1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "ci/ciObjArray.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/aotCodeCache.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "compiler/compilerOracle.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c1/barrierSetC1.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "oops/methodCounters.hpp" 43 #include "runtime/runtimeUpcalls.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/vm_version.hpp" 47 #include "utilities/bitMap.inline.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 #ifdef ASSERT 52 #define __ gen()->lir(__FILE__, __LINE__)-> 53 #else 54 #define __ gen()->lir()-> 55 #endif 56 57 #ifndef PATCHED_ADDR 58 #define PATCHED_ADDR (max_jint) 59 #endif 60 61 void PhiResolverState::reset() { 62 _virtual_operands.clear(); 63 _other_operands.clear(); 64 _vreg_table.clear(); 65 } 66 67 68 //-------------------------------------------------------------- 69 // PhiResolver 70 71 // Resolves cycles: 72 // 73 // r1 := r2 becomes temp := r1 74 // r2 := r1 r1 := r2 75 // r2 := temp 76 // and orders moves: 77 // 78 // r2 := r3 becomes r1 := r2 79 // r1 := r2 r2 := r3 80 81 PhiResolver::PhiResolver(LIRGenerator* gen) 82 : _gen(gen) 83 , _state(gen->resolver_state()) 84 , _loop(nullptr) 85 , _temp(LIR_OprFact::illegalOpr) 86 { 87 // reinitialize the shared state arrays 88 _state.reset(); 89 } 90 91 92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 93 assert(src->is_valid(), ""); 94 assert(dest->is_valid(), ""); 95 __ move(src, dest); 96 } 97 98 99 void PhiResolver::move_temp_to(LIR_Opr dest) { 100 assert(_temp->is_valid(), ""); 101 emit_move(_temp, dest); 102 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 103 } 104 105 106 void PhiResolver::move_to_temp(LIR_Opr src) { 107 assert(_temp->is_illegal(), ""); 108 _temp = _gen->new_register(src->type()); 109 emit_move(src, _temp); 110 } 111 112 113 // Traverse assignment graph in depth first order and generate moves in post order 114 // ie. two assignments: b := c, a := b start with node c: 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 116 // Generates moves in this order: move b to a and move c to b 117 // ie. cycle a := b, b := a start with node a 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 119 // Generates moves in this order: move b to temp, move a to b, move temp to a 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 121 if (!dest->visited()) { 122 dest->set_visited(); 123 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 124 move(dest, dest->destination_at(i)); 125 } 126 } else if (!dest->start_node()) { 127 // cylce in graph detected 128 assert(_loop == nullptr, "only one loop valid!"); 129 _loop = dest; 130 move_to_temp(src->operand()); 131 return; 132 } // else dest is a start node 133 134 if (!dest->assigned()) { 135 if (_loop == dest) { 136 move_temp_to(dest->operand()); 137 dest->set_assigned(); 138 } else if (src != nullptr) { 139 emit_move(src->operand(), dest->operand()); 140 dest->set_assigned(); 141 } 142 } 143 } 144 145 146 PhiResolver::~PhiResolver() { 147 int i; 148 // resolve any cycles in moves from and to virtual registers 149 for (i = virtual_operands().length() - 1; i >= 0; i --) { 150 ResolveNode* node = virtual_operands().at(i); 151 if (!node->visited()) { 152 _loop = nullptr; 153 move(nullptr, node); 154 node->set_start_node(); 155 assert(_temp->is_illegal(), "move_temp_to() call missing"); 156 } 157 } 158 159 // generate move for move from non virtual register to abitrary destination 160 for (i = other_operands().length() - 1; i >= 0; i --) { 161 ResolveNode* node = other_operands().at(i); 162 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 163 emit_move(node->operand(), node->destination_at(j)->operand()); 164 } 165 } 166 } 167 168 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 170 ResolveNode* node; 171 if (opr->is_virtual()) { 172 int vreg_num = opr->vreg_number(); 173 node = vreg_table().at_grow(vreg_num, nullptr); 174 assert(node == nullptr || node->operand() == opr, ""); 175 if (node == nullptr) { 176 node = new ResolveNode(opr); 177 vreg_table().at_put(vreg_num, node); 178 } 179 // Make sure that all virtual operands show up in the list when 180 // they are used as the source of a move. 181 if (source && !virtual_operands().contains(node)) { 182 virtual_operands().append(node); 183 } 184 } else { 185 assert(source, ""); 186 node = new ResolveNode(opr); 187 other_operands().append(node); 188 } 189 return node; 190 } 191 192 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 194 assert(dest->is_virtual(), ""); 195 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 196 assert(src->is_valid(), ""); 197 assert(dest->is_valid(), ""); 198 ResolveNode* source = source_node(src); 199 source->append(destination_node(dest)); 200 } 201 202 203 //-------------------------------------------------------------- 204 // LIRItem 205 206 void LIRItem::set_result(LIR_Opr opr) { 207 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 208 value()->set_operand(opr); 209 210 #ifdef ASSERT 211 if (opr->is_virtual()) { 212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 213 } 214 #endif 215 216 _result = opr; 217 } 218 219 void LIRItem::load_item() { 220 if (result()->is_illegal()) { 221 // update the items result 222 _result = value()->operand(); 223 } 224 if (!result()->is_register()) { 225 LIR_Opr reg = _gen->new_register(value()->type()); 226 __ move(result(), reg); 227 if (result()->is_constant()) { 228 _result = reg; 229 } else { 230 set_result(reg); 231 } 232 } 233 } 234 235 236 void LIRItem::load_for_store(BasicType type) { 237 if (_gen->can_store_as_constant(value(), type)) { 238 _result = value()->operand(); 239 if (!_result->is_constant()) { 240 _result = LIR_OprFact::value_type(value()->type()); 241 } 242 } else if (type == T_BYTE || type == T_BOOLEAN) { 243 load_byte_item(); 244 } else { 245 load_item(); 246 } 247 } 248 249 void LIRItem::load_item_force(LIR_Opr reg) { 250 LIR_Opr r = result(); 251 if (r != reg) { 252 #if !defined(ARM) && !defined(E500V2) 253 if (r->type() != reg->type()) { 254 // moves between different types need an intervening spill slot 255 r = _gen->force_to_spill(r, reg->type()); 256 } 257 #endif 258 __ move(r, reg); 259 _result = reg; 260 } 261 } 262 263 ciObject* LIRItem::get_jobject_constant() const { 264 ObjectType* oc = type()->as_ObjectType(); 265 if (oc) { 266 return oc->constant_value(); 267 } 268 return nullptr; 269 } 270 271 272 jint LIRItem::get_jint_constant() const { 273 assert(is_constant() && value() != nullptr, ""); 274 assert(type()->as_IntConstant() != nullptr, "type check"); 275 return type()->as_IntConstant()->value(); 276 } 277 278 279 jint LIRItem::get_address_constant() const { 280 assert(is_constant() && value() != nullptr, ""); 281 assert(type()->as_AddressConstant() != nullptr, "type check"); 282 return type()->as_AddressConstant()->value(); 283 } 284 285 286 jfloat LIRItem::get_jfloat_constant() const { 287 assert(is_constant() && value() != nullptr, ""); 288 assert(type()->as_FloatConstant() != nullptr, "type check"); 289 return type()->as_FloatConstant()->value(); 290 } 291 292 293 jdouble LIRItem::get_jdouble_constant() const { 294 assert(is_constant() && value() != nullptr, ""); 295 assert(type()->as_DoubleConstant() != nullptr, "type check"); 296 return type()->as_DoubleConstant()->value(); 297 } 298 299 300 jlong LIRItem::get_jlong_constant() const { 301 assert(is_constant() && value() != nullptr, ""); 302 assert(type()->as_LongConstant() != nullptr, "type check"); 303 return type()->as_LongConstant()->value(); 304 } 305 306 307 308 //-------------------------------------------------------------- 309 310 311 void LIRGenerator::block_do_prolog(BlockBegin* block) { 312 #ifndef PRODUCT 313 if (PrintIRWithLIR) { 314 block->print(); 315 } 316 #endif 317 318 // set up the list of LIR instructions 319 assert(block->lir() == nullptr, "LIR list already computed for this block"); 320 _lir = new LIR_List(compilation(), block); 321 block->set_lir(_lir); 322 323 __ branch_destination(block->label()); 324 325 if (LIRTraceExecution && 326 Compilation::current()->hir()->start()->block_id() != block->block_id() && 327 !block->is_set(BlockBegin::exception_entry_flag)) { 328 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 329 trace_block_entry(block); 330 } 331 } 332 333 334 void LIRGenerator::block_do_epilog(BlockBegin* block) { 335 #ifndef PRODUCT 336 if (PrintIRWithLIR) { 337 tty->cr(); 338 } 339 #endif 340 341 // LIR_Opr for unpinned constants shouldn't be referenced by other 342 // blocks so clear them out after processing the block. 343 for (int i = 0; i < _unpinned_constants.length(); i++) { 344 _unpinned_constants.at(i)->clear_operand(); 345 } 346 _unpinned_constants.trunc_to(0); 347 348 // clear our any registers for other local constants 349 _constants.trunc_to(0); 350 _reg_for_constants.trunc_to(0); 351 } 352 353 354 void LIRGenerator::block_do(BlockBegin* block) { 355 CHECK_BAILOUT(); 356 357 block_do_prolog(block); 358 set_block(block); 359 360 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 361 if (instr->is_pinned()) do_root(instr); 362 } 363 364 set_block(nullptr); 365 block_do_epilog(block); 366 } 367 368 369 //-------------------------LIRGenerator----------------------------- 370 371 // This is where the tree-walk starts; instr must be root; 372 void LIRGenerator::do_root(Value instr) { 373 CHECK_BAILOUT(); 374 375 InstructionMark im(compilation(), instr); 376 377 assert(instr->is_pinned(), "use only with roots"); 378 assert(instr->subst() == instr, "shouldn't have missed substitution"); 379 380 instr->visit(this); 381 382 assert(!instr->has_uses() || instr->operand()->is_valid() || 383 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 384 } 385 386 387 // This is called for each node in tree; the walk stops if a root is reached 388 void LIRGenerator::walk(Value instr) { 389 InstructionMark im(compilation(), instr); 390 //stop walk when encounter a root 391 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 392 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 393 } else { 394 assert(instr->subst() == instr, "shouldn't have missed substitution"); 395 instr->visit(this); 396 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 397 } 398 } 399 400 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 402 assert(state != nullptr, "state must be defined"); 403 404 #ifndef PRODUCT 405 state->verify(); 406 #endif 407 408 ValueStack* s = state; 409 for_each_state(s) { 410 if (s->kind() == ValueStack::EmptyExceptionState || 411 s->kind() == ValueStack::CallerEmptyExceptionState) 412 { 413 #ifdef ASSERT 414 int index; 415 Value value; 416 for_each_stack_value(s, index, value) { 417 fatal("state must be empty"); 418 } 419 for_each_local_value(s, index, value) { 420 fatal("state must be empty"); 421 } 422 #endif 423 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 424 continue; 425 } 426 427 int index; 428 Value value; 429 for_each_stack_value(s, index, value) { 430 assert(value->subst() == value, "missed substitution"); 431 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 432 walk(value); 433 assert(value->operand()->is_valid(), "must be evaluated now"); 434 } 435 } 436 437 int bci = s->bci(); 438 IRScope* scope = s->scope(); 439 ciMethod* method = scope->method(); 440 441 MethodLivenessResult liveness = method->liveness_at_bci(bci); 442 if (bci == SynchronizationEntryBCI) { 443 if (x->as_ExceptionObject() || x->as_Throw()) { 444 // all locals are dead on exit from the synthetic unlocker 445 liveness.clear(); 446 } else { 447 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 448 } 449 } 450 if (!liveness.is_valid()) { 451 // Degenerate or breakpointed method. 452 bailout("Degenerate or breakpointed method"); 453 } else { 454 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 455 for_each_local_value(s, index, value) { 456 assert(value->subst() == value, "missed substitution"); 457 if (liveness.at(index) && !value->type()->is_illegal()) { 458 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 459 walk(value); 460 assert(value->operand()->is_valid(), "must be evaluated now"); 461 } 462 } else { 463 // null out this local so that linear scan can assume that all non-null values are live. 464 s->invalidate_local(index); 465 } 466 } 467 } 468 } 469 470 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 471 } 472 473 474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 475 return state_for(x, x->exception_state()); 476 } 477 478 479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 480 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 481 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 482 * the class. */ 483 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 484 assert(info != nullptr, "info must be set if class is not loaded"); 485 __ klass2reg_patch(nullptr, r, info); 486 } else { 487 // no patching needed 488 __ metadata2reg(obj->constant_encoding(), r); 489 } 490 } 491 492 493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 494 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 495 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 496 if (index->is_constant()) { 497 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 498 index->as_jint(), null_check_info); 499 __ branch(lir_cond_belowEqual, stub); // forward branch 500 } else { 501 cmp_reg_mem(lir_cond_aboveEqual, index, array, 502 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 503 __ branch(lir_cond_aboveEqual, stub); // forward branch 504 } 505 } 506 507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 508 LIR_Opr result_op = result; 509 LIR_Opr left_op = left; 510 LIR_Opr right_op = right; 511 512 if (two_operand_lir_form && left_op != result_op) { 513 assert(right_op != result_op, "malformed"); 514 __ move(left_op, result_op); 515 left_op = result_op; 516 } 517 518 switch(code) { 519 case Bytecodes::_dadd: 520 case Bytecodes::_fadd: 521 case Bytecodes::_ladd: 522 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 523 case Bytecodes::_fmul: 524 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 525 526 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 527 528 case Bytecodes::_imul: 529 { 530 bool did_strength_reduce = false; 531 532 if (right->is_constant()) { 533 jint c = right->as_jint(); 534 if (c > 0 && is_power_of_2(c)) { 535 // do not need tmp here 536 __ shift_left(left_op, exact_log2(c), result_op); 537 did_strength_reduce = true; 538 } else { 539 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 540 } 541 } 542 // we couldn't strength reduce so just emit the multiply 543 if (!did_strength_reduce) { 544 __ mul(left_op, right_op, result_op); 545 } 546 } 547 break; 548 549 case Bytecodes::_dsub: 550 case Bytecodes::_fsub: 551 case Bytecodes::_lsub: 552 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 553 554 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 555 // ldiv and lrem are implemented with a direct runtime call 556 557 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 558 559 case Bytecodes::_drem: 560 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 561 562 default: ShouldNotReachHere(); 563 } 564 } 565 566 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 568 arithmetic_op(code, result, left, right, tmp); 569 } 570 571 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 573 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 574 } 575 576 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 578 arithmetic_op(code, result, left, right, tmp); 579 } 580 581 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 583 584 if (two_operand_lir_form && value != result_op 585 // Only 32bit right shifts require two operand form on S390. 586 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 587 assert(count != result_op, "malformed"); 588 __ move(value, result_op); 589 value = result_op; 590 } 591 592 assert(count->is_constant() || count->is_register(), "must be"); 593 switch(code) { 594 case Bytecodes::_ishl: 595 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 596 case Bytecodes::_ishr: 597 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 598 case Bytecodes::_iushr: 599 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 600 default: ShouldNotReachHere(); 601 } 602 } 603 604 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 606 if (two_operand_lir_form && left_op != result_op) { 607 assert(right_op != result_op, "malformed"); 608 __ move(left_op, result_op); 609 left_op = result_op; 610 } 611 612 switch(code) { 613 case Bytecodes::_iand: 614 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 615 616 case Bytecodes::_ior: 617 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 618 619 case Bytecodes::_ixor: 620 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 621 622 default: ShouldNotReachHere(); 623 } 624 } 625 626 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 628 // for slow path, use debug info for state after successful locking 629 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 630 __ load_stack_address_monitor(monitor_no, lock); 631 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 632 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 633 } 634 635 636 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 637 // setup registers 638 LIR_Opr hdr = lock; 639 lock = new_hdr; 640 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 641 __ load_stack_address_monitor(monitor_no, lock); 642 __ unlock_object(hdr, object, lock, scratch, slow_path); 643 } 644 645 #ifndef PRODUCT 646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 647 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 648 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 649 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 650 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 651 } 652 } 653 #endif 654 655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 656 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 657 // If klass is not loaded we do not know if the klass has finalizers: 658 if (UseFastNewInstance && klass->is_loaded() 659 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 660 661 bool known_initialized = klass->is_initialized() && !compilation()->env()->is_precompile(); 662 StubId stub_id = known_initialized ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id; 663 664 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 665 666 assert(klass->is_loaded(), "must be loaded"); 667 // allocate space for instance 668 assert(klass->size_helper() > 0, "illegal instance size"); 669 const int instance_size = align_object_size(klass->size_helper()); 670 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 671 oopDesc::header_size(), instance_size, klass_reg, !known_initialized, slow_path); 672 } else { 673 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id); 674 __ branch(lir_cond_always, slow_path); 675 __ branch_destination(slow_path->continuation()); 676 } 677 } 678 679 680 static bool is_constant_zero(Instruction* inst) { 681 IntConstant* c = inst->type()->as_IntConstant(); 682 if (c) { 683 return (c->value() == 0); 684 } 685 return false; 686 } 687 688 689 static bool positive_constant(Instruction* inst) { 690 IntConstant* c = inst->type()->as_IntConstant(); 691 if (c) { 692 return (c->value() >= 0); 693 } 694 return false; 695 } 696 697 698 static ciArrayKlass* as_array_klass(ciType* type) { 699 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 700 return (ciArrayKlass*)type; 701 } else { 702 return nullptr; 703 } 704 } 705 706 static ciType* phi_declared_type(Phi* phi) { 707 ciType* t = phi->operand_at(0)->declared_type(); 708 if (t == nullptr) { 709 return nullptr; 710 } 711 for(int i = 1; i < phi->operand_count(); i++) { 712 if (t != phi->operand_at(i)->declared_type()) { 713 return nullptr; 714 } 715 } 716 return t; 717 } 718 719 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 720 Instruction* src = x->argument_at(0); 721 Instruction* src_pos = x->argument_at(1); 722 Instruction* dst = x->argument_at(2); 723 Instruction* dst_pos = x->argument_at(3); 724 Instruction* length = x->argument_at(4); 725 726 // first try to identify the likely type of the arrays involved 727 ciArrayKlass* expected_type = nullptr; 728 bool is_exact = false, src_objarray = false, dst_objarray = false; 729 { 730 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 731 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 732 Phi* phi; 733 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 734 src_declared_type = as_array_klass(phi_declared_type(phi)); 735 } 736 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 737 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 738 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 739 dst_declared_type = as_array_klass(phi_declared_type(phi)); 740 } 741 742 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 743 // the types exactly match so the type is fully known 744 is_exact = true; 745 expected_type = src_exact_type; 746 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 747 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 748 ciArrayKlass* src_type = nullptr; 749 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 750 src_type = (ciArrayKlass*) src_exact_type; 751 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 752 src_type = (ciArrayKlass*) src_declared_type; 753 } 754 if (src_type != nullptr) { 755 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 756 is_exact = true; 757 expected_type = dst_type; 758 } 759 } 760 } 761 // at least pass along a good guess 762 if (expected_type == nullptr) expected_type = dst_exact_type; 763 if (expected_type == nullptr) expected_type = src_declared_type; 764 if (expected_type == nullptr) expected_type = dst_declared_type; 765 766 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 767 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 768 } 769 770 // if a probable array type has been identified, figure out if any 771 // of the required checks for a fast case can be elided. 772 int flags = LIR_OpArrayCopy::all_flags; 773 774 if (!src_objarray) 775 flags &= ~LIR_OpArrayCopy::src_objarray; 776 if (!dst_objarray) 777 flags &= ~LIR_OpArrayCopy::dst_objarray; 778 779 if (!x->arg_needs_null_check(0)) 780 flags &= ~LIR_OpArrayCopy::src_null_check; 781 if (!x->arg_needs_null_check(2)) 782 flags &= ~LIR_OpArrayCopy::dst_null_check; 783 784 785 if (expected_type != nullptr) { 786 Value length_limit = nullptr; 787 788 IfOp* ifop = length->as_IfOp(); 789 if (ifop != nullptr) { 790 // look for expressions like min(v, a.length) which ends up as 791 // x > y ? y : x or x >= y ? y : x 792 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 793 ifop->x() == ifop->fval() && 794 ifop->y() == ifop->tval()) { 795 length_limit = ifop->y(); 796 } 797 } 798 799 // try to skip null checks and range checks 800 NewArray* src_array = src->as_NewArray(); 801 if (src_array != nullptr) { 802 flags &= ~LIR_OpArrayCopy::src_null_check; 803 if (length_limit != nullptr && 804 src_array->length() == length_limit && 805 is_constant_zero(src_pos)) { 806 flags &= ~LIR_OpArrayCopy::src_range_check; 807 } 808 } 809 810 NewArray* dst_array = dst->as_NewArray(); 811 if (dst_array != nullptr) { 812 flags &= ~LIR_OpArrayCopy::dst_null_check; 813 if (length_limit != nullptr && 814 dst_array->length() == length_limit && 815 is_constant_zero(dst_pos)) { 816 flags &= ~LIR_OpArrayCopy::dst_range_check; 817 } 818 } 819 820 // check from incoming constant values 821 if (positive_constant(src_pos)) 822 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 823 if (positive_constant(dst_pos)) 824 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 825 if (positive_constant(length)) 826 flags &= ~LIR_OpArrayCopy::length_positive_check; 827 828 // see if the range check can be elided, which might also imply 829 // that src or dst is non-null. 830 ArrayLength* al = length->as_ArrayLength(); 831 if (al != nullptr) { 832 if (al->array() == src) { 833 // it's the length of the source array 834 flags &= ~LIR_OpArrayCopy::length_positive_check; 835 flags &= ~LIR_OpArrayCopy::src_null_check; 836 if (is_constant_zero(src_pos)) 837 flags &= ~LIR_OpArrayCopy::src_range_check; 838 } 839 if (al->array() == dst) { 840 // it's the length of the destination array 841 flags &= ~LIR_OpArrayCopy::length_positive_check; 842 flags &= ~LIR_OpArrayCopy::dst_null_check; 843 if (is_constant_zero(dst_pos)) 844 flags &= ~LIR_OpArrayCopy::dst_range_check; 845 } 846 } 847 if (is_exact) { 848 flags &= ~LIR_OpArrayCopy::type_check; 849 } 850 } 851 852 IntConstant* src_int = src_pos->type()->as_IntConstant(); 853 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 854 if (src_int && dst_int) { 855 int s_offs = src_int->value(); 856 int d_offs = dst_int->value(); 857 if (src_int->value() >= dst_int->value()) { 858 flags &= ~LIR_OpArrayCopy::overlapping; 859 } 860 if (expected_type != nullptr) { 861 BasicType t = expected_type->element_type()->basic_type(); 862 int element_size = type2aelembytes(t); 863 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 864 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 865 flags &= ~LIR_OpArrayCopy::unaligned; 866 } 867 } 868 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 869 // src and dest positions are the same, or dst is zero so assume 870 // nonoverlapping copy. 871 flags &= ~LIR_OpArrayCopy::overlapping; 872 } 873 874 if (src == dst) { 875 // moving within a single array so no type checks are needed 876 if (flags & LIR_OpArrayCopy::type_check) { 877 flags &= ~LIR_OpArrayCopy::type_check; 878 } 879 } 880 *flagsp = flags; 881 *expected_typep = (ciArrayKlass*)expected_type; 882 } 883 884 885 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 886 assert(type2size[t] == type2size[value->type()], 887 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 888 if (!value->is_register()) { 889 // force into a register 890 LIR_Opr r = new_register(value->type()); 891 __ move(value, r); 892 value = r; 893 } 894 895 // create a spill location 896 LIR_Opr tmp = new_register(t); 897 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 898 899 // move from register to spill 900 __ move(value, tmp); 901 return tmp; 902 } 903 904 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 905 if (if_instr->should_profile()) { 906 ciMethod* method = if_instr->profiled_method(); 907 assert(method != nullptr, "method should be set if branch is profiled"); 908 ciMethodData* md = method->method_data_or_null(); 909 assert(md != nullptr, "Sanity"); 910 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 911 assert(data != nullptr, "must have profiling data"); 912 assert(data->is_BranchData(), "need BranchData for two-way branches"); 913 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 914 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 915 if (if_instr->is_swapped()) { 916 int t = taken_count_offset; 917 taken_count_offset = not_taken_count_offset; 918 not_taken_count_offset = t; 919 } 920 921 LIR_Opr md_reg = new_register(T_METADATA); 922 __ metadata2reg(md->constant_encoding(), md_reg); 923 924 LIR_Opr data_offset_reg = new_pointer_register(); 925 __ cmove(lir_cond(cond), 926 LIR_OprFact::intptrConst(taken_count_offset), 927 LIR_OprFact::intptrConst(not_taken_count_offset), 928 data_offset_reg, as_BasicType(if_instr->x()->type())); 929 930 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 931 LIR_Opr data_reg = new_pointer_register(); 932 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 933 __ move(data_addr, data_reg); 934 // Use leal instead of add to avoid destroying condition codes on x86 935 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 936 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 937 __ move(data_reg, data_addr); 938 } 939 } 940 941 // Phi technique: 942 // This is about passing live values from one basic block to the other. 943 // In code generated with Java it is rather rare that more than one 944 // value is on the stack from one basic block to the other. 945 // We optimize our technique for efficient passing of one value 946 // (of type long, int, double..) but it can be extended. 947 // When entering or leaving a basic block, all registers and all spill 948 // slots are release and empty. We use the released registers 949 // and spill slots to pass the live values from one block 950 // to the other. The topmost value, i.e., the value on TOS of expression 951 // stack is passed in registers. All other values are stored in spilling 952 // area. Every Phi has an index which designates its spill slot 953 // At exit of a basic block, we fill the register(s) and spill slots. 954 // At entry of a basic block, the block_prolog sets up the content of phi nodes 955 // and locks necessary registers and spilling slots. 956 957 958 // move current value to referenced phi function 959 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 960 Phi* phi = sux_val->as_Phi(); 961 // cur_val can be null without phi being null in conjunction with inlining 962 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 963 if (phi->is_local()) { 964 for (int i = 0; i < phi->operand_count(); i++) { 965 Value op = phi->operand_at(i); 966 if (op != nullptr && op->type()->is_illegal()) { 967 bailout("illegal phi operand"); 968 } 969 } 970 } 971 Phi* cur_phi = cur_val->as_Phi(); 972 if (cur_phi != nullptr && cur_phi->is_illegal()) { 973 // Phi and local would need to get invalidated 974 // (which is unexpected for Linear Scan). 975 // But this case is very rare so we simply bail out. 976 bailout("propagation of illegal phi"); 977 return; 978 } 979 LIR_Opr operand = cur_val->operand(); 980 if (operand->is_illegal()) { 981 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 982 "these can be produced lazily"); 983 operand = operand_for_instruction(cur_val); 984 } 985 resolver->move(operand, operand_for_instruction(phi)); 986 } 987 } 988 989 990 // Moves all stack values into their PHI position 991 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 992 BlockBegin* bb = block(); 993 if (bb->number_of_sux() == 1) { 994 BlockBegin* sux = bb->sux_at(0); 995 assert(sux->number_of_preds() > 0, "invalid CFG"); 996 997 // a block with only one predecessor never has phi functions 998 if (sux->number_of_preds() > 1) { 999 PhiResolver resolver(this); 1000 1001 ValueStack* sux_state = sux->state(); 1002 Value sux_value; 1003 int index; 1004 1005 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1006 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1007 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1008 1009 for_each_stack_value(sux_state, index, sux_value) { 1010 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1011 } 1012 1013 for_each_local_value(sux_state, index, sux_value) { 1014 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1015 } 1016 1017 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1018 } 1019 } 1020 } 1021 1022 1023 LIR_Opr LIRGenerator::new_register(BasicType type) { 1024 int vreg_num = _virtual_register_number; 1025 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1026 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1027 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1028 bailout("out of virtual registers in LIR generator"); 1029 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1030 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1031 _virtual_register_number = LIR_Opr::vreg_base; 1032 vreg_num = LIR_Opr::vreg_base; 1033 } 1034 } 1035 _virtual_register_number += 1; 1036 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1037 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1038 return vreg; 1039 } 1040 1041 1042 // Try to lock using register in hint 1043 LIR_Opr LIRGenerator::rlock(Value instr) { 1044 return new_register(instr->type()); 1045 } 1046 1047 1048 // does an rlock and sets result 1049 LIR_Opr LIRGenerator::rlock_result(Value x) { 1050 LIR_Opr reg = rlock(x); 1051 set_result(x, reg); 1052 return reg; 1053 } 1054 1055 1056 // does an rlock and sets result 1057 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1058 LIR_Opr reg; 1059 switch (type) { 1060 case T_BYTE: 1061 case T_BOOLEAN: 1062 reg = rlock_byte(type); 1063 break; 1064 default: 1065 reg = rlock(x); 1066 break; 1067 } 1068 1069 set_result(x, reg); 1070 return reg; 1071 } 1072 1073 1074 //--------------------------------------------------------------------- 1075 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1076 ObjectType* oc = value->type()->as_ObjectType(); 1077 if (oc) { 1078 return oc->constant_value(); 1079 } 1080 return nullptr; 1081 } 1082 1083 1084 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1085 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1086 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1087 1088 // no moves are created for phi functions at the begin of exception 1089 // handlers, so assign operands manually here 1090 for_each_phi_fun(block(), phi, 1091 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1092 1093 LIR_Opr thread_reg = getThreadPointer(); 1094 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1095 exceptionOopOpr()); 1096 __ move_wide(LIR_OprFact::oopConst(nullptr), 1097 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1098 __ move_wide(LIR_OprFact::oopConst(nullptr), 1099 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1100 1101 LIR_Opr result = new_register(T_OBJECT); 1102 __ move(exceptionOopOpr(), result); 1103 set_result(x, result); 1104 } 1105 1106 1107 //---------------------------------------------------------------------- 1108 //---------------------------------------------------------------------- 1109 //---------------------------------------------------------------------- 1110 //---------------------------------------------------------------------- 1111 // visitor functions 1112 //---------------------------------------------------------------------- 1113 //---------------------------------------------------------------------- 1114 //---------------------------------------------------------------------- 1115 //---------------------------------------------------------------------- 1116 1117 void LIRGenerator::do_Phi(Phi* x) { 1118 // phi functions are never visited directly 1119 ShouldNotReachHere(); 1120 } 1121 1122 1123 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1124 void LIRGenerator::do_Constant(Constant* x) { 1125 if (x->state_before() != nullptr) { 1126 // Any constant with a ValueStack requires patching so emit the patch here 1127 LIR_Opr reg = rlock_result(x); 1128 CodeEmitInfo* info = state_for(x, x->state_before()); 1129 __ oop2reg_patch(nullptr, reg, info); 1130 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1131 if (!x->is_pinned()) { 1132 // unpinned constants are handled specially so that they can be 1133 // put into registers when they are used multiple times within a 1134 // block. After the block completes their operand will be 1135 // cleared so that other blocks can't refer to that register. 1136 set_result(x, load_constant(x)); 1137 } else { 1138 LIR_Opr res = x->operand(); 1139 if (!res->is_valid()) { 1140 res = LIR_OprFact::value_type(x->type()); 1141 } 1142 if (res->is_constant()) { 1143 LIR_Opr reg = rlock_result(x); 1144 __ move(res, reg); 1145 } else { 1146 set_result(x, res); 1147 } 1148 } 1149 } else { 1150 set_result(x, LIR_OprFact::value_type(x->type())); 1151 } 1152 } 1153 1154 1155 void LIRGenerator::do_Local(Local* x) { 1156 // operand_for_instruction has the side effect of setting the result 1157 // so there's no need to do it here. 1158 operand_for_instruction(x); 1159 } 1160 1161 1162 void LIRGenerator::do_Return(Return* x) { 1163 if (compilation()->env()->dtrace_method_probes()) { 1164 BasicTypeList signature; 1165 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1166 signature.append(T_METADATA); // Method* 1167 LIR_OprList* args = new LIR_OprList(); 1168 args->append(getThreadPointer()); 1169 LIR_Opr meth = new_register(T_METADATA); 1170 __ metadata2reg(method()->constant_encoding(), meth); 1171 args->append(meth); 1172 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1173 } 1174 1175 if (x->type()->is_void()) { 1176 __ return_op(LIR_OprFact::illegalOpr); 1177 } else { 1178 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1179 LIRItem result(x->result(), this); 1180 1181 result.load_item_force(reg); 1182 __ return_op(result.result()); 1183 } 1184 set_no_result(x); 1185 } 1186 1187 // Example: ref.get() 1188 // Combination of LoadField and g1 pre-write barrier 1189 void LIRGenerator::do_Reference_get0(Intrinsic* x) { 1190 1191 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1192 1193 assert(x->number_of_arguments() == 1, "wrong type"); 1194 1195 LIRItem reference(x->argument_at(0), this); 1196 reference.load_item(); 1197 1198 // need to perform the null check on the reference object 1199 CodeEmitInfo* info = nullptr; 1200 if (x->needs_null_check()) { 1201 info = state_for(x); 1202 } 1203 1204 LIR_Opr result = rlock_result(x, T_OBJECT); 1205 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1206 reference, LIR_OprFact::intConst(referent_offset), result, 1207 nullptr, info); 1208 } 1209 1210 // Example: clazz.isInstance(object) 1211 void LIRGenerator::do_isInstance(Intrinsic* x) { 1212 assert(x->number_of_arguments() == 2, "wrong type"); 1213 1214 LIRItem clazz(x->argument_at(0), this); 1215 LIRItem object(x->argument_at(1), this); 1216 clazz.load_item(); 1217 object.load_item(); 1218 LIR_Opr result = rlock_result(x); 1219 1220 // need to perform null check on clazz 1221 if (x->needs_null_check()) { 1222 CodeEmitInfo* info = state_for(x); 1223 __ null_check(clazz.result(), info); 1224 } 1225 1226 address pd_instanceof_fn = isInstance_entry(); 1227 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1228 pd_instanceof_fn, 1229 x->type(), 1230 nullptr); // null CodeEmitInfo results in a leaf call 1231 __ move(call_result, result); 1232 } 1233 1234 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1235 __ load_klass(obj, klass, null_check_info); 1236 } 1237 1238 // Example: object.getClass () 1239 void LIRGenerator::do_getClass(Intrinsic* x) { 1240 assert(x->number_of_arguments() == 1, "wrong type"); 1241 1242 LIRItem rcvr(x->argument_at(0), this); 1243 rcvr.load_item(); 1244 LIR_Opr temp = new_register(T_ADDRESS); 1245 LIR_Opr result = rlock_result(x); 1246 1247 // need to perform the null check on the rcvr 1248 CodeEmitInfo* info = nullptr; 1249 if (x->needs_null_check()) { 1250 info = state_for(x); 1251 } 1252 1253 LIR_Opr klass = new_register(T_METADATA); 1254 load_klass(rcvr.result(), klass, info); 1255 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1256 // mirror = ((OopHandle)mirror)->resolve(); 1257 access_load(IN_NATIVE, T_OBJECT, 1258 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1259 } 1260 1261 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1262 assert(x->number_of_arguments() == 3, "wrong type"); 1263 LIR_Opr result_reg = rlock_result(x); 1264 1265 LIRItem value(x->argument_at(2), this); 1266 value.load_item(); 1267 1268 LIR_Opr klass = new_register(T_METADATA); 1269 load_klass(value.result(), klass, nullptr); 1270 LIR_Opr layout = new_register(T_INT); 1271 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1272 1273 LabelObj* L_done = new LabelObj(); 1274 LabelObj* L_array = new LabelObj(); 1275 1276 __ cmp(lir_cond_lessEqual, layout, 0); 1277 __ branch(lir_cond_lessEqual, L_array->label()); 1278 1279 // Instance case: the layout helper gives us instance size almost directly, 1280 // but we need to mask out the _lh_instance_slow_path_bit. 1281 1282 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1283 1284 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1285 __ logical_and(layout, mask, layout); 1286 __ convert(Bytecodes::_i2l, layout, result_reg); 1287 1288 __ branch(lir_cond_always, L_done->label()); 1289 1290 // Array case: size is round(header + element_size*arraylength). 1291 // Since arraylength is different for every array instance, we have to 1292 // compute the whole thing at runtime. 1293 1294 __ branch_destination(L_array->label()); 1295 1296 int round_mask = MinObjAlignmentInBytes - 1; 1297 1298 // Figure out header sizes first. 1299 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1300 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1301 1302 LIR_Opr header_size = new_register(T_INT); 1303 __ move(layout, header_size); 1304 LIR_Opr tmp = new_register(T_INT); 1305 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1306 __ logical_and(header_size, hsm, header_size); 1307 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1308 1309 // Figure out the array length in bytes 1310 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1311 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1312 __ logical_and(layout, l2esm, layout); 1313 1314 LIR_Opr length_int = new_register(T_INT); 1315 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1316 1317 #ifdef _LP64 1318 LIR_Opr length = new_register(T_LONG); 1319 __ convert(Bytecodes::_i2l, length_int, length); 1320 #endif 1321 1322 // Shift-left awkwardness. Normally it is just: 1323 // __ shift_left(length, layout, length); 1324 // But C1 cannot perform shift_left with non-constant count, so we end up 1325 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1326 // longs, so we have to act on ints. 1327 LabelObj* L_shift_loop = new LabelObj(); 1328 LabelObj* L_shift_exit = new LabelObj(); 1329 1330 __ branch_destination(L_shift_loop->label()); 1331 __ cmp(lir_cond_equal, layout, 0); 1332 __ branch(lir_cond_equal, L_shift_exit->label()); 1333 1334 #ifdef _LP64 1335 __ shift_left(length, 1, length); 1336 #else 1337 __ shift_left(length_int, 1, length_int); 1338 #endif 1339 1340 __ sub(layout, LIR_OprFact::intConst(1), layout); 1341 1342 __ branch(lir_cond_always, L_shift_loop->label()); 1343 __ branch_destination(L_shift_exit->label()); 1344 1345 // Mix all up, round, and push to the result. 1346 #ifdef _LP64 1347 LIR_Opr header_size_long = new_register(T_LONG); 1348 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1349 __ add(length, header_size_long, length); 1350 if (round_mask != 0) { 1351 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1352 __ logical_and(length, round_mask_opr, length); 1353 } 1354 __ move(length, result_reg); 1355 #else 1356 __ add(length_int, header_size, length_int); 1357 if (round_mask != 0) { 1358 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1359 __ logical_and(length_int, round_mask_opr, length_int); 1360 } 1361 __ convert(Bytecodes::_i2l, length_int, result_reg); 1362 #endif 1363 1364 __ branch_destination(L_done->label()); 1365 } 1366 1367 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1368 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1369 } 1370 1371 // Example: Thread.currentCarrierThread() 1372 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1373 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1374 } 1375 1376 void LIRGenerator::do_vthread(Intrinsic* x) { 1377 do_JavaThreadField(x, JavaThread::vthread_offset()); 1378 } 1379 1380 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1381 assert(x->number_of_arguments() == 0, "wrong type"); 1382 LIR_Opr temp = new_register(T_ADDRESS); 1383 LIR_Opr reg = rlock_result(x); 1384 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1385 access_load(IN_NATIVE, T_OBJECT, 1386 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1387 } 1388 1389 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1390 assert(x->number_of_arguments() == 1, "wrong type"); 1391 LIRItem receiver(x->argument_at(0), this); 1392 1393 receiver.load_item(); 1394 BasicTypeList signature; 1395 signature.append(T_OBJECT); // receiver 1396 LIR_OprList* args = new LIR_OprList(); 1397 args->append(receiver.result()); 1398 CodeEmitInfo* info = state_for(x, x->state()); 1399 call_runtime(&signature, args, 1400 CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)), 1401 voidType, info); 1402 1403 set_no_result(x); 1404 } 1405 1406 1407 //------------------------local access-------------------------------------- 1408 1409 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1410 if (x->operand()->is_illegal()) { 1411 Constant* c = x->as_Constant(); 1412 if (c != nullptr) { 1413 x->set_operand(LIR_OprFact::value_type(c->type())); 1414 } else { 1415 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1416 // allocate a virtual register for this local or phi 1417 x->set_operand(rlock(x)); 1418 #ifdef ASSERT 1419 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1420 #endif 1421 } 1422 } 1423 return x->operand(); 1424 } 1425 1426 #ifdef ASSERT 1427 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1428 if (reg_num < _instruction_for_operand.length()) { 1429 return _instruction_for_operand.at(reg_num); 1430 } 1431 return nullptr; 1432 } 1433 #endif 1434 1435 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1436 if (_vreg_flags.size_in_bits() == 0) { 1437 BitMap2D temp(100, num_vreg_flags); 1438 _vreg_flags = temp; 1439 } 1440 _vreg_flags.at_put_grow(vreg_num, f, true); 1441 } 1442 1443 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1444 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1445 return false; 1446 } 1447 return _vreg_flags.at(vreg_num, f); 1448 } 1449 1450 1451 // Block local constant handling. This code is useful for keeping 1452 // unpinned constants and constants which aren't exposed in the IR in 1453 // registers. Unpinned Constant instructions have their operands 1454 // cleared when the block is finished so that other blocks can't end 1455 // up referring to their registers. 1456 1457 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1458 assert(!x->is_pinned(), "only for unpinned constants"); 1459 _unpinned_constants.append(x); 1460 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1461 } 1462 1463 1464 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1465 BasicType t = c->type(); 1466 for (int i = 0; i < _constants.length(); i++) { 1467 LIR_Const* other = _constants.at(i); 1468 if (t == other->type()) { 1469 switch (t) { 1470 case T_INT: 1471 case T_FLOAT: 1472 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1473 break; 1474 case T_LONG: 1475 case T_DOUBLE: 1476 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1477 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1478 break; 1479 case T_OBJECT: 1480 if (c->as_jobject() != other->as_jobject()) continue; 1481 break; 1482 default: 1483 break; 1484 } 1485 return _reg_for_constants.at(i); 1486 } 1487 } 1488 1489 LIR_Opr result = new_register(t); 1490 __ move((LIR_Opr)c, result); 1491 _constants.append(c); 1492 _reg_for_constants.append(result); 1493 return result; 1494 } 1495 1496 //------------------------field access-------------------------------------- 1497 1498 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1499 assert(x->number_of_arguments() == 4, "wrong type"); 1500 LIRItem obj (x->argument_at(0), this); // object 1501 LIRItem offset(x->argument_at(1), this); // offset of field 1502 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1503 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1504 assert(obj.type()->tag() == objectTag, "invalid type"); 1505 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1506 assert(val.type()->tag() == type->tag(), "invalid type"); 1507 1508 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1509 obj, offset, cmp, val); 1510 set_result(x, result); 1511 } 1512 1513 // Comment copied form templateTable_i486.cpp 1514 // ---------------------------------------------------------------------------- 1515 // Volatile variables demand their effects be made known to all CPU's in 1516 // order. Store buffers on most chips allow reads & writes to reorder; the 1517 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1518 // memory barrier (i.e., it's not sufficient that the interpreter does not 1519 // reorder volatile references, the hardware also must not reorder them). 1520 // 1521 // According to the new Java Memory Model (JMM): 1522 // (1) All volatiles are serialized wrt to each other. 1523 // ALSO reads & writes act as acquire & release, so: 1524 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1525 // the read float up to before the read. It's OK for non-volatile memory refs 1526 // that happen before the volatile read to float down below it. 1527 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1528 // that happen BEFORE the write float down to after the write. It's OK for 1529 // non-volatile memory refs that happen after the volatile write to float up 1530 // before it. 1531 // 1532 // We only put in barriers around volatile refs (they are expensive), not 1533 // _between_ memory refs (that would require us to track the flavor of the 1534 // previous memory refs). Requirements (2) and (3) require some barriers 1535 // before volatile stores and after volatile loads. These nearly cover 1536 // requirement (1) but miss the volatile-store-volatile-load case. This final 1537 // case is placed after volatile-stores although it could just as well go 1538 // before volatile-loads. 1539 1540 1541 void LIRGenerator::do_StoreField(StoreField* x) { 1542 bool needs_patching = x->needs_patching(); 1543 bool is_volatile = x->field()->is_volatile(); 1544 BasicType field_type = x->field_type(); 1545 1546 CodeEmitInfo* info = nullptr; 1547 if (needs_patching) { 1548 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1549 info = state_for(x, x->state_before()); 1550 } else if (x->needs_null_check()) { 1551 NullCheck* nc = x->explicit_null_check(); 1552 if (nc == nullptr) { 1553 info = state_for(x); 1554 } else { 1555 info = state_for(nc); 1556 } 1557 } 1558 1559 LIRItem object(x->obj(), this); 1560 LIRItem value(x->value(), this); 1561 1562 object.load_item(); 1563 1564 if (is_volatile || needs_patching) { 1565 // load item if field is volatile (fewer special cases for volatiles) 1566 // load item if field not initialized 1567 // load item if field not constant 1568 // because of code patching we cannot inline constants 1569 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1570 value.load_byte_item(); 1571 } else { 1572 value.load_item(); 1573 } 1574 } else { 1575 value.load_for_store(field_type); 1576 } 1577 1578 set_no_result(x); 1579 1580 #ifndef PRODUCT 1581 if (PrintNotLoaded && needs_patching) { 1582 tty->print_cr(" ###class not loaded at store_%s bci %d", 1583 x->is_static() ? "static" : "field", x->printable_bci()); 1584 } 1585 #endif 1586 1587 if (x->needs_null_check() && 1588 (needs_patching || 1589 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1590 // Emit an explicit null check because the offset is too large. 1591 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1592 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1593 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1594 } 1595 1596 DecoratorSet decorators = IN_HEAP; 1597 if (is_volatile) { 1598 decorators |= MO_SEQ_CST; 1599 } 1600 if (needs_patching) { 1601 decorators |= C1_NEEDS_PATCHING; 1602 } 1603 1604 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1605 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1606 } 1607 1608 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1609 assert(x->is_pinned(),""); 1610 bool needs_range_check = x->compute_needs_range_check(); 1611 bool use_length = x->length() != nullptr; 1612 bool obj_store = is_reference_type(x->elt_type()); 1613 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1614 !get_jobject_constant(x->value())->is_null_object() || 1615 x->should_profile()); 1616 1617 LIRItem array(x->array(), this); 1618 LIRItem index(x->index(), this); 1619 LIRItem value(x->value(), this); 1620 LIRItem length(this); 1621 1622 array.load_item(); 1623 index.load_nonconstant(); 1624 1625 if (use_length && needs_range_check) { 1626 length.set_instruction(x->length()); 1627 length.load_item(); 1628 1629 } 1630 if (needs_store_check || x->check_boolean()) { 1631 value.load_item(); 1632 } else { 1633 value.load_for_store(x->elt_type()); 1634 } 1635 1636 set_no_result(x); 1637 1638 // the CodeEmitInfo must be duplicated for each different 1639 // LIR-instruction because spilling can occur anywhere between two 1640 // instructions and so the debug information must be different 1641 CodeEmitInfo* range_check_info = state_for(x); 1642 CodeEmitInfo* null_check_info = nullptr; 1643 if (x->needs_null_check()) { 1644 null_check_info = new CodeEmitInfo(range_check_info); 1645 } 1646 1647 if (needs_range_check) { 1648 if (use_length) { 1649 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1650 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1651 } else { 1652 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1653 // range_check also does the null check 1654 null_check_info = nullptr; 1655 } 1656 } 1657 1658 if (GenerateArrayStoreCheck && needs_store_check) { 1659 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1660 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1661 } 1662 1663 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1664 if (x->check_boolean()) { 1665 decorators |= C1_MASK_BOOLEAN; 1666 } 1667 1668 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1669 nullptr, null_check_info); 1670 } 1671 1672 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1673 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1674 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1675 decorators |= ACCESS_READ; 1676 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1677 if (access.is_raw()) { 1678 _barrier_set->BarrierSetC1::load_at(access, result); 1679 } else { 1680 _barrier_set->load_at(access, result); 1681 } 1682 } 1683 1684 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1685 LIR_Opr addr, LIR_Opr result) { 1686 decorators |= ACCESS_READ; 1687 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1688 access.set_resolved_addr(addr); 1689 if (access.is_raw()) { 1690 _barrier_set->BarrierSetC1::load(access, result); 1691 } else { 1692 _barrier_set->load(access, result); 1693 } 1694 } 1695 1696 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1697 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1698 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1699 decorators |= ACCESS_WRITE; 1700 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1701 if (access.is_raw()) { 1702 _barrier_set->BarrierSetC1::store_at(access, value); 1703 } else { 1704 _barrier_set->store_at(access, value); 1705 } 1706 } 1707 1708 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1709 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1710 decorators |= ACCESS_READ; 1711 decorators |= ACCESS_WRITE; 1712 // Atomic operations are SEQ_CST by default 1713 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1714 LIRAccess access(this, decorators, base, offset, type); 1715 if (access.is_raw()) { 1716 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1717 } else { 1718 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1719 } 1720 } 1721 1722 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1723 LIRItem& base, LIRItem& offset, LIRItem& value) { 1724 decorators |= ACCESS_READ; 1725 decorators |= ACCESS_WRITE; 1726 // Atomic operations are SEQ_CST by default 1727 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1728 LIRAccess access(this, decorators, base, offset, type); 1729 if (access.is_raw()) { 1730 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1731 } else { 1732 return _barrier_set->atomic_xchg_at(access, value); 1733 } 1734 } 1735 1736 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1737 LIRItem& base, LIRItem& offset, LIRItem& value) { 1738 decorators |= ACCESS_READ; 1739 decorators |= ACCESS_WRITE; 1740 // Atomic operations are SEQ_CST by default 1741 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1742 LIRAccess access(this, decorators, base, offset, type); 1743 if (access.is_raw()) { 1744 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1745 } else { 1746 return _barrier_set->atomic_add_at(access, value); 1747 } 1748 } 1749 1750 void LIRGenerator::do_LoadField(LoadField* x) { 1751 bool needs_patching = x->needs_patching(); 1752 bool is_volatile = x->field()->is_volatile(); 1753 BasicType field_type = x->field_type(); 1754 1755 CodeEmitInfo* info = nullptr; 1756 if (needs_patching) { 1757 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1758 info = state_for(x, x->state_before()); 1759 } else if (x->needs_null_check()) { 1760 NullCheck* nc = x->explicit_null_check(); 1761 if (nc == nullptr) { 1762 info = state_for(x); 1763 } else { 1764 info = state_for(nc); 1765 } 1766 } 1767 1768 LIRItem object(x->obj(), this); 1769 1770 object.load_item(); 1771 1772 #ifndef PRODUCT 1773 if (PrintNotLoaded && needs_patching) { 1774 tty->print_cr(" ###class not loaded at load_%s bci %d", 1775 x->is_static() ? "static" : "field", x->printable_bci()); 1776 } 1777 #endif 1778 1779 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1780 if (x->needs_null_check() && 1781 (needs_patching || 1782 MacroAssembler::needs_explicit_null_check(x->offset()) || 1783 stress_deopt)) { 1784 LIR_Opr obj = object.result(); 1785 if (stress_deopt) { 1786 obj = new_register(T_OBJECT); 1787 __ move(LIR_OprFact::oopConst(nullptr), obj); 1788 } 1789 // Emit an explicit null check because the offset is too large. 1790 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1791 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1792 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1793 } 1794 1795 DecoratorSet decorators = IN_HEAP; 1796 if (is_volatile) { 1797 decorators |= MO_SEQ_CST; 1798 } 1799 if (needs_patching) { 1800 decorators |= C1_NEEDS_PATCHING; 1801 } 1802 1803 LIR_Opr result = rlock_result(x, field_type); 1804 access_load_at(decorators, field_type, 1805 object, LIR_OprFact::intConst(x->offset()), result, 1806 info ? new CodeEmitInfo(info) : nullptr, info); 1807 } 1808 1809 // int/long jdk.internal.util.Preconditions.checkIndex 1810 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1811 assert(x->number_of_arguments() == 3, "wrong type"); 1812 LIRItem index(x->argument_at(0), this); 1813 LIRItem length(x->argument_at(1), this); 1814 LIRItem oobef(x->argument_at(2), this); 1815 1816 index.load_item(); 1817 length.load_item(); 1818 oobef.load_item(); 1819 1820 LIR_Opr result = rlock_result(x); 1821 // x->state() is created from copy_state_for_exception, it does not contains arguments 1822 // we should prepare them before entering into interpreter mode due to deoptimization. 1823 ValueStack* state = x->state(); 1824 for (int i = 0; i < x->number_of_arguments(); i++) { 1825 Value arg = x->argument_at(i); 1826 state->push(arg->type(), arg); 1827 } 1828 CodeEmitInfo* info = state_for(x, state); 1829 1830 LIR_Opr len = length.result(); 1831 LIR_Opr zero; 1832 if (type == T_INT) { 1833 zero = LIR_OprFact::intConst(0); 1834 if (length.result()->is_constant()){ 1835 len = LIR_OprFact::intConst(length.result()->as_jint()); 1836 } 1837 } else { 1838 assert(type == T_LONG, "sanity check"); 1839 zero = LIR_OprFact::longConst(0); 1840 if (length.result()->is_constant()){ 1841 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1842 } 1843 } 1844 // C1 can not handle the case that comparing index with constant value while condition 1845 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1846 LIR_Opr zero_reg = new_register(type); 1847 __ move(zero, zero_reg); 1848 #if defined(X86) && !defined(_LP64) 1849 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1850 LIR_Opr index_copy = new_register(index.type()); 1851 // index >= 0 1852 __ move(index.result(), index_copy); 1853 __ cmp(lir_cond_less, index_copy, zero_reg); 1854 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1855 Deoptimization::Action_make_not_entrant)); 1856 // index < length 1857 __ move(index.result(), index_copy); 1858 __ cmp(lir_cond_greaterEqual, index_copy, len); 1859 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1860 Deoptimization::Action_make_not_entrant)); 1861 #else 1862 // index >= 0 1863 __ cmp(lir_cond_less, index.result(), zero_reg); 1864 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1865 Deoptimization::Action_make_not_entrant)); 1866 // index < length 1867 __ cmp(lir_cond_greaterEqual, index.result(), len); 1868 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1869 Deoptimization::Action_make_not_entrant)); 1870 #endif 1871 __ move(index.result(), result); 1872 } 1873 1874 //------------------------array access-------------------------------------- 1875 1876 1877 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1878 LIRItem array(x->array(), this); 1879 array.load_item(); 1880 LIR_Opr reg = rlock_result(x); 1881 1882 CodeEmitInfo* info = nullptr; 1883 if (x->needs_null_check()) { 1884 NullCheck* nc = x->explicit_null_check(); 1885 if (nc == nullptr) { 1886 info = state_for(x); 1887 } else { 1888 info = state_for(nc); 1889 } 1890 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1891 LIR_Opr obj = new_register(T_OBJECT); 1892 __ move(LIR_OprFact::oopConst(nullptr), obj); 1893 __ null_check(obj, new CodeEmitInfo(info)); 1894 } 1895 } 1896 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1897 } 1898 1899 1900 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1901 bool use_length = x->length() != nullptr; 1902 LIRItem array(x->array(), this); 1903 LIRItem index(x->index(), this); 1904 LIRItem length(this); 1905 bool needs_range_check = x->compute_needs_range_check(); 1906 1907 if (use_length && needs_range_check) { 1908 length.set_instruction(x->length()); 1909 length.load_item(); 1910 } 1911 1912 array.load_item(); 1913 if (index.is_constant() && can_inline_as_constant(x->index())) { 1914 // let it be a constant 1915 index.dont_load_item(); 1916 } else { 1917 index.load_item(); 1918 } 1919 1920 CodeEmitInfo* range_check_info = state_for(x); 1921 CodeEmitInfo* null_check_info = nullptr; 1922 if (x->needs_null_check()) { 1923 NullCheck* nc = x->explicit_null_check(); 1924 if (nc != nullptr) { 1925 null_check_info = state_for(nc); 1926 } else { 1927 null_check_info = range_check_info; 1928 } 1929 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1930 LIR_Opr obj = new_register(T_OBJECT); 1931 __ move(LIR_OprFact::oopConst(nullptr), obj); 1932 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1933 } 1934 } 1935 1936 if (needs_range_check) { 1937 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1938 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1939 } else if (use_length) { 1940 // TODO: use a (modified) version of array_range_check that does not require a 1941 // constant length to be loaded to a register 1942 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1943 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1944 } else { 1945 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1946 // The range check performs the null check, so clear it out for the load 1947 null_check_info = nullptr; 1948 } 1949 } 1950 1951 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1952 1953 LIR_Opr result = rlock_result(x, x->elt_type()); 1954 access_load_at(decorators, x->elt_type(), 1955 array, index.result(), result, 1956 nullptr, null_check_info); 1957 } 1958 1959 1960 void LIRGenerator::do_NullCheck(NullCheck* x) { 1961 if (x->can_trap()) { 1962 LIRItem value(x->obj(), this); 1963 value.load_item(); 1964 CodeEmitInfo* info = state_for(x); 1965 __ null_check(value.result(), info); 1966 } 1967 } 1968 1969 1970 void LIRGenerator::do_TypeCast(TypeCast* x) { 1971 LIRItem value(x->obj(), this); 1972 value.load_item(); 1973 // the result is the same as from the node we are casting 1974 set_result(x, value.result()); 1975 } 1976 1977 1978 void LIRGenerator::do_Throw(Throw* x) { 1979 LIRItem exception(x->exception(), this); 1980 exception.load_item(); 1981 set_no_result(x); 1982 LIR_Opr exception_opr = exception.result(); 1983 CodeEmitInfo* info = state_for(x, x->state()); 1984 1985 #ifndef PRODUCT 1986 if (PrintC1Statistics) { 1987 increment_counter(Runtime1::throw_count_address(), T_INT); 1988 } 1989 #endif 1990 1991 // check if the instruction has an xhandler in any of the nested scopes 1992 bool unwind = false; 1993 if (info->exception_handlers()->length() == 0) { 1994 // this throw is not inside an xhandler 1995 unwind = true; 1996 } else { 1997 // get some idea of the throw type 1998 bool type_is_exact = true; 1999 ciType* throw_type = x->exception()->exact_type(); 2000 if (throw_type == nullptr) { 2001 type_is_exact = false; 2002 throw_type = x->exception()->declared_type(); 2003 } 2004 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2005 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2006 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2007 } 2008 } 2009 2010 // do null check before moving exception oop into fixed register 2011 // to avoid a fixed interval with an oop during the null check. 2012 // Use a copy of the CodeEmitInfo because debug information is 2013 // different for null_check and throw. 2014 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2015 // if the exception object wasn't created using new then it might be null. 2016 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2017 } 2018 2019 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2020 // we need to go through the exception lookup path to get JVMTI 2021 // notification done 2022 unwind = false; 2023 } 2024 2025 // move exception oop into fixed register 2026 __ move(exception_opr, exceptionOopOpr()); 2027 2028 if (unwind) { 2029 __ unwind_exception(exceptionOopOpr()); 2030 } else { 2031 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2032 } 2033 } 2034 2035 2036 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2037 BasicType type = x->basic_type(); 2038 LIRItem src(x->object(), this); 2039 LIRItem off(x->offset(), this); 2040 2041 off.load_item(); 2042 src.load_item(); 2043 2044 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2045 2046 if (x->is_volatile()) { 2047 decorators |= MO_SEQ_CST; 2048 } 2049 if (type == T_BOOLEAN) { 2050 decorators |= C1_MASK_BOOLEAN; 2051 } 2052 if (is_reference_type(type)) { 2053 decorators |= ON_UNKNOWN_OOP_REF; 2054 } 2055 2056 LIR_Opr result = rlock_result(x, type); 2057 if (!x->is_raw()) { 2058 access_load_at(decorators, type, src, off.result(), result); 2059 } else { 2060 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2061 // It reads the value from [src + offset] directly. 2062 #ifdef _LP64 2063 LIR_Opr offset = new_register(T_LONG); 2064 __ convert(Bytecodes::_i2l, off.result(), offset); 2065 #else 2066 LIR_Opr offset = off.result(); 2067 #endif 2068 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2069 if (is_reference_type(type)) { 2070 __ move_wide(addr, result); 2071 } else { 2072 __ move(addr, result); 2073 } 2074 } 2075 } 2076 2077 2078 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2079 BasicType type = x->basic_type(); 2080 LIRItem src(x->object(), this); 2081 LIRItem off(x->offset(), this); 2082 LIRItem data(x->value(), this); 2083 2084 src.load_item(); 2085 if (type == T_BOOLEAN || type == T_BYTE) { 2086 data.load_byte_item(); 2087 } else { 2088 data.load_item(); 2089 } 2090 off.load_item(); 2091 2092 set_no_result(x); 2093 2094 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2095 if (is_reference_type(type)) { 2096 decorators |= ON_UNKNOWN_OOP_REF; 2097 } 2098 if (x->is_volatile()) { 2099 decorators |= MO_SEQ_CST; 2100 } 2101 access_store_at(decorators, type, src, off.result(), data.result()); 2102 } 2103 2104 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2105 BasicType type = x->basic_type(); 2106 LIRItem src(x->object(), this); 2107 LIRItem off(x->offset(), this); 2108 LIRItem value(x->value(), this); 2109 2110 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2111 2112 if (is_reference_type(type)) { 2113 decorators |= ON_UNKNOWN_OOP_REF; 2114 } 2115 2116 LIR_Opr result; 2117 if (x->is_add()) { 2118 result = access_atomic_add_at(decorators, type, src, off, value); 2119 } else { 2120 result = access_atomic_xchg_at(decorators, type, src, off, value); 2121 } 2122 set_result(x, result); 2123 } 2124 2125 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2126 int lng = x->length(); 2127 2128 for (int i = 0; i < lng; i++) { 2129 C1SwitchRange* one_range = x->at(i); 2130 int low_key = one_range->low_key(); 2131 int high_key = one_range->high_key(); 2132 BlockBegin* dest = one_range->sux(); 2133 if (low_key == high_key) { 2134 __ cmp(lir_cond_equal, value, low_key); 2135 __ branch(lir_cond_equal, dest); 2136 } else if (high_key - low_key == 1) { 2137 __ cmp(lir_cond_equal, value, low_key); 2138 __ branch(lir_cond_equal, dest); 2139 __ cmp(lir_cond_equal, value, high_key); 2140 __ branch(lir_cond_equal, dest); 2141 } else { 2142 LabelObj* L = new LabelObj(); 2143 __ cmp(lir_cond_less, value, low_key); 2144 __ branch(lir_cond_less, L->label()); 2145 __ cmp(lir_cond_lessEqual, value, high_key); 2146 __ branch(lir_cond_lessEqual, dest); 2147 __ branch_destination(L->label()); 2148 } 2149 } 2150 __ jump(default_sux); 2151 } 2152 2153 2154 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2155 SwitchRangeList* res = new SwitchRangeList(); 2156 int len = x->length(); 2157 if (len > 0) { 2158 BlockBegin* sux = x->sux_at(0); 2159 int low = x->lo_key(); 2160 BlockBegin* default_sux = x->default_sux(); 2161 C1SwitchRange* range = new C1SwitchRange(low, sux); 2162 for (int i = 0; i < len; i++) { 2163 int key = low + i; 2164 BlockBegin* new_sux = x->sux_at(i); 2165 if (sux == new_sux) { 2166 // still in same range 2167 range->set_high_key(key); 2168 } else { 2169 // skip tests which explicitly dispatch to the default 2170 if (sux != default_sux) { 2171 res->append(range); 2172 } 2173 range = new C1SwitchRange(key, new_sux); 2174 } 2175 sux = new_sux; 2176 } 2177 if (res->length() == 0 || res->last() != range) res->append(range); 2178 } 2179 return res; 2180 } 2181 2182 2183 // we expect the keys to be sorted by increasing value 2184 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2185 SwitchRangeList* res = new SwitchRangeList(); 2186 int len = x->length(); 2187 if (len > 0) { 2188 BlockBegin* default_sux = x->default_sux(); 2189 int key = x->key_at(0); 2190 BlockBegin* sux = x->sux_at(0); 2191 C1SwitchRange* range = new C1SwitchRange(key, sux); 2192 for (int i = 1; i < len; i++) { 2193 int new_key = x->key_at(i); 2194 BlockBegin* new_sux = x->sux_at(i); 2195 if (key+1 == new_key && sux == new_sux) { 2196 // still in same range 2197 range->set_high_key(new_key); 2198 } else { 2199 // skip tests which explicitly dispatch to the default 2200 if (range->sux() != default_sux) { 2201 res->append(range); 2202 } 2203 range = new C1SwitchRange(new_key, new_sux); 2204 } 2205 key = new_key; 2206 sux = new_sux; 2207 } 2208 if (res->length() == 0 || res->last() != range) res->append(range); 2209 } 2210 return res; 2211 } 2212 2213 2214 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2215 LIRItem tag(x->tag(), this); 2216 tag.load_item(); 2217 set_no_result(x); 2218 2219 if (x->is_safepoint()) { 2220 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2221 } 2222 2223 // move values into phi locations 2224 move_to_phi(x->state()); 2225 2226 int lo_key = x->lo_key(); 2227 int len = x->length(); 2228 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2229 LIR_Opr value = tag.result(); 2230 2231 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2232 ciMethod* method = x->state()->scope()->method(); 2233 ciMethodData* md = method->method_data_or_null(); 2234 assert(md != nullptr, "Sanity"); 2235 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2236 assert(data != nullptr, "must have profiling data"); 2237 assert(data->is_MultiBranchData(), "bad profile data?"); 2238 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2239 LIR_Opr md_reg = new_register(T_METADATA); 2240 __ metadata2reg(md->constant_encoding(), md_reg); 2241 LIR_Opr data_offset_reg = new_pointer_register(); 2242 LIR_Opr tmp_reg = new_pointer_register(); 2243 2244 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2245 for (int i = 0; i < len; i++) { 2246 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2247 __ cmp(lir_cond_equal, value, i + lo_key); 2248 __ move(data_offset_reg, tmp_reg); 2249 __ cmove(lir_cond_equal, 2250 LIR_OprFact::intptrConst(count_offset), 2251 tmp_reg, 2252 data_offset_reg, T_INT); 2253 } 2254 2255 LIR_Opr data_reg = new_pointer_register(); 2256 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2257 __ move(data_addr, data_reg); 2258 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2259 __ move(data_reg, data_addr); 2260 } 2261 2262 if (UseTableRanges) { 2263 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2264 } else { 2265 for (int i = 0; i < len; i++) { 2266 __ cmp(lir_cond_equal, value, i + lo_key); 2267 __ branch(lir_cond_equal, x->sux_at(i)); 2268 } 2269 __ jump(x->default_sux()); 2270 } 2271 } 2272 2273 2274 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2275 LIRItem tag(x->tag(), this); 2276 tag.load_item(); 2277 set_no_result(x); 2278 2279 if (x->is_safepoint()) { 2280 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2281 } 2282 2283 // move values into phi locations 2284 move_to_phi(x->state()); 2285 2286 LIR_Opr value = tag.result(); 2287 int len = x->length(); 2288 2289 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2290 ciMethod* method = x->state()->scope()->method(); 2291 ciMethodData* md = method->method_data_or_null(); 2292 assert(md != nullptr, "Sanity"); 2293 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2294 assert(data != nullptr, "must have profiling data"); 2295 assert(data->is_MultiBranchData(), "bad profile data?"); 2296 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2297 LIR_Opr md_reg = new_register(T_METADATA); 2298 __ metadata2reg(md->constant_encoding(), md_reg); 2299 LIR_Opr data_offset_reg = new_pointer_register(); 2300 LIR_Opr tmp_reg = new_pointer_register(); 2301 2302 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2303 for (int i = 0; i < len; i++) { 2304 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2305 __ cmp(lir_cond_equal, value, x->key_at(i)); 2306 __ move(data_offset_reg, tmp_reg); 2307 __ cmove(lir_cond_equal, 2308 LIR_OprFact::intptrConst(count_offset), 2309 tmp_reg, 2310 data_offset_reg, T_INT); 2311 } 2312 2313 LIR_Opr data_reg = new_pointer_register(); 2314 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2315 __ move(data_addr, data_reg); 2316 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2317 __ move(data_reg, data_addr); 2318 } 2319 2320 if (UseTableRanges) { 2321 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2322 } else { 2323 int len = x->length(); 2324 for (int i = 0; i < len; i++) { 2325 __ cmp(lir_cond_equal, value, x->key_at(i)); 2326 __ branch(lir_cond_equal, x->sux_at(i)); 2327 } 2328 __ jump(x->default_sux()); 2329 } 2330 } 2331 2332 2333 void LIRGenerator::do_Goto(Goto* x) { 2334 set_no_result(x); 2335 2336 if (block()->next()->as_OsrEntry()) { 2337 // need to free up storage used for OSR entry point 2338 LIR_Opr osrBuffer = block()->next()->operand(); 2339 BasicTypeList signature; 2340 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2341 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2342 __ move(osrBuffer, cc->args()->at(0)); 2343 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2344 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2345 } 2346 2347 if (x->is_safepoint()) { 2348 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2349 2350 // increment backedge counter if needed 2351 CodeEmitInfo* info = state_for(x, state); 2352 increment_backedge_counter(info, x->profiled_bci()); 2353 CodeEmitInfo* safepoint_info = state_for(x, state); 2354 __ safepoint(safepoint_poll_register(), safepoint_info); 2355 } 2356 2357 // Gotos can be folded Ifs, handle this case. 2358 if (x->should_profile()) { 2359 ciMethod* method = x->profiled_method(); 2360 assert(method != nullptr, "method should be set if branch is profiled"); 2361 ciMethodData* md = method->method_data_or_null(); 2362 assert(md != nullptr, "Sanity"); 2363 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2364 assert(data != nullptr, "must have profiling data"); 2365 int offset; 2366 if (x->direction() == Goto::taken) { 2367 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2368 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2369 } else if (x->direction() == Goto::not_taken) { 2370 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2371 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2372 } else { 2373 assert(data->is_JumpData(), "need JumpData for branches"); 2374 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2375 } 2376 LIR_Opr md_reg = new_register(T_METADATA); 2377 __ metadata2reg(md->constant_encoding(), md_reg); 2378 2379 increment_counter(new LIR_Address(md_reg, offset, 2380 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2381 } 2382 2383 // emit phi-instruction move after safepoint since this simplifies 2384 // describing the state as the safepoint. 2385 move_to_phi(x->state()); 2386 2387 __ jump(x->default_sux()); 2388 } 2389 2390 /** 2391 * Emit profiling code if needed for arguments, parameters, return value types 2392 * 2393 * @param md MDO the code will update at runtime 2394 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2395 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2396 * @param profiled_k current profile 2397 * @param obj IR node for the object to be profiled 2398 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2399 * Set once we find an update to make and use for next ones. 2400 * @param not_null true if we know obj cannot be null 2401 * @param signature_at_call_k signature at call for obj 2402 * @param callee_signature_k signature of callee for obj 2403 * at call and callee signatures differ at method handle call 2404 * @return the only klass we know will ever be seen at this profile point 2405 */ 2406 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2407 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2408 ciKlass* callee_signature_k) { 2409 ciKlass* result = nullptr; 2410 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2411 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2412 // known not to be null or null bit already set and already set to 2413 // unknown: nothing we can do to improve profiling 2414 if (!do_null && !do_update) { 2415 return result; 2416 } 2417 2418 ciKlass* exact_klass = nullptr; 2419 Compilation* comp = Compilation::current(); 2420 if (do_update) { 2421 // try to find exact type, using CHA if possible, so that loading 2422 // the klass from the object can be avoided 2423 ciType* type = obj->exact_type(); 2424 if (type == nullptr) { 2425 type = obj->declared_type(); 2426 type = comp->cha_exact_type(type); 2427 } 2428 assert(type == nullptr || type->is_klass(), "type should be class"); 2429 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2430 2431 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2432 } 2433 2434 if (!do_null && !do_update) { 2435 return result; 2436 } 2437 2438 ciKlass* exact_signature_k = nullptr; 2439 if (do_update) { 2440 // Is the type from the signature exact (the only one possible)? 2441 exact_signature_k = signature_at_call_k->exact_klass(); 2442 if (exact_signature_k == nullptr) { 2443 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2444 } else { 2445 result = exact_signature_k; 2446 // Known statically. No need to emit any code: prevent 2447 // LIR_Assembler::emit_profile_type() from emitting useless code 2448 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2449 } 2450 // exact_klass and exact_signature_k can be both non null but 2451 // different if exact_klass is loaded after the ciObject for 2452 // exact_signature_k is created. 2453 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2454 // sometimes the type of the signature is better than the best type 2455 // the compiler has 2456 exact_klass = exact_signature_k; 2457 } 2458 if (callee_signature_k != nullptr && 2459 callee_signature_k != signature_at_call_k) { 2460 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2461 if (improved_klass == nullptr) { 2462 improved_klass = comp->cha_exact_type(callee_signature_k); 2463 } 2464 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2465 exact_klass = exact_signature_k; 2466 } 2467 } 2468 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2469 } 2470 2471 if (!do_null && !do_update) { 2472 return result; 2473 } 2474 2475 if (mdp == LIR_OprFact::illegalOpr) { 2476 mdp = new_register(T_METADATA); 2477 __ metadata2reg(md->constant_encoding(), mdp); 2478 if (md_base_offset != 0) { 2479 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2480 mdp = new_pointer_register(); 2481 __ leal(LIR_OprFact::address(base_type_address), mdp); 2482 } 2483 } 2484 LIRItem value(obj, this); 2485 value.load_item(); 2486 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2487 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2488 return result; 2489 } 2490 2491 // profile parameters on entry to the root of the compilation 2492 void LIRGenerator::profile_parameters(Base* x) { 2493 if (compilation()->profile_parameters()) { 2494 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2495 ciMethodData* md = scope()->method()->method_data_or_null(); 2496 assert(md != nullptr, "Sanity"); 2497 2498 if (md->parameters_type_data() != nullptr) { 2499 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2500 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2501 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2502 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2503 LIR_Opr src = args->at(i); 2504 assert(!src->is_illegal(), "check"); 2505 BasicType t = src->type(); 2506 if (is_reference_type(t)) { 2507 intptr_t profiled_k = parameters->type(j); 2508 Local* local = x->state()->local_at(java_index)->as_Local(); 2509 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2510 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2511 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2512 // If the profile is known statically set it once for all and do not emit any code 2513 if (exact != nullptr) { 2514 md->set_parameter_type(j, exact); 2515 } 2516 j++; 2517 } 2518 java_index += type2size[t]; 2519 } 2520 } 2521 } 2522 } 2523 2524 void LIRGenerator::do_Base(Base* x) { 2525 __ std_entry(LIR_OprFact::illegalOpr); 2526 // Emit moves from physical registers / stack slots to virtual registers 2527 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2528 IRScope* irScope = compilation()->hir()->top_scope(); 2529 int java_index = 0; 2530 for (int i = 0; i < args->length(); i++) { 2531 LIR_Opr src = args->at(i); 2532 assert(!src->is_illegal(), "check"); 2533 BasicType t = src->type(); 2534 2535 // Types which are smaller than int are passed as int, so 2536 // correct the type which passed. 2537 switch (t) { 2538 case T_BYTE: 2539 case T_BOOLEAN: 2540 case T_SHORT: 2541 case T_CHAR: 2542 t = T_INT; 2543 break; 2544 default: 2545 break; 2546 } 2547 2548 LIR_Opr dest = new_register(t); 2549 __ move(src, dest); 2550 2551 // Assign new location to Local instruction for this local 2552 Local* local = x->state()->local_at(java_index)->as_Local(); 2553 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2554 #ifndef __SOFTFP__ 2555 // The java calling convention passes double as long and float as int. 2556 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2557 #endif // __SOFTFP__ 2558 local->set_operand(dest); 2559 #ifdef ASSERT 2560 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2561 #endif 2562 java_index += type2size[t]; 2563 } 2564 2565 if (compilation()->env()->dtrace_method_probes()) { 2566 BasicTypeList signature; 2567 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2568 signature.append(T_METADATA); // Method* 2569 LIR_OprList* args = new LIR_OprList(); 2570 args->append(getThreadPointer()); 2571 LIR_Opr meth = new_register(T_METADATA); 2572 __ metadata2reg(method()->constant_encoding(), meth); 2573 args->append(meth); 2574 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2575 } 2576 2577 MethodDetails method_details(method()); 2578 RuntimeUpcallInfo* upcall = RuntimeUpcalls::get_first_upcall(RuntimeUpcallType::onMethodEntry, method_details); 2579 while (upcall != nullptr) { 2580 BasicTypeList signature; 2581 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2582 LIR_OprList* args = new LIR_OprList(); 2583 args->append(getThreadPointer()); 2584 call_runtime(&signature, args, upcall->upcall_address(), voidType, nullptr); 2585 upcall = RuntimeUpcalls::get_next_upcall(RuntimeUpcallType::onMethodEntry, method_details, upcall); 2586 } 2587 2588 if (method()->is_synchronized()) { 2589 LIR_Opr obj; 2590 if (method()->is_static()) { 2591 obj = new_register(T_OBJECT); 2592 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2593 } else { 2594 Local* receiver = x->state()->local_at(0)->as_Local(); 2595 assert(receiver != nullptr, "must already exist"); 2596 obj = receiver->operand(); 2597 } 2598 assert(obj->is_valid(), "must be valid"); 2599 2600 if (method()->is_synchronized()) { 2601 LIR_Opr lock = syncLockOpr(); 2602 __ load_stack_address_monitor(0, lock); 2603 2604 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2605 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2606 2607 // receiver is guaranteed non-null so don't need CodeEmitInfo 2608 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2609 } 2610 } 2611 // increment invocation counters if needed 2612 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2613 profile_parameters(x); 2614 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2615 increment_invocation_counter(info); 2616 } 2617 2618 // all blocks with a successor must end with an unconditional jump 2619 // to the successor even if they are consecutive 2620 __ jump(x->default_sux()); 2621 } 2622 2623 2624 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2625 // construct our frame and model the production of incoming pointer 2626 // to the OSR buffer. 2627 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2628 LIR_Opr result = rlock_result(x); 2629 __ move(LIR_Assembler::osrBufferPointer(), result); 2630 } 2631 2632 2633 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2634 assert(args->length() == arg_list->length(), 2635 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2636 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2637 LIRItem* param = args->at(i); 2638 LIR_Opr loc = arg_list->at(i); 2639 if (loc->is_register()) { 2640 param->load_item_force(loc); 2641 } else { 2642 LIR_Address* addr = loc->as_address_ptr(); 2643 param->load_for_store(addr->type()); 2644 if (addr->type() == T_OBJECT) { 2645 __ move_wide(param->result(), addr); 2646 } else 2647 __ move(param->result(), addr); 2648 } 2649 } 2650 2651 if (x->has_receiver()) { 2652 LIRItem* receiver = args->at(0); 2653 LIR_Opr loc = arg_list->at(0); 2654 if (loc->is_register()) { 2655 receiver->load_item_force(loc); 2656 } else { 2657 assert(loc->is_address(), "just checking"); 2658 receiver->load_for_store(T_OBJECT); 2659 __ move_wide(receiver->result(), loc->as_address_ptr()); 2660 } 2661 } 2662 } 2663 2664 2665 // Visits all arguments, returns appropriate items without loading them 2666 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2667 LIRItemList* argument_items = new LIRItemList(); 2668 if (x->has_receiver()) { 2669 LIRItem* receiver = new LIRItem(x->receiver(), this); 2670 argument_items->append(receiver); 2671 } 2672 for (int i = 0; i < x->number_of_arguments(); i++) { 2673 LIRItem* param = new LIRItem(x->argument_at(i), this); 2674 argument_items->append(param); 2675 } 2676 return argument_items; 2677 } 2678 2679 2680 // The invoke with receiver has following phases: 2681 // a) traverse and load/lock receiver; 2682 // b) traverse all arguments -> item-array (invoke_visit_argument) 2683 // c) push receiver on stack 2684 // d) load each of the items and push on stack 2685 // e) unlock receiver 2686 // f) move receiver into receiver-register %o0 2687 // g) lock result registers and emit call operation 2688 // 2689 // Before issuing a call, we must spill-save all values on stack 2690 // that are in caller-save register. "spill-save" moves those registers 2691 // either in a free callee-save register or spills them if no free 2692 // callee save register is available. 2693 // 2694 // The problem is where to invoke spill-save. 2695 // - if invoked between e) and f), we may lock callee save 2696 // register in "spill-save" that destroys the receiver register 2697 // before f) is executed 2698 // - if we rearrange f) to be earlier (by loading %o0) it 2699 // may destroy a value on the stack that is currently in %o0 2700 // and is waiting to be spilled 2701 // - if we keep the receiver locked while doing spill-save, 2702 // we cannot spill it as it is spill-locked 2703 // 2704 void LIRGenerator::do_Invoke(Invoke* x) { 2705 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2706 2707 LIR_OprList* arg_list = cc->args(); 2708 LIRItemList* args = invoke_visit_arguments(x); 2709 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2710 2711 // setup result register 2712 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2713 if (x->type() != voidType) { 2714 result_register = result_register_for(x->type()); 2715 } 2716 2717 CodeEmitInfo* info = state_for(x, x->state()); 2718 2719 invoke_load_arguments(x, args, arg_list); 2720 2721 if (x->has_receiver()) { 2722 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2723 receiver = args->at(0)->result(); 2724 } 2725 2726 // emit invoke code 2727 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2728 2729 // JSR 292 2730 // Preserve the SP over MethodHandle call sites, if needed. 2731 ciMethod* target = x->target(); 2732 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2733 target->is_method_handle_intrinsic() || 2734 target->is_compiled_lambda_form()); 2735 if (is_method_handle_invoke) { 2736 info->set_is_method_handle_invoke(true); 2737 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2738 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2739 } 2740 } 2741 2742 switch (x->code()) { 2743 case Bytecodes::_invokestatic: 2744 __ call_static(target, result_register, 2745 SharedRuntime::get_resolve_static_call_stub(), 2746 arg_list, info); 2747 break; 2748 case Bytecodes::_invokespecial: 2749 case Bytecodes::_invokevirtual: 2750 case Bytecodes::_invokeinterface: 2751 // for loaded and final (method or class) target we still produce an inline cache, 2752 // in order to be able to call mixed mode 2753 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2754 __ call_opt_virtual(target, receiver, result_register, 2755 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2756 arg_list, info); 2757 } else { 2758 __ call_icvirtual(target, receiver, result_register, 2759 SharedRuntime::get_resolve_virtual_call_stub(), 2760 arg_list, info); 2761 } 2762 break; 2763 case Bytecodes::_invokedynamic: { 2764 __ call_dynamic(target, receiver, result_register, 2765 SharedRuntime::get_resolve_static_call_stub(), 2766 arg_list, info); 2767 break; 2768 } 2769 default: 2770 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2771 break; 2772 } 2773 2774 // JSR 292 2775 // Restore the SP after MethodHandle call sites, if needed. 2776 if (is_method_handle_invoke 2777 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2778 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2779 } 2780 2781 if (result_register->is_valid()) { 2782 LIR_Opr result = rlock_result(x); 2783 __ move(result_register, result); 2784 } 2785 } 2786 2787 2788 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2789 assert(x->number_of_arguments() == 1, "wrong type"); 2790 LIRItem value (x->argument_at(0), this); 2791 LIR_Opr reg = rlock_result(x); 2792 value.load_item(); 2793 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2794 __ move(tmp, reg); 2795 } 2796 2797 2798 2799 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2800 void LIRGenerator::do_IfOp(IfOp* x) { 2801 #ifdef ASSERT 2802 { 2803 ValueTag xtag = x->x()->type()->tag(); 2804 ValueTag ttag = x->tval()->type()->tag(); 2805 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2806 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2807 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2808 } 2809 #endif 2810 2811 LIRItem left(x->x(), this); 2812 LIRItem right(x->y(), this); 2813 left.load_item(); 2814 if (can_inline_as_constant(right.value())) { 2815 right.dont_load_item(); 2816 } else { 2817 right.load_item(); 2818 } 2819 2820 LIRItem t_val(x->tval(), this); 2821 LIRItem f_val(x->fval(), this); 2822 t_val.dont_load_item(); 2823 f_val.dont_load_item(); 2824 LIR_Opr reg = rlock_result(x); 2825 2826 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2827 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2828 } 2829 2830 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2831 assert(x->number_of_arguments() == 0, "wrong type"); 2832 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2833 BasicTypeList signature; 2834 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2835 LIR_Opr reg = result_register_for(x->type()); 2836 __ call_runtime_leaf(routine, getThreadTemp(), 2837 reg, new LIR_OprList()); 2838 LIR_Opr result = rlock_result(x); 2839 __ move(reg, result); 2840 } 2841 2842 2843 2844 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2845 switch (x->id()) { 2846 case vmIntrinsics::_intBitsToFloat : 2847 case vmIntrinsics::_doubleToRawLongBits : 2848 case vmIntrinsics::_longBitsToDouble : 2849 case vmIntrinsics::_floatToRawIntBits : { 2850 do_FPIntrinsics(x); 2851 break; 2852 } 2853 2854 #ifdef JFR_HAVE_INTRINSICS 2855 case vmIntrinsics::_counterTime: 2856 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2857 break; 2858 #endif 2859 2860 case vmIntrinsics::_currentTimeMillis: 2861 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2862 break; 2863 2864 case vmIntrinsics::_nanoTime: 2865 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2866 break; 2867 2868 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2869 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2870 case vmIntrinsics::_getClass: do_getClass(x); break; 2871 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2872 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2873 case vmIntrinsics::_currentThread: do_vthread(x); break; 2874 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2875 2876 case vmIntrinsics::_dlog: // fall through 2877 case vmIntrinsics::_dlog10: // fall through 2878 case vmIntrinsics::_dabs: // fall through 2879 case vmIntrinsics::_dsqrt: // fall through 2880 case vmIntrinsics::_dsqrt_strict: // fall through 2881 case vmIntrinsics::_dtan: // fall through 2882 case vmIntrinsics::_dsinh: // fall through 2883 case vmIntrinsics::_dtanh: // fall through 2884 case vmIntrinsics::_dsin : // fall through 2885 case vmIntrinsics::_dcos : // fall through 2886 case vmIntrinsics::_dcbrt : // fall through 2887 case vmIntrinsics::_dexp : // fall through 2888 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2889 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2890 2891 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2892 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2893 2894 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2895 case vmIntrinsics::_floatToFloat16: // fall through 2896 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2897 2898 case vmIntrinsics::_Preconditions_checkIndex: 2899 do_PreconditionsCheckIndex(x, T_INT); 2900 break; 2901 case vmIntrinsics::_Preconditions_checkLongIndex: 2902 do_PreconditionsCheckIndex(x, T_LONG); 2903 break; 2904 2905 case vmIntrinsics::_compareAndSetReference: 2906 do_CompareAndSwap(x, objectType); 2907 break; 2908 case vmIntrinsics::_compareAndSetInt: 2909 do_CompareAndSwap(x, intType); 2910 break; 2911 case vmIntrinsics::_compareAndSetLong: 2912 do_CompareAndSwap(x, longType); 2913 break; 2914 2915 case vmIntrinsics::_loadFence : 2916 __ membar_acquire(); 2917 break; 2918 case vmIntrinsics::_storeFence: 2919 __ membar_release(); 2920 break; 2921 case vmIntrinsics::_storeStoreFence: 2922 __ membar_storestore(); 2923 break; 2924 case vmIntrinsics::_fullFence : 2925 __ membar(); 2926 break; 2927 case vmIntrinsics::_onSpinWait: 2928 __ on_spin_wait(); 2929 break; 2930 case vmIntrinsics::_Reference_get0: 2931 do_Reference_get0(x); 2932 break; 2933 2934 case vmIntrinsics::_updateCRC32: 2935 case vmIntrinsics::_updateBytesCRC32: 2936 case vmIntrinsics::_updateByteBufferCRC32: 2937 do_update_CRC32(x); 2938 break; 2939 2940 case vmIntrinsics::_updateBytesCRC32C: 2941 case vmIntrinsics::_updateDirectByteBufferCRC32C: 2942 do_update_CRC32C(x); 2943 break; 2944 2945 case vmIntrinsics::_vectorizedMismatch: 2946 do_vectorizedMismatch(x); 2947 break; 2948 2949 case vmIntrinsics::_blackhole: 2950 do_blackhole(x); 2951 break; 2952 2953 default: ShouldNotReachHere(); break; 2954 } 2955 } 2956 2957 void LIRGenerator::profile_arguments(ProfileCall* x) { 2958 if (compilation()->profile_arguments()) { 2959 int bci = x->bci_of_invoke(); 2960 ciMethodData* md = x->method()->method_data_or_null(); 2961 assert(md != nullptr, "Sanity"); 2962 ciProfileData* data = md->bci_to_data(bci); 2963 if (data != nullptr) { 2964 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 2965 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 2966 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 2967 int base_offset = md->byte_offset_of_slot(data, extra); 2968 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2969 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 2970 2971 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 2972 int start = 0; 2973 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 2974 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 2975 // first argument is not profiled at call (method handle invoke) 2976 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 2977 start = 1; 2978 } 2979 ciSignature* callee_signature = x->callee()->signature(); 2980 // method handle call to virtual method 2981 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 2982 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 2983 2984 bool ignored_will_link; 2985 ciSignature* signature_at_call = nullptr; 2986 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 2987 ciSignatureStream signature_at_call_stream(signature_at_call); 2988 2989 // if called through method handle invoke, some arguments may have been popped 2990 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 2991 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 2992 ciKlass* exact = profile_type(md, base_offset, off, 2993 args->type(i), x->profiled_arg_at(i+start), mdp, 2994 !x->arg_needs_null_check(i+start), 2995 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 2996 if (exact != nullptr) { 2997 md->set_argument_type(bci, i, exact); 2998 } 2999 } 3000 } else { 3001 #ifdef ASSERT 3002 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3003 int n = x->nb_profiled_args(); 3004 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3005 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3006 "only at JSR292 bytecodes"); 3007 #endif 3008 } 3009 } 3010 } 3011 } 3012 3013 // profile parameters on entry to an inlined method 3014 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3015 if (compilation()->profile_parameters() && x->inlined()) { 3016 ciMethodData* md = x->callee()->method_data_or_null(); 3017 if (md != nullptr) { 3018 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3019 if (parameters_type_data != nullptr) { 3020 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3021 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3022 bool has_receiver = !x->callee()->is_static(); 3023 ciSignature* sig = x->callee()->signature(); 3024 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3025 int i = 0; // to iterate on the Instructions 3026 Value arg = x->recv(); 3027 bool not_null = false; 3028 int bci = x->bci_of_invoke(); 3029 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3030 // The first parameter is the receiver so that's what we start 3031 // with if it exists. One exception is method handle call to 3032 // virtual method: the receiver is in the args list 3033 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3034 i = 1; 3035 arg = x->profiled_arg_at(0); 3036 not_null = !x->arg_needs_null_check(0); 3037 } 3038 int k = 0; // to iterate on the profile data 3039 for (;;) { 3040 intptr_t profiled_k = parameters->type(k); 3041 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3042 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3043 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3044 // If the profile is known statically set it once for all and do not emit any code 3045 if (exact != nullptr) { 3046 md->set_parameter_type(k, exact); 3047 } 3048 k++; 3049 if (k >= parameters_type_data->number_of_parameters()) { 3050 #ifdef ASSERT 3051 int extra = 0; 3052 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3053 x->nb_profiled_args() >= TypeProfileParmsLimit && 3054 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3055 extra += 1; 3056 } 3057 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3058 #endif 3059 break; 3060 } 3061 arg = x->profiled_arg_at(i); 3062 not_null = !x->arg_needs_null_check(i); 3063 i++; 3064 } 3065 } 3066 } 3067 } 3068 } 3069 3070 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3071 // Need recv in a temporary register so it interferes with the other temporaries 3072 LIR_Opr recv = LIR_OprFact::illegalOpr; 3073 LIR_Opr mdo = new_register(T_METADATA); 3074 // tmp is used to hold the counters on SPARC 3075 LIR_Opr tmp = new_pointer_register(); 3076 3077 if (x->nb_profiled_args() > 0) { 3078 profile_arguments(x); 3079 } 3080 3081 // profile parameters on inlined method entry including receiver 3082 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3083 profile_parameters_at_call(x); 3084 } 3085 3086 if (x->recv() != nullptr) { 3087 LIRItem value(x->recv(), this); 3088 value.load_item(); 3089 recv = new_register(T_OBJECT); 3090 __ move(value.result(), recv); 3091 } 3092 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3093 } 3094 3095 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3096 int bci = x->bci_of_invoke(); 3097 ciMethodData* md = x->method()->method_data_or_null(); 3098 assert(md != nullptr, "Sanity"); 3099 ciProfileData* data = md->bci_to_data(bci); 3100 if (data != nullptr) { 3101 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3102 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3103 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3104 3105 bool ignored_will_link; 3106 ciSignature* signature_at_call = nullptr; 3107 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3108 3109 // The offset within the MDO of the entry to update may be too large 3110 // to be used in load/store instructions on some platforms. So have 3111 // profile_type() compute the address of the profile in a register. 3112 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3113 ret->type(), x->ret(), mdp, 3114 !x->needs_null_check(), 3115 signature_at_call->return_type()->as_klass(), 3116 x->callee()->signature()->return_type()->as_klass()); 3117 if (exact != nullptr) { 3118 md->set_return_type(bci, exact); 3119 } 3120 } 3121 } 3122 3123 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3124 // We can safely ignore accessors here, since c2 will inline them anyway, 3125 // accessors are also always mature. 3126 if (!x->inlinee()->is_accessor()) { 3127 CodeEmitInfo* info = state_for(x, x->state(), true); 3128 // Notify the runtime very infrequently only to take care of counter overflows 3129 int freq_log = Tier23InlineeNotifyFreqLog; 3130 double scale; 3131 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3132 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3133 } 3134 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3135 } 3136 } 3137 3138 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3139 if (compilation()->is_profiling()) { 3140 #if defined(X86) && !defined(_LP64) 3141 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3142 LIR_Opr left_copy = new_register(left->type()); 3143 __ move(left, left_copy); 3144 __ cmp(cond, left_copy, right); 3145 #else 3146 __ cmp(cond, left, right); 3147 #endif 3148 LIR_Opr step = new_register(T_INT); 3149 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3150 LIR_Opr zero = LIR_OprFact::intConst(0); 3151 __ cmove(cond, 3152 (left_bci < bci) ? plus_one : zero, 3153 (right_bci < bci) ? plus_one : zero, 3154 step, left->type()); 3155 increment_backedge_counter(info, step, bci); 3156 } 3157 } 3158 3159 3160 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3161 int freq_log = 0; 3162 int level = compilation()->env()->comp_level(); 3163 if (level == CompLevel_limited_profile) { 3164 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3165 } else if (level == CompLevel_full_profile) { 3166 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3167 } else { 3168 ShouldNotReachHere(); 3169 } 3170 // Increment the appropriate invocation/backedge counter and notify the runtime. 3171 double scale; 3172 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3173 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3174 } 3175 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3176 } 3177 3178 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3179 ciMethod *method, LIR_Opr step, int frequency, 3180 int bci, bool backedge, bool notify) { 3181 if (PreloadOnly) { 3182 // Nothing to do if we only use preload code. 3183 return; 3184 } 3185 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3186 int level = _compilation->env()->comp_level(); 3187 assert(level > CompLevel_simple, "Shouldn't be here"); 3188 3189 int offset = -1; 3190 LIR_Opr counter_holder; 3191 if (level == CompLevel_limited_profile) { 3192 MethodCounters* counters_adr = method->ensure_method_counters(); 3193 if (counters_adr == nullptr) { 3194 bailout("method counters allocation failed"); 3195 return; 3196 } 3197 if (AOTCodeCache::is_on()) { 3198 counter_holder = new_register(T_METADATA); 3199 __ metadata2reg(counters_adr, counter_holder); 3200 } else { 3201 counter_holder = new_pointer_register(); 3202 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3203 } 3204 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3205 MethodCounters::invocation_counter_offset()); 3206 } else if (level == CompLevel_full_profile) { 3207 counter_holder = new_register(T_METADATA); 3208 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3209 MethodData::invocation_counter_offset()); 3210 ciMethodData* md = method->method_data_or_null(); 3211 assert(md != nullptr, "Sanity"); 3212 __ metadata2reg(md->constant_encoding(), counter_holder); 3213 } else { 3214 ShouldNotReachHere(); 3215 } 3216 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3217 LIR_Opr result = new_register(T_INT); 3218 __ load(counter, result); 3219 __ add(result, step, result); 3220 __ store(result, counter); 3221 if (notify && (!backedge || UseOnStackReplacement)) { 3222 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3223 // The bci for info can point to cmp for if's we want the if bci 3224 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3225 int freq = frequency << InvocationCounter::count_shift; 3226 if (freq == 0) { 3227 if (!step->is_constant()) { 3228 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3229 __ branch(lir_cond_notEqual, overflow); 3230 } else { 3231 __ branch(lir_cond_always, overflow); 3232 } 3233 } else { 3234 LIR_Opr mask = load_immediate(freq, T_INT); 3235 if (!step->is_constant()) { 3236 // If step is 0, make sure the overflow check below always fails 3237 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3238 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3239 } 3240 __ logical_and(result, mask, result); 3241 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3242 __ branch(lir_cond_equal, overflow); 3243 } 3244 __ branch_destination(overflow->continuation()); 3245 } 3246 } 3247 3248 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3249 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3250 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3251 3252 if (x->pass_thread()) { 3253 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3254 args->append(getThreadPointer()); 3255 } 3256 3257 for (int i = 0; i < x->number_of_arguments(); i++) { 3258 Value a = x->argument_at(i); 3259 LIRItem* item = new LIRItem(a, this); 3260 item->load_item(); 3261 args->append(item->result()); 3262 signature->append(as_BasicType(a->type())); 3263 } 3264 3265 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3266 if (x->type() == voidType) { 3267 set_no_result(x); 3268 } else { 3269 __ move(result, rlock_result(x)); 3270 } 3271 } 3272 3273 #ifdef ASSERT 3274 void LIRGenerator::do_Assert(Assert *x) { 3275 ValueTag tag = x->x()->type()->tag(); 3276 If::Condition cond = x->cond(); 3277 3278 LIRItem xitem(x->x(), this); 3279 LIRItem yitem(x->y(), this); 3280 LIRItem* xin = &xitem; 3281 LIRItem* yin = &yitem; 3282 3283 assert(tag == intTag, "Only integer assertions are valid!"); 3284 3285 xin->load_item(); 3286 yin->dont_load_item(); 3287 3288 set_no_result(x); 3289 3290 LIR_Opr left = xin->result(); 3291 LIR_Opr right = yin->result(); 3292 3293 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3294 } 3295 #endif 3296 3297 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3298 3299 3300 Instruction *a = x->x(); 3301 Instruction *b = x->y(); 3302 if (!a || StressRangeCheckElimination) { 3303 assert(!b || StressRangeCheckElimination, "B must also be null"); 3304 3305 CodeEmitInfo *info = state_for(x, x->state()); 3306 CodeStub* stub = new PredicateFailedStub(info); 3307 3308 __ jump(stub); 3309 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3310 int a_int = a->type()->as_IntConstant()->value(); 3311 int b_int = b->type()->as_IntConstant()->value(); 3312 3313 bool ok = false; 3314 3315 switch(x->cond()) { 3316 case Instruction::eql: ok = (a_int == b_int); break; 3317 case Instruction::neq: ok = (a_int != b_int); break; 3318 case Instruction::lss: ok = (a_int < b_int); break; 3319 case Instruction::leq: ok = (a_int <= b_int); break; 3320 case Instruction::gtr: ok = (a_int > b_int); break; 3321 case Instruction::geq: ok = (a_int >= b_int); break; 3322 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3323 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3324 default: ShouldNotReachHere(); 3325 } 3326 3327 if (ok) { 3328 3329 CodeEmitInfo *info = state_for(x, x->state()); 3330 CodeStub* stub = new PredicateFailedStub(info); 3331 3332 __ jump(stub); 3333 } 3334 } else { 3335 3336 ValueTag tag = x->x()->type()->tag(); 3337 If::Condition cond = x->cond(); 3338 LIRItem xitem(x->x(), this); 3339 LIRItem yitem(x->y(), this); 3340 LIRItem* xin = &xitem; 3341 LIRItem* yin = &yitem; 3342 3343 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3344 3345 xin->load_item(); 3346 yin->dont_load_item(); 3347 set_no_result(x); 3348 3349 LIR_Opr left = xin->result(); 3350 LIR_Opr right = yin->result(); 3351 3352 CodeEmitInfo *info = state_for(x, x->state()); 3353 CodeStub* stub = new PredicateFailedStub(info); 3354 3355 __ cmp(lir_cond(cond), left, right); 3356 __ branch(lir_cond(cond), stub); 3357 } 3358 } 3359 3360 void LIRGenerator::do_blackhole(Intrinsic *x) { 3361 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3362 for (int c = 0; c < x->number_of_arguments(); c++) { 3363 // Load the argument 3364 LIRItem vitem(x->argument_at(c), this); 3365 vitem.load_item(); 3366 // ...and leave it unused. 3367 } 3368 } 3369 3370 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3371 LIRItemList args(1); 3372 LIRItem value(arg1, this); 3373 args.append(&value); 3374 BasicTypeList signature; 3375 signature.append(as_BasicType(arg1->type())); 3376 3377 return call_runtime(&signature, &args, entry, result_type, info); 3378 } 3379 3380 3381 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3382 LIRItemList args(2); 3383 LIRItem value1(arg1, this); 3384 LIRItem value2(arg2, this); 3385 args.append(&value1); 3386 args.append(&value2); 3387 BasicTypeList signature; 3388 signature.append(as_BasicType(arg1->type())); 3389 signature.append(as_BasicType(arg2->type())); 3390 3391 return call_runtime(&signature, &args, entry, result_type, info); 3392 } 3393 3394 3395 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3396 address entry, ValueType* result_type, CodeEmitInfo* info) { 3397 // get a result register 3398 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3399 LIR_Opr result = LIR_OprFact::illegalOpr; 3400 if (result_type->tag() != voidTag) { 3401 result = new_register(result_type); 3402 phys_reg = result_register_for(result_type); 3403 } 3404 3405 // move the arguments into the correct location 3406 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3407 assert(cc->length() == args->length(), "argument mismatch"); 3408 for (int i = 0; i < args->length(); i++) { 3409 LIR_Opr arg = args->at(i); 3410 LIR_Opr loc = cc->at(i); 3411 if (loc->is_register()) { 3412 __ move(arg, loc); 3413 } else { 3414 LIR_Address* addr = loc->as_address_ptr(); 3415 // if (!can_store_as_constant(arg)) { 3416 // LIR_Opr tmp = new_register(arg->type()); 3417 // __ move(arg, tmp); 3418 // arg = tmp; 3419 // } 3420 __ move(arg, addr); 3421 } 3422 } 3423 3424 if (info) { 3425 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3426 } else { 3427 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3428 } 3429 if (result->is_valid()) { 3430 __ move(phys_reg, result); 3431 } 3432 return result; 3433 } 3434 3435 3436 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3437 address entry, ValueType* result_type, CodeEmitInfo* info) { 3438 // get a result register 3439 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3440 LIR_Opr result = LIR_OprFact::illegalOpr; 3441 if (result_type->tag() != voidTag) { 3442 result = new_register(result_type); 3443 phys_reg = result_register_for(result_type); 3444 } 3445 3446 // move the arguments into the correct location 3447 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3448 3449 assert(cc->length() == args->length(), "argument mismatch"); 3450 for (int i = 0; i < args->length(); i++) { 3451 LIRItem* arg = args->at(i); 3452 LIR_Opr loc = cc->at(i); 3453 if (loc->is_register()) { 3454 arg->load_item_force(loc); 3455 } else { 3456 LIR_Address* addr = loc->as_address_ptr(); 3457 arg->load_for_store(addr->type()); 3458 __ move(arg->result(), addr); 3459 } 3460 } 3461 3462 if (info) { 3463 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3464 } else { 3465 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3466 } 3467 if (result->is_valid()) { 3468 __ move(phys_reg, result); 3469 } 3470 return result; 3471 } 3472 3473 void LIRGenerator::do_MemBar(MemBar* x) { 3474 LIR_Code code = x->code(); 3475 switch(code) { 3476 case lir_membar_acquire : __ membar_acquire(); break; 3477 case lir_membar_release : __ membar_release(); break; 3478 case lir_membar : __ membar(); break; 3479 case lir_membar_loadload : __ membar_loadload(); break; 3480 case lir_membar_storestore: __ membar_storestore(); break; 3481 case lir_membar_loadstore : __ membar_loadstore(); break; 3482 case lir_membar_storeload : __ membar_storeload(); break; 3483 default : ShouldNotReachHere(); break; 3484 } 3485 } 3486 3487 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3488 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3489 if (two_operand_lir_form) { 3490 __ move(value, value_fixed); 3491 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3492 } else { 3493 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3494 } 3495 LIR_Opr klass = new_register(T_METADATA); 3496 load_klass(array, klass, null_check_info); 3497 null_check_info = nullptr; 3498 LIR_Opr layout = new_register(T_INT); 3499 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3500 int diffbit = Klass::layout_helper_boolean_diffbit(); 3501 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3502 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3503 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3504 value = value_fixed; 3505 return value; 3506 }