt_type()); 1974 access_load_at(decorators, x->elt_type(), 1975 array, index.result(), result, 1976 nullptr, null_check_info); 1977 } 1978 1979 1980 void LIRGenerator::do_NullCheck(NullCheck* x) { 1981 if (x->can_trap()) { 1982 LIRItem value(x->obj(), this); 1983 value.load_item(); 1984 CodeEmitInfo* info = state_for(x); 1985 __ null_check(value.result(), info); 1986 } 1987 } 1988 1989 1990 void LIRGenerator::do_TypeCast(TypeCast* x) { 1991 LIRItem value(x->obj(), this); 1992 value.load_item(); 1993 // the result is the same as from the node we are casting 1994 set_result(x, value.result()); 1995 } 1996 1997 1998 void LIRGenerator::do_Throw(Throw* x) { 1999 LIRItem exception(x->exception(), this); 2000 exception.load_item(); 2001 set_no_result(x); 2002 LIR_Opr exception_opr = exception.result(); 2003 CodeEmitInfo* info = state_for(x, x->state()); 2004 2005 #ifndef PRODUCT 2006 if (PrintC1Statistics) { 2007 increment_counter(Runtime1::throw_count_address(), T_INT); 2008 } 2009 #endif 2010 2011 // check if the instruction has an xhandler in any of the nested scopes 2012 bool unwind = false; 2013 if (info->exception_handlers()->length() == 0) { 2014 // this throw is not inside an xhandler 2015 unwind = true; 2016 } else { 2017 // get some idea of the throw type 2018 bool type_is_exact = true; 2019 ciType* throw_type = x->exception()->exact_type(); 2020 if (throw_type == nullptr) { 2021 type_is_exact = false; 2022 throw_type = x->exception()->declared_type(); 2023 } 2024 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2025 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2026 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2027 } 2028 } 2029 2030 // do null check before moving exception oop into fixed register 2031 // to avoid a fixed interval with an oop during the null check. 2032 // Use a copy of the CodeEmitInfo because debug information is 2033 // different for null_check and throw. 2034 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2035 // if the exception object wasn't created using new then it might be null. 2036 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2037 } 2038 2039 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2040 // we need to go through the exception lookup path to get JVMTI 2041 // notification done 2042 unwind = false; 2043 } 2044 2045 // move exception oop into fixed register 2046 __ move(exception_opr, exceptionOopOpr()); 2047 2048 if (unwind) { 2049 __ unwind_exception(exceptionOopOpr()); 2050 } else { 2051 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2052 } 2053 } 2054 2055 2056 void LIRGenerator::do_RoundFP(RoundFP* x) { 2057 assert(strict_fp_requires_explicit_rounding, "not required"); 2058 2059 LIRItem input(x->input(), this); 2060 input.load_item(); 2061 LIR_Opr input_opr = input.result(); 2062 assert(input_opr->is_register(), "why round if value is not in a register?"); 2063 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2064 if (input_opr->is_single_fpu()) { 2065 set_result(x, round_item(input_opr)); // This code path not currently taken 2066 } else { 2067 LIR_Opr result = new_register(T_DOUBLE); 2068 set_vreg_flag(result, must_start_in_memory); 2069 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2070 set_result(x, result); 2071 } 2072 } 2073 2074 2075 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2076 BasicType type = x->basic_type(); 2077 LIRItem src(x->object(), this); 2078 LIRItem off(x->offset(), this); 2079 2080 off.load_item(); 2081 src.load_item(); 2082 2083 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2084 2085 if (x->is_volatile()) { 2086 decorators |= MO_SEQ_CST; 2087 } 2088 if (type == T_BOOLEAN) { 2089 decorators |= C1_MASK_BOOLEAN; 2090 } 2091 if (is_reference_type(type)) { 2092 decorators |= ON_UNKNOWN_OOP_REF; 2093 } 2094 2095 LIR_Opr result = rlock_result(x, type); 2096 if (!x->is_raw()) { 2097 access_load_at(decorators, type, src, off.result(), result); 2098 } else { 2099 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2100 // It reads the value from [src + offset] directly. 2101 #ifdef _LP64 2102 LIR_Opr offset = new_register(T_LONG); 2103 __ convert(Bytecodes::_i2l, off.result(), offset); 2104 #else 2105 LIR_Opr offset = off.result(); 2106 #endif 2107 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2108 if (is_reference_type(type)) { 2109 __ move_wide(addr, result); 2110 } else { 2111 __ move(addr, result); 2112 } 2113 } 2114 } 2115 2116 2117 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2118 BasicType type = x->basic_type(); 2119 LIRItem src(x->object(), this); 2120 LIRItem off(x->offset(), this); 2121 LIRItem data(x->value(), this); 2122 2123 src.load_item(); 2124 if (type == T_BOOLEAN || type == T_BYTE) { 2125 data.load_byte_item(); 2126 } else { 2127 data.load_item(); 2128 } 2129 off.load_item(); 2130 2131 set_no_result(x); 2132 2133 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2134 if (is_reference_type(type)) { 2135 decorators |= ON_UNKNOWN_OOP_REF; 2136 } 2137 if (x->is_volatile()) { 2138 decorators |= MO_SEQ_CST; 2139 } 2140 access_store_at(decorators, type, src, off.result(), data.result()); 2141 } 2142 2143 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2144 BasicType type = x->basic_type(); 2145 LIRItem src(x->object(), this); 2146 LIRItem off(x->offset(), this); 2147 LIRItem value(x->value(), this); 2148 2149 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2150 2151 if (is_reference_type(type)) { 2152 decorators |= ON_UNKNOWN_OOP_REF; 2153 } 2154 2155 LIR_Opr result; 2156 if (x->is_add()) { 2157 result = access_atomic_add_at(decorators, type, src, off, value); 2158 } else { 2159 result = access_atomic_xchg_at(decorators, type, src, off, value); 2160 } 2161 set_result(x, result); 2162 } 2163 2164 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2165 int lng = x->length(); 2166 2167 for (int i = 0; i < lng; i++) { 2168 C1SwitchRange* one_range = x->at(i); 2169 int low_key = one_range->low_key(); 2170 int high_key = one_range->high_key(); 2171 BlockBegin* dest = one_range->sux(); 2172 if (low_key == high_key) { 2173 __ cmp(lir_cond_equal, value, low_key); 2174 __ branch(lir_cond_equal, dest); 2175 } else if (high_key - low_key == 1) { 2176 __ cmp(lir_cond_equal, value, low_key); 2177 __ branch(lir_cond_equal, dest); 2178 __ cmp(lir_cond_equal, value, high_key); 2179 __ branch(lir_cond_equal, dest); 2180 } else { 2181 LabelObj* L = new LabelObj(); 2182 __ cmp(lir_cond_less, value, low_key); 2183 __ branch(lir_cond_less, L->label()); 2184 __ cmp(lir_cond_lessEqual, value, high_key); 2185 __ branch(lir_cond_lessEqual, dest); 2186 __ branch_destination(L->label()); 2187 } 2188 } 2189 __ jump(default_sux); 2190 } 2191 2192 2193 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2194 SwitchRangeList* res = new SwitchRangeList(); 2195 int len = x->length(); 2196 if (len > 0) { 2197 BlockBegin* sux = x->sux_at(0); 2198 int low = x->lo_key(); 2199 BlockBegin* default_sux = x->default_sux(); 2200 C1SwitchRange* range = new C1SwitchRange(low, sux); 2201 for (int i = 0; i < len; i++) { 2202 int key = low + i; 2203 BlockBegin* new_sux = x->sux_at(i); 2204 if (sux == new_sux) { 2205 // still in same range 2206 range->set_high_key(key); 2207 } else { 2208 // skip tests which explicitly dispatch to the default 2209 if (sux != default_sux) { 2210 res->append(range); 2211 } 2212 range = new C1SwitchRange(key, new_sux); 2213 } 2214 sux = new_sux; 2215 } 2216 if (res->length() == 0 || res->last() != range) res->append(range); 2217 } 2218 return res; 2219 } 2220 2221 2222 // we expect the keys to be sorted by increasing value 2223 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2224 SwitchRangeList* res = new SwitchRangeList(); 2225 int len = x->length(); 2226 if (len > 0) { 2227 BlockBegin* default_sux = x->default_sux(); 2228 int key = x->key_at(0); 2229 BlockBegin* sux = x->sux_at(0); 2230 C1SwitchRange* range = new C1SwitchRange(key, sux); 2231 for (int i = 1; i < len; i++) { 2232 int new_key = x->key_at(i); 2233 BlockBegin* new_sux = x->sux_at(i); 2234 if (key+1 == new_key && sux == new_sux) { 2235 // still in same range 2236 range->set_high_key(new_key); 2237 } else { 2238 // skip tests which explicitly dispatch to the default 2239 if (range->sux() != default_sux) { 2240 res->append(range); 2241 } 2242 range = new C1SwitchRange(new_key, new_sux); 2243 } 2244 key = new_key; 2245 sux = new_sux; 2246 } 2247 if (res->length() == 0 || res->last() != range) res->append(range); 2248 } 2249 return res; 2250 } 2251 2252 2253 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2254 LIRItem tag(x->tag(), this); 2255 tag.load_item(); 2256 set_no_result(x); 2257 2258 if (x->is_safepoint()) { 2259 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2260 } 2261 2262 // move values into phi locations 2263 move_to_phi(x->state()); 2264 2265 int lo_key = x->lo_key(); 2266 int len = x->length(); 2267 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2268 LIR_Opr value = tag.result(); 2269 2270 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2271 ciMethod* method = x->state()->scope()->method(); 2272 ciMethodData* md = method->method_data_or_null(); 2273 assert(md != nullptr, "Sanity"); 2274 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2275 assert(data != nullptr, "must have profiling data"); 2276 assert(data->is_MultiBranchData(), "bad profile data?"); 2277 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2278 LIR_Opr md_reg = new_register(T_METADATA); 2279 __ metadata2reg(md->constant_encoding(), md_reg); 2280 LIR_Opr data_offset_reg = new_pointer_register(); 2281 LIR_Opr tmp_reg = new_pointer_register(); 2282 2283 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2284 for (int i = 0; i < len; i++) { 2285 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2286 __ cmp(lir_cond_equal, value, i + lo_key); 2287 __ move(data_offset_reg, tmp_reg); 2288 __ cmove(lir_cond_equal, 2289 LIR_OprFact::intptrConst(count_offset), 2290 tmp_reg, 2291 data_offset_reg, T_INT); 2292 } 2293 2294 LIR_Opr data_reg = new_pointer_register(); 2295 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2296 __ move(data_addr, data_reg); 2297 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2298 __ move(data_reg, data_addr); 2299 } 2300 2301 if (UseTableRanges) { 2302 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2303 } else { 2304 for (int i = 0; i < len; i++) { 2305 __ cmp(lir_cond_equal, value, i + lo_key); 2306 __ branch(lir_cond_equal, x->sux_at(i)); 2307 } 2308 __ jump(x->default_sux()); 2309 } 2310 } 2311 2312 2313 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2314 LIRItem tag(x->tag(), this); 2315 tag.load_item(); 2316 set_no_result(x); 2317 2318 if (x->is_safepoint()) { 2319 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2320 } 2321 2322 // move values into phi locations 2323 move_to_phi(x->state()); 2324 2325 LIR_Opr value = tag.result(); 2326 int len = x->length(); 2327 2328 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2329 ciMethod* method = x->state()->scope()->method(); 2330 ciMethodData* md = method->method_data_or_null(); 2331 assert(md != nullptr, "Sanity"); 2332 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2333 assert(data != nullptr, "must have profiling data"); 2334 assert(data->is_MultiBranchData(), "bad profile data?"); 2335 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2336 LIR_Opr md_reg = new_register(T_METADATA); 2337 __ metadata2reg(md->constant_encoding(), md_reg); 2338 LIR_Opr data_offset_reg = new_pointer_register(); 2339 LIR_Opr tmp_reg = new_pointer_register(); 2340 2341 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2342 for (int i = 0; i < len; i++) { 2343 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2344 __ cmp(lir_cond_equal, value, x->key_at(i)); 2345 __ move(data_offset_reg, tmp_reg); 2346 __ cmove(lir_cond_equal, 2347 LIR_OprFact::intptrConst(count_offset), 2348 tmp_reg, 2349 data_offset_reg, T_INT); 2350 } 2351 2352 LIR_Opr data_reg = new_pointer_register(); 2353 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2354 __ move(data_addr, data_reg); 2355 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2356 __ move(data_reg, data_addr); 2357 } 2358 2359 if (UseTableRanges) { 2360 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2361 } else { 2362 int len = x->length(); 2363 for (int i = 0; i < len; i++) { 2364 __ cmp(lir_cond_equal, value, x->key_at(i)); 2365 __ branch(lir_cond_equal, x->sux_at(i)); 2366 } 2367 __ jump(x->default_sux()); 2368 } 2369 } 2370 2371 2372 void LIRGenerator::do_Goto(Goto* x) { 2373 set_no_result(x); 2374 2375 if (block()->next()->as_OsrEntry()) { 2376 // need to free up storage used for OSR entry point 2377 LIR_Opr osrBuffer = block()->next()->operand(); 2378 BasicTypeList signature; 2379 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2380 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2381 __ move(osrBuffer, cc->args()->at(0)); 2382 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2383 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2384 } 2385 2386 if (x->is_safepoint()) { 2387 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2388 2389 // increment backedge counter if needed 2390 CodeEmitInfo* info = state_for(x, state); 2391 increment_backedge_counter(info, x->profiled_bci()); 2392 CodeEmitInfo* safepoint_info = state_for(x, state); 2393 __ safepoint(safepoint_poll_register(), safepoint_info); 2394 } 2395 2396 // Gotos can be folded Ifs, handle this case. 2397 if (x->should_profile()) { 2398 ciMethod* method = x->profiled_method(); 2399 assert(method != nullptr, "method should be set if branch is profiled"); 2400 ciMethodData* md = method->method_data_or_null(); 2401 assert(md != nullptr, "Sanity"); 2402 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2403 assert(data != nullptr, "must have profiling data"); 2404 int offset; 2405 if (x->direction() == Goto::taken) { 2406 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2407 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2408 } else if (x->direction() == Goto::not_taken) { 2409 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2410 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2411 } else { 2412 assert(data->is_JumpData(), "need JumpData for branches"); 2413 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2414 } 2415 LIR_Opr md_reg = new_register(T_METADATA); 2416 __ metadata2reg(md->constant_encoding(), md_reg); 2417 2418 increment_counter(new LIR_Address(md_reg, offset, 2419 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2420 } 2421 2422 // emit phi-instruction move after safepoint since this simplifies 2423 // describing the state as the safepoint. 2424 move_to_phi(x->state()); 2425 2426 __ jump(x->default_sux()); 2427 } 2428 2429 /** 2430 * Emit profiling code if needed for arguments, parameters, return value types 2431 * 2432 * @param md MDO the code will update at runtime 2433 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2434 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2435 * @param profiled_k current profile 2436 * @param obj IR node for the object to be profiled 2437 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2438 * Set once we find an update to make and use for next ones. 2439 * @param not_null true if we know obj cannot be null 2440 * @param signature_at_call_k signature at call for obj 2441 * @param callee_signature_k signature of callee for obj 2442 * at call and callee signatures differ at method handle call 2443 * @return the only klass we know will ever be seen at this profile point 2444 */ 2445 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2446 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2447 ciKlass* callee_signature_k) { 2448 ciKlass* result = nullptr; 2449 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2450 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2451 // known not to be null or null bit already set and already set to 2452 // unknown: nothing we can do to improve profiling 2453 if (!do_null && !do_update) { 2454 return result; 2455 } 2456 2457 ciKlass* exact_klass = nullptr; 2458 Compilation* comp = Compilation::current(); 2459 if (do_update) { 2460 // try to find exact type, using CHA if possible, so that loading 2461 // the klass from the object can be avoided 2462 ciType* type = obj->exact_type(); 2463 if (type == nullptr) { 2464 type = obj->declared_type(); 2465 type = comp->cha_exact_type(type); 2466 } 2467 assert(type == nullptr || type->is_klass(), "type should be class"); 2468 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2469 2470 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2471 } 2472 2473 if (!do_null && !do_update) { 2474 return result; 2475 } 2476 2477 ciKlass* exact_signature_k = nullptr; 2478 if (do_update) { 2479 // Is the type from the signature exact (the only one possible)? 2480 exact_signature_k = signature_at_call_k->exact_klass(); 2481 if (exact_signature_k == nullptr) { 2482 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2483 } else { 2484 result = exact_signature_k; 2485 // Known statically. No need to emit any code: prevent 2486 // LIR_Assembler::emit_profile_type() from emitting useless code 2487 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2488 } 2489 // exact_klass and exact_signature_k can be both non null but 2490 // different if exact_klass is loaded after the ciObject for 2491 // exact_signature_k is created. 2492 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2493 // sometimes the type of the signature is better than the best type 2494 // the compiler has 2495 exact_klass = exact_signature_k; 2496 } 2497 if (callee_signature_k != nullptr && 2498 callee_signature_k != signature_at_call_k) { 2499 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2500 if (improved_klass == nullptr) { 2501 improved_klass = comp->cha_exact_type(callee_signature_k); 2502 } 2503 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2504 exact_klass = exact_signature_k; 2505 } 2506 } 2507 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2508 } 2509 2510 if (!do_null && !do_update) { 2511 return result; 2512 } 2513 2514 if (mdp == LIR_OprFact::illegalOpr) { 2515 mdp = new_register(T_METADATA); 2516 __ metadata2reg(md->constant_encoding(), mdp); 2517 if (md_base_offset != 0) { 2518 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2519 mdp = new_pointer_register(); 2520 __ leal(LIR_OprFact::address(base_type_address), mdp); 2521 } 2522 } 2523 LIRItem value(obj, this); 2524 value.load_item(); 2525 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2526 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2527 return result; 2528 } 2529 2530 // profile parameters on entry to the root of the compilation 2531 void LIRGenerator::profile_parameters(Base* x) { 2532 if (compilation()->profile_parameters()) { 2533 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2534 ciMethodData* md = scope()->method()->method_data_or_null(); 2535 assert(md != nullptr, "Sanity"); 2536 2537 if (md->parameters_type_data() != nullptr) { 2538 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2539 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2540 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2541 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2542 LIR_Opr src = args->at(i); 2543 assert(!src->is_illegal(), "check"); 2544 BasicType t = src->type(); 2545 if (is_reference_type(t)) { 2546 intptr_t profiled_k = parameters->type(j); 2547 Local* local = x->state()->local_at(java_index)->as_Local(); 2548 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2549 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2550 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2551 // If the profile is known statically set it once for all and do not emit any code 2552 if (exact != nullptr) { 2553 md->set_parameter_type(j, exact); 2554 } 2555 j++; 2556 } 2557 java_index += type2size[t]; 2558 } 2559 } 2560 } 2561 } 2562 2563 void LIRGenerator::do_Base(Base* x) { 2564 __ std_entry(LIR_OprFact::illegalOpr); 2565 // Emit moves from physical registers / stack slots to virtual registers 2566 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2567 IRScope* irScope = compilation()->hir()->top_scope(); 2568 int java_index = 0; 2569 for (int i = 0; i < args->length(); i++) { 2570 LIR_Opr src = args->at(i); 2571 assert(!src->is_illegal(), "check"); 2572 BasicType t = src->type(); 2573 2574 // Types which are smaller than int are passed as int, so 2575 // correct the type which passed. 2576 switch (t) { 2577 case T_BYTE: 2578 case T_BOOLEAN: 2579 case T_SHORT: 2580 case T_CHAR: 2581 t = T_INT; 2582 break; 2583 default: 2584 break; 2585 } 2586 2587 LIR_Opr dest = new_register(t); 2588 __ move(src, dest); 2589 2590 // Assign new location to Local instruction for this local 2591 Local* local = x->state()->local_at(java_index)->as_Local(); 2592 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2593 #ifndef __SOFTFP__ 2594 // The java calling convention passes double as long and float as int. 2595 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2596 #endif // __SOFTFP__ 2597 local->set_operand(dest); 2598 #ifdef ASSERT 2599 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2600 #endif 2601 java_index += type2size[t]; 2602 } 2603 2604 if (compilation()->env()->dtrace_method_probes()) { 2605 BasicTypeList signature; 2606 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2607 signature.append(T_METADATA); // Method* 2608 LIR_OprList* args = new LIR_OprList(); 2609 args->append(getThreadPointer()); 2610 LIR_Opr meth = new_register(T_METADATA); 2611 __ metadata2reg(method()->constant_encoding(), meth); 2612 args->append(meth); 2613 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2614 } 2615 2616 if (method()->is_synchronized()) { 2617 LIR_Opr obj; 2618 if (method()->is_static()) { 2619 obj = new_register(T_OBJECT); 2620 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2621 } else { 2622 Local* receiver = x->state()->local_at(0)->as_Local(); 2623 assert(receiver != nullptr, "must already exist"); 2624 obj = receiver->operand(); 2625 } 2626 assert(obj->is_valid(), "must be valid"); 2627 2628 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2629 LIR_Opr lock = syncLockOpr(); 2630 __ load_stack_address_monitor(0, lock); 2631 2632 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2633 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2634 2635 // receiver is guaranteed non-null so don't need CodeEmitInfo 2636 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2637 } 2638 } 2639 // increment invocation counters if needed 2640 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2641 profile_parameters(x); 2642 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2643 increment_invocation_counter(info); 2644 } 2645 2646 // all blocks with a successor must end with an unconditional jump 2647 // to the successor even if they are consecutive 2648 __ jump(x->default_sux()); 2649 } 2650 2651 2652 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2653 // construct our frame and model the production of incoming pointer 2654 // to the OSR buffer. 2655 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2656 LIR_Opr result = rlock_result(x); 2657 __ move(LIR_Assembler::osrBufferPointer(), result); 2658 } 2659 2660 2661 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2662 assert(args->length() == arg_list->length(), 2663 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2664 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2665 LIRItem* param = args->at(i); 2666 LIR_Opr loc = arg_list->at(i); 2667 if (loc->is_register()) { 2668 param->load_item_force(loc); 2669 } else { 2670 LIR_Address* addr = loc->as_address_ptr(); 2671 param->load_for_store(addr->type()); 2672 if (addr->type() == T_OBJECT) { 2673 __ move_wide(param->result(), addr); 2674 } else 2675 __ move(param->result(), addr); 2676 } 2677 } 2678 2679 if (x->has_receiver()) { 2680 LIRItem* receiver = args->at(0); 2681 LIR_Opr loc = arg_list->at(0); 2682 if (loc->is_register()) { 2683 receiver->load_item_force(loc); 2684 } else { 2685 assert(loc->is_address(), "just checking"); 2686 receiver->load_for_store(T_OBJECT); 2687 __ move_wide(receiver->result(), loc->as_address_ptr()); 2688 } 2689 } 2690 } 2691 2692 2693 // Visits all arguments, returns appropriate items without loading them 2694 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2695 LIRItemList* argument_items = new LIRItemList(); 2696 if (x->has_receiver()) { 2697 LIRItem* receiver = new LIRItem(x->receiver(), this); 2698 argument_items->append(receiver); 2699 } 2700 for (int i = 0; i < x->number_of_arguments(); i++) { 2701 LIRItem* param = new LIRItem(x->argument_at(i), this); 2702 argument_items->append(param); 2703 } 2704 return argument_items; 2705 } 2706 2707 2708 // The invoke with receiver has following phases: 2709 // a) traverse and load/lock receiver; 2710 // b) traverse all arguments -> item-array (invoke_visit_argument) 2711 // c) push receiver on stack 2712 // d) load each of the items and push on stack 2713 // e) unlock receiver 2714 // f) move receiver into receiver-register %o0 2715 // g) lock result registers and emit call operation 2716 // 2717 // Before issuing a call, we must spill-save all values on stack 2718 // that are in caller-save register. "spill-save" moves those registers 2719 // either in a free callee-save register or spills them if no free 2720 // callee save register is available. 2721 // 2722 // The problem is where to invoke spill-save. 2723 // - if invoked between e) and f), we may lock callee save 2724 // register in "spill-save" that destroys the receiver register 2725 // before f) is executed 2726 // - if we rearrange f) to be earlier (by loading %o0) it 2727 // may destroy a value on the stack that is currently in %o0 2728 // and is waiting to be spilled 2729 // - if we keep the receiver locked while doing spill-save, 2730 // we cannot spill it as it is spill-locked 2731 // 2732 void LIRGenerator::do_Invoke(Invoke* x) { 2733 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2734 2735 LIR_OprList* arg_list = cc->args(); 2736 LIRItemList* args = invoke_visit_arguments(x); 2737 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2738 2739 // setup result register 2740 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2741 if (x->type() != voidType) { 2742 result_register = result_register_for(x->type()); 2743 } 2744 2745 CodeEmitInfo* info = state_for(x, x->state()); 2746 2747 invoke_load_arguments(x, args, arg_list); 2748 2749 if (x->has_receiver()) { 2750 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2751 receiver = args->at(0)->result(); 2752 } 2753 2754 // emit invoke code 2755 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2756 2757 // JSR 292 2758 // Preserve the SP over MethodHandle call sites, if needed. 2759 ciMethod* target = x->target(); 2760 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2761 target->is_method_handle_intrinsic() || 2762 target->is_compiled_lambda_form()); 2763 if (is_method_handle_invoke) { 2764 info->set_is_method_handle_invoke(true); 2765 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2766 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2767 } 2768 } 2769 2770 switch (x->code()) { 2771 case Bytecodes::_invokestatic: 2772 __ call_static(target, result_register, 2773 SharedRuntime::get_resolve_static_call_stub(), 2774 arg_list, info); 2775 break; 2776 case Bytecodes::_invokespecial: 2777 case Bytecodes::_invokevirtual: 2778 case Bytecodes::_invokeinterface: 2779 // for loaded and final (method or class) target we still produce an inline cache, 2780 // in order to be able to call mixed mode 2781 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2782 __ call_opt_virtual(target, receiver, result_register, 2783 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2784 arg_list, info); 2785 } else { 2786 __ call_icvirtual(target, receiver, result_register, 2787 SharedRuntime::get_resolve_virtual_call_stub(), 2788 arg_list, info); 2789 } 2790 break; 2791 case Bytecodes::_invokedynamic: { 2792 __ call_dynamic(target, receiver, result_register, 2793 SharedRuntime::get_resolve_static_call_stub(), 2794 arg_list, info); 2795 break; 2796 } 2797 default: 2798 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2799 break; 2800 } 2801 2802 // JSR 292 2803 // Restore the SP after MethodHandle call sites, if needed. 2804 if (is_method_handle_invoke 2805 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2806 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2807 } 2808 2809 if (result_register->is_valid()) { 2810 LIR_Opr result = rlock_result(x); 2811 __ move(result_register, result); 2812 } 2813 } 2814 2815 2816 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2817 assert(x->number_of_arguments() == 1, "wrong type"); 2818 LIRItem value (x->argument_at(0), this); 2819 LIR_Opr reg = rlock_result(x); 2820 value.load_item(); 2821 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2822 __ move(tmp, reg); 2823 } 2824 2825 2826 2827 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2828 void LIRGenerator::do_IfOp(IfOp* x) { 2829 #ifdef ASSERT 2830 { 2831 ValueTag xtag = x->x()->type()->tag(); 2832 ValueTag ttag = x->tval()->type()->tag(); 2833 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2834 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2835 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2836 } 2837 #endif 2838 2839 LIRItem left(x->x(), this); 2840 LIRItem right(x->y(), this); 2841 left.load_item(); 2842 if (can_inline_as_constant(right.value())) { 2843 right.dont_load_item(); 2844 } else { 2845 right.load_item(); 2846 } 2847 2848 LIRItem t_val(x->tval(), this); 2849 LIRItem f_val(x->fval(), this); 2850 t_val.dont_load_item(); 2851 f_val.dont_load_item(); 2852 LIR_Opr reg = rlock_result(x); 2853 2854 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2855 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2856 } 2857 2858 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2859 assert(x->number_of_arguments() == 0, "wrong type"); 2860 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2861 BasicTypeList signature; 2862 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2863 LIR_Opr reg = result_register_for(x->type()); 2864 __ call_runtime_leaf(routine, getThreadTemp(), 2865 reg, new LIR_OprList()); 2866 LIR_Opr result = rlock_result(x); 2867 __ move(reg, result); 2868 } 2869 2870 2871 2872 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2873 switch (x->id()) { 2874 case vmIntrinsics::_intBitsToFloat : 2875 case vmIntrinsics::_doubleToRawLongBits : 2876 case vmIntrinsics::_longBitsToDouble : 2877 case vmIntrinsics::_floatToRawIntBits : { 2878 do_FPIntrinsics(x); 2879 break; 2880 } 2881 2882 #ifdef JFR_HAVE_INTRINSICS 2883 case vmIntrinsics::_counterTime: 2884 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2885 break; 2886 #endif 2887 2888 case vmIntrinsics::_currentTimeMillis: 2889 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2890 break; 2891 2892 case vmIntrinsics::_nanoTime: 2893 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2894 break; 2895 2896 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2897 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2898 case vmIntrinsics::_getClass: do_getClass(x); break; 2899 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2900 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2901 case vmIntrinsics::_currentThread: do_vthread(x); break; 2902 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2903 2904 case vmIntrinsics::_dlog: // fall through 2905 case vmIntrinsics::_dlog10: // fall through 2906 case vmIntrinsics::_dabs: // fall through 2907 case vmIntrinsics::_dsqrt: // fall through 2908 case vmIntrinsics::_dsqrt_strict: // fall through 2909 case vmIntrinsics::_dtan: // fall through 2910 case vmIntrinsics::_dtanh: // fall through 2911 case vmIntrinsics::_dsin : // fall through 2912 case vmIntrinsics::_dcos : // fall through 2913 case vmIntrinsics::_dexp : // fall through 2914 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2915 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2916 2917 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2918 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2919 2920 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2921 case vmIntrinsics::_floatToFloat16: // fall through 2922 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2923 2924 case vmIntrinsics::_Preconditions_checkIndex: 2925 do_PreconditionsCheckIndex(x, T_INT); 2926 break; 2927 case vmIntrinsics::_Preconditions_checkLongIndex: 2928 do_PreconditionsCheckIndex(x, T_LONG); 2929 break; 2930 2931 case vmIntrinsics::_compareAndSetReference: 2932 do_CompareAndSwap(x, objectType); 2933 break; 2934 case vmIntrinsics::_compareAndSetInt: 2935 do_CompareAndSwap(x, intType); 2936 break; 2937 case vmIntrinsics::_compareAndSetLong: 2938 do_CompareAndSwap(x, longType); 2939 break; 2940 2941 case vmIntrinsics::_loadFence : 2942 __ membar_acquire(); 2943 break; 2944 case vmIntrinsics::_storeFence: 2945 __ membar_release(); 2946 break; 2947 case vmIntrinsics::_storeStoreFence: 2948 __ membar_storestore(); 2949 break; 2950 case vmIntrinsics::_fullFence : 2951 __ membar(); 2952 break; 2953 case vmIntrinsics::_onSpinWait: 2954 __ on_spin_wait(); 2955 break; 2956 case vmIntrinsics::_Reference_get: 2957 do_Reference_get(x); 2958 break; 2959 2960 case vmIntrinsics::_updateCRC32: 2961 case vmIntrinsics::_updateBytesCRC32: 2962 case vmIntrinsics::_updateByteBufferCRC32: 2963 do_update_CRC32(x); 2964 break; 2965 2966 case vmIntrinsics::_updateBytesCRC32C: 2967 case vmIntrinsics::_updateDirectByteBufferCRC32C: 2968 do_update_CRC32C(x); 2969 break; 2970 2971 case vmIntrinsics::_vectorizedMismatch: 2972 do_vectorizedMismatch(x); 2973 break; 2974 2975 case vmIntrinsics::_blackhole: 2976 do_blackhole(x); 2977 break; 2978 2979 default: ShouldNotReachHere(); break; 2980 } 2981 } 2982 2983 void LIRGenerator::profile_arguments(ProfileCall* x) { 2984 if (compilation()->profile_arguments()) { 2985 int bci = x->bci_of_invoke(); 2986 ciMethodData* md = x->method()->method_data_or_null(); 2987 assert(md != nullptr, "Sanity"); 2988 ciProfileData* data = md->bci_to_data(bci); 2989 if (data != nullptr) { 2990 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 2991 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 2992 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 2993 int base_offset = md->byte_offset_of_slot(data, extra); 2994 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2995 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 2996 2997 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 2998 int start = 0; 2999 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3000 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3001 // first argument is not profiled at call (method handle invoke) 3002 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3003 start = 1; 3004 } 3005 ciSignature* callee_signature = x->callee()->signature(); 3006 // method handle call to virtual method 3007 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3008 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3009 3010 bool ignored_will_link; 3011 ciSignature* signature_at_call = nullptr; 3012 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3013 ciSignatureStream signature_at_call_stream(signature_at_call); 3014 3015 // if called through method handle invoke, some arguments may have been popped 3016 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3017 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3018 ciKlass* exact = profile_type(md, base_offset, off, 3019 args->type(i), x->profiled_arg_at(i+start), mdp, 3020 !x->arg_needs_null_check(i+start), 3021 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3022 if (exact != nullptr) { 3023 md->set_argument_type(bci, i, exact); 3024 } 3025 } 3026 } else { 3027 #ifdef ASSERT 3028 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3029 int n = x->nb_profiled_args(); 3030 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3031 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3032 "only at JSR292 bytecodes"); 3033 #endif 3034 } 3035 } 3036 } 3037 } 3038 3039 // profile parameters on entry to an inlined method 3040 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3041 if (compilation()->profile_parameters() && x->inlined()) { 3042 ciMethodData* md = x->callee()->method_data_or_null(); 3043 if (md != nullptr) { 3044 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3045 if (parameters_type_data != nullptr) { 3046 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3047 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3048 bool has_receiver = !x->callee()->is_static(); 3049 ciSignature* sig = x->callee()->signature(); 3050 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3051 int i = 0; // to iterate on the Instructions 3052 Value arg = x->recv(); 3053 bool not_null = false; 3054 int bci = x->bci_of_invoke(); 3055 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3056 // The first parameter is the receiver so that's what we start 3057 // with if it exists. One exception is method handle call to 3058 // virtual method: the receiver is in the args list 3059 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3060 i = 1; 3061 arg = x->profiled_arg_at(0); 3062 not_null = !x->arg_needs_null_check(0); 3063 } 3064 int k = 0; // to iterate on the profile data 3065 for (;;) { 3066 intptr_t profiled_k = parameters->type(k); 3067 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3068 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3069 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3070 // If the profile is known statically set it once for all and do not emit any code 3071 if (exact != nullptr) { 3072 md->set_parameter_type(k, exact); 3073 } 3074 k++; 3075 if (k >= parameters_type_data->number_of_parameters()) { 3076 #ifdef ASSERT 3077 int extra = 0; 3078 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3079 x->nb_profiled_args() >= TypeProfileParmsLimit && 3080 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3081 extra += 1; 3082 } 3083 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3084 #endif 3085 break; 3086 } 3087 arg = x->profiled_arg_at(i); 3088 not_null = !x->arg_needs_null_check(i); 3089 i++; 3090 } 3091 } 3092 } 3093 } 3094 } 3095 3096 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3097 // Need recv in a temporary register so it interferes with the other temporaries 3098 LIR_Opr recv = LIR_OprFact::illegalOpr; 3099 LIR_Opr mdo = new_register(T_METADATA); 3100 // tmp is used to hold the counters on SPARC 3101 LIR_Opr tmp = new_pointer_register(); 3102 3103 if (x->nb_profiled_args() > 0) { 3104 profile_arguments(x); 3105 } 3106 3107 // profile parameters on inlined method entry including receiver 3108 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3109 profile_parameters_at_call(x); 3110 } 3111 3112 if (x->recv() != nullptr) { 3113 LIRItem value(x->recv(), this); 3114 value.load_item(); 3115 recv = new_register(T_OBJECT); 3116 __ move(value.result(), recv); 3117 } 3118 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3119 } 3120 3121 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3122 int bci = x->bci_of_invoke(); 3123 ciMethodData* md = x->method()->method_data_or_null(); 3124 assert(md != nullptr, "Sanity"); 3125 ciProfileData* data = md->bci_to_data(bci); 3126 if (data != nullptr) { 3127 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3128 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3129 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3130 3131 bool ignored_will_link; 3132 ciSignature* signature_at_call = nullptr; 3133 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3134 3135 // The offset within the MDO of the entry to update may be too large 3136 // to be used in load/store instructions on some platforms. So have 3137 // profile_type() compute the address of the profile in a register. 3138 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3139 ret->type(), x->ret(), mdp, 3140 !x->needs_null_check(), 3141 signature_at_call->return_type()->as_klass(), 3142 x->callee()->signature()->return_type()->as_klass()); 3143 if (exact != nullptr) { 3144 md->set_return_type(bci, exact); 3145 } 3146 } 3147 } 3148 3149 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3150 // We can safely ignore accessors here, since c2 will inline them anyway, 3151 // accessors are also always mature. 3152 if (!x->inlinee()->is_accessor()) { 3153 CodeEmitInfo* info = state_for(x, x->state(), true); 3154 // Notify the runtime very infrequently only to take care of counter overflows 3155 int freq_log = Tier23InlineeNotifyFreqLog; 3156 double scale; 3157 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3158 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3159 } 3160 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3161 } 3162 } 3163 3164 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3165 if (compilation()->is_profiling()) { 3166 #if defined(X86) && !defined(_LP64) 3167 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3168 LIR_Opr left_copy = new_register(left->type()); 3169 __ move(left, left_copy); 3170 __ cmp(cond, left_copy, right); 3171 #else 3172 __ cmp(cond, left, right); 3173 #endif 3174 LIR_Opr step = new_register(T_INT); 3175 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3176 LIR_Opr zero = LIR_OprFact::intConst(0); 3177 __ cmove(cond, 3178 (left_bci < bci) ? plus_one : zero, 3179 (right_bci < bci) ? plus_one : zero, 3180 step, left->type()); 3181 increment_backedge_counter(info, step, bci); 3182 } 3183 } 3184 3185 3186 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3187 int freq_log = 0; 3188 int level = compilation()->env()->comp_level(); 3189 if (level == CompLevel_limited_profile) { 3190 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3191 } else if (level == CompLevel_full_profile) { 3192 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3193 } else { 3194 ShouldNotReachHere(); 3195 } 3196 // Increment the appropriate invocation/backedge counter and notify the runtime. 3197 double scale; 3198 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3199 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3200 } 3201 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3202 } 3203 3204 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3205 ciMethod *method, LIR_Opr step, int frequency, 3206 int bci, bool backedge, bool notify) { 3207 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3208 int level = _compilation->env()->comp_level(); 3209 assert(level > CompLevel_simple, "Shouldn't be here"); 3210 3211 int offset = -1; 3212 LIR_Opr counter_holder; 3213 if (level == CompLevel_limited_profile) { 3214 MethodCounters* counters_adr = method->ensure_method_counters(); 3215 if (counters_adr == nullptr) { 3216 bailout("method counters allocation failed"); 3217 return; 3218 } 3219 counter_holder = new_pointer_register(); 3220 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3221 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3222 MethodCounters::invocation_counter_offset()); 3223 } else if (level == CompLevel_full_profile) { 3224 counter_holder = new_register(T_METADATA); 3225 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3226 MethodData::invocation_counter_offset()); 3227 ciMethodData* md = method->method_data_or_null(); 3228 assert(md != nullptr, "Sanity"); 3229 __ metadata2reg(md->constant_encoding(), counter_holder); 3230 } else { 3231 ShouldNotReachHere(); 3232 } 3233 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3234 LIR_Opr result = new_register(T_INT); 3235 __ load(counter, result); 3236 __ add(result, step, result); 3237 __ store(result, counter); 3238 if (notify && (!backedge || UseOnStackReplacement)) { 3239 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3240 // The bci for info can point to cmp for if's we want the if bci 3241 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3242 int freq = frequency << InvocationCounter::count_shift; 3243 if (freq == 0) { 3244 if (!step->is_constant()) { 3245 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3246 __ branch(lir_cond_notEqual, overflow); 3247 } else { 3248 __ branch(lir_cond_always, overflow); 3249 } 3250 } else { 3251 LIR_Opr mask = load_immediate(freq, T_INT); 3252 if (!step->is_constant()) { 3253 // If step is 0, make sure the overflow check below always fails 3254 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3255 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3256 } 3257 __ logical_and(result, mask, result); 3258 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3259 __ branch(lir_cond_equal, overflow); 3260 } 3261 __ branch_destination(overflow->continuation()); 3262 } 3263 } 3264 3265 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3266 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3267 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3268 3269 if (x->pass_thread()) { 3270 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3271 args->append(getThreadPointer()); 3272 } 3273 3274 for (int i = 0; i < x->number_of_arguments(); i++) { 3275 Value a = x->argument_at(i); 3276 LIRItem* item = new LIRItem(a, this); 3277 item->load_item(); 3278 args->append(item->result()); 3279 signature->append(as_BasicType(a->type())); 3280 } 3281 3282 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3283 if (x->type() == voidType) { 3284 set_no_result(x); 3285 } else { 3286 __ move(result, rlock_result(x)); 3287 } 3288 } 3289 3290 #ifdef ASSERT 3291 void LIRGenerator::do_Assert(Assert *x) { 3292 ValueTag tag = x->x()->type()->tag(); 3293 If::Condition cond = x->cond(); 3294 3295 LIRItem xitem(x->x(), this); 3296 LIRItem yitem(x->y(), this); 3297 LIRItem* xin = &xitem; 3298 LIRItem* yin = &yitem; 3299 3300 assert(tag == intTag, "Only integer assertions are valid!"); 3301 3302 xin->load_item(); 3303 yin->dont_load_item(); 3304 3305 set_no_result(x); 3306 3307 LIR_Opr left = xin->result(); 3308 LIR_Opr right = yin->result(); 3309 3310 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3311 } 3312 #endif 3313 3314 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3315 3316 3317 Instruction *a = x->x(); 3318 Instruction *b = x->y(); 3319 if (!a || StressRangeCheckElimination) { 3320 assert(!b || StressRangeCheckElimination, "B must also be null"); 3321 3322 CodeEmitInfo *info = state_for(x, x->state()); 3323 CodeStub* stub = new PredicateFailedStub(info); 3324 3325 __ jump(stub); 3326 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3327 int a_int = a->type()->as_IntConstant()->value(); 3328 int b_int = b->type()->as_IntConstant()->value(); 3329 3330 bool ok = false; 3331 3332 switch(x->cond()) { 3333 case Instruction::eql: ok = (a_int == b_int); break; 3334 case Instruction::neq: ok = (a_int != b_int); break; 3335 case Instruction::lss: ok = (a_int < b_int); break; 3336 case Instruction::leq: ok = (a_int <= b_int); break; 3337 case Instruction::gtr: ok = (a_int > b_int); break; 3338 case Instruction::geq: ok = (a_int >= b_int); break; 3339 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3340 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3341 default: ShouldNotReachHere(); 3342 } 3343 3344 if (ok) { 3345 3346 CodeEmitInfo *info = state_for(x, x->state()); 3347 CodeStub* stub = new PredicateFailedStub(info); 3348 3349 __ jump(stub); 3350 } 3351 } else { 3352 3353 ValueTag tag = x->x()->type()->tag(); 3354 If::Condition cond = x->cond(); 3355 LIRItem xitem(x->x(), this); 3356 LIRItem yitem(x->y(), this); 3357 LIRItem* xin = &xitem; 3358 LIRItem* yin = &yitem; 3359 3360 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3361 3362 xin->load_item(); 3363 yin->dont_load_item(); 3364 set_no_result(x); 3365 3366 LIR_Opr left = xin->result(); 3367 LIR_Opr right = yin->result(); 3368 3369 CodeEmitInfo *info = state_for(x, x->state()); 3370 CodeStub* stub = new PredicateFailedStub(info); 3371 3372 __ cmp(lir_cond(cond), left, right); 3373 __ branch(lir_cond(cond), stub); 3374 } 3375 } 3376 3377 void LIRGenerator::do_blackhole(Intrinsic *x) { 3378 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3379 for (int c = 0; c < x->number_of_arguments(); c++) { 3380 // Load the argument 3381 LIRItem vitem(x->argument_at(c), this); 3382 vitem.load_item(); 3383 // ...and leave it unused. 3384 } 3385 } 3386 3387 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3388 LIRItemList args(1); 3389 LIRItem value(arg1, this); 3390 args.append(&value); 3391 BasicTypeList signature; 3392 signature.append(as_BasicType(arg1->type())); 3393 3394 return call_runtime(&signature, &args, entry, result_type, info); 3395 } 3396 3397 3398 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3399 LIRItemList args(2); 3400 LIRItem value1(arg1, this); 3401 LIRItem value2(arg2, this); 3402 args.append(&value1); 3403 args.append(&value2); 3404 BasicTypeList signature; 3405 signature.append(as_BasicType(arg1->type())); 3406 signature.append(as_BasicType(arg2->type())); 3407 3408 return call_runtime(&signature, &args, entry, result_type, info); 3409 } 3410 3411 3412 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3413 address entry, ValueType* result_type, CodeEmitInfo* info) { 3414 // get a result register 3415 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3416 LIR_Opr result = LIR_OprFact::illegalOpr; 3417 if (result_type->tag() != voidTag) { 3418 result = new_register(result_type); 3419 phys_reg = result_register_for(result_type); 3420 } 3421 3422 // move the arguments into the correct location 3423 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3424 assert(cc->length() == args->length(), "argument mismatch"); 3425 for (int i = 0; i < args->length(); i++) { 3426 LIR_Opr arg = args->at(i); 3427 LIR_Opr loc = cc->at(i); 3428 if (loc->is_register()) { 3429 __ move(arg, loc); 3430 } else { 3431 LIR_Address* addr = loc->as_address_ptr(); 3432 // if (!can_store_as_constant(arg)) { 3433 // LIR_Opr tmp = new_register(arg->type()); 3434 // __ move(arg, tmp); 3435 // arg = tmp; 3436 // } 3437 __ move(arg, addr); 3438 } 3439 } 3440 3441 if (info) { 3442 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3443 } else { 3444 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3445 } 3446 if (result->is_valid()) { 3447 __ move(phys_reg, result); 3448 } 3449 return result; 3450 } 3451 3452 3453 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3454 address entry, ValueType* result_type, CodeEmitInfo* info) { 3455 // get a result register 3456 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3457 LIR_Opr result = LIR_OprFact::illegalOpr; 3458 if (result_type->tag() != voidTag) { 3459 result = new_register(result_type); 3460 phys_reg = result_register_for(result_type); 3461 } 3462 3463 // move the arguments into the correct location 3464 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3465 3466 assert(cc->length() == args->length(), "argument mismatch"); 3467 for (int i = 0; i < args->length(); i++) { 3468 LIRItem* arg = args->at(i); 3469 LIR_Opr loc = cc->at(i); 3470 if (loc->is_register()) { 3471 arg->load_item_force(loc); 3472 } else { 3473 LIR_Address* addr = loc->as_address_ptr(); 3474 arg->load_for_store(addr->type()); 3475 __ move(arg->result(), addr); 3476 } 3477 } 3478 3479 if (info) { 3480 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3481 } else { 3482 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3483 } 3484 if (result->is_valid()) { 3485 __ move(phys_reg, result); 3486 } 3487 return result; 3488 } 3489 3490 void LIRGenerator::do_MemBar(MemBar* x) { 3491 LIR_Code code = x->code(); 3492 switch(code) { 3493 case lir_membar_acquire : __ membar_acquire(); break; 3494 case lir_membar_release : __ membar_release(); break; 3495 case lir_membar : __ membar(); break; 3496 case lir_membar_loadload : __ membar_loadload(); break; 3497 case lir_membar_storestore: __ membar_storestore(); break; 3498 case lir_membar_loadstore : __ membar_loadstore(); break; 3499 case lir_membar_storeload : __ membar_storeload(); break; 3500 default : ShouldNotReachHere(); break; 3501 } 3502 } 3503 3504 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3505 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3506 if (two_operand_lir_form) { 3507 __ move(value, value_fixed); 3508 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3509 } else { 3510 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3511 } 3512 LIR_Opr klass = new_register(T_METADATA); 3513 load_klass(array, klass, null_check_info); 3514 null_check_info = nullptr; 3515 LIR_Opr layout = new_register(T_INT); 3516 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3517 int diffbit = Klass::layout_helper_boolean_diffbit(); 3518 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3519 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3520 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3521 value = value_fixed; 3522 return value; 3523 }