1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "code/SCCache.hpp" 38 #include "compiler/compilerDefinitions.inline.hpp" 39 #include "compiler/compilerOracle.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c1/barrierSetC1.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/methodCounters.hpp" 44 #include "runtime/runtimeUpcalls.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/vm_version.hpp" 48 #include "utilities/bitMap.inline.hpp" 49 #include "utilities/macros.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #ifdef ASSERT 53 #define __ gen()->lir(__FILE__, __LINE__)-> 54 #else 55 #define __ gen()->lir()-> 56 #endif 57 58 #ifndef PATCHED_ADDR 59 #define PATCHED_ADDR (max_jint) 60 #endif 61 62 void PhiResolverState::reset() { 63 _virtual_operands.clear(); 64 _other_operands.clear(); 65 _vreg_table.clear(); 66 } 67 68 69 //-------------------------------------------------------------- 70 // PhiResolver 71 72 // Resolves cycles: 73 // 74 // r1 := r2 becomes temp := r1 75 // r2 := r1 r1 := r2 76 // r2 := temp 77 // and orders moves: 78 // 79 // r2 := r3 becomes r1 := r2 80 // r1 := r2 r2 := r3 81 82 PhiResolver::PhiResolver(LIRGenerator* gen) 83 : _gen(gen) 84 , _state(gen->resolver_state()) 85 , _loop(nullptr) 86 , _temp(LIR_OprFact::illegalOpr) 87 { 88 // reinitialize the shared state arrays 89 _state.reset(); 90 } 91 92 93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 94 assert(src->is_valid(), ""); 95 assert(dest->is_valid(), ""); 96 __ move(src, dest); 97 } 98 99 100 void PhiResolver::move_temp_to(LIR_Opr dest) { 101 assert(_temp->is_valid(), ""); 102 emit_move(_temp, dest); 103 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 104 } 105 106 107 void PhiResolver::move_to_temp(LIR_Opr src) { 108 assert(_temp->is_illegal(), ""); 109 _temp = _gen->new_register(src->type()); 110 emit_move(src, _temp); 111 } 112 113 114 // Traverse assignment graph in depth first order and generate moves in post order 115 // ie. two assignments: b := c, a := b start with node c: 116 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 117 // Generates moves in this order: move b to a and move c to b 118 // ie. cycle a := b, b := a start with node a 119 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 120 // Generates moves in this order: move b to temp, move a to b, move temp to a 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 122 if (!dest->visited()) { 123 dest->set_visited(); 124 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 125 move(dest, dest->destination_at(i)); 126 } 127 } else if (!dest->start_node()) { 128 // cylce in graph detected 129 assert(_loop == nullptr, "only one loop valid!"); 130 _loop = dest; 131 move_to_temp(src->operand()); 132 return; 133 } // else dest is a start node 134 135 if (!dest->assigned()) { 136 if (_loop == dest) { 137 move_temp_to(dest->operand()); 138 dest->set_assigned(); 139 } else if (src != nullptr) { 140 emit_move(src->operand(), dest->operand()); 141 dest->set_assigned(); 142 } 143 } 144 } 145 146 147 PhiResolver::~PhiResolver() { 148 int i; 149 // resolve any cycles in moves from and to virtual registers 150 for (i = virtual_operands().length() - 1; i >= 0; i --) { 151 ResolveNode* node = virtual_operands().at(i); 152 if (!node->visited()) { 153 _loop = nullptr; 154 move(nullptr, node); 155 node->set_start_node(); 156 assert(_temp->is_illegal(), "move_temp_to() call missing"); 157 } 158 } 159 160 // generate move for move from non virtual register to abitrary destination 161 for (i = other_operands().length() - 1; i >= 0; i --) { 162 ResolveNode* node = other_operands().at(i); 163 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 164 emit_move(node->operand(), node->destination_at(j)->operand()); 165 } 166 } 167 } 168 169 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 171 ResolveNode* node; 172 if (opr->is_virtual()) { 173 int vreg_num = opr->vreg_number(); 174 node = vreg_table().at_grow(vreg_num, nullptr); 175 assert(node == nullptr || node->operand() == opr, ""); 176 if (node == nullptr) { 177 node = new ResolveNode(opr); 178 vreg_table().at_put(vreg_num, node); 179 } 180 // Make sure that all virtual operands show up in the list when 181 // they are used as the source of a move. 182 if (source && !virtual_operands().contains(node)) { 183 virtual_operands().append(node); 184 } 185 } else { 186 assert(source, ""); 187 node = new ResolveNode(opr); 188 other_operands().append(node); 189 } 190 return node; 191 } 192 193 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 195 assert(dest->is_virtual(), ""); 196 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 197 assert(src->is_valid(), ""); 198 assert(dest->is_valid(), ""); 199 ResolveNode* source = source_node(src); 200 source->append(destination_node(dest)); 201 } 202 203 204 //-------------------------------------------------------------- 205 // LIRItem 206 207 void LIRItem::set_result(LIR_Opr opr) { 208 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 209 value()->set_operand(opr); 210 211 #ifdef ASSERT 212 if (opr->is_virtual()) { 213 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 214 } 215 #endif 216 217 _result = opr; 218 } 219 220 void LIRItem::load_item() { 221 if (result()->is_illegal()) { 222 // update the items result 223 _result = value()->operand(); 224 } 225 if (!result()->is_register()) { 226 LIR_Opr reg = _gen->new_register(value()->type()); 227 __ move(result(), reg); 228 if (result()->is_constant()) { 229 _result = reg; 230 } else { 231 set_result(reg); 232 } 233 } 234 } 235 236 237 void LIRItem::load_for_store(BasicType type) { 238 if (_gen->can_store_as_constant(value(), type)) { 239 _result = value()->operand(); 240 if (!_result->is_constant()) { 241 _result = LIR_OprFact::value_type(value()->type()); 242 } 243 } else if (type == T_BYTE || type == T_BOOLEAN) { 244 load_byte_item(); 245 } else { 246 load_item(); 247 } 248 } 249 250 void LIRItem::load_item_force(LIR_Opr reg) { 251 LIR_Opr r = result(); 252 if (r != reg) { 253 #if !defined(ARM) && !defined(E500V2) 254 if (r->type() != reg->type()) { 255 // moves between different types need an intervening spill slot 256 r = _gen->force_to_spill(r, reg->type()); 257 } 258 #endif 259 __ move(r, reg); 260 _result = reg; 261 } 262 } 263 264 ciObject* LIRItem::get_jobject_constant() const { 265 ObjectType* oc = type()->as_ObjectType(); 266 if (oc) { 267 return oc->constant_value(); 268 } 269 return nullptr; 270 } 271 272 273 jint LIRItem::get_jint_constant() const { 274 assert(is_constant() && value() != nullptr, ""); 275 assert(type()->as_IntConstant() != nullptr, "type check"); 276 return type()->as_IntConstant()->value(); 277 } 278 279 280 jint LIRItem::get_address_constant() const { 281 assert(is_constant() && value() != nullptr, ""); 282 assert(type()->as_AddressConstant() != nullptr, "type check"); 283 return type()->as_AddressConstant()->value(); 284 } 285 286 287 jfloat LIRItem::get_jfloat_constant() const { 288 assert(is_constant() && value() != nullptr, ""); 289 assert(type()->as_FloatConstant() != nullptr, "type check"); 290 return type()->as_FloatConstant()->value(); 291 } 292 293 294 jdouble LIRItem::get_jdouble_constant() const { 295 assert(is_constant() && value() != nullptr, ""); 296 assert(type()->as_DoubleConstant() != nullptr, "type check"); 297 return type()->as_DoubleConstant()->value(); 298 } 299 300 301 jlong LIRItem::get_jlong_constant() const { 302 assert(is_constant() && value() != nullptr, ""); 303 assert(type()->as_LongConstant() != nullptr, "type check"); 304 return type()->as_LongConstant()->value(); 305 } 306 307 308 309 //-------------------------------------------------------------- 310 311 312 void LIRGenerator::block_do_prolog(BlockBegin* block) { 313 #ifndef PRODUCT 314 if (PrintIRWithLIR) { 315 block->print(); 316 } 317 #endif 318 319 // set up the list of LIR instructions 320 assert(block->lir() == nullptr, "LIR list already computed for this block"); 321 _lir = new LIR_List(compilation(), block); 322 block->set_lir(_lir); 323 324 __ branch_destination(block->label()); 325 326 if (LIRTraceExecution && 327 Compilation::current()->hir()->start()->block_id() != block->block_id() && 328 !block->is_set(BlockBegin::exception_entry_flag)) { 329 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 330 trace_block_entry(block); 331 } 332 } 333 334 335 void LIRGenerator::block_do_epilog(BlockBegin* block) { 336 #ifndef PRODUCT 337 if (PrintIRWithLIR) { 338 tty->cr(); 339 } 340 #endif 341 342 // LIR_Opr for unpinned constants shouldn't be referenced by other 343 // blocks so clear them out after processing the block. 344 for (int i = 0; i < _unpinned_constants.length(); i++) { 345 _unpinned_constants.at(i)->clear_operand(); 346 } 347 _unpinned_constants.trunc_to(0); 348 349 // clear our any registers for other local constants 350 _constants.trunc_to(0); 351 _reg_for_constants.trunc_to(0); 352 } 353 354 355 void LIRGenerator::block_do(BlockBegin* block) { 356 CHECK_BAILOUT(); 357 358 block_do_prolog(block); 359 set_block(block); 360 361 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 362 if (instr->is_pinned()) do_root(instr); 363 } 364 365 set_block(nullptr); 366 block_do_epilog(block); 367 } 368 369 370 //-------------------------LIRGenerator----------------------------- 371 372 // This is where the tree-walk starts; instr must be root; 373 void LIRGenerator::do_root(Value instr) { 374 CHECK_BAILOUT(); 375 376 InstructionMark im(compilation(), instr); 377 378 assert(instr->is_pinned(), "use only with roots"); 379 assert(instr->subst() == instr, "shouldn't have missed substitution"); 380 381 instr->visit(this); 382 383 assert(!instr->has_uses() || instr->operand()->is_valid() || 384 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 385 } 386 387 388 // This is called for each node in tree; the walk stops if a root is reached 389 void LIRGenerator::walk(Value instr) { 390 InstructionMark im(compilation(), instr); 391 //stop walk when encounter a root 392 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 393 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 394 } else { 395 assert(instr->subst() == instr, "shouldn't have missed substitution"); 396 instr->visit(this); 397 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 398 } 399 } 400 401 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 403 assert(state != nullptr, "state must be defined"); 404 405 #ifndef PRODUCT 406 state->verify(); 407 #endif 408 409 ValueStack* s = state; 410 for_each_state(s) { 411 if (s->kind() == ValueStack::EmptyExceptionState || 412 s->kind() == ValueStack::CallerEmptyExceptionState) 413 { 414 #ifdef ASSERT 415 int index; 416 Value value; 417 for_each_stack_value(s, index, value) { 418 fatal("state must be empty"); 419 } 420 for_each_local_value(s, index, value) { 421 fatal("state must be empty"); 422 } 423 #endif 424 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 425 continue; 426 } 427 428 int index; 429 Value value; 430 for_each_stack_value(s, index, value) { 431 assert(value->subst() == value, "missed substitution"); 432 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 433 walk(value); 434 assert(value->operand()->is_valid(), "must be evaluated now"); 435 } 436 } 437 438 int bci = s->bci(); 439 IRScope* scope = s->scope(); 440 ciMethod* method = scope->method(); 441 442 MethodLivenessResult liveness = method->liveness_at_bci(bci); 443 if (bci == SynchronizationEntryBCI) { 444 if (x->as_ExceptionObject() || x->as_Throw()) { 445 // all locals are dead on exit from the synthetic unlocker 446 liveness.clear(); 447 } else { 448 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 449 } 450 } 451 if (!liveness.is_valid()) { 452 // Degenerate or breakpointed method. 453 bailout("Degenerate or breakpointed method"); 454 } else { 455 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 456 for_each_local_value(s, index, value) { 457 assert(value->subst() == value, "missed substitution"); 458 if (liveness.at(index) && !value->type()->is_illegal()) { 459 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 460 walk(value); 461 assert(value->operand()->is_valid(), "must be evaluated now"); 462 } 463 } else { 464 // null out this local so that linear scan can assume that all non-null values are live. 465 s->invalidate_local(index); 466 } 467 } 468 } 469 } 470 471 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 472 } 473 474 475 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 476 return state_for(x, x->exception_state()); 477 } 478 479 480 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 481 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 482 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 483 * the class. */ 484 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 485 assert(info != nullptr, "info must be set if class is not loaded"); 486 __ klass2reg_patch(nullptr, r, info); 487 } else { 488 // no patching needed 489 __ metadata2reg(obj->constant_encoding(), r); 490 } 491 } 492 493 494 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 495 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 496 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 497 if (index->is_constant()) { 498 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 499 index->as_jint(), null_check_info); 500 __ branch(lir_cond_belowEqual, stub); // forward branch 501 } else { 502 cmp_reg_mem(lir_cond_aboveEqual, index, array, 503 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 504 __ branch(lir_cond_aboveEqual, stub); // forward branch 505 } 506 } 507 508 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 509 LIR_Opr result_op = result; 510 LIR_Opr left_op = left; 511 LIR_Opr right_op = right; 512 513 if (two_operand_lir_form && left_op != result_op) { 514 assert(right_op != result_op, "malformed"); 515 __ move(left_op, result_op); 516 left_op = result_op; 517 } 518 519 switch(code) { 520 case Bytecodes::_dadd: 521 case Bytecodes::_fadd: 522 case Bytecodes::_ladd: 523 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 524 case Bytecodes::_fmul: 525 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 526 527 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 528 529 case Bytecodes::_imul: 530 { 531 bool did_strength_reduce = false; 532 533 if (right->is_constant()) { 534 jint c = right->as_jint(); 535 if (c > 0 && is_power_of_2(c)) { 536 // do not need tmp here 537 __ shift_left(left_op, exact_log2(c), result_op); 538 did_strength_reduce = true; 539 } else { 540 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 541 } 542 } 543 // we couldn't strength reduce so just emit the multiply 544 if (!did_strength_reduce) { 545 __ mul(left_op, right_op, result_op); 546 } 547 } 548 break; 549 550 case Bytecodes::_dsub: 551 case Bytecodes::_fsub: 552 case Bytecodes::_lsub: 553 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 554 555 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 556 // ldiv and lrem are implemented with a direct runtime call 557 558 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 559 560 case Bytecodes::_drem: 561 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 562 563 default: ShouldNotReachHere(); 564 } 565 } 566 567 568 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 569 arithmetic_op(code, result, left, right, tmp); 570 } 571 572 573 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 574 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 575 } 576 577 578 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 579 arithmetic_op(code, result, left, right, tmp); 580 } 581 582 583 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 584 585 if (two_operand_lir_form && value != result_op 586 // Only 32bit right shifts require two operand form on S390. 587 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 588 assert(count != result_op, "malformed"); 589 __ move(value, result_op); 590 value = result_op; 591 } 592 593 assert(count->is_constant() || count->is_register(), "must be"); 594 switch(code) { 595 case Bytecodes::_ishl: 596 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 597 case Bytecodes::_ishr: 598 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 599 case Bytecodes::_iushr: 600 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 601 default: ShouldNotReachHere(); 602 } 603 } 604 605 606 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 607 if (two_operand_lir_form && left_op != result_op) { 608 assert(right_op != result_op, "malformed"); 609 __ move(left_op, result_op); 610 left_op = result_op; 611 } 612 613 switch(code) { 614 case Bytecodes::_iand: 615 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 616 617 case Bytecodes::_ior: 618 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 619 620 case Bytecodes::_ixor: 621 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 622 623 default: ShouldNotReachHere(); 624 } 625 } 626 627 628 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 629 if (!GenerateSynchronizationCode) return; 630 // for slow path, use debug info for state after successful locking 631 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 632 __ load_stack_address_monitor(monitor_no, lock); 633 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 634 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 635 } 636 637 638 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 639 if (!GenerateSynchronizationCode) return; 640 // setup registers 641 LIR_Opr hdr = lock; 642 lock = new_hdr; 643 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 644 __ load_stack_address_monitor(monitor_no, lock); 645 __ unlock_object(hdr, object, lock, scratch, slow_path); 646 } 647 648 #ifndef PRODUCT 649 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 650 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 651 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 652 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 653 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 654 } 655 } 656 #endif 657 658 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 659 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 660 // If klass is not loaded we do not know if the klass has finalizers: 661 if (UseFastNewInstance && klass->is_loaded() 662 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 663 664 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 665 666 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 667 668 assert(klass->is_loaded(), "must be loaded"); 669 // allocate space for instance 670 assert(klass->size_helper() > 0, "illegal instance size"); 671 const int instance_size = align_object_size(klass->size_helper()); 672 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 673 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 674 } else { 675 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 676 __ branch(lir_cond_always, slow_path); 677 __ branch_destination(slow_path->continuation()); 678 } 679 } 680 681 682 static bool is_constant_zero(Instruction* inst) { 683 IntConstant* c = inst->type()->as_IntConstant(); 684 if (c) { 685 return (c->value() == 0); 686 } 687 return false; 688 } 689 690 691 static bool positive_constant(Instruction* inst) { 692 IntConstant* c = inst->type()->as_IntConstant(); 693 if (c) { 694 return (c->value() >= 0); 695 } 696 return false; 697 } 698 699 700 static ciArrayKlass* as_array_klass(ciType* type) { 701 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 702 return (ciArrayKlass*)type; 703 } else { 704 return nullptr; 705 } 706 } 707 708 static ciType* phi_declared_type(Phi* phi) { 709 ciType* t = phi->operand_at(0)->declared_type(); 710 if (t == nullptr) { 711 return nullptr; 712 } 713 for(int i = 1; i < phi->operand_count(); i++) { 714 if (t != phi->operand_at(i)->declared_type()) { 715 return nullptr; 716 } 717 } 718 return t; 719 } 720 721 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 722 Instruction* src = x->argument_at(0); 723 Instruction* src_pos = x->argument_at(1); 724 Instruction* dst = x->argument_at(2); 725 Instruction* dst_pos = x->argument_at(3); 726 Instruction* length = x->argument_at(4); 727 728 // first try to identify the likely type of the arrays involved 729 ciArrayKlass* expected_type = nullptr; 730 bool is_exact = false, src_objarray = false, dst_objarray = false; 731 { 732 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 733 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 734 Phi* phi; 735 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 736 src_declared_type = as_array_klass(phi_declared_type(phi)); 737 } 738 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 739 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 740 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 741 dst_declared_type = as_array_klass(phi_declared_type(phi)); 742 } 743 744 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 745 // the types exactly match so the type is fully known 746 is_exact = true; 747 expected_type = src_exact_type; 748 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 749 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 750 ciArrayKlass* src_type = nullptr; 751 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 752 src_type = (ciArrayKlass*) src_exact_type; 753 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 754 src_type = (ciArrayKlass*) src_declared_type; 755 } 756 if (src_type != nullptr) { 757 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 758 is_exact = true; 759 expected_type = dst_type; 760 } 761 } 762 } 763 // at least pass along a good guess 764 if (expected_type == nullptr) expected_type = dst_exact_type; 765 if (expected_type == nullptr) expected_type = src_declared_type; 766 if (expected_type == nullptr) expected_type = dst_declared_type; 767 768 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 769 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 770 } 771 772 // if a probable array type has been identified, figure out if any 773 // of the required checks for a fast case can be elided. 774 int flags = LIR_OpArrayCopy::all_flags; 775 776 if (!src_objarray) 777 flags &= ~LIR_OpArrayCopy::src_objarray; 778 if (!dst_objarray) 779 flags &= ~LIR_OpArrayCopy::dst_objarray; 780 781 if (!x->arg_needs_null_check(0)) 782 flags &= ~LIR_OpArrayCopy::src_null_check; 783 if (!x->arg_needs_null_check(2)) 784 flags &= ~LIR_OpArrayCopy::dst_null_check; 785 786 787 if (expected_type != nullptr) { 788 Value length_limit = nullptr; 789 790 IfOp* ifop = length->as_IfOp(); 791 if (ifop != nullptr) { 792 // look for expressions like min(v, a.length) which ends up as 793 // x > y ? y : x or x >= y ? y : x 794 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 795 ifop->x() == ifop->fval() && 796 ifop->y() == ifop->tval()) { 797 length_limit = ifop->y(); 798 } 799 } 800 801 // try to skip null checks and range checks 802 NewArray* src_array = src->as_NewArray(); 803 if (src_array != nullptr) { 804 flags &= ~LIR_OpArrayCopy::src_null_check; 805 if (length_limit != nullptr && 806 src_array->length() == length_limit && 807 is_constant_zero(src_pos)) { 808 flags &= ~LIR_OpArrayCopy::src_range_check; 809 } 810 } 811 812 NewArray* dst_array = dst->as_NewArray(); 813 if (dst_array != nullptr) { 814 flags &= ~LIR_OpArrayCopy::dst_null_check; 815 if (length_limit != nullptr && 816 dst_array->length() == length_limit && 817 is_constant_zero(dst_pos)) { 818 flags &= ~LIR_OpArrayCopy::dst_range_check; 819 } 820 } 821 822 // check from incoming constant values 823 if (positive_constant(src_pos)) 824 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 825 if (positive_constant(dst_pos)) 826 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 827 if (positive_constant(length)) 828 flags &= ~LIR_OpArrayCopy::length_positive_check; 829 830 // see if the range check can be elided, which might also imply 831 // that src or dst is non-null. 832 ArrayLength* al = length->as_ArrayLength(); 833 if (al != nullptr) { 834 if (al->array() == src) { 835 // it's the length of the source array 836 flags &= ~LIR_OpArrayCopy::length_positive_check; 837 flags &= ~LIR_OpArrayCopy::src_null_check; 838 if (is_constant_zero(src_pos)) 839 flags &= ~LIR_OpArrayCopy::src_range_check; 840 } 841 if (al->array() == dst) { 842 // it's the length of the destination array 843 flags &= ~LIR_OpArrayCopy::length_positive_check; 844 flags &= ~LIR_OpArrayCopy::dst_null_check; 845 if (is_constant_zero(dst_pos)) 846 flags &= ~LIR_OpArrayCopy::dst_range_check; 847 } 848 } 849 if (is_exact) { 850 flags &= ~LIR_OpArrayCopy::type_check; 851 } 852 } 853 854 IntConstant* src_int = src_pos->type()->as_IntConstant(); 855 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 856 if (src_int && dst_int) { 857 int s_offs = src_int->value(); 858 int d_offs = dst_int->value(); 859 if (src_int->value() >= dst_int->value()) { 860 flags &= ~LIR_OpArrayCopy::overlapping; 861 } 862 if (expected_type != nullptr) { 863 BasicType t = expected_type->element_type()->basic_type(); 864 int element_size = type2aelembytes(t); 865 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 866 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 867 flags &= ~LIR_OpArrayCopy::unaligned; 868 } 869 } 870 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 871 // src and dest positions are the same, or dst is zero so assume 872 // nonoverlapping copy. 873 flags &= ~LIR_OpArrayCopy::overlapping; 874 } 875 876 if (src == dst) { 877 // moving within a single array so no type checks are needed 878 if (flags & LIR_OpArrayCopy::type_check) { 879 flags &= ~LIR_OpArrayCopy::type_check; 880 } 881 } 882 *flagsp = flags; 883 *expected_typep = (ciArrayKlass*)expected_type; 884 } 885 886 887 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 888 assert(opr->is_register(), "why spill if item is not register?"); 889 890 if (strict_fp_requires_explicit_rounding) { 891 #ifdef IA32 892 if (UseSSE < 1 && opr->is_single_fpu()) { 893 LIR_Opr result = new_register(T_FLOAT); 894 set_vreg_flag(result, must_start_in_memory); 895 assert(opr->is_register(), "only a register can be spilled"); 896 assert(opr->value_type()->is_float(), "rounding only for floats available"); 897 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 898 return result; 899 } 900 #else 901 Unimplemented(); 902 #endif // IA32 903 } 904 return opr; 905 } 906 907 908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 909 assert(type2size[t] == type2size[value->type()], 910 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 911 if (!value->is_register()) { 912 // force into a register 913 LIR_Opr r = new_register(value->type()); 914 __ move(value, r); 915 value = r; 916 } 917 918 // create a spill location 919 LIR_Opr tmp = new_register(t); 920 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 921 922 // move from register to spill 923 __ move(value, tmp); 924 return tmp; 925 } 926 927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 928 if (if_instr->should_profile()) { 929 ciMethod* method = if_instr->profiled_method(); 930 assert(method != nullptr, "method should be set if branch is profiled"); 931 ciMethodData* md = method->method_data_or_null(); 932 assert(md != nullptr, "Sanity"); 933 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 934 assert(data != nullptr, "must have profiling data"); 935 assert(data->is_BranchData(), "need BranchData for two-way branches"); 936 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 937 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 938 if (if_instr->is_swapped()) { 939 int t = taken_count_offset; 940 taken_count_offset = not_taken_count_offset; 941 not_taken_count_offset = t; 942 } 943 944 LIR_Opr md_reg = new_register(T_METADATA); 945 __ metadata2reg(md->constant_encoding(), md_reg); 946 947 LIR_Opr data_offset_reg = new_pointer_register(); 948 __ cmove(lir_cond(cond), 949 LIR_OprFact::intptrConst(taken_count_offset), 950 LIR_OprFact::intptrConst(not_taken_count_offset), 951 data_offset_reg, as_BasicType(if_instr->x()->type())); 952 953 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 954 LIR_Opr data_reg = new_pointer_register(); 955 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 956 __ move(data_addr, data_reg); 957 // Use leal instead of add to avoid destroying condition codes on x86 958 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 959 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 960 __ move(data_reg, data_addr); 961 } 962 } 963 964 // Phi technique: 965 // This is about passing live values from one basic block to the other. 966 // In code generated with Java it is rather rare that more than one 967 // value is on the stack from one basic block to the other. 968 // We optimize our technique for efficient passing of one value 969 // (of type long, int, double..) but it can be extended. 970 // When entering or leaving a basic block, all registers and all spill 971 // slots are release and empty. We use the released registers 972 // and spill slots to pass the live values from one block 973 // to the other. The topmost value, i.e., the value on TOS of expression 974 // stack is passed in registers. All other values are stored in spilling 975 // area. Every Phi has an index which designates its spill slot 976 // At exit of a basic block, we fill the register(s) and spill slots. 977 // At entry of a basic block, the block_prolog sets up the content of phi nodes 978 // and locks necessary registers and spilling slots. 979 980 981 // move current value to referenced phi function 982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 983 Phi* phi = sux_val->as_Phi(); 984 // cur_val can be null without phi being null in conjunction with inlining 985 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 986 if (phi->is_local()) { 987 for (int i = 0; i < phi->operand_count(); i++) { 988 Value op = phi->operand_at(i); 989 if (op != nullptr && op->type()->is_illegal()) { 990 bailout("illegal phi operand"); 991 } 992 } 993 } 994 Phi* cur_phi = cur_val->as_Phi(); 995 if (cur_phi != nullptr && cur_phi->is_illegal()) { 996 // Phi and local would need to get invalidated 997 // (which is unexpected for Linear Scan). 998 // But this case is very rare so we simply bail out. 999 bailout("propagation of illegal phi"); 1000 return; 1001 } 1002 LIR_Opr operand = cur_val->operand(); 1003 if (operand->is_illegal()) { 1004 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1005 "these can be produced lazily"); 1006 operand = operand_for_instruction(cur_val); 1007 } 1008 resolver->move(operand, operand_for_instruction(phi)); 1009 } 1010 } 1011 1012 1013 // Moves all stack values into their PHI position 1014 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1015 BlockBegin* bb = block(); 1016 if (bb->number_of_sux() == 1) { 1017 BlockBegin* sux = bb->sux_at(0); 1018 assert(sux->number_of_preds() > 0, "invalid CFG"); 1019 1020 // a block with only one predecessor never has phi functions 1021 if (sux->number_of_preds() > 1) { 1022 PhiResolver resolver(this); 1023 1024 ValueStack* sux_state = sux->state(); 1025 Value sux_value; 1026 int index; 1027 1028 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1029 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1030 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1031 1032 for_each_stack_value(sux_state, index, sux_value) { 1033 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1034 } 1035 1036 for_each_local_value(sux_state, index, sux_value) { 1037 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1038 } 1039 1040 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1041 } 1042 } 1043 } 1044 1045 1046 LIR_Opr LIRGenerator::new_register(BasicType type) { 1047 int vreg_num = _virtual_register_number; 1048 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1049 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1050 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1051 bailout("out of virtual registers in LIR generator"); 1052 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1053 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1054 _virtual_register_number = LIR_Opr::vreg_base; 1055 vreg_num = LIR_Opr::vreg_base; 1056 } 1057 } 1058 _virtual_register_number += 1; 1059 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1060 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1061 return vreg; 1062 } 1063 1064 1065 // Try to lock using register in hint 1066 LIR_Opr LIRGenerator::rlock(Value instr) { 1067 return new_register(instr->type()); 1068 } 1069 1070 1071 // does an rlock and sets result 1072 LIR_Opr LIRGenerator::rlock_result(Value x) { 1073 LIR_Opr reg = rlock(x); 1074 set_result(x, reg); 1075 return reg; 1076 } 1077 1078 1079 // does an rlock and sets result 1080 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1081 LIR_Opr reg; 1082 switch (type) { 1083 case T_BYTE: 1084 case T_BOOLEAN: 1085 reg = rlock_byte(type); 1086 break; 1087 default: 1088 reg = rlock(x); 1089 break; 1090 } 1091 1092 set_result(x, reg); 1093 return reg; 1094 } 1095 1096 1097 //--------------------------------------------------------------------- 1098 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1099 ObjectType* oc = value->type()->as_ObjectType(); 1100 if (oc) { 1101 return oc->constant_value(); 1102 } 1103 return nullptr; 1104 } 1105 1106 1107 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1108 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1109 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1110 1111 // no moves are created for phi functions at the begin of exception 1112 // handlers, so assign operands manually here 1113 for_each_phi_fun(block(), phi, 1114 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1115 1116 LIR_Opr thread_reg = getThreadPointer(); 1117 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1118 exceptionOopOpr()); 1119 __ move_wide(LIR_OprFact::oopConst(nullptr), 1120 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1121 __ move_wide(LIR_OprFact::oopConst(nullptr), 1122 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1123 1124 LIR_Opr result = new_register(T_OBJECT); 1125 __ move(exceptionOopOpr(), result); 1126 set_result(x, result); 1127 } 1128 1129 1130 //---------------------------------------------------------------------- 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 // visitor functions 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 //---------------------------------------------------------------------- 1138 //---------------------------------------------------------------------- 1139 1140 void LIRGenerator::do_Phi(Phi* x) { 1141 // phi functions are never visited directly 1142 ShouldNotReachHere(); 1143 } 1144 1145 1146 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1147 void LIRGenerator::do_Constant(Constant* x) { 1148 if (x->state_before() != nullptr) { 1149 // Any constant with a ValueStack requires patching so emit the patch here 1150 LIR_Opr reg = rlock_result(x); 1151 CodeEmitInfo* info = state_for(x, x->state_before()); 1152 __ oop2reg_patch(nullptr, reg, info); 1153 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1154 if (!x->is_pinned()) { 1155 // unpinned constants are handled specially so that they can be 1156 // put into registers when they are used multiple times within a 1157 // block. After the block completes their operand will be 1158 // cleared so that other blocks can't refer to that register. 1159 set_result(x, load_constant(x)); 1160 } else { 1161 LIR_Opr res = x->operand(); 1162 if (!res->is_valid()) { 1163 res = LIR_OprFact::value_type(x->type()); 1164 } 1165 if (res->is_constant()) { 1166 LIR_Opr reg = rlock_result(x); 1167 __ move(res, reg); 1168 } else { 1169 set_result(x, res); 1170 } 1171 } 1172 } else { 1173 set_result(x, LIR_OprFact::value_type(x->type())); 1174 } 1175 } 1176 1177 1178 void LIRGenerator::do_Local(Local* x) { 1179 // operand_for_instruction has the side effect of setting the result 1180 // so there's no need to do it here. 1181 operand_for_instruction(x); 1182 } 1183 1184 1185 void LIRGenerator::do_Return(Return* x) { 1186 if (compilation()->env()->dtrace_method_probes()) { 1187 BasicTypeList signature; 1188 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1189 signature.append(T_METADATA); // Method* 1190 LIR_OprList* args = new LIR_OprList(); 1191 args->append(getThreadPointer()); 1192 LIR_Opr meth = new_register(T_METADATA); 1193 __ metadata2reg(method()->constant_encoding(), meth); 1194 args->append(meth); 1195 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1196 } 1197 1198 if (x->type()->is_void()) { 1199 __ return_op(LIR_OprFact::illegalOpr); 1200 } else { 1201 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1202 LIRItem result(x->result(), this); 1203 1204 result.load_item_force(reg); 1205 __ return_op(result.result()); 1206 } 1207 set_no_result(x); 1208 } 1209 1210 // Example: ref.get() 1211 // Combination of LoadField and g1 pre-write barrier 1212 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1213 1214 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1215 1216 assert(x->number_of_arguments() == 1, "wrong type"); 1217 1218 LIRItem reference(x->argument_at(0), this); 1219 reference.load_item(); 1220 1221 // need to perform the null check on the reference object 1222 CodeEmitInfo* info = nullptr; 1223 if (x->needs_null_check()) { 1224 info = state_for(x); 1225 } 1226 1227 LIR_Opr result = rlock_result(x, T_OBJECT); 1228 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1229 reference, LIR_OprFact::intConst(referent_offset), result, 1230 nullptr, info); 1231 } 1232 1233 // Example: clazz.isInstance(object) 1234 void LIRGenerator::do_isInstance(Intrinsic* x) { 1235 assert(x->number_of_arguments() == 2, "wrong type"); 1236 1237 // TODO could try to substitute this node with an equivalent InstanceOf 1238 // if clazz is known to be a constant Class. This will pick up newly found 1239 // constants after HIR construction. I'll leave this to a future change. 1240 1241 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1242 // could follow the aastore example in a future change. 1243 1244 LIRItem clazz(x->argument_at(0), this); 1245 LIRItem object(x->argument_at(1), this); 1246 clazz.load_item(); 1247 object.load_item(); 1248 LIR_Opr result = rlock_result(x); 1249 1250 // need to perform null check on clazz 1251 if (x->needs_null_check()) { 1252 CodeEmitInfo* info = state_for(x); 1253 __ null_check(clazz.result(), info); 1254 } 1255 1256 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1257 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1258 x->type(), 1259 nullptr); // null CodeEmitInfo results in a leaf call 1260 __ move(call_result, result); 1261 } 1262 1263 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1264 __ load_klass(obj, klass, null_check_info); 1265 } 1266 1267 // Example: object.getClass () 1268 void LIRGenerator::do_getClass(Intrinsic* x) { 1269 assert(x->number_of_arguments() == 1, "wrong type"); 1270 1271 LIRItem rcvr(x->argument_at(0), this); 1272 rcvr.load_item(); 1273 LIR_Opr temp = new_register(T_ADDRESS); 1274 LIR_Opr result = rlock_result(x); 1275 1276 // need to perform the null check on the rcvr 1277 CodeEmitInfo* info = nullptr; 1278 if (x->needs_null_check()) { 1279 info = state_for(x); 1280 } 1281 1282 LIR_Opr klass = new_register(T_METADATA); 1283 load_klass(rcvr.result(), klass, info); 1284 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1285 // mirror = ((OopHandle)mirror)->resolve(); 1286 access_load(IN_NATIVE, T_OBJECT, 1287 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1288 } 1289 1290 // java.lang.Class::isPrimitive() 1291 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1292 assert(x->number_of_arguments() == 1, "wrong type"); 1293 1294 LIRItem rcvr(x->argument_at(0), this); 1295 rcvr.load_item(); 1296 LIR_Opr temp = new_register(T_METADATA); 1297 LIR_Opr result = rlock_result(x); 1298 1299 CodeEmitInfo* info = nullptr; 1300 if (x->needs_null_check()) { 1301 info = state_for(x); 1302 } 1303 1304 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1305 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(nullptr)); 1306 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1307 } 1308 1309 // Example: Foo.class.getModifiers() 1310 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1311 assert(x->number_of_arguments() == 1, "wrong type"); 1312 1313 LIRItem receiver(x->argument_at(0), this); 1314 receiver.load_item(); 1315 LIR_Opr result = rlock_result(x); 1316 1317 CodeEmitInfo* info = nullptr; 1318 if (x->needs_null_check()) { 1319 info = state_for(x); 1320 } 1321 1322 // While reading off the universal constant mirror is less efficient than doing 1323 // another branch and returning the constant answer, this branchless code runs into 1324 // much less risk of confusion for C1 register allocator. The choice of the universe 1325 // object here is correct as long as it returns the same modifiers we would expect 1326 // from the primitive class itself. See spec for Class.getModifiers that provides 1327 // the typed array klasses with similar modifiers as their component types. 1328 1329 Klass* univ_klass = Universe::byteArrayKlass(); 1330 assert(univ_klass->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1331 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass); 1332 1333 LIR_Opr recv_klass = new_register(T_METADATA); 1334 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1335 1336 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1337 LIR_Opr klass = new_register(T_METADATA); 1338 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(nullptr)); 1339 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1340 1341 // Get the answer. 1342 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1343 } 1344 1345 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1346 assert(x->number_of_arguments() == 3, "wrong type"); 1347 LIR_Opr result_reg = rlock_result(x); 1348 1349 LIRItem value(x->argument_at(2), this); 1350 value.load_item(); 1351 1352 LIR_Opr klass = new_register(T_METADATA); 1353 load_klass(value.result(), klass, nullptr); 1354 LIR_Opr layout = new_register(T_INT); 1355 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1356 1357 LabelObj* L_done = new LabelObj(); 1358 LabelObj* L_array = new LabelObj(); 1359 1360 __ cmp(lir_cond_lessEqual, layout, 0); 1361 __ branch(lir_cond_lessEqual, L_array->label()); 1362 1363 // Instance case: the layout helper gives us instance size almost directly, 1364 // but we need to mask out the _lh_instance_slow_path_bit. 1365 1366 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1367 1368 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1369 __ logical_and(layout, mask, layout); 1370 __ convert(Bytecodes::_i2l, layout, result_reg); 1371 1372 __ branch(lir_cond_always, L_done->label()); 1373 1374 // Array case: size is round(header + element_size*arraylength). 1375 // Since arraylength is different for every array instance, we have to 1376 // compute the whole thing at runtime. 1377 1378 __ branch_destination(L_array->label()); 1379 1380 int round_mask = MinObjAlignmentInBytes - 1; 1381 1382 // Figure out header sizes first. 1383 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1384 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1385 1386 LIR_Opr header_size = new_register(T_INT); 1387 __ move(layout, header_size); 1388 LIR_Opr tmp = new_register(T_INT); 1389 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1390 __ logical_and(header_size, hsm, header_size); 1391 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1392 1393 // Figure out the array length in bytes 1394 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1395 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1396 __ logical_and(layout, l2esm, layout); 1397 1398 LIR_Opr length_int = new_register(T_INT); 1399 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1400 1401 #ifdef _LP64 1402 LIR_Opr length = new_register(T_LONG); 1403 __ convert(Bytecodes::_i2l, length_int, length); 1404 #endif 1405 1406 // Shift-left awkwardness. Normally it is just: 1407 // __ shift_left(length, layout, length); 1408 // But C1 cannot perform shift_left with non-constant count, so we end up 1409 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1410 // longs, so we have to act on ints. 1411 LabelObj* L_shift_loop = new LabelObj(); 1412 LabelObj* L_shift_exit = new LabelObj(); 1413 1414 __ branch_destination(L_shift_loop->label()); 1415 __ cmp(lir_cond_equal, layout, 0); 1416 __ branch(lir_cond_equal, L_shift_exit->label()); 1417 1418 #ifdef _LP64 1419 __ shift_left(length, 1, length); 1420 #else 1421 __ shift_left(length_int, 1, length_int); 1422 #endif 1423 1424 __ sub(layout, LIR_OprFact::intConst(1), layout); 1425 1426 __ branch(lir_cond_always, L_shift_loop->label()); 1427 __ branch_destination(L_shift_exit->label()); 1428 1429 // Mix all up, round, and push to the result. 1430 #ifdef _LP64 1431 LIR_Opr header_size_long = new_register(T_LONG); 1432 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1433 __ add(length, header_size_long, length); 1434 if (round_mask != 0) { 1435 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1436 __ logical_and(length, round_mask_opr, length); 1437 } 1438 __ move(length, result_reg); 1439 #else 1440 __ add(length_int, header_size, length_int); 1441 if (round_mask != 0) { 1442 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1443 __ logical_and(length_int, round_mask_opr, length_int); 1444 } 1445 __ convert(Bytecodes::_i2l, length_int, result_reg); 1446 #endif 1447 1448 __ branch_destination(L_done->label()); 1449 } 1450 1451 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1452 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1453 } 1454 1455 // Example: Thread.currentCarrierThread() 1456 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1457 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1458 } 1459 1460 void LIRGenerator::do_vthread(Intrinsic* x) { 1461 do_JavaThreadField(x, JavaThread::vthread_offset()); 1462 } 1463 1464 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1465 assert(x->number_of_arguments() == 0, "wrong type"); 1466 LIR_Opr temp = new_register(T_ADDRESS); 1467 LIR_Opr reg = rlock_result(x); 1468 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1469 access_load(IN_NATIVE, T_OBJECT, 1470 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1471 } 1472 1473 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1474 assert(x->number_of_arguments() == 1, "wrong type"); 1475 LIRItem receiver(x->argument_at(0), this); 1476 1477 receiver.load_item(); 1478 BasicTypeList signature; 1479 signature.append(T_OBJECT); // receiver 1480 LIR_OprList* args = new LIR_OprList(); 1481 args->append(receiver.result()); 1482 CodeEmitInfo* info = state_for(x, x->state()); 1483 call_runtime(&signature, args, 1484 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1485 voidType, info); 1486 1487 set_no_result(x); 1488 } 1489 1490 1491 //------------------------local access-------------------------------------- 1492 1493 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1494 if (x->operand()->is_illegal()) { 1495 Constant* c = x->as_Constant(); 1496 if (c != nullptr) { 1497 x->set_operand(LIR_OprFact::value_type(c->type())); 1498 } else { 1499 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1500 // allocate a virtual register for this local or phi 1501 x->set_operand(rlock(x)); 1502 #ifdef ASSERT 1503 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1504 #endif 1505 } 1506 } 1507 return x->operand(); 1508 } 1509 1510 #ifdef ASSERT 1511 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1512 if (reg_num < _instruction_for_operand.length()) { 1513 return _instruction_for_operand.at(reg_num); 1514 } 1515 return nullptr; 1516 } 1517 #endif 1518 1519 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1520 if (_vreg_flags.size_in_bits() == 0) { 1521 BitMap2D temp(100, num_vreg_flags); 1522 _vreg_flags = temp; 1523 } 1524 _vreg_flags.at_put_grow(vreg_num, f, true); 1525 } 1526 1527 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1528 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1529 return false; 1530 } 1531 return _vreg_flags.at(vreg_num, f); 1532 } 1533 1534 1535 // Block local constant handling. This code is useful for keeping 1536 // unpinned constants and constants which aren't exposed in the IR in 1537 // registers. Unpinned Constant instructions have their operands 1538 // cleared when the block is finished so that other blocks can't end 1539 // up referring to their registers. 1540 1541 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1542 assert(!x->is_pinned(), "only for unpinned constants"); 1543 _unpinned_constants.append(x); 1544 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1545 } 1546 1547 1548 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1549 BasicType t = c->type(); 1550 for (int i = 0; i < _constants.length(); i++) { 1551 LIR_Const* other = _constants.at(i); 1552 if (t == other->type()) { 1553 switch (t) { 1554 case T_INT: 1555 case T_FLOAT: 1556 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1557 break; 1558 case T_LONG: 1559 case T_DOUBLE: 1560 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1561 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1562 break; 1563 case T_OBJECT: 1564 if (c->as_jobject() != other->as_jobject()) continue; 1565 break; 1566 default: 1567 break; 1568 } 1569 return _reg_for_constants.at(i); 1570 } 1571 } 1572 1573 LIR_Opr result = new_register(t); 1574 __ move((LIR_Opr)c, result); 1575 _constants.append(c); 1576 _reg_for_constants.append(result); 1577 return result; 1578 } 1579 1580 //------------------------field access-------------------------------------- 1581 1582 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1583 assert(x->number_of_arguments() == 4, "wrong type"); 1584 LIRItem obj (x->argument_at(0), this); // object 1585 LIRItem offset(x->argument_at(1), this); // offset of field 1586 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1587 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1588 assert(obj.type()->tag() == objectTag, "invalid type"); 1589 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1590 assert(val.type()->tag() == type->tag(), "invalid type"); 1591 1592 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1593 obj, offset, cmp, val); 1594 set_result(x, result); 1595 } 1596 1597 // Comment copied form templateTable_i486.cpp 1598 // ---------------------------------------------------------------------------- 1599 // Volatile variables demand their effects be made known to all CPU's in 1600 // order. Store buffers on most chips allow reads & writes to reorder; the 1601 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1602 // memory barrier (i.e., it's not sufficient that the interpreter does not 1603 // reorder volatile references, the hardware also must not reorder them). 1604 // 1605 // According to the new Java Memory Model (JMM): 1606 // (1) All volatiles are serialized wrt to each other. 1607 // ALSO reads & writes act as acquire & release, so: 1608 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1609 // the read float up to before the read. It's OK for non-volatile memory refs 1610 // that happen before the volatile read to float down below it. 1611 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1612 // that happen BEFORE the write float down to after the write. It's OK for 1613 // non-volatile memory refs that happen after the volatile write to float up 1614 // before it. 1615 // 1616 // We only put in barriers around volatile refs (they are expensive), not 1617 // _between_ memory refs (that would require us to track the flavor of the 1618 // previous memory refs). Requirements (2) and (3) require some barriers 1619 // before volatile stores and after volatile loads. These nearly cover 1620 // requirement (1) but miss the volatile-store-volatile-load case. This final 1621 // case is placed after volatile-stores although it could just as well go 1622 // before volatile-loads. 1623 1624 1625 void LIRGenerator::do_StoreField(StoreField* x) { 1626 bool needs_patching = x->needs_patching(); 1627 bool is_volatile = x->field()->is_volatile(); 1628 BasicType field_type = x->field_type(); 1629 1630 CodeEmitInfo* info = nullptr; 1631 if (needs_patching) { 1632 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1633 info = state_for(x, x->state_before()); 1634 } else if (x->needs_null_check()) { 1635 NullCheck* nc = x->explicit_null_check(); 1636 if (nc == nullptr) { 1637 info = state_for(x); 1638 } else { 1639 info = state_for(nc); 1640 } 1641 } 1642 1643 LIRItem object(x->obj(), this); 1644 LIRItem value(x->value(), this); 1645 1646 object.load_item(); 1647 1648 if (is_volatile || needs_patching) { 1649 // load item if field is volatile (fewer special cases for volatiles) 1650 // load item if field not initialized 1651 // load item if field not constant 1652 // because of code patching we cannot inline constants 1653 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1654 value.load_byte_item(); 1655 } else { 1656 value.load_item(); 1657 } 1658 } else { 1659 value.load_for_store(field_type); 1660 } 1661 1662 set_no_result(x); 1663 1664 #ifndef PRODUCT 1665 if (PrintNotLoaded && needs_patching) { 1666 tty->print_cr(" ###class not loaded at store_%s bci %d", 1667 x->is_static() ? "static" : "field", x->printable_bci()); 1668 } 1669 #endif 1670 1671 if (x->needs_null_check() && 1672 (needs_patching || 1673 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1674 // Emit an explicit null check because the offset is too large. 1675 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1676 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1677 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1678 } 1679 1680 DecoratorSet decorators = IN_HEAP; 1681 if (is_volatile) { 1682 decorators |= MO_SEQ_CST; 1683 } 1684 if (needs_patching) { 1685 decorators |= C1_NEEDS_PATCHING; 1686 } 1687 1688 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1689 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1690 } 1691 1692 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1693 assert(x->is_pinned(),""); 1694 bool needs_range_check = x->compute_needs_range_check(); 1695 bool use_length = x->length() != nullptr; 1696 bool obj_store = is_reference_type(x->elt_type()); 1697 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1698 !get_jobject_constant(x->value())->is_null_object() || 1699 x->should_profile()); 1700 1701 LIRItem array(x->array(), this); 1702 LIRItem index(x->index(), this); 1703 LIRItem value(x->value(), this); 1704 LIRItem length(this); 1705 1706 array.load_item(); 1707 index.load_nonconstant(); 1708 1709 if (use_length && needs_range_check) { 1710 length.set_instruction(x->length()); 1711 length.load_item(); 1712 1713 } 1714 if (needs_store_check || x->check_boolean()) { 1715 value.load_item(); 1716 } else { 1717 value.load_for_store(x->elt_type()); 1718 } 1719 1720 set_no_result(x); 1721 1722 // the CodeEmitInfo must be duplicated for each different 1723 // LIR-instruction because spilling can occur anywhere between two 1724 // instructions and so the debug information must be different 1725 CodeEmitInfo* range_check_info = state_for(x); 1726 CodeEmitInfo* null_check_info = nullptr; 1727 if (x->needs_null_check()) { 1728 null_check_info = new CodeEmitInfo(range_check_info); 1729 } 1730 1731 if (needs_range_check) { 1732 if (use_length) { 1733 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1734 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1735 } else { 1736 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1737 // range_check also does the null check 1738 null_check_info = nullptr; 1739 } 1740 } 1741 1742 if (GenerateArrayStoreCheck && needs_store_check) { 1743 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1744 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1745 } 1746 1747 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1748 if (x->check_boolean()) { 1749 decorators |= C1_MASK_BOOLEAN; 1750 } 1751 1752 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1753 nullptr, null_check_info); 1754 } 1755 1756 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1757 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1758 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1759 decorators |= ACCESS_READ; 1760 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1761 if (access.is_raw()) { 1762 _barrier_set->BarrierSetC1::load_at(access, result); 1763 } else { 1764 _barrier_set->load_at(access, result); 1765 } 1766 } 1767 1768 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1769 LIR_Opr addr, LIR_Opr result) { 1770 decorators |= ACCESS_READ; 1771 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1772 access.set_resolved_addr(addr); 1773 if (access.is_raw()) { 1774 _barrier_set->BarrierSetC1::load(access, result); 1775 } else { 1776 _barrier_set->load(access, result); 1777 } 1778 } 1779 1780 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1781 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1782 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1783 decorators |= ACCESS_WRITE; 1784 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1785 if (access.is_raw()) { 1786 _barrier_set->BarrierSetC1::store_at(access, value); 1787 } else { 1788 _barrier_set->store_at(access, value); 1789 } 1790 } 1791 1792 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1793 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1794 decorators |= ACCESS_READ; 1795 decorators |= ACCESS_WRITE; 1796 // Atomic operations are SEQ_CST by default 1797 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1798 LIRAccess access(this, decorators, base, offset, type); 1799 if (access.is_raw()) { 1800 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1801 } else { 1802 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1803 } 1804 } 1805 1806 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1807 LIRItem& base, LIRItem& offset, LIRItem& value) { 1808 decorators |= ACCESS_READ; 1809 decorators |= ACCESS_WRITE; 1810 // Atomic operations are SEQ_CST by default 1811 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1812 LIRAccess access(this, decorators, base, offset, type); 1813 if (access.is_raw()) { 1814 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1815 } else { 1816 return _barrier_set->atomic_xchg_at(access, value); 1817 } 1818 } 1819 1820 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1821 LIRItem& base, LIRItem& offset, LIRItem& value) { 1822 decorators |= ACCESS_READ; 1823 decorators |= ACCESS_WRITE; 1824 // Atomic operations are SEQ_CST by default 1825 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1826 LIRAccess access(this, decorators, base, offset, type); 1827 if (access.is_raw()) { 1828 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1829 } else { 1830 return _barrier_set->atomic_add_at(access, value); 1831 } 1832 } 1833 1834 void LIRGenerator::do_LoadField(LoadField* x) { 1835 bool needs_patching = x->needs_patching(); 1836 bool is_volatile = x->field()->is_volatile(); 1837 BasicType field_type = x->field_type(); 1838 1839 CodeEmitInfo* info = nullptr; 1840 if (needs_patching) { 1841 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1842 info = state_for(x, x->state_before()); 1843 } else if (x->needs_null_check()) { 1844 NullCheck* nc = x->explicit_null_check(); 1845 if (nc == nullptr) { 1846 info = state_for(x); 1847 } else { 1848 info = state_for(nc); 1849 } 1850 } 1851 1852 LIRItem object(x->obj(), this); 1853 1854 object.load_item(); 1855 1856 #ifndef PRODUCT 1857 if (PrintNotLoaded && needs_patching) { 1858 tty->print_cr(" ###class not loaded at load_%s bci %d", 1859 x->is_static() ? "static" : "field", x->printable_bci()); 1860 } 1861 #endif 1862 1863 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1864 if (x->needs_null_check() && 1865 (needs_patching || 1866 MacroAssembler::needs_explicit_null_check(x->offset()) || 1867 stress_deopt)) { 1868 LIR_Opr obj = object.result(); 1869 if (stress_deopt) { 1870 obj = new_register(T_OBJECT); 1871 __ move(LIR_OprFact::oopConst(nullptr), obj); 1872 } 1873 // Emit an explicit null check because the offset is too large. 1874 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1875 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1876 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1877 } 1878 1879 DecoratorSet decorators = IN_HEAP; 1880 if (is_volatile) { 1881 decorators |= MO_SEQ_CST; 1882 } 1883 if (needs_patching) { 1884 decorators |= C1_NEEDS_PATCHING; 1885 } 1886 1887 LIR_Opr result = rlock_result(x, field_type); 1888 access_load_at(decorators, field_type, 1889 object, LIR_OprFact::intConst(x->offset()), result, 1890 info ? new CodeEmitInfo(info) : nullptr, info); 1891 } 1892 1893 // int/long jdk.internal.util.Preconditions.checkIndex 1894 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1895 assert(x->number_of_arguments() == 3, "wrong type"); 1896 LIRItem index(x->argument_at(0), this); 1897 LIRItem length(x->argument_at(1), this); 1898 LIRItem oobef(x->argument_at(2), this); 1899 1900 index.load_item(); 1901 length.load_item(); 1902 oobef.load_item(); 1903 1904 LIR_Opr result = rlock_result(x); 1905 // x->state() is created from copy_state_for_exception, it does not contains arguments 1906 // we should prepare them before entering into interpreter mode due to deoptimization. 1907 ValueStack* state = x->state(); 1908 for (int i = 0; i < x->number_of_arguments(); i++) { 1909 Value arg = x->argument_at(i); 1910 state->push(arg->type(), arg); 1911 } 1912 CodeEmitInfo* info = state_for(x, state); 1913 1914 LIR_Opr len = length.result(); 1915 LIR_Opr zero; 1916 if (type == T_INT) { 1917 zero = LIR_OprFact::intConst(0); 1918 if (length.result()->is_constant()){ 1919 len = LIR_OprFact::intConst(length.result()->as_jint()); 1920 } 1921 } else { 1922 assert(type == T_LONG, "sanity check"); 1923 zero = LIR_OprFact::longConst(0); 1924 if (length.result()->is_constant()){ 1925 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1926 } 1927 } 1928 // C1 can not handle the case that comparing index with constant value while condition 1929 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1930 LIR_Opr zero_reg = new_register(type); 1931 __ move(zero, zero_reg); 1932 #if defined(X86) && !defined(_LP64) 1933 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1934 LIR_Opr index_copy = new_register(index.type()); 1935 // index >= 0 1936 __ move(index.result(), index_copy); 1937 __ cmp(lir_cond_less, index_copy, zero_reg); 1938 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1939 Deoptimization::Action_make_not_entrant)); 1940 // index < length 1941 __ move(index.result(), index_copy); 1942 __ cmp(lir_cond_greaterEqual, index_copy, len); 1943 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1944 Deoptimization::Action_make_not_entrant)); 1945 #else 1946 // index >= 0 1947 __ cmp(lir_cond_less, index.result(), zero_reg); 1948 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1949 Deoptimization::Action_make_not_entrant)); 1950 // index < length 1951 __ cmp(lir_cond_greaterEqual, index.result(), len); 1952 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1953 Deoptimization::Action_make_not_entrant)); 1954 #endif 1955 __ move(index.result(), result); 1956 } 1957 1958 //------------------------array access-------------------------------------- 1959 1960 1961 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1962 LIRItem array(x->array(), this); 1963 array.load_item(); 1964 LIR_Opr reg = rlock_result(x); 1965 1966 CodeEmitInfo* info = nullptr; 1967 if (x->needs_null_check()) { 1968 NullCheck* nc = x->explicit_null_check(); 1969 if (nc == nullptr) { 1970 info = state_for(x); 1971 } else { 1972 info = state_for(nc); 1973 } 1974 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1975 LIR_Opr obj = new_register(T_OBJECT); 1976 __ move(LIR_OprFact::oopConst(nullptr), obj); 1977 __ null_check(obj, new CodeEmitInfo(info)); 1978 } 1979 } 1980 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1981 } 1982 1983 1984 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1985 bool use_length = x->length() != nullptr; 1986 LIRItem array(x->array(), this); 1987 LIRItem index(x->index(), this); 1988 LIRItem length(this); 1989 bool needs_range_check = x->compute_needs_range_check(); 1990 1991 if (use_length && needs_range_check) { 1992 length.set_instruction(x->length()); 1993 length.load_item(); 1994 } 1995 1996 array.load_item(); 1997 if (index.is_constant() && can_inline_as_constant(x->index())) { 1998 // let it be a constant 1999 index.dont_load_item(); 2000 } else { 2001 index.load_item(); 2002 } 2003 2004 CodeEmitInfo* range_check_info = state_for(x); 2005 CodeEmitInfo* null_check_info = nullptr; 2006 if (x->needs_null_check()) { 2007 NullCheck* nc = x->explicit_null_check(); 2008 if (nc != nullptr) { 2009 null_check_info = state_for(nc); 2010 } else { 2011 null_check_info = range_check_info; 2012 } 2013 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2014 LIR_Opr obj = new_register(T_OBJECT); 2015 __ move(LIR_OprFact::oopConst(nullptr), obj); 2016 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2017 } 2018 } 2019 2020 if (needs_range_check) { 2021 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2022 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2023 } else if (use_length) { 2024 // TODO: use a (modified) version of array_range_check that does not require a 2025 // constant length to be loaded to a register 2026 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2027 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2028 } else { 2029 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2030 // The range check performs the null check, so clear it out for the load 2031 null_check_info = nullptr; 2032 } 2033 } 2034 2035 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2036 2037 LIR_Opr result = rlock_result(x, x->elt_type()); 2038 access_load_at(decorators, x->elt_type(), 2039 array, index.result(), result, 2040 nullptr, null_check_info); 2041 } 2042 2043 2044 void LIRGenerator::do_NullCheck(NullCheck* x) { 2045 if (x->can_trap()) { 2046 LIRItem value(x->obj(), this); 2047 value.load_item(); 2048 CodeEmitInfo* info = state_for(x); 2049 __ null_check(value.result(), info); 2050 } 2051 } 2052 2053 2054 void LIRGenerator::do_TypeCast(TypeCast* x) { 2055 LIRItem value(x->obj(), this); 2056 value.load_item(); 2057 // the result is the same as from the node we are casting 2058 set_result(x, value.result()); 2059 } 2060 2061 2062 void LIRGenerator::do_Throw(Throw* x) { 2063 LIRItem exception(x->exception(), this); 2064 exception.load_item(); 2065 set_no_result(x); 2066 LIR_Opr exception_opr = exception.result(); 2067 CodeEmitInfo* info = state_for(x, x->state()); 2068 2069 #ifndef PRODUCT 2070 if (PrintC1Statistics) { 2071 increment_counter(Runtime1::throw_count_address(), T_INT); 2072 } 2073 #endif 2074 2075 // check if the instruction has an xhandler in any of the nested scopes 2076 bool unwind = false; 2077 if (info->exception_handlers()->length() == 0) { 2078 // this throw is not inside an xhandler 2079 unwind = true; 2080 } else { 2081 // get some idea of the throw type 2082 bool type_is_exact = true; 2083 ciType* throw_type = x->exception()->exact_type(); 2084 if (throw_type == nullptr) { 2085 type_is_exact = false; 2086 throw_type = x->exception()->declared_type(); 2087 } 2088 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2089 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2090 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2091 } 2092 } 2093 2094 // do null check before moving exception oop into fixed register 2095 // to avoid a fixed interval with an oop during the null check. 2096 // Use a copy of the CodeEmitInfo because debug information is 2097 // different for null_check and throw. 2098 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2099 // if the exception object wasn't created using new then it might be null. 2100 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2101 } 2102 2103 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2104 // we need to go through the exception lookup path to get JVMTI 2105 // notification done 2106 unwind = false; 2107 } 2108 2109 // move exception oop into fixed register 2110 __ move(exception_opr, exceptionOopOpr()); 2111 2112 if (unwind) { 2113 __ unwind_exception(exceptionOopOpr()); 2114 } else { 2115 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2116 } 2117 } 2118 2119 2120 void LIRGenerator::do_RoundFP(RoundFP* x) { 2121 assert(strict_fp_requires_explicit_rounding, "not required"); 2122 2123 LIRItem input(x->input(), this); 2124 input.load_item(); 2125 LIR_Opr input_opr = input.result(); 2126 assert(input_opr->is_register(), "why round if value is not in a register?"); 2127 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2128 if (input_opr->is_single_fpu()) { 2129 set_result(x, round_item(input_opr)); // This code path not currently taken 2130 } else { 2131 LIR_Opr result = new_register(T_DOUBLE); 2132 set_vreg_flag(result, must_start_in_memory); 2133 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2134 set_result(x, result); 2135 } 2136 } 2137 2138 2139 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2140 BasicType type = x->basic_type(); 2141 LIRItem src(x->object(), this); 2142 LIRItem off(x->offset(), this); 2143 2144 off.load_item(); 2145 src.load_item(); 2146 2147 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2148 2149 if (x->is_volatile()) { 2150 decorators |= MO_SEQ_CST; 2151 } 2152 if (type == T_BOOLEAN) { 2153 decorators |= C1_MASK_BOOLEAN; 2154 } 2155 if (is_reference_type(type)) { 2156 decorators |= ON_UNKNOWN_OOP_REF; 2157 } 2158 2159 LIR_Opr result = rlock_result(x, type); 2160 if (!x->is_raw()) { 2161 access_load_at(decorators, type, src, off.result(), result); 2162 } else { 2163 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2164 // It reads the value from [src + offset] directly. 2165 #ifdef _LP64 2166 LIR_Opr offset = new_register(T_LONG); 2167 __ convert(Bytecodes::_i2l, off.result(), offset); 2168 #else 2169 LIR_Opr offset = off.result(); 2170 #endif 2171 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2172 if (is_reference_type(type)) { 2173 __ move_wide(addr, result); 2174 } else { 2175 __ move(addr, result); 2176 } 2177 } 2178 } 2179 2180 2181 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2182 BasicType type = x->basic_type(); 2183 LIRItem src(x->object(), this); 2184 LIRItem off(x->offset(), this); 2185 LIRItem data(x->value(), this); 2186 2187 src.load_item(); 2188 if (type == T_BOOLEAN || type == T_BYTE) { 2189 data.load_byte_item(); 2190 } else { 2191 data.load_item(); 2192 } 2193 off.load_item(); 2194 2195 set_no_result(x); 2196 2197 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2198 if (is_reference_type(type)) { 2199 decorators |= ON_UNKNOWN_OOP_REF; 2200 } 2201 if (x->is_volatile()) { 2202 decorators |= MO_SEQ_CST; 2203 } 2204 access_store_at(decorators, type, src, off.result(), data.result()); 2205 } 2206 2207 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2208 BasicType type = x->basic_type(); 2209 LIRItem src(x->object(), this); 2210 LIRItem off(x->offset(), this); 2211 LIRItem value(x->value(), this); 2212 2213 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2214 2215 if (is_reference_type(type)) { 2216 decorators |= ON_UNKNOWN_OOP_REF; 2217 } 2218 2219 LIR_Opr result; 2220 if (x->is_add()) { 2221 result = access_atomic_add_at(decorators, type, src, off, value); 2222 } else { 2223 result = access_atomic_xchg_at(decorators, type, src, off, value); 2224 } 2225 set_result(x, result); 2226 } 2227 2228 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2229 int lng = x->length(); 2230 2231 for (int i = 0; i < lng; i++) { 2232 C1SwitchRange* one_range = x->at(i); 2233 int low_key = one_range->low_key(); 2234 int high_key = one_range->high_key(); 2235 BlockBegin* dest = one_range->sux(); 2236 if (low_key == high_key) { 2237 __ cmp(lir_cond_equal, value, low_key); 2238 __ branch(lir_cond_equal, dest); 2239 } else if (high_key - low_key == 1) { 2240 __ cmp(lir_cond_equal, value, low_key); 2241 __ branch(lir_cond_equal, dest); 2242 __ cmp(lir_cond_equal, value, high_key); 2243 __ branch(lir_cond_equal, dest); 2244 } else { 2245 LabelObj* L = new LabelObj(); 2246 __ cmp(lir_cond_less, value, low_key); 2247 __ branch(lir_cond_less, L->label()); 2248 __ cmp(lir_cond_lessEqual, value, high_key); 2249 __ branch(lir_cond_lessEqual, dest); 2250 __ branch_destination(L->label()); 2251 } 2252 } 2253 __ jump(default_sux); 2254 } 2255 2256 2257 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2258 SwitchRangeList* res = new SwitchRangeList(); 2259 int len = x->length(); 2260 if (len > 0) { 2261 BlockBegin* sux = x->sux_at(0); 2262 int low = x->lo_key(); 2263 BlockBegin* default_sux = x->default_sux(); 2264 C1SwitchRange* range = new C1SwitchRange(low, sux); 2265 for (int i = 0; i < len; i++) { 2266 int key = low + i; 2267 BlockBegin* new_sux = x->sux_at(i); 2268 if (sux == new_sux) { 2269 // still in same range 2270 range->set_high_key(key); 2271 } else { 2272 // skip tests which explicitly dispatch to the default 2273 if (sux != default_sux) { 2274 res->append(range); 2275 } 2276 range = new C1SwitchRange(key, new_sux); 2277 } 2278 sux = new_sux; 2279 } 2280 if (res->length() == 0 || res->last() != range) res->append(range); 2281 } 2282 return res; 2283 } 2284 2285 2286 // we expect the keys to be sorted by increasing value 2287 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2288 SwitchRangeList* res = new SwitchRangeList(); 2289 int len = x->length(); 2290 if (len > 0) { 2291 BlockBegin* default_sux = x->default_sux(); 2292 int key = x->key_at(0); 2293 BlockBegin* sux = x->sux_at(0); 2294 C1SwitchRange* range = new C1SwitchRange(key, sux); 2295 for (int i = 1; i < len; i++) { 2296 int new_key = x->key_at(i); 2297 BlockBegin* new_sux = x->sux_at(i); 2298 if (key+1 == new_key && sux == new_sux) { 2299 // still in same range 2300 range->set_high_key(new_key); 2301 } else { 2302 // skip tests which explicitly dispatch to the default 2303 if (range->sux() != default_sux) { 2304 res->append(range); 2305 } 2306 range = new C1SwitchRange(new_key, new_sux); 2307 } 2308 key = new_key; 2309 sux = new_sux; 2310 } 2311 if (res->length() == 0 || res->last() != range) res->append(range); 2312 } 2313 return res; 2314 } 2315 2316 2317 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2318 LIRItem tag(x->tag(), this); 2319 tag.load_item(); 2320 set_no_result(x); 2321 2322 if (x->is_safepoint()) { 2323 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2324 } 2325 2326 // move values into phi locations 2327 move_to_phi(x->state()); 2328 2329 int lo_key = x->lo_key(); 2330 int len = x->length(); 2331 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2332 LIR_Opr value = tag.result(); 2333 2334 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2335 ciMethod* method = x->state()->scope()->method(); 2336 ciMethodData* md = method->method_data_or_null(); 2337 assert(md != nullptr, "Sanity"); 2338 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2339 assert(data != nullptr, "must have profiling data"); 2340 assert(data->is_MultiBranchData(), "bad profile data?"); 2341 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2342 LIR_Opr md_reg = new_register(T_METADATA); 2343 __ metadata2reg(md->constant_encoding(), md_reg); 2344 LIR_Opr data_offset_reg = new_pointer_register(); 2345 LIR_Opr tmp_reg = new_pointer_register(); 2346 2347 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2348 for (int i = 0; i < len; i++) { 2349 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2350 __ cmp(lir_cond_equal, value, i + lo_key); 2351 __ move(data_offset_reg, tmp_reg); 2352 __ cmove(lir_cond_equal, 2353 LIR_OprFact::intptrConst(count_offset), 2354 tmp_reg, 2355 data_offset_reg, T_INT); 2356 } 2357 2358 LIR_Opr data_reg = new_pointer_register(); 2359 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2360 __ move(data_addr, data_reg); 2361 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2362 __ move(data_reg, data_addr); 2363 } 2364 2365 if (UseTableRanges) { 2366 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2367 } else { 2368 for (int i = 0; i < len; i++) { 2369 __ cmp(lir_cond_equal, value, i + lo_key); 2370 __ branch(lir_cond_equal, x->sux_at(i)); 2371 } 2372 __ jump(x->default_sux()); 2373 } 2374 } 2375 2376 2377 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2378 LIRItem tag(x->tag(), this); 2379 tag.load_item(); 2380 set_no_result(x); 2381 2382 if (x->is_safepoint()) { 2383 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2384 } 2385 2386 // move values into phi locations 2387 move_to_phi(x->state()); 2388 2389 LIR_Opr value = tag.result(); 2390 int len = x->length(); 2391 2392 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2393 ciMethod* method = x->state()->scope()->method(); 2394 ciMethodData* md = method->method_data_or_null(); 2395 assert(md != nullptr, "Sanity"); 2396 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2397 assert(data != nullptr, "must have profiling data"); 2398 assert(data->is_MultiBranchData(), "bad profile data?"); 2399 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2400 LIR_Opr md_reg = new_register(T_METADATA); 2401 __ metadata2reg(md->constant_encoding(), md_reg); 2402 LIR_Opr data_offset_reg = new_pointer_register(); 2403 LIR_Opr tmp_reg = new_pointer_register(); 2404 2405 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2406 for (int i = 0; i < len; i++) { 2407 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2408 __ cmp(lir_cond_equal, value, x->key_at(i)); 2409 __ move(data_offset_reg, tmp_reg); 2410 __ cmove(lir_cond_equal, 2411 LIR_OprFact::intptrConst(count_offset), 2412 tmp_reg, 2413 data_offset_reg, T_INT); 2414 } 2415 2416 LIR_Opr data_reg = new_pointer_register(); 2417 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2418 __ move(data_addr, data_reg); 2419 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2420 __ move(data_reg, data_addr); 2421 } 2422 2423 if (UseTableRanges) { 2424 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2425 } else { 2426 int len = x->length(); 2427 for (int i = 0; i < len; i++) { 2428 __ cmp(lir_cond_equal, value, x->key_at(i)); 2429 __ branch(lir_cond_equal, x->sux_at(i)); 2430 } 2431 __ jump(x->default_sux()); 2432 } 2433 } 2434 2435 2436 void LIRGenerator::do_Goto(Goto* x) { 2437 set_no_result(x); 2438 2439 if (block()->next()->as_OsrEntry()) { 2440 // need to free up storage used for OSR entry point 2441 LIR_Opr osrBuffer = block()->next()->operand(); 2442 BasicTypeList signature; 2443 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2444 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2445 __ move(osrBuffer, cc->args()->at(0)); 2446 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2447 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2448 } 2449 2450 if (x->is_safepoint()) { 2451 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2452 2453 // increment backedge counter if needed 2454 CodeEmitInfo* info = state_for(x, state); 2455 increment_backedge_counter(info, x->profiled_bci()); 2456 CodeEmitInfo* safepoint_info = state_for(x, state); 2457 __ safepoint(safepoint_poll_register(), safepoint_info); 2458 } 2459 2460 // Gotos can be folded Ifs, handle this case. 2461 if (x->should_profile()) { 2462 ciMethod* method = x->profiled_method(); 2463 assert(method != nullptr, "method should be set if branch is profiled"); 2464 ciMethodData* md = method->method_data_or_null(); 2465 assert(md != nullptr, "Sanity"); 2466 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2467 assert(data != nullptr, "must have profiling data"); 2468 int offset; 2469 if (x->direction() == Goto::taken) { 2470 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2471 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2472 } else if (x->direction() == Goto::not_taken) { 2473 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2474 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2475 } else { 2476 assert(data->is_JumpData(), "need JumpData for branches"); 2477 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2478 } 2479 LIR_Opr md_reg = new_register(T_METADATA); 2480 __ metadata2reg(md->constant_encoding(), md_reg); 2481 2482 increment_counter(new LIR_Address(md_reg, offset, 2483 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2484 } 2485 2486 // emit phi-instruction move after safepoint since this simplifies 2487 // describing the state as the safepoint. 2488 move_to_phi(x->state()); 2489 2490 __ jump(x->default_sux()); 2491 } 2492 2493 /** 2494 * Emit profiling code if needed for arguments, parameters, return value types 2495 * 2496 * @param md MDO the code will update at runtime 2497 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2498 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2499 * @param profiled_k current profile 2500 * @param obj IR node for the object to be profiled 2501 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2502 * Set once we find an update to make and use for next ones. 2503 * @param not_null true if we know obj cannot be null 2504 * @param signature_at_call_k signature at call for obj 2505 * @param callee_signature_k signature of callee for obj 2506 * at call and callee signatures differ at method handle call 2507 * @return the only klass we know will ever be seen at this profile point 2508 */ 2509 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2510 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2511 ciKlass* callee_signature_k) { 2512 ciKlass* result = nullptr; 2513 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2514 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2515 // known not to be null or null bit already set and already set to 2516 // unknown: nothing we can do to improve profiling 2517 if (!do_null && !do_update) { 2518 return result; 2519 } 2520 2521 ciKlass* exact_klass = nullptr; 2522 Compilation* comp = Compilation::current(); 2523 if (do_update) { 2524 // try to find exact type, using CHA if possible, so that loading 2525 // the klass from the object can be avoided 2526 ciType* type = obj->exact_type(); 2527 if (type == nullptr) { 2528 type = obj->declared_type(); 2529 type = comp->cha_exact_type(type); 2530 } 2531 assert(type == nullptr || type->is_klass(), "type should be class"); 2532 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2533 2534 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2535 } 2536 2537 if (!do_null && !do_update) { 2538 return result; 2539 } 2540 2541 ciKlass* exact_signature_k = nullptr; 2542 if (do_update) { 2543 // Is the type from the signature exact (the only one possible)? 2544 exact_signature_k = signature_at_call_k->exact_klass(); 2545 if (exact_signature_k == nullptr) { 2546 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2547 } else { 2548 result = exact_signature_k; 2549 // Known statically. No need to emit any code: prevent 2550 // LIR_Assembler::emit_profile_type() from emitting useless code 2551 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2552 } 2553 // exact_klass and exact_signature_k can be both non null but 2554 // different if exact_klass is loaded after the ciObject for 2555 // exact_signature_k is created. 2556 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2557 // sometimes the type of the signature is better than the best type 2558 // the compiler has 2559 exact_klass = exact_signature_k; 2560 } 2561 if (callee_signature_k != nullptr && 2562 callee_signature_k != signature_at_call_k) { 2563 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2564 if (improved_klass == nullptr) { 2565 improved_klass = comp->cha_exact_type(callee_signature_k); 2566 } 2567 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2568 exact_klass = exact_signature_k; 2569 } 2570 } 2571 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2572 } 2573 2574 if (!do_null && !do_update) { 2575 return result; 2576 } 2577 2578 if (mdp == LIR_OprFact::illegalOpr) { 2579 mdp = new_register(T_METADATA); 2580 __ metadata2reg(md->constant_encoding(), mdp); 2581 if (md_base_offset != 0) { 2582 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2583 mdp = new_pointer_register(); 2584 __ leal(LIR_OprFact::address(base_type_address), mdp); 2585 } 2586 } 2587 LIRItem value(obj, this); 2588 value.load_item(); 2589 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2590 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2591 return result; 2592 } 2593 2594 // profile parameters on entry to the root of the compilation 2595 void LIRGenerator::profile_parameters(Base* x) { 2596 if (compilation()->profile_parameters()) { 2597 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2598 ciMethodData* md = scope()->method()->method_data_or_null(); 2599 assert(md != nullptr, "Sanity"); 2600 2601 if (md->parameters_type_data() != nullptr) { 2602 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2603 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2604 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2605 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2606 LIR_Opr src = args->at(i); 2607 assert(!src->is_illegal(), "check"); 2608 BasicType t = src->type(); 2609 if (is_reference_type(t)) { 2610 intptr_t profiled_k = parameters->type(j); 2611 Local* local = x->state()->local_at(java_index)->as_Local(); 2612 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2613 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2614 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2615 // If the profile is known statically set it once for all and do not emit any code 2616 if (exact != nullptr) { 2617 md->set_parameter_type(j, exact); 2618 } 2619 j++; 2620 } 2621 java_index += type2size[t]; 2622 } 2623 } 2624 } 2625 } 2626 2627 void LIRGenerator::do_Base(Base* x) { 2628 __ std_entry(LIR_OprFact::illegalOpr); 2629 // Emit moves from physical registers / stack slots to virtual registers 2630 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2631 IRScope* irScope = compilation()->hir()->top_scope(); 2632 int java_index = 0; 2633 for (int i = 0; i < args->length(); i++) { 2634 LIR_Opr src = args->at(i); 2635 assert(!src->is_illegal(), "check"); 2636 BasicType t = src->type(); 2637 2638 // Types which are smaller than int are passed as int, so 2639 // correct the type which passed. 2640 switch (t) { 2641 case T_BYTE: 2642 case T_BOOLEAN: 2643 case T_SHORT: 2644 case T_CHAR: 2645 t = T_INT; 2646 break; 2647 default: 2648 break; 2649 } 2650 2651 LIR_Opr dest = new_register(t); 2652 __ move(src, dest); 2653 2654 // Assign new location to Local instruction for this local 2655 Local* local = x->state()->local_at(java_index)->as_Local(); 2656 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2657 #ifndef __SOFTFP__ 2658 // The java calling convention passes double as long and float as int. 2659 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2660 #endif // __SOFTFP__ 2661 local->set_operand(dest); 2662 #ifdef ASSERT 2663 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2664 #endif 2665 java_index += type2size[t]; 2666 } 2667 2668 if (compilation()->env()->dtrace_method_probes()) { 2669 BasicTypeList signature; 2670 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2671 signature.append(T_METADATA); // Method* 2672 LIR_OprList* args = new LIR_OprList(); 2673 args->append(getThreadPointer()); 2674 LIR_Opr meth = new_register(T_METADATA); 2675 __ metadata2reg(method()->constant_encoding(), meth); 2676 args->append(meth); 2677 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2678 } 2679 2680 MethodDetails method_details(method()); 2681 RuntimeUpcallInfo* upcall = RuntimeUpcalls::get_first_upcall(RuntimeUpcallType::onMethodEntry, method_details); 2682 while (upcall != nullptr) { 2683 BasicTypeList signature; 2684 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2685 LIR_OprList* args = new LIR_OprList(); 2686 args->append(getThreadPointer()); 2687 call_runtime(&signature, args, upcall->upcall_address(), voidType, nullptr); 2688 upcall = RuntimeUpcalls::get_next_upcall(RuntimeUpcallType::onMethodEntry, method_details, upcall); 2689 } 2690 2691 if (method()->is_synchronized()) { 2692 LIR_Opr obj; 2693 if (method()->is_static()) { 2694 obj = new_register(T_OBJECT); 2695 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2696 } else { 2697 Local* receiver = x->state()->local_at(0)->as_Local(); 2698 assert(receiver != nullptr, "must already exist"); 2699 obj = receiver->operand(); 2700 } 2701 assert(obj->is_valid(), "must be valid"); 2702 2703 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2704 LIR_Opr lock = syncLockOpr(); 2705 __ load_stack_address_monitor(0, lock); 2706 2707 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2708 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2709 2710 // receiver is guaranteed non-null so don't need CodeEmitInfo 2711 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2712 } 2713 } 2714 // increment invocation counters if needed 2715 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2716 profile_parameters(x); 2717 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2718 increment_invocation_counter(info); 2719 } 2720 2721 // all blocks with a successor must end with an unconditional jump 2722 // to the successor even if they are consecutive 2723 __ jump(x->default_sux()); 2724 } 2725 2726 2727 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2728 // construct our frame and model the production of incoming pointer 2729 // to the OSR buffer. 2730 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2731 LIR_Opr result = rlock_result(x); 2732 __ move(LIR_Assembler::osrBufferPointer(), result); 2733 } 2734 2735 2736 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2737 assert(args->length() == arg_list->length(), 2738 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2739 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2740 LIRItem* param = args->at(i); 2741 LIR_Opr loc = arg_list->at(i); 2742 if (loc->is_register()) { 2743 param->load_item_force(loc); 2744 } else { 2745 LIR_Address* addr = loc->as_address_ptr(); 2746 param->load_for_store(addr->type()); 2747 if (addr->type() == T_OBJECT) { 2748 __ move_wide(param->result(), addr); 2749 } else 2750 __ move(param->result(), addr); 2751 } 2752 } 2753 2754 if (x->has_receiver()) { 2755 LIRItem* receiver = args->at(0); 2756 LIR_Opr loc = arg_list->at(0); 2757 if (loc->is_register()) { 2758 receiver->load_item_force(loc); 2759 } else { 2760 assert(loc->is_address(), "just checking"); 2761 receiver->load_for_store(T_OBJECT); 2762 __ move_wide(receiver->result(), loc->as_address_ptr()); 2763 } 2764 } 2765 } 2766 2767 2768 // Visits all arguments, returns appropriate items without loading them 2769 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2770 LIRItemList* argument_items = new LIRItemList(); 2771 if (x->has_receiver()) { 2772 LIRItem* receiver = new LIRItem(x->receiver(), this); 2773 argument_items->append(receiver); 2774 } 2775 for (int i = 0; i < x->number_of_arguments(); i++) { 2776 LIRItem* param = new LIRItem(x->argument_at(i), this); 2777 argument_items->append(param); 2778 } 2779 return argument_items; 2780 } 2781 2782 2783 // The invoke with receiver has following phases: 2784 // a) traverse and load/lock receiver; 2785 // b) traverse all arguments -> item-array (invoke_visit_argument) 2786 // c) push receiver on stack 2787 // d) load each of the items and push on stack 2788 // e) unlock receiver 2789 // f) move receiver into receiver-register %o0 2790 // g) lock result registers and emit call operation 2791 // 2792 // Before issuing a call, we must spill-save all values on stack 2793 // that are in caller-save register. "spill-save" moves those registers 2794 // either in a free callee-save register or spills them if no free 2795 // callee save register is available. 2796 // 2797 // The problem is where to invoke spill-save. 2798 // - if invoked between e) and f), we may lock callee save 2799 // register in "spill-save" that destroys the receiver register 2800 // before f) is executed 2801 // - if we rearrange f) to be earlier (by loading %o0) it 2802 // may destroy a value on the stack that is currently in %o0 2803 // and is waiting to be spilled 2804 // - if we keep the receiver locked while doing spill-save, 2805 // we cannot spill it as it is spill-locked 2806 // 2807 void LIRGenerator::do_Invoke(Invoke* x) { 2808 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2809 2810 LIR_OprList* arg_list = cc->args(); 2811 LIRItemList* args = invoke_visit_arguments(x); 2812 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2813 2814 // setup result register 2815 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2816 if (x->type() != voidType) { 2817 result_register = result_register_for(x->type()); 2818 } 2819 2820 CodeEmitInfo* info = state_for(x, x->state()); 2821 2822 invoke_load_arguments(x, args, arg_list); 2823 2824 if (x->has_receiver()) { 2825 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2826 receiver = args->at(0)->result(); 2827 } 2828 2829 // emit invoke code 2830 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2831 2832 // JSR 292 2833 // Preserve the SP over MethodHandle call sites, if needed. 2834 ciMethod* target = x->target(); 2835 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2836 target->is_method_handle_intrinsic() || 2837 target->is_compiled_lambda_form()); 2838 if (is_method_handle_invoke) { 2839 info->set_is_method_handle_invoke(true); 2840 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2841 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2842 } 2843 } 2844 2845 switch (x->code()) { 2846 case Bytecodes::_invokestatic: 2847 __ call_static(target, result_register, 2848 SharedRuntime::get_resolve_static_call_stub(), 2849 arg_list, info); 2850 break; 2851 case Bytecodes::_invokespecial: 2852 case Bytecodes::_invokevirtual: 2853 case Bytecodes::_invokeinterface: 2854 // for loaded and final (method or class) target we still produce an inline cache, 2855 // in order to be able to call mixed mode 2856 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2857 __ call_opt_virtual(target, receiver, result_register, 2858 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2859 arg_list, info); 2860 } else { 2861 __ call_icvirtual(target, receiver, result_register, 2862 SharedRuntime::get_resolve_virtual_call_stub(), 2863 arg_list, info); 2864 } 2865 break; 2866 case Bytecodes::_invokedynamic: { 2867 __ call_dynamic(target, receiver, result_register, 2868 SharedRuntime::get_resolve_static_call_stub(), 2869 arg_list, info); 2870 break; 2871 } 2872 default: 2873 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2874 break; 2875 } 2876 2877 // JSR 292 2878 // Restore the SP after MethodHandle call sites, if needed. 2879 if (is_method_handle_invoke 2880 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2881 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2882 } 2883 2884 if (result_register->is_valid()) { 2885 LIR_Opr result = rlock_result(x); 2886 __ move(result_register, result); 2887 } 2888 } 2889 2890 2891 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2892 assert(x->number_of_arguments() == 1, "wrong type"); 2893 LIRItem value (x->argument_at(0), this); 2894 LIR_Opr reg = rlock_result(x); 2895 value.load_item(); 2896 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2897 __ move(tmp, reg); 2898 } 2899 2900 2901 2902 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2903 void LIRGenerator::do_IfOp(IfOp* x) { 2904 #ifdef ASSERT 2905 { 2906 ValueTag xtag = x->x()->type()->tag(); 2907 ValueTag ttag = x->tval()->type()->tag(); 2908 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2909 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2910 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2911 } 2912 #endif 2913 2914 LIRItem left(x->x(), this); 2915 LIRItem right(x->y(), this); 2916 left.load_item(); 2917 if (can_inline_as_constant(right.value())) { 2918 right.dont_load_item(); 2919 } else { 2920 right.load_item(); 2921 } 2922 2923 LIRItem t_val(x->tval(), this); 2924 LIRItem f_val(x->fval(), this); 2925 t_val.dont_load_item(); 2926 f_val.dont_load_item(); 2927 LIR_Opr reg = rlock_result(x); 2928 2929 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2930 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2931 } 2932 2933 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2934 assert(x->number_of_arguments() == 0, "wrong type"); 2935 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2936 BasicTypeList signature; 2937 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2938 LIR_Opr reg = result_register_for(x->type()); 2939 __ call_runtime_leaf(routine, getThreadTemp(), 2940 reg, new LIR_OprList()); 2941 LIR_Opr result = rlock_result(x); 2942 __ move(reg, result); 2943 } 2944 2945 2946 2947 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2948 switch (x->id()) { 2949 case vmIntrinsics::_intBitsToFloat : 2950 case vmIntrinsics::_doubleToRawLongBits : 2951 case vmIntrinsics::_longBitsToDouble : 2952 case vmIntrinsics::_floatToRawIntBits : { 2953 do_FPIntrinsics(x); 2954 break; 2955 } 2956 2957 #ifdef JFR_HAVE_INTRINSICS 2958 case vmIntrinsics::_counterTime: 2959 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2960 break; 2961 #endif 2962 2963 case vmIntrinsics::_currentTimeMillis: 2964 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2965 break; 2966 2967 case vmIntrinsics::_nanoTime: 2968 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2969 break; 2970 2971 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2972 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2973 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2974 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2975 case vmIntrinsics::_getClass: do_getClass(x); break; 2976 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2977 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2978 case vmIntrinsics::_currentThread: do_vthread(x); break; 2979 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2980 2981 case vmIntrinsics::_dlog: // fall through 2982 case vmIntrinsics::_dlog10: // fall through 2983 case vmIntrinsics::_dabs: // fall through 2984 case vmIntrinsics::_dsqrt: // fall through 2985 case vmIntrinsics::_dsqrt_strict: // fall through 2986 case vmIntrinsics::_dtan: // fall through 2987 case vmIntrinsics::_dtanh: // fall through 2988 case vmIntrinsics::_dsin : // fall through 2989 case vmIntrinsics::_dcos : // fall through 2990 case vmIntrinsics::_dexp : // fall through 2991 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2992 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2993 2994 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2995 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2996 2997 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2998 case vmIntrinsics::_floatToFloat16: // fall through 2999 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 3000 3001 case vmIntrinsics::_Preconditions_checkIndex: 3002 do_PreconditionsCheckIndex(x, T_INT); 3003 break; 3004 case vmIntrinsics::_Preconditions_checkLongIndex: 3005 do_PreconditionsCheckIndex(x, T_LONG); 3006 break; 3007 3008 case vmIntrinsics::_compareAndSetReference: 3009 do_CompareAndSwap(x, objectType); 3010 break; 3011 case vmIntrinsics::_compareAndSetInt: 3012 do_CompareAndSwap(x, intType); 3013 break; 3014 case vmIntrinsics::_compareAndSetLong: 3015 do_CompareAndSwap(x, longType); 3016 break; 3017 3018 case vmIntrinsics::_loadFence : 3019 __ membar_acquire(); 3020 break; 3021 case vmIntrinsics::_storeFence: 3022 __ membar_release(); 3023 break; 3024 case vmIntrinsics::_storeStoreFence: 3025 __ membar_storestore(); 3026 break; 3027 case vmIntrinsics::_fullFence : 3028 __ membar(); 3029 break; 3030 case vmIntrinsics::_onSpinWait: 3031 __ on_spin_wait(); 3032 break; 3033 case vmIntrinsics::_Reference_get: 3034 do_Reference_get(x); 3035 break; 3036 3037 case vmIntrinsics::_updateCRC32: 3038 case vmIntrinsics::_updateBytesCRC32: 3039 case vmIntrinsics::_updateByteBufferCRC32: 3040 do_update_CRC32(x); 3041 break; 3042 3043 case vmIntrinsics::_updateBytesCRC32C: 3044 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3045 do_update_CRC32C(x); 3046 break; 3047 3048 case vmIntrinsics::_vectorizedMismatch: 3049 do_vectorizedMismatch(x); 3050 break; 3051 3052 case vmIntrinsics::_blackhole: 3053 do_blackhole(x); 3054 break; 3055 3056 default: ShouldNotReachHere(); break; 3057 } 3058 } 3059 3060 void LIRGenerator::profile_arguments(ProfileCall* x) { 3061 if (compilation()->profile_arguments()) { 3062 int bci = x->bci_of_invoke(); 3063 ciMethodData* md = x->method()->method_data_or_null(); 3064 assert(md != nullptr, "Sanity"); 3065 ciProfileData* data = md->bci_to_data(bci); 3066 if (data != nullptr) { 3067 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3068 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3069 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3070 int base_offset = md->byte_offset_of_slot(data, extra); 3071 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3072 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3073 3074 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3075 int start = 0; 3076 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3077 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3078 // first argument is not profiled at call (method handle invoke) 3079 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3080 start = 1; 3081 } 3082 ciSignature* callee_signature = x->callee()->signature(); 3083 // method handle call to virtual method 3084 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3085 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3086 3087 bool ignored_will_link; 3088 ciSignature* signature_at_call = nullptr; 3089 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3090 ciSignatureStream signature_at_call_stream(signature_at_call); 3091 3092 // if called through method handle invoke, some arguments may have been popped 3093 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3094 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3095 ciKlass* exact = profile_type(md, base_offset, off, 3096 args->type(i), x->profiled_arg_at(i+start), mdp, 3097 !x->arg_needs_null_check(i+start), 3098 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3099 if (exact != nullptr) { 3100 md->set_argument_type(bci, i, exact); 3101 } 3102 } 3103 } else { 3104 #ifdef ASSERT 3105 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3106 int n = x->nb_profiled_args(); 3107 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3108 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3109 "only at JSR292 bytecodes"); 3110 #endif 3111 } 3112 } 3113 } 3114 } 3115 3116 // profile parameters on entry to an inlined method 3117 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3118 if (compilation()->profile_parameters() && x->inlined()) { 3119 ciMethodData* md = x->callee()->method_data_or_null(); 3120 if (md != nullptr) { 3121 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3122 if (parameters_type_data != nullptr) { 3123 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3124 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3125 bool has_receiver = !x->callee()->is_static(); 3126 ciSignature* sig = x->callee()->signature(); 3127 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3128 int i = 0; // to iterate on the Instructions 3129 Value arg = x->recv(); 3130 bool not_null = false; 3131 int bci = x->bci_of_invoke(); 3132 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3133 // The first parameter is the receiver so that's what we start 3134 // with if it exists. One exception is method handle call to 3135 // virtual method: the receiver is in the args list 3136 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3137 i = 1; 3138 arg = x->profiled_arg_at(0); 3139 not_null = !x->arg_needs_null_check(0); 3140 } 3141 int k = 0; // to iterate on the profile data 3142 for (;;) { 3143 intptr_t profiled_k = parameters->type(k); 3144 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3145 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3146 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3147 // If the profile is known statically set it once for all and do not emit any code 3148 if (exact != nullptr) { 3149 md->set_parameter_type(k, exact); 3150 } 3151 k++; 3152 if (k >= parameters_type_data->number_of_parameters()) { 3153 #ifdef ASSERT 3154 int extra = 0; 3155 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3156 x->nb_profiled_args() >= TypeProfileParmsLimit && 3157 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3158 extra += 1; 3159 } 3160 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3161 #endif 3162 break; 3163 } 3164 arg = x->profiled_arg_at(i); 3165 not_null = !x->arg_needs_null_check(i); 3166 i++; 3167 } 3168 } 3169 } 3170 } 3171 } 3172 3173 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3174 // Need recv in a temporary register so it interferes with the other temporaries 3175 LIR_Opr recv = LIR_OprFact::illegalOpr; 3176 LIR_Opr mdo = new_register(T_METADATA); 3177 // tmp is used to hold the counters on SPARC 3178 LIR_Opr tmp = new_pointer_register(); 3179 3180 if (x->nb_profiled_args() > 0) { 3181 profile_arguments(x); 3182 } 3183 3184 // profile parameters on inlined method entry including receiver 3185 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3186 profile_parameters_at_call(x); 3187 } 3188 3189 if (x->recv() != nullptr) { 3190 LIRItem value(x->recv(), this); 3191 value.load_item(); 3192 recv = new_register(T_OBJECT); 3193 __ move(value.result(), recv); 3194 } 3195 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3196 } 3197 3198 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3199 int bci = x->bci_of_invoke(); 3200 ciMethodData* md = x->method()->method_data_or_null(); 3201 assert(md != nullptr, "Sanity"); 3202 ciProfileData* data = md->bci_to_data(bci); 3203 if (data != nullptr) { 3204 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3205 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3206 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3207 3208 bool ignored_will_link; 3209 ciSignature* signature_at_call = nullptr; 3210 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3211 3212 // The offset within the MDO of the entry to update may be too large 3213 // to be used in load/store instructions on some platforms. So have 3214 // profile_type() compute the address of the profile in a register. 3215 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3216 ret->type(), x->ret(), mdp, 3217 !x->needs_null_check(), 3218 signature_at_call->return_type()->as_klass(), 3219 x->callee()->signature()->return_type()->as_klass()); 3220 if (exact != nullptr) { 3221 md->set_return_type(bci, exact); 3222 } 3223 } 3224 } 3225 3226 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3227 // We can safely ignore accessors here, since c2 will inline them anyway, 3228 // accessors are also always mature. 3229 if (!x->inlinee()->is_accessor()) { 3230 CodeEmitInfo* info = state_for(x, x->state(), true); 3231 // Notify the runtime very infrequently only to take care of counter overflows 3232 int freq_log = Tier23InlineeNotifyFreqLog; 3233 double scale; 3234 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3235 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3236 } 3237 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3238 } 3239 } 3240 3241 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3242 if (compilation()->is_profiling()) { 3243 #if defined(X86) && !defined(_LP64) 3244 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3245 LIR_Opr left_copy = new_register(left->type()); 3246 __ move(left, left_copy); 3247 __ cmp(cond, left_copy, right); 3248 #else 3249 __ cmp(cond, left, right); 3250 #endif 3251 LIR_Opr step = new_register(T_INT); 3252 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3253 LIR_Opr zero = LIR_OprFact::intConst(0); 3254 __ cmove(cond, 3255 (left_bci < bci) ? plus_one : zero, 3256 (right_bci < bci) ? plus_one : zero, 3257 step, left->type()); 3258 increment_backedge_counter(info, step, bci); 3259 } 3260 } 3261 3262 3263 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3264 int freq_log = 0; 3265 int level = compilation()->env()->comp_level(); 3266 if (level == CompLevel_limited_profile) { 3267 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3268 } else if (level == CompLevel_full_profile) { 3269 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3270 } else { 3271 ShouldNotReachHere(); 3272 } 3273 // Increment the appropriate invocation/backedge counter and notify the runtime. 3274 double scale; 3275 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3276 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3277 } 3278 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3279 } 3280 3281 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3282 ciMethod *method, LIR_Opr step, int frequency, 3283 int bci, bool backedge, bool notify) { 3284 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3285 int level = _compilation->env()->comp_level(); 3286 assert(level > CompLevel_simple, "Shouldn't be here"); 3287 3288 int offset = -1; 3289 LIR_Opr counter_holder; 3290 if (level == CompLevel_limited_profile) { 3291 MethodCounters* counters_adr = method->ensure_method_counters(); 3292 if (counters_adr == nullptr) { 3293 bailout("method counters allocation failed"); 3294 return; 3295 } 3296 if (SCCache::is_on()) { 3297 counter_holder = new_register(T_METADATA); 3298 __ metadata2reg(counters_adr, counter_holder); 3299 } else { 3300 counter_holder = new_pointer_register(); 3301 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3302 } 3303 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3304 MethodCounters::invocation_counter_offset()); 3305 } else if (level == CompLevel_full_profile) { 3306 counter_holder = new_register(T_METADATA); 3307 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3308 MethodData::invocation_counter_offset()); 3309 ciMethodData* md = method->method_data_or_null(); 3310 assert(md != nullptr, "Sanity"); 3311 __ metadata2reg(md->constant_encoding(), counter_holder); 3312 } else { 3313 ShouldNotReachHere(); 3314 } 3315 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3316 LIR_Opr result = new_register(T_INT); 3317 __ load(counter, result); 3318 __ add(result, step, result); 3319 __ store(result, counter); 3320 if (notify && (!backedge || UseOnStackReplacement)) { 3321 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3322 // The bci for info can point to cmp for if's we want the if bci 3323 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3324 int freq = frequency << InvocationCounter::count_shift; 3325 if (freq == 0) { 3326 if (!step->is_constant()) { 3327 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3328 __ branch(lir_cond_notEqual, overflow); 3329 } else { 3330 __ branch(lir_cond_always, overflow); 3331 } 3332 } else { 3333 LIR_Opr mask = load_immediate(freq, T_INT); 3334 if (!step->is_constant()) { 3335 // If step is 0, make sure the overflow check below always fails 3336 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3337 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3338 } 3339 __ logical_and(result, mask, result); 3340 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3341 __ branch(lir_cond_equal, overflow); 3342 } 3343 __ branch_destination(overflow->continuation()); 3344 } 3345 } 3346 3347 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3348 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3349 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3350 3351 if (x->pass_thread()) { 3352 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3353 args->append(getThreadPointer()); 3354 } 3355 3356 for (int i = 0; i < x->number_of_arguments(); i++) { 3357 Value a = x->argument_at(i); 3358 LIRItem* item = new LIRItem(a, this); 3359 item->load_item(); 3360 args->append(item->result()); 3361 signature->append(as_BasicType(a->type())); 3362 } 3363 3364 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3365 if (x->type() == voidType) { 3366 set_no_result(x); 3367 } else { 3368 __ move(result, rlock_result(x)); 3369 } 3370 } 3371 3372 #ifdef ASSERT 3373 void LIRGenerator::do_Assert(Assert *x) { 3374 ValueTag tag = x->x()->type()->tag(); 3375 If::Condition cond = x->cond(); 3376 3377 LIRItem xitem(x->x(), this); 3378 LIRItem yitem(x->y(), this); 3379 LIRItem* xin = &xitem; 3380 LIRItem* yin = &yitem; 3381 3382 assert(tag == intTag, "Only integer assertions are valid!"); 3383 3384 xin->load_item(); 3385 yin->dont_load_item(); 3386 3387 set_no_result(x); 3388 3389 LIR_Opr left = xin->result(); 3390 LIR_Opr right = yin->result(); 3391 3392 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3393 } 3394 #endif 3395 3396 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3397 3398 3399 Instruction *a = x->x(); 3400 Instruction *b = x->y(); 3401 if (!a || StressRangeCheckElimination) { 3402 assert(!b || StressRangeCheckElimination, "B must also be null"); 3403 3404 CodeEmitInfo *info = state_for(x, x->state()); 3405 CodeStub* stub = new PredicateFailedStub(info); 3406 3407 __ jump(stub); 3408 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3409 int a_int = a->type()->as_IntConstant()->value(); 3410 int b_int = b->type()->as_IntConstant()->value(); 3411 3412 bool ok = false; 3413 3414 switch(x->cond()) { 3415 case Instruction::eql: ok = (a_int == b_int); break; 3416 case Instruction::neq: ok = (a_int != b_int); break; 3417 case Instruction::lss: ok = (a_int < b_int); break; 3418 case Instruction::leq: ok = (a_int <= b_int); break; 3419 case Instruction::gtr: ok = (a_int > b_int); break; 3420 case Instruction::geq: ok = (a_int >= b_int); break; 3421 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3422 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3423 default: ShouldNotReachHere(); 3424 } 3425 3426 if (ok) { 3427 3428 CodeEmitInfo *info = state_for(x, x->state()); 3429 CodeStub* stub = new PredicateFailedStub(info); 3430 3431 __ jump(stub); 3432 } 3433 } else { 3434 3435 ValueTag tag = x->x()->type()->tag(); 3436 If::Condition cond = x->cond(); 3437 LIRItem xitem(x->x(), this); 3438 LIRItem yitem(x->y(), this); 3439 LIRItem* xin = &xitem; 3440 LIRItem* yin = &yitem; 3441 3442 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3443 3444 xin->load_item(); 3445 yin->dont_load_item(); 3446 set_no_result(x); 3447 3448 LIR_Opr left = xin->result(); 3449 LIR_Opr right = yin->result(); 3450 3451 CodeEmitInfo *info = state_for(x, x->state()); 3452 CodeStub* stub = new PredicateFailedStub(info); 3453 3454 __ cmp(lir_cond(cond), left, right); 3455 __ branch(lir_cond(cond), stub); 3456 } 3457 } 3458 3459 void LIRGenerator::do_blackhole(Intrinsic *x) { 3460 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3461 for (int c = 0; c < x->number_of_arguments(); c++) { 3462 // Load the argument 3463 LIRItem vitem(x->argument_at(c), this); 3464 vitem.load_item(); 3465 // ...and leave it unused. 3466 } 3467 } 3468 3469 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3470 LIRItemList args(1); 3471 LIRItem value(arg1, this); 3472 args.append(&value); 3473 BasicTypeList signature; 3474 signature.append(as_BasicType(arg1->type())); 3475 3476 return call_runtime(&signature, &args, entry, result_type, info); 3477 } 3478 3479 3480 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3481 LIRItemList args(2); 3482 LIRItem value1(arg1, this); 3483 LIRItem value2(arg2, this); 3484 args.append(&value1); 3485 args.append(&value2); 3486 BasicTypeList signature; 3487 signature.append(as_BasicType(arg1->type())); 3488 signature.append(as_BasicType(arg2->type())); 3489 3490 return call_runtime(&signature, &args, entry, result_type, info); 3491 } 3492 3493 3494 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3495 address entry, ValueType* result_type, CodeEmitInfo* info) { 3496 // get a result register 3497 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3498 LIR_Opr result = LIR_OprFact::illegalOpr; 3499 if (result_type->tag() != voidTag) { 3500 result = new_register(result_type); 3501 phys_reg = result_register_for(result_type); 3502 } 3503 3504 // move the arguments into the correct location 3505 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3506 assert(cc->length() == args->length(), "argument mismatch"); 3507 for (int i = 0; i < args->length(); i++) { 3508 LIR_Opr arg = args->at(i); 3509 LIR_Opr loc = cc->at(i); 3510 if (loc->is_register()) { 3511 __ move(arg, loc); 3512 } else { 3513 LIR_Address* addr = loc->as_address_ptr(); 3514 // if (!can_store_as_constant(arg)) { 3515 // LIR_Opr tmp = new_register(arg->type()); 3516 // __ move(arg, tmp); 3517 // arg = tmp; 3518 // } 3519 __ move(arg, addr); 3520 } 3521 } 3522 3523 if (info) { 3524 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3525 } else { 3526 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3527 } 3528 if (result->is_valid()) { 3529 __ move(phys_reg, result); 3530 } 3531 return result; 3532 } 3533 3534 3535 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3536 address entry, ValueType* result_type, CodeEmitInfo* info) { 3537 // get a result register 3538 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3539 LIR_Opr result = LIR_OprFact::illegalOpr; 3540 if (result_type->tag() != voidTag) { 3541 result = new_register(result_type); 3542 phys_reg = result_register_for(result_type); 3543 } 3544 3545 // move the arguments into the correct location 3546 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3547 3548 assert(cc->length() == args->length(), "argument mismatch"); 3549 for (int i = 0; i < args->length(); i++) { 3550 LIRItem* arg = args->at(i); 3551 LIR_Opr loc = cc->at(i); 3552 if (loc->is_register()) { 3553 arg->load_item_force(loc); 3554 } else { 3555 LIR_Address* addr = loc->as_address_ptr(); 3556 arg->load_for_store(addr->type()); 3557 __ move(arg->result(), addr); 3558 } 3559 } 3560 3561 if (info) { 3562 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3563 } else { 3564 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3565 } 3566 if (result->is_valid()) { 3567 __ move(phys_reg, result); 3568 } 3569 return result; 3570 } 3571 3572 void LIRGenerator::do_MemBar(MemBar* x) { 3573 LIR_Code code = x->code(); 3574 switch(code) { 3575 case lir_membar_acquire : __ membar_acquire(); break; 3576 case lir_membar_release : __ membar_release(); break; 3577 case lir_membar : __ membar(); break; 3578 case lir_membar_loadload : __ membar_loadload(); break; 3579 case lir_membar_storestore: __ membar_storestore(); break; 3580 case lir_membar_loadstore : __ membar_loadstore(); break; 3581 case lir_membar_storeload : __ membar_storeload(); break; 3582 default : ShouldNotReachHere(); break; 3583 } 3584 } 3585 3586 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3587 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3588 if (two_operand_lir_form) { 3589 __ move(value, value_fixed); 3590 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3591 } else { 3592 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3593 } 3594 LIR_Opr klass = new_register(T_METADATA); 3595 load_klass(array, klass, null_check_info); 3596 null_check_info = nullptr; 3597 LIR_Opr layout = new_register(T_INT); 3598 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3599 int diffbit = Klass::layout_helper_boolean_diffbit(); 3600 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3601 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3602 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3603 value = value_fixed; 3604 return value; 3605 }