1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "ci/ciUtilities.hpp"
  36 #include "code/aotCodeCache.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "oops/methodCounters.hpp"
  43 #include "runtime/runtimeUpcalls.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/vm_version.hpp"
  47 #include "utilities/bitMap.inline.hpp"
  48 #include "utilities/macros.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 #ifdef ASSERT
  52 #define __ gen()->lir(__FILE__, __LINE__)->
  53 #else
  54 #define __ gen()->lir()->
  55 #endif
  56 
  57 #ifndef PATCHED_ADDR
  58 #define PATCHED_ADDR  (max_jint)
  59 #endif
  60 
  61 void PhiResolverState::reset() {
  62   _virtual_operands.clear();
  63   _other_operands.clear();
  64   _vreg_table.clear();
  65 }
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _loop(nullptr)
  85  , _temp(LIR_OprFact::illegalOpr)
  86 {
  87   // reinitialize the shared state arrays
  88   _state.reset();
  89 }
  90 
  91 
  92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  93   assert(src->is_valid(), "");
  94   assert(dest->is_valid(), "");
  95   __ move(src, dest);
  96 }
  97 
  98 
  99 void PhiResolver::move_temp_to(LIR_Opr dest) {
 100   assert(_temp->is_valid(), "");
 101   emit_move(_temp, dest);
 102   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 103 }
 104 
 105 
 106 void PhiResolver::move_to_temp(LIR_Opr src) {
 107   assert(_temp->is_illegal(), "");
 108   _temp = _gen->new_register(src->type());
 109   emit_move(src, _temp);
 110 }
 111 
 112 
 113 // Traverse assignment graph in depth first order and generate moves in post order
 114 // ie. two assignments: b := c, a := b start with node c:
 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 116 // Generates moves in this order: move b to a and move c to b
 117 // ie. cycle a := b, b := a start with node a
 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 119 // Generates moves in this order: move b to temp, move a to b, move temp to a
 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 121   if (!dest->visited()) {
 122     dest->set_visited();
 123     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 124       move(dest, dest->destination_at(i));
 125     }
 126   } else if (!dest->start_node()) {
 127     // cylce in graph detected
 128     assert(_loop == nullptr, "only one loop valid!");
 129     _loop = dest;
 130     move_to_temp(src->operand());
 131     return;
 132   } // else dest is a start node
 133 
 134   if (!dest->assigned()) {
 135     if (_loop == dest) {
 136       move_temp_to(dest->operand());
 137       dest->set_assigned();
 138     } else if (src != nullptr) {
 139       emit_move(src->operand(), dest->operand());
 140       dest->set_assigned();
 141     }
 142   }
 143 }
 144 
 145 
 146 PhiResolver::~PhiResolver() {
 147   int i;
 148   // resolve any cycles in moves from and to virtual registers
 149   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 150     ResolveNode* node = virtual_operands().at(i);
 151     if (!node->visited()) {
 152       _loop = nullptr;
 153       move(nullptr, node);
 154       node->set_start_node();
 155       assert(_temp->is_illegal(), "move_temp_to() call missing");
 156     }
 157   }
 158 
 159   // generate move for move from non virtual register to abitrary destination
 160   for (i = other_operands().length() - 1; i >= 0; i --) {
 161     ResolveNode* node = other_operands().at(i);
 162     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 163       emit_move(node->operand(), node->destination_at(j)->operand());
 164     }
 165   }
 166 }
 167 
 168 
 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 170   ResolveNode* node;
 171   if (opr->is_virtual()) {
 172     int vreg_num = opr->vreg_number();
 173     node = vreg_table().at_grow(vreg_num, nullptr);
 174     assert(node == nullptr || node->operand() == opr, "");
 175     if (node == nullptr) {
 176       node = new ResolveNode(opr);
 177       vreg_table().at_put(vreg_num, node);
 178     }
 179     // Make sure that all virtual operands show up in the list when
 180     // they are used as the source of a move.
 181     if (source && !virtual_operands().contains(node)) {
 182       virtual_operands().append(node);
 183     }
 184   } else {
 185     assert(source, "");
 186     node = new ResolveNode(opr);
 187     other_operands().append(node);
 188   }
 189   return node;
 190 }
 191 
 192 
 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 194   assert(dest->is_virtual(), "");
 195   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 196   assert(src->is_valid(), "");
 197   assert(dest->is_valid(), "");
 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210 #ifdef ASSERT
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 213   }
 214 #endif
 215 
 216   _result = opr;
 217 }
 218 
 219 void LIRItem::load_item() {
 220   if (result()->is_illegal()) {
 221     // update the items result
 222     _result = value()->operand();
 223   }
 224   if (!result()->is_register()) {
 225     LIR_Opr reg = _gen->new_register(value()->type());
 226     __ move(result(), reg);
 227     if (result()->is_constant()) {
 228       _result = reg;
 229     } else {
 230       set_result(reg);
 231     }
 232   }
 233 }
 234 
 235 
 236 void LIRItem::load_for_store(BasicType type) {
 237   if (_gen->can_store_as_constant(value(), type)) {
 238     _result = value()->operand();
 239     if (!_result->is_constant()) {
 240       _result = LIR_OprFact::value_type(value()->type());
 241     }
 242   } else if (type == T_BYTE || type == T_BOOLEAN) {
 243     load_byte_item();
 244   } else {
 245     load_item();
 246   }
 247 }
 248 
 249 void LIRItem::load_item_force(LIR_Opr reg) {
 250   LIR_Opr r = result();
 251   if (r != reg) {
 252 #if !defined(ARM) && !defined(E500V2)
 253     if (r->type() != reg->type()) {
 254       // moves between different types need an intervening spill slot
 255       r = _gen->force_to_spill(r, reg->type());
 256     }
 257 #endif
 258     __ move(r, reg);
 259     _result = reg;
 260   }
 261 }
 262 
 263 ciObject* LIRItem::get_jobject_constant() const {
 264   ObjectType* oc = type()->as_ObjectType();
 265   if (oc) {
 266     return oc->constant_value();
 267   }
 268   return nullptr;
 269 }
 270 
 271 
 272 jint LIRItem::get_jint_constant() const {
 273   assert(is_constant() && value() != nullptr, "");
 274   assert(type()->as_IntConstant() != nullptr, "type check");
 275   return type()->as_IntConstant()->value();
 276 }
 277 
 278 
 279 jint LIRItem::get_address_constant() const {
 280   assert(is_constant() && value() != nullptr, "");
 281   assert(type()->as_AddressConstant() != nullptr, "type check");
 282   return type()->as_AddressConstant()->value();
 283 }
 284 
 285 
 286 jfloat LIRItem::get_jfloat_constant() const {
 287   assert(is_constant() && value() != nullptr, "");
 288   assert(type()->as_FloatConstant() != nullptr, "type check");
 289   return type()->as_FloatConstant()->value();
 290 }
 291 
 292 
 293 jdouble LIRItem::get_jdouble_constant() const {
 294   assert(is_constant() && value() != nullptr, "");
 295   assert(type()->as_DoubleConstant() != nullptr, "type check");
 296   return type()->as_DoubleConstant()->value();
 297 }
 298 
 299 
 300 jlong LIRItem::get_jlong_constant() const {
 301   assert(is_constant() && value() != nullptr, "");
 302   assert(type()->as_LongConstant() != nullptr, "type check");
 303   return type()->as_LongConstant()->value();
 304 }
 305 
 306 
 307 
 308 //--------------------------------------------------------------
 309 
 310 
 311 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 312 #ifndef PRODUCT
 313   if (PrintIRWithLIR) {
 314     block->print();
 315   }
 316 #endif
 317 
 318   // set up the list of LIR instructions
 319   assert(block->lir() == nullptr, "LIR list already computed for this block");
 320   _lir = new LIR_List(compilation(), block);
 321   block->set_lir(_lir);
 322 
 323   __ branch_destination(block->label());
 324 
 325   if (LIRTraceExecution &&
 326       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 327       !block->is_set(BlockBegin::exception_entry_flag)) {
 328     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 329     trace_block_entry(block);
 330   }
 331 }
 332 
 333 
 334 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 335 #ifndef PRODUCT
 336   if (PrintIRWithLIR) {
 337     tty->cr();
 338   }
 339 #endif
 340 
 341   // LIR_Opr for unpinned constants shouldn't be referenced by other
 342   // blocks so clear them out after processing the block.
 343   for (int i = 0; i < _unpinned_constants.length(); i++) {
 344     _unpinned_constants.at(i)->clear_operand();
 345   }
 346   _unpinned_constants.trunc_to(0);
 347 
 348   // clear our any registers for other local constants
 349   _constants.trunc_to(0);
 350   _reg_for_constants.trunc_to(0);
 351 }
 352 
 353 
 354 void LIRGenerator::block_do(BlockBegin* block) {
 355   CHECK_BAILOUT();
 356 
 357   block_do_prolog(block);
 358   set_block(block);
 359 
 360   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 361     if (instr->is_pinned()) do_root(instr);
 362   }
 363 
 364   set_block(nullptr);
 365   block_do_epilog(block);
 366 }
 367 
 368 
 369 //-------------------------LIRGenerator-----------------------------
 370 
 371 // This is where the tree-walk starts; instr must be root;
 372 void LIRGenerator::do_root(Value instr) {
 373   CHECK_BAILOUT();
 374 
 375   InstructionMark im(compilation(), instr);
 376 
 377   assert(instr->is_pinned(), "use only with roots");
 378   assert(instr->subst() == instr, "shouldn't have missed substitution");
 379 
 380   instr->visit(this);
 381 
 382   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 383          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 384 }
 385 
 386 
 387 // This is called for each node in tree; the walk stops if a root is reached
 388 void LIRGenerator::walk(Value instr) {
 389   InstructionMark im(compilation(), instr);
 390   //stop walk when encounter a root
 391   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 392     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 393   } else {
 394     assert(instr->subst() == instr, "shouldn't have missed substitution");
 395     instr->visit(this);
 396     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 397   }
 398 }
 399 
 400 
 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 402   assert(state != nullptr, "state must be defined");
 403 
 404 #ifndef PRODUCT
 405   state->verify();
 406 #endif
 407 
 408   ValueStack* s = state;
 409   for_each_state(s) {
 410     if (s->kind() == ValueStack::EmptyExceptionState ||
 411         s->kind() == ValueStack::CallerEmptyExceptionState)
 412     {
 413 #ifdef ASSERT
 414       int index;
 415       Value value;
 416       for_each_stack_value(s, index, value) {
 417         fatal("state must be empty");
 418       }
 419       for_each_local_value(s, index, value) {
 420         fatal("state must be empty");
 421       }
 422 #endif
 423       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 424       continue;
 425     }
 426 
 427     int index;
 428     Value value;
 429     for_each_stack_value(s, index, value) {
 430       assert(value->subst() == value, "missed substitution");
 431       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 432         walk(value);
 433         assert(value->operand()->is_valid(), "must be evaluated now");
 434       }
 435     }
 436 
 437     int bci = s->bci();
 438     IRScope* scope = s->scope();
 439     ciMethod* method = scope->method();
 440 
 441     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 442     if (bci == SynchronizationEntryBCI) {
 443       if (x->as_ExceptionObject() || x->as_Throw()) {
 444         // all locals are dead on exit from the synthetic unlocker
 445         liveness.clear();
 446       } else {
 447         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 448       }
 449     }
 450     if (!liveness.is_valid()) {
 451       // Degenerate or breakpointed method.
 452       bailout("Degenerate or breakpointed method");
 453     } else {
 454       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 455       for_each_local_value(s, index, value) {
 456         assert(value->subst() == value, "missed substitution");
 457         if (liveness.at(index) && !value->type()->is_illegal()) {
 458           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 459             walk(value);
 460             assert(value->operand()->is_valid(), "must be evaluated now");
 461           }
 462         } else {
 463           // null out this local so that linear scan can assume that all non-null values are live.
 464           s->invalidate_local(index);
 465         }
 466       }
 467     }
 468   }
 469 
 470   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 471 }
 472 
 473 
 474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 475   return state_for(x, x->exception_state());
 476 }
 477 
 478 
 479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 480   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 481    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 482    * the class. */
 483   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 484     assert(info != nullptr, "info must be set if class is not loaded");
 485     __ klass2reg_patch(nullptr, r, info);
 486   } else {
 487     // no patching needed
 488     __ metadata2reg(obj->constant_encoding(), r);
 489   }
 490 }
 491 
 492 
 493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 494                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 495   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 496   if (index->is_constant()) {
 497     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 498                 index->as_jint(), null_check_info);
 499     __ branch(lir_cond_belowEqual, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 502                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 503     __ branch(lir_cond_aboveEqual, stub); // forward branch
 504   }
 505 }
 506 
 507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 508   LIR_Opr result_op = result;
 509   LIR_Opr left_op   = left;
 510   LIR_Opr right_op  = right;
 511 
 512   if (two_operand_lir_form && left_op != result_op) {
 513     assert(right_op != result_op, "malformed");
 514     __ move(left_op, result_op);
 515     left_op = result_op;
 516   }
 517 
 518   switch(code) {
 519     case Bytecodes::_dadd:
 520     case Bytecodes::_fadd:
 521     case Bytecodes::_ladd:
 522     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 523     case Bytecodes::_fmul:
 524     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 525 
 526     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 527 
 528     case Bytecodes::_imul:
 529       {
 530         bool did_strength_reduce = false;
 531 
 532         if (right->is_constant()) {
 533           jint c = right->as_jint();
 534           if (c > 0 && is_power_of_2(c)) {
 535             // do not need tmp here
 536             __ shift_left(left_op, exact_log2(c), result_op);
 537             did_strength_reduce = true;
 538           } else {
 539             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 540           }
 541         }
 542         // we couldn't strength reduce so just emit the multiply
 543         if (!did_strength_reduce) {
 544           __ mul(left_op, right_op, result_op);
 545         }
 546       }
 547       break;
 548 
 549     case Bytecodes::_dsub:
 550     case Bytecodes::_fsub:
 551     case Bytecodes::_lsub:
 552     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 553 
 554     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 555     // ldiv and lrem are implemented with a direct runtime call
 556 
 557     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 558 
 559     case Bytecodes::_drem:
 560     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 561 
 562     default: ShouldNotReachHere();
 563   }
 564 }
 565 
 566 
 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 568   arithmetic_op(code, result, left, right, tmp);
 569 }
 570 
 571 
 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 573   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 574 }
 575 
 576 
 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 578   arithmetic_op(code, result, left, right, tmp);
 579 }
 580 
 581 
 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 583 
 584   if (two_operand_lir_form && value != result_op
 585       // Only 32bit right shifts require two operand form on S390.
 586       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 587     assert(count != result_op, "malformed");
 588     __ move(value, result_op);
 589     value = result_op;
 590   }
 591 
 592   assert(count->is_constant() || count->is_register(), "must be");
 593   switch(code) {
 594   case Bytecodes::_ishl:
 595   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 596   case Bytecodes::_ishr:
 597   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 598   case Bytecodes::_iushr:
 599   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 600   default: ShouldNotReachHere();
 601   }
 602 }
 603 
 604 
 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 606   if (two_operand_lir_form && left_op != result_op) {
 607     assert(right_op != result_op, "malformed");
 608     __ move(left_op, result_op);
 609     left_op = result_op;
 610   }
 611 
 612   switch(code) {
 613     case Bytecodes::_iand:
 614     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 615 
 616     case Bytecodes::_ior:
 617     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 618 
 619     case Bytecodes::_ixor:
 620     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 621 
 622     default: ShouldNotReachHere();
 623   }
 624 }
 625 
 626 
 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 628   // for slow path, use debug info for state after successful locking
 629   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 630   __ load_stack_address_monitor(monitor_no, lock);
 631   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 632   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 633 }
 634 
 635 
 636 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 637   // setup registers
 638   LIR_Opr hdr = lock;
 639   lock = new_hdr;
 640   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 641   __ load_stack_address_monitor(monitor_no, lock);
 642   __ unlock_object(hdr, object, lock, scratch, slow_path);
 643 }
 644 
 645 #ifndef PRODUCT
 646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 647   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 648     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 649   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 650     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 651   }
 652 }
 653 #endif
 654 
 655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 656   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 657   // If klass is not loaded we do not know if the klass has finalizers:
 658   if (UseFastNewInstance && klass->is_loaded()
 659       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 660 
 661     bool known_initialized = klass->is_initialized() && !compilation()->env()->is_precompile();
 662     StubId stub_id = known_initialized ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
 663 
 664     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 665 
 666     assert(klass->is_loaded(), "must be loaded");
 667     // allocate space for instance
 668     assert(klass->size_helper() > 0, "illegal instance size");
 669     const int instance_size = align_object_size(klass->size_helper());
 670     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 671                        oopDesc::header_size(), instance_size, klass_reg, !known_initialized, slow_path);
 672   } else {
 673     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
 674     __ branch(lir_cond_always, slow_path);
 675     __ branch_destination(slow_path->continuation());
 676   }
 677 }
 678 
 679 
 680 static bool is_constant_zero(Instruction* inst) {
 681   IntConstant* c = inst->type()->as_IntConstant();
 682   if (c) {
 683     return (c->value() == 0);
 684   }
 685   return false;
 686 }
 687 
 688 
 689 static bool positive_constant(Instruction* inst) {
 690   IntConstant* c = inst->type()->as_IntConstant();
 691   if (c) {
 692     return (c->value() >= 0);
 693   }
 694   return false;
 695 }
 696 
 697 
 698 static ciArrayKlass* as_array_klass(ciType* type) {
 699   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 700     return (ciArrayKlass*)type;
 701   } else {
 702     return nullptr;
 703   }
 704 }
 705 
 706 static ciType* phi_declared_type(Phi* phi) {
 707   ciType* t = phi->operand_at(0)->declared_type();
 708   if (t == nullptr) {
 709     return nullptr;
 710   }
 711   for(int i = 1; i < phi->operand_count(); i++) {
 712     if (t != phi->operand_at(i)->declared_type()) {
 713       return nullptr;
 714     }
 715   }
 716   return t;
 717 }
 718 
 719 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 720   Instruction* src     = x->argument_at(0);
 721   Instruction* src_pos = x->argument_at(1);
 722   Instruction* dst     = x->argument_at(2);
 723   Instruction* dst_pos = x->argument_at(3);
 724   Instruction* length  = x->argument_at(4);
 725 
 726   // first try to identify the likely type of the arrays involved
 727   ciArrayKlass* expected_type = nullptr;
 728   bool is_exact = false, src_objarray = false, dst_objarray = false;
 729   {
 730     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 731     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 732     Phi* phi;
 733     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 734       src_declared_type = as_array_klass(phi_declared_type(phi));
 735     }
 736     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 737     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 738     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 739       dst_declared_type = as_array_klass(phi_declared_type(phi));
 740     }
 741 
 742     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 743       // the types exactly match so the type is fully known
 744       is_exact = true;
 745       expected_type = src_exact_type;
 746     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 747       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 748       ciArrayKlass* src_type = nullptr;
 749       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 750         src_type = (ciArrayKlass*) src_exact_type;
 751       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 752         src_type = (ciArrayKlass*) src_declared_type;
 753       }
 754       if (src_type != nullptr) {
 755         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 756           is_exact = true;
 757           expected_type = dst_type;
 758         }
 759       }
 760     }
 761     // at least pass along a good guess
 762     if (expected_type == nullptr) expected_type = dst_exact_type;
 763     if (expected_type == nullptr) expected_type = src_declared_type;
 764     if (expected_type == nullptr) expected_type = dst_declared_type;
 765 
 766     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 767     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 768   }
 769 
 770   // if a probable array type has been identified, figure out if any
 771   // of the required checks for a fast case can be elided.
 772   int flags = LIR_OpArrayCopy::all_flags;
 773 
 774   if (!src_objarray)
 775     flags &= ~LIR_OpArrayCopy::src_objarray;
 776   if (!dst_objarray)
 777     flags &= ~LIR_OpArrayCopy::dst_objarray;
 778 
 779   if (!x->arg_needs_null_check(0))
 780     flags &= ~LIR_OpArrayCopy::src_null_check;
 781   if (!x->arg_needs_null_check(2))
 782     flags &= ~LIR_OpArrayCopy::dst_null_check;
 783 
 784 
 785   if (expected_type != nullptr) {
 786     Value length_limit = nullptr;
 787 
 788     IfOp* ifop = length->as_IfOp();
 789     if (ifop != nullptr) {
 790       // look for expressions like min(v, a.length) which ends up as
 791       //   x > y ? y : x  or  x >= y ? y : x
 792       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 793           ifop->x() == ifop->fval() &&
 794           ifop->y() == ifop->tval()) {
 795         length_limit = ifop->y();
 796       }
 797     }
 798 
 799     // try to skip null checks and range checks
 800     NewArray* src_array = src->as_NewArray();
 801     if (src_array != nullptr) {
 802       flags &= ~LIR_OpArrayCopy::src_null_check;
 803       if (length_limit != nullptr &&
 804           src_array->length() == length_limit &&
 805           is_constant_zero(src_pos)) {
 806         flags &= ~LIR_OpArrayCopy::src_range_check;
 807       }
 808     }
 809 
 810     NewArray* dst_array = dst->as_NewArray();
 811     if (dst_array != nullptr) {
 812       flags &= ~LIR_OpArrayCopy::dst_null_check;
 813       if (length_limit != nullptr &&
 814           dst_array->length() == length_limit &&
 815           is_constant_zero(dst_pos)) {
 816         flags &= ~LIR_OpArrayCopy::dst_range_check;
 817       }
 818     }
 819 
 820     // check from incoming constant values
 821     if (positive_constant(src_pos))
 822       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 823     if (positive_constant(dst_pos))
 824       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 825     if (positive_constant(length))
 826       flags &= ~LIR_OpArrayCopy::length_positive_check;
 827 
 828     // see if the range check can be elided, which might also imply
 829     // that src or dst is non-null.
 830     ArrayLength* al = length->as_ArrayLength();
 831     if (al != nullptr) {
 832       if (al->array() == src) {
 833         // it's the length of the source array
 834         flags &= ~LIR_OpArrayCopy::length_positive_check;
 835         flags &= ~LIR_OpArrayCopy::src_null_check;
 836         if (is_constant_zero(src_pos))
 837           flags &= ~LIR_OpArrayCopy::src_range_check;
 838       }
 839       if (al->array() == dst) {
 840         // it's the length of the destination array
 841         flags &= ~LIR_OpArrayCopy::length_positive_check;
 842         flags &= ~LIR_OpArrayCopy::dst_null_check;
 843         if (is_constant_zero(dst_pos))
 844           flags &= ~LIR_OpArrayCopy::dst_range_check;
 845       }
 846     }
 847     if (is_exact) {
 848       flags &= ~LIR_OpArrayCopy::type_check;
 849     }
 850   }
 851 
 852   IntConstant* src_int = src_pos->type()->as_IntConstant();
 853   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 854   if (src_int && dst_int) {
 855     int s_offs = src_int->value();
 856     int d_offs = dst_int->value();
 857     if (src_int->value() >= dst_int->value()) {
 858       flags &= ~LIR_OpArrayCopy::overlapping;
 859     }
 860     if (expected_type != nullptr) {
 861       BasicType t = expected_type->element_type()->basic_type();
 862       int element_size = type2aelembytes(t);
 863       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 864           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 865         flags &= ~LIR_OpArrayCopy::unaligned;
 866       }
 867     }
 868   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 869     // src and dest positions are the same, or dst is zero so assume
 870     // nonoverlapping copy.
 871     flags &= ~LIR_OpArrayCopy::overlapping;
 872   }
 873 
 874   if (src == dst) {
 875     // moving within a single array so no type checks are needed
 876     if (flags & LIR_OpArrayCopy::type_check) {
 877       flags &= ~LIR_OpArrayCopy::type_check;
 878     }
 879   }
 880   *flagsp = flags;
 881   *expected_typep = (ciArrayKlass*)expected_type;
 882 }
 883 
 884 
 885 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 886   assert(type2size[t] == type2size[value->type()],
 887          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 888   if (!value->is_register()) {
 889     // force into a register
 890     LIR_Opr r = new_register(value->type());
 891     __ move(value, r);
 892     value = r;
 893   }
 894 
 895   // create a spill location
 896   LIR_Opr tmp = new_register(t);
 897   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 898 
 899   // move from register to spill
 900   __ move(value, tmp);
 901   return tmp;
 902 }
 903 
 904 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 905   if (if_instr->should_profile()) {
 906     ciMethod* method = if_instr->profiled_method();
 907     assert(method != nullptr, "method should be set if branch is profiled");
 908     ciMethodData* md = method->method_data_or_null();
 909     assert(md != nullptr, "Sanity");
 910     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 911     assert(data != nullptr, "must have profiling data");
 912     assert(data->is_BranchData(), "need BranchData for two-way branches");
 913     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 914     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 915     if (if_instr->is_swapped()) {
 916       int t = taken_count_offset;
 917       taken_count_offset = not_taken_count_offset;
 918       not_taken_count_offset = t;
 919     }
 920 
 921     LIR_Opr md_reg = new_register(T_METADATA);
 922     __ metadata2reg(md->constant_encoding(), md_reg);
 923 
 924     LIR_Opr data_offset_reg = new_pointer_register();
 925     __ cmove(lir_cond(cond),
 926              LIR_OprFact::intptrConst(taken_count_offset),
 927              LIR_OprFact::intptrConst(not_taken_count_offset),
 928              data_offset_reg, as_BasicType(if_instr->x()->type()));
 929 
 930     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 931     LIR_Opr data_reg = new_pointer_register();
 932     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 933     __ move(data_addr, data_reg);
 934     // Use leal instead of add to avoid destroying condition codes on x86
 935     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 936     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 937     __ move(data_reg, data_addr);
 938   }
 939 }
 940 
 941 // Phi technique:
 942 // This is about passing live values from one basic block to the other.
 943 // In code generated with Java it is rather rare that more than one
 944 // value is on the stack from one basic block to the other.
 945 // We optimize our technique for efficient passing of one value
 946 // (of type long, int, double..) but it can be extended.
 947 // When entering or leaving a basic block, all registers and all spill
 948 // slots are release and empty. We use the released registers
 949 // and spill slots to pass the live values from one block
 950 // to the other. The topmost value, i.e., the value on TOS of expression
 951 // stack is passed in registers. All other values are stored in spilling
 952 // area. Every Phi has an index which designates its spill slot
 953 // At exit of a basic block, we fill the register(s) and spill slots.
 954 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 955 // and locks necessary registers and spilling slots.
 956 
 957 
 958 // move current value to referenced phi function
 959 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 960   Phi* phi = sux_val->as_Phi();
 961   // cur_val can be null without phi being null in conjunction with inlining
 962   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 963     if (phi->is_local()) {
 964       for (int i = 0; i < phi->operand_count(); i++) {
 965         Value op = phi->operand_at(i);
 966         if (op != nullptr && op->type()->is_illegal()) {
 967           bailout("illegal phi operand");
 968         }
 969       }
 970     }
 971     Phi* cur_phi = cur_val->as_Phi();
 972     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 973       // Phi and local would need to get invalidated
 974       // (which is unexpected for Linear Scan).
 975       // But this case is very rare so we simply bail out.
 976       bailout("propagation of illegal phi");
 977       return;
 978     }
 979     LIR_Opr operand = cur_val->operand();
 980     if (operand->is_illegal()) {
 981       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
 982              "these can be produced lazily");
 983       operand = operand_for_instruction(cur_val);
 984     }
 985     resolver->move(operand, operand_for_instruction(phi));
 986   }
 987 }
 988 
 989 
 990 // Moves all stack values into their PHI position
 991 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 992   BlockBegin* bb = block();
 993   if (bb->number_of_sux() == 1) {
 994     BlockBegin* sux = bb->sux_at(0);
 995     assert(sux->number_of_preds() > 0, "invalid CFG");
 996 
 997     // a block with only one predecessor never has phi functions
 998     if (sux->number_of_preds() > 1) {
 999       PhiResolver resolver(this);
1000 
1001       ValueStack* sux_state = sux->state();
1002       Value sux_value;
1003       int index;
1004 
1005       assert(cur_state->scope() == sux_state->scope(), "not matching");
1006       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1007       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1008 
1009       for_each_stack_value(sux_state, index, sux_value) {
1010         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1011       }
1012 
1013       for_each_local_value(sux_state, index, sux_value) {
1014         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1015       }
1016 
1017       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1018     }
1019   }
1020 }
1021 
1022 
1023 LIR_Opr LIRGenerator::new_register(BasicType type) {
1024   int vreg_num = _virtual_register_number;
1025   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1026   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1027   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1028     bailout("out of virtual registers in LIR generator");
1029     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1030       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1031       _virtual_register_number = LIR_Opr::vreg_base;
1032       vreg_num = LIR_Opr::vreg_base;
1033     }
1034   }
1035   _virtual_register_number += 1;
1036   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1037   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1038   return vreg;
1039 }
1040 
1041 
1042 // Try to lock using register in hint
1043 LIR_Opr LIRGenerator::rlock(Value instr) {
1044   return new_register(instr->type());
1045 }
1046 
1047 
1048 // does an rlock and sets result
1049 LIR_Opr LIRGenerator::rlock_result(Value x) {
1050   LIR_Opr reg = rlock(x);
1051   set_result(x, reg);
1052   return reg;
1053 }
1054 
1055 
1056 // does an rlock and sets result
1057 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1058   LIR_Opr reg;
1059   switch (type) {
1060   case T_BYTE:
1061   case T_BOOLEAN:
1062     reg = rlock_byte(type);
1063     break;
1064   default:
1065     reg = rlock(x);
1066     break;
1067   }
1068 
1069   set_result(x, reg);
1070   return reg;
1071 }
1072 
1073 
1074 //---------------------------------------------------------------------
1075 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1076   ObjectType* oc = value->type()->as_ObjectType();
1077   if (oc) {
1078     return oc->constant_value();
1079   }
1080   return nullptr;
1081 }
1082 
1083 
1084 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1085   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1086   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1087 
1088   // no moves are created for phi functions at the begin of exception
1089   // handlers, so assign operands manually here
1090   for_each_phi_fun(block(), phi,
1091                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1092 
1093   LIR_Opr thread_reg = getThreadPointer();
1094   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1095                exceptionOopOpr());
1096   __ move_wide(LIR_OprFact::oopConst(nullptr),
1097                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1098   __ move_wide(LIR_OprFact::oopConst(nullptr),
1099                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1100 
1101   LIR_Opr result = new_register(T_OBJECT);
1102   __ move(exceptionOopOpr(), result);
1103   set_result(x, result);
1104 }
1105 
1106 
1107 //----------------------------------------------------------------------
1108 //----------------------------------------------------------------------
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 //                        visitor functions
1112 //----------------------------------------------------------------------
1113 //----------------------------------------------------------------------
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 
1117 void LIRGenerator::do_Phi(Phi* x) {
1118   // phi functions are never visited directly
1119   ShouldNotReachHere();
1120 }
1121 
1122 
1123 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1124 void LIRGenerator::do_Constant(Constant* x) {
1125   if (x->state_before() != nullptr) {
1126     // Any constant with a ValueStack requires patching so emit the patch here
1127     LIR_Opr reg = rlock_result(x);
1128     CodeEmitInfo* info = state_for(x, x->state_before());
1129     __ oop2reg_patch(nullptr, reg, info);
1130   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1131     if (!x->is_pinned()) {
1132       // unpinned constants are handled specially so that they can be
1133       // put into registers when they are used multiple times within a
1134       // block.  After the block completes their operand will be
1135       // cleared so that other blocks can't refer to that register.
1136       set_result(x, load_constant(x));
1137     } else {
1138       LIR_Opr res = x->operand();
1139       if (!res->is_valid()) {
1140         res = LIR_OprFact::value_type(x->type());
1141       }
1142       if (res->is_constant()) {
1143         LIR_Opr reg = rlock_result(x);
1144         __ move(res, reg);
1145       } else {
1146         set_result(x, res);
1147       }
1148     }
1149   } else {
1150     set_result(x, LIR_OprFact::value_type(x->type()));
1151   }
1152 }
1153 
1154 
1155 void LIRGenerator::do_Local(Local* x) {
1156   // operand_for_instruction has the side effect of setting the result
1157   // so there's no need to do it here.
1158   operand_for_instruction(x);
1159 }
1160 
1161 
1162 void LIRGenerator::do_Return(Return* x) {
1163   if (compilation()->env()->dtrace_method_probes()) {
1164     BasicTypeList signature;
1165     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1166     signature.append(T_METADATA); // Method*
1167     LIR_OprList* args = new LIR_OprList();
1168     args->append(getThreadPointer());
1169     LIR_Opr meth = new_register(T_METADATA);
1170     __ metadata2reg(method()->constant_encoding(), meth);
1171     args->append(meth);
1172     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1173   }
1174 
1175   if (x->type()->is_void()) {
1176     __ return_op(LIR_OprFact::illegalOpr);
1177   } else {
1178     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1179     LIRItem result(x->result(), this);
1180 
1181     result.load_item_force(reg);
1182     __ return_op(result.result());
1183   }
1184   set_no_result(x);
1185 }
1186 
1187 // Example: ref.get()
1188 // Combination of LoadField and g1 pre-write barrier
1189 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1190 
1191   const int referent_offset = java_lang_ref_Reference::referent_offset();
1192 
1193   assert(x->number_of_arguments() == 1, "wrong type");
1194 
1195   LIRItem reference(x->argument_at(0), this);
1196   reference.load_item();
1197 
1198   // need to perform the null check on the reference object
1199   CodeEmitInfo* info = nullptr;
1200   if (x->needs_null_check()) {
1201     info = state_for(x);
1202   }
1203 
1204   LIR_Opr result = rlock_result(x, T_OBJECT);
1205   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1206                  reference, LIR_OprFact::intConst(referent_offset), result,
1207                  nullptr, info);
1208 }
1209 
1210 // Example: clazz.isInstance(object)
1211 void LIRGenerator::do_isInstance(Intrinsic* x) {
1212   assert(x->number_of_arguments() == 2, "wrong type");
1213 
1214   LIRItem clazz(x->argument_at(0), this);
1215   LIRItem object(x->argument_at(1), this);
1216   clazz.load_item();
1217   object.load_item();
1218   LIR_Opr result = rlock_result(x);
1219 
1220   // need to perform null check on clazz
1221   if (x->needs_null_check()) {
1222     CodeEmitInfo* info = state_for(x);
1223     __ null_check(clazz.result(), info);
1224   }
1225 
1226   address pd_instanceof_fn = isInstance_entry();
1227   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1228                                      pd_instanceof_fn,
1229                                      x->type(),
1230                                      nullptr); // null CodeEmitInfo results in a leaf call
1231   __ move(call_result, result);
1232 }
1233 
1234 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1235   __ load_klass(obj, klass, null_check_info);
1236 }
1237 
1238 // Example: object.getClass ()
1239 void LIRGenerator::do_getClass(Intrinsic* x) {
1240   assert(x->number_of_arguments() == 1, "wrong type");
1241 
1242   LIRItem rcvr(x->argument_at(0), this);
1243   rcvr.load_item();
1244   LIR_Opr temp = new_register(T_ADDRESS);
1245   LIR_Opr result = rlock_result(x);
1246 
1247   // need to perform the null check on the rcvr
1248   CodeEmitInfo* info = nullptr;
1249   if (x->needs_null_check()) {
1250     info = state_for(x);
1251   }
1252 
1253   LIR_Opr klass = new_register(T_METADATA);
1254   load_klass(rcvr.result(), klass, info);
1255   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1256   // mirror = ((OopHandle)mirror)->resolve();
1257   access_load(IN_NATIVE, T_OBJECT,
1258               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1259 }
1260 
1261 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1262   assert(x->number_of_arguments() == 3, "wrong type");
1263   LIR_Opr result_reg = rlock_result(x);
1264 
1265   LIRItem value(x->argument_at(2), this);
1266   value.load_item();
1267 
1268   LIR_Opr klass = new_register(T_METADATA);
1269   load_klass(value.result(), klass, nullptr);
1270   LIR_Opr layout = new_register(T_INT);
1271   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1272 
1273   LabelObj* L_done = new LabelObj();
1274   LabelObj* L_array = new LabelObj();
1275 
1276   __ cmp(lir_cond_lessEqual, layout, 0);
1277   __ branch(lir_cond_lessEqual, L_array->label());
1278 
1279   // Instance case: the layout helper gives us instance size almost directly,
1280   // but we need to mask out the _lh_instance_slow_path_bit.
1281 
1282   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1283 
1284   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1285   __ logical_and(layout, mask, layout);
1286   __ convert(Bytecodes::_i2l, layout, result_reg);
1287 
1288   __ branch(lir_cond_always, L_done->label());
1289 
1290   // Array case: size is round(header + element_size*arraylength).
1291   // Since arraylength is different for every array instance, we have to
1292   // compute the whole thing at runtime.
1293 
1294   __ branch_destination(L_array->label());
1295 
1296   int round_mask = MinObjAlignmentInBytes - 1;
1297 
1298   // Figure out header sizes first.
1299   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1300   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1301 
1302   LIR_Opr header_size = new_register(T_INT);
1303   __ move(layout, header_size);
1304   LIR_Opr tmp = new_register(T_INT);
1305   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1306   __ logical_and(header_size, hsm, header_size);
1307   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1308 
1309   // Figure out the array length in bytes
1310   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1311   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1312   __ logical_and(layout, l2esm, layout);
1313 
1314   LIR_Opr length_int = new_register(T_INT);
1315   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1316 
1317 #ifdef _LP64
1318   LIR_Opr length = new_register(T_LONG);
1319   __ convert(Bytecodes::_i2l, length_int, length);
1320 #endif
1321 
1322   // Shift-left awkwardness. Normally it is just:
1323   //   __ shift_left(length, layout, length);
1324   // But C1 cannot perform shift_left with non-constant count, so we end up
1325   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1326   // longs, so we have to act on ints.
1327   LabelObj* L_shift_loop = new LabelObj();
1328   LabelObj* L_shift_exit = new LabelObj();
1329 
1330   __ branch_destination(L_shift_loop->label());
1331   __ cmp(lir_cond_equal, layout, 0);
1332   __ branch(lir_cond_equal, L_shift_exit->label());
1333 
1334 #ifdef _LP64
1335   __ shift_left(length, 1, length);
1336 #else
1337   __ shift_left(length_int, 1, length_int);
1338 #endif
1339 
1340   __ sub(layout, LIR_OprFact::intConst(1), layout);
1341 
1342   __ branch(lir_cond_always, L_shift_loop->label());
1343   __ branch_destination(L_shift_exit->label());
1344 
1345   // Mix all up, round, and push to the result.
1346 #ifdef _LP64
1347   LIR_Opr header_size_long = new_register(T_LONG);
1348   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1349   __ add(length, header_size_long, length);
1350   if (round_mask != 0) {
1351     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1352     __ logical_and(length, round_mask_opr, length);
1353   }
1354   __ move(length, result_reg);
1355 #else
1356   __ add(length_int, header_size, length_int);
1357   if (round_mask != 0) {
1358     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1359     __ logical_and(length_int, round_mask_opr, length_int);
1360   }
1361   __ convert(Bytecodes::_i2l, length_int, result_reg);
1362 #endif
1363 
1364   __ branch_destination(L_done->label());
1365 }
1366 
1367 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1368   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1369 }
1370 
1371 // Example: Thread.currentCarrierThread()
1372 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1373   do_JavaThreadField(x, JavaThread::threadObj_offset());
1374 }
1375 
1376 void LIRGenerator::do_vthread(Intrinsic* x) {
1377   do_JavaThreadField(x, JavaThread::vthread_offset());
1378 }
1379 
1380 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1381   assert(x->number_of_arguments() == 0, "wrong type");
1382   LIR_Opr temp = new_register(T_ADDRESS);
1383   LIR_Opr reg = rlock_result(x);
1384   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1385   access_load(IN_NATIVE, T_OBJECT,
1386               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1387 }
1388 
1389 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1390   assert(x->number_of_arguments() == 1, "wrong type");
1391   LIRItem receiver(x->argument_at(0), this);
1392 
1393   receiver.load_item();
1394   BasicTypeList signature;
1395   signature.append(T_OBJECT); // receiver
1396   LIR_OprList* args = new LIR_OprList();
1397   args->append(receiver.result());
1398   CodeEmitInfo* info = state_for(x, x->state());
1399   call_runtime(&signature, args,
1400                CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1401                voidType, info);
1402 
1403   set_no_result(x);
1404 }
1405 
1406 
1407 //------------------------local access--------------------------------------
1408 
1409 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1410   if (x->operand()->is_illegal()) {
1411     Constant* c = x->as_Constant();
1412     if (c != nullptr) {
1413       x->set_operand(LIR_OprFact::value_type(c->type()));
1414     } else {
1415       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1416       // allocate a virtual register for this local or phi
1417       x->set_operand(rlock(x));
1418 #ifdef ASSERT
1419       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1420 #endif
1421     }
1422   }
1423   return x->operand();
1424 }
1425 
1426 #ifdef ASSERT
1427 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1428   if (reg_num < _instruction_for_operand.length()) {
1429     return _instruction_for_operand.at(reg_num);
1430   }
1431   return nullptr;
1432 }
1433 #endif
1434 
1435 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1436   if (_vreg_flags.size_in_bits() == 0) {
1437     BitMap2D temp(100, num_vreg_flags);
1438     _vreg_flags = temp;
1439   }
1440   _vreg_flags.at_put_grow(vreg_num, f, true);
1441 }
1442 
1443 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1444   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1445     return false;
1446   }
1447   return _vreg_flags.at(vreg_num, f);
1448 }
1449 
1450 
1451 // Block local constant handling.  This code is useful for keeping
1452 // unpinned constants and constants which aren't exposed in the IR in
1453 // registers.  Unpinned Constant instructions have their operands
1454 // cleared when the block is finished so that other blocks can't end
1455 // up referring to their registers.
1456 
1457 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1458   assert(!x->is_pinned(), "only for unpinned constants");
1459   _unpinned_constants.append(x);
1460   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1461 }
1462 
1463 
1464 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1465   BasicType t = c->type();
1466   for (int i = 0; i < _constants.length(); i++) {
1467     LIR_Const* other = _constants.at(i);
1468     if (t == other->type()) {
1469       switch (t) {
1470       case T_INT:
1471       case T_FLOAT:
1472         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1473         break;
1474       case T_LONG:
1475       case T_DOUBLE:
1476         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1477         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1478         break;
1479       case T_OBJECT:
1480         if (c->as_jobject() != other->as_jobject()) continue;
1481         break;
1482       default:
1483         break;
1484       }
1485       return _reg_for_constants.at(i);
1486     }
1487   }
1488 
1489   LIR_Opr result = new_register(t);
1490   __ move((LIR_Opr)c, result);
1491   _constants.append(c);
1492   _reg_for_constants.append(result);
1493   return result;
1494 }
1495 
1496 //------------------------field access--------------------------------------
1497 
1498 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1499   assert(x->number_of_arguments() == 4, "wrong type");
1500   LIRItem obj   (x->argument_at(0), this);  // object
1501   LIRItem offset(x->argument_at(1), this);  // offset of field
1502   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1503   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1504   assert(obj.type()->tag() == objectTag, "invalid type");
1505   assert(cmp.type()->tag() == type->tag(), "invalid type");
1506   assert(val.type()->tag() == type->tag(), "invalid type");
1507 
1508   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1509                                             obj, offset, cmp, val);
1510   set_result(x, result);
1511 }
1512 
1513 // Comment copied form templateTable_i486.cpp
1514 // ----------------------------------------------------------------------------
1515 // Volatile variables demand their effects be made known to all CPU's in
1516 // order.  Store buffers on most chips allow reads & writes to reorder; the
1517 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1518 // memory barrier (i.e., it's not sufficient that the interpreter does not
1519 // reorder volatile references, the hardware also must not reorder them).
1520 //
1521 // According to the new Java Memory Model (JMM):
1522 // (1) All volatiles are serialized wrt to each other.
1523 // ALSO reads & writes act as acquire & release, so:
1524 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1525 // the read float up to before the read.  It's OK for non-volatile memory refs
1526 // that happen before the volatile read to float down below it.
1527 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1528 // that happen BEFORE the write float down to after the write.  It's OK for
1529 // non-volatile memory refs that happen after the volatile write to float up
1530 // before it.
1531 //
1532 // We only put in barriers around volatile refs (they are expensive), not
1533 // _between_ memory refs (that would require us to track the flavor of the
1534 // previous memory refs).  Requirements (2) and (3) require some barriers
1535 // before volatile stores and after volatile loads.  These nearly cover
1536 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1537 // case is placed after volatile-stores although it could just as well go
1538 // before volatile-loads.
1539 
1540 
1541 void LIRGenerator::do_StoreField(StoreField* x) {
1542   bool needs_patching = x->needs_patching();
1543   bool is_volatile = x->field()->is_volatile();
1544   BasicType field_type = x->field_type();
1545 
1546   CodeEmitInfo* info = nullptr;
1547   if (needs_patching) {
1548     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1549     info = state_for(x, x->state_before());
1550   } else if (x->needs_null_check()) {
1551     NullCheck* nc = x->explicit_null_check();
1552     if (nc == nullptr) {
1553       info = state_for(x);
1554     } else {
1555       info = state_for(nc);
1556     }
1557   }
1558 
1559   LIRItem object(x->obj(), this);
1560   LIRItem value(x->value(),  this);
1561 
1562   object.load_item();
1563 
1564   if (is_volatile || needs_patching) {
1565     // load item if field is volatile (fewer special cases for volatiles)
1566     // load item if field not initialized
1567     // load item if field not constant
1568     // because of code patching we cannot inline constants
1569     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1570       value.load_byte_item();
1571     } else  {
1572       value.load_item();
1573     }
1574   } else {
1575     value.load_for_store(field_type);
1576   }
1577 
1578   set_no_result(x);
1579 
1580 #ifndef PRODUCT
1581   if (PrintNotLoaded && needs_patching) {
1582     tty->print_cr("   ###class not loaded at store_%s bci %d",
1583                   x->is_static() ?  "static" : "field", x->printable_bci());
1584   }
1585 #endif
1586 
1587   if (x->needs_null_check() &&
1588       (needs_patching ||
1589        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1590     // Emit an explicit null check because the offset is too large.
1591     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1592     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1593     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1594   }
1595 
1596   DecoratorSet decorators = IN_HEAP;
1597   if (is_volatile) {
1598     decorators |= MO_SEQ_CST;
1599   }
1600   if (needs_patching) {
1601     decorators |= C1_NEEDS_PATCHING;
1602   }
1603 
1604   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1605                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1606 }
1607 
1608 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1609   assert(x->is_pinned(),"");
1610   bool needs_range_check = x->compute_needs_range_check();
1611   bool use_length = x->length() != nullptr;
1612   bool obj_store = is_reference_type(x->elt_type());
1613   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1614                                          !get_jobject_constant(x->value())->is_null_object() ||
1615                                          x->should_profile());
1616 
1617   LIRItem array(x->array(), this);
1618   LIRItem index(x->index(), this);
1619   LIRItem value(x->value(), this);
1620   LIRItem length(this);
1621 
1622   array.load_item();
1623   index.load_nonconstant();
1624 
1625   if (use_length && needs_range_check) {
1626     length.set_instruction(x->length());
1627     length.load_item();
1628 
1629   }
1630   if (needs_store_check || x->check_boolean()) {
1631     value.load_item();
1632   } else {
1633     value.load_for_store(x->elt_type());
1634   }
1635 
1636   set_no_result(x);
1637 
1638   // the CodeEmitInfo must be duplicated for each different
1639   // LIR-instruction because spilling can occur anywhere between two
1640   // instructions and so the debug information must be different
1641   CodeEmitInfo* range_check_info = state_for(x);
1642   CodeEmitInfo* null_check_info = nullptr;
1643   if (x->needs_null_check()) {
1644     null_check_info = new CodeEmitInfo(range_check_info);
1645   }
1646 
1647   if (needs_range_check) {
1648     if (use_length) {
1649       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1650       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1651     } else {
1652       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1653       // range_check also does the null check
1654       null_check_info = nullptr;
1655     }
1656   }
1657 
1658   if (GenerateArrayStoreCheck && needs_store_check) {
1659     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1660     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1661   }
1662 
1663   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1664   if (x->check_boolean()) {
1665     decorators |= C1_MASK_BOOLEAN;
1666   }
1667 
1668   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1669                   nullptr, null_check_info);
1670 }
1671 
1672 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1673                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1674                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1675   decorators |= ACCESS_READ;
1676   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1677   if (access.is_raw()) {
1678     _barrier_set->BarrierSetC1::load_at(access, result);
1679   } else {
1680     _barrier_set->load_at(access, result);
1681   }
1682 }
1683 
1684 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1685                                LIR_Opr addr, LIR_Opr result) {
1686   decorators |= ACCESS_READ;
1687   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1688   access.set_resolved_addr(addr);
1689   if (access.is_raw()) {
1690     _barrier_set->BarrierSetC1::load(access, result);
1691   } else {
1692     _barrier_set->load(access, result);
1693   }
1694 }
1695 
1696 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1697                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1698                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1699   decorators |= ACCESS_WRITE;
1700   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1701   if (access.is_raw()) {
1702     _barrier_set->BarrierSetC1::store_at(access, value);
1703   } else {
1704     _barrier_set->store_at(access, value);
1705   }
1706 }
1707 
1708 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1709                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1710   decorators |= ACCESS_READ;
1711   decorators |= ACCESS_WRITE;
1712   // Atomic operations are SEQ_CST by default
1713   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1714   LIRAccess access(this, decorators, base, offset, type);
1715   if (access.is_raw()) {
1716     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1717   } else {
1718     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1719   }
1720 }
1721 
1722 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1723                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1724   decorators |= ACCESS_READ;
1725   decorators |= ACCESS_WRITE;
1726   // Atomic operations are SEQ_CST by default
1727   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1728   LIRAccess access(this, decorators, base, offset, type);
1729   if (access.is_raw()) {
1730     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1731   } else {
1732     return _barrier_set->atomic_xchg_at(access, value);
1733   }
1734 }
1735 
1736 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1737                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1738   decorators |= ACCESS_READ;
1739   decorators |= ACCESS_WRITE;
1740   // Atomic operations are SEQ_CST by default
1741   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1742   LIRAccess access(this, decorators, base, offset, type);
1743   if (access.is_raw()) {
1744     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1745   } else {
1746     return _barrier_set->atomic_add_at(access, value);
1747   }
1748 }
1749 
1750 void LIRGenerator::do_LoadField(LoadField* x) {
1751   bool needs_patching = x->needs_patching();
1752   bool is_volatile = x->field()->is_volatile();
1753   BasicType field_type = x->field_type();
1754 
1755   CodeEmitInfo* info = nullptr;
1756   if (needs_patching) {
1757     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1758     info = state_for(x, x->state_before());
1759   } else if (x->needs_null_check()) {
1760     NullCheck* nc = x->explicit_null_check();
1761     if (nc == nullptr) {
1762       info = state_for(x);
1763     } else {
1764       info = state_for(nc);
1765     }
1766   }
1767 
1768   LIRItem object(x->obj(), this);
1769 
1770   object.load_item();
1771 
1772 #ifndef PRODUCT
1773   if (PrintNotLoaded && needs_patching) {
1774     tty->print_cr("   ###class not loaded at load_%s bci %d",
1775                   x->is_static() ?  "static" : "field", x->printable_bci());
1776   }
1777 #endif
1778 
1779   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1780   if (x->needs_null_check() &&
1781       (needs_patching ||
1782        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1783        stress_deopt)) {
1784     LIR_Opr obj = object.result();
1785     if (stress_deopt) {
1786       obj = new_register(T_OBJECT);
1787       __ move(LIR_OprFact::oopConst(nullptr), obj);
1788     }
1789     // Emit an explicit null check because the offset is too large.
1790     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1791     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1792     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1793   }
1794 
1795   DecoratorSet decorators = IN_HEAP;
1796   if (is_volatile) {
1797     decorators |= MO_SEQ_CST;
1798   }
1799   if (needs_patching) {
1800     decorators |= C1_NEEDS_PATCHING;
1801   }
1802 
1803   LIR_Opr result = rlock_result(x, field_type);
1804   access_load_at(decorators, field_type,
1805                  object, LIR_OprFact::intConst(x->offset()), result,
1806                  info ? new CodeEmitInfo(info) : nullptr, info);
1807 }
1808 
1809 // int/long jdk.internal.util.Preconditions.checkIndex
1810 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1811   assert(x->number_of_arguments() == 3, "wrong type");
1812   LIRItem index(x->argument_at(0), this);
1813   LIRItem length(x->argument_at(1), this);
1814   LIRItem oobef(x->argument_at(2), this);
1815 
1816   index.load_item();
1817   length.load_item();
1818   oobef.load_item();
1819 
1820   LIR_Opr result = rlock_result(x);
1821   // x->state() is created from copy_state_for_exception, it does not contains arguments
1822   // we should prepare them before entering into interpreter mode due to deoptimization.
1823   ValueStack* state = x->state();
1824   for (int i = 0; i < x->number_of_arguments(); i++) {
1825     Value arg = x->argument_at(i);
1826     state->push(arg->type(), arg);
1827   }
1828   CodeEmitInfo* info = state_for(x, state);
1829 
1830   LIR_Opr len = length.result();
1831   LIR_Opr zero;
1832   if (type == T_INT) {
1833     zero = LIR_OprFact::intConst(0);
1834     if (length.result()->is_constant()){
1835       len = LIR_OprFact::intConst(length.result()->as_jint());
1836     }
1837   } else {
1838     assert(type == T_LONG, "sanity check");
1839     zero = LIR_OprFact::longConst(0);
1840     if (length.result()->is_constant()){
1841       len = LIR_OprFact::longConst(length.result()->as_jlong());
1842     }
1843   }
1844   // C1 can not handle the case that comparing index with constant value while condition
1845   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1846   LIR_Opr zero_reg = new_register(type);
1847   __ move(zero, zero_reg);
1848 #if defined(X86) && !defined(_LP64)
1849   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1850   LIR_Opr index_copy = new_register(index.type());
1851   // index >= 0
1852   __ move(index.result(), index_copy);
1853   __ cmp(lir_cond_less, index_copy, zero_reg);
1854   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1855                                                     Deoptimization::Action_make_not_entrant));
1856   // index < length
1857   __ move(index.result(), index_copy);
1858   __ cmp(lir_cond_greaterEqual, index_copy, len);
1859   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1860                                                             Deoptimization::Action_make_not_entrant));
1861 #else
1862   // index >= 0
1863   __ cmp(lir_cond_less, index.result(), zero_reg);
1864   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1865                                                     Deoptimization::Action_make_not_entrant));
1866   // index < length
1867   __ cmp(lir_cond_greaterEqual, index.result(), len);
1868   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1869                                                             Deoptimization::Action_make_not_entrant));
1870 #endif
1871   __ move(index.result(), result);
1872 }
1873 
1874 //------------------------array access--------------------------------------
1875 
1876 
1877 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1878   LIRItem array(x->array(), this);
1879   array.load_item();
1880   LIR_Opr reg = rlock_result(x);
1881 
1882   CodeEmitInfo* info = nullptr;
1883   if (x->needs_null_check()) {
1884     NullCheck* nc = x->explicit_null_check();
1885     if (nc == nullptr) {
1886       info = state_for(x);
1887     } else {
1888       info = state_for(nc);
1889     }
1890     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1891       LIR_Opr obj = new_register(T_OBJECT);
1892       __ move(LIR_OprFact::oopConst(nullptr), obj);
1893       __ null_check(obj, new CodeEmitInfo(info));
1894     }
1895   }
1896   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1897 }
1898 
1899 
1900 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1901   bool use_length = x->length() != nullptr;
1902   LIRItem array(x->array(), this);
1903   LIRItem index(x->index(), this);
1904   LIRItem length(this);
1905   bool needs_range_check = x->compute_needs_range_check();
1906 
1907   if (use_length && needs_range_check) {
1908     length.set_instruction(x->length());
1909     length.load_item();
1910   }
1911 
1912   array.load_item();
1913   if (index.is_constant() && can_inline_as_constant(x->index())) {
1914     // let it be a constant
1915     index.dont_load_item();
1916   } else {
1917     index.load_item();
1918   }
1919 
1920   CodeEmitInfo* range_check_info = state_for(x);
1921   CodeEmitInfo* null_check_info = nullptr;
1922   if (x->needs_null_check()) {
1923     NullCheck* nc = x->explicit_null_check();
1924     if (nc != nullptr) {
1925       null_check_info = state_for(nc);
1926     } else {
1927       null_check_info = range_check_info;
1928     }
1929     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1930       LIR_Opr obj = new_register(T_OBJECT);
1931       __ move(LIR_OprFact::oopConst(nullptr), obj);
1932       __ null_check(obj, new CodeEmitInfo(null_check_info));
1933     }
1934   }
1935 
1936   if (needs_range_check) {
1937     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1938       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1939     } else if (use_length) {
1940       // TODO: use a (modified) version of array_range_check that does not require a
1941       //       constant length to be loaded to a register
1942       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1943       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1944     } else {
1945       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1946       // The range check performs the null check, so clear it out for the load
1947       null_check_info = nullptr;
1948     }
1949   }
1950 
1951   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1952 
1953   LIR_Opr result = rlock_result(x, x->elt_type());
1954   access_load_at(decorators, x->elt_type(),
1955                  array, index.result(), result,
1956                  nullptr, null_check_info);
1957 }
1958 
1959 
1960 void LIRGenerator::do_NullCheck(NullCheck* x) {
1961   if (x->can_trap()) {
1962     LIRItem value(x->obj(), this);
1963     value.load_item();
1964     CodeEmitInfo* info = state_for(x);
1965     __ null_check(value.result(), info);
1966   }
1967 }
1968 
1969 
1970 void LIRGenerator::do_TypeCast(TypeCast* x) {
1971   LIRItem value(x->obj(), this);
1972   value.load_item();
1973   // the result is the same as from the node we are casting
1974   set_result(x, value.result());
1975 }
1976 
1977 
1978 void LIRGenerator::do_Throw(Throw* x) {
1979   LIRItem exception(x->exception(), this);
1980   exception.load_item();
1981   set_no_result(x);
1982   LIR_Opr exception_opr = exception.result();
1983   CodeEmitInfo* info = state_for(x, x->state());
1984 
1985 #ifndef PRODUCT
1986   if (PrintC1Statistics) {
1987     increment_counter(Runtime1::throw_count_address(), T_INT);
1988   }
1989 #endif
1990 
1991   // check if the instruction has an xhandler in any of the nested scopes
1992   bool unwind = false;
1993   if (info->exception_handlers()->length() == 0) {
1994     // this throw is not inside an xhandler
1995     unwind = true;
1996   } else {
1997     // get some idea of the throw type
1998     bool type_is_exact = true;
1999     ciType* throw_type = x->exception()->exact_type();
2000     if (throw_type == nullptr) {
2001       type_is_exact = false;
2002       throw_type = x->exception()->declared_type();
2003     }
2004     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2005       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2006       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2007     }
2008   }
2009 
2010   // do null check before moving exception oop into fixed register
2011   // to avoid a fixed interval with an oop during the null check.
2012   // Use a copy of the CodeEmitInfo because debug information is
2013   // different for null_check and throw.
2014   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2015     // if the exception object wasn't created using new then it might be null.
2016     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2017   }
2018 
2019   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2020     // we need to go through the exception lookup path to get JVMTI
2021     // notification done
2022     unwind = false;
2023   }
2024 
2025   // move exception oop into fixed register
2026   __ move(exception_opr, exceptionOopOpr());
2027 
2028   if (unwind) {
2029     __ unwind_exception(exceptionOopOpr());
2030   } else {
2031     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2032   }
2033 }
2034 
2035 
2036 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2037   BasicType type = x->basic_type();
2038   LIRItem src(x->object(), this);
2039   LIRItem off(x->offset(), this);
2040 
2041   off.load_item();
2042   src.load_item();
2043 
2044   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2045 
2046   if (x->is_volatile()) {
2047     decorators |= MO_SEQ_CST;
2048   }
2049   if (type == T_BOOLEAN) {
2050     decorators |= C1_MASK_BOOLEAN;
2051   }
2052   if (is_reference_type(type)) {
2053     decorators |= ON_UNKNOWN_OOP_REF;
2054   }
2055 
2056   LIR_Opr result = rlock_result(x, type);
2057   if (!x->is_raw()) {
2058     access_load_at(decorators, type, src, off.result(), result);
2059   } else {
2060     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2061     // It reads the value from [src + offset] directly.
2062 #ifdef _LP64
2063     LIR_Opr offset = new_register(T_LONG);
2064     __ convert(Bytecodes::_i2l, off.result(), offset);
2065 #else
2066     LIR_Opr offset = off.result();
2067 #endif
2068     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2069     if (is_reference_type(type)) {
2070       __ move_wide(addr, result);
2071     } else {
2072       __ move(addr, result);
2073     }
2074   }
2075 }
2076 
2077 
2078 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2079   BasicType type = x->basic_type();
2080   LIRItem src(x->object(), this);
2081   LIRItem off(x->offset(), this);
2082   LIRItem data(x->value(), this);
2083 
2084   src.load_item();
2085   if (type == T_BOOLEAN || type == T_BYTE) {
2086     data.load_byte_item();
2087   } else {
2088     data.load_item();
2089   }
2090   off.load_item();
2091 
2092   set_no_result(x);
2093 
2094   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2095   if (is_reference_type(type)) {
2096     decorators |= ON_UNKNOWN_OOP_REF;
2097   }
2098   if (x->is_volatile()) {
2099     decorators |= MO_SEQ_CST;
2100   }
2101   access_store_at(decorators, type, src, off.result(), data.result());
2102 }
2103 
2104 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2105   BasicType type = x->basic_type();
2106   LIRItem src(x->object(), this);
2107   LIRItem off(x->offset(), this);
2108   LIRItem value(x->value(), this);
2109 
2110   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2111 
2112   if (is_reference_type(type)) {
2113     decorators |= ON_UNKNOWN_OOP_REF;
2114   }
2115 
2116   LIR_Opr result;
2117   if (x->is_add()) {
2118     result = access_atomic_add_at(decorators, type, src, off, value);
2119   } else {
2120     result = access_atomic_xchg_at(decorators, type, src, off, value);
2121   }
2122   set_result(x, result);
2123 }
2124 
2125 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2126   int lng = x->length();
2127 
2128   for (int i = 0; i < lng; i++) {
2129     C1SwitchRange* one_range = x->at(i);
2130     int low_key = one_range->low_key();
2131     int high_key = one_range->high_key();
2132     BlockBegin* dest = one_range->sux();
2133     if (low_key == high_key) {
2134       __ cmp(lir_cond_equal, value, low_key);
2135       __ branch(lir_cond_equal, dest);
2136     } else if (high_key - low_key == 1) {
2137       __ cmp(lir_cond_equal, value, low_key);
2138       __ branch(lir_cond_equal, dest);
2139       __ cmp(lir_cond_equal, value, high_key);
2140       __ branch(lir_cond_equal, dest);
2141     } else {
2142       LabelObj* L = new LabelObj();
2143       __ cmp(lir_cond_less, value, low_key);
2144       __ branch(lir_cond_less, L->label());
2145       __ cmp(lir_cond_lessEqual, value, high_key);
2146       __ branch(lir_cond_lessEqual, dest);
2147       __ branch_destination(L->label());
2148     }
2149   }
2150   __ jump(default_sux);
2151 }
2152 
2153 
2154 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2155   SwitchRangeList* res = new SwitchRangeList();
2156   int len = x->length();
2157   if (len > 0) {
2158     BlockBegin* sux = x->sux_at(0);
2159     int low = x->lo_key();
2160     BlockBegin* default_sux = x->default_sux();
2161     C1SwitchRange* range = new C1SwitchRange(low, sux);
2162     for (int i = 0; i < len; i++) {
2163       int key = low + i;
2164       BlockBegin* new_sux = x->sux_at(i);
2165       if (sux == new_sux) {
2166         // still in same range
2167         range->set_high_key(key);
2168       } else {
2169         // skip tests which explicitly dispatch to the default
2170         if (sux != default_sux) {
2171           res->append(range);
2172         }
2173         range = new C1SwitchRange(key, new_sux);
2174       }
2175       sux = new_sux;
2176     }
2177     if (res->length() == 0 || res->last() != range)  res->append(range);
2178   }
2179   return res;
2180 }
2181 
2182 
2183 // we expect the keys to be sorted by increasing value
2184 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2185   SwitchRangeList* res = new SwitchRangeList();
2186   int len = x->length();
2187   if (len > 0) {
2188     BlockBegin* default_sux = x->default_sux();
2189     int key = x->key_at(0);
2190     BlockBegin* sux = x->sux_at(0);
2191     C1SwitchRange* range = new C1SwitchRange(key, sux);
2192     for (int i = 1; i < len; i++) {
2193       int new_key = x->key_at(i);
2194       BlockBegin* new_sux = x->sux_at(i);
2195       if (key+1 == new_key && sux == new_sux) {
2196         // still in same range
2197         range->set_high_key(new_key);
2198       } else {
2199         // skip tests which explicitly dispatch to the default
2200         if (range->sux() != default_sux) {
2201           res->append(range);
2202         }
2203         range = new C1SwitchRange(new_key, new_sux);
2204       }
2205       key = new_key;
2206       sux = new_sux;
2207     }
2208     if (res->length() == 0 || res->last() != range)  res->append(range);
2209   }
2210   return res;
2211 }
2212 
2213 
2214 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2215   LIRItem tag(x->tag(), this);
2216   tag.load_item();
2217   set_no_result(x);
2218 
2219   if (x->is_safepoint()) {
2220     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2221   }
2222 
2223   // move values into phi locations
2224   move_to_phi(x->state());
2225 
2226   int lo_key = x->lo_key();
2227   int len = x->length();
2228   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2229   LIR_Opr value = tag.result();
2230 
2231   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2232     ciMethod* method = x->state()->scope()->method();
2233     ciMethodData* md = method->method_data_or_null();
2234     assert(md != nullptr, "Sanity");
2235     ciProfileData* data = md->bci_to_data(x->state()->bci());
2236     assert(data != nullptr, "must have profiling data");
2237     assert(data->is_MultiBranchData(), "bad profile data?");
2238     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2239     LIR_Opr md_reg = new_register(T_METADATA);
2240     __ metadata2reg(md->constant_encoding(), md_reg);
2241     LIR_Opr data_offset_reg = new_pointer_register();
2242     LIR_Opr tmp_reg = new_pointer_register();
2243 
2244     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2245     for (int i = 0; i < len; i++) {
2246       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2247       __ cmp(lir_cond_equal, value, i + lo_key);
2248       __ move(data_offset_reg, tmp_reg);
2249       __ cmove(lir_cond_equal,
2250                LIR_OprFact::intptrConst(count_offset),
2251                tmp_reg,
2252                data_offset_reg, T_INT);
2253     }
2254 
2255     LIR_Opr data_reg = new_pointer_register();
2256     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2257     __ move(data_addr, data_reg);
2258     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2259     __ move(data_reg, data_addr);
2260   }
2261 
2262   if (UseTableRanges) {
2263     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2264   } else {
2265     for (int i = 0; i < len; i++) {
2266       __ cmp(lir_cond_equal, value, i + lo_key);
2267       __ branch(lir_cond_equal, x->sux_at(i));
2268     }
2269     __ jump(x->default_sux());
2270   }
2271 }
2272 
2273 
2274 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2275   LIRItem tag(x->tag(), this);
2276   tag.load_item();
2277   set_no_result(x);
2278 
2279   if (x->is_safepoint()) {
2280     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2281   }
2282 
2283   // move values into phi locations
2284   move_to_phi(x->state());
2285 
2286   LIR_Opr value = tag.result();
2287   int len = x->length();
2288 
2289   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2290     ciMethod* method = x->state()->scope()->method();
2291     ciMethodData* md = method->method_data_or_null();
2292     assert(md != nullptr, "Sanity");
2293     ciProfileData* data = md->bci_to_data(x->state()->bci());
2294     assert(data != nullptr, "must have profiling data");
2295     assert(data->is_MultiBranchData(), "bad profile data?");
2296     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2297     LIR_Opr md_reg = new_register(T_METADATA);
2298     __ metadata2reg(md->constant_encoding(), md_reg);
2299     LIR_Opr data_offset_reg = new_pointer_register();
2300     LIR_Opr tmp_reg = new_pointer_register();
2301 
2302     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2303     for (int i = 0; i < len; i++) {
2304       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2305       __ cmp(lir_cond_equal, value, x->key_at(i));
2306       __ move(data_offset_reg, tmp_reg);
2307       __ cmove(lir_cond_equal,
2308                LIR_OprFact::intptrConst(count_offset),
2309                tmp_reg,
2310                data_offset_reg, T_INT);
2311     }
2312 
2313     LIR_Opr data_reg = new_pointer_register();
2314     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2315     __ move(data_addr, data_reg);
2316     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2317     __ move(data_reg, data_addr);
2318   }
2319 
2320   if (UseTableRanges) {
2321     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2322   } else {
2323     int len = x->length();
2324     for (int i = 0; i < len; i++) {
2325       __ cmp(lir_cond_equal, value, x->key_at(i));
2326       __ branch(lir_cond_equal, x->sux_at(i));
2327     }
2328     __ jump(x->default_sux());
2329   }
2330 }
2331 
2332 
2333 void LIRGenerator::do_Goto(Goto* x) {
2334   set_no_result(x);
2335 
2336   if (block()->next()->as_OsrEntry()) {
2337     // need to free up storage used for OSR entry point
2338     LIR_Opr osrBuffer = block()->next()->operand();
2339     BasicTypeList signature;
2340     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2341     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2342     __ move(osrBuffer, cc->args()->at(0));
2343     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2344                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2345   }
2346 
2347   if (x->is_safepoint()) {
2348     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2349 
2350     // increment backedge counter if needed
2351     CodeEmitInfo* info = state_for(x, state);
2352     increment_backedge_counter(info, x->profiled_bci());
2353     CodeEmitInfo* safepoint_info = state_for(x, state);
2354     __ safepoint(safepoint_poll_register(), safepoint_info);
2355   }
2356 
2357   // Gotos can be folded Ifs, handle this case.
2358   if (x->should_profile()) {
2359     ciMethod* method = x->profiled_method();
2360     assert(method != nullptr, "method should be set if branch is profiled");
2361     ciMethodData* md = method->method_data_or_null();
2362     assert(md != nullptr, "Sanity");
2363     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2364     assert(data != nullptr, "must have profiling data");
2365     int offset;
2366     if (x->direction() == Goto::taken) {
2367       assert(data->is_BranchData(), "need BranchData for two-way branches");
2368       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2369     } else if (x->direction() == Goto::not_taken) {
2370       assert(data->is_BranchData(), "need BranchData for two-way branches");
2371       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2372     } else {
2373       assert(data->is_JumpData(), "need JumpData for branches");
2374       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2375     }
2376     LIR_Opr md_reg = new_register(T_METADATA);
2377     __ metadata2reg(md->constant_encoding(), md_reg);
2378 
2379     increment_counter(new LIR_Address(md_reg, offset,
2380                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2381   }
2382 
2383   // emit phi-instruction move after safepoint since this simplifies
2384   // describing the state as the safepoint.
2385   move_to_phi(x->state());
2386 
2387   __ jump(x->default_sux());
2388 }
2389 
2390 /**
2391  * Emit profiling code if needed for arguments, parameters, return value types
2392  *
2393  * @param md                    MDO the code will update at runtime
2394  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2395  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2396  * @param profiled_k            current profile
2397  * @param obj                   IR node for the object to be profiled
2398  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2399  *                              Set once we find an update to make and use for next ones.
2400  * @param not_null              true if we know obj cannot be null
2401  * @param signature_at_call_k   signature at call for obj
2402  * @param callee_signature_k    signature of callee for obj
2403  *                              at call and callee signatures differ at method handle call
2404  * @return                      the only klass we know will ever be seen at this profile point
2405  */
2406 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2407                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2408                                     ciKlass* callee_signature_k) {
2409   ciKlass* result = nullptr;
2410   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2411   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2412   // known not to be null or null bit already set and already set to
2413   // unknown: nothing we can do to improve profiling
2414   if (!do_null && !do_update) {
2415     return result;
2416   }
2417 
2418   ciKlass* exact_klass = nullptr;
2419   Compilation* comp = Compilation::current();
2420   if (do_update) {
2421     // try to find exact type, using CHA if possible, so that loading
2422     // the klass from the object can be avoided
2423     ciType* type = obj->exact_type();
2424     if (type == nullptr) {
2425       type = obj->declared_type();
2426       type = comp->cha_exact_type(type);
2427     }
2428     assert(type == nullptr || type->is_klass(), "type should be class");
2429     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2430 
2431     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2432   }
2433 
2434   if (!do_null && !do_update) {
2435     return result;
2436   }
2437 
2438   ciKlass* exact_signature_k = nullptr;
2439   if (do_update) {
2440     // Is the type from the signature exact (the only one possible)?
2441     exact_signature_k = signature_at_call_k->exact_klass();
2442     if (exact_signature_k == nullptr) {
2443       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2444     } else {
2445       result = exact_signature_k;
2446       // Known statically. No need to emit any code: prevent
2447       // LIR_Assembler::emit_profile_type() from emitting useless code
2448       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2449     }
2450     // exact_klass and exact_signature_k can be both non null but
2451     // different if exact_klass is loaded after the ciObject for
2452     // exact_signature_k is created.
2453     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2454       // sometimes the type of the signature is better than the best type
2455       // the compiler has
2456       exact_klass = exact_signature_k;
2457     }
2458     if (callee_signature_k != nullptr &&
2459         callee_signature_k != signature_at_call_k) {
2460       ciKlass* improved_klass = callee_signature_k->exact_klass();
2461       if (improved_klass == nullptr) {
2462         improved_klass = comp->cha_exact_type(callee_signature_k);
2463       }
2464       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2465         exact_klass = exact_signature_k;
2466       }
2467     }
2468     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2469   }
2470 
2471   if (!do_null && !do_update) {
2472     return result;
2473   }
2474 
2475   if (mdp == LIR_OprFact::illegalOpr) {
2476     mdp = new_register(T_METADATA);
2477     __ metadata2reg(md->constant_encoding(), mdp);
2478     if (md_base_offset != 0) {
2479       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2480       mdp = new_pointer_register();
2481       __ leal(LIR_OprFact::address(base_type_address), mdp);
2482     }
2483   }
2484   LIRItem value(obj, this);
2485   value.load_item();
2486   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2487                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2488   return result;
2489 }
2490 
2491 // profile parameters on entry to the root of the compilation
2492 void LIRGenerator::profile_parameters(Base* x) {
2493   if (compilation()->profile_parameters()) {
2494     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2495     ciMethodData* md = scope()->method()->method_data_or_null();
2496     assert(md != nullptr, "Sanity");
2497 
2498     if (md->parameters_type_data() != nullptr) {
2499       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2500       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2501       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2502       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2503         LIR_Opr src = args->at(i);
2504         assert(!src->is_illegal(), "check");
2505         BasicType t = src->type();
2506         if (is_reference_type(t)) {
2507           intptr_t profiled_k = parameters->type(j);
2508           Local* local = x->state()->local_at(java_index)->as_Local();
2509           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2510                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2511                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2512           // If the profile is known statically set it once for all and do not emit any code
2513           if (exact != nullptr) {
2514             md->set_parameter_type(j, exact);
2515           }
2516           j++;
2517         }
2518         java_index += type2size[t];
2519       }
2520     }
2521   }
2522 }
2523 
2524 void LIRGenerator::do_Base(Base* x) {
2525   __ std_entry(LIR_OprFact::illegalOpr);
2526   // Emit moves from physical registers / stack slots to virtual registers
2527   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2528   IRScope* irScope = compilation()->hir()->top_scope();
2529   int java_index = 0;
2530   for (int i = 0; i < args->length(); i++) {
2531     LIR_Opr src = args->at(i);
2532     assert(!src->is_illegal(), "check");
2533     BasicType t = src->type();
2534 
2535     // Types which are smaller than int are passed as int, so
2536     // correct the type which passed.
2537     switch (t) {
2538     case T_BYTE:
2539     case T_BOOLEAN:
2540     case T_SHORT:
2541     case T_CHAR:
2542       t = T_INT;
2543       break;
2544     default:
2545       break;
2546     }
2547 
2548     LIR_Opr dest = new_register(t);
2549     __ move(src, dest);
2550 
2551     // Assign new location to Local instruction for this local
2552     Local* local = x->state()->local_at(java_index)->as_Local();
2553     assert(local != nullptr, "Locals for incoming arguments must have been created");
2554 #ifndef __SOFTFP__
2555     // The java calling convention passes double as long and float as int.
2556     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2557 #endif // __SOFTFP__
2558     local->set_operand(dest);
2559 #ifdef ASSERT
2560     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2561 #endif
2562     java_index += type2size[t];
2563   }
2564 
2565   if (compilation()->env()->dtrace_method_probes()) {
2566     BasicTypeList signature;
2567     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2568     signature.append(T_METADATA); // Method*
2569     LIR_OprList* args = new LIR_OprList();
2570     args->append(getThreadPointer());
2571     LIR_Opr meth = new_register(T_METADATA);
2572     __ metadata2reg(method()->constant_encoding(), meth);
2573     args->append(meth);
2574     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2575   }
2576 
2577   MethodDetails method_details(method());
2578   RuntimeUpcallInfo* upcall = RuntimeUpcalls::get_first_upcall(RuntimeUpcallType::onMethodEntry, method_details);
2579   while (upcall != nullptr) {
2580     BasicTypeList signature;
2581     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2582     LIR_OprList* args = new LIR_OprList();
2583     args->append(getThreadPointer());
2584     call_runtime(&signature, args, upcall->upcall_address(), voidType, nullptr);
2585     upcall = RuntimeUpcalls::get_next_upcall(RuntimeUpcallType::onMethodEntry, method_details, upcall);
2586   }
2587 
2588   if (method()->is_synchronized()) {
2589     LIR_Opr obj;
2590     if (method()->is_static()) {
2591       obj = new_register(T_OBJECT);
2592       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2593     } else {
2594       Local* receiver = x->state()->local_at(0)->as_Local();
2595       assert(receiver != nullptr, "must already exist");
2596       obj = receiver->operand();
2597     }
2598     assert(obj->is_valid(), "must be valid");
2599 
2600     if (method()->is_synchronized()) {
2601       LIR_Opr lock = syncLockOpr();
2602       __ load_stack_address_monitor(0, lock);
2603 
2604       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2605       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2606 
2607       // receiver is guaranteed non-null so don't need CodeEmitInfo
2608       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2609     }
2610   }
2611   // increment invocation counters if needed
2612   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2613     profile_parameters(x);
2614     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2615     increment_invocation_counter(info);
2616   }
2617 
2618   // all blocks with a successor must end with an unconditional jump
2619   // to the successor even if they are consecutive
2620   __ jump(x->default_sux());
2621 }
2622 
2623 
2624 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2625   // construct our frame and model the production of incoming pointer
2626   // to the OSR buffer.
2627   __ osr_entry(LIR_Assembler::osrBufferPointer());
2628   LIR_Opr result = rlock_result(x);
2629   __ move(LIR_Assembler::osrBufferPointer(), result);
2630 }
2631 
2632 
2633 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2634   assert(args->length() == arg_list->length(),
2635          "args=%d, arg_list=%d", args->length(), arg_list->length());
2636   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2637     LIRItem* param = args->at(i);
2638     LIR_Opr loc = arg_list->at(i);
2639     if (loc->is_register()) {
2640       param->load_item_force(loc);
2641     } else {
2642       LIR_Address* addr = loc->as_address_ptr();
2643       param->load_for_store(addr->type());
2644       if (addr->type() == T_OBJECT) {
2645         __ move_wide(param->result(), addr);
2646       } else
2647         __ move(param->result(), addr);
2648     }
2649   }
2650 
2651   if (x->has_receiver()) {
2652     LIRItem* receiver = args->at(0);
2653     LIR_Opr loc = arg_list->at(0);
2654     if (loc->is_register()) {
2655       receiver->load_item_force(loc);
2656     } else {
2657       assert(loc->is_address(), "just checking");
2658       receiver->load_for_store(T_OBJECT);
2659       __ move_wide(receiver->result(), loc->as_address_ptr());
2660     }
2661   }
2662 }
2663 
2664 
2665 // Visits all arguments, returns appropriate items without loading them
2666 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2667   LIRItemList* argument_items = new LIRItemList();
2668   if (x->has_receiver()) {
2669     LIRItem* receiver = new LIRItem(x->receiver(), this);
2670     argument_items->append(receiver);
2671   }
2672   for (int i = 0; i < x->number_of_arguments(); i++) {
2673     LIRItem* param = new LIRItem(x->argument_at(i), this);
2674     argument_items->append(param);
2675   }
2676   return argument_items;
2677 }
2678 
2679 
2680 // The invoke with receiver has following phases:
2681 //   a) traverse and load/lock receiver;
2682 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2683 //   c) push receiver on stack
2684 //   d) load each of the items and push on stack
2685 //   e) unlock receiver
2686 //   f) move receiver into receiver-register %o0
2687 //   g) lock result registers and emit call operation
2688 //
2689 // Before issuing a call, we must spill-save all values on stack
2690 // that are in caller-save register. "spill-save" moves those registers
2691 // either in a free callee-save register or spills them if no free
2692 // callee save register is available.
2693 //
2694 // The problem is where to invoke spill-save.
2695 // - if invoked between e) and f), we may lock callee save
2696 //   register in "spill-save" that destroys the receiver register
2697 //   before f) is executed
2698 // - if we rearrange f) to be earlier (by loading %o0) it
2699 //   may destroy a value on the stack that is currently in %o0
2700 //   and is waiting to be spilled
2701 // - if we keep the receiver locked while doing spill-save,
2702 //   we cannot spill it as it is spill-locked
2703 //
2704 void LIRGenerator::do_Invoke(Invoke* x) {
2705   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2706 
2707   LIR_OprList* arg_list = cc->args();
2708   LIRItemList* args = invoke_visit_arguments(x);
2709   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2710 
2711   // setup result register
2712   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2713   if (x->type() != voidType) {
2714     result_register = result_register_for(x->type());
2715   }
2716 
2717   CodeEmitInfo* info = state_for(x, x->state());
2718 
2719   invoke_load_arguments(x, args, arg_list);
2720 
2721   if (x->has_receiver()) {
2722     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2723     receiver = args->at(0)->result();
2724   }
2725 
2726   // emit invoke code
2727   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2728 
2729   // JSR 292
2730   // Preserve the SP over MethodHandle call sites, if needed.
2731   ciMethod* target = x->target();
2732   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2733                                   target->is_method_handle_intrinsic() ||
2734                                   target->is_compiled_lambda_form());
2735   if (is_method_handle_invoke) {
2736     info->set_is_method_handle_invoke(true);
2737     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2738         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2739     }
2740   }
2741 
2742   switch (x->code()) {
2743     case Bytecodes::_invokestatic:
2744       __ call_static(target, result_register,
2745                      SharedRuntime::get_resolve_static_call_stub(),
2746                      arg_list, info);
2747       break;
2748     case Bytecodes::_invokespecial:
2749     case Bytecodes::_invokevirtual:
2750     case Bytecodes::_invokeinterface:
2751       // for loaded and final (method or class) target we still produce an inline cache,
2752       // in order to be able to call mixed mode
2753       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2754         __ call_opt_virtual(target, receiver, result_register,
2755                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2756                             arg_list, info);
2757       } else {
2758         __ call_icvirtual(target, receiver, result_register,
2759                           SharedRuntime::get_resolve_virtual_call_stub(),
2760                           arg_list, info);
2761       }
2762       break;
2763     case Bytecodes::_invokedynamic: {
2764       __ call_dynamic(target, receiver, result_register,
2765                       SharedRuntime::get_resolve_static_call_stub(),
2766                       arg_list, info);
2767       break;
2768     }
2769     default:
2770       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2771       break;
2772   }
2773 
2774   // JSR 292
2775   // Restore the SP after MethodHandle call sites, if needed.
2776   if (is_method_handle_invoke
2777       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2778     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2779   }
2780 
2781   if (result_register->is_valid()) {
2782     LIR_Opr result = rlock_result(x);
2783     __ move(result_register, result);
2784   }
2785 }
2786 
2787 
2788 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2789   assert(x->number_of_arguments() == 1, "wrong type");
2790   LIRItem value       (x->argument_at(0), this);
2791   LIR_Opr reg = rlock_result(x);
2792   value.load_item();
2793   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2794   __ move(tmp, reg);
2795 }
2796 
2797 
2798 
2799 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2800 void LIRGenerator::do_IfOp(IfOp* x) {
2801 #ifdef ASSERT
2802   {
2803     ValueTag xtag = x->x()->type()->tag();
2804     ValueTag ttag = x->tval()->type()->tag();
2805     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2806     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2807     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2808   }
2809 #endif
2810 
2811   LIRItem left(x->x(), this);
2812   LIRItem right(x->y(), this);
2813   left.load_item();
2814   if (can_inline_as_constant(right.value())) {
2815     right.dont_load_item();
2816   } else {
2817     right.load_item();
2818   }
2819 
2820   LIRItem t_val(x->tval(), this);
2821   LIRItem f_val(x->fval(), this);
2822   t_val.dont_load_item();
2823   f_val.dont_load_item();
2824   LIR_Opr reg = rlock_result(x);
2825 
2826   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2827   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2828 }
2829 
2830 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2831   assert(x->number_of_arguments() == 0, "wrong type");
2832   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2833   BasicTypeList signature;
2834   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2835   LIR_Opr reg = result_register_for(x->type());
2836   __ call_runtime_leaf(routine, getThreadTemp(),
2837                        reg, new LIR_OprList());
2838   LIR_Opr result = rlock_result(x);
2839   __ move(reg, result);
2840 }
2841 
2842 
2843 
2844 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2845   switch (x->id()) {
2846   case vmIntrinsics::_intBitsToFloat      :
2847   case vmIntrinsics::_doubleToRawLongBits :
2848   case vmIntrinsics::_longBitsToDouble    :
2849   case vmIntrinsics::_floatToRawIntBits   : {
2850     do_FPIntrinsics(x);
2851     break;
2852   }
2853 
2854 #ifdef JFR_HAVE_INTRINSICS
2855   case vmIntrinsics::_counterTime:
2856     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2857     break;
2858 #endif
2859 
2860   case vmIntrinsics::_currentTimeMillis:
2861     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2862     break;
2863 
2864   case vmIntrinsics::_nanoTime:
2865     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2866     break;
2867 
2868   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2869   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2870   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2871   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2872   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2873   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2874   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2875 
2876   case vmIntrinsics::_dlog:           // fall through
2877   case vmIntrinsics::_dlog10:         // fall through
2878   case vmIntrinsics::_dabs:           // fall through
2879   case vmIntrinsics::_dsqrt:          // fall through
2880   case vmIntrinsics::_dsqrt_strict:   // fall through
2881   case vmIntrinsics::_dtan:           // fall through
2882   case vmIntrinsics::_dsinh:          // fall through
2883   case vmIntrinsics::_dtanh:          // fall through
2884   case vmIntrinsics::_dsin :          // fall through
2885   case vmIntrinsics::_dcos :          // fall through
2886   case vmIntrinsics::_dcbrt :         // fall through
2887   case vmIntrinsics::_dexp :          // fall through
2888   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2889   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2890 
2891   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2892   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2893 
2894   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2895   case vmIntrinsics::_floatToFloat16: // fall through
2896   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2897 
2898   case vmIntrinsics::_Preconditions_checkIndex:
2899     do_PreconditionsCheckIndex(x, T_INT);
2900     break;
2901   case vmIntrinsics::_Preconditions_checkLongIndex:
2902     do_PreconditionsCheckIndex(x, T_LONG);
2903     break;
2904 
2905   case vmIntrinsics::_compareAndSetReference:
2906     do_CompareAndSwap(x, objectType);
2907     break;
2908   case vmIntrinsics::_compareAndSetInt:
2909     do_CompareAndSwap(x, intType);
2910     break;
2911   case vmIntrinsics::_compareAndSetLong:
2912     do_CompareAndSwap(x, longType);
2913     break;
2914 
2915   case vmIntrinsics::_loadFence :
2916     __ membar_acquire();
2917     break;
2918   case vmIntrinsics::_storeFence:
2919     __ membar_release();
2920     break;
2921   case vmIntrinsics::_storeStoreFence:
2922     __ membar_storestore();
2923     break;
2924   case vmIntrinsics::_fullFence :
2925     __ membar();
2926     break;
2927   case vmIntrinsics::_onSpinWait:
2928     __ on_spin_wait();
2929     break;
2930   case vmIntrinsics::_Reference_get0:
2931     do_Reference_get0(x);
2932     break;
2933 
2934   case vmIntrinsics::_updateCRC32:
2935   case vmIntrinsics::_updateBytesCRC32:
2936   case vmIntrinsics::_updateByteBufferCRC32:
2937     do_update_CRC32(x);
2938     break;
2939 
2940   case vmIntrinsics::_updateBytesCRC32C:
2941   case vmIntrinsics::_updateDirectByteBufferCRC32C:
2942     do_update_CRC32C(x);
2943     break;
2944 
2945   case vmIntrinsics::_vectorizedMismatch:
2946     do_vectorizedMismatch(x);
2947     break;
2948 
2949   case vmIntrinsics::_blackhole:
2950     do_blackhole(x);
2951     break;
2952 
2953   default: ShouldNotReachHere(); break;
2954   }
2955 }
2956 
2957 void LIRGenerator::profile_arguments(ProfileCall* x) {
2958   if (compilation()->profile_arguments()) {
2959     int bci = x->bci_of_invoke();
2960     ciMethodData* md = x->method()->method_data_or_null();
2961     assert(md != nullptr, "Sanity");
2962     ciProfileData* data = md->bci_to_data(bci);
2963     if (data != nullptr) {
2964       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
2965           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
2966         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
2967         int base_offset = md->byte_offset_of_slot(data, extra);
2968         LIR_Opr mdp = LIR_OprFact::illegalOpr;
2969         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
2970 
2971         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2972         int start = 0;
2973         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
2974         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
2975           // first argument is not profiled at call (method handle invoke)
2976           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
2977           start = 1;
2978         }
2979         ciSignature* callee_signature = x->callee()->signature();
2980         // method handle call to virtual method
2981         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
2982         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
2983 
2984         bool ignored_will_link;
2985         ciSignature* signature_at_call = nullptr;
2986         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
2987         ciSignatureStream signature_at_call_stream(signature_at_call);
2988 
2989         // if called through method handle invoke, some arguments may have been popped
2990         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
2991           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
2992           ciKlass* exact = profile_type(md, base_offset, off,
2993               args->type(i), x->profiled_arg_at(i+start), mdp,
2994               !x->arg_needs_null_check(i+start),
2995               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
2996           if (exact != nullptr) {
2997             md->set_argument_type(bci, i, exact);
2998           }
2999         }
3000       } else {
3001 #ifdef ASSERT
3002         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3003         int n = x->nb_profiled_args();
3004         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3005             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3006             "only at JSR292 bytecodes");
3007 #endif
3008       }
3009     }
3010   }
3011 }
3012 
3013 // profile parameters on entry to an inlined method
3014 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3015   if (compilation()->profile_parameters() && x->inlined()) {
3016     ciMethodData* md = x->callee()->method_data_or_null();
3017     if (md != nullptr) {
3018       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3019       if (parameters_type_data != nullptr) {
3020         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3021         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3022         bool has_receiver = !x->callee()->is_static();
3023         ciSignature* sig = x->callee()->signature();
3024         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3025         int i = 0; // to iterate on the Instructions
3026         Value arg = x->recv();
3027         bool not_null = false;
3028         int bci = x->bci_of_invoke();
3029         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3030         // The first parameter is the receiver so that's what we start
3031         // with if it exists. One exception is method handle call to
3032         // virtual method: the receiver is in the args list
3033         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3034           i = 1;
3035           arg = x->profiled_arg_at(0);
3036           not_null = !x->arg_needs_null_check(0);
3037         }
3038         int k = 0; // to iterate on the profile data
3039         for (;;) {
3040           intptr_t profiled_k = parameters->type(k);
3041           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3042                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3043                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3044           // If the profile is known statically set it once for all and do not emit any code
3045           if (exact != nullptr) {
3046             md->set_parameter_type(k, exact);
3047           }
3048           k++;
3049           if (k >= parameters_type_data->number_of_parameters()) {
3050 #ifdef ASSERT
3051             int extra = 0;
3052             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3053                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3054                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3055               extra += 1;
3056             }
3057             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3058 #endif
3059             break;
3060           }
3061           arg = x->profiled_arg_at(i);
3062           not_null = !x->arg_needs_null_check(i);
3063           i++;
3064         }
3065       }
3066     }
3067   }
3068 }
3069 
3070 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3071   // Need recv in a temporary register so it interferes with the other temporaries
3072   LIR_Opr recv = LIR_OprFact::illegalOpr;
3073   LIR_Opr mdo = new_register(T_METADATA);
3074   // tmp is used to hold the counters on SPARC
3075   LIR_Opr tmp = new_pointer_register();
3076 
3077   if (x->nb_profiled_args() > 0) {
3078     profile_arguments(x);
3079   }
3080 
3081   // profile parameters on inlined method entry including receiver
3082   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3083     profile_parameters_at_call(x);
3084   }
3085 
3086   if (x->recv() != nullptr) {
3087     LIRItem value(x->recv(), this);
3088     value.load_item();
3089     recv = new_register(T_OBJECT);
3090     __ move(value.result(), recv);
3091   }
3092   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3093 }
3094 
3095 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3096   int bci = x->bci_of_invoke();
3097   ciMethodData* md = x->method()->method_data_or_null();
3098   assert(md != nullptr, "Sanity");
3099   ciProfileData* data = md->bci_to_data(bci);
3100   if (data != nullptr) {
3101     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3102     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3103     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3104 
3105     bool ignored_will_link;
3106     ciSignature* signature_at_call = nullptr;
3107     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3108 
3109     // The offset within the MDO of the entry to update may be too large
3110     // to be used in load/store instructions on some platforms. So have
3111     // profile_type() compute the address of the profile in a register.
3112     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3113         ret->type(), x->ret(), mdp,
3114         !x->needs_null_check(),
3115         signature_at_call->return_type()->as_klass(),
3116         x->callee()->signature()->return_type()->as_klass());
3117     if (exact != nullptr) {
3118       md->set_return_type(bci, exact);
3119     }
3120   }
3121 }
3122 
3123 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3124   // We can safely ignore accessors here, since c2 will inline them anyway,
3125   // accessors are also always mature.
3126   if (!x->inlinee()->is_accessor()) {
3127     CodeEmitInfo* info = state_for(x, x->state(), true);
3128     // Notify the runtime very infrequently only to take care of counter overflows
3129     int freq_log = Tier23InlineeNotifyFreqLog;
3130     double scale;
3131     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3132       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3133     }
3134     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3135   }
3136 }
3137 
3138 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3139   if (compilation()->is_profiling()) {
3140 #if defined(X86) && !defined(_LP64)
3141     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3142     LIR_Opr left_copy = new_register(left->type());
3143     __ move(left, left_copy);
3144     __ cmp(cond, left_copy, right);
3145 #else
3146     __ cmp(cond, left, right);
3147 #endif
3148     LIR_Opr step = new_register(T_INT);
3149     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3150     LIR_Opr zero = LIR_OprFact::intConst(0);
3151     __ cmove(cond,
3152         (left_bci < bci) ? plus_one : zero,
3153         (right_bci < bci) ? plus_one : zero,
3154         step, left->type());
3155     increment_backedge_counter(info, step, bci);
3156   }
3157 }
3158 
3159 
3160 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3161   int freq_log = 0;
3162   int level = compilation()->env()->comp_level();
3163   if (level == CompLevel_limited_profile) {
3164     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3165   } else if (level == CompLevel_full_profile) {
3166     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3167   } else {
3168     ShouldNotReachHere();
3169   }
3170   // Increment the appropriate invocation/backedge counter and notify the runtime.
3171   double scale;
3172   if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3173     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3174   }
3175   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3176 }
3177 
3178 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3179                                                 ciMethod *method, LIR_Opr step, int frequency,
3180                                                 int bci, bool backedge, bool notify) {
3181   if (PreloadOnly) {
3182     // Nothing to do if we only use preload code.
3183     return;
3184   }
3185   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3186   int level = _compilation->env()->comp_level();
3187   assert(level > CompLevel_simple, "Shouldn't be here");
3188 
3189   int offset = -1;
3190   LIR_Opr counter_holder;
3191   if (level == CompLevel_limited_profile) {
3192     MethodCounters* counters_adr = method->ensure_method_counters();
3193     if (counters_adr == nullptr) {
3194       bailout("method counters allocation failed");
3195       return;
3196     }
3197     if (AOTCodeCache::is_on()) {
3198       counter_holder = new_register(T_METADATA);
3199       __ metadata2reg(counters_adr, counter_holder);
3200     } else {
3201       counter_holder = new_pointer_register();
3202       __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3203     }
3204     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3205                                  MethodCounters::invocation_counter_offset());
3206   } else if (level == CompLevel_full_profile) {
3207     counter_holder = new_register(T_METADATA);
3208     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3209                                  MethodData::invocation_counter_offset());
3210     ciMethodData* md = method->method_data_or_null();
3211     assert(md != nullptr, "Sanity");
3212     __ metadata2reg(md->constant_encoding(), counter_holder);
3213   } else {
3214     ShouldNotReachHere();
3215   }
3216   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3217   LIR_Opr result = new_register(T_INT);
3218   __ load(counter, result);
3219   __ add(result, step, result);
3220   __ store(result, counter);
3221   if (notify && (!backedge || UseOnStackReplacement)) {
3222     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3223     // The bci for info can point to cmp for if's we want the if bci
3224     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3225     int freq = frequency << InvocationCounter::count_shift;
3226     if (freq == 0) {
3227       if (!step->is_constant()) {
3228         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3229         __ branch(lir_cond_notEqual, overflow);
3230       } else {
3231         __ branch(lir_cond_always, overflow);
3232       }
3233     } else {
3234       LIR_Opr mask = load_immediate(freq, T_INT);
3235       if (!step->is_constant()) {
3236         // If step is 0, make sure the overflow check below always fails
3237         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3238         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3239       }
3240       __ logical_and(result, mask, result);
3241       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3242       __ branch(lir_cond_equal, overflow);
3243     }
3244     __ branch_destination(overflow->continuation());
3245   }
3246 }
3247 
3248 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3249   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3250   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3251 
3252   if (x->pass_thread()) {
3253     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3254     args->append(getThreadPointer());
3255   }
3256 
3257   for (int i = 0; i < x->number_of_arguments(); i++) {
3258     Value a = x->argument_at(i);
3259     LIRItem* item = new LIRItem(a, this);
3260     item->load_item();
3261     args->append(item->result());
3262     signature->append(as_BasicType(a->type()));
3263   }
3264 
3265   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3266   if (x->type() == voidType) {
3267     set_no_result(x);
3268   } else {
3269     __ move(result, rlock_result(x));
3270   }
3271 }
3272 
3273 #ifdef ASSERT
3274 void LIRGenerator::do_Assert(Assert *x) {
3275   ValueTag tag = x->x()->type()->tag();
3276   If::Condition cond = x->cond();
3277 
3278   LIRItem xitem(x->x(), this);
3279   LIRItem yitem(x->y(), this);
3280   LIRItem* xin = &xitem;
3281   LIRItem* yin = &yitem;
3282 
3283   assert(tag == intTag, "Only integer assertions are valid!");
3284 
3285   xin->load_item();
3286   yin->dont_load_item();
3287 
3288   set_no_result(x);
3289 
3290   LIR_Opr left = xin->result();
3291   LIR_Opr right = yin->result();
3292 
3293   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3294 }
3295 #endif
3296 
3297 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3298 
3299 
3300   Instruction *a = x->x();
3301   Instruction *b = x->y();
3302   if (!a || StressRangeCheckElimination) {
3303     assert(!b || StressRangeCheckElimination, "B must also be null");
3304 
3305     CodeEmitInfo *info = state_for(x, x->state());
3306     CodeStub* stub = new PredicateFailedStub(info);
3307 
3308     __ jump(stub);
3309   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3310     int a_int = a->type()->as_IntConstant()->value();
3311     int b_int = b->type()->as_IntConstant()->value();
3312 
3313     bool ok = false;
3314 
3315     switch(x->cond()) {
3316       case Instruction::eql: ok = (a_int == b_int); break;
3317       case Instruction::neq: ok = (a_int != b_int); break;
3318       case Instruction::lss: ok = (a_int < b_int); break;
3319       case Instruction::leq: ok = (a_int <= b_int); break;
3320       case Instruction::gtr: ok = (a_int > b_int); break;
3321       case Instruction::geq: ok = (a_int >= b_int); break;
3322       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3323       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3324       default: ShouldNotReachHere();
3325     }
3326 
3327     if (ok) {
3328 
3329       CodeEmitInfo *info = state_for(x, x->state());
3330       CodeStub* stub = new PredicateFailedStub(info);
3331 
3332       __ jump(stub);
3333     }
3334   } else {
3335 
3336     ValueTag tag = x->x()->type()->tag();
3337     If::Condition cond = x->cond();
3338     LIRItem xitem(x->x(), this);
3339     LIRItem yitem(x->y(), this);
3340     LIRItem* xin = &xitem;
3341     LIRItem* yin = &yitem;
3342 
3343     assert(tag == intTag, "Only integer deoptimizations are valid!");
3344 
3345     xin->load_item();
3346     yin->dont_load_item();
3347     set_no_result(x);
3348 
3349     LIR_Opr left = xin->result();
3350     LIR_Opr right = yin->result();
3351 
3352     CodeEmitInfo *info = state_for(x, x->state());
3353     CodeStub* stub = new PredicateFailedStub(info);
3354 
3355     __ cmp(lir_cond(cond), left, right);
3356     __ branch(lir_cond(cond), stub);
3357   }
3358 }
3359 
3360 void LIRGenerator::do_blackhole(Intrinsic *x) {
3361   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3362   for (int c = 0; c < x->number_of_arguments(); c++) {
3363     // Load the argument
3364     LIRItem vitem(x->argument_at(c), this);
3365     vitem.load_item();
3366     // ...and leave it unused.
3367   }
3368 }
3369 
3370 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3371   LIRItemList args(1);
3372   LIRItem value(arg1, this);
3373   args.append(&value);
3374   BasicTypeList signature;
3375   signature.append(as_BasicType(arg1->type()));
3376 
3377   return call_runtime(&signature, &args, entry, result_type, info);
3378 }
3379 
3380 
3381 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3382   LIRItemList args(2);
3383   LIRItem value1(arg1, this);
3384   LIRItem value2(arg2, this);
3385   args.append(&value1);
3386   args.append(&value2);
3387   BasicTypeList signature;
3388   signature.append(as_BasicType(arg1->type()));
3389   signature.append(as_BasicType(arg2->type()));
3390 
3391   return call_runtime(&signature, &args, entry, result_type, info);
3392 }
3393 
3394 
3395 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3396                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3397   // get a result register
3398   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3399   LIR_Opr result = LIR_OprFact::illegalOpr;
3400   if (result_type->tag() != voidTag) {
3401     result = new_register(result_type);
3402     phys_reg = result_register_for(result_type);
3403   }
3404 
3405   // move the arguments into the correct location
3406   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3407   assert(cc->length() == args->length(), "argument mismatch");
3408   for (int i = 0; i < args->length(); i++) {
3409     LIR_Opr arg = args->at(i);
3410     LIR_Opr loc = cc->at(i);
3411     if (loc->is_register()) {
3412       __ move(arg, loc);
3413     } else {
3414       LIR_Address* addr = loc->as_address_ptr();
3415 //           if (!can_store_as_constant(arg)) {
3416 //             LIR_Opr tmp = new_register(arg->type());
3417 //             __ move(arg, tmp);
3418 //             arg = tmp;
3419 //           }
3420       __ move(arg, addr);
3421     }
3422   }
3423 
3424   if (info) {
3425     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3426   } else {
3427     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3428   }
3429   if (result->is_valid()) {
3430     __ move(phys_reg, result);
3431   }
3432   return result;
3433 }
3434 
3435 
3436 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3437                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3438   // get a result register
3439   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3440   LIR_Opr result = LIR_OprFact::illegalOpr;
3441   if (result_type->tag() != voidTag) {
3442     result = new_register(result_type);
3443     phys_reg = result_register_for(result_type);
3444   }
3445 
3446   // move the arguments into the correct location
3447   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3448 
3449   assert(cc->length() == args->length(), "argument mismatch");
3450   for (int i = 0; i < args->length(); i++) {
3451     LIRItem* arg = args->at(i);
3452     LIR_Opr loc = cc->at(i);
3453     if (loc->is_register()) {
3454       arg->load_item_force(loc);
3455     } else {
3456       LIR_Address* addr = loc->as_address_ptr();
3457       arg->load_for_store(addr->type());
3458       __ move(arg->result(), addr);
3459     }
3460   }
3461 
3462   if (info) {
3463     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3464   } else {
3465     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3466   }
3467   if (result->is_valid()) {
3468     __ move(phys_reg, result);
3469   }
3470   return result;
3471 }
3472 
3473 void LIRGenerator::do_MemBar(MemBar* x) {
3474   LIR_Code code = x->code();
3475   switch(code) {
3476   case lir_membar_acquire   : __ membar_acquire(); break;
3477   case lir_membar_release   : __ membar_release(); break;
3478   case lir_membar           : __ membar(); break;
3479   case lir_membar_loadload  : __ membar_loadload(); break;
3480   case lir_membar_storestore: __ membar_storestore(); break;
3481   case lir_membar_loadstore : __ membar_loadstore(); break;
3482   case lir_membar_storeload : __ membar_storeload(); break;
3483   default                   : ShouldNotReachHere(); break;
3484   }
3485 }
3486 
3487 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3488   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3489   if (two_operand_lir_form) {
3490     __ move(value, value_fixed);
3491     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3492   } else {
3493     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3494   }
3495   LIR_Opr klass = new_register(T_METADATA);
3496   load_klass(array, klass, null_check_info);
3497   null_check_info = nullptr;
3498   LIR_Opr layout = new_register(T_INT);
3499   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3500   int diffbit = Klass::layout_helper_boolean_diffbit();
3501   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3502   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3503   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3504   value = value_fixed;
3505   return value;
3506 }