1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "ci/ciObjArray.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/SCCache.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "compiler/compilerOracle.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c1/barrierSetC1.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "oops/methodCounters.hpp" 43 #include "runtime/runtimeUpcalls.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/vm_version.hpp" 47 #include "utilities/bitMap.inline.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 #ifdef ASSERT 52 #define __ gen()->lir(__FILE__, __LINE__)-> 53 #else 54 #define __ gen()->lir()-> 55 #endif 56 57 #ifndef PATCHED_ADDR 58 #define PATCHED_ADDR (max_jint) 59 #endif 60 61 void PhiResolverState::reset() { 62 _virtual_operands.clear(); 63 _other_operands.clear(); 64 _vreg_table.clear(); 65 } 66 67 68 //-------------------------------------------------------------- 69 // PhiResolver 70 71 // Resolves cycles: 72 // 73 // r1 := r2 becomes temp := r1 74 // r2 := r1 r1 := r2 75 // r2 := temp 76 // and orders moves: 77 // 78 // r2 := r3 becomes r1 := r2 79 // r1 := r2 r2 := r3 80 81 PhiResolver::PhiResolver(LIRGenerator* gen) 82 : _gen(gen) 83 , _state(gen->resolver_state()) 84 , _loop(nullptr) 85 , _temp(LIR_OprFact::illegalOpr) 86 { 87 // reinitialize the shared state arrays 88 _state.reset(); 89 } 90 91 92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 93 assert(src->is_valid(), ""); 94 assert(dest->is_valid(), ""); 95 __ move(src, dest); 96 } 97 98 99 void PhiResolver::move_temp_to(LIR_Opr dest) { 100 assert(_temp->is_valid(), ""); 101 emit_move(_temp, dest); 102 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 103 } 104 105 106 void PhiResolver::move_to_temp(LIR_Opr src) { 107 assert(_temp->is_illegal(), ""); 108 _temp = _gen->new_register(src->type()); 109 emit_move(src, _temp); 110 } 111 112 113 // Traverse assignment graph in depth first order and generate moves in post order 114 // ie. two assignments: b := c, a := b start with node c: 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 116 // Generates moves in this order: move b to a and move c to b 117 // ie. cycle a := b, b := a start with node a 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 119 // Generates moves in this order: move b to temp, move a to b, move temp to a 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 121 if (!dest->visited()) { 122 dest->set_visited(); 123 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 124 move(dest, dest->destination_at(i)); 125 } 126 } else if (!dest->start_node()) { 127 // cylce in graph detected 128 assert(_loop == nullptr, "only one loop valid!"); 129 _loop = dest; 130 move_to_temp(src->operand()); 131 return; 132 } // else dest is a start node 133 134 if (!dest->assigned()) { 135 if (_loop == dest) { 136 move_temp_to(dest->operand()); 137 dest->set_assigned(); 138 } else if (src != nullptr) { 139 emit_move(src->operand(), dest->operand()); 140 dest->set_assigned(); 141 } 142 } 143 } 144 145 146 PhiResolver::~PhiResolver() { 147 int i; 148 // resolve any cycles in moves from and to virtual registers 149 for (i = virtual_operands().length() - 1; i >= 0; i --) { 150 ResolveNode* node = virtual_operands().at(i); 151 if (!node->visited()) { 152 _loop = nullptr; 153 move(nullptr, node); 154 node->set_start_node(); 155 assert(_temp->is_illegal(), "move_temp_to() call missing"); 156 } 157 } 158 159 // generate move for move from non virtual register to abitrary destination 160 for (i = other_operands().length() - 1; i >= 0; i --) { 161 ResolveNode* node = other_operands().at(i); 162 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 163 emit_move(node->operand(), node->destination_at(j)->operand()); 164 } 165 } 166 } 167 168 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 170 ResolveNode* node; 171 if (opr->is_virtual()) { 172 int vreg_num = opr->vreg_number(); 173 node = vreg_table().at_grow(vreg_num, nullptr); 174 assert(node == nullptr || node->operand() == opr, ""); 175 if (node == nullptr) { 176 node = new ResolveNode(opr); 177 vreg_table().at_put(vreg_num, node); 178 } 179 // Make sure that all virtual operands show up in the list when 180 // they are used as the source of a move. 181 if (source && !virtual_operands().contains(node)) { 182 virtual_operands().append(node); 183 } 184 } else { 185 assert(source, ""); 186 node = new ResolveNode(opr); 187 other_operands().append(node); 188 } 189 return node; 190 } 191 192 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 194 assert(dest->is_virtual(), ""); 195 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 196 assert(src->is_valid(), ""); 197 assert(dest->is_valid(), ""); 198 ResolveNode* source = source_node(src); 199 source->append(destination_node(dest)); 200 } 201 202 203 //-------------------------------------------------------------- 204 // LIRItem 205 206 void LIRItem::set_result(LIR_Opr opr) { 207 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 208 value()->set_operand(opr); 209 210 #ifdef ASSERT 211 if (opr->is_virtual()) { 212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 213 } 214 #endif 215 216 _result = opr; 217 } 218 219 void LIRItem::load_item() { 220 if (result()->is_illegal()) { 221 // update the items result 222 _result = value()->operand(); 223 } 224 if (!result()->is_register()) { 225 LIR_Opr reg = _gen->new_register(value()->type()); 226 __ move(result(), reg); 227 if (result()->is_constant()) { 228 _result = reg; 229 } else { 230 set_result(reg); 231 } 232 } 233 } 234 235 236 void LIRItem::load_for_store(BasicType type) { 237 if (_gen->can_store_as_constant(value(), type)) { 238 _result = value()->operand(); 239 if (!_result->is_constant()) { 240 _result = LIR_OprFact::value_type(value()->type()); 241 } 242 } else if (type == T_BYTE || type == T_BOOLEAN) { 243 load_byte_item(); 244 } else { 245 load_item(); 246 } 247 } 248 249 void LIRItem::load_item_force(LIR_Opr reg) { 250 LIR_Opr r = result(); 251 if (r != reg) { 252 #if !defined(ARM) && !defined(E500V2) 253 if (r->type() != reg->type()) { 254 // moves between different types need an intervening spill slot 255 r = _gen->force_to_spill(r, reg->type()); 256 } 257 #endif 258 __ move(r, reg); 259 _result = reg; 260 } 261 } 262 263 ciObject* LIRItem::get_jobject_constant() const { 264 ObjectType* oc = type()->as_ObjectType(); 265 if (oc) { 266 return oc->constant_value(); 267 } 268 return nullptr; 269 } 270 271 272 jint LIRItem::get_jint_constant() const { 273 assert(is_constant() && value() != nullptr, ""); 274 assert(type()->as_IntConstant() != nullptr, "type check"); 275 return type()->as_IntConstant()->value(); 276 } 277 278 279 jint LIRItem::get_address_constant() const { 280 assert(is_constant() && value() != nullptr, ""); 281 assert(type()->as_AddressConstant() != nullptr, "type check"); 282 return type()->as_AddressConstant()->value(); 283 } 284 285 286 jfloat LIRItem::get_jfloat_constant() const { 287 assert(is_constant() && value() != nullptr, ""); 288 assert(type()->as_FloatConstant() != nullptr, "type check"); 289 return type()->as_FloatConstant()->value(); 290 } 291 292 293 jdouble LIRItem::get_jdouble_constant() const { 294 assert(is_constant() && value() != nullptr, ""); 295 assert(type()->as_DoubleConstant() != nullptr, "type check"); 296 return type()->as_DoubleConstant()->value(); 297 } 298 299 300 jlong LIRItem::get_jlong_constant() const { 301 assert(is_constant() && value() != nullptr, ""); 302 assert(type()->as_LongConstant() != nullptr, "type check"); 303 return type()->as_LongConstant()->value(); 304 } 305 306 307 308 //-------------------------------------------------------------- 309 310 311 void LIRGenerator::block_do_prolog(BlockBegin* block) { 312 #ifndef PRODUCT 313 if (PrintIRWithLIR) { 314 block->print(); 315 } 316 #endif 317 318 // set up the list of LIR instructions 319 assert(block->lir() == nullptr, "LIR list already computed for this block"); 320 _lir = new LIR_List(compilation(), block); 321 block->set_lir(_lir); 322 323 __ branch_destination(block->label()); 324 325 if (LIRTraceExecution && 326 Compilation::current()->hir()->start()->block_id() != block->block_id() && 327 !block->is_set(BlockBegin::exception_entry_flag)) { 328 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 329 trace_block_entry(block); 330 } 331 } 332 333 334 void LIRGenerator::block_do_epilog(BlockBegin* block) { 335 #ifndef PRODUCT 336 if (PrintIRWithLIR) { 337 tty->cr(); 338 } 339 #endif 340 341 // LIR_Opr for unpinned constants shouldn't be referenced by other 342 // blocks so clear them out after processing the block. 343 for (int i = 0; i < _unpinned_constants.length(); i++) { 344 _unpinned_constants.at(i)->clear_operand(); 345 } 346 _unpinned_constants.trunc_to(0); 347 348 // clear our any registers for other local constants 349 _constants.trunc_to(0); 350 _reg_for_constants.trunc_to(0); 351 } 352 353 354 void LIRGenerator::block_do(BlockBegin* block) { 355 CHECK_BAILOUT(); 356 357 block_do_prolog(block); 358 set_block(block); 359 360 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 361 if (instr->is_pinned()) do_root(instr); 362 } 363 364 set_block(nullptr); 365 block_do_epilog(block); 366 } 367 368 369 //-------------------------LIRGenerator----------------------------- 370 371 // This is where the tree-walk starts; instr must be root; 372 void LIRGenerator::do_root(Value instr) { 373 CHECK_BAILOUT(); 374 375 InstructionMark im(compilation(), instr); 376 377 assert(instr->is_pinned(), "use only with roots"); 378 assert(instr->subst() == instr, "shouldn't have missed substitution"); 379 380 instr->visit(this); 381 382 assert(!instr->has_uses() || instr->operand()->is_valid() || 383 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 384 } 385 386 387 // This is called for each node in tree; the walk stops if a root is reached 388 void LIRGenerator::walk(Value instr) { 389 InstructionMark im(compilation(), instr); 390 //stop walk when encounter a root 391 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 392 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 393 } else { 394 assert(instr->subst() == instr, "shouldn't have missed substitution"); 395 instr->visit(this); 396 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 397 } 398 } 399 400 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 402 assert(state != nullptr, "state must be defined"); 403 404 #ifndef PRODUCT 405 state->verify(); 406 #endif 407 408 ValueStack* s = state; 409 for_each_state(s) { 410 if (s->kind() == ValueStack::EmptyExceptionState || 411 s->kind() == ValueStack::CallerEmptyExceptionState) 412 { 413 #ifdef ASSERT 414 int index; 415 Value value; 416 for_each_stack_value(s, index, value) { 417 fatal("state must be empty"); 418 } 419 for_each_local_value(s, index, value) { 420 fatal("state must be empty"); 421 } 422 #endif 423 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 424 continue; 425 } 426 427 int index; 428 Value value; 429 for_each_stack_value(s, index, value) { 430 assert(value->subst() == value, "missed substitution"); 431 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 432 walk(value); 433 assert(value->operand()->is_valid(), "must be evaluated now"); 434 } 435 } 436 437 int bci = s->bci(); 438 IRScope* scope = s->scope(); 439 ciMethod* method = scope->method(); 440 441 MethodLivenessResult liveness = method->liveness_at_bci(bci); 442 if (bci == SynchronizationEntryBCI) { 443 if (x->as_ExceptionObject() || x->as_Throw()) { 444 // all locals are dead on exit from the synthetic unlocker 445 liveness.clear(); 446 } else { 447 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 448 } 449 } 450 if (!liveness.is_valid()) { 451 // Degenerate or breakpointed method. 452 bailout("Degenerate or breakpointed method"); 453 } else { 454 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 455 for_each_local_value(s, index, value) { 456 assert(value->subst() == value, "missed substitution"); 457 if (liveness.at(index) && !value->type()->is_illegal()) { 458 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 459 walk(value); 460 assert(value->operand()->is_valid(), "must be evaluated now"); 461 } 462 } else { 463 // null out this local so that linear scan can assume that all non-null values are live. 464 s->invalidate_local(index); 465 } 466 } 467 } 468 } 469 470 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 471 } 472 473 474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 475 return state_for(x, x->exception_state()); 476 } 477 478 479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 480 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 481 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 482 * the class. */ 483 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 484 assert(info != nullptr, "info must be set if class is not loaded"); 485 __ klass2reg_patch(nullptr, r, info); 486 } else { 487 // no patching needed 488 __ metadata2reg(obj->constant_encoding(), r); 489 } 490 } 491 492 493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 494 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 495 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 496 if (index->is_constant()) { 497 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 498 index->as_jint(), null_check_info); 499 __ branch(lir_cond_belowEqual, stub); // forward branch 500 } else { 501 cmp_reg_mem(lir_cond_aboveEqual, index, array, 502 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 503 __ branch(lir_cond_aboveEqual, stub); // forward branch 504 } 505 } 506 507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 508 LIR_Opr result_op = result; 509 LIR_Opr left_op = left; 510 LIR_Opr right_op = right; 511 512 if (two_operand_lir_form && left_op != result_op) { 513 assert(right_op != result_op, "malformed"); 514 __ move(left_op, result_op); 515 left_op = result_op; 516 } 517 518 switch(code) { 519 case Bytecodes::_dadd: 520 case Bytecodes::_fadd: 521 case Bytecodes::_ladd: 522 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 523 case Bytecodes::_fmul: 524 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 525 526 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 527 528 case Bytecodes::_imul: 529 { 530 bool did_strength_reduce = false; 531 532 if (right->is_constant()) { 533 jint c = right->as_jint(); 534 if (c > 0 && is_power_of_2(c)) { 535 // do not need tmp here 536 __ shift_left(left_op, exact_log2(c), result_op); 537 did_strength_reduce = true; 538 } else { 539 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 540 } 541 } 542 // we couldn't strength reduce so just emit the multiply 543 if (!did_strength_reduce) { 544 __ mul(left_op, right_op, result_op); 545 } 546 } 547 break; 548 549 case Bytecodes::_dsub: 550 case Bytecodes::_fsub: 551 case Bytecodes::_lsub: 552 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 553 554 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 555 // ldiv and lrem are implemented with a direct runtime call 556 557 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 558 559 case Bytecodes::_drem: 560 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 561 562 default: ShouldNotReachHere(); 563 } 564 } 565 566 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 568 arithmetic_op(code, result, left, right, tmp); 569 } 570 571 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 573 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 574 } 575 576 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 578 arithmetic_op(code, result, left, right, tmp); 579 } 580 581 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 583 584 if (two_operand_lir_form && value != result_op 585 // Only 32bit right shifts require two operand form on S390. 586 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 587 assert(count != result_op, "malformed"); 588 __ move(value, result_op); 589 value = result_op; 590 } 591 592 assert(count->is_constant() || count->is_register(), "must be"); 593 switch(code) { 594 case Bytecodes::_ishl: 595 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 596 case Bytecodes::_ishr: 597 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 598 case Bytecodes::_iushr: 599 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 600 default: ShouldNotReachHere(); 601 } 602 } 603 604 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 606 if (two_operand_lir_form && left_op != result_op) { 607 assert(right_op != result_op, "malformed"); 608 __ move(left_op, result_op); 609 left_op = result_op; 610 } 611 612 switch(code) { 613 case Bytecodes::_iand: 614 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 615 616 case Bytecodes::_ior: 617 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 618 619 case Bytecodes::_ixor: 620 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 621 622 default: ShouldNotReachHere(); 623 } 624 } 625 626 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 628 if (!GenerateSynchronizationCode) return; 629 // for slow path, use debug info for state after successful locking 630 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 631 __ load_stack_address_monitor(monitor_no, lock); 632 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 633 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 634 } 635 636 637 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 638 if (!GenerateSynchronizationCode) return; 639 // setup registers 640 LIR_Opr hdr = lock; 641 lock = new_hdr; 642 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 643 __ load_stack_address_monitor(monitor_no, lock); 644 __ unlock_object(hdr, object, lock, scratch, slow_path); 645 } 646 647 #ifndef PRODUCT 648 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 649 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 650 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 651 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 652 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 653 } 654 } 655 #endif 656 657 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 658 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 659 // If klass is not loaded we do not know if the klass has finalizers: 660 if (UseFastNewInstance && klass->is_loaded() 661 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 662 663 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 664 665 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 666 667 assert(klass->is_loaded(), "must be loaded"); 668 // allocate space for instance 669 assert(klass->size_helper() > 0, "illegal instance size"); 670 const int instance_size = align_object_size(klass->size_helper()); 671 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 672 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 673 } else { 674 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 675 __ branch(lir_cond_always, slow_path); 676 __ branch_destination(slow_path->continuation()); 677 } 678 } 679 680 681 static bool is_constant_zero(Instruction* inst) { 682 IntConstant* c = inst->type()->as_IntConstant(); 683 if (c) { 684 return (c->value() == 0); 685 } 686 return false; 687 } 688 689 690 static bool positive_constant(Instruction* inst) { 691 IntConstant* c = inst->type()->as_IntConstant(); 692 if (c) { 693 return (c->value() >= 0); 694 } 695 return false; 696 } 697 698 699 static ciArrayKlass* as_array_klass(ciType* type) { 700 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 701 return (ciArrayKlass*)type; 702 } else { 703 return nullptr; 704 } 705 } 706 707 static ciType* phi_declared_type(Phi* phi) { 708 ciType* t = phi->operand_at(0)->declared_type(); 709 if (t == nullptr) { 710 return nullptr; 711 } 712 for(int i = 1; i < phi->operand_count(); i++) { 713 if (t != phi->operand_at(i)->declared_type()) { 714 return nullptr; 715 } 716 } 717 return t; 718 } 719 720 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 721 Instruction* src = x->argument_at(0); 722 Instruction* src_pos = x->argument_at(1); 723 Instruction* dst = x->argument_at(2); 724 Instruction* dst_pos = x->argument_at(3); 725 Instruction* length = x->argument_at(4); 726 727 // first try to identify the likely type of the arrays involved 728 ciArrayKlass* expected_type = nullptr; 729 bool is_exact = false, src_objarray = false, dst_objarray = false; 730 { 731 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 732 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 733 Phi* phi; 734 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 735 src_declared_type = as_array_klass(phi_declared_type(phi)); 736 } 737 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 738 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 739 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 740 dst_declared_type = as_array_klass(phi_declared_type(phi)); 741 } 742 743 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 744 // the types exactly match so the type is fully known 745 is_exact = true; 746 expected_type = src_exact_type; 747 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 748 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 749 ciArrayKlass* src_type = nullptr; 750 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 751 src_type = (ciArrayKlass*) src_exact_type; 752 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 753 src_type = (ciArrayKlass*) src_declared_type; 754 } 755 if (src_type != nullptr) { 756 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 757 is_exact = true; 758 expected_type = dst_type; 759 } 760 } 761 } 762 // at least pass along a good guess 763 if (expected_type == nullptr) expected_type = dst_exact_type; 764 if (expected_type == nullptr) expected_type = src_declared_type; 765 if (expected_type == nullptr) expected_type = dst_declared_type; 766 767 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 768 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 769 } 770 771 // if a probable array type has been identified, figure out if any 772 // of the required checks for a fast case can be elided. 773 int flags = LIR_OpArrayCopy::all_flags; 774 775 if (!src_objarray) 776 flags &= ~LIR_OpArrayCopy::src_objarray; 777 if (!dst_objarray) 778 flags &= ~LIR_OpArrayCopy::dst_objarray; 779 780 if (!x->arg_needs_null_check(0)) 781 flags &= ~LIR_OpArrayCopy::src_null_check; 782 if (!x->arg_needs_null_check(2)) 783 flags &= ~LIR_OpArrayCopy::dst_null_check; 784 785 786 if (expected_type != nullptr) { 787 Value length_limit = nullptr; 788 789 IfOp* ifop = length->as_IfOp(); 790 if (ifop != nullptr) { 791 // look for expressions like min(v, a.length) which ends up as 792 // x > y ? y : x or x >= y ? y : x 793 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 794 ifop->x() == ifop->fval() && 795 ifop->y() == ifop->tval()) { 796 length_limit = ifop->y(); 797 } 798 } 799 800 // try to skip null checks and range checks 801 NewArray* src_array = src->as_NewArray(); 802 if (src_array != nullptr) { 803 flags &= ~LIR_OpArrayCopy::src_null_check; 804 if (length_limit != nullptr && 805 src_array->length() == length_limit && 806 is_constant_zero(src_pos)) { 807 flags &= ~LIR_OpArrayCopy::src_range_check; 808 } 809 } 810 811 NewArray* dst_array = dst->as_NewArray(); 812 if (dst_array != nullptr) { 813 flags &= ~LIR_OpArrayCopy::dst_null_check; 814 if (length_limit != nullptr && 815 dst_array->length() == length_limit && 816 is_constant_zero(dst_pos)) { 817 flags &= ~LIR_OpArrayCopy::dst_range_check; 818 } 819 } 820 821 // check from incoming constant values 822 if (positive_constant(src_pos)) 823 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 824 if (positive_constant(dst_pos)) 825 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 826 if (positive_constant(length)) 827 flags &= ~LIR_OpArrayCopy::length_positive_check; 828 829 // see if the range check can be elided, which might also imply 830 // that src or dst is non-null. 831 ArrayLength* al = length->as_ArrayLength(); 832 if (al != nullptr) { 833 if (al->array() == src) { 834 // it's the length of the source array 835 flags &= ~LIR_OpArrayCopy::length_positive_check; 836 flags &= ~LIR_OpArrayCopy::src_null_check; 837 if (is_constant_zero(src_pos)) 838 flags &= ~LIR_OpArrayCopy::src_range_check; 839 } 840 if (al->array() == dst) { 841 // it's the length of the destination array 842 flags &= ~LIR_OpArrayCopy::length_positive_check; 843 flags &= ~LIR_OpArrayCopy::dst_null_check; 844 if (is_constant_zero(dst_pos)) 845 flags &= ~LIR_OpArrayCopy::dst_range_check; 846 } 847 } 848 if (is_exact) { 849 flags &= ~LIR_OpArrayCopy::type_check; 850 } 851 } 852 853 IntConstant* src_int = src_pos->type()->as_IntConstant(); 854 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 855 if (src_int && dst_int) { 856 int s_offs = src_int->value(); 857 int d_offs = dst_int->value(); 858 if (src_int->value() >= dst_int->value()) { 859 flags &= ~LIR_OpArrayCopy::overlapping; 860 } 861 if (expected_type != nullptr) { 862 BasicType t = expected_type->element_type()->basic_type(); 863 int element_size = type2aelembytes(t); 864 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 865 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 866 flags &= ~LIR_OpArrayCopy::unaligned; 867 } 868 } 869 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 870 // src and dest positions are the same, or dst is zero so assume 871 // nonoverlapping copy. 872 flags &= ~LIR_OpArrayCopy::overlapping; 873 } 874 875 if (src == dst) { 876 // moving within a single array so no type checks are needed 877 if (flags & LIR_OpArrayCopy::type_check) { 878 flags &= ~LIR_OpArrayCopy::type_check; 879 } 880 } 881 *flagsp = flags; 882 *expected_typep = (ciArrayKlass*)expected_type; 883 } 884 885 886 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 887 assert(type2size[t] == type2size[value->type()], 888 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 889 if (!value->is_register()) { 890 // force into a register 891 LIR_Opr r = new_register(value->type()); 892 __ move(value, r); 893 value = r; 894 } 895 896 // create a spill location 897 LIR_Opr tmp = new_register(t); 898 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 899 900 // move from register to spill 901 __ move(value, tmp); 902 return tmp; 903 } 904 905 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 906 if (if_instr->should_profile()) { 907 ciMethod* method = if_instr->profiled_method(); 908 assert(method != nullptr, "method should be set if branch is profiled"); 909 ciMethodData* md = method->method_data_or_null(); 910 assert(md != nullptr, "Sanity"); 911 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 912 assert(data != nullptr, "must have profiling data"); 913 assert(data->is_BranchData(), "need BranchData for two-way branches"); 914 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 915 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 916 if (if_instr->is_swapped()) { 917 int t = taken_count_offset; 918 taken_count_offset = not_taken_count_offset; 919 not_taken_count_offset = t; 920 } 921 922 LIR_Opr md_reg = new_register(T_METADATA); 923 __ metadata2reg(md->constant_encoding(), md_reg); 924 925 LIR_Opr data_offset_reg = new_pointer_register(); 926 __ cmove(lir_cond(cond), 927 LIR_OprFact::intptrConst(taken_count_offset), 928 LIR_OprFact::intptrConst(not_taken_count_offset), 929 data_offset_reg, as_BasicType(if_instr->x()->type())); 930 931 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 932 LIR_Opr data_reg = new_pointer_register(); 933 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 934 __ move(data_addr, data_reg); 935 // Use leal instead of add to avoid destroying condition codes on x86 936 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 937 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 938 __ move(data_reg, data_addr); 939 } 940 } 941 942 // Phi technique: 943 // This is about passing live values from one basic block to the other. 944 // In code generated with Java it is rather rare that more than one 945 // value is on the stack from one basic block to the other. 946 // We optimize our technique for efficient passing of one value 947 // (of type long, int, double..) but it can be extended. 948 // When entering or leaving a basic block, all registers and all spill 949 // slots are release and empty. We use the released registers 950 // and spill slots to pass the live values from one block 951 // to the other. The topmost value, i.e., the value on TOS of expression 952 // stack is passed in registers. All other values are stored in spilling 953 // area. Every Phi has an index which designates its spill slot 954 // At exit of a basic block, we fill the register(s) and spill slots. 955 // At entry of a basic block, the block_prolog sets up the content of phi nodes 956 // and locks necessary registers and spilling slots. 957 958 959 // move current value to referenced phi function 960 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 961 Phi* phi = sux_val->as_Phi(); 962 // cur_val can be null without phi being null in conjunction with inlining 963 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 964 if (phi->is_local()) { 965 for (int i = 0; i < phi->operand_count(); i++) { 966 Value op = phi->operand_at(i); 967 if (op != nullptr && op->type()->is_illegal()) { 968 bailout("illegal phi operand"); 969 } 970 } 971 } 972 Phi* cur_phi = cur_val->as_Phi(); 973 if (cur_phi != nullptr && cur_phi->is_illegal()) { 974 // Phi and local would need to get invalidated 975 // (which is unexpected for Linear Scan). 976 // But this case is very rare so we simply bail out. 977 bailout("propagation of illegal phi"); 978 return; 979 } 980 LIR_Opr operand = cur_val->operand(); 981 if (operand->is_illegal()) { 982 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 983 "these can be produced lazily"); 984 operand = operand_for_instruction(cur_val); 985 } 986 resolver->move(operand, operand_for_instruction(phi)); 987 } 988 } 989 990 991 // Moves all stack values into their PHI position 992 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 993 BlockBegin* bb = block(); 994 if (bb->number_of_sux() == 1) { 995 BlockBegin* sux = bb->sux_at(0); 996 assert(sux->number_of_preds() > 0, "invalid CFG"); 997 998 // a block with only one predecessor never has phi functions 999 if (sux->number_of_preds() > 1) { 1000 PhiResolver resolver(this); 1001 1002 ValueStack* sux_state = sux->state(); 1003 Value sux_value; 1004 int index; 1005 1006 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1007 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1008 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1009 1010 for_each_stack_value(sux_state, index, sux_value) { 1011 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1012 } 1013 1014 for_each_local_value(sux_state, index, sux_value) { 1015 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1016 } 1017 1018 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1019 } 1020 } 1021 } 1022 1023 1024 LIR_Opr LIRGenerator::new_register(BasicType type) { 1025 int vreg_num = _virtual_register_number; 1026 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1027 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1028 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1029 bailout("out of virtual registers in LIR generator"); 1030 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1031 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1032 _virtual_register_number = LIR_Opr::vreg_base; 1033 vreg_num = LIR_Opr::vreg_base; 1034 } 1035 } 1036 _virtual_register_number += 1; 1037 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1038 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1039 return vreg; 1040 } 1041 1042 1043 // Try to lock using register in hint 1044 LIR_Opr LIRGenerator::rlock(Value instr) { 1045 return new_register(instr->type()); 1046 } 1047 1048 1049 // does an rlock and sets result 1050 LIR_Opr LIRGenerator::rlock_result(Value x) { 1051 LIR_Opr reg = rlock(x); 1052 set_result(x, reg); 1053 return reg; 1054 } 1055 1056 1057 // does an rlock and sets result 1058 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1059 LIR_Opr reg; 1060 switch (type) { 1061 case T_BYTE: 1062 case T_BOOLEAN: 1063 reg = rlock_byte(type); 1064 break; 1065 default: 1066 reg = rlock(x); 1067 break; 1068 } 1069 1070 set_result(x, reg); 1071 return reg; 1072 } 1073 1074 1075 //--------------------------------------------------------------------- 1076 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1077 ObjectType* oc = value->type()->as_ObjectType(); 1078 if (oc) { 1079 return oc->constant_value(); 1080 } 1081 return nullptr; 1082 } 1083 1084 1085 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1086 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1087 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1088 1089 // no moves are created for phi functions at the begin of exception 1090 // handlers, so assign operands manually here 1091 for_each_phi_fun(block(), phi, 1092 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1093 1094 LIR_Opr thread_reg = getThreadPointer(); 1095 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1096 exceptionOopOpr()); 1097 __ move_wide(LIR_OprFact::oopConst(nullptr), 1098 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1099 __ move_wide(LIR_OprFact::oopConst(nullptr), 1100 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1101 1102 LIR_Opr result = new_register(T_OBJECT); 1103 __ move(exceptionOopOpr(), result); 1104 set_result(x, result); 1105 } 1106 1107 1108 //---------------------------------------------------------------------- 1109 //---------------------------------------------------------------------- 1110 //---------------------------------------------------------------------- 1111 //---------------------------------------------------------------------- 1112 // visitor functions 1113 //---------------------------------------------------------------------- 1114 //---------------------------------------------------------------------- 1115 //---------------------------------------------------------------------- 1116 //---------------------------------------------------------------------- 1117 1118 void LIRGenerator::do_Phi(Phi* x) { 1119 // phi functions are never visited directly 1120 ShouldNotReachHere(); 1121 } 1122 1123 1124 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1125 void LIRGenerator::do_Constant(Constant* x) { 1126 if (x->state_before() != nullptr) { 1127 // Any constant with a ValueStack requires patching so emit the patch here 1128 LIR_Opr reg = rlock_result(x); 1129 CodeEmitInfo* info = state_for(x, x->state_before()); 1130 __ oop2reg_patch(nullptr, reg, info); 1131 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1132 if (!x->is_pinned()) { 1133 // unpinned constants are handled specially so that they can be 1134 // put into registers when they are used multiple times within a 1135 // block. After the block completes their operand will be 1136 // cleared so that other blocks can't refer to that register. 1137 set_result(x, load_constant(x)); 1138 } else { 1139 LIR_Opr res = x->operand(); 1140 if (!res->is_valid()) { 1141 res = LIR_OprFact::value_type(x->type()); 1142 } 1143 if (res->is_constant()) { 1144 LIR_Opr reg = rlock_result(x); 1145 __ move(res, reg); 1146 } else { 1147 set_result(x, res); 1148 } 1149 } 1150 } else { 1151 set_result(x, LIR_OprFact::value_type(x->type())); 1152 } 1153 } 1154 1155 1156 void LIRGenerator::do_Local(Local* x) { 1157 // operand_for_instruction has the side effect of setting the result 1158 // so there's no need to do it here. 1159 operand_for_instruction(x); 1160 } 1161 1162 1163 void LIRGenerator::do_Return(Return* x) { 1164 if (compilation()->env()->dtrace_method_probes()) { 1165 BasicTypeList signature; 1166 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1167 signature.append(T_METADATA); // Method* 1168 LIR_OprList* args = new LIR_OprList(); 1169 args->append(getThreadPointer()); 1170 LIR_Opr meth = new_register(T_METADATA); 1171 __ metadata2reg(method()->constant_encoding(), meth); 1172 args->append(meth); 1173 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1174 } 1175 1176 if (x->type()->is_void()) { 1177 __ return_op(LIR_OprFact::illegalOpr); 1178 } else { 1179 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1180 LIRItem result(x->result(), this); 1181 1182 result.load_item_force(reg); 1183 __ return_op(result.result()); 1184 } 1185 set_no_result(x); 1186 } 1187 1188 // Example: ref.get() 1189 // Combination of LoadField and g1 pre-write barrier 1190 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1191 1192 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1193 1194 assert(x->number_of_arguments() == 1, "wrong type"); 1195 1196 LIRItem reference(x->argument_at(0), this); 1197 reference.load_item(); 1198 1199 // need to perform the null check on the reference object 1200 CodeEmitInfo* info = nullptr; 1201 if (x->needs_null_check()) { 1202 info = state_for(x); 1203 } 1204 1205 LIR_Opr result = rlock_result(x, T_OBJECT); 1206 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1207 reference, LIR_OprFact::intConst(referent_offset), result, 1208 nullptr, info); 1209 } 1210 1211 // Example: clazz.isInstance(object) 1212 void LIRGenerator::do_isInstance(Intrinsic* x) { 1213 assert(x->number_of_arguments() == 2, "wrong type"); 1214 1215 LIRItem clazz(x->argument_at(0), this); 1216 LIRItem object(x->argument_at(1), this); 1217 clazz.load_item(); 1218 object.load_item(); 1219 LIR_Opr result = rlock_result(x); 1220 1221 // need to perform null check on clazz 1222 if (x->needs_null_check()) { 1223 CodeEmitInfo* info = state_for(x); 1224 __ null_check(clazz.result(), info); 1225 } 1226 1227 address pd_instanceof_fn = isInstance_entry(); 1228 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1229 pd_instanceof_fn, 1230 x->type(), 1231 nullptr); // null CodeEmitInfo results in a leaf call 1232 __ move(call_result, result); 1233 } 1234 1235 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1236 __ load_klass(obj, klass, null_check_info); 1237 } 1238 1239 // Example: object.getClass () 1240 void LIRGenerator::do_getClass(Intrinsic* x) { 1241 assert(x->number_of_arguments() == 1, "wrong type"); 1242 1243 LIRItem rcvr(x->argument_at(0), this); 1244 rcvr.load_item(); 1245 LIR_Opr temp = new_register(T_ADDRESS); 1246 LIR_Opr result = rlock_result(x); 1247 1248 // need to perform the null check on the rcvr 1249 CodeEmitInfo* info = nullptr; 1250 if (x->needs_null_check()) { 1251 info = state_for(x); 1252 } 1253 1254 LIR_Opr klass = new_register(T_METADATA); 1255 load_klass(rcvr.result(), klass, info); 1256 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1257 // mirror = ((OopHandle)mirror)->resolve(); 1258 access_load(IN_NATIVE, T_OBJECT, 1259 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1260 } 1261 1262 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1263 assert(x->number_of_arguments() == 3, "wrong type"); 1264 LIR_Opr result_reg = rlock_result(x); 1265 1266 LIRItem value(x->argument_at(2), this); 1267 value.load_item(); 1268 1269 LIR_Opr klass = new_register(T_METADATA); 1270 load_klass(value.result(), klass, nullptr); 1271 LIR_Opr layout = new_register(T_INT); 1272 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1273 1274 LabelObj* L_done = new LabelObj(); 1275 LabelObj* L_array = new LabelObj(); 1276 1277 __ cmp(lir_cond_lessEqual, layout, 0); 1278 __ branch(lir_cond_lessEqual, L_array->label()); 1279 1280 // Instance case: the layout helper gives us instance size almost directly, 1281 // but we need to mask out the _lh_instance_slow_path_bit. 1282 1283 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1284 1285 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1286 __ logical_and(layout, mask, layout); 1287 __ convert(Bytecodes::_i2l, layout, result_reg); 1288 1289 __ branch(lir_cond_always, L_done->label()); 1290 1291 // Array case: size is round(header + element_size*arraylength). 1292 // Since arraylength is different for every array instance, we have to 1293 // compute the whole thing at runtime. 1294 1295 __ branch_destination(L_array->label()); 1296 1297 int round_mask = MinObjAlignmentInBytes - 1; 1298 1299 // Figure out header sizes first. 1300 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1301 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1302 1303 LIR_Opr header_size = new_register(T_INT); 1304 __ move(layout, header_size); 1305 LIR_Opr tmp = new_register(T_INT); 1306 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1307 __ logical_and(header_size, hsm, header_size); 1308 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1309 1310 // Figure out the array length in bytes 1311 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1312 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1313 __ logical_and(layout, l2esm, layout); 1314 1315 LIR_Opr length_int = new_register(T_INT); 1316 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1317 1318 #ifdef _LP64 1319 LIR_Opr length = new_register(T_LONG); 1320 __ convert(Bytecodes::_i2l, length_int, length); 1321 #endif 1322 1323 // Shift-left awkwardness. Normally it is just: 1324 // __ shift_left(length, layout, length); 1325 // But C1 cannot perform shift_left with non-constant count, so we end up 1326 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1327 // longs, so we have to act on ints. 1328 LabelObj* L_shift_loop = new LabelObj(); 1329 LabelObj* L_shift_exit = new LabelObj(); 1330 1331 __ branch_destination(L_shift_loop->label()); 1332 __ cmp(lir_cond_equal, layout, 0); 1333 __ branch(lir_cond_equal, L_shift_exit->label()); 1334 1335 #ifdef _LP64 1336 __ shift_left(length, 1, length); 1337 #else 1338 __ shift_left(length_int, 1, length_int); 1339 #endif 1340 1341 __ sub(layout, LIR_OprFact::intConst(1), layout); 1342 1343 __ branch(lir_cond_always, L_shift_loop->label()); 1344 __ branch_destination(L_shift_exit->label()); 1345 1346 // Mix all up, round, and push to the result. 1347 #ifdef _LP64 1348 LIR_Opr header_size_long = new_register(T_LONG); 1349 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1350 __ add(length, header_size_long, length); 1351 if (round_mask != 0) { 1352 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1353 __ logical_and(length, round_mask_opr, length); 1354 } 1355 __ move(length, result_reg); 1356 #else 1357 __ add(length_int, header_size, length_int); 1358 if (round_mask != 0) { 1359 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1360 __ logical_and(length_int, round_mask_opr, length_int); 1361 } 1362 __ convert(Bytecodes::_i2l, length_int, result_reg); 1363 #endif 1364 1365 __ branch_destination(L_done->label()); 1366 } 1367 1368 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1369 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1370 } 1371 1372 // Example: Thread.currentCarrierThread() 1373 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1374 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1375 } 1376 1377 void LIRGenerator::do_vthread(Intrinsic* x) { 1378 do_JavaThreadField(x, JavaThread::vthread_offset()); 1379 } 1380 1381 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1382 assert(x->number_of_arguments() == 0, "wrong type"); 1383 LIR_Opr temp = new_register(T_ADDRESS); 1384 LIR_Opr reg = rlock_result(x); 1385 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1386 access_load(IN_NATIVE, T_OBJECT, 1387 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1388 } 1389 1390 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1391 assert(x->number_of_arguments() == 1, "wrong type"); 1392 LIRItem receiver(x->argument_at(0), this); 1393 1394 receiver.load_item(); 1395 BasicTypeList signature; 1396 signature.append(T_OBJECT); // receiver 1397 LIR_OprList* args = new LIR_OprList(); 1398 args->append(receiver.result()); 1399 CodeEmitInfo* info = state_for(x, x->state()); 1400 call_runtime(&signature, args, 1401 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1402 voidType, info); 1403 1404 set_no_result(x); 1405 } 1406 1407 1408 //------------------------local access-------------------------------------- 1409 1410 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1411 if (x->operand()->is_illegal()) { 1412 Constant* c = x->as_Constant(); 1413 if (c != nullptr) { 1414 x->set_operand(LIR_OprFact::value_type(c->type())); 1415 } else { 1416 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1417 // allocate a virtual register for this local or phi 1418 x->set_operand(rlock(x)); 1419 #ifdef ASSERT 1420 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1421 #endif 1422 } 1423 } 1424 return x->operand(); 1425 } 1426 1427 #ifdef ASSERT 1428 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1429 if (reg_num < _instruction_for_operand.length()) { 1430 return _instruction_for_operand.at(reg_num); 1431 } 1432 return nullptr; 1433 } 1434 #endif 1435 1436 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1437 if (_vreg_flags.size_in_bits() == 0) { 1438 BitMap2D temp(100, num_vreg_flags); 1439 _vreg_flags = temp; 1440 } 1441 _vreg_flags.at_put_grow(vreg_num, f, true); 1442 } 1443 1444 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1445 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1446 return false; 1447 } 1448 return _vreg_flags.at(vreg_num, f); 1449 } 1450 1451 1452 // Block local constant handling. This code is useful for keeping 1453 // unpinned constants and constants which aren't exposed in the IR in 1454 // registers. Unpinned Constant instructions have their operands 1455 // cleared when the block is finished so that other blocks can't end 1456 // up referring to their registers. 1457 1458 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1459 assert(!x->is_pinned(), "only for unpinned constants"); 1460 _unpinned_constants.append(x); 1461 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1462 } 1463 1464 1465 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1466 BasicType t = c->type(); 1467 for (int i = 0; i < _constants.length(); i++) { 1468 LIR_Const* other = _constants.at(i); 1469 if (t == other->type()) { 1470 switch (t) { 1471 case T_INT: 1472 case T_FLOAT: 1473 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1474 break; 1475 case T_LONG: 1476 case T_DOUBLE: 1477 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1478 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1479 break; 1480 case T_OBJECT: 1481 if (c->as_jobject() != other->as_jobject()) continue; 1482 break; 1483 default: 1484 break; 1485 } 1486 return _reg_for_constants.at(i); 1487 } 1488 } 1489 1490 LIR_Opr result = new_register(t); 1491 __ move((LIR_Opr)c, result); 1492 _constants.append(c); 1493 _reg_for_constants.append(result); 1494 return result; 1495 } 1496 1497 //------------------------field access-------------------------------------- 1498 1499 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1500 assert(x->number_of_arguments() == 4, "wrong type"); 1501 LIRItem obj (x->argument_at(0), this); // object 1502 LIRItem offset(x->argument_at(1), this); // offset of field 1503 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1504 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1505 assert(obj.type()->tag() == objectTag, "invalid type"); 1506 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1507 assert(val.type()->tag() == type->tag(), "invalid type"); 1508 1509 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1510 obj, offset, cmp, val); 1511 set_result(x, result); 1512 } 1513 1514 // Comment copied form templateTable_i486.cpp 1515 // ---------------------------------------------------------------------------- 1516 // Volatile variables demand their effects be made known to all CPU's in 1517 // order. Store buffers on most chips allow reads & writes to reorder; the 1518 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1519 // memory barrier (i.e., it's not sufficient that the interpreter does not 1520 // reorder volatile references, the hardware also must not reorder them). 1521 // 1522 // According to the new Java Memory Model (JMM): 1523 // (1) All volatiles are serialized wrt to each other. 1524 // ALSO reads & writes act as acquire & release, so: 1525 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1526 // the read float up to before the read. It's OK for non-volatile memory refs 1527 // that happen before the volatile read to float down below it. 1528 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1529 // that happen BEFORE the write float down to after the write. It's OK for 1530 // non-volatile memory refs that happen after the volatile write to float up 1531 // before it. 1532 // 1533 // We only put in barriers around volatile refs (they are expensive), not 1534 // _between_ memory refs (that would require us to track the flavor of the 1535 // previous memory refs). Requirements (2) and (3) require some barriers 1536 // before volatile stores and after volatile loads. These nearly cover 1537 // requirement (1) but miss the volatile-store-volatile-load case. This final 1538 // case is placed after volatile-stores although it could just as well go 1539 // before volatile-loads. 1540 1541 1542 void LIRGenerator::do_StoreField(StoreField* x) { 1543 bool needs_patching = x->needs_patching(); 1544 bool is_volatile = x->field()->is_volatile(); 1545 BasicType field_type = x->field_type(); 1546 1547 CodeEmitInfo* info = nullptr; 1548 if (needs_patching) { 1549 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1550 info = state_for(x, x->state_before()); 1551 } else if (x->needs_null_check()) { 1552 NullCheck* nc = x->explicit_null_check(); 1553 if (nc == nullptr) { 1554 info = state_for(x); 1555 } else { 1556 info = state_for(nc); 1557 } 1558 } 1559 1560 LIRItem object(x->obj(), this); 1561 LIRItem value(x->value(), this); 1562 1563 object.load_item(); 1564 1565 if (is_volatile || needs_patching) { 1566 // load item if field is volatile (fewer special cases for volatiles) 1567 // load item if field not initialized 1568 // load item if field not constant 1569 // because of code patching we cannot inline constants 1570 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1571 value.load_byte_item(); 1572 } else { 1573 value.load_item(); 1574 } 1575 } else { 1576 value.load_for_store(field_type); 1577 } 1578 1579 set_no_result(x); 1580 1581 #ifndef PRODUCT 1582 if (PrintNotLoaded && needs_patching) { 1583 tty->print_cr(" ###class not loaded at store_%s bci %d", 1584 x->is_static() ? "static" : "field", x->printable_bci()); 1585 } 1586 #endif 1587 1588 if (x->needs_null_check() && 1589 (needs_patching || 1590 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1591 // Emit an explicit null check because the offset is too large. 1592 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1593 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1594 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1595 } 1596 1597 DecoratorSet decorators = IN_HEAP; 1598 if (is_volatile) { 1599 decorators |= MO_SEQ_CST; 1600 } 1601 if (needs_patching) { 1602 decorators |= C1_NEEDS_PATCHING; 1603 } 1604 1605 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1606 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1607 } 1608 1609 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1610 assert(x->is_pinned(),""); 1611 bool needs_range_check = x->compute_needs_range_check(); 1612 bool use_length = x->length() != nullptr; 1613 bool obj_store = is_reference_type(x->elt_type()); 1614 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1615 !get_jobject_constant(x->value())->is_null_object() || 1616 x->should_profile()); 1617 1618 LIRItem array(x->array(), this); 1619 LIRItem index(x->index(), this); 1620 LIRItem value(x->value(), this); 1621 LIRItem length(this); 1622 1623 array.load_item(); 1624 index.load_nonconstant(); 1625 1626 if (use_length && needs_range_check) { 1627 length.set_instruction(x->length()); 1628 length.load_item(); 1629 1630 } 1631 if (needs_store_check || x->check_boolean()) { 1632 value.load_item(); 1633 } else { 1634 value.load_for_store(x->elt_type()); 1635 } 1636 1637 set_no_result(x); 1638 1639 // the CodeEmitInfo must be duplicated for each different 1640 // LIR-instruction because spilling can occur anywhere between two 1641 // instructions and so the debug information must be different 1642 CodeEmitInfo* range_check_info = state_for(x); 1643 CodeEmitInfo* null_check_info = nullptr; 1644 if (x->needs_null_check()) { 1645 null_check_info = new CodeEmitInfo(range_check_info); 1646 } 1647 1648 if (needs_range_check) { 1649 if (use_length) { 1650 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1651 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1652 } else { 1653 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1654 // range_check also does the null check 1655 null_check_info = nullptr; 1656 } 1657 } 1658 1659 if (GenerateArrayStoreCheck && needs_store_check) { 1660 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1661 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1662 } 1663 1664 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1665 if (x->check_boolean()) { 1666 decorators |= C1_MASK_BOOLEAN; 1667 } 1668 1669 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1670 nullptr, null_check_info); 1671 } 1672 1673 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1674 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1675 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1676 decorators |= ACCESS_READ; 1677 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1678 if (access.is_raw()) { 1679 _barrier_set->BarrierSetC1::load_at(access, result); 1680 } else { 1681 _barrier_set->load_at(access, result); 1682 } 1683 } 1684 1685 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1686 LIR_Opr addr, LIR_Opr result) { 1687 decorators |= ACCESS_READ; 1688 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1689 access.set_resolved_addr(addr); 1690 if (access.is_raw()) { 1691 _barrier_set->BarrierSetC1::load(access, result); 1692 } else { 1693 _barrier_set->load(access, result); 1694 } 1695 } 1696 1697 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1698 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1699 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1700 decorators |= ACCESS_WRITE; 1701 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1702 if (access.is_raw()) { 1703 _barrier_set->BarrierSetC1::store_at(access, value); 1704 } else { 1705 _barrier_set->store_at(access, value); 1706 } 1707 } 1708 1709 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1710 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1711 decorators |= ACCESS_READ; 1712 decorators |= ACCESS_WRITE; 1713 // Atomic operations are SEQ_CST by default 1714 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1715 LIRAccess access(this, decorators, base, offset, type); 1716 if (access.is_raw()) { 1717 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1718 } else { 1719 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1720 } 1721 } 1722 1723 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1724 LIRItem& base, LIRItem& offset, LIRItem& value) { 1725 decorators |= ACCESS_READ; 1726 decorators |= ACCESS_WRITE; 1727 // Atomic operations are SEQ_CST by default 1728 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1729 LIRAccess access(this, decorators, base, offset, type); 1730 if (access.is_raw()) { 1731 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1732 } else { 1733 return _barrier_set->atomic_xchg_at(access, value); 1734 } 1735 } 1736 1737 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1738 LIRItem& base, LIRItem& offset, LIRItem& value) { 1739 decorators |= ACCESS_READ; 1740 decorators |= ACCESS_WRITE; 1741 // Atomic operations are SEQ_CST by default 1742 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1743 LIRAccess access(this, decorators, base, offset, type); 1744 if (access.is_raw()) { 1745 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1746 } else { 1747 return _barrier_set->atomic_add_at(access, value); 1748 } 1749 } 1750 1751 void LIRGenerator::do_LoadField(LoadField* x) { 1752 bool needs_patching = x->needs_patching(); 1753 bool is_volatile = x->field()->is_volatile(); 1754 BasicType field_type = x->field_type(); 1755 1756 CodeEmitInfo* info = nullptr; 1757 if (needs_patching) { 1758 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1759 info = state_for(x, x->state_before()); 1760 } else if (x->needs_null_check()) { 1761 NullCheck* nc = x->explicit_null_check(); 1762 if (nc == nullptr) { 1763 info = state_for(x); 1764 } else { 1765 info = state_for(nc); 1766 } 1767 } 1768 1769 LIRItem object(x->obj(), this); 1770 1771 object.load_item(); 1772 1773 #ifndef PRODUCT 1774 if (PrintNotLoaded && needs_patching) { 1775 tty->print_cr(" ###class not loaded at load_%s bci %d", 1776 x->is_static() ? "static" : "field", x->printable_bci()); 1777 } 1778 #endif 1779 1780 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1781 if (x->needs_null_check() && 1782 (needs_patching || 1783 MacroAssembler::needs_explicit_null_check(x->offset()) || 1784 stress_deopt)) { 1785 LIR_Opr obj = object.result(); 1786 if (stress_deopt) { 1787 obj = new_register(T_OBJECT); 1788 __ move(LIR_OprFact::oopConst(nullptr), obj); 1789 } 1790 // Emit an explicit null check because the offset is too large. 1791 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1792 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1793 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1794 } 1795 1796 DecoratorSet decorators = IN_HEAP; 1797 if (is_volatile) { 1798 decorators |= MO_SEQ_CST; 1799 } 1800 if (needs_patching) { 1801 decorators |= C1_NEEDS_PATCHING; 1802 } 1803 1804 LIR_Opr result = rlock_result(x, field_type); 1805 access_load_at(decorators, field_type, 1806 object, LIR_OprFact::intConst(x->offset()), result, 1807 info ? new CodeEmitInfo(info) : nullptr, info); 1808 } 1809 1810 // int/long jdk.internal.util.Preconditions.checkIndex 1811 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1812 assert(x->number_of_arguments() == 3, "wrong type"); 1813 LIRItem index(x->argument_at(0), this); 1814 LIRItem length(x->argument_at(1), this); 1815 LIRItem oobef(x->argument_at(2), this); 1816 1817 index.load_item(); 1818 length.load_item(); 1819 oobef.load_item(); 1820 1821 LIR_Opr result = rlock_result(x); 1822 // x->state() is created from copy_state_for_exception, it does not contains arguments 1823 // we should prepare them before entering into interpreter mode due to deoptimization. 1824 ValueStack* state = x->state(); 1825 for (int i = 0; i < x->number_of_arguments(); i++) { 1826 Value arg = x->argument_at(i); 1827 state->push(arg->type(), arg); 1828 } 1829 CodeEmitInfo* info = state_for(x, state); 1830 1831 LIR_Opr len = length.result(); 1832 LIR_Opr zero; 1833 if (type == T_INT) { 1834 zero = LIR_OprFact::intConst(0); 1835 if (length.result()->is_constant()){ 1836 len = LIR_OprFact::intConst(length.result()->as_jint()); 1837 } 1838 } else { 1839 assert(type == T_LONG, "sanity check"); 1840 zero = LIR_OprFact::longConst(0); 1841 if (length.result()->is_constant()){ 1842 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1843 } 1844 } 1845 // C1 can not handle the case that comparing index with constant value while condition 1846 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1847 LIR_Opr zero_reg = new_register(type); 1848 __ move(zero, zero_reg); 1849 #if defined(X86) && !defined(_LP64) 1850 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1851 LIR_Opr index_copy = new_register(index.type()); 1852 // index >= 0 1853 __ move(index.result(), index_copy); 1854 __ cmp(lir_cond_less, index_copy, zero_reg); 1855 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1856 Deoptimization::Action_make_not_entrant)); 1857 // index < length 1858 __ move(index.result(), index_copy); 1859 __ cmp(lir_cond_greaterEqual, index_copy, len); 1860 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1861 Deoptimization::Action_make_not_entrant)); 1862 #else 1863 // index >= 0 1864 __ cmp(lir_cond_less, index.result(), zero_reg); 1865 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1866 Deoptimization::Action_make_not_entrant)); 1867 // index < length 1868 __ cmp(lir_cond_greaterEqual, index.result(), len); 1869 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1870 Deoptimization::Action_make_not_entrant)); 1871 #endif 1872 __ move(index.result(), result); 1873 } 1874 1875 //------------------------array access-------------------------------------- 1876 1877 1878 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1879 LIRItem array(x->array(), this); 1880 array.load_item(); 1881 LIR_Opr reg = rlock_result(x); 1882 1883 CodeEmitInfo* info = nullptr; 1884 if (x->needs_null_check()) { 1885 NullCheck* nc = x->explicit_null_check(); 1886 if (nc == nullptr) { 1887 info = state_for(x); 1888 } else { 1889 info = state_for(nc); 1890 } 1891 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1892 LIR_Opr obj = new_register(T_OBJECT); 1893 __ move(LIR_OprFact::oopConst(nullptr), obj); 1894 __ null_check(obj, new CodeEmitInfo(info)); 1895 } 1896 } 1897 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1898 } 1899 1900 1901 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1902 bool use_length = x->length() != nullptr; 1903 LIRItem array(x->array(), this); 1904 LIRItem index(x->index(), this); 1905 LIRItem length(this); 1906 bool needs_range_check = x->compute_needs_range_check(); 1907 1908 if (use_length && needs_range_check) { 1909 length.set_instruction(x->length()); 1910 length.load_item(); 1911 } 1912 1913 array.load_item(); 1914 if (index.is_constant() && can_inline_as_constant(x->index())) { 1915 // let it be a constant 1916 index.dont_load_item(); 1917 } else { 1918 index.load_item(); 1919 } 1920 1921 CodeEmitInfo* range_check_info = state_for(x); 1922 CodeEmitInfo* null_check_info = nullptr; 1923 if (x->needs_null_check()) { 1924 NullCheck* nc = x->explicit_null_check(); 1925 if (nc != nullptr) { 1926 null_check_info = state_for(nc); 1927 } else { 1928 null_check_info = range_check_info; 1929 } 1930 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1931 LIR_Opr obj = new_register(T_OBJECT); 1932 __ move(LIR_OprFact::oopConst(nullptr), obj); 1933 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1934 } 1935 } 1936 1937 if (needs_range_check) { 1938 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1939 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1940 } else if (use_length) { 1941 // TODO: use a (modified) version of array_range_check that does not require a 1942 // constant length to be loaded to a register 1943 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1944 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1945 } else { 1946 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1947 // The range check performs the null check, so clear it out for the load 1948 null_check_info = nullptr; 1949 } 1950 } 1951 1952 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1953 1954 LIR_Opr result = rlock_result(x, x->elt_type()); 1955 access_load_at(decorators, x->elt_type(), 1956 array, index.result(), result, 1957 nullptr, null_check_info); 1958 } 1959 1960 1961 void LIRGenerator::do_NullCheck(NullCheck* x) { 1962 if (x->can_trap()) { 1963 LIRItem value(x->obj(), this); 1964 value.load_item(); 1965 CodeEmitInfo* info = state_for(x); 1966 __ null_check(value.result(), info); 1967 } 1968 } 1969 1970 1971 void LIRGenerator::do_TypeCast(TypeCast* x) { 1972 LIRItem value(x->obj(), this); 1973 value.load_item(); 1974 // the result is the same as from the node we are casting 1975 set_result(x, value.result()); 1976 } 1977 1978 1979 void LIRGenerator::do_Throw(Throw* x) { 1980 LIRItem exception(x->exception(), this); 1981 exception.load_item(); 1982 set_no_result(x); 1983 LIR_Opr exception_opr = exception.result(); 1984 CodeEmitInfo* info = state_for(x, x->state()); 1985 1986 #ifndef PRODUCT 1987 if (PrintC1Statistics) { 1988 increment_counter(Runtime1::throw_count_address(), T_INT); 1989 } 1990 #endif 1991 1992 // check if the instruction has an xhandler in any of the nested scopes 1993 bool unwind = false; 1994 if (info->exception_handlers()->length() == 0) { 1995 // this throw is not inside an xhandler 1996 unwind = true; 1997 } else { 1998 // get some idea of the throw type 1999 bool type_is_exact = true; 2000 ciType* throw_type = x->exception()->exact_type(); 2001 if (throw_type == nullptr) { 2002 type_is_exact = false; 2003 throw_type = x->exception()->declared_type(); 2004 } 2005 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2006 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2007 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2008 } 2009 } 2010 2011 // do null check before moving exception oop into fixed register 2012 // to avoid a fixed interval with an oop during the null check. 2013 // Use a copy of the CodeEmitInfo because debug information is 2014 // different for null_check and throw. 2015 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2016 // if the exception object wasn't created using new then it might be null. 2017 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2018 } 2019 2020 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2021 // we need to go through the exception lookup path to get JVMTI 2022 // notification done 2023 unwind = false; 2024 } 2025 2026 // move exception oop into fixed register 2027 __ move(exception_opr, exceptionOopOpr()); 2028 2029 if (unwind) { 2030 __ unwind_exception(exceptionOopOpr()); 2031 } else { 2032 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2033 } 2034 } 2035 2036 2037 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2038 BasicType type = x->basic_type(); 2039 LIRItem src(x->object(), this); 2040 LIRItem off(x->offset(), this); 2041 2042 off.load_item(); 2043 src.load_item(); 2044 2045 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2046 2047 if (x->is_volatile()) { 2048 decorators |= MO_SEQ_CST; 2049 } 2050 if (type == T_BOOLEAN) { 2051 decorators |= C1_MASK_BOOLEAN; 2052 } 2053 if (is_reference_type(type)) { 2054 decorators |= ON_UNKNOWN_OOP_REF; 2055 } 2056 2057 LIR_Opr result = rlock_result(x, type); 2058 if (!x->is_raw()) { 2059 access_load_at(decorators, type, src, off.result(), result); 2060 } else { 2061 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2062 // It reads the value from [src + offset] directly. 2063 #ifdef _LP64 2064 LIR_Opr offset = new_register(T_LONG); 2065 __ convert(Bytecodes::_i2l, off.result(), offset); 2066 #else 2067 LIR_Opr offset = off.result(); 2068 #endif 2069 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2070 if (is_reference_type(type)) { 2071 __ move_wide(addr, result); 2072 } else { 2073 __ move(addr, result); 2074 } 2075 } 2076 } 2077 2078 2079 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2080 BasicType type = x->basic_type(); 2081 LIRItem src(x->object(), this); 2082 LIRItem off(x->offset(), this); 2083 LIRItem data(x->value(), this); 2084 2085 src.load_item(); 2086 if (type == T_BOOLEAN || type == T_BYTE) { 2087 data.load_byte_item(); 2088 } else { 2089 data.load_item(); 2090 } 2091 off.load_item(); 2092 2093 set_no_result(x); 2094 2095 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2096 if (is_reference_type(type)) { 2097 decorators |= ON_UNKNOWN_OOP_REF; 2098 } 2099 if (x->is_volatile()) { 2100 decorators |= MO_SEQ_CST; 2101 } 2102 access_store_at(decorators, type, src, off.result(), data.result()); 2103 } 2104 2105 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2106 BasicType type = x->basic_type(); 2107 LIRItem src(x->object(), this); 2108 LIRItem off(x->offset(), this); 2109 LIRItem value(x->value(), this); 2110 2111 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2112 2113 if (is_reference_type(type)) { 2114 decorators |= ON_UNKNOWN_OOP_REF; 2115 } 2116 2117 LIR_Opr result; 2118 if (x->is_add()) { 2119 result = access_atomic_add_at(decorators, type, src, off, value); 2120 } else { 2121 result = access_atomic_xchg_at(decorators, type, src, off, value); 2122 } 2123 set_result(x, result); 2124 } 2125 2126 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2127 int lng = x->length(); 2128 2129 for (int i = 0; i < lng; i++) { 2130 C1SwitchRange* one_range = x->at(i); 2131 int low_key = one_range->low_key(); 2132 int high_key = one_range->high_key(); 2133 BlockBegin* dest = one_range->sux(); 2134 if (low_key == high_key) { 2135 __ cmp(lir_cond_equal, value, low_key); 2136 __ branch(lir_cond_equal, dest); 2137 } else if (high_key - low_key == 1) { 2138 __ cmp(lir_cond_equal, value, low_key); 2139 __ branch(lir_cond_equal, dest); 2140 __ cmp(lir_cond_equal, value, high_key); 2141 __ branch(lir_cond_equal, dest); 2142 } else { 2143 LabelObj* L = new LabelObj(); 2144 __ cmp(lir_cond_less, value, low_key); 2145 __ branch(lir_cond_less, L->label()); 2146 __ cmp(lir_cond_lessEqual, value, high_key); 2147 __ branch(lir_cond_lessEqual, dest); 2148 __ branch_destination(L->label()); 2149 } 2150 } 2151 __ jump(default_sux); 2152 } 2153 2154 2155 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2156 SwitchRangeList* res = new SwitchRangeList(); 2157 int len = x->length(); 2158 if (len > 0) { 2159 BlockBegin* sux = x->sux_at(0); 2160 int low = x->lo_key(); 2161 BlockBegin* default_sux = x->default_sux(); 2162 C1SwitchRange* range = new C1SwitchRange(low, sux); 2163 for (int i = 0; i < len; i++) { 2164 int key = low + i; 2165 BlockBegin* new_sux = x->sux_at(i); 2166 if (sux == new_sux) { 2167 // still in same range 2168 range->set_high_key(key); 2169 } else { 2170 // skip tests which explicitly dispatch to the default 2171 if (sux != default_sux) { 2172 res->append(range); 2173 } 2174 range = new C1SwitchRange(key, new_sux); 2175 } 2176 sux = new_sux; 2177 } 2178 if (res->length() == 0 || res->last() != range) res->append(range); 2179 } 2180 return res; 2181 } 2182 2183 2184 // we expect the keys to be sorted by increasing value 2185 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2186 SwitchRangeList* res = new SwitchRangeList(); 2187 int len = x->length(); 2188 if (len > 0) { 2189 BlockBegin* default_sux = x->default_sux(); 2190 int key = x->key_at(0); 2191 BlockBegin* sux = x->sux_at(0); 2192 C1SwitchRange* range = new C1SwitchRange(key, sux); 2193 for (int i = 1; i < len; i++) { 2194 int new_key = x->key_at(i); 2195 BlockBegin* new_sux = x->sux_at(i); 2196 if (key+1 == new_key && sux == new_sux) { 2197 // still in same range 2198 range->set_high_key(new_key); 2199 } else { 2200 // skip tests which explicitly dispatch to the default 2201 if (range->sux() != default_sux) { 2202 res->append(range); 2203 } 2204 range = new C1SwitchRange(new_key, new_sux); 2205 } 2206 key = new_key; 2207 sux = new_sux; 2208 } 2209 if (res->length() == 0 || res->last() != range) res->append(range); 2210 } 2211 return res; 2212 } 2213 2214 2215 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2216 LIRItem tag(x->tag(), this); 2217 tag.load_item(); 2218 set_no_result(x); 2219 2220 if (x->is_safepoint()) { 2221 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2222 } 2223 2224 // move values into phi locations 2225 move_to_phi(x->state()); 2226 2227 int lo_key = x->lo_key(); 2228 int len = x->length(); 2229 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2230 LIR_Opr value = tag.result(); 2231 2232 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2233 ciMethod* method = x->state()->scope()->method(); 2234 ciMethodData* md = method->method_data_or_null(); 2235 assert(md != nullptr, "Sanity"); 2236 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2237 assert(data != nullptr, "must have profiling data"); 2238 assert(data->is_MultiBranchData(), "bad profile data?"); 2239 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2240 LIR_Opr md_reg = new_register(T_METADATA); 2241 __ metadata2reg(md->constant_encoding(), md_reg); 2242 LIR_Opr data_offset_reg = new_pointer_register(); 2243 LIR_Opr tmp_reg = new_pointer_register(); 2244 2245 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2246 for (int i = 0; i < len; i++) { 2247 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2248 __ cmp(lir_cond_equal, value, i + lo_key); 2249 __ move(data_offset_reg, tmp_reg); 2250 __ cmove(lir_cond_equal, 2251 LIR_OprFact::intptrConst(count_offset), 2252 tmp_reg, 2253 data_offset_reg, T_INT); 2254 } 2255 2256 LIR_Opr data_reg = new_pointer_register(); 2257 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2258 __ move(data_addr, data_reg); 2259 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2260 __ move(data_reg, data_addr); 2261 } 2262 2263 if (UseTableRanges) { 2264 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2265 } else { 2266 for (int i = 0; i < len; i++) { 2267 __ cmp(lir_cond_equal, value, i + lo_key); 2268 __ branch(lir_cond_equal, x->sux_at(i)); 2269 } 2270 __ jump(x->default_sux()); 2271 } 2272 } 2273 2274 2275 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2276 LIRItem tag(x->tag(), this); 2277 tag.load_item(); 2278 set_no_result(x); 2279 2280 if (x->is_safepoint()) { 2281 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2282 } 2283 2284 // move values into phi locations 2285 move_to_phi(x->state()); 2286 2287 LIR_Opr value = tag.result(); 2288 int len = x->length(); 2289 2290 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2291 ciMethod* method = x->state()->scope()->method(); 2292 ciMethodData* md = method->method_data_or_null(); 2293 assert(md != nullptr, "Sanity"); 2294 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2295 assert(data != nullptr, "must have profiling data"); 2296 assert(data->is_MultiBranchData(), "bad profile data?"); 2297 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2298 LIR_Opr md_reg = new_register(T_METADATA); 2299 __ metadata2reg(md->constant_encoding(), md_reg); 2300 LIR_Opr data_offset_reg = new_pointer_register(); 2301 LIR_Opr tmp_reg = new_pointer_register(); 2302 2303 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2304 for (int i = 0; i < len; i++) { 2305 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2306 __ cmp(lir_cond_equal, value, x->key_at(i)); 2307 __ move(data_offset_reg, tmp_reg); 2308 __ cmove(lir_cond_equal, 2309 LIR_OprFact::intptrConst(count_offset), 2310 tmp_reg, 2311 data_offset_reg, T_INT); 2312 } 2313 2314 LIR_Opr data_reg = new_pointer_register(); 2315 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2316 __ move(data_addr, data_reg); 2317 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2318 __ move(data_reg, data_addr); 2319 } 2320 2321 if (UseTableRanges) { 2322 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2323 } else { 2324 int len = x->length(); 2325 for (int i = 0; i < len; i++) { 2326 __ cmp(lir_cond_equal, value, x->key_at(i)); 2327 __ branch(lir_cond_equal, x->sux_at(i)); 2328 } 2329 __ jump(x->default_sux()); 2330 } 2331 } 2332 2333 2334 void LIRGenerator::do_Goto(Goto* x) { 2335 set_no_result(x); 2336 2337 if (block()->next()->as_OsrEntry()) { 2338 // need to free up storage used for OSR entry point 2339 LIR_Opr osrBuffer = block()->next()->operand(); 2340 BasicTypeList signature; 2341 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2342 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2343 __ move(osrBuffer, cc->args()->at(0)); 2344 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2345 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2346 } 2347 2348 if (x->is_safepoint()) { 2349 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2350 2351 // increment backedge counter if needed 2352 CodeEmitInfo* info = state_for(x, state); 2353 increment_backedge_counter(info, x->profiled_bci()); 2354 CodeEmitInfo* safepoint_info = state_for(x, state); 2355 __ safepoint(safepoint_poll_register(), safepoint_info); 2356 } 2357 2358 // Gotos can be folded Ifs, handle this case. 2359 if (x->should_profile()) { 2360 ciMethod* method = x->profiled_method(); 2361 assert(method != nullptr, "method should be set if branch is profiled"); 2362 ciMethodData* md = method->method_data_or_null(); 2363 assert(md != nullptr, "Sanity"); 2364 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2365 assert(data != nullptr, "must have profiling data"); 2366 int offset; 2367 if (x->direction() == Goto::taken) { 2368 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2369 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2370 } else if (x->direction() == Goto::not_taken) { 2371 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2372 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2373 } else { 2374 assert(data->is_JumpData(), "need JumpData for branches"); 2375 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2376 } 2377 LIR_Opr md_reg = new_register(T_METADATA); 2378 __ metadata2reg(md->constant_encoding(), md_reg); 2379 2380 increment_counter(new LIR_Address(md_reg, offset, 2381 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2382 } 2383 2384 // emit phi-instruction move after safepoint since this simplifies 2385 // describing the state as the safepoint. 2386 move_to_phi(x->state()); 2387 2388 __ jump(x->default_sux()); 2389 } 2390 2391 /** 2392 * Emit profiling code if needed for arguments, parameters, return value types 2393 * 2394 * @param md MDO the code will update at runtime 2395 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2396 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2397 * @param profiled_k current profile 2398 * @param obj IR node for the object to be profiled 2399 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2400 * Set once we find an update to make and use for next ones. 2401 * @param not_null true if we know obj cannot be null 2402 * @param signature_at_call_k signature at call for obj 2403 * @param callee_signature_k signature of callee for obj 2404 * at call and callee signatures differ at method handle call 2405 * @return the only klass we know will ever be seen at this profile point 2406 */ 2407 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2408 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2409 ciKlass* callee_signature_k) { 2410 ciKlass* result = nullptr; 2411 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2412 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2413 // known not to be null or null bit already set and already set to 2414 // unknown: nothing we can do to improve profiling 2415 if (!do_null && !do_update) { 2416 return result; 2417 } 2418 2419 ciKlass* exact_klass = nullptr; 2420 Compilation* comp = Compilation::current(); 2421 if (do_update) { 2422 // try to find exact type, using CHA if possible, so that loading 2423 // the klass from the object can be avoided 2424 ciType* type = obj->exact_type(); 2425 if (type == nullptr) { 2426 type = obj->declared_type(); 2427 type = comp->cha_exact_type(type); 2428 } 2429 assert(type == nullptr || type->is_klass(), "type should be class"); 2430 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2431 2432 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2433 } 2434 2435 if (!do_null && !do_update) { 2436 return result; 2437 } 2438 2439 ciKlass* exact_signature_k = nullptr; 2440 if (do_update) { 2441 // Is the type from the signature exact (the only one possible)? 2442 exact_signature_k = signature_at_call_k->exact_klass(); 2443 if (exact_signature_k == nullptr) { 2444 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2445 } else { 2446 result = exact_signature_k; 2447 // Known statically. No need to emit any code: prevent 2448 // LIR_Assembler::emit_profile_type() from emitting useless code 2449 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2450 } 2451 // exact_klass and exact_signature_k can be both non null but 2452 // different if exact_klass is loaded after the ciObject for 2453 // exact_signature_k is created. 2454 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2455 // sometimes the type of the signature is better than the best type 2456 // the compiler has 2457 exact_klass = exact_signature_k; 2458 } 2459 if (callee_signature_k != nullptr && 2460 callee_signature_k != signature_at_call_k) { 2461 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2462 if (improved_klass == nullptr) { 2463 improved_klass = comp->cha_exact_type(callee_signature_k); 2464 } 2465 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2466 exact_klass = exact_signature_k; 2467 } 2468 } 2469 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2470 } 2471 2472 if (!do_null && !do_update) { 2473 return result; 2474 } 2475 2476 if (mdp == LIR_OprFact::illegalOpr) { 2477 mdp = new_register(T_METADATA); 2478 __ metadata2reg(md->constant_encoding(), mdp); 2479 if (md_base_offset != 0) { 2480 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2481 mdp = new_pointer_register(); 2482 __ leal(LIR_OprFact::address(base_type_address), mdp); 2483 } 2484 } 2485 LIRItem value(obj, this); 2486 value.load_item(); 2487 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2488 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2489 return result; 2490 } 2491 2492 // profile parameters on entry to the root of the compilation 2493 void LIRGenerator::profile_parameters(Base* x) { 2494 if (compilation()->profile_parameters()) { 2495 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2496 ciMethodData* md = scope()->method()->method_data_or_null(); 2497 assert(md != nullptr, "Sanity"); 2498 2499 if (md->parameters_type_data() != nullptr) { 2500 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2501 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2502 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2503 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2504 LIR_Opr src = args->at(i); 2505 assert(!src->is_illegal(), "check"); 2506 BasicType t = src->type(); 2507 if (is_reference_type(t)) { 2508 intptr_t profiled_k = parameters->type(j); 2509 Local* local = x->state()->local_at(java_index)->as_Local(); 2510 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2511 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2512 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2513 // If the profile is known statically set it once for all and do not emit any code 2514 if (exact != nullptr) { 2515 md->set_parameter_type(j, exact); 2516 } 2517 j++; 2518 } 2519 java_index += type2size[t]; 2520 } 2521 } 2522 } 2523 } 2524 2525 void LIRGenerator::do_Base(Base* x) { 2526 __ std_entry(LIR_OprFact::illegalOpr); 2527 // Emit moves from physical registers / stack slots to virtual registers 2528 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2529 IRScope* irScope = compilation()->hir()->top_scope(); 2530 int java_index = 0; 2531 for (int i = 0; i < args->length(); i++) { 2532 LIR_Opr src = args->at(i); 2533 assert(!src->is_illegal(), "check"); 2534 BasicType t = src->type(); 2535 2536 // Types which are smaller than int are passed as int, so 2537 // correct the type which passed. 2538 switch (t) { 2539 case T_BYTE: 2540 case T_BOOLEAN: 2541 case T_SHORT: 2542 case T_CHAR: 2543 t = T_INT; 2544 break; 2545 default: 2546 break; 2547 } 2548 2549 LIR_Opr dest = new_register(t); 2550 __ move(src, dest); 2551 2552 // Assign new location to Local instruction for this local 2553 Local* local = x->state()->local_at(java_index)->as_Local(); 2554 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2555 #ifndef __SOFTFP__ 2556 // The java calling convention passes double as long and float as int. 2557 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2558 #endif // __SOFTFP__ 2559 local->set_operand(dest); 2560 #ifdef ASSERT 2561 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2562 #endif 2563 java_index += type2size[t]; 2564 } 2565 2566 if (compilation()->env()->dtrace_method_probes()) { 2567 BasicTypeList signature; 2568 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2569 signature.append(T_METADATA); // Method* 2570 LIR_OprList* args = new LIR_OprList(); 2571 args->append(getThreadPointer()); 2572 LIR_Opr meth = new_register(T_METADATA); 2573 __ metadata2reg(method()->constant_encoding(), meth); 2574 args->append(meth); 2575 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2576 } 2577 2578 MethodDetails method_details(method()); 2579 RuntimeUpcallInfo* upcall = RuntimeUpcalls::get_first_upcall(RuntimeUpcallType::onMethodEntry, method_details); 2580 while (upcall != nullptr) { 2581 BasicTypeList signature; 2582 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2583 LIR_OprList* args = new LIR_OprList(); 2584 args->append(getThreadPointer()); 2585 call_runtime(&signature, args, upcall->upcall_address(), voidType, nullptr); 2586 upcall = RuntimeUpcalls::get_next_upcall(RuntimeUpcallType::onMethodEntry, method_details, upcall); 2587 } 2588 2589 if (method()->is_synchronized()) { 2590 LIR_Opr obj; 2591 if (method()->is_static()) { 2592 obj = new_register(T_OBJECT); 2593 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2594 } else { 2595 Local* receiver = x->state()->local_at(0)->as_Local(); 2596 assert(receiver != nullptr, "must already exist"); 2597 obj = receiver->operand(); 2598 } 2599 assert(obj->is_valid(), "must be valid"); 2600 2601 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2602 LIR_Opr lock = syncLockOpr(); 2603 __ load_stack_address_monitor(0, lock); 2604 2605 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2606 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2607 2608 // receiver is guaranteed non-null so don't need CodeEmitInfo 2609 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2610 } 2611 } 2612 // increment invocation counters if needed 2613 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2614 profile_parameters(x); 2615 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2616 increment_invocation_counter(info); 2617 } 2618 2619 // all blocks with a successor must end with an unconditional jump 2620 // to the successor even if they are consecutive 2621 __ jump(x->default_sux()); 2622 } 2623 2624 2625 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2626 // construct our frame and model the production of incoming pointer 2627 // to the OSR buffer. 2628 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2629 LIR_Opr result = rlock_result(x); 2630 __ move(LIR_Assembler::osrBufferPointer(), result); 2631 } 2632 2633 2634 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2635 assert(args->length() == arg_list->length(), 2636 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2637 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2638 LIRItem* param = args->at(i); 2639 LIR_Opr loc = arg_list->at(i); 2640 if (loc->is_register()) { 2641 param->load_item_force(loc); 2642 } else { 2643 LIR_Address* addr = loc->as_address_ptr(); 2644 param->load_for_store(addr->type()); 2645 if (addr->type() == T_OBJECT) { 2646 __ move_wide(param->result(), addr); 2647 } else 2648 __ move(param->result(), addr); 2649 } 2650 } 2651 2652 if (x->has_receiver()) { 2653 LIRItem* receiver = args->at(0); 2654 LIR_Opr loc = arg_list->at(0); 2655 if (loc->is_register()) { 2656 receiver->load_item_force(loc); 2657 } else { 2658 assert(loc->is_address(), "just checking"); 2659 receiver->load_for_store(T_OBJECT); 2660 __ move_wide(receiver->result(), loc->as_address_ptr()); 2661 } 2662 } 2663 } 2664 2665 2666 // Visits all arguments, returns appropriate items without loading them 2667 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2668 LIRItemList* argument_items = new LIRItemList(); 2669 if (x->has_receiver()) { 2670 LIRItem* receiver = new LIRItem(x->receiver(), this); 2671 argument_items->append(receiver); 2672 } 2673 for (int i = 0; i < x->number_of_arguments(); i++) { 2674 LIRItem* param = new LIRItem(x->argument_at(i), this); 2675 argument_items->append(param); 2676 } 2677 return argument_items; 2678 } 2679 2680 2681 // The invoke with receiver has following phases: 2682 // a) traverse and load/lock receiver; 2683 // b) traverse all arguments -> item-array (invoke_visit_argument) 2684 // c) push receiver on stack 2685 // d) load each of the items and push on stack 2686 // e) unlock receiver 2687 // f) move receiver into receiver-register %o0 2688 // g) lock result registers and emit call operation 2689 // 2690 // Before issuing a call, we must spill-save all values on stack 2691 // that are in caller-save register. "spill-save" moves those registers 2692 // either in a free callee-save register or spills them if no free 2693 // callee save register is available. 2694 // 2695 // The problem is where to invoke spill-save. 2696 // - if invoked between e) and f), we may lock callee save 2697 // register in "spill-save" that destroys the receiver register 2698 // before f) is executed 2699 // - if we rearrange f) to be earlier (by loading %o0) it 2700 // may destroy a value on the stack that is currently in %o0 2701 // and is waiting to be spilled 2702 // - if we keep the receiver locked while doing spill-save, 2703 // we cannot spill it as it is spill-locked 2704 // 2705 void LIRGenerator::do_Invoke(Invoke* x) { 2706 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2707 2708 LIR_OprList* arg_list = cc->args(); 2709 LIRItemList* args = invoke_visit_arguments(x); 2710 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2711 2712 // setup result register 2713 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2714 if (x->type() != voidType) { 2715 result_register = result_register_for(x->type()); 2716 } 2717 2718 CodeEmitInfo* info = state_for(x, x->state()); 2719 2720 invoke_load_arguments(x, args, arg_list); 2721 2722 if (x->has_receiver()) { 2723 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2724 receiver = args->at(0)->result(); 2725 } 2726 2727 // emit invoke code 2728 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2729 2730 // JSR 292 2731 // Preserve the SP over MethodHandle call sites, if needed. 2732 ciMethod* target = x->target(); 2733 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2734 target->is_method_handle_intrinsic() || 2735 target->is_compiled_lambda_form()); 2736 if (is_method_handle_invoke) { 2737 info->set_is_method_handle_invoke(true); 2738 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2739 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2740 } 2741 } 2742 2743 switch (x->code()) { 2744 case Bytecodes::_invokestatic: 2745 __ call_static(target, result_register, 2746 SharedRuntime::get_resolve_static_call_stub(), 2747 arg_list, info); 2748 break; 2749 case Bytecodes::_invokespecial: 2750 case Bytecodes::_invokevirtual: 2751 case Bytecodes::_invokeinterface: 2752 // for loaded and final (method or class) target we still produce an inline cache, 2753 // in order to be able to call mixed mode 2754 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2755 __ call_opt_virtual(target, receiver, result_register, 2756 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2757 arg_list, info); 2758 } else { 2759 __ call_icvirtual(target, receiver, result_register, 2760 SharedRuntime::get_resolve_virtual_call_stub(), 2761 arg_list, info); 2762 } 2763 break; 2764 case Bytecodes::_invokedynamic: { 2765 __ call_dynamic(target, receiver, result_register, 2766 SharedRuntime::get_resolve_static_call_stub(), 2767 arg_list, info); 2768 break; 2769 } 2770 default: 2771 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2772 break; 2773 } 2774 2775 // JSR 292 2776 // Restore the SP after MethodHandle call sites, if needed. 2777 if (is_method_handle_invoke 2778 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2779 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2780 } 2781 2782 if (result_register->is_valid()) { 2783 LIR_Opr result = rlock_result(x); 2784 __ move(result_register, result); 2785 } 2786 } 2787 2788 2789 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2790 assert(x->number_of_arguments() == 1, "wrong type"); 2791 LIRItem value (x->argument_at(0), this); 2792 LIR_Opr reg = rlock_result(x); 2793 value.load_item(); 2794 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2795 __ move(tmp, reg); 2796 } 2797 2798 2799 2800 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2801 void LIRGenerator::do_IfOp(IfOp* x) { 2802 #ifdef ASSERT 2803 { 2804 ValueTag xtag = x->x()->type()->tag(); 2805 ValueTag ttag = x->tval()->type()->tag(); 2806 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2807 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2808 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2809 } 2810 #endif 2811 2812 LIRItem left(x->x(), this); 2813 LIRItem right(x->y(), this); 2814 left.load_item(); 2815 if (can_inline_as_constant(right.value())) { 2816 right.dont_load_item(); 2817 } else { 2818 right.load_item(); 2819 } 2820 2821 LIRItem t_val(x->tval(), this); 2822 LIRItem f_val(x->fval(), this); 2823 t_val.dont_load_item(); 2824 f_val.dont_load_item(); 2825 LIR_Opr reg = rlock_result(x); 2826 2827 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2828 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2829 } 2830 2831 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2832 assert(x->number_of_arguments() == 0, "wrong type"); 2833 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2834 BasicTypeList signature; 2835 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2836 LIR_Opr reg = result_register_for(x->type()); 2837 __ call_runtime_leaf(routine, getThreadTemp(), 2838 reg, new LIR_OprList()); 2839 LIR_Opr result = rlock_result(x); 2840 __ move(reg, result); 2841 } 2842 2843 2844 2845 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2846 switch (x->id()) { 2847 case vmIntrinsics::_intBitsToFloat : 2848 case vmIntrinsics::_doubleToRawLongBits : 2849 case vmIntrinsics::_longBitsToDouble : 2850 case vmIntrinsics::_floatToRawIntBits : { 2851 do_FPIntrinsics(x); 2852 break; 2853 } 2854 2855 #ifdef JFR_HAVE_INTRINSICS 2856 case vmIntrinsics::_counterTime: 2857 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2858 break; 2859 #endif 2860 2861 case vmIntrinsics::_currentTimeMillis: 2862 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2863 break; 2864 2865 case vmIntrinsics::_nanoTime: 2866 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2867 break; 2868 2869 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2870 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2871 case vmIntrinsics::_getClass: do_getClass(x); break; 2872 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2873 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2874 case vmIntrinsics::_currentThread: do_vthread(x); break; 2875 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2876 2877 case vmIntrinsics::_dlog: // fall through 2878 case vmIntrinsics::_dlog10: // fall through 2879 case vmIntrinsics::_dabs: // fall through 2880 case vmIntrinsics::_dsqrt: // fall through 2881 case vmIntrinsics::_dsqrt_strict: // fall through 2882 case vmIntrinsics::_dtan: // fall through 2883 case vmIntrinsics::_dtanh: // fall through 2884 case vmIntrinsics::_dsin : // fall through 2885 case vmIntrinsics::_dcos : // fall through 2886 case vmIntrinsics::_dexp : // fall through 2887 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2888 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2889 2890 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2891 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2892 2893 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2894 case vmIntrinsics::_floatToFloat16: // fall through 2895 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2896 2897 case vmIntrinsics::_Preconditions_checkIndex: 2898 do_PreconditionsCheckIndex(x, T_INT); 2899 break; 2900 case vmIntrinsics::_Preconditions_checkLongIndex: 2901 do_PreconditionsCheckIndex(x, T_LONG); 2902 break; 2903 2904 case vmIntrinsics::_compareAndSetReference: 2905 do_CompareAndSwap(x, objectType); 2906 break; 2907 case vmIntrinsics::_compareAndSetInt: 2908 do_CompareAndSwap(x, intType); 2909 break; 2910 case vmIntrinsics::_compareAndSetLong: 2911 do_CompareAndSwap(x, longType); 2912 break; 2913 2914 case vmIntrinsics::_loadFence : 2915 __ membar_acquire(); 2916 break; 2917 case vmIntrinsics::_storeFence: 2918 __ membar_release(); 2919 break; 2920 case vmIntrinsics::_storeStoreFence: 2921 __ membar_storestore(); 2922 break; 2923 case vmIntrinsics::_fullFence : 2924 __ membar(); 2925 break; 2926 case vmIntrinsics::_onSpinWait: 2927 __ on_spin_wait(); 2928 break; 2929 case vmIntrinsics::_Reference_get: 2930 do_Reference_get(x); 2931 break; 2932 2933 case vmIntrinsics::_updateCRC32: 2934 case vmIntrinsics::_updateBytesCRC32: 2935 case vmIntrinsics::_updateByteBufferCRC32: 2936 do_update_CRC32(x); 2937 break; 2938 2939 case vmIntrinsics::_updateBytesCRC32C: 2940 case vmIntrinsics::_updateDirectByteBufferCRC32C: 2941 do_update_CRC32C(x); 2942 break; 2943 2944 case vmIntrinsics::_vectorizedMismatch: 2945 do_vectorizedMismatch(x); 2946 break; 2947 2948 case vmIntrinsics::_blackhole: 2949 do_blackhole(x); 2950 break; 2951 2952 default: ShouldNotReachHere(); break; 2953 } 2954 } 2955 2956 void LIRGenerator::profile_arguments(ProfileCall* x) { 2957 if (compilation()->profile_arguments()) { 2958 int bci = x->bci_of_invoke(); 2959 ciMethodData* md = x->method()->method_data_or_null(); 2960 assert(md != nullptr, "Sanity"); 2961 ciProfileData* data = md->bci_to_data(bci); 2962 if (data != nullptr) { 2963 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 2964 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 2965 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 2966 int base_offset = md->byte_offset_of_slot(data, extra); 2967 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2968 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 2969 2970 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 2971 int start = 0; 2972 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 2973 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 2974 // first argument is not profiled at call (method handle invoke) 2975 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 2976 start = 1; 2977 } 2978 ciSignature* callee_signature = x->callee()->signature(); 2979 // method handle call to virtual method 2980 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 2981 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 2982 2983 bool ignored_will_link; 2984 ciSignature* signature_at_call = nullptr; 2985 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 2986 ciSignatureStream signature_at_call_stream(signature_at_call); 2987 2988 // if called through method handle invoke, some arguments may have been popped 2989 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 2990 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 2991 ciKlass* exact = profile_type(md, base_offset, off, 2992 args->type(i), x->profiled_arg_at(i+start), mdp, 2993 !x->arg_needs_null_check(i+start), 2994 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 2995 if (exact != nullptr) { 2996 md->set_argument_type(bci, i, exact); 2997 } 2998 } 2999 } else { 3000 #ifdef ASSERT 3001 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3002 int n = x->nb_profiled_args(); 3003 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3004 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3005 "only at JSR292 bytecodes"); 3006 #endif 3007 } 3008 } 3009 } 3010 } 3011 3012 // profile parameters on entry to an inlined method 3013 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3014 if (compilation()->profile_parameters() && x->inlined()) { 3015 ciMethodData* md = x->callee()->method_data_or_null(); 3016 if (md != nullptr) { 3017 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3018 if (parameters_type_data != nullptr) { 3019 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3020 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3021 bool has_receiver = !x->callee()->is_static(); 3022 ciSignature* sig = x->callee()->signature(); 3023 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3024 int i = 0; // to iterate on the Instructions 3025 Value arg = x->recv(); 3026 bool not_null = false; 3027 int bci = x->bci_of_invoke(); 3028 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3029 // The first parameter is the receiver so that's what we start 3030 // with if it exists. One exception is method handle call to 3031 // virtual method: the receiver is in the args list 3032 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3033 i = 1; 3034 arg = x->profiled_arg_at(0); 3035 not_null = !x->arg_needs_null_check(0); 3036 } 3037 int k = 0; // to iterate on the profile data 3038 for (;;) { 3039 intptr_t profiled_k = parameters->type(k); 3040 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3041 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3042 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3043 // If the profile is known statically set it once for all and do not emit any code 3044 if (exact != nullptr) { 3045 md->set_parameter_type(k, exact); 3046 } 3047 k++; 3048 if (k >= parameters_type_data->number_of_parameters()) { 3049 #ifdef ASSERT 3050 int extra = 0; 3051 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3052 x->nb_profiled_args() >= TypeProfileParmsLimit && 3053 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3054 extra += 1; 3055 } 3056 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3057 #endif 3058 break; 3059 } 3060 arg = x->profiled_arg_at(i); 3061 not_null = !x->arg_needs_null_check(i); 3062 i++; 3063 } 3064 } 3065 } 3066 } 3067 } 3068 3069 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3070 // Need recv in a temporary register so it interferes with the other temporaries 3071 LIR_Opr recv = LIR_OprFact::illegalOpr; 3072 LIR_Opr mdo = new_register(T_METADATA); 3073 // tmp is used to hold the counters on SPARC 3074 LIR_Opr tmp = new_pointer_register(); 3075 3076 if (x->nb_profiled_args() > 0) { 3077 profile_arguments(x); 3078 } 3079 3080 // profile parameters on inlined method entry including receiver 3081 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3082 profile_parameters_at_call(x); 3083 } 3084 3085 if (x->recv() != nullptr) { 3086 LIRItem value(x->recv(), this); 3087 value.load_item(); 3088 recv = new_register(T_OBJECT); 3089 __ move(value.result(), recv); 3090 } 3091 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3092 } 3093 3094 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3095 int bci = x->bci_of_invoke(); 3096 ciMethodData* md = x->method()->method_data_or_null(); 3097 assert(md != nullptr, "Sanity"); 3098 ciProfileData* data = md->bci_to_data(bci); 3099 if (data != nullptr) { 3100 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3101 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3102 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3103 3104 bool ignored_will_link; 3105 ciSignature* signature_at_call = nullptr; 3106 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3107 3108 // The offset within the MDO of the entry to update may be too large 3109 // to be used in load/store instructions on some platforms. So have 3110 // profile_type() compute the address of the profile in a register. 3111 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3112 ret->type(), x->ret(), mdp, 3113 !x->needs_null_check(), 3114 signature_at_call->return_type()->as_klass(), 3115 x->callee()->signature()->return_type()->as_klass()); 3116 if (exact != nullptr) { 3117 md->set_return_type(bci, exact); 3118 } 3119 } 3120 } 3121 3122 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3123 // We can safely ignore accessors here, since c2 will inline them anyway, 3124 // accessors are also always mature. 3125 if (!x->inlinee()->is_accessor()) { 3126 CodeEmitInfo* info = state_for(x, x->state(), true); 3127 // Notify the runtime very infrequently only to take care of counter overflows 3128 int freq_log = Tier23InlineeNotifyFreqLog; 3129 double scale; 3130 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3131 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3132 } 3133 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3134 } 3135 } 3136 3137 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3138 if (compilation()->is_profiling()) { 3139 #if defined(X86) && !defined(_LP64) 3140 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3141 LIR_Opr left_copy = new_register(left->type()); 3142 __ move(left, left_copy); 3143 __ cmp(cond, left_copy, right); 3144 #else 3145 __ cmp(cond, left, right); 3146 #endif 3147 LIR_Opr step = new_register(T_INT); 3148 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3149 LIR_Opr zero = LIR_OprFact::intConst(0); 3150 __ cmove(cond, 3151 (left_bci < bci) ? plus_one : zero, 3152 (right_bci < bci) ? plus_one : zero, 3153 step, left->type()); 3154 increment_backedge_counter(info, step, bci); 3155 } 3156 } 3157 3158 3159 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3160 int freq_log = 0; 3161 int level = compilation()->env()->comp_level(); 3162 if (level == CompLevel_limited_profile) { 3163 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3164 } else if (level == CompLevel_full_profile) { 3165 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3166 } else { 3167 ShouldNotReachHere(); 3168 } 3169 // Increment the appropriate invocation/backedge counter and notify the runtime. 3170 double scale; 3171 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3172 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3173 } 3174 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3175 } 3176 3177 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3178 ciMethod *method, LIR_Opr step, int frequency, 3179 int bci, bool backedge, bool notify) { 3180 if (PreloadOnly) { 3181 // Nothing to do if we only use preload code. 3182 return; 3183 } 3184 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3185 int level = _compilation->env()->comp_level(); 3186 assert(level > CompLevel_simple, "Shouldn't be here"); 3187 3188 int offset = -1; 3189 LIR_Opr counter_holder; 3190 if (level == CompLevel_limited_profile) { 3191 MethodCounters* counters_adr = method->ensure_method_counters(); 3192 if (counters_adr == nullptr) { 3193 bailout("method counters allocation failed"); 3194 return; 3195 } 3196 if (SCCache::is_on()) { 3197 counter_holder = new_register(T_METADATA); 3198 __ metadata2reg(counters_adr, counter_holder); 3199 } else { 3200 counter_holder = new_pointer_register(); 3201 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3202 } 3203 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3204 MethodCounters::invocation_counter_offset()); 3205 } else if (level == CompLevel_full_profile) { 3206 counter_holder = new_register(T_METADATA); 3207 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3208 MethodData::invocation_counter_offset()); 3209 ciMethodData* md = method->method_data_or_null(); 3210 assert(md != nullptr, "Sanity"); 3211 __ metadata2reg(md->constant_encoding(), counter_holder); 3212 } else { 3213 ShouldNotReachHere(); 3214 } 3215 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3216 LIR_Opr result = new_register(T_INT); 3217 __ load(counter, result); 3218 __ add(result, step, result); 3219 __ store(result, counter); 3220 if (notify && (!backedge || UseOnStackReplacement)) { 3221 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3222 // The bci for info can point to cmp for if's we want the if bci 3223 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3224 int freq = frequency << InvocationCounter::count_shift; 3225 if (freq == 0) { 3226 if (!step->is_constant()) { 3227 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3228 __ branch(lir_cond_notEqual, overflow); 3229 } else { 3230 __ branch(lir_cond_always, overflow); 3231 } 3232 } else { 3233 LIR_Opr mask = load_immediate(freq, T_INT); 3234 if (!step->is_constant()) { 3235 // If step is 0, make sure the overflow check below always fails 3236 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3237 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3238 } 3239 __ logical_and(result, mask, result); 3240 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3241 __ branch(lir_cond_equal, overflow); 3242 } 3243 __ branch_destination(overflow->continuation()); 3244 } 3245 } 3246 3247 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3248 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3249 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3250 3251 if (x->pass_thread()) { 3252 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3253 args->append(getThreadPointer()); 3254 } 3255 3256 for (int i = 0; i < x->number_of_arguments(); i++) { 3257 Value a = x->argument_at(i); 3258 LIRItem* item = new LIRItem(a, this); 3259 item->load_item(); 3260 args->append(item->result()); 3261 signature->append(as_BasicType(a->type())); 3262 } 3263 3264 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3265 if (x->type() == voidType) { 3266 set_no_result(x); 3267 } else { 3268 __ move(result, rlock_result(x)); 3269 } 3270 } 3271 3272 #ifdef ASSERT 3273 void LIRGenerator::do_Assert(Assert *x) { 3274 ValueTag tag = x->x()->type()->tag(); 3275 If::Condition cond = x->cond(); 3276 3277 LIRItem xitem(x->x(), this); 3278 LIRItem yitem(x->y(), this); 3279 LIRItem* xin = &xitem; 3280 LIRItem* yin = &yitem; 3281 3282 assert(tag == intTag, "Only integer assertions are valid!"); 3283 3284 xin->load_item(); 3285 yin->dont_load_item(); 3286 3287 set_no_result(x); 3288 3289 LIR_Opr left = xin->result(); 3290 LIR_Opr right = yin->result(); 3291 3292 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3293 } 3294 #endif 3295 3296 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3297 3298 3299 Instruction *a = x->x(); 3300 Instruction *b = x->y(); 3301 if (!a || StressRangeCheckElimination) { 3302 assert(!b || StressRangeCheckElimination, "B must also be null"); 3303 3304 CodeEmitInfo *info = state_for(x, x->state()); 3305 CodeStub* stub = new PredicateFailedStub(info); 3306 3307 __ jump(stub); 3308 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3309 int a_int = a->type()->as_IntConstant()->value(); 3310 int b_int = b->type()->as_IntConstant()->value(); 3311 3312 bool ok = false; 3313 3314 switch(x->cond()) { 3315 case Instruction::eql: ok = (a_int == b_int); break; 3316 case Instruction::neq: ok = (a_int != b_int); break; 3317 case Instruction::lss: ok = (a_int < b_int); break; 3318 case Instruction::leq: ok = (a_int <= b_int); break; 3319 case Instruction::gtr: ok = (a_int > b_int); break; 3320 case Instruction::geq: ok = (a_int >= b_int); break; 3321 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3322 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3323 default: ShouldNotReachHere(); 3324 } 3325 3326 if (ok) { 3327 3328 CodeEmitInfo *info = state_for(x, x->state()); 3329 CodeStub* stub = new PredicateFailedStub(info); 3330 3331 __ jump(stub); 3332 } 3333 } else { 3334 3335 ValueTag tag = x->x()->type()->tag(); 3336 If::Condition cond = x->cond(); 3337 LIRItem xitem(x->x(), this); 3338 LIRItem yitem(x->y(), this); 3339 LIRItem* xin = &xitem; 3340 LIRItem* yin = &yitem; 3341 3342 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3343 3344 xin->load_item(); 3345 yin->dont_load_item(); 3346 set_no_result(x); 3347 3348 LIR_Opr left = xin->result(); 3349 LIR_Opr right = yin->result(); 3350 3351 CodeEmitInfo *info = state_for(x, x->state()); 3352 CodeStub* stub = new PredicateFailedStub(info); 3353 3354 __ cmp(lir_cond(cond), left, right); 3355 __ branch(lir_cond(cond), stub); 3356 } 3357 } 3358 3359 void LIRGenerator::do_blackhole(Intrinsic *x) { 3360 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3361 for (int c = 0; c < x->number_of_arguments(); c++) { 3362 // Load the argument 3363 LIRItem vitem(x->argument_at(c), this); 3364 vitem.load_item(); 3365 // ...and leave it unused. 3366 } 3367 } 3368 3369 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3370 LIRItemList args(1); 3371 LIRItem value(arg1, this); 3372 args.append(&value); 3373 BasicTypeList signature; 3374 signature.append(as_BasicType(arg1->type())); 3375 3376 return call_runtime(&signature, &args, entry, result_type, info); 3377 } 3378 3379 3380 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3381 LIRItemList args(2); 3382 LIRItem value1(arg1, this); 3383 LIRItem value2(arg2, this); 3384 args.append(&value1); 3385 args.append(&value2); 3386 BasicTypeList signature; 3387 signature.append(as_BasicType(arg1->type())); 3388 signature.append(as_BasicType(arg2->type())); 3389 3390 return call_runtime(&signature, &args, entry, result_type, info); 3391 } 3392 3393 3394 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3395 address entry, ValueType* result_type, CodeEmitInfo* info) { 3396 // get a result register 3397 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3398 LIR_Opr result = LIR_OprFact::illegalOpr; 3399 if (result_type->tag() != voidTag) { 3400 result = new_register(result_type); 3401 phys_reg = result_register_for(result_type); 3402 } 3403 3404 // move the arguments into the correct location 3405 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3406 assert(cc->length() == args->length(), "argument mismatch"); 3407 for (int i = 0; i < args->length(); i++) { 3408 LIR_Opr arg = args->at(i); 3409 LIR_Opr loc = cc->at(i); 3410 if (loc->is_register()) { 3411 __ move(arg, loc); 3412 } else { 3413 LIR_Address* addr = loc->as_address_ptr(); 3414 // if (!can_store_as_constant(arg)) { 3415 // LIR_Opr tmp = new_register(arg->type()); 3416 // __ move(arg, tmp); 3417 // arg = tmp; 3418 // } 3419 __ move(arg, addr); 3420 } 3421 } 3422 3423 if (info) { 3424 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3425 } else { 3426 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3427 } 3428 if (result->is_valid()) { 3429 __ move(phys_reg, result); 3430 } 3431 return result; 3432 } 3433 3434 3435 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3436 address entry, ValueType* result_type, CodeEmitInfo* info) { 3437 // get a result register 3438 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3439 LIR_Opr result = LIR_OprFact::illegalOpr; 3440 if (result_type->tag() != voidTag) { 3441 result = new_register(result_type); 3442 phys_reg = result_register_for(result_type); 3443 } 3444 3445 // move the arguments into the correct location 3446 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3447 3448 assert(cc->length() == args->length(), "argument mismatch"); 3449 for (int i = 0; i < args->length(); i++) { 3450 LIRItem* arg = args->at(i); 3451 LIR_Opr loc = cc->at(i); 3452 if (loc->is_register()) { 3453 arg->load_item_force(loc); 3454 } else { 3455 LIR_Address* addr = loc->as_address_ptr(); 3456 arg->load_for_store(addr->type()); 3457 __ move(arg->result(), addr); 3458 } 3459 } 3460 3461 if (info) { 3462 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3463 } else { 3464 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3465 } 3466 if (result->is_valid()) { 3467 __ move(phys_reg, result); 3468 } 3469 return result; 3470 } 3471 3472 void LIRGenerator::do_MemBar(MemBar* x) { 3473 LIR_Code code = x->code(); 3474 switch(code) { 3475 case lir_membar_acquire : __ membar_acquire(); break; 3476 case lir_membar_release : __ membar_release(); break; 3477 case lir_membar : __ membar(); break; 3478 case lir_membar_loadload : __ membar_loadload(); break; 3479 case lir_membar_storestore: __ membar_storestore(); break; 3480 case lir_membar_loadstore : __ membar_loadstore(); break; 3481 case lir_membar_storeload : __ membar_storeload(); break; 3482 default : ShouldNotReachHere(); break; 3483 } 3484 } 3485 3486 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3487 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3488 if (two_operand_lir_form) { 3489 __ move(value, value_fixed); 3490 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3491 } else { 3492 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3493 } 3494 LIR_Opr klass = new_register(T_METADATA); 3495 load_klass(array, klass, null_check_info); 3496 null_check_info = nullptr; 3497 LIR_Opr layout = new_register(T_INT); 3498 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3499 int diffbit = Klass::layout_helper_boolean_diffbit(); 3500 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3501 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3502 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3503 value = value_fixed; 3504 return value; 3505 }