1 /*
   2  * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "code/SCCache.hpp"
  38 #include "compiler/compilerDefinitions.inline.hpp"
  39 #include "compiler/compilerOracle.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/c1/barrierSetC1.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/methodCounters.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/vm_version.hpp"
  47 #include "utilities/bitMap.inline.hpp"
  48 #include "utilities/macros.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 #ifdef ASSERT
  52 #define __ gen()->lir(__FILE__, __LINE__)->
  53 #else
  54 #define __ gen()->lir()->
  55 #endif
  56 
  57 #ifndef PATCHED_ADDR
  58 #define PATCHED_ADDR  (max_jint)
  59 #endif
  60 
  61 void PhiResolverState::reset() {
  62   _virtual_operands.clear();
  63   _other_operands.clear();
  64   _vreg_table.clear();
  65 }
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _loop(nullptr)
  85  , _temp(LIR_OprFact::illegalOpr)
  86 {
  87   // reinitialize the shared state arrays
  88   _state.reset();
  89 }
  90 
  91 
  92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  93   assert(src->is_valid(), "");
  94   assert(dest->is_valid(), "");
  95   __ move(src, dest);
  96 }
  97 
  98 
  99 void PhiResolver::move_temp_to(LIR_Opr dest) {
 100   assert(_temp->is_valid(), "");
 101   emit_move(_temp, dest);
 102   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 103 }
 104 
 105 
 106 void PhiResolver::move_to_temp(LIR_Opr src) {
 107   assert(_temp->is_illegal(), "");
 108   _temp = _gen->new_register(src->type());
 109   emit_move(src, _temp);
 110 }
 111 
 112 
 113 // Traverse assignment graph in depth first order and generate moves in post order
 114 // ie. two assignments: b := c, a := b start with node c:
 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 116 // Generates moves in this order: move b to a and move c to b
 117 // ie. cycle a := b, b := a start with node a
 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 119 // Generates moves in this order: move b to temp, move a to b, move temp to a
 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 121   if (!dest->visited()) {
 122     dest->set_visited();
 123     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 124       move(dest, dest->destination_at(i));
 125     }
 126   } else if (!dest->start_node()) {
 127     // cylce in graph detected
 128     assert(_loop == nullptr, "only one loop valid!");
 129     _loop = dest;
 130     move_to_temp(src->operand());
 131     return;
 132   } // else dest is a start node
 133 
 134   if (!dest->assigned()) {
 135     if (_loop == dest) {
 136       move_temp_to(dest->operand());
 137       dest->set_assigned();
 138     } else if (src != nullptr) {
 139       emit_move(src->operand(), dest->operand());
 140       dest->set_assigned();
 141     }
 142   }
 143 }
 144 
 145 
 146 PhiResolver::~PhiResolver() {
 147   int i;
 148   // resolve any cycles in moves from and to virtual registers
 149   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 150     ResolveNode* node = virtual_operands().at(i);
 151     if (!node->visited()) {
 152       _loop = nullptr;
 153       move(nullptr, node);
 154       node->set_start_node();
 155       assert(_temp->is_illegal(), "move_temp_to() call missing");
 156     }
 157   }
 158 
 159   // generate move for move from non virtual register to abitrary destination
 160   for (i = other_operands().length() - 1; i >= 0; i --) {
 161     ResolveNode* node = other_operands().at(i);
 162     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 163       emit_move(node->operand(), node->destination_at(j)->operand());
 164     }
 165   }
 166 }
 167 
 168 
 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 170   ResolveNode* node;
 171   if (opr->is_virtual()) {
 172     int vreg_num = opr->vreg_number();
 173     node = vreg_table().at_grow(vreg_num, nullptr);
 174     assert(node == nullptr || node->operand() == opr, "");
 175     if (node == nullptr) {
 176       node = new ResolveNode(opr);
 177       vreg_table().at_put(vreg_num, node);
 178     }
 179     // Make sure that all virtual operands show up in the list when
 180     // they are used as the source of a move.
 181     if (source && !virtual_operands().contains(node)) {
 182       virtual_operands().append(node);
 183     }
 184   } else {
 185     assert(source, "");
 186     node = new ResolveNode(opr);
 187     other_operands().append(node);
 188   }
 189   return node;
 190 }
 191 
 192 
 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 194   assert(dest->is_virtual(), "");
 195   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 196   assert(src->is_valid(), "");
 197   assert(dest->is_valid(), "");
 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210 #ifdef ASSERT
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 213   }
 214 #endif
 215 
 216   _result = opr;
 217 }
 218 
 219 void LIRItem::load_item() {
 220   if (result()->is_illegal()) {
 221     // update the items result
 222     _result = value()->operand();
 223   }
 224   if (!result()->is_register()) {
 225     LIR_Opr reg = _gen->new_register(value()->type());
 226     __ move(result(), reg);
 227     if (result()->is_constant()) {
 228       _result = reg;
 229     } else {
 230       set_result(reg);
 231     }
 232   }
 233 }
 234 
 235 
 236 void LIRItem::load_for_store(BasicType type) {
 237   if (_gen->can_store_as_constant(value(), type)) {
 238     _result = value()->operand();
 239     if (!_result->is_constant()) {
 240       _result = LIR_OprFact::value_type(value()->type());
 241     }
 242   } else if (type == T_BYTE || type == T_BOOLEAN) {
 243     load_byte_item();
 244   } else {
 245     load_item();
 246   }
 247 }
 248 
 249 void LIRItem::load_item_force(LIR_Opr reg) {
 250   LIR_Opr r = result();
 251   if (r != reg) {
 252 #if !defined(ARM) && !defined(E500V2)
 253     if (r->type() != reg->type()) {
 254       // moves between different types need an intervening spill slot
 255       r = _gen->force_to_spill(r, reg->type());
 256     }
 257 #endif
 258     __ move(r, reg);
 259     _result = reg;
 260   }
 261 }
 262 
 263 ciObject* LIRItem::get_jobject_constant() const {
 264   ObjectType* oc = type()->as_ObjectType();
 265   if (oc) {
 266     return oc->constant_value();
 267   }
 268   return nullptr;
 269 }
 270 
 271 
 272 jint LIRItem::get_jint_constant() const {
 273   assert(is_constant() && value() != nullptr, "");
 274   assert(type()->as_IntConstant() != nullptr, "type check");
 275   return type()->as_IntConstant()->value();
 276 }
 277 
 278 
 279 jint LIRItem::get_address_constant() const {
 280   assert(is_constant() && value() != nullptr, "");
 281   assert(type()->as_AddressConstant() != nullptr, "type check");
 282   return type()->as_AddressConstant()->value();
 283 }
 284 
 285 
 286 jfloat LIRItem::get_jfloat_constant() const {
 287   assert(is_constant() && value() != nullptr, "");
 288   assert(type()->as_FloatConstant() != nullptr, "type check");
 289   return type()->as_FloatConstant()->value();
 290 }
 291 
 292 
 293 jdouble LIRItem::get_jdouble_constant() const {
 294   assert(is_constant() && value() != nullptr, "");
 295   assert(type()->as_DoubleConstant() != nullptr, "type check");
 296   return type()->as_DoubleConstant()->value();
 297 }
 298 
 299 
 300 jlong LIRItem::get_jlong_constant() const {
 301   assert(is_constant() && value() != nullptr, "");
 302   assert(type()->as_LongConstant() != nullptr, "type check");
 303   return type()->as_LongConstant()->value();
 304 }
 305 
 306 
 307 
 308 //--------------------------------------------------------------
 309 
 310 
 311 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 312 #ifndef PRODUCT
 313   if (PrintIRWithLIR) {
 314     block->print();
 315   }
 316 #endif
 317 
 318   // set up the list of LIR instructions
 319   assert(block->lir() == nullptr, "LIR list already computed for this block");
 320   _lir = new LIR_List(compilation(), block);
 321   block->set_lir(_lir);
 322 
 323   __ branch_destination(block->label());
 324 
 325   if (LIRTraceExecution &&
 326       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 327       !block->is_set(BlockBegin::exception_entry_flag)) {
 328     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 329     trace_block_entry(block);
 330   }
 331 }
 332 
 333 
 334 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 335 #ifndef PRODUCT
 336   if (PrintIRWithLIR) {
 337     tty->cr();
 338   }
 339 #endif
 340 
 341   // LIR_Opr for unpinned constants shouldn't be referenced by other
 342   // blocks so clear them out after processing the block.
 343   for (int i = 0; i < _unpinned_constants.length(); i++) {
 344     _unpinned_constants.at(i)->clear_operand();
 345   }
 346   _unpinned_constants.trunc_to(0);
 347 
 348   // clear our any registers for other local constants
 349   _constants.trunc_to(0);
 350   _reg_for_constants.trunc_to(0);
 351 }
 352 
 353 
 354 void LIRGenerator::block_do(BlockBegin* block) {
 355   CHECK_BAILOUT();
 356 
 357   block_do_prolog(block);
 358   set_block(block);
 359 
 360   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 361     if (instr->is_pinned()) do_root(instr);
 362   }
 363 
 364   set_block(nullptr);
 365   block_do_epilog(block);
 366 }
 367 
 368 
 369 //-------------------------LIRGenerator-----------------------------
 370 
 371 // This is where the tree-walk starts; instr must be root;
 372 void LIRGenerator::do_root(Value instr) {
 373   CHECK_BAILOUT();
 374 
 375   InstructionMark im(compilation(), instr);
 376 
 377   assert(instr->is_pinned(), "use only with roots");
 378   assert(instr->subst() == instr, "shouldn't have missed substitution");
 379 
 380   instr->visit(this);
 381 
 382   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 383          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 384 }
 385 
 386 
 387 // This is called for each node in tree; the walk stops if a root is reached
 388 void LIRGenerator::walk(Value instr) {
 389   InstructionMark im(compilation(), instr);
 390   //stop walk when encounter a root
 391   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 392     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 393   } else {
 394     assert(instr->subst() == instr, "shouldn't have missed substitution");
 395     instr->visit(this);
 396     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 397   }
 398 }
 399 
 400 
 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 402   assert(state != nullptr, "state must be defined");
 403 
 404 #ifndef PRODUCT
 405   state->verify();
 406 #endif
 407 
 408   ValueStack* s = state;
 409   for_each_state(s) {
 410     if (s->kind() == ValueStack::EmptyExceptionState ||
 411         s->kind() == ValueStack::CallerEmptyExceptionState)
 412     {
 413 #ifdef ASSERT
 414       int index;
 415       Value value;
 416       for_each_stack_value(s, index, value) {
 417         fatal("state must be empty");
 418       }
 419       for_each_local_value(s, index, value) {
 420         fatal("state must be empty");
 421       }
 422 #endif
 423       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 424       continue;
 425     }
 426 
 427     int index;
 428     Value value;
 429     for_each_stack_value(s, index, value) {
 430       assert(value->subst() == value, "missed substitution");
 431       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 432         walk(value);
 433         assert(value->operand()->is_valid(), "must be evaluated now");
 434       }
 435     }
 436 
 437     int bci = s->bci();
 438     IRScope* scope = s->scope();
 439     ciMethod* method = scope->method();
 440 
 441     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 442     if (bci == SynchronizationEntryBCI) {
 443       if (x->as_ExceptionObject() || x->as_Throw()) {
 444         // all locals are dead on exit from the synthetic unlocker
 445         liveness.clear();
 446       } else {
 447         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 448       }
 449     }
 450     if (!liveness.is_valid()) {
 451       // Degenerate or breakpointed method.
 452       bailout("Degenerate or breakpointed method");
 453     } else {
 454       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 455       for_each_local_value(s, index, value) {
 456         assert(value->subst() == value, "missed substitution");
 457         if (liveness.at(index) && !value->type()->is_illegal()) {
 458           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 459             walk(value);
 460             assert(value->operand()->is_valid(), "must be evaluated now");
 461           }
 462         } else {
 463           // null out this local so that linear scan can assume that all non-null values are live.
 464           s->invalidate_local(index);
 465         }
 466       }
 467     }
 468   }
 469 
 470   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 471 }
 472 
 473 
 474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 475   return state_for(x, x->exception_state());
 476 }
 477 
 478 
 479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 480   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 481    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 482    * the class. */
 483   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 484     assert(info != nullptr, "info must be set if class is not loaded");
 485     __ klass2reg_patch(nullptr, r, info);
 486   } else {
 487     // no patching needed
 488     __ metadata2reg(obj->constant_encoding(), r);
 489   }
 490 }
 491 
 492 
 493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 494                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 495   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 496   if (index->is_constant()) {
 497     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 498                 index->as_jint(), null_check_info);
 499     __ branch(lir_cond_belowEqual, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 502                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 503     __ branch(lir_cond_aboveEqual, stub); // forward branch
 504   }
 505 }
 506 
 507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 508   LIR_Opr result_op = result;
 509   LIR_Opr left_op   = left;
 510   LIR_Opr right_op  = right;
 511 
 512   if (two_operand_lir_form && left_op != result_op) {
 513     assert(right_op != result_op, "malformed");
 514     __ move(left_op, result_op);
 515     left_op = result_op;
 516   }
 517 
 518   switch(code) {
 519     case Bytecodes::_dadd:
 520     case Bytecodes::_fadd:
 521     case Bytecodes::_ladd:
 522     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 523     case Bytecodes::_fmul:
 524     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 525 
 526     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 527 
 528     case Bytecodes::_imul:
 529       {
 530         bool did_strength_reduce = false;
 531 
 532         if (right->is_constant()) {
 533           jint c = right->as_jint();
 534           if (c > 0 && is_power_of_2(c)) {
 535             // do not need tmp here
 536             __ shift_left(left_op, exact_log2(c), result_op);
 537             did_strength_reduce = true;
 538           } else {
 539             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 540           }
 541         }
 542         // we couldn't strength reduce so just emit the multiply
 543         if (!did_strength_reduce) {
 544           __ mul(left_op, right_op, result_op);
 545         }
 546       }
 547       break;
 548 
 549     case Bytecodes::_dsub:
 550     case Bytecodes::_fsub:
 551     case Bytecodes::_lsub:
 552     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 553 
 554     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 555     // ldiv and lrem are implemented with a direct runtime call
 556 
 557     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 558 
 559     case Bytecodes::_drem:
 560     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 561 
 562     default: ShouldNotReachHere();
 563   }
 564 }
 565 
 566 
 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 568   arithmetic_op(code, result, left, right, tmp);
 569 }
 570 
 571 
 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 573   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 574 }
 575 
 576 
 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 578   arithmetic_op(code, result, left, right, tmp);
 579 }
 580 
 581 
 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 583 
 584   if (two_operand_lir_form && value != result_op
 585       // Only 32bit right shifts require two operand form on S390.
 586       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 587     assert(count != result_op, "malformed");
 588     __ move(value, result_op);
 589     value = result_op;
 590   }
 591 
 592   assert(count->is_constant() || count->is_register(), "must be");
 593   switch(code) {
 594   case Bytecodes::_ishl:
 595   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 596   case Bytecodes::_ishr:
 597   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 598   case Bytecodes::_iushr:
 599   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 600   default: ShouldNotReachHere();
 601   }
 602 }
 603 
 604 
 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 606   if (two_operand_lir_form && left_op != result_op) {
 607     assert(right_op != result_op, "malformed");
 608     __ move(left_op, result_op);
 609     left_op = result_op;
 610   }
 611 
 612   switch(code) {
 613     case Bytecodes::_iand:
 614     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 615 
 616     case Bytecodes::_ior:
 617     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 618 
 619     case Bytecodes::_ixor:
 620     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 621 
 622     default: ShouldNotReachHere();
 623   }
 624 }
 625 
 626 
 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 628   if (!GenerateSynchronizationCode) return;
 629   // for slow path, use debug info for state after successful locking
 630   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 631   __ load_stack_address_monitor(monitor_no, lock);
 632   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 633   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 634 }
 635 
 636 
 637 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 638   if (!GenerateSynchronizationCode) return;
 639   // setup registers
 640   LIR_Opr hdr = lock;
 641   lock = new_hdr;
 642   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 643   __ load_stack_address_monitor(monitor_no, lock);
 644   __ unlock_object(hdr, object, lock, scratch, slow_path);
 645 }
 646 
 647 #ifndef PRODUCT
 648 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 649   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 650     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 651   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 652     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 653   }
 654 }
 655 #endif
 656 
 657 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 658   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 659   // If klass is not loaded we do not know if the klass has finalizers:
 660   if (UseFastNewInstance && klass->is_loaded()
 661       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 662 
 663     C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
 664 
 665     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 666 
 667     assert(klass->is_loaded(), "must be loaded");
 668     // allocate space for instance
 669     assert(klass->size_helper() > 0, "illegal instance size");
 670     const int instance_size = align_object_size(klass->size_helper());
 671     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 672                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 673   } else {
 674     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
 675     __ branch(lir_cond_always, slow_path);
 676     __ branch_destination(slow_path->continuation());
 677   }
 678 }
 679 
 680 
 681 static bool is_constant_zero(Instruction* inst) {
 682   IntConstant* c = inst->type()->as_IntConstant();
 683   if (c) {
 684     return (c->value() == 0);
 685   }
 686   return false;
 687 }
 688 
 689 
 690 static bool positive_constant(Instruction* inst) {
 691   IntConstant* c = inst->type()->as_IntConstant();
 692   if (c) {
 693     return (c->value() >= 0);
 694   }
 695   return false;
 696 }
 697 
 698 
 699 static ciArrayKlass* as_array_klass(ciType* type) {
 700   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 701     return (ciArrayKlass*)type;
 702   } else {
 703     return nullptr;
 704   }
 705 }
 706 
 707 static ciType* phi_declared_type(Phi* phi) {
 708   ciType* t = phi->operand_at(0)->declared_type();
 709   if (t == nullptr) {
 710     return nullptr;
 711   }
 712   for(int i = 1; i < phi->operand_count(); i++) {
 713     if (t != phi->operand_at(i)->declared_type()) {
 714       return nullptr;
 715     }
 716   }
 717   return t;
 718 }
 719 
 720 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 721   Instruction* src     = x->argument_at(0);
 722   Instruction* src_pos = x->argument_at(1);
 723   Instruction* dst     = x->argument_at(2);
 724   Instruction* dst_pos = x->argument_at(3);
 725   Instruction* length  = x->argument_at(4);
 726 
 727   // first try to identify the likely type of the arrays involved
 728   ciArrayKlass* expected_type = nullptr;
 729   bool is_exact = false, src_objarray = false, dst_objarray = false;
 730   {
 731     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 732     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 733     Phi* phi;
 734     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 735       src_declared_type = as_array_klass(phi_declared_type(phi));
 736     }
 737     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 738     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 739     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 740       dst_declared_type = as_array_klass(phi_declared_type(phi));
 741     }
 742 
 743     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 744       // the types exactly match so the type is fully known
 745       is_exact = true;
 746       expected_type = src_exact_type;
 747     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 748       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 749       ciArrayKlass* src_type = nullptr;
 750       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 751         src_type = (ciArrayKlass*) src_exact_type;
 752       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 753         src_type = (ciArrayKlass*) src_declared_type;
 754       }
 755       if (src_type != nullptr) {
 756         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 757           is_exact = true;
 758           expected_type = dst_type;
 759         }
 760       }
 761     }
 762     // at least pass along a good guess
 763     if (expected_type == nullptr) expected_type = dst_exact_type;
 764     if (expected_type == nullptr) expected_type = src_declared_type;
 765     if (expected_type == nullptr) expected_type = dst_declared_type;
 766 
 767     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 768     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 769   }
 770 
 771   // if a probable array type has been identified, figure out if any
 772   // of the required checks for a fast case can be elided.
 773   int flags = LIR_OpArrayCopy::all_flags;
 774 
 775   if (!src_objarray)
 776     flags &= ~LIR_OpArrayCopy::src_objarray;
 777   if (!dst_objarray)
 778     flags &= ~LIR_OpArrayCopy::dst_objarray;
 779 
 780   if (!x->arg_needs_null_check(0))
 781     flags &= ~LIR_OpArrayCopy::src_null_check;
 782   if (!x->arg_needs_null_check(2))
 783     flags &= ~LIR_OpArrayCopy::dst_null_check;
 784 
 785 
 786   if (expected_type != nullptr) {
 787     Value length_limit = nullptr;
 788 
 789     IfOp* ifop = length->as_IfOp();
 790     if (ifop != nullptr) {
 791       // look for expressions like min(v, a.length) which ends up as
 792       //   x > y ? y : x  or  x >= y ? y : x
 793       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 794           ifop->x() == ifop->fval() &&
 795           ifop->y() == ifop->tval()) {
 796         length_limit = ifop->y();
 797       }
 798     }
 799 
 800     // try to skip null checks and range checks
 801     NewArray* src_array = src->as_NewArray();
 802     if (src_array != nullptr) {
 803       flags &= ~LIR_OpArrayCopy::src_null_check;
 804       if (length_limit != nullptr &&
 805           src_array->length() == length_limit &&
 806           is_constant_zero(src_pos)) {
 807         flags &= ~LIR_OpArrayCopy::src_range_check;
 808       }
 809     }
 810 
 811     NewArray* dst_array = dst->as_NewArray();
 812     if (dst_array != nullptr) {
 813       flags &= ~LIR_OpArrayCopy::dst_null_check;
 814       if (length_limit != nullptr &&
 815           dst_array->length() == length_limit &&
 816           is_constant_zero(dst_pos)) {
 817         flags &= ~LIR_OpArrayCopy::dst_range_check;
 818       }
 819     }
 820 
 821     // check from incoming constant values
 822     if (positive_constant(src_pos))
 823       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 824     if (positive_constant(dst_pos))
 825       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 826     if (positive_constant(length))
 827       flags &= ~LIR_OpArrayCopy::length_positive_check;
 828 
 829     // see if the range check can be elided, which might also imply
 830     // that src or dst is non-null.
 831     ArrayLength* al = length->as_ArrayLength();
 832     if (al != nullptr) {
 833       if (al->array() == src) {
 834         // it's the length of the source array
 835         flags &= ~LIR_OpArrayCopy::length_positive_check;
 836         flags &= ~LIR_OpArrayCopy::src_null_check;
 837         if (is_constant_zero(src_pos))
 838           flags &= ~LIR_OpArrayCopy::src_range_check;
 839       }
 840       if (al->array() == dst) {
 841         // it's the length of the destination array
 842         flags &= ~LIR_OpArrayCopy::length_positive_check;
 843         flags &= ~LIR_OpArrayCopy::dst_null_check;
 844         if (is_constant_zero(dst_pos))
 845           flags &= ~LIR_OpArrayCopy::dst_range_check;
 846       }
 847     }
 848     if (is_exact) {
 849       flags &= ~LIR_OpArrayCopy::type_check;
 850     }
 851   }
 852 
 853   IntConstant* src_int = src_pos->type()->as_IntConstant();
 854   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 855   if (src_int && dst_int) {
 856     int s_offs = src_int->value();
 857     int d_offs = dst_int->value();
 858     if (src_int->value() >= dst_int->value()) {
 859       flags &= ~LIR_OpArrayCopy::overlapping;
 860     }
 861     if (expected_type != nullptr) {
 862       BasicType t = expected_type->element_type()->basic_type();
 863       int element_size = type2aelembytes(t);
 864       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 865           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 866         flags &= ~LIR_OpArrayCopy::unaligned;
 867       }
 868     }
 869   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 870     // src and dest positions are the same, or dst is zero so assume
 871     // nonoverlapping copy.
 872     flags &= ~LIR_OpArrayCopy::overlapping;
 873   }
 874 
 875   if (src == dst) {
 876     // moving within a single array so no type checks are needed
 877     if (flags & LIR_OpArrayCopy::type_check) {
 878       flags &= ~LIR_OpArrayCopy::type_check;
 879     }
 880   }
 881   *flagsp = flags;
 882   *expected_typep = (ciArrayKlass*)expected_type;
 883 }
 884 
 885 
 886 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 887   assert(opr->is_register(), "why spill if item is not register?");
 888 
 889   if (strict_fp_requires_explicit_rounding) {
 890 #ifdef IA32
 891     if (UseSSE < 1 && opr->is_single_fpu()) {
 892       LIR_Opr result = new_register(T_FLOAT);
 893       set_vreg_flag(result, must_start_in_memory);
 894       assert(opr->is_register(), "only a register can be spilled");
 895       assert(opr->value_type()->is_float(), "rounding only for floats available");
 896       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 897       return result;
 898     }
 899 #else
 900     Unimplemented();
 901 #endif // IA32
 902   }
 903   return opr;
 904 }
 905 
 906 
 907 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 908   assert(type2size[t] == type2size[value->type()],
 909          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 910   if (!value->is_register()) {
 911     // force into a register
 912     LIR_Opr r = new_register(value->type());
 913     __ move(value, r);
 914     value = r;
 915   }
 916 
 917   // create a spill location
 918   LIR_Opr tmp = new_register(t);
 919   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 920 
 921   // move from register to spill
 922   __ move(value, tmp);
 923   return tmp;
 924 }
 925 
 926 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 927   if (if_instr->should_profile()) {
 928     ciMethod* method = if_instr->profiled_method();
 929     assert(method != nullptr, "method should be set if branch is profiled");
 930     ciMethodData* md = method->method_data_or_null();
 931     assert(md != nullptr, "Sanity");
 932     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 933     assert(data != nullptr, "must have profiling data");
 934     assert(data->is_BranchData(), "need BranchData for two-way branches");
 935     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 936     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 937     if (if_instr->is_swapped()) {
 938       int t = taken_count_offset;
 939       taken_count_offset = not_taken_count_offset;
 940       not_taken_count_offset = t;
 941     }
 942 
 943     LIR_Opr md_reg = new_register(T_METADATA);
 944     __ metadata2reg(md->constant_encoding(), md_reg);
 945 
 946     LIR_Opr data_offset_reg = new_pointer_register();
 947     __ cmove(lir_cond(cond),
 948              LIR_OprFact::intptrConst(taken_count_offset),
 949              LIR_OprFact::intptrConst(not_taken_count_offset),
 950              data_offset_reg, as_BasicType(if_instr->x()->type()));
 951 
 952     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 953     LIR_Opr data_reg = new_pointer_register();
 954     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 955     __ move(data_addr, data_reg);
 956     // Use leal instead of add to avoid destroying condition codes on x86
 957     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 958     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 959     __ move(data_reg, data_addr);
 960   }
 961 }
 962 
 963 // Phi technique:
 964 // This is about passing live values from one basic block to the other.
 965 // In code generated with Java it is rather rare that more than one
 966 // value is on the stack from one basic block to the other.
 967 // We optimize our technique for efficient passing of one value
 968 // (of type long, int, double..) but it can be extended.
 969 // When entering or leaving a basic block, all registers and all spill
 970 // slots are release and empty. We use the released registers
 971 // and spill slots to pass the live values from one block
 972 // to the other. The topmost value, i.e., the value on TOS of expression
 973 // stack is passed in registers. All other values are stored in spilling
 974 // area. Every Phi has an index which designates its spill slot
 975 // At exit of a basic block, we fill the register(s) and spill slots.
 976 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 977 // and locks necessary registers and spilling slots.
 978 
 979 
 980 // move current value to referenced phi function
 981 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 982   Phi* phi = sux_val->as_Phi();
 983   // cur_val can be null without phi being null in conjunction with inlining
 984   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 985     if (phi->is_local()) {
 986       for (int i = 0; i < phi->operand_count(); i++) {
 987         Value op = phi->operand_at(i);
 988         if (op != nullptr && op->type()->is_illegal()) {
 989           bailout("illegal phi operand");
 990         }
 991       }
 992     }
 993     Phi* cur_phi = cur_val->as_Phi();
 994     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 995       // Phi and local would need to get invalidated
 996       // (which is unexpected for Linear Scan).
 997       // But this case is very rare so we simply bail out.
 998       bailout("propagation of illegal phi");
 999       return;
1000     }
1001     LIR_Opr operand = cur_val->operand();
1002     if (operand->is_illegal()) {
1003       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
1004              "these can be produced lazily");
1005       operand = operand_for_instruction(cur_val);
1006     }
1007     resolver->move(operand, operand_for_instruction(phi));
1008   }
1009 }
1010 
1011 
1012 // Moves all stack values into their PHI position
1013 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1014   BlockBegin* bb = block();
1015   if (bb->number_of_sux() == 1) {
1016     BlockBegin* sux = bb->sux_at(0);
1017     assert(sux->number_of_preds() > 0, "invalid CFG");
1018 
1019     // a block with only one predecessor never has phi functions
1020     if (sux->number_of_preds() > 1) {
1021       PhiResolver resolver(this);
1022 
1023       ValueStack* sux_state = sux->state();
1024       Value sux_value;
1025       int index;
1026 
1027       assert(cur_state->scope() == sux_state->scope(), "not matching");
1028       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1029       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1030 
1031       for_each_stack_value(sux_state, index, sux_value) {
1032         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1033       }
1034 
1035       for_each_local_value(sux_state, index, sux_value) {
1036         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1037       }
1038 
1039       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1040     }
1041   }
1042 }
1043 
1044 
1045 LIR_Opr LIRGenerator::new_register(BasicType type) {
1046   int vreg_num = _virtual_register_number;
1047   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1048   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1049   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1050     bailout("out of virtual registers in LIR generator");
1051     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1052       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1053       _virtual_register_number = LIR_Opr::vreg_base;
1054       vreg_num = LIR_Opr::vreg_base;
1055     }
1056   }
1057   _virtual_register_number += 1;
1058   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1059   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1060   return vreg;
1061 }
1062 
1063 
1064 // Try to lock using register in hint
1065 LIR_Opr LIRGenerator::rlock(Value instr) {
1066   return new_register(instr->type());
1067 }
1068 
1069 
1070 // does an rlock and sets result
1071 LIR_Opr LIRGenerator::rlock_result(Value x) {
1072   LIR_Opr reg = rlock(x);
1073   set_result(x, reg);
1074   return reg;
1075 }
1076 
1077 
1078 // does an rlock and sets result
1079 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1080   LIR_Opr reg;
1081   switch (type) {
1082   case T_BYTE:
1083   case T_BOOLEAN:
1084     reg = rlock_byte(type);
1085     break;
1086   default:
1087     reg = rlock(x);
1088     break;
1089   }
1090 
1091   set_result(x, reg);
1092   return reg;
1093 }
1094 
1095 
1096 //---------------------------------------------------------------------
1097 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1098   ObjectType* oc = value->type()->as_ObjectType();
1099   if (oc) {
1100     return oc->constant_value();
1101   }
1102   return nullptr;
1103 }
1104 
1105 
1106 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1107   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1108   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1109 
1110   // no moves are created for phi functions at the begin of exception
1111   // handlers, so assign operands manually here
1112   for_each_phi_fun(block(), phi,
1113                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1114 
1115   LIR_Opr thread_reg = getThreadPointer();
1116   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1117                exceptionOopOpr());
1118   __ move_wide(LIR_OprFact::oopConst(nullptr),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1120   __ move_wide(LIR_OprFact::oopConst(nullptr),
1121                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1122 
1123   LIR_Opr result = new_register(T_OBJECT);
1124   __ move(exceptionOopOpr(), result);
1125   set_result(x, result);
1126 }
1127 
1128 
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //                        visitor functions
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 
1139 void LIRGenerator::do_Phi(Phi* x) {
1140   // phi functions are never visited directly
1141   ShouldNotReachHere();
1142 }
1143 
1144 
1145 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1146 void LIRGenerator::do_Constant(Constant* x) {
1147   if (x->state_before() != nullptr) {
1148     // Any constant with a ValueStack requires patching so emit the patch here
1149     LIR_Opr reg = rlock_result(x);
1150     CodeEmitInfo* info = state_for(x, x->state_before());
1151     __ oop2reg_patch(nullptr, reg, info);
1152   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1153     if (!x->is_pinned()) {
1154       // unpinned constants are handled specially so that they can be
1155       // put into registers when they are used multiple times within a
1156       // block.  After the block completes their operand will be
1157       // cleared so that other blocks can't refer to that register.
1158       set_result(x, load_constant(x));
1159     } else {
1160       LIR_Opr res = x->operand();
1161       if (!res->is_valid()) {
1162         res = LIR_OprFact::value_type(x->type());
1163       }
1164       if (res->is_constant()) {
1165         LIR_Opr reg = rlock_result(x);
1166         __ move(res, reg);
1167       } else {
1168         set_result(x, res);
1169       }
1170     }
1171   } else {
1172     set_result(x, LIR_OprFact::value_type(x->type()));
1173   }
1174 }
1175 
1176 
1177 void LIRGenerator::do_Local(Local* x) {
1178   // operand_for_instruction has the side effect of setting the result
1179   // so there's no need to do it here.
1180   operand_for_instruction(x);
1181 }
1182 
1183 
1184 void LIRGenerator::do_Return(Return* x) {
1185   if (compilation()->env()->dtrace_method_probes()) {
1186     BasicTypeList signature;
1187     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1188     signature.append(T_METADATA); // Method*
1189     LIR_OprList* args = new LIR_OprList();
1190     args->append(getThreadPointer());
1191     LIR_Opr meth = new_register(T_METADATA);
1192     __ metadata2reg(method()->constant_encoding(), meth);
1193     args->append(meth);
1194     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1195   }
1196 
1197   if (x->type()->is_void()) {
1198     __ return_op(LIR_OprFact::illegalOpr);
1199   } else {
1200     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1201     LIRItem result(x->result(), this);
1202 
1203     result.load_item_force(reg);
1204     __ return_op(result.result());
1205   }
1206   set_no_result(x);
1207 }
1208 
1209 // Example: ref.get()
1210 // Combination of LoadField and g1 pre-write barrier
1211 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1212 
1213   const int referent_offset = java_lang_ref_Reference::referent_offset();
1214 
1215   assert(x->number_of_arguments() == 1, "wrong type");
1216 
1217   LIRItem reference(x->argument_at(0), this);
1218   reference.load_item();
1219 
1220   // need to perform the null check on the reference object
1221   CodeEmitInfo* info = nullptr;
1222   if (x->needs_null_check()) {
1223     info = state_for(x);
1224   }
1225 
1226   LIR_Opr result = rlock_result(x, T_OBJECT);
1227   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1228                  reference, LIR_OprFact::intConst(referent_offset), result,
1229                  nullptr, info);
1230 }
1231 
1232 // Example: clazz.isInstance(object)
1233 void LIRGenerator::do_isInstance(Intrinsic* x) {
1234   assert(x->number_of_arguments() == 2, "wrong type");
1235 
1236   // TODO could try to substitute this node with an equivalent InstanceOf
1237   // if clazz is known to be a constant Class. This will pick up newly found
1238   // constants after HIR construction. I'll leave this to a future change.
1239 
1240   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1241   // could follow the aastore example in a future change.
1242 
1243   LIRItem clazz(x->argument_at(0), this);
1244   LIRItem object(x->argument_at(1), this);
1245   clazz.load_item();
1246   object.load_item();
1247   LIR_Opr result = rlock_result(x);
1248 
1249   // need to perform null check on clazz
1250   if (x->needs_null_check()) {
1251     CodeEmitInfo* info = state_for(x);
1252     __ null_check(clazz.result(), info);
1253   }
1254 
1255   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1256                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1257                                      x->type(),
1258                                      nullptr); // null CodeEmitInfo results in a leaf call
1259   __ move(call_result, result);
1260 }
1261 
1262 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1263   __ load_klass(obj, klass, null_check_info);
1264 }
1265 
1266 // Example: object.getClass ()
1267 void LIRGenerator::do_getClass(Intrinsic* x) {
1268   assert(x->number_of_arguments() == 1, "wrong type");
1269 
1270   LIRItem rcvr(x->argument_at(0), this);
1271   rcvr.load_item();
1272   LIR_Opr temp = new_register(T_ADDRESS);
1273   LIR_Opr result = rlock_result(x);
1274 
1275   // need to perform the null check on the rcvr
1276   CodeEmitInfo* info = nullptr;
1277   if (x->needs_null_check()) {
1278     info = state_for(x);
1279   }
1280 
1281   LIR_Opr klass = new_register(T_METADATA);
1282   load_klass(rcvr.result(), klass, info);
1283   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1284   // mirror = ((OopHandle)mirror)->resolve();
1285   access_load(IN_NATIVE, T_OBJECT,
1286               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1287 }
1288 
1289 // java.lang.Class::isPrimitive()
1290 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1291   assert(x->number_of_arguments() == 1, "wrong type");
1292 
1293   LIRItem rcvr(x->argument_at(0), this);
1294   rcvr.load_item();
1295   LIR_Opr temp = new_register(T_METADATA);
1296   LIR_Opr result = rlock_result(x);
1297 
1298   CodeEmitInfo* info = nullptr;
1299   if (x->needs_null_check()) {
1300     info = state_for(x);
1301   }
1302 
1303   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1304   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(nullptr));
1305   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1306 }
1307 
1308 // Example: Foo.class.getModifiers()
1309 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1310   assert(x->number_of_arguments() == 1, "wrong type");
1311 
1312   LIRItem receiver(x->argument_at(0), this);
1313   receiver.load_item();
1314   LIR_Opr result = rlock_result(x);
1315 
1316   CodeEmitInfo* info = nullptr;
1317   if (x->needs_null_check()) {
1318     info = state_for(x);
1319   }
1320 
1321   // While reading off the universal constant mirror is less efficient than doing
1322   // another branch and returning the constant answer, this branchless code runs into
1323   // much less risk of confusion for C1 register allocator. The choice of the universe
1324   // object here is correct as long as it returns the same modifiers we would expect
1325   // from the primitive class itself. See spec for Class.getModifiers that provides
1326   // the typed array klasses with similar modifiers as their component types.
1327 
1328   Klass* univ_klass = Universe::byteArrayKlass();
1329   assert(univ_klass->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1330   LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass);
1331 
1332   LIR_Opr recv_klass = new_register(T_METADATA);
1333   __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1334 
1335   // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1336   LIR_Opr klass = new_register(T_METADATA);
1337   __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(nullptr));
1338   __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1339 
1340   // Get the answer.
1341   __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1342 }
1343 
1344 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1345   assert(x->number_of_arguments() == 3, "wrong type");
1346   LIR_Opr result_reg = rlock_result(x);
1347 
1348   LIRItem value(x->argument_at(2), this);
1349   value.load_item();
1350 
1351   LIR_Opr klass = new_register(T_METADATA);
1352   load_klass(value.result(), klass, nullptr);
1353   LIR_Opr layout = new_register(T_INT);
1354   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1355 
1356   LabelObj* L_done = new LabelObj();
1357   LabelObj* L_array = new LabelObj();
1358 
1359   __ cmp(lir_cond_lessEqual, layout, 0);
1360   __ branch(lir_cond_lessEqual, L_array->label());
1361 
1362   // Instance case: the layout helper gives us instance size almost directly,
1363   // but we need to mask out the _lh_instance_slow_path_bit.
1364 
1365   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1366 
1367   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1368   __ logical_and(layout, mask, layout);
1369   __ convert(Bytecodes::_i2l, layout, result_reg);
1370 
1371   __ branch(lir_cond_always, L_done->label());
1372 
1373   // Array case: size is round(header + element_size*arraylength).
1374   // Since arraylength is different for every array instance, we have to
1375   // compute the whole thing at runtime.
1376 
1377   __ branch_destination(L_array->label());
1378 
1379   int round_mask = MinObjAlignmentInBytes - 1;
1380 
1381   // Figure out header sizes first.
1382   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1383   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1384 
1385   LIR_Opr header_size = new_register(T_INT);
1386   __ move(layout, header_size);
1387   LIR_Opr tmp = new_register(T_INT);
1388   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1389   __ logical_and(header_size, hsm, header_size);
1390   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1391 
1392   // Figure out the array length in bytes
1393   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1394   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1395   __ logical_and(layout, l2esm, layout);
1396 
1397   LIR_Opr length_int = new_register(T_INT);
1398   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1399 
1400 #ifdef _LP64
1401   LIR_Opr length = new_register(T_LONG);
1402   __ convert(Bytecodes::_i2l, length_int, length);
1403 #endif
1404 
1405   // Shift-left awkwardness. Normally it is just:
1406   //   __ shift_left(length, layout, length);
1407   // But C1 cannot perform shift_left with non-constant count, so we end up
1408   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1409   // longs, so we have to act on ints.
1410   LabelObj* L_shift_loop = new LabelObj();
1411   LabelObj* L_shift_exit = new LabelObj();
1412 
1413   __ branch_destination(L_shift_loop->label());
1414   __ cmp(lir_cond_equal, layout, 0);
1415   __ branch(lir_cond_equal, L_shift_exit->label());
1416 
1417 #ifdef _LP64
1418   __ shift_left(length, 1, length);
1419 #else
1420   __ shift_left(length_int, 1, length_int);
1421 #endif
1422 
1423   __ sub(layout, LIR_OprFact::intConst(1), layout);
1424 
1425   __ branch(lir_cond_always, L_shift_loop->label());
1426   __ branch_destination(L_shift_exit->label());
1427 
1428   // Mix all up, round, and push to the result.
1429 #ifdef _LP64
1430   LIR_Opr header_size_long = new_register(T_LONG);
1431   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1432   __ add(length, header_size_long, length);
1433   if (round_mask != 0) {
1434     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1435     __ logical_and(length, round_mask_opr, length);
1436   }
1437   __ move(length, result_reg);
1438 #else
1439   __ add(length_int, header_size, length_int);
1440   if (round_mask != 0) {
1441     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1442     __ logical_and(length_int, round_mask_opr, length_int);
1443   }
1444   __ convert(Bytecodes::_i2l, length_int, result_reg);
1445 #endif
1446 
1447   __ branch_destination(L_done->label());
1448 }
1449 
1450 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1451   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1452 }
1453 
1454 // Example: Thread.currentCarrierThread()
1455 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1456   do_JavaThreadField(x, JavaThread::threadObj_offset());
1457 }
1458 
1459 void LIRGenerator::do_vthread(Intrinsic* x) {
1460   do_JavaThreadField(x, JavaThread::vthread_offset());
1461 }
1462 
1463 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1464   assert(x->number_of_arguments() == 0, "wrong type");
1465   LIR_Opr temp = new_register(T_ADDRESS);
1466   LIR_Opr reg = rlock_result(x);
1467   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1468   access_load(IN_NATIVE, T_OBJECT,
1469               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1470 }
1471 
1472 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1473   assert(x->number_of_arguments() == 1, "wrong type");
1474   LIRItem receiver(x->argument_at(0), this);
1475 
1476   receiver.load_item();
1477   BasicTypeList signature;
1478   signature.append(T_OBJECT); // receiver
1479   LIR_OprList* args = new LIR_OprList();
1480   args->append(receiver.result());
1481   CodeEmitInfo* info = state_for(x, x->state());
1482   call_runtime(&signature, args,
1483                CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)),
1484                voidType, info);
1485 
1486   set_no_result(x);
1487 }
1488 
1489 
1490 //------------------------local access--------------------------------------
1491 
1492 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1493   if (x->operand()->is_illegal()) {
1494     Constant* c = x->as_Constant();
1495     if (c != nullptr) {
1496       x->set_operand(LIR_OprFact::value_type(c->type()));
1497     } else {
1498       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1499       // allocate a virtual register for this local or phi
1500       x->set_operand(rlock(x));
1501 #ifdef ASSERT
1502       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1503 #endif
1504     }
1505   }
1506   return x->operand();
1507 }
1508 
1509 #ifdef ASSERT
1510 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1511   if (reg_num < _instruction_for_operand.length()) {
1512     return _instruction_for_operand.at(reg_num);
1513   }
1514   return nullptr;
1515 }
1516 #endif
1517 
1518 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1519   if (_vreg_flags.size_in_bits() == 0) {
1520     BitMap2D temp(100, num_vreg_flags);
1521     _vreg_flags = temp;
1522   }
1523   _vreg_flags.at_put_grow(vreg_num, f, true);
1524 }
1525 
1526 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1527   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1528     return false;
1529   }
1530   return _vreg_flags.at(vreg_num, f);
1531 }
1532 
1533 
1534 // Block local constant handling.  This code is useful for keeping
1535 // unpinned constants and constants which aren't exposed in the IR in
1536 // registers.  Unpinned Constant instructions have their operands
1537 // cleared when the block is finished so that other blocks can't end
1538 // up referring to their registers.
1539 
1540 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1541   assert(!x->is_pinned(), "only for unpinned constants");
1542   _unpinned_constants.append(x);
1543   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1544 }
1545 
1546 
1547 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1548   BasicType t = c->type();
1549   for (int i = 0; i < _constants.length(); i++) {
1550     LIR_Const* other = _constants.at(i);
1551     if (t == other->type()) {
1552       switch (t) {
1553       case T_INT:
1554       case T_FLOAT:
1555         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1556         break;
1557       case T_LONG:
1558       case T_DOUBLE:
1559         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1560         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1561         break;
1562       case T_OBJECT:
1563         if (c->as_jobject() != other->as_jobject()) continue;
1564         break;
1565       default:
1566         break;
1567       }
1568       return _reg_for_constants.at(i);
1569     }
1570   }
1571 
1572   LIR_Opr result = new_register(t);
1573   __ move((LIR_Opr)c, result);
1574   _constants.append(c);
1575   _reg_for_constants.append(result);
1576   return result;
1577 }
1578 
1579 //------------------------field access--------------------------------------
1580 
1581 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1582   assert(x->number_of_arguments() == 4, "wrong type");
1583   LIRItem obj   (x->argument_at(0), this);  // object
1584   LIRItem offset(x->argument_at(1), this);  // offset of field
1585   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1586   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1587   assert(obj.type()->tag() == objectTag, "invalid type");
1588   assert(cmp.type()->tag() == type->tag(), "invalid type");
1589   assert(val.type()->tag() == type->tag(), "invalid type");
1590 
1591   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1592                                             obj, offset, cmp, val);
1593   set_result(x, result);
1594 }
1595 
1596 // Comment copied form templateTable_i486.cpp
1597 // ----------------------------------------------------------------------------
1598 // Volatile variables demand their effects be made known to all CPU's in
1599 // order.  Store buffers on most chips allow reads & writes to reorder; the
1600 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1601 // memory barrier (i.e., it's not sufficient that the interpreter does not
1602 // reorder volatile references, the hardware also must not reorder them).
1603 //
1604 // According to the new Java Memory Model (JMM):
1605 // (1) All volatiles are serialized wrt to each other.
1606 // ALSO reads & writes act as acquire & release, so:
1607 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1608 // the read float up to before the read.  It's OK for non-volatile memory refs
1609 // that happen before the volatile read to float down below it.
1610 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1611 // that happen BEFORE the write float down to after the write.  It's OK for
1612 // non-volatile memory refs that happen after the volatile write to float up
1613 // before it.
1614 //
1615 // We only put in barriers around volatile refs (they are expensive), not
1616 // _between_ memory refs (that would require us to track the flavor of the
1617 // previous memory refs).  Requirements (2) and (3) require some barriers
1618 // before volatile stores and after volatile loads.  These nearly cover
1619 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1620 // case is placed after volatile-stores although it could just as well go
1621 // before volatile-loads.
1622 
1623 
1624 void LIRGenerator::do_StoreField(StoreField* x) {
1625   bool needs_patching = x->needs_patching();
1626   bool is_volatile = x->field()->is_volatile();
1627   BasicType field_type = x->field_type();
1628 
1629   CodeEmitInfo* info = nullptr;
1630   if (needs_patching) {
1631     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1632     info = state_for(x, x->state_before());
1633   } else if (x->needs_null_check()) {
1634     NullCheck* nc = x->explicit_null_check();
1635     if (nc == nullptr) {
1636       info = state_for(x);
1637     } else {
1638       info = state_for(nc);
1639     }
1640   }
1641 
1642   LIRItem object(x->obj(), this);
1643   LIRItem value(x->value(),  this);
1644 
1645   object.load_item();
1646 
1647   if (is_volatile || needs_patching) {
1648     // load item if field is volatile (fewer special cases for volatiles)
1649     // load item if field not initialized
1650     // load item if field not constant
1651     // because of code patching we cannot inline constants
1652     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1653       value.load_byte_item();
1654     } else  {
1655       value.load_item();
1656     }
1657   } else {
1658     value.load_for_store(field_type);
1659   }
1660 
1661   set_no_result(x);
1662 
1663 #ifndef PRODUCT
1664   if (PrintNotLoaded && needs_patching) {
1665     tty->print_cr("   ###class not loaded at store_%s bci %d",
1666                   x->is_static() ?  "static" : "field", x->printable_bci());
1667   }
1668 #endif
1669 
1670   if (x->needs_null_check() &&
1671       (needs_patching ||
1672        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1673     // Emit an explicit null check because the offset is too large.
1674     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1675     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1676     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1677   }
1678 
1679   DecoratorSet decorators = IN_HEAP;
1680   if (is_volatile) {
1681     decorators |= MO_SEQ_CST;
1682   }
1683   if (needs_patching) {
1684     decorators |= C1_NEEDS_PATCHING;
1685   }
1686 
1687   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1688                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1689 }
1690 
1691 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1692   assert(x->is_pinned(),"");
1693   bool needs_range_check = x->compute_needs_range_check();
1694   bool use_length = x->length() != nullptr;
1695   bool obj_store = is_reference_type(x->elt_type());
1696   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1697                                          !get_jobject_constant(x->value())->is_null_object() ||
1698                                          x->should_profile());
1699 
1700   LIRItem array(x->array(), this);
1701   LIRItem index(x->index(), this);
1702   LIRItem value(x->value(), this);
1703   LIRItem length(this);
1704 
1705   array.load_item();
1706   index.load_nonconstant();
1707 
1708   if (use_length && needs_range_check) {
1709     length.set_instruction(x->length());
1710     length.load_item();
1711 
1712   }
1713   if (needs_store_check || x->check_boolean()) {
1714     value.load_item();
1715   } else {
1716     value.load_for_store(x->elt_type());
1717   }
1718 
1719   set_no_result(x);
1720 
1721   // the CodeEmitInfo must be duplicated for each different
1722   // LIR-instruction because spilling can occur anywhere between two
1723   // instructions and so the debug information must be different
1724   CodeEmitInfo* range_check_info = state_for(x);
1725   CodeEmitInfo* null_check_info = nullptr;
1726   if (x->needs_null_check()) {
1727     null_check_info = new CodeEmitInfo(range_check_info);
1728   }
1729 
1730   if (needs_range_check) {
1731     if (use_length) {
1732       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1733       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1734     } else {
1735       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1736       // range_check also does the null check
1737       null_check_info = nullptr;
1738     }
1739   }
1740 
1741   if (GenerateArrayStoreCheck && needs_store_check) {
1742     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1743     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1744   }
1745 
1746   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1747   if (x->check_boolean()) {
1748     decorators |= C1_MASK_BOOLEAN;
1749   }
1750 
1751   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1752                   nullptr, null_check_info);
1753 }
1754 
1755 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1756                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1757                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1758   decorators |= ACCESS_READ;
1759   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1760   if (access.is_raw()) {
1761     _barrier_set->BarrierSetC1::load_at(access, result);
1762   } else {
1763     _barrier_set->load_at(access, result);
1764   }
1765 }
1766 
1767 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1768                                LIR_Opr addr, LIR_Opr result) {
1769   decorators |= ACCESS_READ;
1770   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1771   access.set_resolved_addr(addr);
1772   if (access.is_raw()) {
1773     _barrier_set->BarrierSetC1::load(access, result);
1774   } else {
1775     _barrier_set->load(access, result);
1776   }
1777 }
1778 
1779 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1780                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1781                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1782   decorators |= ACCESS_WRITE;
1783   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1784   if (access.is_raw()) {
1785     _barrier_set->BarrierSetC1::store_at(access, value);
1786   } else {
1787     _barrier_set->store_at(access, value);
1788   }
1789 }
1790 
1791 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1792                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1793   decorators |= ACCESS_READ;
1794   decorators |= ACCESS_WRITE;
1795   // Atomic operations are SEQ_CST by default
1796   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1797   LIRAccess access(this, decorators, base, offset, type);
1798   if (access.is_raw()) {
1799     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1800   } else {
1801     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1802   }
1803 }
1804 
1805 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1806                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1807   decorators |= ACCESS_READ;
1808   decorators |= ACCESS_WRITE;
1809   // Atomic operations are SEQ_CST by default
1810   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1811   LIRAccess access(this, decorators, base, offset, type);
1812   if (access.is_raw()) {
1813     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1814   } else {
1815     return _barrier_set->atomic_xchg_at(access, value);
1816   }
1817 }
1818 
1819 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1820                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1821   decorators |= ACCESS_READ;
1822   decorators |= ACCESS_WRITE;
1823   // Atomic operations are SEQ_CST by default
1824   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1825   LIRAccess access(this, decorators, base, offset, type);
1826   if (access.is_raw()) {
1827     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1828   } else {
1829     return _barrier_set->atomic_add_at(access, value);
1830   }
1831 }
1832 
1833 void LIRGenerator::do_LoadField(LoadField* x) {
1834   bool needs_patching = x->needs_patching();
1835   bool is_volatile = x->field()->is_volatile();
1836   BasicType field_type = x->field_type();
1837 
1838   CodeEmitInfo* info = nullptr;
1839   if (needs_patching) {
1840     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1841     info = state_for(x, x->state_before());
1842   } else if (x->needs_null_check()) {
1843     NullCheck* nc = x->explicit_null_check();
1844     if (nc == nullptr) {
1845       info = state_for(x);
1846     } else {
1847       info = state_for(nc);
1848     }
1849   }
1850 
1851   LIRItem object(x->obj(), this);
1852 
1853   object.load_item();
1854 
1855 #ifndef PRODUCT
1856   if (PrintNotLoaded && needs_patching) {
1857     tty->print_cr("   ###class not loaded at load_%s bci %d",
1858                   x->is_static() ?  "static" : "field", x->printable_bci());
1859   }
1860 #endif
1861 
1862   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1863   if (x->needs_null_check() &&
1864       (needs_patching ||
1865        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1866        stress_deopt)) {
1867     LIR_Opr obj = object.result();
1868     if (stress_deopt) {
1869       obj = new_register(T_OBJECT);
1870       __ move(LIR_OprFact::oopConst(nullptr), obj);
1871     }
1872     // Emit an explicit null check because the offset is too large.
1873     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1874     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1875     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1876   }
1877 
1878   DecoratorSet decorators = IN_HEAP;
1879   if (is_volatile) {
1880     decorators |= MO_SEQ_CST;
1881   }
1882   if (needs_patching) {
1883     decorators |= C1_NEEDS_PATCHING;
1884   }
1885 
1886   LIR_Opr result = rlock_result(x, field_type);
1887   access_load_at(decorators, field_type,
1888                  object, LIR_OprFact::intConst(x->offset()), result,
1889                  info ? new CodeEmitInfo(info) : nullptr, info);
1890 }
1891 
1892 // int/long jdk.internal.util.Preconditions.checkIndex
1893 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1894   assert(x->number_of_arguments() == 3, "wrong type");
1895   LIRItem index(x->argument_at(0), this);
1896   LIRItem length(x->argument_at(1), this);
1897   LIRItem oobef(x->argument_at(2), this);
1898 
1899   index.load_item();
1900   length.load_item();
1901   oobef.load_item();
1902 
1903   LIR_Opr result = rlock_result(x);
1904   // x->state() is created from copy_state_for_exception, it does not contains arguments
1905   // we should prepare them before entering into interpreter mode due to deoptimization.
1906   ValueStack* state = x->state();
1907   for (int i = 0; i < x->number_of_arguments(); i++) {
1908     Value arg = x->argument_at(i);
1909     state->push(arg->type(), arg);
1910   }
1911   CodeEmitInfo* info = state_for(x, state);
1912 
1913   LIR_Opr len = length.result();
1914   LIR_Opr zero;
1915   if (type == T_INT) {
1916     zero = LIR_OprFact::intConst(0);
1917     if (length.result()->is_constant()){
1918       len = LIR_OprFact::intConst(length.result()->as_jint());
1919     }
1920   } else {
1921     assert(type == T_LONG, "sanity check");
1922     zero = LIR_OprFact::longConst(0);
1923     if (length.result()->is_constant()){
1924       len = LIR_OprFact::longConst(length.result()->as_jlong());
1925     }
1926   }
1927   // C1 can not handle the case that comparing index with constant value while condition
1928   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1929   LIR_Opr zero_reg = new_register(type);
1930   __ move(zero, zero_reg);
1931 #if defined(X86) && !defined(_LP64)
1932   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1933   LIR_Opr index_copy = new_register(index.type());
1934   // index >= 0
1935   __ move(index.result(), index_copy);
1936   __ cmp(lir_cond_less, index_copy, zero_reg);
1937   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1938                                                     Deoptimization::Action_make_not_entrant));
1939   // index < length
1940   __ move(index.result(), index_copy);
1941   __ cmp(lir_cond_greaterEqual, index_copy, len);
1942   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1943                                                             Deoptimization::Action_make_not_entrant));
1944 #else
1945   // index >= 0
1946   __ cmp(lir_cond_less, index.result(), zero_reg);
1947   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1948                                                     Deoptimization::Action_make_not_entrant));
1949   // index < length
1950   __ cmp(lir_cond_greaterEqual, index.result(), len);
1951   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1952                                                             Deoptimization::Action_make_not_entrant));
1953 #endif
1954   __ move(index.result(), result);
1955 }
1956 
1957 //------------------------array access--------------------------------------
1958 
1959 
1960 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1961   LIRItem array(x->array(), this);
1962   array.load_item();
1963   LIR_Opr reg = rlock_result(x);
1964 
1965   CodeEmitInfo* info = nullptr;
1966   if (x->needs_null_check()) {
1967     NullCheck* nc = x->explicit_null_check();
1968     if (nc == nullptr) {
1969       info = state_for(x);
1970     } else {
1971       info = state_for(nc);
1972     }
1973     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1974       LIR_Opr obj = new_register(T_OBJECT);
1975       __ move(LIR_OprFact::oopConst(nullptr), obj);
1976       __ null_check(obj, new CodeEmitInfo(info));
1977     }
1978   }
1979   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1980 }
1981 
1982 
1983 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1984   bool use_length = x->length() != nullptr;
1985   LIRItem array(x->array(), this);
1986   LIRItem index(x->index(), this);
1987   LIRItem length(this);
1988   bool needs_range_check = x->compute_needs_range_check();
1989 
1990   if (use_length && needs_range_check) {
1991     length.set_instruction(x->length());
1992     length.load_item();
1993   }
1994 
1995   array.load_item();
1996   if (index.is_constant() && can_inline_as_constant(x->index())) {
1997     // let it be a constant
1998     index.dont_load_item();
1999   } else {
2000     index.load_item();
2001   }
2002 
2003   CodeEmitInfo* range_check_info = state_for(x);
2004   CodeEmitInfo* null_check_info = nullptr;
2005   if (x->needs_null_check()) {
2006     NullCheck* nc = x->explicit_null_check();
2007     if (nc != nullptr) {
2008       null_check_info = state_for(nc);
2009     } else {
2010       null_check_info = range_check_info;
2011     }
2012     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2013       LIR_Opr obj = new_register(T_OBJECT);
2014       __ move(LIR_OprFact::oopConst(nullptr), obj);
2015       __ null_check(obj, new CodeEmitInfo(null_check_info));
2016     }
2017   }
2018 
2019   if (needs_range_check) {
2020     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2021       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
2022     } else if (use_length) {
2023       // TODO: use a (modified) version of array_range_check that does not require a
2024       //       constant length to be loaded to a register
2025       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2026       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
2027     } else {
2028       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2029       // The range check performs the null check, so clear it out for the load
2030       null_check_info = nullptr;
2031     }
2032   }
2033 
2034   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2035 
2036   LIR_Opr result = rlock_result(x, x->elt_type());
2037   access_load_at(decorators, x->elt_type(),
2038                  array, index.result(), result,
2039                  nullptr, null_check_info);
2040 }
2041 
2042 
2043 void LIRGenerator::do_NullCheck(NullCheck* x) {
2044   if (x->can_trap()) {
2045     LIRItem value(x->obj(), this);
2046     value.load_item();
2047     CodeEmitInfo* info = state_for(x);
2048     __ null_check(value.result(), info);
2049   }
2050 }
2051 
2052 
2053 void LIRGenerator::do_TypeCast(TypeCast* x) {
2054   LIRItem value(x->obj(), this);
2055   value.load_item();
2056   // the result is the same as from the node we are casting
2057   set_result(x, value.result());
2058 }
2059 
2060 
2061 void LIRGenerator::do_Throw(Throw* x) {
2062   LIRItem exception(x->exception(), this);
2063   exception.load_item();
2064   set_no_result(x);
2065   LIR_Opr exception_opr = exception.result();
2066   CodeEmitInfo* info = state_for(x, x->state());
2067 
2068 #ifndef PRODUCT
2069   if (PrintC1Statistics) {
2070     increment_counter(Runtime1::throw_count_address(), T_INT);
2071   }
2072 #endif
2073 
2074   // check if the instruction has an xhandler in any of the nested scopes
2075   bool unwind = false;
2076   if (info->exception_handlers()->length() == 0) {
2077     // this throw is not inside an xhandler
2078     unwind = true;
2079   } else {
2080     // get some idea of the throw type
2081     bool type_is_exact = true;
2082     ciType* throw_type = x->exception()->exact_type();
2083     if (throw_type == nullptr) {
2084       type_is_exact = false;
2085       throw_type = x->exception()->declared_type();
2086     }
2087     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2088       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2089       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2090     }
2091   }
2092 
2093   // do null check before moving exception oop into fixed register
2094   // to avoid a fixed interval with an oop during the null check.
2095   // Use a copy of the CodeEmitInfo because debug information is
2096   // different for null_check and throw.
2097   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2098     // if the exception object wasn't created using new then it might be null.
2099     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2100   }
2101 
2102   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2103     // we need to go through the exception lookup path to get JVMTI
2104     // notification done
2105     unwind = false;
2106   }
2107 
2108   // move exception oop into fixed register
2109   __ move(exception_opr, exceptionOopOpr());
2110 
2111   if (unwind) {
2112     __ unwind_exception(exceptionOopOpr());
2113   } else {
2114     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2115   }
2116 }
2117 
2118 
2119 void LIRGenerator::do_RoundFP(RoundFP* x) {
2120   assert(strict_fp_requires_explicit_rounding, "not required");
2121 
2122   LIRItem input(x->input(), this);
2123   input.load_item();
2124   LIR_Opr input_opr = input.result();
2125   assert(input_opr->is_register(), "why round if value is not in a register?");
2126   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2127   if (input_opr->is_single_fpu()) {
2128     set_result(x, round_item(input_opr)); // This code path not currently taken
2129   } else {
2130     LIR_Opr result = new_register(T_DOUBLE);
2131     set_vreg_flag(result, must_start_in_memory);
2132     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2133     set_result(x, result);
2134   }
2135 }
2136 
2137 
2138 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2139   BasicType type = x->basic_type();
2140   LIRItem src(x->object(), this);
2141   LIRItem off(x->offset(), this);
2142 
2143   off.load_item();
2144   src.load_item();
2145 
2146   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2147 
2148   if (x->is_volatile()) {
2149     decorators |= MO_SEQ_CST;
2150   }
2151   if (type == T_BOOLEAN) {
2152     decorators |= C1_MASK_BOOLEAN;
2153   }
2154   if (is_reference_type(type)) {
2155     decorators |= ON_UNKNOWN_OOP_REF;
2156   }
2157 
2158   LIR_Opr result = rlock_result(x, type);
2159   if (!x->is_raw()) {
2160     access_load_at(decorators, type, src, off.result(), result);
2161   } else {
2162     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2163     // It reads the value from [src + offset] directly.
2164 #ifdef _LP64
2165     LIR_Opr offset = new_register(T_LONG);
2166     __ convert(Bytecodes::_i2l, off.result(), offset);
2167 #else
2168     LIR_Opr offset = off.result();
2169 #endif
2170     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2171     if (is_reference_type(type)) {
2172       __ move_wide(addr, result);
2173     } else {
2174       __ move(addr, result);
2175     }
2176   }
2177 }
2178 
2179 
2180 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2181   BasicType type = x->basic_type();
2182   LIRItem src(x->object(), this);
2183   LIRItem off(x->offset(), this);
2184   LIRItem data(x->value(), this);
2185 
2186   src.load_item();
2187   if (type == T_BOOLEAN || type == T_BYTE) {
2188     data.load_byte_item();
2189   } else {
2190     data.load_item();
2191   }
2192   off.load_item();
2193 
2194   set_no_result(x);
2195 
2196   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2197   if (is_reference_type(type)) {
2198     decorators |= ON_UNKNOWN_OOP_REF;
2199   }
2200   if (x->is_volatile()) {
2201     decorators |= MO_SEQ_CST;
2202   }
2203   access_store_at(decorators, type, src, off.result(), data.result());
2204 }
2205 
2206 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2207   BasicType type = x->basic_type();
2208   LIRItem src(x->object(), this);
2209   LIRItem off(x->offset(), this);
2210   LIRItem value(x->value(), this);
2211 
2212   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2213 
2214   if (is_reference_type(type)) {
2215     decorators |= ON_UNKNOWN_OOP_REF;
2216   }
2217 
2218   LIR_Opr result;
2219   if (x->is_add()) {
2220     result = access_atomic_add_at(decorators, type, src, off, value);
2221   } else {
2222     result = access_atomic_xchg_at(decorators, type, src, off, value);
2223   }
2224   set_result(x, result);
2225 }
2226 
2227 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2228   int lng = x->length();
2229 
2230   for (int i = 0; i < lng; i++) {
2231     C1SwitchRange* one_range = x->at(i);
2232     int low_key = one_range->low_key();
2233     int high_key = one_range->high_key();
2234     BlockBegin* dest = one_range->sux();
2235     if (low_key == high_key) {
2236       __ cmp(lir_cond_equal, value, low_key);
2237       __ branch(lir_cond_equal, dest);
2238     } else if (high_key - low_key == 1) {
2239       __ cmp(lir_cond_equal, value, low_key);
2240       __ branch(lir_cond_equal, dest);
2241       __ cmp(lir_cond_equal, value, high_key);
2242       __ branch(lir_cond_equal, dest);
2243     } else {
2244       LabelObj* L = new LabelObj();
2245       __ cmp(lir_cond_less, value, low_key);
2246       __ branch(lir_cond_less, L->label());
2247       __ cmp(lir_cond_lessEqual, value, high_key);
2248       __ branch(lir_cond_lessEqual, dest);
2249       __ branch_destination(L->label());
2250     }
2251   }
2252   __ jump(default_sux);
2253 }
2254 
2255 
2256 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2257   SwitchRangeList* res = new SwitchRangeList();
2258   int len = x->length();
2259   if (len > 0) {
2260     BlockBegin* sux = x->sux_at(0);
2261     int low = x->lo_key();
2262     BlockBegin* default_sux = x->default_sux();
2263     C1SwitchRange* range = new C1SwitchRange(low, sux);
2264     for (int i = 0; i < len; i++) {
2265       int key = low + i;
2266       BlockBegin* new_sux = x->sux_at(i);
2267       if (sux == new_sux) {
2268         // still in same range
2269         range->set_high_key(key);
2270       } else {
2271         // skip tests which explicitly dispatch to the default
2272         if (sux != default_sux) {
2273           res->append(range);
2274         }
2275         range = new C1SwitchRange(key, new_sux);
2276       }
2277       sux = new_sux;
2278     }
2279     if (res->length() == 0 || res->last() != range)  res->append(range);
2280   }
2281   return res;
2282 }
2283 
2284 
2285 // we expect the keys to be sorted by increasing value
2286 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2287   SwitchRangeList* res = new SwitchRangeList();
2288   int len = x->length();
2289   if (len > 0) {
2290     BlockBegin* default_sux = x->default_sux();
2291     int key = x->key_at(0);
2292     BlockBegin* sux = x->sux_at(0);
2293     C1SwitchRange* range = new C1SwitchRange(key, sux);
2294     for (int i = 1; i < len; i++) {
2295       int new_key = x->key_at(i);
2296       BlockBegin* new_sux = x->sux_at(i);
2297       if (key+1 == new_key && sux == new_sux) {
2298         // still in same range
2299         range->set_high_key(new_key);
2300       } else {
2301         // skip tests which explicitly dispatch to the default
2302         if (range->sux() != default_sux) {
2303           res->append(range);
2304         }
2305         range = new C1SwitchRange(new_key, new_sux);
2306       }
2307       key = new_key;
2308       sux = new_sux;
2309     }
2310     if (res->length() == 0 || res->last() != range)  res->append(range);
2311   }
2312   return res;
2313 }
2314 
2315 
2316 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2317   LIRItem tag(x->tag(), this);
2318   tag.load_item();
2319   set_no_result(x);
2320 
2321   if (x->is_safepoint()) {
2322     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2323   }
2324 
2325   // move values into phi locations
2326   move_to_phi(x->state());
2327 
2328   int lo_key = x->lo_key();
2329   int len = x->length();
2330   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2331   LIR_Opr value = tag.result();
2332 
2333   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2334     ciMethod* method = x->state()->scope()->method();
2335     ciMethodData* md = method->method_data_or_null();
2336     assert(md != nullptr, "Sanity");
2337     ciProfileData* data = md->bci_to_data(x->state()->bci());
2338     assert(data != nullptr, "must have profiling data");
2339     assert(data->is_MultiBranchData(), "bad profile data?");
2340     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2341     LIR_Opr md_reg = new_register(T_METADATA);
2342     __ metadata2reg(md->constant_encoding(), md_reg);
2343     LIR_Opr data_offset_reg = new_pointer_register();
2344     LIR_Opr tmp_reg = new_pointer_register();
2345 
2346     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2347     for (int i = 0; i < len; i++) {
2348       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2349       __ cmp(lir_cond_equal, value, i + lo_key);
2350       __ move(data_offset_reg, tmp_reg);
2351       __ cmove(lir_cond_equal,
2352                LIR_OprFact::intptrConst(count_offset),
2353                tmp_reg,
2354                data_offset_reg, T_INT);
2355     }
2356 
2357     LIR_Opr data_reg = new_pointer_register();
2358     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2359     __ move(data_addr, data_reg);
2360     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2361     __ move(data_reg, data_addr);
2362   }
2363 
2364   if (UseTableRanges) {
2365     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2366   } else {
2367     for (int i = 0; i < len; i++) {
2368       __ cmp(lir_cond_equal, value, i + lo_key);
2369       __ branch(lir_cond_equal, x->sux_at(i));
2370     }
2371     __ jump(x->default_sux());
2372   }
2373 }
2374 
2375 
2376 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2377   LIRItem tag(x->tag(), this);
2378   tag.load_item();
2379   set_no_result(x);
2380 
2381   if (x->is_safepoint()) {
2382     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2383   }
2384 
2385   // move values into phi locations
2386   move_to_phi(x->state());
2387 
2388   LIR_Opr value = tag.result();
2389   int len = x->length();
2390 
2391   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2392     ciMethod* method = x->state()->scope()->method();
2393     ciMethodData* md = method->method_data_or_null();
2394     assert(md != nullptr, "Sanity");
2395     ciProfileData* data = md->bci_to_data(x->state()->bci());
2396     assert(data != nullptr, "must have profiling data");
2397     assert(data->is_MultiBranchData(), "bad profile data?");
2398     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2399     LIR_Opr md_reg = new_register(T_METADATA);
2400     __ metadata2reg(md->constant_encoding(), md_reg);
2401     LIR_Opr data_offset_reg = new_pointer_register();
2402     LIR_Opr tmp_reg = new_pointer_register();
2403 
2404     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2405     for (int i = 0; i < len; i++) {
2406       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2407       __ cmp(lir_cond_equal, value, x->key_at(i));
2408       __ move(data_offset_reg, tmp_reg);
2409       __ cmove(lir_cond_equal,
2410                LIR_OprFact::intptrConst(count_offset),
2411                tmp_reg,
2412                data_offset_reg, T_INT);
2413     }
2414 
2415     LIR_Opr data_reg = new_pointer_register();
2416     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2417     __ move(data_addr, data_reg);
2418     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2419     __ move(data_reg, data_addr);
2420   }
2421 
2422   if (UseTableRanges) {
2423     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2424   } else {
2425     int len = x->length();
2426     for (int i = 0; i < len; i++) {
2427       __ cmp(lir_cond_equal, value, x->key_at(i));
2428       __ branch(lir_cond_equal, x->sux_at(i));
2429     }
2430     __ jump(x->default_sux());
2431   }
2432 }
2433 
2434 
2435 void LIRGenerator::do_Goto(Goto* x) {
2436   set_no_result(x);
2437 
2438   if (block()->next()->as_OsrEntry()) {
2439     // need to free up storage used for OSR entry point
2440     LIR_Opr osrBuffer = block()->next()->operand();
2441     BasicTypeList signature;
2442     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2443     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2444     __ move(osrBuffer, cc->args()->at(0));
2445     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2446                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2447   }
2448 
2449   if (x->is_safepoint()) {
2450     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2451 
2452     // increment backedge counter if needed
2453     CodeEmitInfo* info = state_for(x, state);
2454     increment_backedge_counter(info, x->profiled_bci());
2455     CodeEmitInfo* safepoint_info = state_for(x, state);
2456     __ safepoint(safepoint_poll_register(), safepoint_info);
2457   }
2458 
2459   // Gotos can be folded Ifs, handle this case.
2460   if (x->should_profile()) {
2461     ciMethod* method = x->profiled_method();
2462     assert(method != nullptr, "method should be set if branch is profiled");
2463     ciMethodData* md = method->method_data_or_null();
2464     assert(md != nullptr, "Sanity");
2465     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2466     assert(data != nullptr, "must have profiling data");
2467     int offset;
2468     if (x->direction() == Goto::taken) {
2469       assert(data->is_BranchData(), "need BranchData for two-way branches");
2470       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2471     } else if (x->direction() == Goto::not_taken) {
2472       assert(data->is_BranchData(), "need BranchData for two-way branches");
2473       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2474     } else {
2475       assert(data->is_JumpData(), "need JumpData for branches");
2476       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2477     }
2478     LIR_Opr md_reg = new_register(T_METADATA);
2479     __ metadata2reg(md->constant_encoding(), md_reg);
2480 
2481     increment_counter(new LIR_Address(md_reg, offset,
2482                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2483   }
2484 
2485   // emit phi-instruction move after safepoint since this simplifies
2486   // describing the state as the safepoint.
2487   move_to_phi(x->state());
2488 
2489   __ jump(x->default_sux());
2490 }
2491 
2492 /**
2493  * Emit profiling code if needed for arguments, parameters, return value types
2494  *
2495  * @param md                    MDO the code will update at runtime
2496  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2497  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2498  * @param profiled_k            current profile
2499  * @param obj                   IR node for the object to be profiled
2500  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2501  *                              Set once we find an update to make and use for next ones.
2502  * @param not_null              true if we know obj cannot be null
2503  * @param signature_at_call_k   signature at call for obj
2504  * @param callee_signature_k    signature of callee for obj
2505  *                              at call and callee signatures differ at method handle call
2506  * @return                      the only klass we know will ever be seen at this profile point
2507  */
2508 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2509                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2510                                     ciKlass* callee_signature_k) {
2511   ciKlass* result = nullptr;
2512   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2513   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2514   // known not to be null or null bit already set and already set to
2515   // unknown: nothing we can do to improve profiling
2516   if (!do_null && !do_update) {
2517     return result;
2518   }
2519 
2520   ciKlass* exact_klass = nullptr;
2521   Compilation* comp = Compilation::current();
2522   if (do_update) {
2523     // try to find exact type, using CHA if possible, so that loading
2524     // the klass from the object can be avoided
2525     ciType* type = obj->exact_type();
2526     if (type == nullptr) {
2527       type = obj->declared_type();
2528       type = comp->cha_exact_type(type);
2529     }
2530     assert(type == nullptr || type->is_klass(), "type should be class");
2531     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2532 
2533     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2534   }
2535 
2536   if (!do_null && !do_update) {
2537     return result;
2538   }
2539 
2540   ciKlass* exact_signature_k = nullptr;
2541   if (do_update) {
2542     // Is the type from the signature exact (the only one possible)?
2543     exact_signature_k = signature_at_call_k->exact_klass();
2544     if (exact_signature_k == nullptr) {
2545       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2546     } else {
2547       result = exact_signature_k;
2548       // Known statically. No need to emit any code: prevent
2549       // LIR_Assembler::emit_profile_type() from emitting useless code
2550       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2551     }
2552     // exact_klass and exact_signature_k can be both non null but
2553     // different if exact_klass is loaded after the ciObject for
2554     // exact_signature_k is created.
2555     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2556       // sometimes the type of the signature is better than the best type
2557       // the compiler has
2558       exact_klass = exact_signature_k;
2559     }
2560     if (callee_signature_k != nullptr &&
2561         callee_signature_k != signature_at_call_k) {
2562       ciKlass* improved_klass = callee_signature_k->exact_klass();
2563       if (improved_klass == nullptr) {
2564         improved_klass = comp->cha_exact_type(callee_signature_k);
2565       }
2566       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2567         exact_klass = exact_signature_k;
2568       }
2569     }
2570     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2571   }
2572 
2573   if (!do_null && !do_update) {
2574     return result;
2575   }
2576 
2577   if (mdp == LIR_OprFact::illegalOpr) {
2578     mdp = new_register(T_METADATA);
2579     __ metadata2reg(md->constant_encoding(), mdp);
2580     if (md_base_offset != 0) {
2581       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2582       mdp = new_pointer_register();
2583       __ leal(LIR_OprFact::address(base_type_address), mdp);
2584     }
2585   }
2586   LIRItem value(obj, this);
2587   value.load_item();
2588   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2589                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2590   return result;
2591 }
2592 
2593 // profile parameters on entry to the root of the compilation
2594 void LIRGenerator::profile_parameters(Base* x) {
2595   if (compilation()->profile_parameters()) {
2596     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2597     ciMethodData* md = scope()->method()->method_data_or_null();
2598     assert(md != nullptr, "Sanity");
2599 
2600     if (md->parameters_type_data() != nullptr) {
2601       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2602       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2603       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2604       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2605         LIR_Opr src = args->at(i);
2606         assert(!src->is_illegal(), "check");
2607         BasicType t = src->type();
2608         if (is_reference_type(t)) {
2609           intptr_t profiled_k = parameters->type(j);
2610           Local* local = x->state()->local_at(java_index)->as_Local();
2611           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2612                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2613                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2614           // If the profile is known statically set it once for all and do not emit any code
2615           if (exact != nullptr) {
2616             md->set_parameter_type(j, exact);
2617           }
2618           j++;
2619         }
2620         java_index += type2size[t];
2621       }
2622     }
2623   }
2624 }
2625 
2626 void LIRGenerator::do_Base(Base* x) {
2627   __ std_entry(LIR_OprFact::illegalOpr);
2628   // Emit moves from physical registers / stack slots to virtual registers
2629   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2630   IRScope* irScope = compilation()->hir()->top_scope();
2631   int java_index = 0;
2632   for (int i = 0; i < args->length(); i++) {
2633     LIR_Opr src = args->at(i);
2634     assert(!src->is_illegal(), "check");
2635     BasicType t = src->type();
2636 
2637     // Types which are smaller than int are passed as int, so
2638     // correct the type which passed.
2639     switch (t) {
2640     case T_BYTE:
2641     case T_BOOLEAN:
2642     case T_SHORT:
2643     case T_CHAR:
2644       t = T_INT;
2645       break;
2646     default:
2647       break;
2648     }
2649 
2650     LIR_Opr dest = new_register(t);
2651     __ move(src, dest);
2652 
2653     // Assign new location to Local instruction for this local
2654     Local* local = x->state()->local_at(java_index)->as_Local();
2655     assert(local != nullptr, "Locals for incoming arguments must have been created");
2656 #ifndef __SOFTFP__
2657     // The java calling convention passes double as long and float as int.
2658     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2659 #endif // __SOFTFP__
2660     local->set_operand(dest);
2661 #ifdef ASSERT
2662     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2663 #endif
2664     java_index += type2size[t];
2665   }
2666 
2667   if (compilation()->env()->dtrace_method_probes()) {
2668     BasicTypeList signature;
2669     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2670     signature.append(T_METADATA); // Method*
2671     LIR_OprList* args = new LIR_OprList();
2672     args->append(getThreadPointer());
2673     LIR_Opr meth = new_register(T_METADATA);
2674     __ metadata2reg(method()->constant_encoding(), meth);
2675     args->append(meth);
2676     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2677   }
2678 
2679   if (method()->is_synchronized()) {
2680     LIR_Opr obj;
2681     if (method()->is_static()) {
2682       obj = new_register(T_OBJECT);
2683       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2684     } else {
2685       Local* receiver = x->state()->local_at(0)->as_Local();
2686       assert(receiver != nullptr, "must already exist");
2687       obj = receiver->operand();
2688     }
2689     assert(obj->is_valid(), "must be valid");
2690 
2691     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2692       LIR_Opr lock = syncLockOpr();
2693       __ load_stack_address_monitor(0, lock);
2694 
2695       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2696       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2697 
2698       // receiver is guaranteed non-null so don't need CodeEmitInfo
2699       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2700     }
2701   }
2702   // increment invocation counters if needed
2703   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2704     profile_parameters(x);
2705     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2706     increment_invocation_counter(info);
2707   }
2708 
2709   // all blocks with a successor must end with an unconditional jump
2710   // to the successor even if they are consecutive
2711   __ jump(x->default_sux());
2712 }
2713 
2714 
2715 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2716   // construct our frame and model the production of incoming pointer
2717   // to the OSR buffer.
2718   __ osr_entry(LIR_Assembler::osrBufferPointer());
2719   LIR_Opr result = rlock_result(x);
2720   __ move(LIR_Assembler::osrBufferPointer(), result);
2721 }
2722 
2723 
2724 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2725   assert(args->length() == arg_list->length(),
2726          "args=%d, arg_list=%d", args->length(), arg_list->length());
2727   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2728     LIRItem* param = args->at(i);
2729     LIR_Opr loc = arg_list->at(i);
2730     if (loc->is_register()) {
2731       param->load_item_force(loc);
2732     } else {
2733       LIR_Address* addr = loc->as_address_ptr();
2734       param->load_for_store(addr->type());
2735       if (addr->type() == T_OBJECT) {
2736         __ move_wide(param->result(), addr);
2737       } else
2738         __ move(param->result(), addr);
2739     }
2740   }
2741 
2742   if (x->has_receiver()) {
2743     LIRItem* receiver = args->at(0);
2744     LIR_Opr loc = arg_list->at(0);
2745     if (loc->is_register()) {
2746       receiver->load_item_force(loc);
2747     } else {
2748       assert(loc->is_address(), "just checking");
2749       receiver->load_for_store(T_OBJECT);
2750       __ move_wide(receiver->result(), loc->as_address_ptr());
2751     }
2752   }
2753 }
2754 
2755 
2756 // Visits all arguments, returns appropriate items without loading them
2757 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2758   LIRItemList* argument_items = new LIRItemList();
2759   if (x->has_receiver()) {
2760     LIRItem* receiver = new LIRItem(x->receiver(), this);
2761     argument_items->append(receiver);
2762   }
2763   for (int i = 0; i < x->number_of_arguments(); i++) {
2764     LIRItem* param = new LIRItem(x->argument_at(i), this);
2765     argument_items->append(param);
2766   }
2767   return argument_items;
2768 }
2769 
2770 
2771 // The invoke with receiver has following phases:
2772 //   a) traverse and load/lock receiver;
2773 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2774 //   c) push receiver on stack
2775 //   d) load each of the items and push on stack
2776 //   e) unlock receiver
2777 //   f) move receiver into receiver-register %o0
2778 //   g) lock result registers and emit call operation
2779 //
2780 // Before issuing a call, we must spill-save all values on stack
2781 // that are in caller-save register. "spill-save" moves those registers
2782 // either in a free callee-save register or spills them if no free
2783 // callee save register is available.
2784 //
2785 // The problem is where to invoke spill-save.
2786 // - if invoked between e) and f), we may lock callee save
2787 //   register in "spill-save" that destroys the receiver register
2788 //   before f) is executed
2789 // - if we rearrange f) to be earlier (by loading %o0) it
2790 //   may destroy a value on the stack that is currently in %o0
2791 //   and is waiting to be spilled
2792 // - if we keep the receiver locked while doing spill-save,
2793 //   we cannot spill it as it is spill-locked
2794 //
2795 void LIRGenerator::do_Invoke(Invoke* x) {
2796   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2797 
2798   LIR_OprList* arg_list = cc->args();
2799   LIRItemList* args = invoke_visit_arguments(x);
2800   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2801 
2802   // setup result register
2803   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2804   if (x->type() != voidType) {
2805     result_register = result_register_for(x->type());
2806   }
2807 
2808   CodeEmitInfo* info = state_for(x, x->state());
2809 
2810   invoke_load_arguments(x, args, arg_list);
2811 
2812   if (x->has_receiver()) {
2813     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2814     receiver = args->at(0)->result();
2815   }
2816 
2817   // emit invoke code
2818   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2819 
2820   // JSR 292
2821   // Preserve the SP over MethodHandle call sites, if needed.
2822   ciMethod* target = x->target();
2823   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2824                                   target->is_method_handle_intrinsic() ||
2825                                   target->is_compiled_lambda_form());
2826   if (is_method_handle_invoke) {
2827     info->set_is_method_handle_invoke(true);
2828     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2829         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2830     }
2831   }
2832 
2833   switch (x->code()) {
2834     case Bytecodes::_invokestatic:
2835       __ call_static(target, result_register,
2836                      SharedRuntime::get_resolve_static_call_stub(),
2837                      arg_list, info);
2838       break;
2839     case Bytecodes::_invokespecial:
2840     case Bytecodes::_invokevirtual:
2841     case Bytecodes::_invokeinterface:
2842       // for loaded and final (method or class) target we still produce an inline cache,
2843       // in order to be able to call mixed mode
2844       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2845         __ call_opt_virtual(target, receiver, result_register,
2846                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2847                             arg_list, info);
2848       } else {
2849         __ call_icvirtual(target, receiver, result_register,
2850                           SharedRuntime::get_resolve_virtual_call_stub(),
2851                           arg_list, info);
2852       }
2853       break;
2854     case Bytecodes::_invokedynamic: {
2855       __ call_dynamic(target, receiver, result_register,
2856                       SharedRuntime::get_resolve_static_call_stub(),
2857                       arg_list, info);
2858       break;
2859     }
2860     default:
2861       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2862       break;
2863   }
2864 
2865   // JSR 292
2866   // Restore the SP after MethodHandle call sites, if needed.
2867   if (is_method_handle_invoke
2868       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2869     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2870   }
2871 
2872   if (result_register->is_valid()) {
2873     LIR_Opr result = rlock_result(x);
2874     __ move(result_register, result);
2875   }
2876 }
2877 
2878 
2879 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2880   assert(x->number_of_arguments() == 1, "wrong type");
2881   LIRItem value       (x->argument_at(0), this);
2882   LIR_Opr reg = rlock_result(x);
2883   value.load_item();
2884   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2885   __ move(tmp, reg);
2886 }
2887 
2888 
2889 
2890 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2891 void LIRGenerator::do_IfOp(IfOp* x) {
2892 #ifdef ASSERT
2893   {
2894     ValueTag xtag = x->x()->type()->tag();
2895     ValueTag ttag = x->tval()->type()->tag();
2896     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2897     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2898     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2899   }
2900 #endif
2901 
2902   LIRItem left(x->x(), this);
2903   LIRItem right(x->y(), this);
2904   left.load_item();
2905   if (can_inline_as_constant(right.value())) {
2906     right.dont_load_item();
2907   } else {
2908     right.load_item();
2909   }
2910 
2911   LIRItem t_val(x->tval(), this);
2912   LIRItem f_val(x->fval(), this);
2913   t_val.dont_load_item();
2914   f_val.dont_load_item();
2915   LIR_Opr reg = rlock_result(x);
2916 
2917   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2918   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2919 }
2920 
2921 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2922   assert(x->number_of_arguments() == 0, "wrong type");
2923   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2924   BasicTypeList signature;
2925   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2926   LIR_Opr reg = result_register_for(x->type());
2927   __ call_runtime_leaf(routine, getThreadTemp(),
2928                        reg, new LIR_OprList());
2929   LIR_Opr result = rlock_result(x);
2930   __ move(reg, result);
2931 }
2932 
2933 
2934 
2935 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2936   switch (x->id()) {
2937   case vmIntrinsics::_intBitsToFloat      :
2938   case vmIntrinsics::_doubleToRawLongBits :
2939   case vmIntrinsics::_longBitsToDouble    :
2940   case vmIntrinsics::_floatToRawIntBits   : {
2941     do_FPIntrinsics(x);
2942     break;
2943   }
2944 
2945 #ifdef JFR_HAVE_INTRINSICS
2946   case vmIntrinsics::_counterTime:
2947     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2948     break;
2949 #endif
2950 
2951   case vmIntrinsics::_currentTimeMillis:
2952     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2953     break;
2954 
2955   case vmIntrinsics::_nanoTime:
2956     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2957     break;
2958 
2959   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2960   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2961   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2962   case vmIntrinsics::_getModifiers:   do_getModifiers(x);  break;
2963   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2964   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2965   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2966   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2967   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2968 
2969   case vmIntrinsics::_dlog:           // fall through
2970   case vmIntrinsics::_dlog10:         // fall through
2971   case vmIntrinsics::_dabs:           // fall through
2972   case vmIntrinsics::_dsqrt:          // fall through
2973   case vmIntrinsics::_dsqrt_strict:   // fall through
2974   case vmIntrinsics::_dtan:           // fall through
2975   case vmIntrinsics::_dtanh:          // fall through
2976   case vmIntrinsics::_dsin :          // fall through
2977   case vmIntrinsics::_dcos :          // fall through
2978   case vmIntrinsics::_dexp :          // fall through
2979   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2980   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2981 
2982   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2983   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2984 
2985   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2986   case vmIntrinsics::_floatToFloat16: // fall through
2987   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2988 
2989   case vmIntrinsics::_Preconditions_checkIndex:
2990     do_PreconditionsCheckIndex(x, T_INT);
2991     break;
2992   case vmIntrinsics::_Preconditions_checkLongIndex:
2993     do_PreconditionsCheckIndex(x, T_LONG);
2994     break;
2995 
2996   case vmIntrinsics::_compareAndSetReference:
2997     do_CompareAndSwap(x, objectType);
2998     break;
2999   case vmIntrinsics::_compareAndSetInt:
3000     do_CompareAndSwap(x, intType);
3001     break;
3002   case vmIntrinsics::_compareAndSetLong:
3003     do_CompareAndSwap(x, longType);
3004     break;
3005 
3006   case vmIntrinsics::_loadFence :
3007     __ membar_acquire();
3008     break;
3009   case vmIntrinsics::_storeFence:
3010     __ membar_release();
3011     break;
3012   case vmIntrinsics::_storeStoreFence:
3013     __ membar_storestore();
3014     break;
3015   case vmIntrinsics::_fullFence :
3016     __ membar();
3017     break;
3018   case vmIntrinsics::_onSpinWait:
3019     __ on_spin_wait();
3020     break;
3021   case vmIntrinsics::_Reference_get:
3022     do_Reference_get(x);
3023     break;
3024 
3025   case vmIntrinsics::_updateCRC32:
3026   case vmIntrinsics::_updateBytesCRC32:
3027   case vmIntrinsics::_updateByteBufferCRC32:
3028     do_update_CRC32(x);
3029     break;
3030 
3031   case vmIntrinsics::_updateBytesCRC32C:
3032   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3033     do_update_CRC32C(x);
3034     break;
3035 
3036   case vmIntrinsics::_vectorizedMismatch:
3037     do_vectorizedMismatch(x);
3038     break;
3039 
3040   case vmIntrinsics::_blackhole:
3041     do_blackhole(x);
3042     break;
3043 
3044   default: ShouldNotReachHere(); break;
3045   }
3046 }
3047 
3048 void LIRGenerator::profile_arguments(ProfileCall* x) {
3049   if (compilation()->profile_arguments()) {
3050     int bci = x->bci_of_invoke();
3051     ciMethodData* md = x->method()->method_data_or_null();
3052     assert(md != nullptr, "Sanity");
3053     ciProfileData* data = md->bci_to_data(bci);
3054     if (data != nullptr) {
3055       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3056           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3057         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3058         int base_offset = md->byte_offset_of_slot(data, extra);
3059         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3060         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3061 
3062         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3063         int start = 0;
3064         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3065         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3066           // first argument is not profiled at call (method handle invoke)
3067           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3068           start = 1;
3069         }
3070         ciSignature* callee_signature = x->callee()->signature();
3071         // method handle call to virtual method
3072         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3073         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
3074 
3075         bool ignored_will_link;
3076         ciSignature* signature_at_call = nullptr;
3077         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3078         ciSignatureStream signature_at_call_stream(signature_at_call);
3079 
3080         // if called through method handle invoke, some arguments may have been popped
3081         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3082           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3083           ciKlass* exact = profile_type(md, base_offset, off,
3084               args->type(i), x->profiled_arg_at(i+start), mdp,
3085               !x->arg_needs_null_check(i+start),
3086               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3087           if (exact != nullptr) {
3088             md->set_argument_type(bci, i, exact);
3089           }
3090         }
3091       } else {
3092 #ifdef ASSERT
3093         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3094         int n = x->nb_profiled_args();
3095         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3096             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3097             "only at JSR292 bytecodes");
3098 #endif
3099       }
3100     }
3101   }
3102 }
3103 
3104 // profile parameters on entry to an inlined method
3105 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3106   if (compilation()->profile_parameters() && x->inlined()) {
3107     ciMethodData* md = x->callee()->method_data_or_null();
3108     if (md != nullptr) {
3109       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3110       if (parameters_type_data != nullptr) {
3111         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3112         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3113         bool has_receiver = !x->callee()->is_static();
3114         ciSignature* sig = x->callee()->signature();
3115         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3116         int i = 0; // to iterate on the Instructions
3117         Value arg = x->recv();
3118         bool not_null = false;
3119         int bci = x->bci_of_invoke();
3120         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3121         // The first parameter is the receiver so that's what we start
3122         // with if it exists. One exception is method handle call to
3123         // virtual method: the receiver is in the args list
3124         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3125           i = 1;
3126           arg = x->profiled_arg_at(0);
3127           not_null = !x->arg_needs_null_check(0);
3128         }
3129         int k = 0; // to iterate on the profile data
3130         for (;;) {
3131           intptr_t profiled_k = parameters->type(k);
3132           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3133                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3134                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3135           // If the profile is known statically set it once for all and do not emit any code
3136           if (exact != nullptr) {
3137             md->set_parameter_type(k, exact);
3138           }
3139           k++;
3140           if (k >= parameters_type_data->number_of_parameters()) {
3141 #ifdef ASSERT
3142             int extra = 0;
3143             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3144                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3145                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3146               extra += 1;
3147             }
3148             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3149 #endif
3150             break;
3151           }
3152           arg = x->profiled_arg_at(i);
3153           not_null = !x->arg_needs_null_check(i);
3154           i++;
3155         }
3156       }
3157     }
3158   }
3159 }
3160 
3161 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3162   // Need recv in a temporary register so it interferes with the other temporaries
3163   LIR_Opr recv = LIR_OprFact::illegalOpr;
3164   LIR_Opr mdo = new_register(T_METADATA);
3165   // tmp is used to hold the counters on SPARC
3166   LIR_Opr tmp = new_pointer_register();
3167 
3168   if (x->nb_profiled_args() > 0) {
3169     profile_arguments(x);
3170   }
3171 
3172   // profile parameters on inlined method entry including receiver
3173   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3174     profile_parameters_at_call(x);
3175   }
3176 
3177   if (x->recv() != nullptr) {
3178     LIRItem value(x->recv(), this);
3179     value.load_item();
3180     recv = new_register(T_OBJECT);
3181     __ move(value.result(), recv);
3182   }
3183   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3184 }
3185 
3186 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3187   int bci = x->bci_of_invoke();
3188   ciMethodData* md = x->method()->method_data_or_null();
3189   assert(md != nullptr, "Sanity");
3190   ciProfileData* data = md->bci_to_data(bci);
3191   if (data != nullptr) {
3192     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3193     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3194     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3195 
3196     bool ignored_will_link;
3197     ciSignature* signature_at_call = nullptr;
3198     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3199 
3200     // The offset within the MDO of the entry to update may be too large
3201     // to be used in load/store instructions on some platforms. So have
3202     // profile_type() compute the address of the profile in a register.
3203     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3204         ret->type(), x->ret(), mdp,
3205         !x->needs_null_check(),
3206         signature_at_call->return_type()->as_klass(),
3207         x->callee()->signature()->return_type()->as_klass());
3208     if (exact != nullptr) {
3209       md->set_return_type(bci, exact);
3210     }
3211   }
3212 }
3213 
3214 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3215   // We can safely ignore accessors here, since c2 will inline them anyway,
3216   // accessors are also always mature.
3217   if (!x->inlinee()->is_accessor()) {
3218     CodeEmitInfo* info = state_for(x, x->state(), true);
3219     // Notify the runtime very infrequently only to take care of counter overflows
3220     int freq_log = Tier23InlineeNotifyFreqLog;
3221     double scale;
3222     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3223       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3224     }
3225     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3226   }
3227 }
3228 
3229 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3230   if (compilation()->is_profiling()) {
3231 #if defined(X86) && !defined(_LP64)
3232     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3233     LIR_Opr left_copy = new_register(left->type());
3234     __ move(left, left_copy);
3235     __ cmp(cond, left_copy, right);
3236 #else
3237     __ cmp(cond, left, right);
3238 #endif
3239     LIR_Opr step = new_register(T_INT);
3240     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3241     LIR_Opr zero = LIR_OprFact::intConst(0);
3242     __ cmove(cond,
3243         (left_bci < bci) ? plus_one : zero,
3244         (right_bci < bci) ? plus_one : zero,
3245         step, left->type());
3246     increment_backedge_counter(info, step, bci);
3247   }
3248 }
3249 
3250 
3251 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3252   int freq_log = 0;
3253   int level = compilation()->env()->comp_level();
3254   if (level == CompLevel_limited_profile) {
3255     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3256   } else if (level == CompLevel_full_profile) {
3257     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3258   } else {
3259     ShouldNotReachHere();
3260   }
3261   // Increment the appropriate invocation/backedge counter and notify the runtime.
3262   double scale;
3263   if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3264     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3265   }
3266   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3267 }
3268 
3269 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3270                                                 ciMethod *method, LIR_Opr step, int frequency,
3271                                                 int bci, bool backedge, bool notify) {
3272   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3273   int level = _compilation->env()->comp_level();
3274   assert(level > CompLevel_simple, "Shouldn't be here");
3275 
3276   int offset = -1;
3277   LIR_Opr counter_holder;
3278   if (level == CompLevel_limited_profile) {
3279     MethodCounters* counters_adr = method->ensure_method_counters();
3280     if (counters_adr == nullptr) {
3281       bailout("method counters allocation failed");
3282       return;
3283     }
3284 if (SCCache::is_on()) {
3285     counter_holder = new_register(T_METADATA);
3286     __ metadata2reg(counters_adr, counter_holder);
3287 } else {
3288     counter_holder = new_pointer_register();
3289     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3290 }
3291     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3292                                  MethodCounters::invocation_counter_offset());
3293   } else if (level == CompLevel_full_profile) {
3294     counter_holder = new_register(T_METADATA);
3295     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3296                                  MethodData::invocation_counter_offset());
3297     ciMethodData* md = method->method_data_or_null();
3298     assert(md != nullptr, "Sanity");
3299     __ metadata2reg(md->constant_encoding(), counter_holder);
3300   } else {
3301     ShouldNotReachHere();
3302   }
3303   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3304   LIR_Opr result = new_register(T_INT);
3305   __ load(counter, result);
3306   __ add(result, step, result);
3307   __ store(result, counter);
3308   if (notify && (!backedge || UseOnStackReplacement)) {
3309     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3310     // The bci for info can point to cmp for if's we want the if bci
3311     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3312     int freq = frequency << InvocationCounter::count_shift;
3313     if (freq == 0) {
3314       if (!step->is_constant()) {
3315         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3316         __ branch(lir_cond_notEqual, overflow);
3317       } else {
3318         __ branch(lir_cond_always, overflow);
3319       }
3320     } else {
3321       LIR_Opr mask = load_immediate(freq, T_INT);
3322       if (!step->is_constant()) {
3323         // If step is 0, make sure the overflow check below always fails
3324         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3325         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3326       }
3327       __ logical_and(result, mask, result);
3328       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3329       __ branch(lir_cond_equal, overflow);
3330     }
3331     __ branch_destination(overflow->continuation());
3332   }
3333 }
3334 
3335 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3336   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3337   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3338 
3339   if (x->pass_thread()) {
3340     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3341     args->append(getThreadPointer());
3342   }
3343 
3344   for (int i = 0; i < x->number_of_arguments(); i++) {
3345     Value a = x->argument_at(i);
3346     LIRItem* item = new LIRItem(a, this);
3347     item->load_item();
3348     args->append(item->result());
3349     signature->append(as_BasicType(a->type()));
3350   }
3351 
3352   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3353   if (x->type() == voidType) {
3354     set_no_result(x);
3355   } else {
3356     __ move(result, rlock_result(x));
3357   }
3358 }
3359 
3360 #ifdef ASSERT
3361 void LIRGenerator::do_Assert(Assert *x) {
3362   ValueTag tag = x->x()->type()->tag();
3363   If::Condition cond = x->cond();
3364 
3365   LIRItem xitem(x->x(), this);
3366   LIRItem yitem(x->y(), this);
3367   LIRItem* xin = &xitem;
3368   LIRItem* yin = &yitem;
3369 
3370   assert(tag == intTag, "Only integer assertions are valid!");
3371 
3372   xin->load_item();
3373   yin->dont_load_item();
3374 
3375   set_no_result(x);
3376 
3377   LIR_Opr left = xin->result();
3378   LIR_Opr right = yin->result();
3379 
3380   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3381 }
3382 #endif
3383 
3384 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3385 
3386 
3387   Instruction *a = x->x();
3388   Instruction *b = x->y();
3389   if (!a || StressRangeCheckElimination) {
3390     assert(!b || StressRangeCheckElimination, "B must also be null");
3391 
3392     CodeEmitInfo *info = state_for(x, x->state());
3393     CodeStub* stub = new PredicateFailedStub(info);
3394 
3395     __ jump(stub);
3396   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3397     int a_int = a->type()->as_IntConstant()->value();
3398     int b_int = b->type()->as_IntConstant()->value();
3399 
3400     bool ok = false;
3401 
3402     switch(x->cond()) {
3403       case Instruction::eql: ok = (a_int == b_int); break;
3404       case Instruction::neq: ok = (a_int != b_int); break;
3405       case Instruction::lss: ok = (a_int < b_int); break;
3406       case Instruction::leq: ok = (a_int <= b_int); break;
3407       case Instruction::gtr: ok = (a_int > b_int); break;
3408       case Instruction::geq: ok = (a_int >= b_int); break;
3409       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3410       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3411       default: ShouldNotReachHere();
3412     }
3413 
3414     if (ok) {
3415 
3416       CodeEmitInfo *info = state_for(x, x->state());
3417       CodeStub* stub = new PredicateFailedStub(info);
3418 
3419       __ jump(stub);
3420     }
3421   } else {
3422 
3423     ValueTag tag = x->x()->type()->tag();
3424     If::Condition cond = x->cond();
3425     LIRItem xitem(x->x(), this);
3426     LIRItem yitem(x->y(), this);
3427     LIRItem* xin = &xitem;
3428     LIRItem* yin = &yitem;
3429 
3430     assert(tag == intTag, "Only integer deoptimizations are valid!");
3431 
3432     xin->load_item();
3433     yin->dont_load_item();
3434     set_no_result(x);
3435 
3436     LIR_Opr left = xin->result();
3437     LIR_Opr right = yin->result();
3438 
3439     CodeEmitInfo *info = state_for(x, x->state());
3440     CodeStub* stub = new PredicateFailedStub(info);
3441 
3442     __ cmp(lir_cond(cond), left, right);
3443     __ branch(lir_cond(cond), stub);
3444   }
3445 }
3446 
3447 void LIRGenerator::do_blackhole(Intrinsic *x) {
3448   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3449   for (int c = 0; c < x->number_of_arguments(); c++) {
3450     // Load the argument
3451     LIRItem vitem(x->argument_at(c), this);
3452     vitem.load_item();
3453     // ...and leave it unused.
3454   }
3455 }
3456 
3457 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3458   LIRItemList args(1);
3459   LIRItem value(arg1, this);
3460   args.append(&value);
3461   BasicTypeList signature;
3462   signature.append(as_BasicType(arg1->type()));
3463 
3464   return call_runtime(&signature, &args, entry, result_type, info);
3465 }
3466 
3467 
3468 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3469   LIRItemList args(2);
3470   LIRItem value1(arg1, this);
3471   LIRItem value2(arg2, this);
3472   args.append(&value1);
3473   args.append(&value2);
3474   BasicTypeList signature;
3475   signature.append(as_BasicType(arg1->type()));
3476   signature.append(as_BasicType(arg2->type()));
3477 
3478   return call_runtime(&signature, &args, entry, result_type, info);
3479 }
3480 
3481 
3482 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3483                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3484   // get a result register
3485   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3486   LIR_Opr result = LIR_OprFact::illegalOpr;
3487   if (result_type->tag() != voidTag) {
3488     result = new_register(result_type);
3489     phys_reg = result_register_for(result_type);
3490   }
3491 
3492   // move the arguments into the correct location
3493   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3494   assert(cc->length() == args->length(), "argument mismatch");
3495   for (int i = 0; i < args->length(); i++) {
3496     LIR_Opr arg = args->at(i);
3497     LIR_Opr loc = cc->at(i);
3498     if (loc->is_register()) {
3499       __ move(arg, loc);
3500     } else {
3501       LIR_Address* addr = loc->as_address_ptr();
3502 //           if (!can_store_as_constant(arg)) {
3503 //             LIR_Opr tmp = new_register(arg->type());
3504 //             __ move(arg, tmp);
3505 //             arg = tmp;
3506 //           }
3507       __ move(arg, addr);
3508     }
3509   }
3510 
3511   if (info) {
3512     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3513   } else {
3514     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3515   }
3516   if (result->is_valid()) {
3517     __ move(phys_reg, result);
3518   }
3519   return result;
3520 }
3521 
3522 
3523 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3524                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3525   // get a result register
3526   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3527   LIR_Opr result = LIR_OprFact::illegalOpr;
3528   if (result_type->tag() != voidTag) {
3529     result = new_register(result_type);
3530     phys_reg = result_register_for(result_type);
3531   }
3532 
3533   // move the arguments into the correct location
3534   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3535 
3536   assert(cc->length() == args->length(), "argument mismatch");
3537   for (int i = 0; i < args->length(); i++) {
3538     LIRItem* arg = args->at(i);
3539     LIR_Opr loc = cc->at(i);
3540     if (loc->is_register()) {
3541       arg->load_item_force(loc);
3542     } else {
3543       LIR_Address* addr = loc->as_address_ptr();
3544       arg->load_for_store(addr->type());
3545       __ move(arg->result(), addr);
3546     }
3547   }
3548 
3549   if (info) {
3550     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3551   } else {
3552     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3553   }
3554   if (result->is_valid()) {
3555     __ move(phys_reg, result);
3556   }
3557   return result;
3558 }
3559 
3560 void LIRGenerator::do_MemBar(MemBar* x) {
3561   LIR_Code code = x->code();
3562   switch(code) {
3563   case lir_membar_acquire   : __ membar_acquire(); break;
3564   case lir_membar_release   : __ membar_release(); break;
3565   case lir_membar           : __ membar(); break;
3566   case lir_membar_loadload  : __ membar_loadload(); break;
3567   case lir_membar_storestore: __ membar_storestore(); break;
3568   case lir_membar_loadstore : __ membar_loadstore(); break;
3569   case lir_membar_storeload : __ membar_storeload(); break;
3570   default                   : ShouldNotReachHere(); break;
3571   }
3572 }
3573 
3574 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3575   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3576   if (two_operand_lir_form) {
3577     __ move(value, value_fixed);
3578     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3579   } else {
3580     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3581   }
3582   LIR_Opr klass = new_register(T_METADATA);
3583   load_klass(array, klass, null_check_info);
3584   null_check_info = nullptr;
3585   LIR_Opr layout = new_register(T_INT);
3586   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3587   int diffbit = Klass::layout_helper_boolean_diffbit();
3588   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3589   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3590   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3591   value = value_fixed;
3592   return value;
3593 }