1 /*
2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "ci/ciUtilities.hpp"
36 #include "code/aotCodeCache.hpp"
37 #include "compiler/compilerDefinitions.inline.hpp"
38 #include "compiler/compilerOracle.hpp"
39 #include "gc/shared/barrierSet.hpp"
40 #include "gc/shared/c1/barrierSetC1.hpp"
41 #include "oops/klass.inline.hpp"
42 #include "oops/methodCounters.hpp"
43 #include "runtime/runtimeUpcalls.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "runtime/stubRoutines.hpp"
46 #include "runtime/vm_version.hpp"
47 #include "utilities/bitMap.inline.hpp"
48 #include "utilities/macros.hpp"
49 #include "utilities/powerOfTwo.hpp"
50
51 #ifdef ASSERT
52 #define __ gen()->lir(__FILE__, __LINE__)->
53 #else
54 #define __ gen()->lir()->
55 #endif
56
57 #ifndef PATCHED_ADDR
58 #define PATCHED_ADDR (max_jint)
59 #endif
60
61 void PhiResolverState::reset() {
62 _virtual_operands.clear();
63 _other_operands.clear();
64 _vreg_table.clear();
65 }
66
67
68 //--------------------------------------------------------------
69 // PhiResolver
70
71 // Resolves cycles:
72 //
73 // r1 := r2 becomes temp := r1
74 // r2 := r1 r1 := r2
75 // r2 := temp
76 // and orders moves:
77 //
78 // r2 := r3 becomes r1 := r2
79 // r1 := r2 r2 := r3
80
81 PhiResolver::PhiResolver(LIRGenerator* gen)
82 : _gen(gen)
83 , _state(gen->resolver_state())
84 , _loop(nullptr)
85 , _temp(LIR_OprFact::illegalOpr)
86 {
87 // reinitialize the shared state arrays
88 _state.reset();
89 }
90
91
92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
93 assert(src->is_valid(), "");
94 assert(dest->is_valid(), "");
95 __ move(src, dest);
96 }
97
98
99 void PhiResolver::move_temp_to(LIR_Opr dest) {
100 assert(_temp->is_valid(), "");
101 emit_move(_temp, dest);
102 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
103 }
104
105
106 void PhiResolver::move_to_temp(LIR_Opr src) {
107 assert(_temp->is_illegal(), "");
108 _temp = _gen->new_register(src->type());
109 emit_move(src, _temp);
110 }
111
112
113 // Traverse assignment graph in depth first order and generate moves in post order
114 // ie. two assignments: b := c, a := b start with node c:
115 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
116 // Generates moves in this order: move b to a and move c to b
117 // ie. cycle a := b, b := a start with node a
118 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
119 // Generates moves in this order: move b to temp, move a to b, move temp to a
120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
121 if (!dest->visited()) {
122 dest->set_visited();
123 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
124 move(dest, dest->destination_at(i));
125 }
126 } else if (!dest->start_node()) {
127 // cylce in graph detected
128 assert(_loop == nullptr, "only one loop valid!");
129 _loop = dest;
130 move_to_temp(src->operand());
131 return;
132 } // else dest is a start node
133
134 if (!dest->assigned()) {
135 if (_loop == dest) {
136 move_temp_to(dest->operand());
137 dest->set_assigned();
138 } else if (src != nullptr) {
139 emit_move(src->operand(), dest->operand());
140 dest->set_assigned();
141 }
142 }
143 }
144
145
146 PhiResolver::~PhiResolver() {
147 int i;
148 // resolve any cycles in moves from and to virtual registers
149 for (i = virtual_operands().length() - 1; i >= 0; i --) {
150 ResolveNode* node = virtual_operands().at(i);
151 if (!node->visited()) {
152 _loop = nullptr;
153 move(nullptr, node);
154 node->set_start_node();
155 assert(_temp->is_illegal(), "move_temp_to() call missing");
156 }
157 }
158
159 // generate move for move from non virtual register to abitrary destination
160 for (i = other_operands().length() - 1; i >= 0; i --) {
161 ResolveNode* node = other_operands().at(i);
162 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
163 emit_move(node->operand(), node->destination_at(j)->operand());
164 }
165 }
166 }
167
168
169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
170 ResolveNode* node;
171 if (opr->is_virtual()) {
172 int vreg_num = opr->vreg_number();
173 node = vreg_table().at_grow(vreg_num, nullptr);
174 assert(node == nullptr || node->operand() == opr, "");
175 if (node == nullptr) {
176 node = new ResolveNode(opr);
177 vreg_table().at_put(vreg_num, node);
178 }
179 // Make sure that all virtual operands show up in the list when
180 // they are used as the source of a move.
181 if (source && !virtual_operands().contains(node)) {
182 virtual_operands().append(node);
183 }
184 } else {
185 assert(source, "");
186 node = new ResolveNode(opr);
187 other_operands().append(node);
188 }
189 return node;
190 }
191
192
193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
194 assert(dest->is_virtual(), "");
195 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
196 assert(src->is_valid(), "");
197 assert(dest->is_valid(), "");
198 ResolveNode* source = source_node(src);
199 source->append(destination_node(dest));
200 }
201
202
203 //--------------------------------------------------------------
204 // LIRItem
205
206 void LIRItem::set_result(LIR_Opr opr) {
207 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
208 value()->set_operand(opr);
209
210 #ifdef ASSERT
211 if (opr->is_virtual()) {
212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
213 }
214 #endif
215
216 _result = opr;
217 }
218
219 void LIRItem::load_item() {
220 if (result()->is_illegal()) {
221 // update the items result
222 _result = value()->operand();
223 }
224 if (!result()->is_register()) {
225 LIR_Opr reg = _gen->new_register(value()->type());
226 __ move(result(), reg);
227 if (result()->is_constant()) {
228 _result = reg;
229 } else {
230 set_result(reg);
231 }
232 }
233 }
234
235
236 void LIRItem::load_for_store(BasicType type) {
237 if (_gen->can_store_as_constant(value(), type)) {
238 _result = value()->operand();
239 if (!_result->is_constant()) {
240 _result = LIR_OprFact::value_type(value()->type());
241 }
242 } else if (type == T_BYTE || type == T_BOOLEAN) {
243 load_byte_item();
244 } else {
245 load_item();
246 }
247 }
248
249 void LIRItem::load_item_force(LIR_Opr reg) {
250 LIR_Opr r = result();
251 if (r != reg) {
252 #if !defined(ARM) && !defined(E500V2)
253 if (r->type() != reg->type()) {
254 // moves between different types need an intervening spill slot
255 r = _gen->force_to_spill(r, reg->type());
256 }
257 #endif
258 __ move(r, reg);
259 _result = reg;
260 }
261 }
262
263 ciObject* LIRItem::get_jobject_constant() const {
264 ObjectType* oc = type()->as_ObjectType();
265 if (oc) {
266 return oc->constant_value();
267 }
268 return nullptr;
269 }
270
271
272 jint LIRItem::get_jint_constant() const {
273 assert(is_constant() && value() != nullptr, "");
274 assert(type()->as_IntConstant() != nullptr, "type check");
275 return type()->as_IntConstant()->value();
276 }
277
278
279 jint LIRItem::get_address_constant() const {
280 assert(is_constant() && value() != nullptr, "");
281 assert(type()->as_AddressConstant() != nullptr, "type check");
282 return type()->as_AddressConstant()->value();
283 }
284
285
286 jfloat LIRItem::get_jfloat_constant() const {
287 assert(is_constant() && value() != nullptr, "");
288 assert(type()->as_FloatConstant() != nullptr, "type check");
289 return type()->as_FloatConstant()->value();
290 }
291
292
293 jdouble LIRItem::get_jdouble_constant() const {
294 assert(is_constant() && value() != nullptr, "");
295 assert(type()->as_DoubleConstant() != nullptr, "type check");
296 return type()->as_DoubleConstant()->value();
297 }
298
299
300 jlong LIRItem::get_jlong_constant() const {
301 assert(is_constant() && value() != nullptr, "");
302 assert(type()->as_LongConstant() != nullptr, "type check");
303 return type()->as_LongConstant()->value();
304 }
305
306
307
308 //--------------------------------------------------------------
309
310
311 void LIRGenerator::block_do_prolog(BlockBegin* block) {
312 #ifndef PRODUCT
313 if (PrintIRWithLIR) {
314 block->print();
315 }
316 #endif
317
318 // set up the list of LIR instructions
319 assert(block->lir() == nullptr, "LIR list already computed for this block");
320 _lir = new LIR_List(compilation(), block);
321 block->set_lir(_lir);
322
323 __ branch_destination(block->label());
324
325 if (LIRTraceExecution &&
326 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
327 !block->is_set(BlockBegin::exception_entry_flag)) {
328 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
329 trace_block_entry(block);
330 }
331 }
332
333
334 void LIRGenerator::block_do_epilog(BlockBegin* block) {
335 #ifndef PRODUCT
336 if (PrintIRWithLIR) {
337 tty->cr();
338 }
339 #endif
340
341 // LIR_Opr for unpinned constants shouldn't be referenced by other
342 // blocks so clear them out after processing the block.
343 for (int i = 0; i < _unpinned_constants.length(); i++) {
344 _unpinned_constants.at(i)->clear_operand();
345 }
346 _unpinned_constants.trunc_to(0);
347
348 // clear our any registers for other local constants
349 _constants.trunc_to(0);
350 _reg_for_constants.trunc_to(0);
351 }
352
353
354 void LIRGenerator::block_do(BlockBegin* block) {
355 CHECK_BAILOUT();
356
357 block_do_prolog(block);
358 set_block(block);
359
360 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
361 if (instr->is_pinned()) do_root(instr);
362 }
363
364 set_block(nullptr);
365 block_do_epilog(block);
366 }
367
368
369 //-------------------------LIRGenerator-----------------------------
370
371 // This is where the tree-walk starts; instr must be root;
372 void LIRGenerator::do_root(Value instr) {
373 CHECK_BAILOUT();
374
375 InstructionMark im(compilation(), instr);
376
377 assert(instr->is_pinned(), "use only with roots");
378 assert(instr->subst() == instr, "shouldn't have missed substitution");
379
380 instr->visit(this);
381
382 assert(!instr->has_uses() || instr->operand()->is_valid() ||
383 instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
384 }
385
386
387 // This is called for each node in tree; the walk stops if a root is reached
388 void LIRGenerator::walk(Value instr) {
389 InstructionMark im(compilation(), instr);
390 //stop walk when encounter a root
391 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
392 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
393 } else {
394 assert(instr->subst() == instr, "shouldn't have missed substitution");
395 instr->visit(this);
396 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
397 }
398 }
399
400
401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
402 assert(state != nullptr, "state must be defined");
403
404 #ifndef PRODUCT
405 state->verify();
406 #endif
407
408 ValueStack* s = state;
409 for_each_state(s) {
410 if (s->kind() == ValueStack::EmptyExceptionState ||
411 s->kind() == ValueStack::CallerEmptyExceptionState)
412 {
413 #ifdef ASSERT
414 int index;
415 Value value;
416 for_each_stack_value(s, index, value) {
417 fatal("state must be empty");
418 }
419 for_each_local_value(s, index, value) {
420 fatal("state must be empty");
421 }
422 #endif
423 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
424 continue;
425 }
426
427 int index;
428 Value value;
429 for_each_stack_value(s, index, value) {
430 assert(value->subst() == value, "missed substitution");
431 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
432 walk(value);
433 assert(value->operand()->is_valid(), "must be evaluated now");
434 }
435 }
436
437 int bci = s->bci();
438 IRScope* scope = s->scope();
439 ciMethod* method = scope->method();
440
441 MethodLivenessResult liveness = method->liveness_at_bci(bci);
442 if (bci == SynchronizationEntryBCI) {
443 if (x->as_ExceptionObject() || x->as_Throw()) {
444 // all locals are dead on exit from the synthetic unlocker
445 liveness.clear();
446 } else {
447 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
448 }
449 }
450 if (!liveness.is_valid()) {
451 // Degenerate or breakpointed method.
452 bailout("Degenerate or breakpointed method");
453 } else {
454 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
455 for_each_local_value(s, index, value) {
456 assert(value->subst() == value, "missed substitution");
457 if (liveness.at(index) && !value->type()->is_illegal()) {
458 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
459 walk(value);
460 assert(value->operand()->is_valid(), "must be evaluated now");
461 }
462 } else {
463 // null out this local so that linear scan can assume that all non-null values are live.
464 s->invalidate_local(index);
465 }
466 }
467 }
468 }
469
470 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
471 }
472
473
474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
475 return state_for(x, x->exception_state());
476 }
477
478
479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
480 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
481 * is active and the class hasn't yet been resolved we need to emit a patch that resolves
482 * the class. */
483 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
484 assert(info != nullptr, "info must be set if class is not loaded");
485 __ klass2reg_patch(nullptr, r, info);
486 } else {
487 // no patching needed
488 __ metadata2reg(obj->constant_encoding(), r);
489 }
490 }
491
492
493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
494 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
495 CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
496 if (index->is_constant()) {
497 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
498 index->as_jint(), null_check_info);
499 __ branch(lir_cond_belowEqual, stub); // forward branch
500 } else {
501 cmp_reg_mem(lir_cond_aboveEqual, index, array,
502 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
503 __ branch(lir_cond_aboveEqual, stub); // forward branch
504 }
505 }
506
507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
508 LIR_Opr result_op = result;
509 LIR_Opr left_op = left;
510 LIR_Opr right_op = right;
511
512 if (two_operand_lir_form && left_op != result_op) {
513 assert(right_op != result_op, "malformed");
514 __ move(left_op, result_op);
515 left_op = result_op;
516 }
517
518 switch(code) {
519 case Bytecodes::_dadd:
520 case Bytecodes::_fadd:
521 case Bytecodes::_ladd:
522 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
523 case Bytecodes::_fmul:
524 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
525
526 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
527
528 case Bytecodes::_imul:
529 {
530 bool did_strength_reduce = false;
531
532 if (right->is_constant()) {
533 jint c = right->as_jint();
534 if (c > 0 && is_power_of_2(c)) {
535 // do not need tmp here
536 __ shift_left(left_op, exact_log2(c), result_op);
537 did_strength_reduce = true;
538 } else {
539 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
540 }
541 }
542 // we couldn't strength reduce so just emit the multiply
543 if (!did_strength_reduce) {
544 __ mul(left_op, right_op, result_op);
545 }
546 }
547 break;
548
549 case Bytecodes::_dsub:
550 case Bytecodes::_fsub:
551 case Bytecodes::_lsub:
552 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
553
554 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
555 // ldiv and lrem are implemented with a direct runtime call
556
557 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
558
559 case Bytecodes::_drem:
560 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
561
562 default: ShouldNotReachHere();
563 }
564 }
565
566
567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
568 arithmetic_op(code, result, left, right, tmp);
569 }
570
571
572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
573 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
574 }
575
576
577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
578 arithmetic_op(code, result, left, right, tmp);
579 }
580
581
582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
583
584 if (two_operand_lir_form && value != result_op
585 // Only 32bit right shifts require two operand form on S390.
586 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
587 assert(count != result_op, "malformed");
588 __ move(value, result_op);
589 value = result_op;
590 }
591
592 assert(count->is_constant() || count->is_register(), "must be");
593 switch(code) {
594 case Bytecodes::_ishl:
595 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
596 case Bytecodes::_ishr:
597 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
598 case Bytecodes::_iushr:
599 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
600 default: ShouldNotReachHere();
601 }
602 }
603
604
605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
606 if (two_operand_lir_form && left_op != result_op) {
607 assert(right_op != result_op, "malformed");
608 __ move(left_op, result_op);
609 left_op = result_op;
610 }
611
612 switch(code) {
613 case Bytecodes::_iand:
614 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
615
616 case Bytecodes::_ior:
617 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
618
619 case Bytecodes::_ixor:
620 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
621
622 default: ShouldNotReachHere();
623 }
624 }
625
626
627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
628 // for slow path, use debug info for state after successful locking
629 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
630 __ load_stack_address_monitor(monitor_no, lock);
631 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
632 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
633 }
634
635
636 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
637 // setup registers
638 LIR_Opr hdr = lock;
639 lock = new_hdr;
640 CodeStub* slow_path = new MonitorExitStub(lock, monitor_no);
641 __ load_stack_address_monitor(monitor_no, lock);
642 __ unlock_object(hdr, object, lock, scratch, slow_path);
643 }
644
645 #ifndef PRODUCT
646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
647 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
648 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
649 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
650 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
651 }
652 }
653 #endif
654
655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
656 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
657 // If klass is not loaded we do not know if the klass has finalizers:
658 if (UseFastNewInstance && klass->is_loaded()
659 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
660
661 bool known_initialized = klass->is_initialized() && !compilation()->env()->is_precompile();
662 StubId stub_id = known_initialized ? StubId::c1_fast_new_instance_id : StubId::c1_fast_new_instance_init_check_id;
663
664 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
665
666 assert(klass->is_loaded(), "must be loaded");
667 // allocate space for instance
668 assert(klass->size_helper() > 0, "illegal instance size");
669 const int instance_size = align_object_size(klass->size_helper());
670 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
671 oopDesc::header_size(), instance_size, klass_reg, !known_initialized, slow_path);
672 } else {
673 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, StubId::c1_new_instance_id);
674 __ branch(lir_cond_always, slow_path);
675 __ branch_destination(slow_path->continuation());
676 }
677 }
678
679
680 static bool is_constant_zero(Instruction* inst) {
681 IntConstant* c = inst->type()->as_IntConstant();
682 if (c) {
683 return (c->value() == 0);
684 }
685 return false;
686 }
687
688
689 static bool positive_constant(Instruction* inst) {
690 IntConstant* c = inst->type()->as_IntConstant();
691 if (c) {
692 return (c->value() >= 0);
693 }
694 return false;
695 }
696
697
698 static ciArrayKlass* as_array_klass(ciType* type) {
699 if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
700 return (ciArrayKlass*)type;
701 } else {
702 return nullptr;
703 }
704 }
705
706 static ciType* phi_declared_type(Phi* phi) {
707 ciType* t = phi->operand_at(0)->declared_type();
708 if (t == nullptr) {
709 return nullptr;
710 }
711 for(int i = 1; i < phi->operand_count(); i++) {
712 if (t != phi->operand_at(i)->declared_type()) {
713 return nullptr;
714 }
715 }
716 return t;
717 }
718
719 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
720 Instruction* src = x->argument_at(0);
721 Instruction* src_pos = x->argument_at(1);
722 Instruction* dst = x->argument_at(2);
723 Instruction* dst_pos = x->argument_at(3);
724 Instruction* length = x->argument_at(4);
725
726 // first try to identify the likely type of the arrays involved
727 ciArrayKlass* expected_type = nullptr;
728 bool is_exact = false, src_objarray = false, dst_objarray = false;
729 {
730 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
731 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
732 Phi* phi;
733 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
734 src_declared_type = as_array_klass(phi_declared_type(phi));
735 }
736 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
737 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
738 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
739 dst_declared_type = as_array_klass(phi_declared_type(phi));
740 }
741
742 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
743 // the types exactly match so the type is fully known
744 is_exact = true;
745 expected_type = src_exact_type;
746 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
747 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
748 ciArrayKlass* src_type = nullptr;
749 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
750 src_type = (ciArrayKlass*) src_exact_type;
751 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
752 src_type = (ciArrayKlass*) src_declared_type;
753 }
754 if (src_type != nullptr) {
755 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
756 is_exact = true;
757 expected_type = dst_type;
758 }
759 }
760 }
761 // at least pass along a good guess
762 if (expected_type == nullptr) expected_type = dst_exact_type;
763 if (expected_type == nullptr) expected_type = src_declared_type;
764 if (expected_type == nullptr) expected_type = dst_declared_type;
765
766 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
767 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
768 }
769
770 // if a probable array type has been identified, figure out if any
771 // of the required checks for a fast case can be elided.
772 int flags = LIR_OpArrayCopy::all_flags;
773
774 if (!src_objarray)
775 flags &= ~LIR_OpArrayCopy::src_objarray;
776 if (!dst_objarray)
777 flags &= ~LIR_OpArrayCopy::dst_objarray;
778
779 if (!x->arg_needs_null_check(0))
780 flags &= ~LIR_OpArrayCopy::src_null_check;
781 if (!x->arg_needs_null_check(2))
782 flags &= ~LIR_OpArrayCopy::dst_null_check;
783
784
785 if (expected_type != nullptr) {
786 Value length_limit = nullptr;
787
788 IfOp* ifop = length->as_IfOp();
789 if (ifop != nullptr) {
790 // look for expressions like min(v, a.length) which ends up as
791 // x > y ? y : x or x >= y ? y : x
792 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
793 ifop->x() == ifop->fval() &&
794 ifop->y() == ifop->tval()) {
795 length_limit = ifop->y();
796 }
797 }
798
799 // try to skip null checks and range checks
800 NewArray* src_array = src->as_NewArray();
801 if (src_array != nullptr) {
802 flags &= ~LIR_OpArrayCopy::src_null_check;
803 if (length_limit != nullptr &&
804 src_array->length() == length_limit &&
805 is_constant_zero(src_pos)) {
806 flags &= ~LIR_OpArrayCopy::src_range_check;
807 }
808 }
809
810 NewArray* dst_array = dst->as_NewArray();
811 if (dst_array != nullptr) {
812 flags &= ~LIR_OpArrayCopy::dst_null_check;
813 if (length_limit != nullptr &&
814 dst_array->length() == length_limit &&
815 is_constant_zero(dst_pos)) {
816 flags &= ~LIR_OpArrayCopy::dst_range_check;
817 }
818 }
819
820 // check from incoming constant values
821 if (positive_constant(src_pos))
822 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
823 if (positive_constant(dst_pos))
824 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
825 if (positive_constant(length))
826 flags &= ~LIR_OpArrayCopy::length_positive_check;
827
828 // see if the range check can be elided, which might also imply
829 // that src or dst is non-null.
830 ArrayLength* al = length->as_ArrayLength();
831 if (al != nullptr) {
832 if (al->array() == src) {
833 // it's the length of the source array
834 flags &= ~LIR_OpArrayCopy::length_positive_check;
835 flags &= ~LIR_OpArrayCopy::src_null_check;
836 if (is_constant_zero(src_pos))
837 flags &= ~LIR_OpArrayCopy::src_range_check;
838 }
839 if (al->array() == dst) {
840 // it's the length of the destination array
841 flags &= ~LIR_OpArrayCopy::length_positive_check;
842 flags &= ~LIR_OpArrayCopy::dst_null_check;
843 if (is_constant_zero(dst_pos))
844 flags &= ~LIR_OpArrayCopy::dst_range_check;
845 }
846 }
847 if (is_exact) {
848 flags &= ~LIR_OpArrayCopy::type_check;
849 }
850 }
851
852 IntConstant* src_int = src_pos->type()->as_IntConstant();
853 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
854 if (src_int && dst_int) {
855 int s_offs = src_int->value();
856 int d_offs = dst_int->value();
857 if (src_int->value() >= dst_int->value()) {
858 flags &= ~LIR_OpArrayCopy::overlapping;
859 }
860 if (expected_type != nullptr) {
861 BasicType t = expected_type->element_type()->basic_type();
862 int element_size = type2aelembytes(t);
863 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
864 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
865 flags &= ~LIR_OpArrayCopy::unaligned;
866 }
867 }
868 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
869 // src and dest positions are the same, or dst is zero so assume
870 // nonoverlapping copy.
871 flags &= ~LIR_OpArrayCopy::overlapping;
872 }
873
874 if (src == dst) {
875 // moving within a single array so no type checks are needed
876 if (flags & LIR_OpArrayCopy::type_check) {
877 flags &= ~LIR_OpArrayCopy::type_check;
878 }
879 }
880 *flagsp = flags;
881 *expected_typep = (ciArrayKlass*)expected_type;
882 }
883
884
885 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
886 assert(type2size[t] == type2size[value->type()],
887 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
888 if (!value->is_register()) {
889 // force into a register
890 LIR_Opr r = new_register(value->type());
891 __ move(value, r);
892 value = r;
893 }
894
895 // create a spill location
896 LIR_Opr tmp = new_register(t);
897 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
898
899 // move from register to spill
900 __ move(value, tmp);
901 return tmp;
902 }
903
904 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
905 if (if_instr->should_profile()) {
906 ciMethod* method = if_instr->profiled_method();
907 assert(method != nullptr, "method should be set if branch is profiled");
908 ciMethodData* md = method->method_data_or_null();
909 assert(md != nullptr, "Sanity");
910 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
911 assert(data != nullptr, "must have profiling data");
912 assert(data->is_BranchData(), "need BranchData for two-way branches");
913 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
914 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
915 if (if_instr->is_swapped()) {
916 int t = taken_count_offset;
917 taken_count_offset = not_taken_count_offset;
918 not_taken_count_offset = t;
919 }
920
921 LIR_Opr md_reg = new_register(T_METADATA);
922 __ metadata2reg(md->constant_encoding(), md_reg);
923
924 LIR_Opr data_offset_reg = new_pointer_register();
925 __ cmove(lir_cond(cond),
926 LIR_OprFact::intptrConst(taken_count_offset),
927 LIR_OprFact::intptrConst(not_taken_count_offset),
928 data_offset_reg, as_BasicType(if_instr->x()->type()));
929
930 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
931 LIR_Opr data_reg = new_pointer_register();
932 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
933 __ move(data_addr, data_reg);
934 // Use leal instead of add to avoid destroying condition codes on x86
935 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
936 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
937 __ move(data_reg, data_addr);
938 }
939 }
940
941 // Phi technique:
942 // This is about passing live values from one basic block to the other.
943 // In code generated with Java it is rather rare that more than one
944 // value is on the stack from one basic block to the other.
945 // We optimize our technique for efficient passing of one value
946 // (of type long, int, double..) but it can be extended.
947 // When entering or leaving a basic block, all registers and all spill
948 // slots are release and empty. We use the released registers
949 // and spill slots to pass the live values from one block
950 // to the other. The topmost value, i.e., the value on TOS of expression
951 // stack is passed in registers. All other values are stored in spilling
952 // area. Every Phi has an index which designates its spill slot
953 // At exit of a basic block, we fill the register(s) and spill slots.
954 // At entry of a basic block, the block_prolog sets up the content of phi nodes
955 // and locks necessary registers and spilling slots.
956
957
958 // move current value to referenced phi function
959 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
960 Phi* phi = sux_val->as_Phi();
961 // cur_val can be null without phi being null in conjunction with inlining
962 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
963 if (phi->is_local()) {
964 for (int i = 0; i < phi->operand_count(); i++) {
965 Value op = phi->operand_at(i);
966 if (op != nullptr && op->type()->is_illegal()) {
967 bailout("illegal phi operand");
968 }
969 }
970 }
971 Phi* cur_phi = cur_val->as_Phi();
972 if (cur_phi != nullptr && cur_phi->is_illegal()) {
973 // Phi and local would need to get invalidated
974 // (which is unexpected for Linear Scan).
975 // But this case is very rare so we simply bail out.
976 bailout("propagation of illegal phi");
977 return;
978 }
979 LIR_Opr operand = cur_val->operand();
980 if (operand->is_illegal()) {
981 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
982 "these can be produced lazily");
983 operand = operand_for_instruction(cur_val);
984 }
985 resolver->move(operand, operand_for_instruction(phi));
986 }
987 }
988
989
990 // Moves all stack values into their PHI position
991 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
992 BlockBegin* bb = block();
993 if (bb->number_of_sux() == 1) {
994 BlockBegin* sux = bb->sux_at(0);
995 assert(sux->number_of_preds() > 0, "invalid CFG");
996
997 // a block with only one predecessor never has phi functions
998 if (sux->number_of_preds() > 1) {
999 PhiResolver resolver(this);
1000
1001 ValueStack* sux_state = sux->state();
1002 Value sux_value;
1003 int index;
1004
1005 assert(cur_state->scope() == sux_state->scope(), "not matching");
1006 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1007 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1008
1009 for_each_stack_value(sux_state, index, sux_value) {
1010 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1011 }
1012
1013 for_each_local_value(sux_state, index, sux_value) {
1014 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1015 }
1016
1017 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1018 }
1019 }
1020 }
1021
1022
1023 LIR_Opr LIRGenerator::new_register(BasicType type) {
1024 int vreg_num = _virtual_register_number;
1025 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1026 // a few extra registers before we really run out which helps to avoid to trip over assertions.
1027 if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1028 bailout("out of virtual registers in LIR generator");
1029 if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1030 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1031 _virtual_register_number = LIR_Opr::vreg_base;
1032 vreg_num = LIR_Opr::vreg_base;
1033 }
1034 }
1035 _virtual_register_number += 1;
1036 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1037 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1038 return vreg;
1039 }
1040
1041
1042 // Try to lock using register in hint
1043 LIR_Opr LIRGenerator::rlock(Value instr) {
1044 return new_register(instr->type());
1045 }
1046
1047
1048 // does an rlock and sets result
1049 LIR_Opr LIRGenerator::rlock_result(Value x) {
1050 LIR_Opr reg = rlock(x);
1051 set_result(x, reg);
1052 return reg;
1053 }
1054
1055
1056 // does an rlock and sets result
1057 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1058 LIR_Opr reg;
1059 switch (type) {
1060 case T_BYTE:
1061 case T_BOOLEAN:
1062 reg = rlock_byte(type);
1063 break;
1064 default:
1065 reg = rlock(x);
1066 break;
1067 }
1068
1069 set_result(x, reg);
1070 return reg;
1071 }
1072
1073
1074 //---------------------------------------------------------------------
1075 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1076 ObjectType* oc = value->type()->as_ObjectType();
1077 if (oc) {
1078 return oc->constant_value();
1079 }
1080 return nullptr;
1081 }
1082
1083
1084 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1085 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1086 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1087
1088 // no moves are created for phi functions at the begin of exception
1089 // handlers, so assign operands manually here
1090 for_each_phi_fun(block(), phi,
1091 if (!phi->is_illegal()) { operand_for_instruction(phi); });
1092
1093 LIR_Opr thread_reg = getThreadPointer();
1094 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1095 exceptionOopOpr());
1096 __ move_wide(LIR_OprFact::oopConst(nullptr),
1097 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1098 __ move_wide(LIR_OprFact::oopConst(nullptr),
1099 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1100
1101 LIR_Opr result = new_register(T_OBJECT);
1102 __ move(exceptionOopOpr(), result);
1103 set_result(x, result);
1104 }
1105
1106
1107 //----------------------------------------------------------------------
1108 //----------------------------------------------------------------------
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 // visitor functions
1112 //----------------------------------------------------------------------
1113 //----------------------------------------------------------------------
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116
1117 void LIRGenerator::do_Phi(Phi* x) {
1118 // phi functions are never visited directly
1119 ShouldNotReachHere();
1120 }
1121
1122
1123 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1124 void LIRGenerator::do_Constant(Constant* x) {
1125 if (x->state_before() != nullptr) {
1126 // Any constant with a ValueStack requires patching so emit the patch here
1127 LIR_Opr reg = rlock_result(x);
1128 CodeEmitInfo* info = state_for(x, x->state_before());
1129 __ oop2reg_patch(nullptr, reg, info);
1130 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1131 if (!x->is_pinned()) {
1132 // unpinned constants are handled specially so that they can be
1133 // put into registers when they are used multiple times within a
1134 // block. After the block completes their operand will be
1135 // cleared so that other blocks can't refer to that register.
1136 set_result(x, load_constant(x));
1137 } else {
1138 LIR_Opr res = x->operand();
1139 if (!res->is_valid()) {
1140 res = LIR_OprFact::value_type(x->type());
1141 }
1142 if (res->is_constant()) {
1143 LIR_Opr reg = rlock_result(x);
1144 __ move(res, reg);
1145 } else {
1146 set_result(x, res);
1147 }
1148 }
1149 } else {
1150 set_result(x, LIR_OprFact::value_type(x->type()));
1151 }
1152 }
1153
1154
1155 void LIRGenerator::do_Local(Local* x) {
1156 // operand_for_instruction has the side effect of setting the result
1157 // so there's no need to do it here.
1158 operand_for_instruction(x);
1159 }
1160
1161
1162 void LIRGenerator::do_Return(Return* x) {
1163 if (compilation()->env()->dtrace_method_probes()) {
1164 BasicTypeList signature;
1165 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1166 signature.append(T_METADATA); // Method*
1167 LIR_OprList* args = new LIR_OprList();
1168 args->append(getThreadPointer());
1169 LIR_Opr meth = new_register(T_METADATA);
1170 __ metadata2reg(method()->constant_encoding(), meth);
1171 args->append(meth);
1172 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1173 }
1174
1175 if (x->type()->is_void()) {
1176 __ return_op(LIR_OprFact::illegalOpr);
1177 } else {
1178 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1179 LIRItem result(x->result(), this);
1180
1181 result.load_item_force(reg);
1182 __ return_op(result.result());
1183 }
1184 set_no_result(x);
1185 }
1186
1187 // Example: ref.get()
1188 // Combination of LoadField and g1 pre-write barrier
1189 void LIRGenerator::do_Reference_get0(Intrinsic* x) {
1190
1191 const int referent_offset = java_lang_ref_Reference::referent_offset();
1192
1193 assert(x->number_of_arguments() == 1, "wrong type");
1194
1195 LIRItem reference(x->argument_at(0), this);
1196 reference.load_item();
1197
1198 // need to perform the null check on the reference object
1199 CodeEmitInfo* info = nullptr;
1200 if (x->needs_null_check()) {
1201 info = state_for(x);
1202 }
1203
1204 LIR_Opr result = rlock_result(x, T_OBJECT);
1205 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1206 reference, LIR_OprFact::intConst(referent_offset), result,
1207 nullptr, info);
1208 }
1209
1210 // Example: clazz.isInstance(object)
1211 void LIRGenerator::do_isInstance(Intrinsic* x) {
1212 assert(x->number_of_arguments() == 2, "wrong type");
1213
1214 LIRItem clazz(x->argument_at(0), this);
1215 LIRItem object(x->argument_at(1), this);
1216 clazz.load_item();
1217 object.load_item();
1218 LIR_Opr result = rlock_result(x);
1219
1220 // need to perform null check on clazz
1221 if (x->needs_null_check()) {
1222 CodeEmitInfo* info = state_for(x);
1223 __ null_check(clazz.result(), info);
1224 }
1225
1226 address pd_instanceof_fn = isInstance_entry();
1227 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1228 pd_instanceof_fn,
1229 x->type(),
1230 nullptr); // null CodeEmitInfo results in a leaf call
1231 __ move(call_result, result);
1232 }
1233
1234 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1235 __ load_klass(obj, klass, null_check_info);
1236 }
1237
1238 // Example: object.getClass ()
1239 void LIRGenerator::do_getClass(Intrinsic* x) {
1240 assert(x->number_of_arguments() == 1, "wrong type");
1241
1242 LIRItem rcvr(x->argument_at(0), this);
1243 rcvr.load_item();
1244 LIR_Opr temp = new_register(T_ADDRESS);
1245 LIR_Opr result = rlock_result(x);
1246
1247 // need to perform the null check on the rcvr
1248 CodeEmitInfo* info = nullptr;
1249 if (x->needs_null_check()) {
1250 info = state_for(x);
1251 }
1252
1253 LIR_Opr klass = new_register(T_METADATA);
1254 load_klass(rcvr.result(), klass, info);
1255 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1256 // mirror = ((OopHandle)mirror)->resolve();
1257 access_load(IN_NATIVE, T_OBJECT,
1258 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1259 }
1260
1261 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1262 assert(x->number_of_arguments() == 3, "wrong type");
1263 LIR_Opr result_reg = rlock_result(x);
1264
1265 LIRItem value(x->argument_at(2), this);
1266 value.load_item();
1267
1268 LIR_Opr klass = new_register(T_METADATA);
1269 load_klass(value.result(), klass, nullptr);
1270 LIR_Opr layout = new_register(T_INT);
1271 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1272
1273 LabelObj* L_done = new LabelObj();
1274 LabelObj* L_array = new LabelObj();
1275
1276 __ cmp(lir_cond_lessEqual, layout, 0);
1277 __ branch(lir_cond_lessEqual, L_array->label());
1278
1279 // Instance case: the layout helper gives us instance size almost directly,
1280 // but we need to mask out the _lh_instance_slow_path_bit.
1281
1282 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1283
1284 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1285 __ logical_and(layout, mask, layout);
1286 __ convert(Bytecodes::_i2l, layout, result_reg);
1287
1288 __ branch(lir_cond_always, L_done->label());
1289
1290 // Array case: size is round(header + element_size*arraylength).
1291 // Since arraylength is different for every array instance, we have to
1292 // compute the whole thing at runtime.
1293
1294 __ branch_destination(L_array->label());
1295
1296 int round_mask = MinObjAlignmentInBytes - 1;
1297
1298 // Figure out header sizes first.
1299 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1300 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1301
1302 LIR_Opr header_size = new_register(T_INT);
1303 __ move(layout, header_size);
1304 LIR_Opr tmp = new_register(T_INT);
1305 __ unsigned_shift_right(header_size, hss, header_size, tmp);
1306 __ logical_and(header_size, hsm, header_size);
1307 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1308
1309 // Figure out the array length in bytes
1310 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1311 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1312 __ logical_and(layout, l2esm, layout);
1313
1314 LIR_Opr length_int = new_register(T_INT);
1315 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1316
1317 #ifdef _LP64
1318 LIR_Opr length = new_register(T_LONG);
1319 __ convert(Bytecodes::_i2l, length_int, length);
1320 #endif
1321
1322 // Shift-left awkwardness. Normally it is just:
1323 // __ shift_left(length, layout, length);
1324 // But C1 cannot perform shift_left with non-constant count, so we end up
1325 // doing the per-bit loop dance here. x86_32 also does not know how to shift
1326 // longs, so we have to act on ints.
1327 LabelObj* L_shift_loop = new LabelObj();
1328 LabelObj* L_shift_exit = new LabelObj();
1329
1330 __ branch_destination(L_shift_loop->label());
1331 __ cmp(lir_cond_equal, layout, 0);
1332 __ branch(lir_cond_equal, L_shift_exit->label());
1333
1334 #ifdef _LP64
1335 __ shift_left(length, 1, length);
1336 #else
1337 __ shift_left(length_int, 1, length_int);
1338 #endif
1339
1340 __ sub(layout, LIR_OprFact::intConst(1), layout);
1341
1342 __ branch(lir_cond_always, L_shift_loop->label());
1343 __ branch_destination(L_shift_exit->label());
1344
1345 // Mix all up, round, and push to the result.
1346 #ifdef _LP64
1347 LIR_Opr header_size_long = new_register(T_LONG);
1348 __ convert(Bytecodes::_i2l, header_size, header_size_long);
1349 __ add(length, header_size_long, length);
1350 if (round_mask != 0) {
1351 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1352 __ logical_and(length, round_mask_opr, length);
1353 }
1354 __ move(length, result_reg);
1355 #else
1356 __ add(length_int, header_size, length_int);
1357 if (round_mask != 0) {
1358 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1359 __ logical_and(length_int, round_mask_opr, length_int);
1360 }
1361 __ convert(Bytecodes::_i2l, length_int, result_reg);
1362 #endif
1363
1364 __ branch_destination(L_done->label());
1365 }
1366
1367 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1368 do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1369 }
1370
1371 // Example: Thread.currentCarrierThread()
1372 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1373 do_JavaThreadField(x, JavaThread::threadObj_offset());
1374 }
1375
1376 void LIRGenerator::do_vthread(Intrinsic* x) {
1377 do_JavaThreadField(x, JavaThread::vthread_offset());
1378 }
1379
1380 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1381 assert(x->number_of_arguments() == 0, "wrong type");
1382 LIR_Opr temp = new_register(T_ADDRESS);
1383 LIR_Opr reg = rlock_result(x);
1384 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1385 access_load(IN_NATIVE, T_OBJECT,
1386 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1387 }
1388
1389 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1390 assert(x->number_of_arguments() == 1, "wrong type");
1391 LIRItem receiver(x->argument_at(0), this);
1392
1393 receiver.load_item();
1394 BasicTypeList signature;
1395 signature.append(T_OBJECT); // receiver
1396 LIR_OprList* args = new LIR_OprList();
1397 args->append(receiver.result());
1398 CodeEmitInfo* info = state_for(x, x->state());
1399 call_runtime(&signature, args,
1400 CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_register_finalizer_id)),
1401 voidType, info);
1402
1403 set_no_result(x);
1404 }
1405
1406
1407 //------------------------local access--------------------------------------
1408
1409 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1410 if (x->operand()->is_illegal()) {
1411 Constant* c = x->as_Constant();
1412 if (c != nullptr) {
1413 x->set_operand(LIR_OprFact::value_type(c->type()));
1414 } else {
1415 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1416 // allocate a virtual register for this local or phi
1417 x->set_operand(rlock(x));
1418 #ifdef ASSERT
1419 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1420 #endif
1421 }
1422 }
1423 return x->operand();
1424 }
1425
1426 #ifdef ASSERT
1427 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1428 if (reg_num < _instruction_for_operand.length()) {
1429 return _instruction_for_operand.at(reg_num);
1430 }
1431 return nullptr;
1432 }
1433 #endif
1434
1435 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1436 if (_vreg_flags.size_in_bits() == 0) {
1437 BitMap2D temp(100, num_vreg_flags);
1438 _vreg_flags = temp;
1439 }
1440 _vreg_flags.at_put_grow(vreg_num, f, true);
1441 }
1442
1443 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1444 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1445 return false;
1446 }
1447 return _vreg_flags.at(vreg_num, f);
1448 }
1449
1450
1451 // Block local constant handling. This code is useful for keeping
1452 // unpinned constants and constants which aren't exposed in the IR in
1453 // registers. Unpinned Constant instructions have their operands
1454 // cleared when the block is finished so that other blocks can't end
1455 // up referring to their registers.
1456
1457 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1458 assert(!x->is_pinned(), "only for unpinned constants");
1459 _unpinned_constants.append(x);
1460 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1461 }
1462
1463
1464 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1465 BasicType t = c->type();
1466 for (int i = 0; i < _constants.length(); i++) {
1467 LIR_Const* other = _constants.at(i);
1468 if (t == other->type()) {
1469 switch (t) {
1470 case T_INT:
1471 case T_FLOAT:
1472 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1473 break;
1474 case T_LONG:
1475 case T_DOUBLE:
1476 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1477 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1478 break;
1479 case T_OBJECT:
1480 if (c->as_jobject() != other->as_jobject()) continue;
1481 break;
1482 default:
1483 break;
1484 }
1485 return _reg_for_constants.at(i);
1486 }
1487 }
1488
1489 LIR_Opr result = new_register(t);
1490 __ move((LIR_Opr)c, result);
1491 _constants.append(c);
1492 _reg_for_constants.append(result);
1493 return result;
1494 }
1495
1496 //------------------------field access--------------------------------------
1497
1498 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1499 assert(x->number_of_arguments() == 4, "wrong type");
1500 LIRItem obj (x->argument_at(0), this); // object
1501 LIRItem offset(x->argument_at(1), this); // offset of field
1502 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1503 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1504 assert(obj.type()->tag() == objectTag, "invalid type");
1505 assert(cmp.type()->tag() == type->tag(), "invalid type");
1506 assert(val.type()->tag() == type->tag(), "invalid type");
1507
1508 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1509 obj, offset, cmp, val);
1510 set_result(x, result);
1511 }
1512
1513 // Comment copied form templateTable_i486.cpp
1514 // ----------------------------------------------------------------------------
1515 // Volatile variables demand their effects be made known to all CPU's in
1516 // order. Store buffers on most chips allow reads & writes to reorder; the
1517 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1518 // memory barrier (i.e., it's not sufficient that the interpreter does not
1519 // reorder volatile references, the hardware also must not reorder them).
1520 //
1521 // According to the new Java Memory Model (JMM):
1522 // (1) All volatiles are serialized wrt to each other.
1523 // ALSO reads & writes act as acquire & release, so:
1524 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1525 // the read float up to before the read. It's OK for non-volatile memory refs
1526 // that happen before the volatile read to float down below it.
1527 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1528 // that happen BEFORE the write float down to after the write. It's OK for
1529 // non-volatile memory refs that happen after the volatile write to float up
1530 // before it.
1531 //
1532 // We only put in barriers around volatile refs (they are expensive), not
1533 // _between_ memory refs (that would require us to track the flavor of the
1534 // previous memory refs). Requirements (2) and (3) require some barriers
1535 // before volatile stores and after volatile loads. These nearly cover
1536 // requirement (1) but miss the volatile-store-volatile-load case. This final
1537 // case is placed after volatile-stores although it could just as well go
1538 // before volatile-loads.
1539
1540
1541 void LIRGenerator::do_StoreField(StoreField* x) {
1542 bool needs_patching = x->needs_patching();
1543 bool is_volatile = x->field()->is_volatile();
1544 BasicType field_type = x->field_type();
1545
1546 CodeEmitInfo* info = nullptr;
1547 if (needs_patching) {
1548 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1549 info = state_for(x, x->state_before());
1550 } else if (x->needs_null_check()) {
1551 NullCheck* nc = x->explicit_null_check();
1552 if (nc == nullptr) {
1553 info = state_for(x);
1554 } else {
1555 info = state_for(nc);
1556 }
1557 }
1558
1559 LIRItem object(x->obj(), this);
1560 LIRItem value(x->value(), this);
1561
1562 object.load_item();
1563
1564 if (is_volatile || needs_patching) {
1565 // load item if field is volatile (fewer special cases for volatiles)
1566 // load item if field not initialized
1567 // load item if field not constant
1568 // because of code patching we cannot inline constants
1569 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1570 value.load_byte_item();
1571 } else {
1572 value.load_item();
1573 }
1574 } else {
1575 value.load_for_store(field_type);
1576 }
1577
1578 set_no_result(x);
1579
1580 #ifndef PRODUCT
1581 if (PrintNotLoaded && needs_patching) {
1582 tty->print_cr(" ###class not loaded at store_%s bci %d",
1583 x->is_static() ? "static" : "field", x->printable_bci());
1584 }
1585 #endif
1586
1587 if (x->needs_null_check() &&
1588 (needs_patching ||
1589 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1590 // Emit an explicit null check because the offset is too large.
1591 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1592 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1593 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1594 }
1595
1596 DecoratorSet decorators = IN_HEAP;
1597 if (is_volatile) {
1598 decorators |= MO_SEQ_CST;
1599 }
1600 if (needs_patching) {
1601 decorators |= C1_NEEDS_PATCHING;
1602 }
1603
1604 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1605 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1606 }
1607
1608 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1609 assert(x->is_pinned(),"");
1610 bool needs_range_check = x->compute_needs_range_check();
1611 bool use_length = x->length() != nullptr;
1612 bool obj_store = is_reference_type(x->elt_type());
1613 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1614 !get_jobject_constant(x->value())->is_null_object() ||
1615 x->should_profile());
1616
1617 LIRItem array(x->array(), this);
1618 LIRItem index(x->index(), this);
1619 LIRItem value(x->value(), this);
1620 LIRItem length(this);
1621
1622 array.load_item();
1623 index.load_nonconstant();
1624
1625 if (use_length && needs_range_check) {
1626 length.set_instruction(x->length());
1627 length.load_item();
1628
1629 }
1630 if (needs_store_check || x->check_boolean()) {
1631 value.load_item();
1632 } else {
1633 value.load_for_store(x->elt_type());
1634 }
1635
1636 set_no_result(x);
1637
1638 // the CodeEmitInfo must be duplicated for each different
1639 // LIR-instruction because spilling can occur anywhere between two
1640 // instructions and so the debug information must be different
1641 CodeEmitInfo* range_check_info = state_for(x);
1642 CodeEmitInfo* null_check_info = nullptr;
1643 if (x->needs_null_check()) {
1644 null_check_info = new CodeEmitInfo(range_check_info);
1645 }
1646
1647 if (needs_range_check) {
1648 if (use_length) {
1649 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1650 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1651 } else {
1652 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1653 // range_check also does the null check
1654 null_check_info = nullptr;
1655 }
1656 }
1657
1658 if (GenerateArrayStoreCheck && needs_store_check) {
1659 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1660 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1661 }
1662
1663 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1664 if (x->check_boolean()) {
1665 decorators |= C1_MASK_BOOLEAN;
1666 }
1667
1668 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1669 nullptr, null_check_info);
1670 }
1671
1672 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1673 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1674 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1675 decorators |= ACCESS_READ;
1676 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1677 if (access.is_raw()) {
1678 _barrier_set->BarrierSetC1::load_at(access, result);
1679 } else {
1680 _barrier_set->load_at(access, result);
1681 }
1682 }
1683
1684 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1685 LIR_Opr addr, LIR_Opr result) {
1686 decorators |= ACCESS_READ;
1687 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1688 access.set_resolved_addr(addr);
1689 if (access.is_raw()) {
1690 _barrier_set->BarrierSetC1::load(access, result);
1691 } else {
1692 _barrier_set->load(access, result);
1693 }
1694 }
1695
1696 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1697 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1698 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1699 decorators |= ACCESS_WRITE;
1700 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1701 if (access.is_raw()) {
1702 _barrier_set->BarrierSetC1::store_at(access, value);
1703 } else {
1704 _barrier_set->store_at(access, value);
1705 }
1706 }
1707
1708 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1709 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1710 decorators |= ACCESS_READ;
1711 decorators |= ACCESS_WRITE;
1712 // Atomic operations are SEQ_CST by default
1713 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1714 LIRAccess access(this, decorators, base, offset, type);
1715 if (access.is_raw()) {
1716 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1717 } else {
1718 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1719 }
1720 }
1721
1722 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1723 LIRItem& base, LIRItem& offset, LIRItem& value) {
1724 decorators |= ACCESS_READ;
1725 decorators |= ACCESS_WRITE;
1726 // Atomic operations are SEQ_CST by default
1727 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1728 LIRAccess access(this, decorators, base, offset, type);
1729 if (access.is_raw()) {
1730 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1731 } else {
1732 return _barrier_set->atomic_xchg_at(access, value);
1733 }
1734 }
1735
1736 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1737 LIRItem& base, LIRItem& offset, LIRItem& value) {
1738 decorators |= ACCESS_READ;
1739 decorators |= ACCESS_WRITE;
1740 // Atomic operations are SEQ_CST by default
1741 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1742 LIRAccess access(this, decorators, base, offset, type);
1743 if (access.is_raw()) {
1744 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1745 } else {
1746 return _barrier_set->atomic_add_at(access, value);
1747 }
1748 }
1749
1750 void LIRGenerator::do_LoadField(LoadField* x) {
1751 bool needs_patching = x->needs_patching();
1752 bool is_volatile = x->field()->is_volatile();
1753 BasicType field_type = x->field_type();
1754
1755 CodeEmitInfo* info = nullptr;
1756 if (needs_patching) {
1757 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1758 info = state_for(x, x->state_before());
1759 } else if (x->needs_null_check()) {
1760 NullCheck* nc = x->explicit_null_check();
1761 if (nc == nullptr) {
1762 info = state_for(x);
1763 } else {
1764 info = state_for(nc);
1765 }
1766 }
1767
1768 LIRItem object(x->obj(), this);
1769
1770 object.load_item();
1771
1772 #ifndef PRODUCT
1773 if (PrintNotLoaded && needs_patching) {
1774 tty->print_cr(" ###class not loaded at load_%s bci %d",
1775 x->is_static() ? "static" : "field", x->printable_bci());
1776 }
1777 #endif
1778
1779 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1780 if (x->needs_null_check() &&
1781 (needs_patching ||
1782 MacroAssembler::needs_explicit_null_check(x->offset()) ||
1783 stress_deopt)) {
1784 LIR_Opr obj = object.result();
1785 if (stress_deopt) {
1786 obj = new_register(T_OBJECT);
1787 __ move(LIR_OprFact::oopConst(nullptr), obj);
1788 }
1789 // Emit an explicit null check because the offset is too large.
1790 // If the class is not loaded and the object is null, we need to deoptimize to throw a
1791 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1792 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1793 }
1794
1795 DecoratorSet decorators = IN_HEAP;
1796 if (is_volatile) {
1797 decorators |= MO_SEQ_CST;
1798 }
1799 if (needs_patching) {
1800 decorators |= C1_NEEDS_PATCHING;
1801 }
1802
1803 LIR_Opr result = rlock_result(x, field_type);
1804 access_load_at(decorators, field_type,
1805 object, LIR_OprFact::intConst(x->offset()), result,
1806 info ? new CodeEmitInfo(info) : nullptr, info);
1807 }
1808
1809 // int/long jdk.internal.util.Preconditions.checkIndex
1810 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1811 assert(x->number_of_arguments() == 3, "wrong type");
1812 LIRItem index(x->argument_at(0), this);
1813 LIRItem length(x->argument_at(1), this);
1814 LIRItem oobef(x->argument_at(2), this);
1815
1816 index.load_item();
1817 length.load_item();
1818 oobef.load_item();
1819
1820 LIR_Opr result = rlock_result(x);
1821 // x->state() is created from copy_state_for_exception, it does not contains arguments
1822 // we should prepare them before entering into interpreter mode due to deoptimization.
1823 ValueStack* state = x->state();
1824 for (int i = 0; i < x->number_of_arguments(); i++) {
1825 Value arg = x->argument_at(i);
1826 state->push(arg->type(), arg);
1827 }
1828 CodeEmitInfo* info = state_for(x, state);
1829
1830 LIR_Opr len = length.result();
1831 LIR_Opr zero;
1832 if (type == T_INT) {
1833 zero = LIR_OprFact::intConst(0);
1834 if (length.result()->is_constant()){
1835 len = LIR_OprFact::intConst(length.result()->as_jint());
1836 }
1837 } else {
1838 assert(type == T_LONG, "sanity check");
1839 zero = LIR_OprFact::longConst(0);
1840 if (length.result()->is_constant()){
1841 len = LIR_OprFact::longConst(length.result()->as_jlong());
1842 }
1843 }
1844 // C1 can not handle the case that comparing index with constant value while condition
1845 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1846 LIR_Opr zero_reg = new_register(type);
1847 __ move(zero, zero_reg);
1848 #if defined(X86) && !defined(_LP64)
1849 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1850 LIR_Opr index_copy = new_register(index.type());
1851 // index >= 0
1852 __ move(index.result(), index_copy);
1853 __ cmp(lir_cond_less, index_copy, zero_reg);
1854 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1855 Deoptimization::Action_make_not_entrant));
1856 // index < length
1857 __ move(index.result(), index_copy);
1858 __ cmp(lir_cond_greaterEqual, index_copy, len);
1859 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1860 Deoptimization::Action_make_not_entrant));
1861 #else
1862 // index >= 0
1863 __ cmp(lir_cond_less, index.result(), zero_reg);
1864 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1865 Deoptimization::Action_make_not_entrant));
1866 // index < length
1867 __ cmp(lir_cond_greaterEqual, index.result(), len);
1868 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1869 Deoptimization::Action_make_not_entrant));
1870 #endif
1871 __ move(index.result(), result);
1872 }
1873
1874 //------------------------array access--------------------------------------
1875
1876
1877 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1878 LIRItem array(x->array(), this);
1879 array.load_item();
1880 LIR_Opr reg = rlock_result(x);
1881
1882 CodeEmitInfo* info = nullptr;
1883 if (x->needs_null_check()) {
1884 NullCheck* nc = x->explicit_null_check();
1885 if (nc == nullptr) {
1886 info = state_for(x);
1887 } else {
1888 info = state_for(nc);
1889 }
1890 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1891 LIR_Opr obj = new_register(T_OBJECT);
1892 __ move(LIR_OprFact::oopConst(nullptr), obj);
1893 __ null_check(obj, new CodeEmitInfo(info));
1894 }
1895 }
1896 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1897 }
1898
1899
1900 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1901 bool use_length = x->length() != nullptr;
1902 LIRItem array(x->array(), this);
1903 LIRItem index(x->index(), this);
1904 LIRItem length(this);
1905 bool needs_range_check = x->compute_needs_range_check();
1906
1907 if (use_length && needs_range_check) {
1908 length.set_instruction(x->length());
1909 length.load_item();
1910 }
1911
1912 array.load_item();
1913 if (index.is_constant() && can_inline_as_constant(x->index())) {
1914 // let it be a constant
1915 index.dont_load_item();
1916 } else {
1917 index.load_item();
1918 }
1919
1920 CodeEmitInfo* range_check_info = state_for(x);
1921 CodeEmitInfo* null_check_info = nullptr;
1922 if (x->needs_null_check()) {
1923 NullCheck* nc = x->explicit_null_check();
1924 if (nc != nullptr) {
1925 null_check_info = state_for(nc);
1926 } else {
1927 null_check_info = range_check_info;
1928 }
1929 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1930 LIR_Opr obj = new_register(T_OBJECT);
1931 __ move(LIR_OprFact::oopConst(nullptr), obj);
1932 __ null_check(obj, new CodeEmitInfo(null_check_info));
1933 }
1934 }
1935
1936 if (needs_range_check) {
1937 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1938 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1939 } else if (use_length) {
1940 // TODO: use a (modified) version of array_range_check that does not require a
1941 // constant length to be loaded to a register
1942 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1943 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1944 } else {
1945 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1946 // The range check performs the null check, so clear it out for the load
1947 null_check_info = nullptr;
1948 }
1949 }
1950
1951 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1952
1953 LIR_Opr result = rlock_result(x, x->elt_type());
1954 access_load_at(decorators, x->elt_type(),
1955 array, index.result(), result,
1956 nullptr, null_check_info);
1957 }
1958
1959
1960 void LIRGenerator::do_NullCheck(NullCheck* x) {
1961 if (x->can_trap()) {
1962 LIRItem value(x->obj(), this);
1963 value.load_item();
1964 CodeEmitInfo* info = state_for(x);
1965 __ null_check(value.result(), info);
1966 }
1967 }
1968
1969
1970 void LIRGenerator::do_TypeCast(TypeCast* x) {
1971 LIRItem value(x->obj(), this);
1972 value.load_item();
1973 // the result is the same as from the node we are casting
1974 set_result(x, value.result());
1975 }
1976
1977
1978 void LIRGenerator::do_Throw(Throw* x) {
1979 LIRItem exception(x->exception(), this);
1980 exception.load_item();
1981 set_no_result(x);
1982 LIR_Opr exception_opr = exception.result();
1983 CodeEmitInfo* info = state_for(x, x->state());
1984
1985 #ifndef PRODUCT
1986 if (PrintC1Statistics) {
1987 increment_counter(Runtime1::throw_count_address(), T_INT);
1988 }
1989 #endif
1990
1991 // check if the instruction has an xhandler in any of the nested scopes
1992 bool unwind = false;
1993 if (info->exception_handlers()->length() == 0) {
1994 // this throw is not inside an xhandler
1995 unwind = true;
1996 } else {
1997 // get some idea of the throw type
1998 bool type_is_exact = true;
1999 ciType* throw_type = x->exception()->exact_type();
2000 if (throw_type == nullptr) {
2001 type_is_exact = false;
2002 throw_type = x->exception()->declared_type();
2003 }
2004 if (throw_type != nullptr && throw_type->is_instance_klass()) {
2005 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2006 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2007 }
2008 }
2009
2010 // do null check before moving exception oop into fixed register
2011 // to avoid a fixed interval with an oop during the null check.
2012 // Use a copy of the CodeEmitInfo because debug information is
2013 // different for null_check and throw.
2014 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2015 // if the exception object wasn't created using new then it might be null.
2016 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2017 }
2018
2019 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2020 // we need to go through the exception lookup path to get JVMTI
2021 // notification done
2022 unwind = false;
2023 }
2024
2025 // move exception oop into fixed register
2026 __ move(exception_opr, exceptionOopOpr());
2027
2028 if (unwind) {
2029 __ unwind_exception(exceptionOopOpr());
2030 } else {
2031 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2032 }
2033 }
2034
2035
2036 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2037 BasicType type = x->basic_type();
2038 LIRItem src(x->object(), this);
2039 LIRItem off(x->offset(), this);
2040
2041 off.load_item();
2042 src.load_item();
2043
2044 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2045
2046 if (x->is_volatile()) {
2047 decorators |= MO_SEQ_CST;
2048 }
2049 if (type == T_BOOLEAN) {
2050 decorators |= C1_MASK_BOOLEAN;
2051 }
2052 if (is_reference_type(type)) {
2053 decorators |= ON_UNKNOWN_OOP_REF;
2054 }
2055
2056 LIR_Opr result = rlock_result(x, type);
2057 if (!x->is_raw()) {
2058 access_load_at(decorators, type, src, off.result(), result);
2059 } else {
2060 // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2061 // It reads the value from [src + offset] directly.
2062 #ifdef _LP64
2063 LIR_Opr offset = new_register(T_LONG);
2064 __ convert(Bytecodes::_i2l, off.result(), offset);
2065 #else
2066 LIR_Opr offset = off.result();
2067 #endif
2068 LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2069 if (is_reference_type(type)) {
2070 __ move_wide(addr, result);
2071 } else {
2072 __ move(addr, result);
2073 }
2074 }
2075 }
2076
2077
2078 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2079 BasicType type = x->basic_type();
2080 LIRItem src(x->object(), this);
2081 LIRItem off(x->offset(), this);
2082 LIRItem data(x->value(), this);
2083
2084 src.load_item();
2085 if (type == T_BOOLEAN || type == T_BYTE) {
2086 data.load_byte_item();
2087 } else {
2088 data.load_item();
2089 }
2090 off.load_item();
2091
2092 set_no_result(x);
2093
2094 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2095 if (is_reference_type(type)) {
2096 decorators |= ON_UNKNOWN_OOP_REF;
2097 }
2098 if (x->is_volatile()) {
2099 decorators |= MO_SEQ_CST;
2100 }
2101 access_store_at(decorators, type, src, off.result(), data.result());
2102 }
2103
2104 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2105 BasicType type = x->basic_type();
2106 LIRItem src(x->object(), this);
2107 LIRItem off(x->offset(), this);
2108 LIRItem value(x->value(), this);
2109
2110 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2111
2112 if (is_reference_type(type)) {
2113 decorators |= ON_UNKNOWN_OOP_REF;
2114 }
2115
2116 LIR_Opr result;
2117 if (x->is_add()) {
2118 result = access_atomic_add_at(decorators, type, src, off, value);
2119 } else {
2120 result = access_atomic_xchg_at(decorators, type, src, off, value);
2121 }
2122 set_result(x, result);
2123 }
2124
2125 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2126 int lng = x->length();
2127
2128 for (int i = 0; i < lng; i++) {
2129 C1SwitchRange* one_range = x->at(i);
2130 int low_key = one_range->low_key();
2131 int high_key = one_range->high_key();
2132 BlockBegin* dest = one_range->sux();
2133 if (low_key == high_key) {
2134 __ cmp(lir_cond_equal, value, low_key);
2135 __ branch(lir_cond_equal, dest);
2136 } else if (high_key - low_key == 1) {
2137 __ cmp(lir_cond_equal, value, low_key);
2138 __ branch(lir_cond_equal, dest);
2139 __ cmp(lir_cond_equal, value, high_key);
2140 __ branch(lir_cond_equal, dest);
2141 } else {
2142 LabelObj* L = new LabelObj();
2143 __ cmp(lir_cond_less, value, low_key);
2144 __ branch(lir_cond_less, L->label());
2145 __ cmp(lir_cond_lessEqual, value, high_key);
2146 __ branch(lir_cond_lessEqual, dest);
2147 __ branch_destination(L->label());
2148 }
2149 }
2150 __ jump(default_sux);
2151 }
2152
2153
2154 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2155 SwitchRangeList* res = new SwitchRangeList();
2156 int len = x->length();
2157 if (len > 0) {
2158 BlockBegin* sux = x->sux_at(0);
2159 int low = x->lo_key();
2160 BlockBegin* default_sux = x->default_sux();
2161 C1SwitchRange* range = new C1SwitchRange(low, sux);
2162 for (int i = 0; i < len; i++) {
2163 int key = low + i;
2164 BlockBegin* new_sux = x->sux_at(i);
2165 if (sux == new_sux) {
2166 // still in same range
2167 range->set_high_key(key);
2168 } else {
2169 // skip tests which explicitly dispatch to the default
2170 if (sux != default_sux) {
2171 res->append(range);
2172 }
2173 range = new C1SwitchRange(key, new_sux);
2174 }
2175 sux = new_sux;
2176 }
2177 if (res->length() == 0 || res->last() != range) res->append(range);
2178 }
2179 return res;
2180 }
2181
2182
2183 // we expect the keys to be sorted by increasing value
2184 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2185 SwitchRangeList* res = new SwitchRangeList();
2186 int len = x->length();
2187 if (len > 0) {
2188 BlockBegin* default_sux = x->default_sux();
2189 int key = x->key_at(0);
2190 BlockBegin* sux = x->sux_at(0);
2191 C1SwitchRange* range = new C1SwitchRange(key, sux);
2192 for (int i = 1; i < len; i++) {
2193 int new_key = x->key_at(i);
2194 BlockBegin* new_sux = x->sux_at(i);
2195 if (key+1 == new_key && sux == new_sux) {
2196 // still in same range
2197 range->set_high_key(new_key);
2198 } else {
2199 // skip tests which explicitly dispatch to the default
2200 if (range->sux() != default_sux) {
2201 res->append(range);
2202 }
2203 range = new C1SwitchRange(new_key, new_sux);
2204 }
2205 key = new_key;
2206 sux = new_sux;
2207 }
2208 if (res->length() == 0 || res->last() != range) res->append(range);
2209 }
2210 return res;
2211 }
2212
2213
2214 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2215 LIRItem tag(x->tag(), this);
2216 tag.load_item();
2217 set_no_result(x);
2218
2219 if (x->is_safepoint()) {
2220 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2221 }
2222
2223 // move values into phi locations
2224 move_to_phi(x->state());
2225
2226 int lo_key = x->lo_key();
2227 int len = x->length();
2228 assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2229 LIR_Opr value = tag.result();
2230
2231 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2232 ciMethod* method = x->state()->scope()->method();
2233 ciMethodData* md = method->method_data_or_null();
2234 assert(md != nullptr, "Sanity");
2235 ciProfileData* data = md->bci_to_data(x->state()->bci());
2236 assert(data != nullptr, "must have profiling data");
2237 assert(data->is_MultiBranchData(), "bad profile data?");
2238 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2239 LIR_Opr md_reg = new_register(T_METADATA);
2240 __ metadata2reg(md->constant_encoding(), md_reg);
2241 LIR_Opr data_offset_reg = new_pointer_register();
2242 LIR_Opr tmp_reg = new_pointer_register();
2243
2244 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2245 for (int i = 0; i < len; i++) {
2246 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2247 __ cmp(lir_cond_equal, value, i + lo_key);
2248 __ move(data_offset_reg, tmp_reg);
2249 __ cmove(lir_cond_equal,
2250 LIR_OprFact::intptrConst(count_offset),
2251 tmp_reg,
2252 data_offset_reg, T_INT);
2253 }
2254
2255 LIR_Opr data_reg = new_pointer_register();
2256 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2257 __ move(data_addr, data_reg);
2258 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2259 __ move(data_reg, data_addr);
2260 }
2261
2262 if (UseTableRanges) {
2263 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2264 } else {
2265 for (int i = 0; i < len; i++) {
2266 __ cmp(lir_cond_equal, value, i + lo_key);
2267 __ branch(lir_cond_equal, x->sux_at(i));
2268 }
2269 __ jump(x->default_sux());
2270 }
2271 }
2272
2273
2274 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2275 LIRItem tag(x->tag(), this);
2276 tag.load_item();
2277 set_no_result(x);
2278
2279 if (x->is_safepoint()) {
2280 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2281 }
2282
2283 // move values into phi locations
2284 move_to_phi(x->state());
2285
2286 LIR_Opr value = tag.result();
2287 int len = x->length();
2288
2289 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2290 ciMethod* method = x->state()->scope()->method();
2291 ciMethodData* md = method->method_data_or_null();
2292 assert(md != nullptr, "Sanity");
2293 ciProfileData* data = md->bci_to_data(x->state()->bci());
2294 assert(data != nullptr, "must have profiling data");
2295 assert(data->is_MultiBranchData(), "bad profile data?");
2296 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2297 LIR_Opr md_reg = new_register(T_METADATA);
2298 __ metadata2reg(md->constant_encoding(), md_reg);
2299 LIR_Opr data_offset_reg = new_pointer_register();
2300 LIR_Opr tmp_reg = new_pointer_register();
2301
2302 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2303 for (int i = 0; i < len; i++) {
2304 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2305 __ cmp(lir_cond_equal, value, x->key_at(i));
2306 __ move(data_offset_reg, tmp_reg);
2307 __ cmove(lir_cond_equal,
2308 LIR_OprFact::intptrConst(count_offset),
2309 tmp_reg,
2310 data_offset_reg, T_INT);
2311 }
2312
2313 LIR_Opr data_reg = new_pointer_register();
2314 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2315 __ move(data_addr, data_reg);
2316 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2317 __ move(data_reg, data_addr);
2318 }
2319
2320 if (UseTableRanges) {
2321 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2322 } else {
2323 int len = x->length();
2324 for (int i = 0; i < len; i++) {
2325 __ cmp(lir_cond_equal, value, x->key_at(i));
2326 __ branch(lir_cond_equal, x->sux_at(i));
2327 }
2328 __ jump(x->default_sux());
2329 }
2330 }
2331
2332
2333 void LIRGenerator::do_Goto(Goto* x) {
2334 set_no_result(x);
2335
2336 if (block()->next()->as_OsrEntry()) {
2337 // need to free up storage used for OSR entry point
2338 LIR_Opr osrBuffer = block()->next()->operand();
2339 BasicTypeList signature;
2340 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2341 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2342 __ move(osrBuffer, cc->args()->at(0));
2343 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2344 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2345 }
2346
2347 if (x->is_safepoint()) {
2348 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2349
2350 // increment backedge counter if needed
2351 CodeEmitInfo* info = state_for(x, state);
2352 increment_backedge_counter(info, x->profiled_bci());
2353 CodeEmitInfo* safepoint_info = state_for(x, state);
2354 __ safepoint(safepoint_poll_register(), safepoint_info);
2355 }
2356
2357 // Gotos can be folded Ifs, handle this case.
2358 if (x->should_profile()) {
2359 ciMethod* method = x->profiled_method();
2360 assert(method != nullptr, "method should be set if branch is profiled");
2361 ciMethodData* md = method->method_data_or_null();
2362 assert(md != nullptr, "Sanity");
2363 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2364 assert(data != nullptr, "must have profiling data");
2365 int offset;
2366 if (x->direction() == Goto::taken) {
2367 assert(data->is_BranchData(), "need BranchData for two-way branches");
2368 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2369 } else if (x->direction() == Goto::not_taken) {
2370 assert(data->is_BranchData(), "need BranchData for two-way branches");
2371 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2372 } else {
2373 assert(data->is_JumpData(), "need JumpData for branches");
2374 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2375 }
2376 LIR_Opr md_reg = new_register(T_METADATA);
2377 __ metadata2reg(md->constant_encoding(), md_reg);
2378
2379 increment_counter(new LIR_Address(md_reg, offset,
2380 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2381 }
2382
2383 // emit phi-instruction move after safepoint since this simplifies
2384 // describing the state as the safepoint.
2385 move_to_phi(x->state());
2386
2387 __ jump(x->default_sux());
2388 }
2389
2390 /**
2391 * Emit profiling code if needed for arguments, parameters, return value types
2392 *
2393 * @param md MDO the code will update at runtime
2394 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2395 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2396 * @param profiled_k current profile
2397 * @param obj IR node for the object to be profiled
2398 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2399 * Set once we find an update to make and use for next ones.
2400 * @param not_null true if we know obj cannot be null
2401 * @param signature_at_call_k signature at call for obj
2402 * @param callee_signature_k signature of callee for obj
2403 * at call and callee signatures differ at method handle call
2404 * @return the only klass we know will ever be seen at this profile point
2405 */
2406 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2407 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2408 ciKlass* callee_signature_k) {
2409 ciKlass* result = nullptr;
2410 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2411 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2412 // known not to be null or null bit already set and already set to
2413 // unknown: nothing we can do to improve profiling
2414 if (!do_null && !do_update) {
2415 return result;
2416 }
2417
2418 ciKlass* exact_klass = nullptr;
2419 Compilation* comp = Compilation::current();
2420 if (do_update) {
2421 // try to find exact type, using CHA if possible, so that loading
2422 // the klass from the object can be avoided
2423 ciType* type = obj->exact_type();
2424 if (type == nullptr) {
2425 type = obj->declared_type();
2426 type = comp->cha_exact_type(type);
2427 }
2428 assert(type == nullptr || type->is_klass(), "type should be class");
2429 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2430
2431 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2432 }
2433
2434 if (!do_null && !do_update) {
2435 return result;
2436 }
2437
2438 ciKlass* exact_signature_k = nullptr;
2439 if (do_update) {
2440 // Is the type from the signature exact (the only one possible)?
2441 exact_signature_k = signature_at_call_k->exact_klass();
2442 if (exact_signature_k == nullptr) {
2443 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2444 } else {
2445 result = exact_signature_k;
2446 // Known statically. No need to emit any code: prevent
2447 // LIR_Assembler::emit_profile_type() from emitting useless code
2448 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2449 }
2450 // exact_klass and exact_signature_k can be both non null but
2451 // different if exact_klass is loaded after the ciObject for
2452 // exact_signature_k is created.
2453 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2454 // sometimes the type of the signature is better than the best type
2455 // the compiler has
2456 exact_klass = exact_signature_k;
2457 }
2458 if (callee_signature_k != nullptr &&
2459 callee_signature_k != signature_at_call_k) {
2460 ciKlass* improved_klass = callee_signature_k->exact_klass();
2461 if (improved_klass == nullptr) {
2462 improved_klass = comp->cha_exact_type(callee_signature_k);
2463 }
2464 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2465 exact_klass = exact_signature_k;
2466 }
2467 }
2468 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2469 }
2470
2471 if (!do_null && !do_update) {
2472 return result;
2473 }
2474
2475 if (mdp == LIR_OprFact::illegalOpr) {
2476 mdp = new_register(T_METADATA);
2477 __ metadata2reg(md->constant_encoding(), mdp);
2478 if (md_base_offset != 0) {
2479 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2480 mdp = new_pointer_register();
2481 __ leal(LIR_OprFact::address(base_type_address), mdp);
2482 }
2483 }
2484 LIRItem value(obj, this);
2485 value.load_item();
2486 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2487 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2488 return result;
2489 }
2490
2491 // profile parameters on entry to the root of the compilation
2492 void LIRGenerator::profile_parameters(Base* x) {
2493 if (compilation()->profile_parameters()) {
2494 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2495 ciMethodData* md = scope()->method()->method_data_or_null();
2496 assert(md != nullptr, "Sanity");
2497
2498 if (md->parameters_type_data() != nullptr) {
2499 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2500 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2501 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2502 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2503 LIR_Opr src = args->at(i);
2504 assert(!src->is_illegal(), "check");
2505 BasicType t = src->type();
2506 if (is_reference_type(t)) {
2507 intptr_t profiled_k = parameters->type(j);
2508 Local* local = x->state()->local_at(java_index)->as_Local();
2509 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2510 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2511 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2512 // If the profile is known statically set it once for all and do not emit any code
2513 if (exact != nullptr) {
2514 md->set_parameter_type(j, exact);
2515 }
2516 j++;
2517 }
2518 java_index += type2size[t];
2519 }
2520 }
2521 }
2522 }
2523
2524 void LIRGenerator::do_Base(Base* x) {
2525 __ std_entry(LIR_OprFact::illegalOpr);
2526 // Emit moves from physical registers / stack slots to virtual registers
2527 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2528 IRScope* irScope = compilation()->hir()->top_scope();
2529 int java_index = 0;
2530 for (int i = 0; i < args->length(); i++) {
2531 LIR_Opr src = args->at(i);
2532 assert(!src->is_illegal(), "check");
2533 BasicType t = src->type();
2534
2535 // Types which are smaller than int are passed as int, so
2536 // correct the type which passed.
2537 switch (t) {
2538 case T_BYTE:
2539 case T_BOOLEAN:
2540 case T_SHORT:
2541 case T_CHAR:
2542 t = T_INT;
2543 break;
2544 default:
2545 break;
2546 }
2547
2548 LIR_Opr dest = new_register(t);
2549 __ move(src, dest);
2550
2551 // Assign new location to Local instruction for this local
2552 Local* local = x->state()->local_at(java_index)->as_Local();
2553 assert(local != nullptr, "Locals for incoming arguments must have been created");
2554 #ifndef __SOFTFP__
2555 // The java calling convention passes double as long and float as int.
2556 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2557 #endif // __SOFTFP__
2558 local->set_operand(dest);
2559 #ifdef ASSERT
2560 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2561 #endif
2562 java_index += type2size[t];
2563 }
2564
2565 if (compilation()->env()->dtrace_method_probes()) {
2566 BasicTypeList signature;
2567 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2568 signature.append(T_METADATA); // Method*
2569 LIR_OprList* args = new LIR_OprList();
2570 args->append(getThreadPointer());
2571 LIR_Opr meth = new_register(T_METADATA);
2572 __ metadata2reg(method()->constant_encoding(), meth);
2573 args->append(meth);
2574 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2575 }
2576
2577 MethodDetails method_details(method());
2578 RuntimeUpcallInfo* upcall = RuntimeUpcalls::get_first_upcall(RuntimeUpcallType::onMethodEntry, method_details);
2579 while (upcall != nullptr) {
2580 BasicTypeList signature;
2581 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2582 LIR_OprList* args = new LIR_OprList();
2583 args->append(getThreadPointer());
2584 call_runtime(&signature, args, upcall->upcall_address(), voidType, nullptr);
2585 upcall = RuntimeUpcalls::get_next_upcall(RuntimeUpcallType::onMethodEntry, method_details, upcall);
2586 }
2587
2588 if (method()->is_synchronized()) {
2589 LIR_Opr obj;
2590 if (method()->is_static()) {
2591 obj = new_register(T_OBJECT);
2592 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2593 } else {
2594 Local* receiver = x->state()->local_at(0)->as_Local();
2595 assert(receiver != nullptr, "must already exist");
2596 obj = receiver->operand();
2597 }
2598 assert(obj->is_valid(), "must be valid");
2599
2600 if (method()->is_synchronized()) {
2601 LIR_Opr lock = syncLockOpr();
2602 __ load_stack_address_monitor(0, lock);
2603
2604 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2605 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2606
2607 // receiver is guaranteed non-null so don't need CodeEmitInfo
2608 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2609 }
2610 }
2611 // increment invocation counters if needed
2612 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2613 profile_parameters(x);
2614 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2615 increment_invocation_counter(info);
2616 }
2617
2618 // all blocks with a successor must end with an unconditional jump
2619 // to the successor even if they are consecutive
2620 __ jump(x->default_sux());
2621 }
2622
2623
2624 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2625 // construct our frame and model the production of incoming pointer
2626 // to the OSR buffer.
2627 __ osr_entry(LIR_Assembler::osrBufferPointer());
2628 LIR_Opr result = rlock_result(x);
2629 __ move(LIR_Assembler::osrBufferPointer(), result);
2630 }
2631
2632
2633 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2634 assert(args->length() == arg_list->length(),
2635 "args=%d, arg_list=%d", args->length(), arg_list->length());
2636 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2637 LIRItem* param = args->at(i);
2638 LIR_Opr loc = arg_list->at(i);
2639 if (loc->is_register()) {
2640 param->load_item_force(loc);
2641 } else {
2642 LIR_Address* addr = loc->as_address_ptr();
2643 param->load_for_store(addr->type());
2644 if (addr->type() == T_OBJECT) {
2645 __ move_wide(param->result(), addr);
2646 } else
2647 __ move(param->result(), addr);
2648 }
2649 }
2650
2651 if (x->has_receiver()) {
2652 LIRItem* receiver = args->at(0);
2653 LIR_Opr loc = arg_list->at(0);
2654 if (loc->is_register()) {
2655 receiver->load_item_force(loc);
2656 } else {
2657 assert(loc->is_address(), "just checking");
2658 receiver->load_for_store(T_OBJECT);
2659 __ move_wide(receiver->result(), loc->as_address_ptr());
2660 }
2661 }
2662 }
2663
2664
2665 // Visits all arguments, returns appropriate items without loading them
2666 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2667 LIRItemList* argument_items = new LIRItemList();
2668 if (x->has_receiver()) {
2669 LIRItem* receiver = new LIRItem(x->receiver(), this);
2670 argument_items->append(receiver);
2671 }
2672 for (int i = 0; i < x->number_of_arguments(); i++) {
2673 LIRItem* param = new LIRItem(x->argument_at(i), this);
2674 argument_items->append(param);
2675 }
2676 return argument_items;
2677 }
2678
2679
2680 // The invoke with receiver has following phases:
2681 // a) traverse and load/lock receiver;
2682 // b) traverse all arguments -> item-array (invoke_visit_argument)
2683 // c) push receiver on stack
2684 // d) load each of the items and push on stack
2685 // e) unlock receiver
2686 // f) move receiver into receiver-register %o0
2687 // g) lock result registers and emit call operation
2688 //
2689 // Before issuing a call, we must spill-save all values on stack
2690 // that are in caller-save register. "spill-save" moves those registers
2691 // either in a free callee-save register or spills them if no free
2692 // callee save register is available.
2693 //
2694 // The problem is where to invoke spill-save.
2695 // - if invoked between e) and f), we may lock callee save
2696 // register in "spill-save" that destroys the receiver register
2697 // before f) is executed
2698 // - if we rearrange f) to be earlier (by loading %o0) it
2699 // may destroy a value on the stack that is currently in %o0
2700 // and is waiting to be spilled
2701 // - if we keep the receiver locked while doing spill-save,
2702 // we cannot spill it as it is spill-locked
2703 //
2704 void LIRGenerator::do_Invoke(Invoke* x) {
2705 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2706
2707 LIR_OprList* arg_list = cc->args();
2708 LIRItemList* args = invoke_visit_arguments(x);
2709 LIR_Opr receiver = LIR_OprFact::illegalOpr;
2710
2711 // setup result register
2712 LIR_Opr result_register = LIR_OprFact::illegalOpr;
2713 if (x->type() != voidType) {
2714 result_register = result_register_for(x->type());
2715 }
2716
2717 CodeEmitInfo* info = state_for(x, x->state());
2718
2719 invoke_load_arguments(x, args, arg_list);
2720
2721 if (x->has_receiver()) {
2722 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2723 receiver = args->at(0)->result();
2724 }
2725
2726 // emit invoke code
2727 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2728
2729 ciMethod* target = x->target();
2730 switch (x->code()) {
2731 case Bytecodes::_invokestatic:
2732 __ call_static(target, result_register,
2733 SharedRuntime::get_resolve_static_call_stub(),
2734 arg_list, info);
2735 break;
2736 case Bytecodes::_invokespecial:
2737 case Bytecodes::_invokevirtual:
2738 case Bytecodes::_invokeinterface:
2739 // for loaded and final (method or class) target we still produce an inline cache,
2740 // in order to be able to call mixed mode
2741 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2742 __ call_opt_virtual(target, receiver, result_register,
2743 SharedRuntime::get_resolve_opt_virtual_call_stub(),
2744 arg_list, info);
2745 } else {
2746 __ call_icvirtual(target, receiver, result_register,
2747 SharedRuntime::get_resolve_virtual_call_stub(),
2748 arg_list, info);
2749 }
2750 break;
2751 case Bytecodes::_invokedynamic: {
2752 __ call_dynamic(target, receiver, result_register,
2753 SharedRuntime::get_resolve_static_call_stub(),
2754 arg_list, info);
2755 break;
2756 }
2757 default:
2758 fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2759 break;
2760 }
2761
2762 if (result_register->is_valid()) {
2763 LIR_Opr result = rlock_result(x);
2764 __ move(result_register, result);
2765 }
2766 }
2767
2768
2769 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2770 assert(x->number_of_arguments() == 1, "wrong type");
2771 LIRItem value (x->argument_at(0), this);
2772 LIR_Opr reg = rlock_result(x);
2773 value.load_item();
2774 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2775 __ move(tmp, reg);
2776 }
2777
2778
2779
2780 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2781 void LIRGenerator::do_IfOp(IfOp* x) {
2782 #ifdef ASSERT
2783 {
2784 ValueTag xtag = x->x()->type()->tag();
2785 ValueTag ttag = x->tval()->type()->tag();
2786 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2787 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2788 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2789 }
2790 #endif
2791
2792 LIRItem left(x->x(), this);
2793 LIRItem right(x->y(), this);
2794 left.load_item();
2795 if (can_inline_as_constant(right.value())) {
2796 right.dont_load_item();
2797 } else {
2798 right.load_item();
2799 }
2800
2801 LIRItem t_val(x->tval(), this);
2802 LIRItem f_val(x->fval(), this);
2803 t_val.dont_load_item();
2804 f_val.dont_load_item();
2805 LIR_Opr reg = rlock_result(x);
2806
2807 __ cmp(lir_cond(x->cond()), left.result(), right.result());
2808 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2809 }
2810
2811 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2812 assert(x->number_of_arguments() == 0, "wrong type");
2813 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2814 BasicTypeList signature;
2815 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2816 LIR_Opr reg = result_register_for(x->type());
2817 __ call_runtime_leaf(routine, getThreadTemp(),
2818 reg, new LIR_OprList());
2819 LIR_Opr result = rlock_result(x);
2820 __ move(reg, result);
2821 }
2822
2823
2824
2825 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2826 switch (x->id()) {
2827 case vmIntrinsics::_intBitsToFloat :
2828 case vmIntrinsics::_doubleToRawLongBits :
2829 case vmIntrinsics::_longBitsToDouble :
2830 case vmIntrinsics::_floatToRawIntBits : {
2831 do_FPIntrinsics(x);
2832 break;
2833 }
2834
2835 #ifdef JFR_HAVE_INTRINSICS
2836 case vmIntrinsics::_counterTime:
2837 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2838 break;
2839 #endif
2840
2841 case vmIntrinsics::_currentTimeMillis:
2842 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2843 break;
2844
2845 case vmIntrinsics::_nanoTime:
2846 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2847 break;
2848
2849 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
2850 case vmIntrinsics::_isInstance: do_isInstance(x); break;
2851 case vmIntrinsics::_getClass: do_getClass(x); break;
2852 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
2853 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2854 case vmIntrinsics::_currentThread: do_vthread(x); break;
2855 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2856
2857 case vmIntrinsics::_dlog: // fall through
2858 case vmIntrinsics::_dlog10: // fall through
2859 case vmIntrinsics::_dabs: // fall through
2860 case vmIntrinsics::_dsqrt: // fall through
2861 case vmIntrinsics::_dsqrt_strict: // fall through
2862 case vmIntrinsics::_dtan: // fall through
2863 case vmIntrinsics::_dsinh: // fall through
2864 case vmIntrinsics::_dtanh: // fall through
2865 case vmIntrinsics::_dsin : // fall through
2866 case vmIntrinsics::_dcos : // fall through
2867 case vmIntrinsics::_dcbrt : // fall through
2868 case vmIntrinsics::_dexp : // fall through
2869 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
2870 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
2871
2872 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
2873 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
2874
2875 // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2876 case vmIntrinsics::_floatToFloat16: // fall through
2877 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2878
2879 case vmIntrinsics::_Preconditions_checkIndex:
2880 do_PreconditionsCheckIndex(x, T_INT);
2881 break;
2882 case vmIntrinsics::_Preconditions_checkLongIndex:
2883 do_PreconditionsCheckIndex(x, T_LONG);
2884 break;
2885
2886 case vmIntrinsics::_compareAndSetReference:
2887 do_CompareAndSwap(x, objectType);
2888 break;
2889 case vmIntrinsics::_compareAndSetInt:
2890 do_CompareAndSwap(x, intType);
2891 break;
2892 case vmIntrinsics::_compareAndSetLong:
2893 do_CompareAndSwap(x, longType);
2894 break;
2895
2896 case vmIntrinsics::_loadFence :
2897 __ membar_acquire();
2898 break;
2899 case vmIntrinsics::_storeFence:
2900 __ membar_release();
2901 break;
2902 case vmIntrinsics::_storeStoreFence:
2903 __ membar_storestore();
2904 break;
2905 case vmIntrinsics::_fullFence :
2906 __ membar();
2907 break;
2908 case vmIntrinsics::_onSpinWait:
2909 __ on_spin_wait();
2910 break;
2911 case vmIntrinsics::_Reference_get0:
2912 do_Reference_get0(x);
2913 break;
2914
2915 case vmIntrinsics::_updateCRC32:
2916 case vmIntrinsics::_updateBytesCRC32:
2917 case vmIntrinsics::_updateByteBufferCRC32:
2918 do_update_CRC32(x);
2919 break;
2920
2921 case vmIntrinsics::_updateBytesCRC32C:
2922 case vmIntrinsics::_updateDirectByteBufferCRC32C:
2923 do_update_CRC32C(x);
2924 break;
2925
2926 case vmIntrinsics::_vectorizedMismatch:
2927 do_vectorizedMismatch(x);
2928 break;
2929
2930 case vmIntrinsics::_blackhole:
2931 do_blackhole(x);
2932 break;
2933
2934 default: ShouldNotReachHere(); break;
2935 }
2936 }
2937
2938 void LIRGenerator::profile_arguments(ProfileCall* x) {
2939 if (compilation()->profile_arguments()) {
2940 int bci = x->bci_of_invoke();
2941 ciMethodData* md = x->method()->method_data_or_null();
2942 assert(md != nullptr, "Sanity");
2943 ciProfileData* data = md->bci_to_data(bci);
2944 if (data != nullptr) {
2945 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
2946 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
2947 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
2948 int base_offset = md->byte_offset_of_slot(data, extra);
2949 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2950 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
2951
2952 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2953 int start = 0;
2954 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
2955 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
2956 // first argument is not profiled at call (method handle invoke)
2957 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
2958 start = 1;
2959 }
2960 ciSignature* callee_signature = x->callee()->signature();
2961 // method handle call to virtual method
2962 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
2963 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
2964
2965 bool ignored_will_link;
2966 ciSignature* signature_at_call = nullptr;
2967 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
2968 ciSignatureStream signature_at_call_stream(signature_at_call);
2969
2970 // if called through method handle invoke, some arguments may have been popped
2971 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
2972 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
2973 ciKlass* exact = profile_type(md, base_offset, off,
2974 args->type(i), x->profiled_arg_at(i+start), mdp,
2975 !x->arg_needs_null_check(i+start),
2976 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
2977 if (exact != nullptr) {
2978 md->set_argument_type(bci, i, exact);
2979 }
2980 }
2981 } else {
2982 #ifdef ASSERT
2983 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
2984 int n = x->nb_profiled_args();
2985 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
2986 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
2987 "only at JSR292 bytecodes");
2988 #endif
2989 }
2990 }
2991 }
2992 }
2993
2994 // profile parameters on entry to an inlined method
2995 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
2996 if (compilation()->profile_parameters() && x->inlined()) {
2997 ciMethodData* md = x->callee()->method_data_or_null();
2998 if (md != nullptr) {
2999 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3000 if (parameters_type_data != nullptr) {
3001 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3002 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3003 bool has_receiver = !x->callee()->is_static();
3004 ciSignature* sig = x->callee()->signature();
3005 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3006 int i = 0; // to iterate on the Instructions
3007 Value arg = x->recv();
3008 bool not_null = false;
3009 int bci = x->bci_of_invoke();
3010 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3011 // The first parameter is the receiver so that's what we start
3012 // with if it exists. One exception is method handle call to
3013 // virtual method: the receiver is in the args list
3014 if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3015 i = 1;
3016 arg = x->profiled_arg_at(0);
3017 not_null = !x->arg_needs_null_check(0);
3018 }
3019 int k = 0; // to iterate on the profile data
3020 for (;;) {
3021 intptr_t profiled_k = parameters->type(k);
3022 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3023 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3024 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3025 // If the profile is known statically set it once for all and do not emit any code
3026 if (exact != nullptr) {
3027 md->set_parameter_type(k, exact);
3028 }
3029 k++;
3030 if (k >= parameters_type_data->number_of_parameters()) {
3031 #ifdef ASSERT
3032 int extra = 0;
3033 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3034 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3035 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3036 extra += 1;
3037 }
3038 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3039 #endif
3040 break;
3041 }
3042 arg = x->profiled_arg_at(i);
3043 not_null = !x->arg_needs_null_check(i);
3044 i++;
3045 }
3046 }
3047 }
3048 }
3049 }
3050
3051 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3052 // Need recv in a temporary register so it interferes with the other temporaries
3053 LIR_Opr recv = LIR_OprFact::illegalOpr;
3054 LIR_Opr mdo = new_register(T_METADATA);
3055 // tmp is used to hold the counters on SPARC
3056 LIR_Opr tmp = new_pointer_register();
3057
3058 if (x->nb_profiled_args() > 0) {
3059 profile_arguments(x);
3060 }
3061
3062 // profile parameters on inlined method entry including receiver
3063 if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3064 profile_parameters_at_call(x);
3065 }
3066
3067 if (x->recv() != nullptr) {
3068 LIRItem value(x->recv(), this);
3069 value.load_item();
3070 recv = new_register(T_OBJECT);
3071 __ move(value.result(), recv);
3072 }
3073 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3074 }
3075
3076 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3077 int bci = x->bci_of_invoke();
3078 ciMethodData* md = x->method()->method_data_or_null();
3079 assert(md != nullptr, "Sanity");
3080 ciProfileData* data = md->bci_to_data(bci);
3081 if (data != nullptr) {
3082 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3083 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3084 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3085
3086 bool ignored_will_link;
3087 ciSignature* signature_at_call = nullptr;
3088 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3089
3090 // The offset within the MDO of the entry to update may be too large
3091 // to be used in load/store instructions on some platforms. So have
3092 // profile_type() compute the address of the profile in a register.
3093 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3094 ret->type(), x->ret(), mdp,
3095 !x->needs_null_check(),
3096 signature_at_call->return_type()->as_klass(),
3097 x->callee()->signature()->return_type()->as_klass());
3098 if (exact != nullptr) {
3099 md->set_return_type(bci, exact);
3100 }
3101 }
3102 }
3103
3104 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3105 // We can safely ignore accessors here, since c2 will inline them anyway,
3106 // accessors are also always mature.
3107 if (!x->inlinee()->is_accessor()) {
3108 CodeEmitInfo* info = state_for(x, x->state(), true);
3109 // Notify the runtime very infrequently only to take care of counter overflows
3110 int freq_log = Tier23InlineeNotifyFreqLog;
3111 double scale;
3112 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3113 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3114 }
3115 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3116 }
3117 }
3118
3119 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3120 if (compilation()->is_profiling()) {
3121 #if defined(X86) && !defined(_LP64)
3122 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3123 LIR_Opr left_copy = new_register(left->type());
3124 __ move(left, left_copy);
3125 __ cmp(cond, left_copy, right);
3126 #else
3127 __ cmp(cond, left, right);
3128 #endif
3129 LIR_Opr step = new_register(T_INT);
3130 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3131 LIR_Opr zero = LIR_OprFact::intConst(0);
3132 __ cmove(cond,
3133 (left_bci < bci) ? plus_one : zero,
3134 (right_bci < bci) ? plus_one : zero,
3135 step, left->type());
3136 increment_backedge_counter(info, step, bci);
3137 }
3138 }
3139
3140
3141 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3142 int freq_log = 0;
3143 int level = compilation()->env()->comp_level();
3144 if (level == CompLevel_limited_profile) {
3145 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3146 } else if (level == CompLevel_full_profile) {
3147 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3148 } else {
3149 ShouldNotReachHere();
3150 }
3151 // Increment the appropriate invocation/backedge counter and notify the runtime.
3152 double scale;
3153 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3154 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3155 }
3156 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3157 }
3158
3159 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3160 ciMethod *method, LIR_Opr step, int frequency,
3161 int bci, bool backedge, bool notify) {
3162 if (PreloadOnly) {
3163 // Nothing to do if we only use preload code.
3164 return;
3165 }
3166 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3167 int level = _compilation->env()->comp_level();
3168 assert(level > CompLevel_simple, "Shouldn't be here");
3169
3170 int offset = -1;
3171 LIR_Opr counter_holder;
3172 if (level == CompLevel_limited_profile) {
3173 MethodCounters* counters_adr = method->ensure_method_counters();
3174 if (counters_adr == nullptr) {
3175 bailout("method counters allocation failed");
3176 return;
3177 }
3178 if (AOTCodeCache::is_on()) {
3179 counter_holder = new_register(T_METADATA);
3180 __ metadata2reg(counters_adr, counter_holder);
3181 } else {
3182 counter_holder = new_pointer_register();
3183 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3184 }
3185 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3186 MethodCounters::invocation_counter_offset());
3187 } else if (level == CompLevel_full_profile) {
3188 counter_holder = new_register(T_METADATA);
3189 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3190 MethodData::invocation_counter_offset());
3191 ciMethodData* md = method->method_data_or_null();
3192 assert(md != nullptr, "Sanity");
3193 __ metadata2reg(md->constant_encoding(), counter_holder);
3194 } else {
3195 ShouldNotReachHere();
3196 }
3197 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3198 LIR_Opr result = new_register(T_INT);
3199 __ load(counter, result);
3200 __ add(result, step, result);
3201 __ store(result, counter);
3202 if (notify && (!backedge || UseOnStackReplacement)) {
3203 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3204 // The bci for info can point to cmp for if's we want the if bci
3205 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3206 int freq = frequency << InvocationCounter::count_shift;
3207 if (freq == 0) {
3208 if (!step->is_constant()) {
3209 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3210 __ branch(lir_cond_notEqual, overflow);
3211 } else {
3212 __ branch(lir_cond_always, overflow);
3213 }
3214 } else {
3215 LIR_Opr mask = load_immediate(freq, T_INT);
3216 if (!step->is_constant()) {
3217 // If step is 0, make sure the overflow check below always fails
3218 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3219 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3220 }
3221 __ logical_and(result, mask, result);
3222 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3223 __ branch(lir_cond_equal, overflow);
3224 }
3225 __ branch_destination(overflow->continuation());
3226 }
3227 }
3228
3229 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3230 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3231 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3232
3233 if (x->pass_thread()) {
3234 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3235 args->append(getThreadPointer());
3236 }
3237
3238 for (int i = 0; i < x->number_of_arguments(); i++) {
3239 Value a = x->argument_at(i);
3240 LIRItem* item = new LIRItem(a, this);
3241 item->load_item();
3242 args->append(item->result());
3243 signature->append(as_BasicType(a->type()));
3244 }
3245
3246 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3247 if (x->type() == voidType) {
3248 set_no_result(x);
3249 } else {
3250 __ move(result, rlock_result(x));
3251 }
3252 }
3253
3254 #ifdef ASSERT
3255 void LIRGenerator::do_Assert(Assert *x) {
3256 ValueTag tag = x->x()->type()->tag();
3257 If::Condition cond = x->cond();
3258
3259 LIRItem xitem(x->x(), this);
3260 LIRItem yitem(x->y(), this);
3261 LIRItem* xin = &xitem;
3262 LIRItem* yin = &yitem;
3263
3264 assert(tag == intTag, "Only integer assertions are valid!");
3265
3266 xin->load_item();
3267 yin->dont_load_item();
3268
3269 set_no_result(x);
3270
3271 LIR_Opr left = xin->result();
3272 LIR_Opr right = yin->result();
3273
3274 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3275 }
3276 #endif
3277
3278 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3279
3280
3281 Instruction *a = x->x();
3282 Instruction *b = x->y();
3283 if (!a || StressRangeCheckElimination) {
3284 assert(!b || StressRangeCheckElimination, "B must also be null");
3285
3286 CodeEmitInfo *info = state_for(x, x->state());
3287 CodeStub* stub = new PredicateFailedStub(info);
3288
3289 __ jump(stub);
3290 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3291 int a_int = a->type()->as_IntConstant()->value();
3292 int b_int = b->type()->as_IntConstant()->value();
3293
3294 bool ok = false;
3295
3296 switch(x->cond()) {
3297 case Instruction::eql: ok = (a_int == b_int); break;
3298 case Instruction::neq: ok = (a_int != b_int); break;
3299 case Instruction::lss: ok = (a_int < b_int); break;
3300 case Instruction::leq: ok = (a_int <= b_int); break;
3301 case Instruction::gtr: ok = (a_int > b_int); break;
3302 case Instruction::geq: ok = (a_int >= b_int); break;
3303 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3304 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3305 default: ShouldNotReachHere();
3306 }
3307
3308 if (ok) {
3309
3310 CodeEmitInfo *info = state_for(x, x->state());
3311 CodeStub* stub = new PredicateFailedStub(info);
3312
3313 __ jump(stub);
3314 }
3315 } else {
3316
3317 ValueTag tag = x->x()->type()->tag();
3318 If::Condition cond = x->cond();
3319 LIRItem xitem(x->x(), this);
3320 LIRItem yitem(x->y(), this);
3321 LIRItem* xin = &xitem;
3322 LIRItem* yin = &yitem;
3323
3324 assert(tag == intTag, "Only integer deoptimizations are valid!");
3325
3326 xin->load_item();
3327 yin->dont_load_item();
3328 set_no_result(x);
3329
3330 LIR_Opr left = xin->result();
3331 LIR_Opr right = yin->result();
3332
3333 CodeEmitInfo *info = state_for(x, x->state());
3334 CodeStub* stub = new PredicateFailedStub(info);
3335
3336 __ cmp(lir_cond(cond), left, right);
3337 __ branch(lir_cond(cond), stub);
3338 }
3339 }
3340
3341 void LIRGenerator::do_blackhole(Intrinsic *x) {
3342 assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3343 for (int c = 0; c < x->number_of_arguments(); c++) {
3344 // Load the argument
3345 LIRItem vitem(x->argument_at(c), this);
3346 vitem.load_item();
3347 // ...and leave it unused.
3348 }
3349 }
3350
3351 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3352 LIRItemList args(1);
3353 LIRItem value(arg1, this);
3354 args.append(&value);
3355 BasicTypeList signature;
3356 signature.append(as_BasicType(arg1->type()));
3357
3358 return call_runtime(&signature, &args, entry, result_type, info);
3359 }
3360
3361
3362 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3363 LIRItemList args(2);
3364 LIRItem value1(arg1, this);
3365 LIRItem value2(arg2, this);
3366 args.append(&value1);
3367 args.append(&value2);
3368 BasicTypeList signature;
3369 signature.append(as_BasicType(arg1->type()));
3370 signature.append(as_BasicType(arg2->type()));
3371
3372 return call_runtime(&signature, &args, entry, result_type, info);
3373 }
3374
3375
3376 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3377 address entry, ValueType* result_type, CodeEmitInfo* info) {
3378 // get a result register
3379 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3380 LIR_Opr result = LIR_OprFact::illegalOpr;
3381 if (result_type->tag() != voidTag) {
3382 result = new_register(result_type);
3383 phys_reg = result_register_for(result_type);
3384 }
3385
3386 // move the arguments into the correct location
3387 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3388 assert(cc->length() == args->length(), "argument mismatch");
3389 for (int i = 0; i < args->length(); i++) {
3390 LIR_Opr arg = args->at(i);
3391 LIR_Opr loc = cc->at(i);
3392 if (loc->is_register()) {
3393 __ move(arg, loc);
3394 } else {
3395 LIR_Address* addr = loc->as_address_ptr();
3396 // if (!can_store_as_constant(arg)) {
3397 // LIR_Opr tmp = new_register(arg->type());
3398 // __ move(arg, tmp);
3399 // arg = tmp;
3400 // }
3401 __ move(arg, addr);
3402 }
3403 }
3404
3405 if (info) {
3406 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3407 } else {
3408 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3409 }
3410 if (result->is_valid()) {
3411 __ move(phys_reg, result);
3412 }
3413 return result;
3414 }
3415
3416
3417 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3418 address entry, ValueType* result_type, CodeEmitInfo* info) {
3419 // get a result register
3420 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3421 LIR_Opr result = LIR_OprFact::illegalOpr;
3422 if (result_type->tag() != voidTag) {
3423 result = new_register(result_type);
3424 phys_reg = result_register_for(result_type);
3425 }
3426
3427 // move the arguments into the correct location
3428 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3429
3430 assert(cc->length() == args->length(), "argument mismatch");
3431 for (int i = 0; i < args->length(); i++) {
3432 LIRItem* arg = args->at(i);
3433 LIR_Opr loc = cc->at(i);
3434 if (loc->is_register()) {
3435 arg->load_item_force(loc);
3436 } else {
3437 LIR_Address* addr = loc->as_address_ptr();
3438 arg->load_for_store(addr->type());
3439 __ move(arg->result(), addr);
3440 }
3441 }
3442
3443 if (info) {
3444 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3445 } else {
3446 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3447 }
3448 if (result->is_valid()) {
3449 __ move(phys_reg, result);
3450 }
3451 return result;
3452 }
3453
3454 void LIRGenerator::do_MemBar(MemBar* x) {
3455 LIR_Code code = x->code();
3456 switch(code) {
3457 case lir_membar_acquire : __ membar_acquire(); break;
3458 case lir_membar_release : __ membar_release(); break;
3459 case lir_membar : __ membar(); break;
3460 case lir_membar_loadload : __ membar_loadload(); break;
3461 case lir_membar_storestore: __ membar_storestore(); break;
3462 case lir_membar_loadstore : __ membar_loadstore(); break;
3463 case lir_membar_storeload : __ membar_storeload(); break;
3464 default : ShouldNotReachHere(); break;
3465 }
3466 }
3467
3468 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3469 LIR_Opr value_fixed = rlock_byte(T_BYTE);
3470 if (two_operand_lir_form) {
3471 __ move(value, value_fixed);
3472 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3473 } else {
3474 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3475 }
3476 LIR_Opr klass = new_register(T_METADATA);
3477 load_klass(array, klass, null_check_info);
3478 null_check_info = nullptr;
3479 LIR_Opr layout = new_register(T_INT);
3480 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3481 int diffbit = Klass::layout_helper_boolean_diffbit();
3482 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3483 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3484 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3485 value = value_fixed;
3486 return value;
3487 }