1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "ci/ciObjArray.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/SCCache.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "compiler/compilerOracle.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c1/barrierSetC1.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "oops/methodCounters.hpp" 43 #include "runtime/runtimeUpcalls.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/vm_version.hpp" 47 #include "utilities/bitMap.inline.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 #ifdef ASSERT 52 #define __ gen()->lir(__FILE__, __LINE__)-> 53 #else 54 #define __ gen()->lir()-> 55 #endif 56 57 #ifndef PATCHED_ADDR 58 #define PATCHED_ADDR (max_jint) 59 #endif 60 61 void PhiResolverState::reset() { 62 _virtual_operands.clear(); 63 _other_operands.clear(); 64 _vreg_table.clear(); 65 } 66 67 68 //-------------------------------------------------------------- 69 // PhiResolver 70 71 // Resolves cycles: 72 // 73 // r1 := r2 becomes temp := r1 74 // r2 := r1 r1 := r2 75 // r2 := temp 76 // and orders moves: 77 // 78 // r2 := r3 becomes r1 := r2 79 // r1 := r2 r2 := r3 80 81 PhiResolver::PhiResolver(LIRGenerator* gen) 82 : _gen(gen) 83 , _state(gen->resolver_state()) 84 , _loop(nullptr) 85 , _temp(LIR_OprFact::illegalOpr) 86 { 87 // reinitialize the shared state arrays 88 _state.reset(); 89 } 90 91 92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 93 assert(src->is_valid(), ""); 94 assert(dest->is_valid(), ""); 95 __ move(src, dest); 96 } 97 98 99 void PhiResolver::move_temp_to(LIR_Opr dest) { 100 assert(_temp->is_valid(), ""); 101 emit_move(_temp, dest); 102 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 103 } 104 105 106 void PhiResolver::move_to_temp(LIR_Opr src) { 107 assert(_temp->is_illegal(), ""); 108 _temp = _gen->new_register(src->type()); 109 emit_move(src, _temp); 110 } 111 112 113 // Traverse assignment graph in depth first order and generate moves in post order 114 // ie. two assignments: b := c, a := b start with node c: 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 116 // Generates moves in this order: move b to a and move c to b 117 // ie. cycle a := b, b := a start with node a 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 119 // Generates moves in this order: move b to temp, move a to b, move temp to a 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 121 if (!dest->visited()) { 122 dest->set_visited(); 123 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 124 move(dest, dest->destination_at(i)); 125 } 126 } else if (!dest->start_node()) { 127 // cylce in graph detected 128 assert(_loop == nullptr, "only one loop valid!"); 129 _loop = dest; 130 move_to_temp(src->operand()); 131 return; 132 } // else dest is a start node 133 134 if (!dest->assigned()) { 135 if (_loop == dest) { 136 move_temp_to(dest->operand()); 137 dest->set_assigned(); 138 } else if (src != nullptr) { 139 emit_move(src->operand(), dest->operand()); 140 dest->set_assigned(); 141 } 142 } 143 } 144 145 146 PhiResolver::~PhiResolver() { 147 int i; 148 // resolve any cycles in moves from and to virtual registers 149 for (i = virtual_operands().length() - 1; i >= 0; i --) { 150 ResolveNode* node = virtual_operands().at(i); 151 if (!node->visited()) { 152 _loop = nullptr; 153 move(nullptr, node); 154 node->set_start_node(); 155 assert(_temp->is_illegal(), "move_temp_to() call missing"); 156 } 157 } 158 159 // generate move for move from non virtual register to abitrary destination 160 for (i = other_operands().length() - 1; i >= 0; i --) { 161 ResolveNode* node = other_operands().at(i); 162 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 163 emit_move(node->operand(), node->destination_at(j)->operand()); 164 } 165 } 166 } 167 168 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 170 ResolveNode* node; 171 if (opr->is_virtual()) { 172 int vreg_num = opr->vreg_number(); 173 node = vreg_table().at_grow(vreg_num, nullptr); 174 assert(node == nullptr || node->operand() == opr, ""); 175 if (node == nullptr) { 176 node = new ResolveNode(opr); 177 vreg_table().at_put(vreg_num, node); 178 } 179 // Make sure that all virtual operands show up in the list when 180 // they are used as the source of a move. 181 if (source && !virtual_operands().contains(node)) { 182 virtual_operands().append(node); 183 } 184 } else { 185 assert(source, ""); 186 node = new ResolveNode(opr); 187 other_operands().append(node); 188 } 189 return node; 190 } 191 192 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 194 assert(dest->is_virtual(), ""); 195 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 196 assert(src->is_valid(), ""); 197 assert(dest->is_valid(), ""); 198 ResolveNode* source = source_node(src); 199 source->append(destination_node(dest)); 200 } 201 202 203 //-------------------------------------------------------------- 204 // LIRItem 205 206 void LIRItem::set_result(LIR_Opr opr) { 207 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 208 value()->set_operand(opr); 209 210 #ifdef ASSERT 211 if (opr->is_virtual()) { 212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 213 } 214 #endif 215 216 _result = opr; 217 } 218 219 void LIRItem::load_item() { 220 if (result()->is_illegal()) { 221 // update the items result 222 _result = value()->operand(); 223 } 224 if (!result()->is_register()) { 225 LIR_Opr reg = _gen->new_register(value()->type()); 226 __ move(result(), reg); 227 if (result()->is_constant()) { 228 _result = reg; 229 } else { 230 set_result(reg); 231 } 232 } 233 } 234 235 236 void LIRItem::load_for_store(BasicType type) { 237 if (_gen->can_store_as_constant(value(), type)) { 238 _result = value()->operand(); 239 if (!_result->is_constant()) { 240 _result = LIR_OprFact::value_type(value()->type()); 241 } 242 } else if (type == T_BYTE || type == T_BOOLEAN) { 243 load_byte_item(); 244 } else { 245 load_item(); 246 } 247 } 248 249 void LIRItem::load_item_force(LIR_Opr reg) { 250 LIR_Opr r = result(); 251 if (r != reg) { 252 #if !defined(ARM) && !defined(E500V2) 253 if (r->type() != reg->type()) { 254 // moves between different types need an intervening spill slot 255 r = _gen->force_to_spill(r, reg->type()); 256 } 257 #endif 258 __ move(r, reg); 259 _result = reg; 260 } 261 } 262 263 ciObject* LIRItem::get_jobject_constant() const { 264 ObjectType* oc = type()->as_ObjectType(); 265 if (oc) { 266 return oc->constant_value(); 267 } 268 return nullptr; 269 } 270 271 272 jint LIRItem::get_jint_constant() const { 273 assert(is_constant() && value() != nullptr, ""); 274 assert(type()->as_IntConstant() != nullptr, "type check"); 275 return type()->as_IntConstant()->value(); 276 } 277 278 279 jint LIRItem::get_address_constant() const { 280 assert(is_constant() && value() != nullptr, ""); 281 assert(type()->as_AddressConstant() != nullptr, "type check"); 282 return type()->as_AddressConstant()->value(); 283 } 284 285 286 jfloat LIRItem::get_jfloat_constant() const { 287 assert(is_constant() && value() != nullptr, ""); 288 assert(type()->as_FloatConstant() != nullptr, "type check"); 289 return type()->as_FloatConstant()->value(); 290 } 291 292 293 jdouble LIRItem::get_jdouble_constant() const { 294 assert(is_constant() && value() != nullptr, ""); 295 assert(type()->as_DoubleConstant() != nullptr, "type check"); 296 return type()->as_DoubleConstant()->value(); 297 } 298 299 300 jlong LIRItem::get_jlong_constant() const { 301 assert(is_constant() && value() != nullptr, ""); 302 assert(type()->as_LongConstant() != nullptr, "type check"); 303 return type()->as_LongConstant()->value(); 304 } 305 306 307 308 //-------------------------------------------------------------- 309 310 311 void LIRGenerator::block_do_prolog(BlockBegin* block) { 312 #ifndef PRODUCT 313 if (PrintIRWithLIR) { 314 block->print(); 315 } 316 #endif 317 318 // set up the list of LIR instructions 319 assert(block->lir() == nullptr, "LIR list already computed for this block"); 320 _lir = new LIR_List(compilation(), block); 321 block->set_lir(_lir); 322 323 __ branch_destination(block->label()); 324 325 if (LIRTraceExecution && 326 Compilation::current()->hir()->start()->block_id() != block->block_id() && 327 !block->is_set(BlockBegin::exception_entry_flag)) { 328 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 329 trace_block_entry(block); 330 } 331 } 332 333 334 void LIRGenerator::block_do_epilog(BlockBegin* block) { 335 #ifndef PRODUCT 336 if (PrintIRWithLIR) { 337 tty->cr(); 338 } 339 #endif 340 341 // LIR_Opr for unpinned constants shouldn't be referenced by other 342 // blocks so clear them out after processing the block. 343 for (int i = 0; i < _unpinned_constants.length(); i++) { 344 _unpinned_constants.at(i)->clear_operand(); 345 } 346 _unpinned_constants.trunc_to(0); 347 348 // clear our any registers for other local constants 349 _constants.trunc_to(0); 350 _reg_for_constants.trunc_to(0); 351 } 352 353 354 void LIRGenerator::block_do(BlockBegin* block) { 355 CHECK_BAILOUT(); 356 357 block_do_prolog(block); 358 set_block(block); 359 360 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 361 if (instr->is_pinned()) do_root(instr); 362 } 363 364 set_block(nullptr); 365 block_do_epilog(block); 366 } 367 368 369 //-------------------------LIRGenerator----------------------------- 370 371 // This is where the tree-walk starts; instr must be root; 372 void LIRGenerator::do_root(Value instr) { 373 CHECK_BAILOUT(); 374 375 InstructionMark im(compilation(), instr); 376 377 assert(instr->is_pinned(), "use only with roots"); 378 assert(instr->subst() == instr, "shouldn't have missed substitution"); 379 380 instr->visit(this); 381 382 assert(!instr->has_uses() || instr->operand()->is_valid() || 383 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 384 } 385 386 387 // This is called for each node in tree; the walk stops if a root is reached 388 void LIRGenerator::walk(Value instr) { 389 InstructionMark im(compilation(), instr); 390 //stop walk when encounter a root 391 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 392 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 393 } else { 394 assert(instr->subst() == instr, "shouldn't have missed substitution"); 395 instr->visit(this); 396 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 397 } 398 } 399 400 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 402 assert(state != nullptr, "state must be defined"); 403 404 #ifndef PRODUCT 405 state->verify(); 406 #endif 407 408 ValueStack* s = state; 409 for_each_state(s) { 410 if (s->kind() == ValueStack::EmptyExceptionState || 411 s->kind() == ValueStack::CallerEmptyExceptionState) 412 { 413 #ifdef ASSERT 414 int index; 415 Value value; 416 for_each_stack_value(s, index, value) { 417 fatal("state must be empty"); 418 } 419 for_each_local_value(s, index, value) { 420 fatal("state must be empty"); 421 } 422 #endif 423 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 424 continue; 425 } 426 427 int index; 428 Value value; 429 for_each_stack_value(s, index, value) { 430 assert(value->subst() == value, "missed substitution"); 431 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 432 walk(value); 433 assert(value->operand()->is_valid(), "must be evaluated now"); 434 } 435 } 436 437 int bci = s->bci(); 438 IRScope* scope = s->scope(); 439 ciMethod* method = scope->method(); 440 441 MethodLivenessResult liveness = method->liveness_at_bci(bci); 442 if (bci == SynchronizationEntryBCI) { 443 if (x->as_ExceptionObject() || x->as_Throw()) { 444 // all locals are dead on exit from the synthetic unlocker 445 liveness.clear(); 446 } else { 447 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 448 } 449 } 450 if (!liveness.is_valid()) { 451 // Degenerate or breakpointed method. 452 bailout("Degenerate or breakpointed method"); 453 } else { 454 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 455 for_each_local_value(s, index, value) { 456 assert(value->subst() == value, "missed substitution"); 457 if (liveness.at(index) && !value->type()->is_illegal()) { 458 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 459 walk(value); 460 assert(value->operand()->is_valid(), "must be evaluated now"); 461 } 462 } else { 463 // null out this local so that linear scan can assume that all non-null values are live. 464 s->invalidate_local(index); 465 } 466 } 467 } 468 } 469 470 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 471 } 472 473 474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 475 return state_for(x, x->exception_state()); 476 } 477 478 479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 480 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 481 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 482 * the class. */ 483 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 484 assert(info != nullptr, "info must be set if class is not loaded"); 485 __ klass2reg_patch(nullptr, r, info); 486 } else { 487 // no patching needed 488 __ metadata2reg(obj->constant_encoding(), r); 489 } 490 } 491 492 493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 494 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 495 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 496 if (index->is_constant()) { 497 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 498 index->as_jint(), null_check_info); 499 __ branch(lir_cond_belowEqual, stub); // forward branch 500 } else { 501 cmp_reg_mem(lir_cond_aboveEqual, index, array, 502 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 503 __ branch(lir_cond_aboveEqual, stub); // forward branch 504 } 505 } 506 507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 508 LIR_Opr result_op = result; 509 LIR_Opr left_op = left; 510 LIR_Opr right_op = right; 511 512 if (two_operand_lir_form && left_op != result_op) { 513 assert(right_op != result_op, "malformed"); 514 __ move(left_op, result_op); 515 left_op = result_op; 516 } 517 518 switch(code) { 519 case Bytecodes::_dadd: 520 case Bytecodes::_fadd: 521 case Bytecodes::_ladd: 522 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 523 case Bytecodes::_fmul: 524 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 525 526 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 527 528 case Bytecodes::_imul: 529 { 530 bool did_strength_reduce = false; 531 532 if (right->is_constant()) { 533 jint c = right->as_jint(); 534 if (c > 0 && is_power_of_2(c)) { 535 // do not need tmp here 536 __ shift_left(left_op, exact_log2(c), result_op); 537 did_strength_reduce = true; 538 } else { 539 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 540 } 541 } 542 // we couldn't strength reduce so just emit the multiply 543 if (!did_strength_reduce) { 544 __ mul(left_op, right_op, result_op); 545 } 546 } 547 break; 548 549 case Bytecodes::_dsub: 550 case Bytecodes::_fsub: 551 case Bytecodes::_lsub: 552 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 553 554 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 555 // ldiv and lrem are implemented with a direct runtime call 556 557 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 558 559 case Bytecodes::_drem: 560 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 561 562 default: ShouldNotReachHere(); 563 } 564 } 565 566 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 568 arithmetic_op(code, result, left, right, tmp); 569 } 570 571 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 573 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 574 } 575 576 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 578 arithmetic_op(code, result, left, right, tmp); 579 } 580 581 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 583 584 if (two_operand_lir_form && value != result_op 585 // Only 32bit right shifts require two operand form on S390. 586 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 587 assert(count != result_op, "malformed"); 588 __ move(value, result_op); 589 value = result_op; 590 } 591 592 assert(count->is_constant() || count->is_register(), "must be"); 593 switch(code) { 594 case Bytecodes::_ishl: 595 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 596 case Bytecodes::_ishr: 597 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 598 case Bytecodes::_iushr: 599 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 600 default: ShouldNotReachHere(); 601 } 602 } 603 604 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 606 if (two_operand_lir_form && left_op != result_op) { 607 assert(right_op != result_op, "malformed"); 608 __ move(left_op, result_op); 609 left_op = result_op; 610 } 611 612 switch(code) { 613 case Bytecodes::_iand: 614 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 615 616 case Bytecodes::_ior: 617 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 618 619 case Bytecodes::_ixor: 620 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 621 622 default: ShouldNotReachHere(); 623 } 624 } 625 626 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 628 if (!GenerateSynchronizationCode) return; 629 // for slow path, use debug info for state after successful locking 630 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 631 __ load_stack_address_monitor(monitor_no, lock); 632 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 633 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 634 } 635 636 637 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 638 if (!GenerateSynchronizationCode) return; 639 // setup registers 640 LIR_Opr hdr = lock; 641 lock = new_hdr; 642 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 643 __ load_stack_address_monitor(monitor_no, lock); 644 __ unlock_object(hdr, object, lock, scratch, slow_path); 645 } 646 647 #ifndef PRODUCT 648 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 649 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 650 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 651 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 652 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 653 } 654 } 655 #endif 656 657 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 658 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 659 // If klass is not loaded we do not know if the klass has finalizers: 660 if (UseFastNewInstance && klass->is_loaded() 661 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 662 663 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 664 665 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 666 667 assert(klass->is_loaded(), "must be loaded"); 668 // allocate space for instance 669 assert(klass->size_helper() > 0, "illegal instance size"); 670 const int instance_size = align_object_size(klass->size_helper()); 671 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 672 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 673 } else { 674 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 675 __ branch(lir_cond_always, slow_path); 676 __ branch_destination(slow_path->continuation()); 677 } 678 } 679 680 681 static bool is_constant_zero(Instruction* inst) { 682 IntConstant* c = inst->type()->as_IntConstant(); 683 if (c) { 684 return (c->value() == 0); 685 } 686 return false; 687 } 688 689 690 static bool positive_constant(Instruction* inst) { 691 IntConstant* c = inst->type()->as_IntConstant(); 692 if (c) { 693 return (c->value() >= 0); 694 } 695 return false; 696 } 697 698 699 static ciArrayKlass* as_array_klass(ciType* type) { 700 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 701 return (ciArrayKlass*)type; 702 } else { 703 return nullptr; 704 } 705 } 706 707 static ciType* phi_declared_type(Phi* phi) { 708 ciType* t = phi->operand_at(0)->declared_type(); 709 if (t == nullptr) { 710 return nullptr; 711 } 712 for(int i = 1; i < phi->operand_count(); i++) { 713 if (t != phi->operand_at(i)->declared_type()) { 714 return nullptr; 715 } 716 } 717 return t; 718 } 719 720 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 721 Instruction* src = x->argument_at(0); 722 Instruction* src_pos = x->argument_at(1); 723 Instruction* dst = x->argument_at(2); 724 Instruction* dst_pos = x->argument_at(3); 725 Instruction* length = x->argument_at(4); 726 727 // first try to identify the likely type of the arrays involved 728 ciArrayKlass* expected_type = nullptr; 729 bool is_exact = false, src_objarray = false, dst_objarray = false; 730 { 731 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 732 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 733 Phi* phi; 734 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 735 src_declared_type = as_array_klass(phi_declared_type(phi)); 736 } 737 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 738 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 739 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 740 dst_declared_type = as_array_klass(phi_declared_type(phi)); 741 } 742 743 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 744 // the types exactly match so the type is fully known 745 is_exact = true; 746 expected_type = src_exact_type; 747 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 748 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 749 ciArrayKlass* src_type = nullptr; 750 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 751 src_type = (ciArrayKlass*) src_exact_type; 752 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 753 src_type = (ciArrayKlass*) src_declared_type; 754 } 755 if (src_type != nullptr) { 756 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 757 is_exact = true; 758 expected_type = dst_type; 759 } 760 } 761 } 762 // at least pass along a good guess 763 if (expected_type == nullptr) expected_type = dst_exact_type; 764 if (expected_type == nullptr) expected_type = src_declared_type; 765 if (expected_type == nullptr) expected_type = dst_declared_type; 766 767 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 768 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 769 } 770 771 // if a probable array type has been identified, figure out if any 772 // of the required checks for a fast case can be elided. 773 int flags = LIR_OpArrayCopy::all_flags; 774 775 if (!src_objarray) 776 flags &= ~LIR_OpArrayCopy::src_objarray; 777 if (!dst_objarray) 778 flags &= ~LIR_OpArrayCopy::dst_objarray; 779 780 if (!x->arg_needs_null_check(0)) 781 flags &= ~LIR_OpArrayCopy::src_null_check; 782 if (!x->arg_needs_null_check(2)) 783 flags &= ~LIR_OpArrayCopy::dst_null_check; 784 785 786 if (expected_type != nullptr) { 787 Value length_limit = nullptr; 788 789 IfOp* ifop = length->as_IfOp(); 790 if (ifop != nullptr) { 791 // look for expressions like min(v, a.length) which ends up as 792 // x > y ? y : x or x >= y ? y : x 793 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 794 ifop->x() == ifop->fval() && 795 ifop->y() == ifop->tval()) { 796 length_limit = ifop->y(); 797 } 798 } 799 800 // try to skip null checks and range checks 801 NewArray* src_array = src->as_NewArray(); 802 if (src_array != nullptr) { 803 flags &= ~LIR_OpArrayCopy::src_null_check; 804 if (length_limit != nullptr && 805 src_array->length() == length_limit && 806 is_constant_zero(src_pos)) { 807 flags &= ~LIR_OpArrayCopy::src_range_check; 808 } 809 } 810 811 NewArray* dst_array = dst->as_NewArray(); 812 if (dst_array != nullptr) { 813 flags &= ~LIR_OpArrayCopy::dst_null_check; 814 if (length_limit != nullptr && 815 dst_array->length() == length_limit && 816 is_constant_zero(dst_pos)) { 817 flags &= ~LIR_OpArrayCopy::dst_range_check; 818 } 819 } 820 821 // check from incoming constant values 822 if (positive_constant(src_pos)) 823 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 824 if (positive_constant(dst_pos)) 825 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 826 if (positive_constant(length)) 827 flags &= ~LIR_OpArrayCopy::length_positive_check; 828 829 // see if the range check can be elided, which might also imply 830 // that src or dst is non-null. 831 ArrayLength* al = length->as_ArrayLength(); 832 if (al != nullptr) { 833 if (al->array() == src) { 834 // it's the length of the source array 835 flags &= ~LIR_OpArrayCopy::length_positive_check; 836 flags &= ~LIR_OpArrayCopy::src_null_check; 837 if (is_constant_zero(src_pos)) 838 flags &= ~LIR_OpArrayCopy::src_range_check; 839 } 840 if (al->array() == dst) { 841 // it's the length of the destination array 842 flags &= ~LIR_OpArrayCopy::length_positive_check; 843 flags &= ~LIR_OpArrayCopy::dst_null_check; 844 if (is_constant_zero(dst_pos)) 845 flags &= ~LIR_OpArrayCopy::dst_range_check; 846 } 847 } 848 if (is_exact) { 849 flags &= ~LIR_OpArrayCopy::type_check; 850 } 851 } 852 853 IntConstant* src_int = src_pos->type()->as_IntConstant(); 854 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 855 if (src_int && dst_int) { 856 int s_offs = src_int->value(); 857 int d_offs = dst_int->value(); 858 if (src_int->value() >= dst_int->value()) { 859 flags &= ~LIR_OpArrayCopy::overlapping; 860 } 861 if (expected_type != nullptr) { 862 BasicType t = expected_type->element_type()->basic_type(); 863 int element_size = type2aelembytes(t); 864 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 865 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 866 flags &= ~LIR_OpArrayCopy::unaligned; 867 } 868 } 869 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 870 // src and dest positions are the same, or dst is zero so assume 871 // nonoverlapping copy. 872 flags &= ~LIR_OpArrayCopy::overlapping; 873 } 874 875 if (src == dst) { 876 // moving within a single array so no type checks are needed 877 if (flags & LIR_OpArrayCopy::type_check) { 878 flags &= ~LIR_OpArrayCopy::type_check; 879 } 880 } 881 *flagsp = flags; 882 *expected_typep = (ciArrayKlass*)expected_type; 883 } 884 885 886 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 887 assert(opr->is_register(), "why spill if item is not register?"); 888 889 if (strict_fp_requires_explicit_rounding) { 890 #ifdef IA32 891 if (UseSSE < 1 && opr->is_single_fpu()) { 892 LIR_Opr result = new_register(T_FLOAT); 893 set_vreg_flag(result, must_start_in_memory); 894 assert(opr->is_register(), "only a register can be spilled"); 895 assert(opr->value_type()->is_float(), "rounding only for floats available"); 896 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 897 return result; 898 } 899 #else 900 Unimplemented(); 901 #endif // IA32 902 } 903 return opr; 904 } 905 906 907 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 908 assert(type2size[t] == type2size[value->type()], 909 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 910 if (!value->is_register()) { 911 // force into a register 912 LIR_Opr r = new_register(value->type()); 913 __ move(value, r); 914 value = r; 915 } 916 917 // create a spill location 918 LIR_Opr tmp = new_register(t); 919 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 920 921 // move from register to spill 922 __ move(value, tmp); 923 return tmp; 924 } 925 926 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 927 if (if_instr->should_profile()) { 928 ciMethod* method = if_instr->profiled_method(); 929 assert(method != nullptr, "method should be set if branch is profiled"); 930 ciMethodData* md = method->method_data_or_null(); 931 assert(md != nullptr, "Sanity"); 932 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 933 assert(data != nullptr, "must have profiling data"); 934 assert(data->is_BranchData(), "need BranchData for two-way branches"); 935 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 936 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 937 if (if_instr->is_swapped()) { 938 int t = taken_count_offset; 939 taken_count_offset = not_taken_count_offset; 940 not_taken_count_offset = t; 941 } 942 943 LIR_Opr md_reg = new_register(T_METADATA); 944 __ metadata2reg(md->constant_encoding(), md_reg); 945 946 LIR_Opr data_offset_reg = new_pointer_register(); 947 __ cmove(lir_cond(cond), 948 LIR_OprFact::intptrConst(taken_count_offset), 949 LIR_OprFact::intptrConst(not_taken_count_offset), 950 data_offset_reg, as_BasicType(if_instr->x()->type())); 951 952 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 953 LIR_Opr data_reg = new_pointer_register(); 954 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 955 __ move(data_addr, data_reg); 956 // Use leal instead of add to avoid destroying condition codes on x86 957 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 958 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 959 __ move(data_reg, data_addr); 960 } 961 } 962 963 // Phi technique: 964 // This is about passing live values from one basic block to the other. 965 // In code generated with Java it is rather rare that more than one 966 // value is on the stack from one basic block to the other. 967 // We optimize our technique for efficient passing of one value 968 // (of type long, int, double..) but it can be extended. 969 // When entering or leaving a basic block, all registers and all spill 970 // slots are release and empty. We use the released registers 971 // and spill slots to pass the live values from one block 972 // to the other. The topmost value, i.e., the value on TOS of expression 973 // stack is passed in registers. All other values are stored in spilling 974 // area. Every Phi has an index which designates its spill slot 975 // At exit of a basic block, we fill the register(s) and spill slots. 976 // At entry of a basic block, the block_prolog sets up the content of phi nodes 977 // and locks necessary registers and spilling slots. 978 979 980 // move current value to referenced phi function 981 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 982 Phi* phi = sux_val->as_Phi(); 983 // cur_val can be null without phi being null in conjunction with inlining 984 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 985 if (phi->is_local()) { 986 for (int i = 0; i < phi->operand_count(); i++) { 987 Value op = phi->operand_at(i); 988 if (op != nullptr && op->type()->is_illegal()) { 989 bailout("illegal phi operand"); 990 } 991 } 992 } 993 Phi* cur_phi = cur_val->as_Phi(); 994 if (cur_phi != nullptr && cur_phi->is_illegal()) { 995 // Phi and local would need to get invalidated 996 // (which is unexpected for Linear Scan). 997 // But this case is very rare so we simply bail out. 998 bailout("propagation of illegal phi"); 999 return; 1000 } 1001 LIR_Opr operand = cur_val->operand(); 1002 if (operand->is_illegal()) { 1003 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1004 "these can be produced lazily"); 1005 operand = operand_for_instruction(cur_val); 1006 } 1007 resolver->move(operand, operand_for_instruction(phi)); 1008 } 1009 } 1010 1011 1012 // Moves all stack values into their PHI position 1013 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1014 BlockBegin* bb = block(); 1015 if (bb->number_of_sux() == 1) { 1016 BlockBegin* sux = bb->sux_at(0); 1017 assert(sux->number_of_preds() > 0, "invalid CFG"); 1018 1019 // a block with only one predecessor never has phi functions 1020 if (sux->number_of_preds() > 1) { 1021 PhiResolver resolver(this); 1022 1023 ValueStack* sux_state = sux->state(); 1024 Value sux_value; 1025 int index; 1026 1027 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1028 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1029 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1030 1031 for_each_stack_value(sux_state, index, sux_value) { 1032 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1033 } 1034 1035 for_each_local_value(sux_state, index, sux_value) { 1036 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1037 } 1038 1039 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1040 } 1041 } 1042 } 1043 1044 1045 LIR_Opr LIRGenerator::new_register(BasicType type) { 1046 int vreg_num = _virtual_register_number; 1047 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1048 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1049 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1050 bailout("out of virtual registers in LIR generator"); 1051 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1052 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1053 _virtual_register_number = LIR_Opr::vreg_base; 1054 vreg_num = LIR_Opr::vreg_base; 1055 } 1056 } 1057 _virtual_register_number += 1; 1058 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1059 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1060 return vreg; 1061 } 1062 1063 1064 // Try to lock using register in hint 1065 LIR_Opr LIRGenerator::rlock(Value instr) { 1066 return new_register(instr->type()); 1067 } 1068 1069 1070 // does an rlock and sets result 1071 LIR_Opr LIRGenerator::rlock_result(Value x) { 1072 LIR_Opr reg = rlock(x); 1073 set_result(x, reg); 1074 return reg; 1075 } 1076 1077 1078 // does an rlock and sets result 1079 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1080 LIR_Opr reg; 1081 switch (type) { 1082 case T_BYTE: 1083 case T_BOOLEAN: 1084 reg = rlock_byte(type); 1085 break; 1086 default: 1087 reg = rlock(x); 1088 break; 1089 } 1090 1091 set_result(x, reg); 1092 return reg; 1093 } 1094 1095 1096 //--------------------------------------------------------------------- 1097 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1098 ObjectType* oc = value->type()->as_ObjectType(); 1099 if (oc) { 1100 return oc->constant_value(); 1101 } 1102 return nullptr; 1103 } 1104 1105 1106 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1107 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1108 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1109 1110 // no moves are created for phi functions at the begin of exception 1111 // handlers, so assign operands manually here 1112 for_each_phi_fun(block(), phi, 1113 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1114 1115 LIR_Opr thread_reg = getThreadPointer(); 1116 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1117 exceptionOopOpr()); 1118 __ move_wide(LIR_OprFact::oopConst(nullptr), 1119 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1120 __ move_wide(LIR_OprFact::oopConst(nullptr), 1121 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1122 1123 LIR_Opr result = new_register(T_OBJECT); 1124 __ move(exceptionOopOpr(), result); 1125 set_result(x, result); 1126 } 1127 1128 1129 //---------------------------------------------------------------------- 1130 //---------------------------------------------------------------------- 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 // visitor functions 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 //---------------------------------------------------------------------- 1138 1139 void LIRGenerator::do_Phi(Phi* x) { 1140 // phi functions are never visited directly 1141 ShouldNotReachHere(); 1142 } 1143 1144 1145 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1146 void LIRGenerator::do_Constant(Constant* x) { 1147 if (x->state_before() != nullptr) { 1148 // Any constant with a ValueStack requires patching so emit the patch here 1149 LIR_Opr reg = rlock_result(x); 1150 CodeEmitInfo* info = state_for(x, x->state_before()); 1151 __ oop2reg_patch(nullptr, reg, info); 1152 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1153 if (!x->is_pinned()) { 1154 // unpinned constants are handled specially so that they can be 1155 // put into registers when they are used multiple times within a 1156 // block. After the block completes their operand will be 1157 // cleared so that other blocks can't refer to that register. 1158 set_result(x, load_constant(x)); 1159 } else { 1160 LIR_Opr res = x->operand(); 1161 if (!res->is_valid()) { 1162 res = LIR_OprFact::value_type(x->type()); 1163 } 1164 if (res->is_constant()) { 1165 LIR_Opr reg = rlock_result(x); 1166 __ move(res, reg); 1167 } else { 1168 set_result(x, res); 1169 } 1170 } 1171 } else { 1172 set_result(x, LIR_OprFact::value_type(x->type())); 1173 } 1174 } 1175 1176 1177 void LIRGenerator::do_Local(Local* x) { 1178 // operand_for_instruction has the side effect of setting the result 1179 // so there's no need to do it here. 1180 operand_for_instruction(x); 1181 } 1182 1183 1184 void LIRGenerator::do_Return(Return* x) { 1185 if (compilation()->env()->dtrace_method_probes()) { 1186 BasicTypeList signature; 1187 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1188 signature.append(T_METADATA); // Method* 1189 LIR_OprList* args = new LIR_OprList(); 1190 args->append(getThreadPointer()); 1191 LIR_Opr meth = new_register(T_METADATA); 1192 __ metadata2reg(method()->constant_encoding(), meth); 1193 args->append(meth); 1194 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1195 } 1196 1197 if (x->type()->is_void()) { 1198 __ return_op(LIR_OprFact::illegalOpr); 1199 } else { 1200 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1201 LIRItem result(x->result(), this); 1202 1203 result.load_item_force(reg); 1204 __ return_op(result.result()); 1205 } 1206 set_no_result(x); 1207 } 1208 1209 // Example: ref.get() 1210 // Combination of LoadField and g1 pre-write barrier 1211 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1212 1213 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1214 1215 assert(x->number_of_arguments() == 1, "wrong type"); 1216 1217 LIRItem reference(x->argument_at(0), this); 1218 reference.load_item(); 1219 1220 // need to perform the null check on the reference object 1221 CodeEmitInfo* info = nullptr; 1222 if (x->needs_null_check()) { 1223 info = state_for(x); 1224 } 1225 1226 LIR_Opr result = rlock_result(x, T_OBJECT); 1227 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1228 reference, LIR_OprFact::intConst(referent_offset), result, 1229 nullptr, info); 1230 } 1231 1232 // Example: clazz.isInstance(object) 1233 void LIRGenerator::do_isInstance(Intrinsic* x) { 1234 assert(x->number_of_arguments() == 2, "wrong type"); 1235 1236 LIRItem clazz(x->argument_at(0), this); 1237 LIRItem object(x->argument_at(1), this); 1238 clazz.load_item(); 1239 object.load_item(); 1240 LIR_Opr result = rlock_result(x); 1241 1242 // need to perform null check on clazz 1243 if (x->needs_null_check()) { 1244 CodeEmitInfo* info = state_for(x); 1245 __ null_check(clazz.result(), info); 1246 } 1247 1248 address pd_instanceof_fn = isInstance_entry(); 1249 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1250 pd_instanceof_fn, 1251 x->type(), 1252 nullptr); // null CodeEmitInfo results in a leaf call 1253 __ move(call_result, result); 1254 } 1255 1256 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1257 __ load_klass(obj, klass, null_check_info); 1258 } 1259 1260 // Example: object.getClass () 1261 void LIRGenerator::do_getClass(Intrinsic* x) { 1262 assert(x->number_of_arguments() == 1, "wrong type"); 1263 1264 LIRItem rcvr(x->argument_at(0), this); 1265 rcvr.load_item(); 1266 LIR_Opr temp = new_register(T_ADDRESS); 1267 LIR_Opr result = rlock_result(x); 1268 1269 // need to perform the null check on the rcvr 1270 CodeEmitInfo* info = nullptr; 1271 if (x->needs_null_check()) { 1272 info = state_for(x); 1273 } 1274 1275 LIR_Opr klass = new_register(T_METADATA); 1276 load_klass(rcvr.result(), klass, info); 1277 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1278 // mirror = ((OopHandle)mirror)->resolve(); 1279 access_load(IN_NATIVE, T_OBJECT, 1280 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1281 } 1282 1283 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1284 assert(x->number_of_arguments() == 3, "wrong type"); 1285 LIR_Opr result_reg = rlock_result(x); 1286 1287 LIRItem value(x->argument_at(2), this); 1288 value.load_item(); 1289 1290 LIR_Opr klass = new_register(T_METADATA); 1291 load_klass(value.result(), klass, nullptr); 1292 LIR_Opr layout = new_register(T_INT); 1293 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1294 1295 LabelObj* L_done = new LabelObj(); 1296 LabelObj* L_array = new LabelObj(); 1297 1298 __ cmp(lir_cond_lessEqual, layout, 0); 1299 __ branch(lir_cond_lessEqual, L_array->label()); 1300 1301 // Instance case: the layout helper gives us instance size almost directly, 1302 // but we need to mask out the _lh_instance_slow_path_bit. 1303 1304 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1305 1306 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1307 __ logical_and(layout, mask, layout); 1308 __ convert(Bytecodes::_i2l, layout, result_reg); 1309 1310 __ branch(lir_cond_always, L_done->label()); 1311 1312 // Array case: size is round(header + element_size*arraylength). 1313 // Since arraylength is different for every array instance, we have to 1314 // compute the whole thing at runtime. 1315 1316 __ branch_destination(L_array->label()); 1317 1318 int round_mask = MinObjAlignmentInBytes - 1; 1319 1320 // Figure out header sizes first. 1321 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1322 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1323 1324 LIR_Opr header_size = new_register(T_INT); 1325 __ move(layout, header_size); 1326 LIR_Opr tmp = new_register(T_INT); 1327 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1328 __ logical_and(header_size, hsm, header_size); 1329 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1330 1331 // Figure out the array length in bytes 1332 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1333 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1334 __ logical_and(layout, l2esm, layout); 1335 1336 LIR_Opr length_int = new_register(T_INT); 1337 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1338 1339 #ifdef _LP64 1340 LIR_Opr length = new_register(T_LONG); 1341 __ convert(Bytecodes::_i2l, length_int, length); 1342 #endif 1343 1344 // Shift-left awkwardness. Normally it is just: 1345 // __ shift_left(length, layout, length); 1346 // But C1 cannot perform shift_left with non-constant count, so we end up 1347 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1348 // longs, so we have to act on ints. 1349 LabelObj* L_shift_loop = new LabelObj(); 1350 LabelObj* L_shift_exit = new LabelObj(); 1351 1352 __ branch_destination(L_shift_loop->label()); 1353 __ cmp(lir_cond_equal, layout, 0); 1354 __ branch(lir_cond_equal, L_shift_exit->label()); 1355 1356 #ifdef _LP64 1357 __ shift_left(length, 1, length); 1358 #else 1359 __ shift_left(length_int, 1, length_int); 1360 #endif 1361 1362 __ sub(layout, LIR_OprFact::intConst(1), layout); 1363 1364 __ branch(lir_cond_always, L_shift_loop->label()); 1365 __ branch_destination(L_shift_exit->label()); 1366 1367 // Mix all up, round, and push to the result. 1368 #ifdef _LP64 1369 LIR_Opr header_size_long = new_register(T_LONG); 1370 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1371 __ add(length, header_size_long, length); 1372 if (round_mask != 0) { 1373 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1374 __ logical_and(length, round_mask_opr, length); 1375 } 1376 __ move(length, result_reg); 1377 #else 1378 __ add(length_int, header_size, length_int); 1379 if (round_mask != 0) { 1380 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1381 __ logical_and(length_int, round_mask_opr, length_int); 1382 } 1383 __ convert(Bytecodes::_i2l, length_int, result_reg); 1384 #endif 1385 1386 __ branch_destination(L_done->label()); 1387 } 1388 1389 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1390 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1391 } 1392 1393 // Example: Thread.currentCarrierThread() 1394 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1395 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1396 } 1397 1398 void LIRGenerator::do_vthread(Intrinsic* x) { 1399 do_JavaThreadField(x, JavaThread::vthread_offset()); 1400 } 1401 1402 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1403 assert(x->number_of_arguments() == 0, "wrong type"); 1404 LIR_Opr temp = new_register(T_ADDRESS); 1405 LIR_Opr reg = rlock_result(x); 1406 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1407 access_load(IN_NATIVE, T_OBJECT, 1408 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1409 } 1410 1411 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1412 assert(x->number_of_arguments() == 1, "wrong type"); 1413 LIRItem receiver(x->argument_at(0), this); 1414 1415 receiver.load_item(); 1416 BasicTypeList signature; 1417 signature.append(T_OBJECT); // receiver 1418 LIR_OprList* args = new LIR_OprList(); 1419 args->append(receiver.result()); 1420 CodeEmitInfo* info = state_for(x, x->state()); 1421 call_runtime(&signature, args, 1422 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1423 voidType, info); 1424 1425 set_no_result(x); 1426 } 1427 1428 1429 //------------------------local access-------------------------------------- 1430 1431 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1432 if (x->operand()->is_illegal()) { 1433 Constant* c = x->as_Constant(); 1434 if (c != nullptr) { 1435 x->set_operand(LIR_OprFact::value_type(c->type())); 1436 } else { 1437 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1438 // allocate a virtual register for this local or phi 1439 x->set_operand(rlock(x)); 1440 #ifdef ASSERT 1441 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1442 #endif 1443 } 1444 } 1445 return x->operand(); 1446 } 1447 1448 #ifdef ASSERT 1449 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1450 if (reg_num < _instruction_for_operand.length()) { 1451 return _instruction_for_operand.at(reg_num); 1452 } 1453 return nullptr; 1454 } 1455 #endif 1456 1457 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1458 if (_vreg_flags.size_in_bits() == 0) { 1459 BitMap2D temp(100, num_vreg_flags); 1460 _vreg_flags = temp; 1461 } 1462 _vreg_flags.at_put_grow(vreg_num, f, true); 1463 } 1464 1465 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1466 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1467 return false; 1468 } 1469 return _vreg_flags.at(vreg_num, f); 1470 } 1471 1472 1473 // Block local constant handling. This code is useful for keeping 1474 // unpinned constants and constants which aren't exposed in the IR in 1475 // registers. Unpinned Constant instructions have their operands 1476 // cleared when the block is finished so that other blocks can't end 1477 // up referring to their registers. 1478 1479 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1480 assert(!x->is_pinned(), "only for unpinned constants"); 1481 _unpinned_constants.append(x); 1482 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1483 } 1484 1485 1486 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1487 BasicType t = c->type(); 1488 for (int i = 0; i < _constants.length(); i++) { 1489 LIR_Const* other = _constants.at(i); 1490 if (t == other->type()) { 1491 switch (t) { 1492 case T_INT: 1493 case T_FLOAT: 1494 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1495 break; 1496 case T_LONG: 1497 case T_DOUBLE: 1498 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1499 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1500 break; 1501 case T_OBJECT: 1502 if (c->as_jobject() != other->as_jobject()) continue; 1503 break; 1504 default: 1505 break; 1506 } 1507 return _reg_for_constants.at(i); 1508 } 1509 } 1510 1511 LIR_Opr result = new_register(t); 1512 __ move((LIR_Opr)c, result); 1513 _constants.append(c); 1514 _reg_for_constants.append(result); 1515 return result; 1516 } 1517 1518 //------------------------field access-------------------------------------- 1519 1520 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1521 assert(x->number_of_arguments() == 4, "wrong type"); 1522 LIRItem obj (x->argument_at(0), this); // object 1523 LIRItem offset(x->argument_at(1), this); // offset of field 1524 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1525 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1526 assert(obj.type()->tag() == objectTag, "invalid type"); 1527 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1528 assert(val.type()->tag() == type->tag(), "invalid type"); 1529 1530 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1531 obj, offset, cmp, val); 1532 set_result(x, result); 1533 } 1534 1535 // Comment copied form templateTable_i486.cpp 1536 // ---------------------------------------------------------------------------- 1537 // Volatile variables demand their effects be made known to all CPU's in 1538 // order. Store buffers on most chips allow reads & writes to reorder; the 1539 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1540 // memory barrier (i.e., it's not sufficient that the interpreter does not 1541 // reorder volatile references, the hardware also must not reorder them). 1542 // 1543 // According to the new Java Memory Model (JMM): 1544 // (1) All volatiles are serialized wrt to each other. 1545 // ALSO reads & writes act as acquire & release, so: 1546 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1547 // the read float up to before the read. It's OK for non-volatile memory refs 1548 // that happen before the volatile read to float down below it. 1549 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1550 // that happen BEFORE the write float down to after the write. It's OK for 1551 // non-volatile memory refs that happen after the volatile write to float up 1552 // before it. 1553 // 1554 // We only put in barriers around volatile refs (they are expensive), not 1555 // _between_ memory refs (that would require us to track the flavor of the 1556 // previous memory refs). Requirements (2) and (3) require some barriers 1557 // before volatile stores and after volatile loads. These nearly cover 1558 // requirement (1) but miss the volatile-store-volatile-load case. This final 1559 // case is placed after volatile-stores although it could just as well go 1560 // before volatile-loads. 1561 1562 1563 void LIRGenerator::do_StoreField(StoreField* x) { 1564 bool needs_patching = x->needs_patching(); 1565 bool is_volatile = x->field()->is_volatile(); 1566 BasicType field_type = x->field_type(); 1567 1568 CodeEmitInfo* info = nullptr; 1569 if (needs_patching) { 1570 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1571 info = state_for(x, x->state_before()); 1572 } else if (x->needs_null_check()) { 1573 NullCheck* nc = x->explicit_null_check(); 1574 if (nc == nullptr) { 1575 info = state_for(x); 1576 } else { 1577 info = state_for(nc); 1578 } 1579 } 1580 1581 LIRItem object(x->obj(), this); 1582 LIRItem value(x->value(), this); 1583 1584 object.load_item(); 1585 1586 if (is_volatile || needs_patching) { 1587 // load item if field is volatile (fewer special cases for volatiles) 1588 // load item if field not initialized 1589 // load item if field not constant 1590 // because of code patching we cannot inline constants 1591 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1592 value.load_byte_item(); 1593 } else { 1594 value.load_item(); 1595 } 1596 } else { 1597 value.load_for_store(field_type); 1598 } 1599 1600 set_no_result(x); 1601 1602 #ifndef PRODUCT 1603 if (PrintNotLoaded && needs_patching) { 1604 tty->print_cr(" ###class not loaded at store_%s bci %d", 1605 x->is_static() ? "static" : "field", x->printable_bci()); 1606 } 1607 #endif 1608 1609 if (x->needs_null_check() && 1610 (needs_patching || 1611 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1612 // Emit an explicit null check because the offset is too large. 1613 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1614 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1615 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1616 } 1617 1618 DecoratorSet decorators = IN_HEAP; 1619 if (is_volatile) { 1620 decorators |= MO_SEQ_CST; 1621 } 1622 if (needs_patching) { 1623 decorators |= C1_NEEDS_PATCHING; 1624 } 1625 1626 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1627 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1628 } 1629 1630 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1631 assert(x->is_pinned(),""); 1632 bool needs_range_check = x->compute_needs_range_check(); 1633 bool use_length = x->length() != nullptr; 1634 bool obj_store = is_reference_type(x->elt_type()); 1635 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1636 !get_jobject_constant(x->value())->is_null_object() || 1637 x->should_profile()); 1638 1639 LIRItem array(x->array(), this); 1640 LIRItem index(x->index(), this); 1641 LIRItem value(x->value(), this); 1642 LIRItem length(this); 1643 1644 array.load_item(); 1645 index.load_nonconstant(); 1646 1647 if (use_length && needs_range_check) { 1648 length.set_instruction(x->length()); 1649 length.load_item(); 1650 1651 } 1652 if (needs_store_check || x->check_boolean()) { 1653 value.load_item(); 1654 } else { 1655 value.load_for_store(x->elt_type()); 1656 } 1657 1658 set_no_result(x); 1659 1660 // the CodeEmitInfo must be duplicated for each different 1661 // LIR-instruction because spilling can occur anywhere between two 1662 // instructions and so the debug information must be different 1663 CodeEmitInfo* range_check_info = state_for(x); 1664 CodeEmitInfo* null_check_info = nullptr; 1665 if (x->needs_null_check()) { 1666 null_check_info = new CodeEmitInfo(range_check_info); 1667 } 1668 1669 if (needs_range_check) { 1670 if (use_length) { 1671 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1672 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1673 } else { 1674 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1675 // range_check also does the null check 1676 null_check_info = nullptr; 1677 } 1678 } 1679 1680 if (GenerateArrayStoreCheck && needs_store_check) { 1681 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1682 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1683 } 1684 1685 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1686 if (x->check_boolean()) { 1687 decorators |= C1_MASK_BOOLEAN; 1688 } 1689 1690 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1691 nullptr, null_check_info); 1692 } 1693 1694 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1695 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1696 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1697 decorators |= ACCESS_READ; 1698 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1699 if (access.is_raw()) { 1700 _barrier_set->BarrierSetC1::load_at(access, result); 1701 } else { 1702 _barrier_set->load_at(access, result); 1703 } 1704 } 1705 1706 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1707 LIR_Opr addr, LIR_Opr result) { 1708 decorators |= ACCESS_READ; 1709 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1710 access.set_resolved_addr(addr); 1711 if (access.is_raw()) { 1712 _barrier_set->BarrierSetC1::load(access, result); 1713 } else { 1714 _barrier_set->load(access, result); 1715 } 1716 } 1717 1718 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1719 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1720 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1721 decorators |= ACCESS_WRITE; 1722 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1723 if (access.is_raw()) { 1724 _barrier_set->BarrierSetC1::store_at(access, value); 1725 } else { 1726 _barrier_set->store_at(access, value); 1727 } 1728 } 1729 1730 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1731 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1732 decorators |= ACCESS_READ; 1733 decorators |= ACCESS_WRITE; 1734 // Atomic operations are SEQ_CST by default 1735 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1736 LIRAccess access(this, decorators, base, offset, type); 1737 if (access.is_raw()) { 1738 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1739 } else { 1740 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1741 } 1742 } 1743 1744 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1745 LIRItem& base, LIRItem& offset, LIRItem& value) { 1746 decorators |= ACCESS_READ; 1747 decorators |= ACCESS_WRITE; 1748 // Atomic operations are SEQ_CST by default 1749 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1750 LIRAccess access(this, decorators, base, offset, type); 1751 if (access.is_raw()) { 1752 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1753 } else { 1754 return _barrier_set->atomic_xchg_at(access, value); 1755 } 1756 } 1757 1758 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1759 LIRItem& base, LIRItem& offset, LIRItem& value) { 1760 decorators |= ACCESS_READ; 1761 decorators |= ACCESS_WRITE; 1762 // Atomic operations are SEQ_CST by default 1763 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1764 LIRAccess access(this, decorators, base, offset, type); 1765 if (access.is_raw()) { 1766 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1767 } else { 1768 return _barrier_set->atomic_add_at(access, value); 1769 } 1770 } 1771 1772 void LIRGenerator::do_LoadField(LoadField* x) { 1773 bool needs_patching = x->needs_patching(); 1774 bool is_volatile = x->field()->is_volatile(); 1775 BasicType field_type = x->field_type(); 1776 1777 CodeEmitInfo* info = nullptr; 1778 if (needs_patching) { 1779 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1780 info = state_for(x, x->state_before()); 1781 } else if (x->needs_null_check()) { 1782 NullCheck* nc = x->explicit_null_check(); 1783 if (nc == nullptr) { 1784 info = state_for(x); 1785 } else { 1786 info = state_for(nc); 1787 } 1788 } 1789 1790 LIRItem object(x->obj(), this); 1791 1792 object.load_item(); 1793 1794 #ifndef PRODUCT 1795 if (PrintNotLoaded && needs_patching) { 1796 tty->print_cr(" ###class not loaded at load_%s bci %d", 1797 x->is_static() ? "static" : "field", x->printable_bci()); 1798 } 1799 #endif 1800 1801 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1802 if (x->needs_null_check() && 1803 (needs_patching || 1804 MacroAssembler::needs_explicit_null_check(x->offset()) || 1805 stress_deopt)) { 1806 LIR_Opr obj = object.result(); 1807 if (stress_deopt) { 1808 obj = new_register(T_OBJECT); 1809 __ move(LIR_OprFact::oopConst(nullptr), obj); 1810 } 1811 // Emit an explicit null check because the offset is too large. 1812 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1813 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1814 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1815 } 1816 1817 DecoratorSet decorators = IN_HEAP; 1818 if (is_volatile) { 1819 decorators |= MO_SEQ_CST; 1820 } 1821 if (needs_patching) { 1822 decorators |= C1_NEEDS_PATCHING; 1823 } 1824 1825 LIR_Opr result = rlock_result(x, field_type); 1826 access_load_at(decorators, field_type, 1827 object, LIR_OprFact::intConst(x->offset()), result, 1828 info ? new CodeEmitInfo(info) : nullptr, info); 1829 } 1830 1831 // int/long jdk.internal.util.Preconditions.checkIndex 1832 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1833 assert(x->number_of_arguments() == 3, "wrong type"); 1834 LIRItem index(x->argument_at(0), this); 1835 LIRItem length(x->argument_at(1), this); 1836 LIRItem oobef(x->argument_at(2), this); 1837 1838 index.load_item(); 1839 length.load_item(); 1840 oobef.load_item(); 1841 1842 LIR_Opr result = rlock_result(x); 1843 // x->state() is created from copy_state_for_exception, it does not contains arguments 1844 // we should prepare them before entering into interpreter mode due to deoptimization. 1845 ValueStack* state = x->state(); 1846 for (int i = 0; i < x->number_of_arguments(); i++) { 1847 Value arg = x->argument_at(i); 1848 state->push(arg->type(), arg); 1849 } 1850 CodeEmitInfo* info = state_for(x, state); 1851 1852 LIR_Opr len = length.result(); 1853 LIR_Opr zero; 1854 if (type == T_INT) { 1855 zero = LIR_OprFact::intConst(0); 1856 if (length.result()->is_constant()){ 1857 len = LIR_OprFact::intConst(length.result()->as_jint()); 1858 } 1859 } else { 1860 assert(type == T_LONG, "sanity check"); 1861 zero = LIR_OprFact::longConst(0); 1862 if (length.result()->is_constant()){ 1863 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1864 } 1865 } 1866 // C1 can not handle the case that comparing index with constant value while condition 1867 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1868 LIR_Opr zero_reg = new_register(type); 1869 __ move(zero, zero_reg); 1870 #if defined(X86) && !defined(_LP64) 1871 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1872 LIR_Opr index_copy = new_register(index.type()); 1873 // index >= 0 1874 __ move(index.result(), index_copy); 1875 __ cmp(lir_cond_less, index_copy, zero_reg); 1876 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1877 Deoptimization::Action_make_not_entrant)); 1878 // index < length 1879 __ move(index.result(), index_copy); 1880 __ cmp(lir_cond_greaterEqual, index_copy, len); 1881 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1882 Deoptimization::Action_make_not_entrant)); 1883 #else 1884 // index >= 0 1885 __ cmp(lir_cond_less, index.result(), zero_reg); 1886 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1887 Deoptimization::Action_make_not_entrant)); 1888 // index < length 1889 __ cmp(lir_cond_greaterEqual, index.result(), len); 1890 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1891 Deoptimization::Action_make_not_entrant)); 1892 #endif 1893 __ move(index.result(), result); 1894 } 1895 1896 //------------------------array access-------------------------------------- 1897 1898 1899 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1900 LIRItem array(x->array(), this); 1901 array.load_item(); 1902 LIR_Opr reg = rlock_result(x); 1903 1904 CodeEmitInfo* info = nullptr; 1905 if (x->needs_null_check()) { 1906 NullCheck* nc = x->explicit_null_check(); 1907 if (nc == nullptr) { 1908 info = state_for(x); 1909 } else { 1910 info = state_for(nc); 1911 } 1912 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1913 LIR_Opr obj = new_register(T_OBJECT); 1914 __ move(LIR_OprFact::oopConst(nullptr), obj); 1915 __ null_check(obj, new CodeEmitInfo(info)); 1916 } 1917 } 1918 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1919 } 1920 1921 1922 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1923 bool use_length = x->length() != nullptr; 1924 LIRItem array(x->array(), this); 1925 LIRItem index(x->index(), this); 1926 LIRItem length(this); 1927 bool needs_range_check = x->compute_needs_range_check(); 1928 1929 if (use_length && needs_range_check) { 1930 length.set_instruction(x->length()); 1931 length.load_item(); 1932 } 1933 1934 array.load_item(); 1935 if (index.is_constant() && can_inline_as_constant(x->index())) { 1936 // let it be a constant 1937 index.dont_load_item(); 1938 } else { 1939 index.load_item(); 1940 } 1941 1942 CodeEmitInfo* range_check_info = state_for(x); 1943 CodeEmitInfo* null_check_info = nullptr; 1944 if (x->needs_null_check()) { 1945 NullCheck* nc = x->explicit_null_check(); 1946 if (nc != nullptr) { 1947 null_check_info = state_for(nc); 1948 } else { 1949 null_check_info = range_check_info; 1950 } 1951 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1952 LIR_Opr obj = new_register(T_OBJECT); 1953 __ move(LIR_OprFact::oopConst(nullptr), obj); 1954 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1955 } 1956 } 1957 1958 if (needs_range_check) { 1959 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1960 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1961 } else if (use_length) { 1962 // TODO: use a (modified) version of array_range_check that does not require a 1963 // constant length to be loaded to a register 1964 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1965 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1966 } else { 1967 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1968 // The range check performs the null check, so clear it out for the load 1969 null_check_info = nullptr; 1970 } 1971 } 1972 1973 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1974 1975 LIR_Opr result = rlock_result(x, x->elt_type()); 1976 access_load_at(decorators, x->elt_type(), 1977 array, index.result(), result, 1978 nullptr, null_check_info); 1979 } 1980 1981 1982 void LIRGenerator::do_NullCheck(NullCheck* x) { 1983 if (x->can_trap()) { 1984 LIRItem value(x->obj(), this); 1985 value.load_item(); 1986 CodeEmitInfo* info = state_for(x); 1987 __ null_check(value.result(), info); 1988 } 1989 } 1990 1991 1992 void LIRGenerator::do_TypeCast(TypeCast* x) { 1993 LIRItem value(x->obj(), this); 1994 value.load_item(); 1995 // the result is the same as from the node we are casting 1996 set_result(x, value.result()); 1997 } 1998 1999 2000 void LIRGenerator::do_Throw(Throw* x) { 2001 LIRItem exception(x->exception(), this); 2002 exception.load_item(); 2003 set_no_result(x); 2004 LIR_Opr exception_opr = exception.result(); 2005 CodeEmitInfo* info = state_for(x, x->state()); 2006 2007 #ifndef PRODUCT 2008 if (PrintC1Statistics) { 2009 increment_counter(Runtime1::throw_count_address(), T_INT); 2010 } 2011 #endif 2012 2013 // check if the instruction has an xhandler in any of the nested scopes 2014 bool unwind = false; 2015 if (info->exception_handlers()->length() == 0) { 2016 // this throw is not inside an xhandler 2017 unwind = true; 2018 } else { 2019 // get some idea of the throw type 2020 bool type_is_exact = true; 2021 ciType* throw_type = x->exception()->exact_type(); 2022 if (throw_type == nullptr) { 2023 type_is_exact = false; 2024 throw_type = x->exception()->declared_type(); 2025 } 2026 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2027 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2028 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2029 } 2030 } 2031 2032 // do null check before moving exception oop into fixed register 2033 // to avoid a fixed interval with an oop during the null check. 2034 // Use a copy of the CodeEmitInfo because debug information is 2035 // different for null_check and throw. 2036 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2037 // if the exception object wasn't created using new then it might be null. 2038 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2039 } 2040 2041 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2042 // we need to go through the exception lookup path to get JVMTI 2043 // notification done 2044 unwind = false; 2045 } 2046 2047 // move exception oop into fixed register 2048 __ move(exception_opr, exceptionOopOpr()); 2049 2050 if (unwind) { 2051 __ unwind_exception(exceptionOopOpr()); 2052 } else { 2053 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2054 } 2055 } 2056 2057 2058 void LIRGenerator::do_RoundFP(RoundFP* x) { 2059 assert(strict_fp_requires_explicit_rounding, "not required"); 2060 2061 LIRItem input(x->input(), this); 2062 input.load_item(); 2063 LIR_Opr input_opr = input.result(); 2064 assert(input_opr->is_register(), "why round if value is not in a register?"); 2065 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2066 if (input_opr->is_single_fpu()) { 2067 set_result(x, round_item(input_opr)); // This code path not currently taken 2068 } else { 2069 LIR_Opr result = new_register(T_DOUBLE); 2070 set_vreg_flag(result, must_start_in_memory); 2071 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2072 set_result(x, result); 2073 } 2074 } 2075 2076 2077 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2078 BasicType type = x->basic_type(); 2079 LIRItem src(x->object(), this); 2080 LIRItem off(x->offset(), this); 2081 2082 off.load_item(); 2083 src.load_item(); 2084 2085 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2086 2087 if (x->is_volatile()) { 2088 decorators |= MO_SEQ_CST; 2089 } 2090 if (type == T_BOOLEAN) { 2091 decorators |= C1_MASK_BOOLEAN; 2092 } 2093 if (is_reference_type(type)) { 2094 decorators |= ON_UNKNOWN_OOP_REF; 2095 } 2096 2097 LIR_Opr result = rlock_result(x, type); 2098 if (!x->is_raw()) { 2099 access_load_at(decorators, type, src, off.result(), result); 2100 } else { 2101 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2102 // It reads the value from [src + offset] directly. 2103 #ifdef _LP64 2104 LIR_Opr offset = new_register(T_LONG); 2105 __ convert(Bytecodes::_i2l, off.result(), offset); 2106 #else 2107 LIR_Opr offset = off.result(); 2108 #endif 2109 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2110 if (is_reference_type(type)) { 2111 __ move_wide(addr, result); 2112 } else { 2113 __ move(addr, result); 2114 } 2115 } 2116 } 2117 2118 2119 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2120 BasicType type = x->basic_type(); 2121 LIRItem src(x->object(), this); 2122 LIRItem off(x->offset(), this); 2123 LIRItem data(x->value(), this); 2124 2125 src.load_item(); 2126 if (type == T_BOOLEAN || type == T_BYTE) { 2127 data.load_byte_item(); 2128 } else { 2129 data.load_item(); 2130 } 2131 off.load_item(); 2132 2133 set_no_result(x); 2134 2135 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2136 if (is_reference_type(type)) { 2137 decorators |= ON_UNKNOWN_OOP_REF; 2138 } 2139 if (x->is_volatile()) { 2140 decorators |= MO_SEQ_CST; 2141 } 2142 access_store_at(decorators, type, src, off.result(), data.result()); 2143 } 2144 2145 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2146 BasicType type = x->basic_type(); 2147 LIRItem src(x->object(), this); 2148 LIRItem off(x->offset(), this); 2149 LIRItem value(x->value(), this); 2150 2151 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2152 2153 if (is_reference_type(type)) { 2154 decorators |= ON_UNKNOWN_OOP_REF; 2155 } 2156 2157 LIR_Opr result; 2158 if (x->is_add()) { 2159 result = access_atomic_add_at(decorators, type, src, off, value); 2160 } else { 2161 result = access_atomic_xchg_at(decorators, type, src, off, value); 2162 } 2163 set_result(x, result); 2164 } 2165 2166 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2167 int lng = x->length(); 2168 2169 for (int i = 0; i < lng; i++) { 2170 C1SwitchRange* one_range = x->at(i); 2171 int low_key = one_range->low_key(); 2172 int high_key = one_range->high_key(); 2173 BlockBegin* dest = one_range->sux(); 2174 if (low_key == high_key) { 2175 __ cmp(lir_cond_equal, value, low_key); 2176 __ branch(lir_cond_equal, dest); 2177 } else if (high_key - low_key == 1) { 2178 __ cmp(lir_cond_equal, value, low_key); 2179 __ branch(lir_cond_equal, dest); 2180 __ cmp(lir_cond_equal, value, high_key); 2181 __ branch(lir_cond_equal, dest); 2182 } else { 2183 LabelObj* L = new LabelObj(); 2184 __ cmp(lir_cond_less, value, low_key); 2185 __ branch(lir_cond_less, L->label()); 2186 __ cmp(lir_cond_lessEqual, value, high_key); 2187 __ branch(lir_cond_lessEqual, dest); 2188 __ branch_destination(L->label()); 2189 } 2190 } 2191 __ jump(default_sux); 2192 } 2193 2194 2195 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2196 SwitchRangeList* res = new SwitchRangeList(); 2197 int len = x->length(); 2198 if (len > 0) { 2199 BlockBegin* sux = x->sux_at(0); 2200 int low = x->lo_key(); 2201 BlockBegin* default_sux = x->default_sux(); 2202 C1SwitchRange* range = new C1SwitchRange(low, sux); 2203 for (int i = 0; i < len; i++) { 2204 int key = low + i; 2205 BlockBegin* new_sux = x->sux_at(i); 2206 if (sux == new_sux) { 2207 // still in same range 2208 range->set_high_key(key); 2209 } else { 2210 // skip tests which explicitly dispatch to the default 2211 if (sux != default_sux) { 2212 res->append(range); 2213 } 2214 range = new C1SwitchRange(key, new_sux); 2215 } 2216 sux = new_sux; 2217 } 2218 if (res->length() == 0 || res->last() != range) res->append(range); 2219 } 2220 return res; 2221 } 2222 2223 2224 // we expect the keys to be sorted by increasing value 2225 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2226 SwitchRangeList* res = new SwitchRangeList(); 2227 int len = x->length(); 2228 if (len > 0) { 2229 BlockBegin* default_sux = x->default_sux(); 2230 int key = x->key_at(0); 2231 BlockBegin* sux = x->sux_at(0); 2232 C1SwitchRange* range = new C1SwitchRange(key, sux); 2233 for (int i = 1; i < len; i++) { 2234 int new_key = x->key_at(i); 2235 BlockBegin* new_sux = x->sux_at(i); 2236 if (key+1 == new_key && sux == new_sux) { 2237 // still in same range 2238 range->set_high_key(new_key); 2239 } else { 2240 // skip tests which explicitly dispatch to the default 2241 if (range->sux() != default_sux) { 2242 res->append(range); 2243 } 2244 range = new C1SwitchRange(new_key, new_sux); 2245 } 2246 key = new_key; 2247 sux = new_sux; 2248 } 2249 if (res->length() == 0 || res->last() != range) res->append(range); 2250 } 2251 return res; 2252 } 2253 2254 2255 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2256 LIRItem tag(x->tag(), this); 2257 tag.load_item(); 2258 set_no_result(x); 2259 2260 if (x->is_safepoint()) { 2261 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2262 } 2263 2264 // move values into phi locations 2265 move_to_phi(x->state()); 2266 2267 int lo_key = x->lo_key(); 2268 int len = x->length(); 2269 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2270 LIR_Opr value = tag.result(); 2271 2272 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2273 ciMethod* method = x->state()->scope()->method(); 2274 ciMethodData* md = method->method_data_or_null(); 2275 assert(md != nullptr, "Sanity"); 2276 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2277 assert(data != nullptr, "must have profiling data"); 2278 assert(data->is_MultiBranchData(), "bad profile data?"); 2279 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2280 LIR_Opr md_reg = new_register(T_METADATA); 2281 __ metadata2reg(md->constant_encoding(), md_reg); 2282 LIR_Opr data_offset_reg = new_pointer_register(); 2283 LIR_Opr tmp_reg = new_pointer_register(); 2284 2285 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2286 for (int i = 0; i < len; i++) { 2287 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2288 __ cmp(lir_cond_equal, value, i + lo_key); 2289 __ move(data_offset_reg, tmp_reg); 2290 __ cmove(lir_cond_equal, 2291 LIR_OprFact::intptrConst(count_offset), 2292 tmp_reg, 2293 data_offset_reg, T_INT); 2294 } 2295 2296 LIR_Opr data_reg = new_pointer_register(); 2297 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2298 __ move(data_addr, data_reg); 2299 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2300 __ move(data_reg, data_addr); 2301 } 2302 2303 if (UseTableRanges) { 2304 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2305 } else { 2306 for (int i = 0; i < len; i++) { 2307 __ cmp(lir_cond_equal, value, i + lo_key); 2308 __ branch(lir_cond_equal, x->sux_at(i)); 2309 } 2310 __ jump(x->default_sux()); 2311 } 2312 } 2313 2314 2315 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2316 LIRItem tag(x->tag(), this); 2317 tag.load_item(); 2318 set_no_result(x); 2319 2320 if (x->is_safepoint()) { 2321 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2322 } 2323 2324 // move values into phi locations 2325 move_to_phi(x->state()); 2326 2327 LIR_Opr value = tag.result(); 2328 int len = x->length(); 2329 2330 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2331 ciMethod* method = x->state()->scope()->method(); 2332 ciMethodData* md = method->method_data_or_null(); 2333 assert(md != nullptr, "Sanity"); 2334 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2335 assert(data != nullptr, "must have profiling data"); 2336 assert(data->is_MultiBranchData(), "bad profile data?"); 2337 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2338 LIR_Opr md_reg = new_register(T_METADATA); 2339 __ metadata2reg(md->constant_encoding(), md_reg); 2340 LIR_Opr data_offset_reg = new_pointer_register(); 2341 LIR_Opr tmp_reg = new_pointer_register(); 2342 2343 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2344 for (int i = 0; i < len; i++) { 2345 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2346 __ cmp(lir_cond_equal, value, x->key_at(i)); 2347 __ move(data_offset_reg, tmp_reg); 2348 __ cmove(lir_cond_equal, 2349 LIR_OprFact::intptrConst(count_offset), 2350 tmp_reg, 2351 data_offset_reg, T_INT); 2352 } 2353 2354 LIR_Opr data_reg = new_pointer_register(); 2355 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2356 __ move(data_addr, data_reg); 2357 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2358 __ move(data_reg, data_addr); 2359 } 2360 2361 if (UseTableRanges) { 2362 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2363 } else { 2364 int len = x->length(); 2365 for (int i = 0; i < len; i++) { 2366 __ cmp(lir_cond_equal, value, x->key_at(i)); 2367 __ branch(lir_cond_equal, x->sux_at(i)); 2368 } 2369 __ jump(x->default_sux()); 2370 } 2371 } 2372 2373 2374 void LIRGenerator::do_Goto(Goto* x) { 2375 set_no_result(x); 2376 2377 if (block()->next()->as_OsrEntry()) { 2378 // need to free up storage used for OSR entry point 2379 LIR_Opr osrBuffer = block()->next()->operand(); 2380 BasicTypeList signature; 2381 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2382 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2383 __ move(osrBuffer, cc->args()->at(0)); 2384 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2385 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2386 } 2387 2388 if (x->is_safepoint()) { 2389 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2390 2391 // increment backedge counter if needed 2392 CodeEmitInfo* info = state_for(x, state); 2393 increment_backedge_counter(info, x->profiled_bci()); 2394 CodeEmitInfo* safepoint_info = state_for(x, state); 2395 __ safepoint(safepoint_poll_register(), safepoint_info); 2396 } 2397 2398 // Gotos can be folded Ifs, handle this case. 2399 if (x->should_profile()) { 2400 ciMethod* method = x->profiled_method(); 2401 assert(method != nullptr, "method should be set if branch is profiled"); 2402 ciMethodData* md = method->method_data_or_null(); 2403 assert(md != nullptr, "Sanity"); 2404 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2405 assert(data != nullptr, "must have profiling data"); 2406 int offset; 2407 if (x->direction() == Goto::taken) { 2408 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2409 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2410 } else if (x->direction() == Goto::not_taken) { 2411 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2412 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2413 } else { 2414 assert(data->is_JumpData(), "need JumpData for branches"); 2415 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2416 } 2417 LIR_Opr md_reg = new_register(T_METADATA); 2418 __ metadata2reg(md->constant_encoding(), md_reg); 2419 2420 increment_counter(new LIR_Address(md_reg, offset, 2421 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2422 } 2423 2424 // emit phi-instruction move after safepoint since this simplifies 2425 // describing the state as the safepoint. 2426 move_to_phi(x->state()); 2427 2428 __ jump(x->default_sux()); 2429 } 2430 2431 /** 2432 * Emit profiling code if needed for arguments, parameters, return value types 2433 * 2434 * @param md MDO the code will update at runtime 2435 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2436 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2437 * @param profiled_k current profile 2438 * @param obj IR node for the object to be profiled 2439 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2440 * Set once we find an update to make and use for next ones. 2441 * @param not_null true if we know obj cannot be null 2442 * @param signature_at_call_k signature at call for obj 2443 * @param callee_signature_k signature of callee for obj 2444 * at call and callee signatures differ at method handle call 2445 * @return the only klass we know will ever be seen at this profile point 2446 */ 2447 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2448 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2449 ciKlass* callee_signature_k) { 2450 ciKlass* result = nullptr; 2451 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2452 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2453 // known not to be null or null bit already set and already set to 2454 // unknown: nothing we can do to improve profiling 2455 if (!do_null && !do_update) { 2456 return result; 2457 } 2458 2459 ciKlass* exact_klass = nullptr; 2460 Compilation* comp = Compilation::current(); 2461 if (do_update) { 2462 // try to find exact type, using CHA if possible, so that loading 2463 // the klass from the object can be avoided 2464 ciType* type = obj->exact_type(); 2465 if (type == nullptr) { 2466 type = obj->declared_type(); 2467 type = comp->cha_exact_type(type); 2468 } 2469 assert(type == nullptr || type->is_klass(), "type should be class"); 2470 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2471 2472 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2473 } 2474 2475 if (!do_null && !do_update) { 2476 return result; 2477 } 2478 2479 ciKlass* exact_signature_k = nullptr; 2480 if (do_update) { 2481 // Is the type from the signature exact (the only one possible)? 2482 exact_signature_k = signature_at_call_k->exact_klass(); 2483 if (exact_signature_k == nullptr) { 2484 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2485 } else { 2486 result = exact_signature_k; 2487 // Known statically. No need to emit any code: prevent 2488 // LIR_Assembler::emit_profile_type() from emitting useless code 2489 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2490 } 2491 // exact_klass and exact_signature_k can be both non null but 2492 // different if exact_klass is loaded after the ciObject for 2493 // exact_signature_k is created. 2494 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2495 // sometimes the type of the signature is better than the best type 2496 // the compiler has 2497 exact_klass = exact_signature_k; 2498 } 2499 if (callee_signature_k != nullptr && 2500 callee_signature_k != signature_at_call_k) { 2501 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2502 if (improved_klass == nullptr) { 2503 improved_klass = comp->cha_exact_type(callee_signature_k); 2504 } 2505 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2506 exact_klass = exact_signature_k; 2507 } 2508 } 2509 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2510 } 2511 2512 if (!do_null && !do_update) { 2513 return result; 2514 } 2515 2516 if (mdp == LIR_OprFact::illegalOpr) { 2517 mdp = new_register(T_METADATA); 2518 __ metadata2reg(md->constant_encoding(), mdp); 2519 if (md_base_offset != 0) { 2520 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2521 mdp = new_pointer_register(); 2522 __ leal(LIR_OprFact::address(base_type_address), mdp); 2523 } 2524 } 2525 LIRItem value(obj, this); 2526 value.load_item(); 2527 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2528 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2529 return result; 2530 } 2531 2532 // profile parameters on entry to the root of the compilation 2533 void LIRGenerator::profile_parameters(Base* x) { 2534 if (compilation()->profile_parameters()) { 2535 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2536 ciMethodData* md = scope()->method()->method_data_or_null(); 2537 assert(md != nullptr, "Sanity"); 2538 2539 if (md->parameters_type_data() != nullptr) { 2540 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2541 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2542 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2543 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2544 LIR_Opr src = args->at(i); 2545 assert(!src->is_illegal(), "check"); 2546 BasicType t = src->type(); 2547 if (is_reference_type(t)) { 2548 intptr_t profiled_k = parameters->type(j); 2549 Local* local = x->state()->local_at(java_index)->as_Local(); 2550 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2551 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2552 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2553 // If the profile is known statically set it once for all and do not emit any code 2554 if (exact != nullptr) { 2555 md->set_parameter_type(j, exact); 2556 } 2557 j++; 2558 } 2559 java_index += type2size[t]; 2560 } 2561 } 2562 } 2563 } 2564 2565 void LIRGenerator::do_Base(Base* x) { 2566 __ std_entry(LIR_OprFact::illegalOpr); 2567 // Emit moves from physical registers / stack slots to virtual registers 2568 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2569 IRScope* irScope = compilation()->hir()->top_scope(); 2570 int java_index = 0; 2571 for (int i = 0; i < args->length(); i++) { 2572 LIR_Opr src = args->at(i); 2573 assert(!src->is_illegal(), "check"); 2574 BasicType t = src->type(); 2575 2576 // Types which are smaller than int are passed as int, so 2577 // correct the type which passed. 2578 switch (t) { 2579 case T_BYTE: 2580 case T_BOOLEAN: 2581 case T_SHORT: 2582 case T_CHAR: 2583 t = T_INT; 2584 break; 2585 default: 2586 break; 2587 } 2588 2589 LIR_Opr dest = new_register(t); 2590 __ move(src, dest); 2591 2592 // Assign new location to Local instruction for this local 2593 Local* local = x->state()->local_at(java_index)->as_Local(); 2594 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2595 #ifndef __SOFTFP__ 2596 // The java calling convention passes double as long and float as int. 2597 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2598 #endif // __SOFTFP__ 2599 local->set_operand(dest); 2600 #ifdef ASSERT 2601 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2602 #endif 2603 java_index += type2size[t]; 2604 } 2605 2606 if (compilation()->env()->dtrace_method_probes()) { 2607 BasicTypeList signature; 2608 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2609 signature.append(T_METADATA); // Method* 2610 LIR_OprList* args = new LIR_OprList(); 2611 args->append(getThreadPointer()); 2612 LIR_Opr meth = new_register(T_METADATA); 2613 __ metadata2reg(method()->constant_encoding(), meth); 2614 args->append(meth); 2615 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2616 } 2617 2618 MethodDetails method_details(method()); 2619 RuntimeUpcallInfo* upcall = RuntimeUpcalls::get_first_upcall(RuntimeUpcallType::onMethodEntry, method_details); 2620 while (upcall != nullptr) { 2621 BasicTypeList signature; 2622 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2623 LIR_OprList* args = new LIR_OprList(); 2624 args->append(getThreadPointer()); 2625 call_runtime(&signature, args, upcall->upcall_address(), voidType, nullptr); 2626 upcall = RuntimeUpcalls::get_next_upcall(RuntimeUpcallType::onMethodEntry, method_details, upcall); 2627 } 2628 2629 if (method()->is_synchronized()) { 2630 LIR_Opr obj; 2631 if (method()->is_static()) { 2632 obj = new_register(T_OBJECT); 2633 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2634 } else { 2635 Local* receiver = x->state()->local_at(0)->as_Local(); 2636 assert(receiver != nullptr, "must already exist"); 2637 obj = receiver->operand(); 2638 } 2639 assert(obj->is_valid(), "must be valid"); 2640 2641 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2642 LIR_Opr lock = syncLockOpr(); 2643 __ load_stack_address_monitor(0, lock); 2644 2645 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2646 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2647 2648 // receiver is guaranteed non-null so don't need CodeEmitInfo 2649 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2650 } 2651 } 2652 // increment invocation counters if needed 2653 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2654 profile_parameters(x); 2655 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2656 increment_invocation_counter(info); 2657 } 2658 2659 // all blocks with a successor must end with an unconditional jump 2660 // to the successor even if they are consecutive 2661 __ jump(x->default_sux()); 2662 } 2663 2664 2665 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2666 // construct our frame and model the production of incoming pointer 2667 // to the OSR buffer. 2668 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2669 LIR_Opr result = rlock_result(x); 2670 __ move(LIR_Assembler::osrBufferPointer(), result); 2671 } 2672 2673 2674 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2675 assert(args->length() == arg_list->length(), 2676 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2677 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2678 LIRItem* param = args->at(i); 2679 LIR_Opr loc = arg_list->at(i); 2680 if (loc->is_register()) { 2681 param->load_item_force(loc); 2682 } else { 2683 LIR_Address* addr = loc->as_address_ptr(); 2684 param->load_for_store(addr->type()); 2685 if (addr->type() == T_OBJECT) { 2686 __ move_wide(param->result(), addr); 2687 } else 2688 __ move(param->result(), addr); 2689 } 2690 } 2691 2692 if (x->has_receiver()) { 2693 LIRItem* receiver = args->at(0); 2694 LIR_Opr loc = arg_list->at(0); 2695 if (loc->is_register()) { 2696 receiver->load_item_force(loc); 2697 } else { 2698 assert(loc->is_address(), "just checking"); 2699 receiver->load_for_store(T_OBJECT); 2700 __ move_wide(receiver->result(), loc->as_address_ptr()); 2701 } 2702 } 2703 } 2704 2705 2706 // Visits all arguments, returns appropriate items without loading them 2707 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2708 LIRItemList* argument_items = new LIRItemList(); 2709 if (x->has_receiver()) { 2710 LIRItem* receiver = new LIRItem(x->receiver(), this); 2711 argument_items->append(receiver); 2712 } 2713 for (int i = 0; i < x->number_of_arguments(); i++) { 2714 LIRItem* param = new LIRItem(x->argument_at(i), this); 2715 argument_items->append(param); 2716 } 2717 return argument_items; 2718 } 2719 2720 2721 // The invoke with receiver has following phases: 2722 // a) traverse and load/lock receiver; 2723 // b) traverse all arguments -> item-array (invoke_visit_argument) 2724 // c) push receiver on stack 2725 // d) load each of the items and push on stack 2726 // e) unlock receiver 2727 // f) move receiver into receiver-register %o0 2728 // g) lock result registers and emit call operation 2729 // 2730 // Before issuing a call, we must spill-save all values on stack 2731 // that are in caller-save register. "spill-save" moves those registers 2732 // either in a free callee-save register or spills them if no free 2733 // callee save register is available. 2734 // 2735 // The problem is where to invoke spill-save. 2736 // - if invoked between e) and f), we may lock callee save 2737 // register in "spill-save" that destroys the receiver register 2738 // before f) is executed 2739 // - if we rearrange f) to be earlier (by loading %o0) it 2740 // may destroy a value on the stack that is currently in %o0 2741 // and is waiting to be spilled 2742 // - if we keep the receiver locked while doing spill-save, 2743 // we cannot spill it as it is spill-locked 2744 // 2745 void LIRGenerator::do_Invoke(Invoke* x) { 2746 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2747 2748 LIR_OprList* arg_list = cc->args(); 2749 LIRItemList* args = invoke_visit_arguments(x); 2750 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2751 2752 // setup result register 2753 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2754 if (x->type() != voidType) { 2755 result_register = result_register_for(x->type()); 2756 } 2757 2758 CodeEmitInfo* info = state_for(x, x->state()); 2759 2760 invoke_load_arguments(x, args, arg_list); 2761 2762 if (x->has_receiver()) { 2763 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2764 receiver = args->at(0)->result(); 2765 } 2766 2767 // emit invoke code 2768 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2769 2770 // JSR 292 2771 // Preserve the SP over MethodHandle call sites, if needed. 2772 ciMethod* target = x->target(); 2773 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2774 target->is_method_handle_intrinsic() || 2775 target->is_compiled_lambda_form()); 2776 if (is_method_handle_invoke) { 2777 info->set_is_method_handle_invoke(true); 2778 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2779 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2780 } 2781 } 2782 2783 switch (x->code()) { 2784 case Bytecodes::_invokestatic: 2785 __ call_static(target, result_register, 2786 SharedRuntime::get_resolve_static_call_stub(), 2787 arg_list, info); 2788 break; 2789 case Bytecodes::_invokespecial: 2790 case Bytecodes::_invokevirtual: 2791 case Bytecodes::_invokeinterface: 2792 // for loaded and final (method or class) target we still produce an inline cache, 2793 // in order to be able to call mixed mode 2794 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2795 __ call_opt_virtual(target, receiver, result_register, 2796 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2797 arg_list, info); 2798 } else { 2799 __ call_icvirtual(target, receiver, result_register, 2800 SharedRuntime::get_resolve_virtual_call_stub(), 2801 arg_list, info); 2802 } 2803 break; 2804 case Bytecodes::_invokedynamic: { 2805 __ call_dynamic(target, receiver, result_register, 2806 SharedRuntime::get_resolve_static_call_stub(), 2807 arg_list, info); 2808 break; 2809 } 2810 default: 2811 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2812 break; 2813 } 2814 2815 // JSR 292 2816 // Restore the SP after MethodHandle call sites, if needed. 2817 if (is_method_handle_invoke 2818 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2819 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2820 } 2821 2822 if (result_register->is_valid()) { 2823 LIR_Opr result = rlock_result(x); 2824 __ move(result_register, result); 2825 } 2826 } 2827 2828 2829 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2830 assert(x->number_of_arguments() == 1, "wrong type"); 2831 LIRItem value (x->argument_at(0), this); 2832 LIR_Opr reg = rlock_result(x); 2833 value.load_item(); 2834 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2835 __ move(tmp, reg); 2836 } 2837 2838 2839 2840 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2841 void LIRGenerator::do_IfOp(IfOp* x) { 2842 #ifdef ASSERT 2843 { 2844 ValueTag xtag = x->x()->type()->tag(); 2845 ValueTag ttag = x->tval()->type()->tag(); 2846 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2847 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2848 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2849 } 2850 #endif 2851 2852 LIRItem left(x->x(), this); 2853 LIRItem right(x->y(), this); 2854 left.load_item(); 2855 if (can_inline_as_constant(right.value())) { 2856 right.dont_load_item(); 2857 } else { 2858 right.load_item(); 2859 } 2860 2861 LIRItem t_val(x->tval(), this); 2862 LIRItem f_val(x->fval(), this); 2863 t_val.dont_load_item(); 2864 f_val.dont_load_item(); 2865 LIR_Opr reg = rlock_result(x); 2866 2867 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2868 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2869 } 2870 2871 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2872 assert(x->number_of_arguments() == 0, "wrong type"); 2873 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2874 BasicTypeList signature; 2875 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2876 LIR_Opr reg = result_register_for(x->type()); 2877 __ call_runtime_leaf(routine, getThreadTemp(), 2878 reg, new LIR_OprList()); 2879 LIR_Opr result = rlock_result(x); 2880 __ move(reg, result); 2881 } 2882 2883 2884 2885 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2886 switch (x->id()) { 2887 case vmIntrinsics::_intBitsToFloat : 2888 case vmIntrinsics::_doubleToRawLongBits : 2889 case vmIntrinsics::_longBitsToDouble : 2890 case vmIntrinsics::_floatToRawIntBits : { 2891 do_FPIntrinsics(x); 2892 break; 2893 } 2894 2895 #ifdef JFR_HAVE_INTRINSICS 2896 case vmIntrinsics::_counterTime: 2897 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2898 break; 2899 #endif 2900 2901 case vmIntrinsics::_currentTimeMillis: 2902 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2903 break; 2904 2905 case vmIntrinsics::_nanoTime: 2906 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2907 break; 2908 2909 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2910 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2911 case vmIntrinsics::_getClass: do_getClass(x); break; 2912 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2913 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2914 case vmIntrinsics::_currentThread: do_vthread(x); break; 2915 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2916 2917 case vmIntrinsics::_dlog: // fall through 2918 case vmIntrinsics::_dlog10: // fall through 2919 case vmIntrinsics::_dabs: // fall through 2920 case vmIntrinsics::_dsqrt: // fall through 2921 case vmIntrinsics::_dsqrt_strict: // fall through 2922 case vmIntrinsics::_dtan: // fall through 2923 case vmIntrinsics::_dtanh: // fall through 2924 case vmIntrinsics::_dsin : // fall through 2925 case vmIntrinsics::_dcos : // fall through 2926 case vmIntrinsics::_dexp : // fall through 2927 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2928 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2929 2930 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2931 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2932 2933 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2934 case vmIntrinsics::_floatToFloat16: // fall through 2935 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2936 2937 case vmIntrinsics::_Preconditions_checkIndex: 2938 do_PreconditionsCheckIndex(x, T_INT); 2939 break; 2940 case vmIntrinsics::_Preconditions_checkLongIndex: 2941 do_PreconditionsCheckIndex(x, T_LONG); 2942 break; 2943 2944 case vmIntrinsics::_compareAndSetReference: 2945 do_CompareAndSwap(x, objectType); 2946 break; 2947 case vmIntrinsics::_compareAndSetInt: 2948 do_CompareAndSwap(x, intType); 2949 break; 2950 case vmIntrinsics::_compareAndSetLong: 2951 do_CompareAndSwap(x, longType); 2952 break; 2953 2954 case vmIntrinsics::_loadFence : 2955 __ membar_acquire(); 2956 break; 2957 case vmIntrinsics::_storeFence: 2958 __ membar_release(); 2959 break; 2960 case vmIntrinsics::_storeStoreFence: 2961 __ membar_storestore(); 2962 break; 2963 case vmIntrinsics::_fullFence : 2964 __ membar(); 2965 break; 2966 case vmIntrinsics::_onSpinWait: 2967 __ on_spin_wait(); 2968 break; 2969 case vmIntrinsics::_Reference_get: 2970 do_Reference_get(x); 2971 break; 2972 2973 case vmIntrinsics::_updateCRC32: 2974 case vmIntrinsics::_updateBytesCRC32: 2975 case vmIntrinsics::_updateByteBufferCRC32: 2976 do_update_CRC32(x); 2977 break; 2978 2979 case vmIntrinsics::_updateBytesCRC32C: 2980 case vmIntrinsics::_updateDirectByteBufferCRC32C: 2981 do_update_CRC32C(x); 2982 break; 2983 2984 case vmIntrinsics::_vectorizedMismatch: 2985 do_vectorizedMismatch(x); 2986 break; 2987 2988 case vmIntrinsics::_blackhole: 2989 do_blackhole(x); 2990 break; 2991 2992 default: ShouldNotReachHere(); break; 2993 } 2994 } 2995 2996 void LIRGenerator::profile_arguments(ProfileCall* x) { 2997 if (compilation()->profile_arguments()) { 2998 int bci = x->bci_of_invoke(); 2999 ciMethodData* md = x->method()->method_data_or_null(); 3000 assert(md != nullptr, "Sanity"); 3001 ciProfileData* data = md->bci_to_data(bci); 3002 if (data != nullptr) { 3003 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3004 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3005 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3006 int base_offset = md->byte_offset_of_slot(data, extra); 3007 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3008 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3009 3010 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3011 int start = 0; 3012 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3013 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3014 // first argument is not profiled at call (method handle invoke) 3015 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3016 start = 1; 3017 } 3018 ciSignature* callee_signature = x->callee()->signature(); 3019 // method handle call to virtual method 3020 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3021 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3022 3023 bool ignored_will_link; 3024 ciSignature* signature_at_call = nullptr; 3025 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3026 ciSignatureStream signature_at_call_stream(signature_at_call); 3027 3028 // if called through method handle invoke, some arguments may have been popped 3029 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3030 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3031 ciKlass* exact = profile_type(md, base_offset, off, 3032 args->type(i), x->profiled_arg_at(i+start), mdp, 3033 !x->arg_needs_null_check(i+start), 3034 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3035 if (exact != nullptr) { 3036 md->set_argument_type(bci, i, exact); 3037 } 3038 } 3039 } else { 3040 #ifdef ASSERT 3041 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3042 int n = x->nb_profiled_args(); 3043 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3044 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3045 "only at JSR292 bytecodes"); 3046 #endif 3047 } 3048 } 3049 } 3050 } 3051 3052 // profile parameters on entry to an inlined method 3053 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3054 if (compilation()->profile_parameters() && x->inlined()) { 3055 ciMethodData* md = x->callee()->method_data_or_null(); 3056 if (md != nullptr) { 3057 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3058 if (parameters_type_data != nullptr) { 3059 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3060 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3061 bool has_receiver = !x->callee()->is_static(); 3062 ciSignature* sig = x->callee()->signature(); 3063 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3064 int i = 0; // to iterate on the Instructions 3065 Value arg = x->recv(); 3066 bool not_null = false; 3067 int bci = x->bci_of_invoke(); 3068 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3069 // The first parameter is the receiver so that's what we start 3070 // with if it exists. One exception is method handle call to 3071 // virtual method: the receiver is in the args list 3072 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3073 i = 1; 3074 arg = x->profiled_arg_at(0); 3075 not_null = !x->arg_needs_null_check(0); 3076 } 3077 int k = 0; // to iterate on the profile data 3078 for (;;) { 3079 intptr_t profiled_k = parameters->type(k); 3080 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3081 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3082 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3083 // If the profile is known statically set it once for all and do not emit any code 3084 if (exact != nullptr) { 3085 md->set_parameter_type(k, exact); 3086 } 3087 k++; 3088 if (k >= parameters_type_data->number_of_parameters()) { 3089 #ifdef ASSERT 3090 int extra = 0; 3091 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3092 x->nb_profiled_args() >= TypeProfileParmsLimit && 3093 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3094 extra += 1; 3095 } 3096 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3097 #endif 3098 break; 3099 } 3100 arg = x->profiled_arg_at(i); 3101 not_null = !x->arg_needs_null_check(i); 3102 i++; 3103 } 3104 } 3105 } 3106 } 3107 } 3108 3109 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3110 // Need recv in a temporary register so it interferes with the other temporaries 3111 LIR_Opr recv = LIR_OprFact::illegalOpr; 3112 LIR_Opr mdo = new_register(T_METADATA); 3113 // tmp is used to hold the counters on SPARC 3114 LIR_Opr tmp = new_pointer_register(); 3115 3116 if (x->nb_profiled_args() > 0) { 3117 profile_arguments(x); 3118 } 3119 3120 // profile parameters on inlined method entry including receiver 3121 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3122 profile_parameters_at_call(x); 3123 } 3124 3125 if (x->recv() != nullptr) { 3126 LIRItem value(x->recv(), this); 3127 value.load_item(); 3128 recv = new_register(T_OBJECT); 3129 __ move(value.result(), recv); 3130 } 3131 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3132 } 3133 3134 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3135 int bci = x->bci_of_invoke(); 3136 ciMethodData* md = x->method()->method_data_or_null(); 3137 assert(md != nullptr, "Sanity"); 3138 ciProfileData* data = md->bci_to_data(bci); 3139 if (data != nullptr) { 3140 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3141 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3142 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3143 3144 bool ignored_will_link; 3145 ciSignature* signature_at_call = nullptr; 3146 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3147 3148 // The offset within the MDO of the entry to update may be too large 3149 // to be used in load/store instructions on some platforms. So have 3150 // profile_type() compute the address of the profile in a register. 3151 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3152 ret->type(), x->ret(), mdp, 3153 !x->needs_null_check(), 3154 signature_at_call->return_type()->as_klass(), 3155 x->callee()->signature()->return_type()->as_klass()); 3156 if (exact != nullptr) { 3157 md->set_return_type(bci, exact); 3158 } 3159 } 3160 } 3161 3162 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3163 // We can safely ignore accessors here, since c2 will inline them anyway, 3164 // accessors are also always mature. 3165 if (!x->inlinee()->is_accessor()) { 3166 CodeEmitInfo* info = state_for(x, x->state(), true); 3167 // Notify the runtime very infrequently only to take care of counter overflows 3168 int freq_log = Tier23InlineeNotifyFreqLog; 3169 double scale; 3170 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3171 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3172 } 3173 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3174 } 3175 } 3176 3177 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3178 if (compilation()->is_profiling()) { 3179 #if defined(X86) && !defined(_LP64) 3180 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3181 LIR_Opr left_copy = new_register(left->type()); 3182 __ move(left, left_copy); 3183 __ cmp(cond, left_copy, right); 3184 #else 3185 __ cmp(cond, left, right); 3186 #endif 3187 LIR_Opr step = new_register(T_INT); 3188 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3189 LIR_Opr zero = LIR_OprFact::intConst(0); 3190 __ cmove(cond, 3191 (left_bci < bci) ? plus_one : zero, 3192 (right_bci < bci) ? plus_one : zero, 3193 step, left->type()); 3194 increment_backedge_counter(info, step, bci); 3195 } 3196 } 3197 3198 3199 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3200 int freq_log = 0; 3201 int level = compilation()->env()->comp_level(); 3202 if (level == CompLevel_limited_profile) { 3203 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3204 } else if (level == CompLevel_full_profile) { 3205 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3206 } else { 3207 ShouldNotReachHere(); 3208 } 3209 // Increment the appropriate invocation/backedge counter and notify the runtime. 3210 double scale; 3211 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3212 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3213 } 3214 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3215 } 3216 3217 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3218 ciMethod *method, LIR_Opr step, int frequency, 3219 int bci, bool backedge, bool notify) { 3220 if (PreloadOnly) { 3221 // Nothing to do if we only use preload code. 3222 return; 3223 } 3224 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3225 int level = _compilation->env()->comp_level(); 3226 assert(level > CompLevel_simple, "Shouldn't be here"); 3227 3228 int offset = -1; 3229 LIR_Opr counter_holder; 3230 if (level == CompLevel_limited_profile) { 3231 MethodCounters* counters_adr = method->ensure_method_counters(); 3232 if (counters_adr == nullptr) { 3233 bailout("method counters allocation failed"); 3234 return; 3235 } 3236 if (SCCache::is_on()) { 3237 counter_holder = new_register(T_METADATA); 3238 __ metadata2reg(counters_adr, counter_holder); 3239 } else { 3240 counter_holder = new_pointer_register(); 3241 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3242 } 3243 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3244 MethodCounters::invocation_counter_offset()); 3245 } else if (level == CompLevel_full_profile) { 3246 counter_holder = new_register(T_METADATA); 3247 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3248 MethodData::invocation_counter_offset()); 3249 ciMethodData* md = method->method_data_or_null(); 3250 assert(md != nullptr, "Sanity"); 3251 __ metadata2reg(md->constant_encoding(), counter_holder); 3252 } else { 3253 ShouldNotReachHere(); 3254 } 3255 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3256 LIR_Opr result = new_register(T_INT); 3257 __ load(counter, result); 3258 __ add(result, step, result); 3259 __ store(result, counter); 3260 if (notify && (!backedge || UseOnStackReplacement)) { 3261 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3262 // The bci for info can point to cmp for if's we want the if bci 3263 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3264 int freq = frequency << InvocationCounter::count_shift; 3265 if (freq == 0) { 3266 if (!step->is_constant()) { 3267 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3268 __ branch(lir_cond_notEqual, overflow); 3269 } else { 3270 __ branch(lir_cond_always, overflow); 3271 } 3272 } else { 3273 LIR_Opr mask = load_immediate(freq, T_INT); 3274 if (!step->is_constant()) { 3275 // If step is 0, make sure the overflow check below always fails 3276 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3277 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3278 } 3279 __ logical_and(result, mask, result); 3280 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3281 __ branch(lir_cond_equal, overflow); 3282 } 3283 __ branch_destination(overflow->continuation()); 3284 } 3285 } 3286 3287 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3288 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3289 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3290 3291 if (x->pass_thread()) { 3292 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3293 args->append(getThreadPointer()); 3294 } 3295 3296 for (int i = 0; i < x->number_of_arguments(); i++) { 3297 Value a = x->argument_at(i); 3298 LIRItem* item = new LIRItem(a, this); 3299 item->load_item(); 3300 args->append(item->result()); 3301 signature->append(as_BasicType(a->type())); 3302 } 3303 3304 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3305 if (x->type() == voidType) { 3306 set_no_result(x); 3307 } else { 3308 __ move(result, rlock_result(x)); 3309 } 3310 } 3311 3312 #ifdef ASSERT 3313 void LIRGenerator::do_Assert(Assert *x) { 3314 ValueTag tag = x->x()->type()->tag(); 3315 If::Condition cond = x->cond(); 3316 3317 LIRItem xitem(x->x(), this); 3318 LIRItem yitem(x->y(), this); 3319 LIRItem* xin = &xitem; 3320 LIRItem* yin = &yitem; 3321 3322 assert(tag == intTag, "Only integer assertions are valid!"); 3323 3324 xin->load_item(); 3325 yin->dont_load_item(); 3326 3327 set_no_result(x); 3328 3329 LIR_Opr left = xin->result(); 3330 LIR_Opr right = yin->result(); 3331 3332 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3333 } 3334 #endif 3335 3336 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3337 3338 3339 Instruction *a = x->x(); 3340 Instruction *b = x->y(); 3341 if (!a || StressRangeCheckElimination) { 3342 assert(!b || StressRangeCheckElimination, "B must also be null"); 3343 3344 CodeEmitInfo *info = state_for(x, x->state()); 3345 CodeStub* stub = new PredicateFailedStub(info); 3346 3347 __ jump(stub); 3348 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3349 int a_int = a->type()->as_IntConstant()->value(); 3350 int b_int = b->type()->as_IntConstant()->value(); 3351 3352 bool ok = false; 3353 3354 switch(x->cond()) { 3355 case Instruction::eql: ok = (a_int == b_int); break; 3356 case Instruction::neq: ok = (a_int != b_int); break; 3357 case Instruction::lss: ok = (a_int < b_int); break; 3358 case Instruction::leq: ok = (a_int <= b_int); break; 3359 case Instruction::gtr: ok = (a_int > b_int); break; 3360 case Instruction::geq: ok = (a_int >= b_int); break; 3361 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3362 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3363 default: ShouldNotReachHere(); 3364 } 3365 3366 if (ok) { 3367 3368 CodeEmitInfo *info = state_for(x, x->state()); 3369 CodeStub* stub = new PredicateFailedStub(info); 3370 3371 __ jump(stub); 3372 } 3373 } else { 3374 3375 ValueTag tag = x->x()->type()->tag(); 3376 If::Condition cond = x->cond(); 3377 LIRItem xitem(x->x(), this); 3378 LIRItem yitem(x->y(), this); 3379 LIRItem* xin = &xitem; 3380 LIRItem* yin = &yitem; 3381 3382 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3383 3384 xin->load_item(); 3385 yin->dont_load_item(); 3386 set_no_result(x); 3387 3388 LIR_Opr left = xin->result(); 3389 LIR_Opr right = yin->result(); 3390 3391 CodeEmitInfo *info = state_for(x, x->state()); 3392 CodeStub* stub = new PredicateFailedStub(info); 3393 3394 __ cmp(lir_cond(cond), left, right); 3395 __ branch(lir_cond(cond), stub); 3396 } 3397 } 3398 3399 void LIRGenerator::do_blackhole(Intrinsic *x) { 3400 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3401 for (int c = 0; c < x->number_of_arguments(); c++) { 3402 // Load the argument 3403 LIRItem vitem(x->argument_at(c), this); 3404 vitem.load_item(); 3405 // ...and leave it unused. 3406 } 3407 } 3408 3409 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3410 LIRItemList args(1); 3411 LIRItem value(arg1, this); 3412 args.append(&value); 3413 BasicTypeList signature; 3414 signature.append(as_BasicType(arg1->type())); 3415 3416 return call_runtime(&signature, &args, entry, result_type, info); 3417 } 3418 3419 3420 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3421 LIRItemList args(2); 3422 LIRItem value1(arg1, this); 3423 LIRItem value2(arg2, this); 3424 args.append(&value1); 3425 args.append(&value2); 3426 BasicTypeList signature; 3427 signature.append(as_BasicType(arg1->type())); 3428 signature.append(as_BasicType(arg2->type())); 3429 3430 return call_runtime(&signature, &args, entry, result_type, info); 3431 } 3432 3433 3434 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3435 address entry, ValueType* result_type, CodeEmitInfo* info) { 3436 // get a result register 3437 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3438 LIR_Opr result = LIR_OprFact::illegalOpr; 3439 if (result_type->tag() != voidTag) { 3440 result = new_register(result_type); 3441 phys_reg = result_register_for(result_type); 3442 } 3443 3444 // move the arguments into the correct location 3445 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3446 assert(cc->length() == args->length(), "argument mismatch"); 3447 for (int i = 0; i < args->length(); i++) { 3448 LIR_Opr arg = args->at(i); 3449 LIR_Opr loc = cc->at(i); 3450 if (loc->is_register()) { 3451 __ move(arg, loc); 3452 } else { 3453 LIR_Address* addr = loc->as_address_ptr(); 3454 // if (!can_store_as_constant(arg)) { 3455 // LIR_Opr tmp = new_register(arg->type()); 3456 // __ move(arg, tmp); 3457 // arg = tmp; 3458 // } 3459 __ move(arg, addr); 3460 } 3461 } 3462 3463 if (info) { 3464 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3465 } else { 3466 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3467 } 3468 if (result->is_valid()) { 3469 __ move(phys_reg, result); 3470 } 3471 return result; 3472 } 3473 3474 3475 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3476 address entry, ValueType* result_type, CodeEmitInfo* info) { 3477 // get a result register 3478 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3479 LIR_Opr result = LIR_OprFact::illegalOpr; 3480 if (result_type->tag() != voidTag) { 3481 result = new_register(result_type); 3482 phys_reg = result_register_for(result_type); 3483 } 3484 3485 // move the arguments into the correct location 3486 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3487 3488 assert(cc->length() == args->length(), "argument mismatch"); 3489 for (int i = 0; i < args->length(); i++) { 3490 LIRItem* arg = args->at(i); 3491 LIR_Opr loc = cc->at(i); 3492 if (loc->is_register()) { 3493 arg->load_item_force(loc); 3494 } else { 3495 LIR_Address* addr = loc->as_address_ptr(); 3496 arg->load_for_store(addr->type()); 3497 __ move(arg->result(), addr); 3498 } 3499 } 3500 3501 if (info) { 3502 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3503 } else { 3504 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3505 } 3506 if (result->is_valid()) { 3507 __ move(phys_reg, result); 3508 } 3509 return result; 3510 } 3511 3512 void LIRGenerator::do_MemBar(MemBar* x) { 3513 LIR_Code code = x->code(); 3514 switch(code) { 3515 case lir_membar_acquire : __ membar_acquire(); break; 3516 case lir_membar_release : __ membar_release(); break; 3517 case lir_membar : __ membar(); break; 3518 case lir_membar_loadload : __ membar_loadload(); break; 3519 case lir_membar_storestore: __ membar_storestore(); break; 3520 case lir_membar_loadstore : __ membar_loadstore(); break; 3521 case lir_membar_storeload : __ membar_storeload(); break; 3522 default : ShouldNotReachHere(); break; 3523 } 3524 } 3525 3526 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3527 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3528 if (two_operand_lir_form) { 3529 __ move(value, value_fixed); 3530 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3531 } else { 3532 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3533 } 3534 LIR_Opr klass = new_register(T_METADATA); 3535 load_klass(array, klass, null_check_info); 3536 null_check_info = nullptr; 3537 LIR_Opr layout = new_register(T_INT); 3538 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3539 int diffbit = Klass::layout_helper_boolean_diffbit(); 3540 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3541 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3542 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3543 value = value_fixed; 3544 return value; 3545 }