1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "c1/c1_Compilation.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "ci/ciUtilities.hpp"
  36 #include "code/aotCodeCache.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "compiler/compilerOracle.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "oops/methodCounters.hpp"
  43 #include "runtime/runtimeUpcalls.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/vm_version.hpp"
  47 #include "utilities/bitMap.inline.hpp"
  48 #include "utilities/macros.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 #ifdef ASSERT
  52 #define __ gen()->lir(__FILE__, __LINE__)->
  53 #else
  54 #define __ gen()->lir()->
  55 #endif
  56 
  57 #ifndef PATCHED_ADDR
  58 #define PATCHED_ADDR  (max_jint)
  59 #endif
  60 
  61 void PhiResolverState::reset() {
  62   _virtual_operands.clear();
  63   _other_operands.clear();
  64   _vreg_table.clear();
  65 }
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _loop(nullptr)
  85  , _temp(LIR_OprFact::illegalOpr)
  86 {
  87   // reinitialize the shared state arrays
  88   _state.reset();
  89 }
  90 
  91 
  92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  93   assert(src->is_valid(), "");
  94   assert(dest->is_valid(), "");
  95   __ move(src, dest);
  96 }
  97 
  98 
  99 void PhiResolver::move_temp_to(LIR_Opr dest) {
 100   assert(_temp->is_valid(), "");
 101   emit_move(_temp, dest);
 102   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 103 }
 104 
 105 
 106 void PhiResolver::move_to_temp(LIR_Opr src) {
 107   assert(_temp->is_illegal(), "");
 108   _temp = _gen->new_register(src->type());
 109   emit_move(src, _temp);
 110 }
 111 
 112 
 113 // Traverse assignment graph in depth first order and generate moves in post order
 114 // ie. two assignments: b := c, a := b start with node c:
 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a)
 116 // Generates moves in this order: move b to a and move c to b
 117 // ie. cycle a := b, b := a start with node a
 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a)
 119 // Generates moves in this order: move b to temp, move a to b, move temp to a
 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 121   if (!dest->visited()) {
 122     dest->set_visited();
 123     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 124       move(dest, dest->destination_at(i));
 125     }
 126   } else if (!dest->start_node()) {
 127     // cylce in graph detected
 128     assert(_loop == nullptr, "only one loop valid!");
 129     _loop = dest;
 130     move_to_temp(src->operand());
 131     return;
 132   } // else dest is a start node
 133 
 134   if (!dest->assigned()) {
 135     if (_loop == dest) {
 136       move_temp_to(dest->operand());
 137       dest->set_assigned();
 138     } else if (src != nullptr) {
 139       emit_move(src->operand(), dest->operand());
 140       dest->set_assigned();
 141     }
 142   }
 143 }
 144 
 145 
 146 PhiResolver::~PhiResolver() {
 147   int i;
 148   // resolve any cycles in moves from and to virtual registers
 149   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 150     ResolveNode* node = virtual_operands().at(i);
 151     if (!node->visited()) {
 152       _loop = nullptr;
 153       move(nullptr, node);
 154       node->set_start_node();
 155       assert(_temp->is_illegal(), "move_temp_to() call missing");
 156     }
 157   }
 158 
 159   // generate move for move from non virtual register to abitrary destination
 160   for (i = other_operands().length() - 1; i >= 0; i --) {
 161     ResolveNode* node = other_operands().at(i);
 162     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 163       emit_move(node->operand(), node->destination_at(j)->operand());
 164     }
 165   }
 166 }
 167 
 168 
 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 170   ResolveNode* node;
 171   if (opr->is_virtual()) {
 172     int vreg_num = opr->vreg_number();
 173     node = vreg_table().at_grow(vreg_num, nullptr);
 174     assert(node == nullptr || node->operand() == opr, "");
 175     if (node == nullptr) {
 176       node = new ResolveNode(opr);
 177       vreg_table().at_put(vreg_num, node);
 178     }
 179     // Make sure that all virtual operands show up in the list when
 180     // they are used as the source of a move.
 181     if (source && !virtual_operands().contains(node)) {
 182       virtual_operands().append(node);
 183     }
 184   } else {
 185     assert(source, "");
 186     node = new ResolveNode(opr);
 187     other_operands().append(node);
 188   }
 189   return node;
 190 }
 191 
 192 
 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 194   assert(dest->is_virtual(), "");
 195   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 196   assert(src->is_valid(), "");
 197   assert(dest->is_valid(), "");
 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210 #ifdef ASSERT
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr);
 213   }
 214 #endif
 215 
 216   _result = opr;
 217 }
 218 
 219 void LIRItem::load_item() {
 220   if (result()->is_illegal()) {
 221     // update the items result
 222     _result = value()->operand();
 223   }
 224   if (!result()->is_register()) {
 225     LIR_Opr reg = _gen->new_register(value()->type());
 226     __ move(result(), reg);
 227     if (result()->is_constant()) {
 228       _result = reg;
 229     } else {
 230       set_result(reg);
 231     }
 232   }
 233 }
 234 
 235 
 236 void LIRItem::load_for_store(BasicType type) {
 237   if (_gen->can_store_as_constant(value(), type)) {
 238     _result = value()->operand();
 239     if (!_result->is_constant()) {
 240       _result = LIR_OprFact::value_type(value()->type());
 241     }
 242   } else if (type == T_BYTE || type == T_BOOLEAN) {
 243     load_byte_item();
 244   } else {
 245     load_item();
 246   }
 247 }
 248 
 249 void LIRItem::load_item_force(LIR_Opr reg) {
 250   LIR_Opr r = result();
 251   if (r != reg) {
 252 #if !defined(ARM) && !defined(E500V2)
 253     if (r->type() != reg->type()) {
 254       // moves between different types need an intervening spill slot
 255       r = _gen->force_to_spill(r, reg->type());
 256     }
 257 #endif
 258     __ move(r, reg);
 259     _result = reg;
 260   }
 261 }
 262 
 263 ciObject* LIRItem::get_jobject_constant() const {
 264   ObjectType* oc = type()->as_ObjectType();
 265   if (oc) {
 266     return oc->constant_value();
 267   }
 268   return nullptr;
 269 }
 270 
 271 
 272 jint LIRItem::get_jint_constant() const {
 273   assert(is_constant() && value() != nullptr, "");
 274   assert(type()->as_IntConstant() != nullptr, "type check");
 275   return type()->as_IntConstant()->value();
 276 }
 277 
 278 
 279 jint LIRItem::get_address_constant() const {
 280   assert(is_constant() && value() != nullptr, "");
 281   assert(type()->as_AddressConstant() != nullptr, "type check");
 282   return type()->as_AddressConstant()->value();
 283 }
 284 
 285 
 286 jfloat LIRItem::get_jfloat_constant() const {
 287   assert(is_constant() && value() != nullptr, "");
 288   assert(type()->as_FloatConstant() != nullptr, "type check");
 289   return type()->as_FloatConstant()->value();
 290 }
 291 
 292 
 293 jdouble LIRItem::get_jdouble_constant() const {
 294   assert(is_constant() && value() != nullptr, "");
 295   assert(type()->as_DoubleConstant() != nullptr, "type check");
 296   return type()->as_DoubleConstant()->value();
 297 }
 298 
 299 
 300 jlong LIRItem::get_jlong_constant() const {
 301   assert(is_constant() && value() != nullptr, "");
 302   assert(type()->as_LongConstant() != nullptr, "type check");
 303   return type()->as_LongConstant()->value();
 304 }
 305 
 306 
 307 
 308 //--------------------------------------------------------------
 309 
 310 
 311 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 312 #ifndef PRODUCT
 313   if (PrintIRWithLIR) {
 314     block->print();
 315   }
 316 #endif
 317 
 318   // set up the list of LIR instructions
 319   assert(block->lir() == nullptr, "LIR list already computed for this block");
 320   _lir = new LIR_List(compilation(), block);
 321   block->set_lir(_lir);
 322 
 323   __ branch_destination(block->label());
 324 
 325   if (LIRTraceExecution &&
 326       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 327       !block->is_set(BlockBegin::exception_entry_flag)) {
 328     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 329     trace_block_entry(block);
 330   }
 331 }
 332 
 333 
 334 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 335 #ifndef PRODUCT
 336   if (PrintIRWithLIR) {
 337     tty->cr();
 338   }
 339 #endif
 340 
 341   // LIR_Opr for unpinned constants shouldn't be referenced by other
 342   // blocks so clear them out after processing the block.
 343   for (int i = 0; i < _unpinned_constants.length(); i++) {
 344     _unpinned_constants.at(i)->clear_operand();
 345   }
 346   _unpinned_constants.trunc_to(0);
 347 
 348   // clear our any registers for other local constants
 349   _constants.trunc_to(0);
 350   _reg_for_constants.trunc_to(0);
 351 }
 352 
 353 
 354 void LIRGenerator::block_do(BlockBegin* block) {
 355   CHECK_BAILOUT();
 356 
 357   block_do_prolog(block);
 358   set_block(block);
 359 
 360   for (Instruction* instr = block; instr != nullptr; instr = instr->next()) {
 361     if (instr->is_pinned()) do_root(instr);
 362   }
 363 
 364   set_block(nullptr);
 365   block_do_epilog(block);
 366 }
 367 
 368 
 369 //-------------------------LIRGenerator-----------------------------
 370 
 371 // This is where the tree-walk starts; instr must be root;
 372 void LIRGenerator::do_root(Value instr) {
 373   CHECK_BAILOUT();
 374 
 375   InstructionMark im(compilation(), instr);
 376 
 377   assert(instr->is_pinned(), "use only with roots");
 378   assert(instr->subst() == instr, "shouldn't have missed substitution");
 379 
 380   instr->visit(this);
 381 
 382   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 383          instr->as_Constant() != nullptr || bailed_out(), "invalid item set");
 384 }
 385 
 386 
 387 // This is called for each node in tree; the walk stops if a root is reached
 388 void LIRGenerator::walk(Value instr) {
 389   InstructionMark im(compilation(), instr);
 390   //stop walk when encounter a root
 391   if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) {
 392     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited");
 393   } else {
 394     assert(instr->subst() == instr, "shouldn't have missed substitution");
 395     instr->visit(this);
 396     // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use");
 397   }
 398 }
 399 
 400 
 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 402   assert(state != nullptr, "state must be defined");
 403 
 404 #ifndef PRODUCT
 405   state->verify();
 406 #endif
 407 
 408   ValueStack* s = state;
 409   for_each_state(s) {
 410     if (s->kind() == ValueStack::EmptyExceptionState ||
 411         s->kind() == ValueStack::CallerEmptyExceptionState)
 412     {
 413 #ifdef ASSERT
 414       int index;
 415       Value value;
 416       for_each_stack_value(s, index, value) {
 417         fatal("state must be empty");
 418       }
 419       for_each_local_value(s, index, value) {
 420         fatal("state must be empty");
 421       }
 422 #endif
 423       assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty");
 424       continue;
 425     }
 426 
 427     int index;
 428     Value value;
 429     for_each_stack_value(s, index, value) {
 430       assert(value->subst() == value, "missed substitution");
 431       if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 432         walk(value);
 433         assert(value->operand()->is_valid(), "must be evaluated now");
 434       }
 435     }
 436 
 437     int bci = s->bci();
 438     IRScope* scope = s->scope();
 439     ciMethod* method = scope->method();
 440 
 441     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 442     if (bci == SynchronizationEntryBCI) {
 443       if (x->as_ExceptionObject() || x->as_Throw()) {
 444         // all locals are dead on exit from the synthetic unlocker
 445         liveness.clear();
 446       } else {
 447         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 448       }
 449     }
 450     if (!liveness.is_valid()) {
 451       // Degenerate or breakpointed method.
 452       bailout("Degenerate or breakpointed method");
 453     } else {
 454       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 455       for_each_local_value(s, index, value) {
 456         assert(value->subst() == value, "missed substitution");
 457         if (liveness.at(index) && !value->type()->is_illegal()) {
 458           if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) {
 459             walk(value);
 460             assert(value->operand()->is_valid(), "must be evaluated now");
 461           }
 462         } else {
 463           // null out this local so that linear scan can assume that all non-null values are live.
 464           s->invalidate_local(index);
 465         }
 466       }
 467     }
 468   }
 469 
 470   return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 471 }
 472 
 473 
 474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 475   return state_for(x, x->exception_state());
 476 }
 477 
 478 
 479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 480   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
 481    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 482    * the class. */
 483   if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
 484     assert(info != nullptr, "info must be set if class is not loaded");
 485     __ klass2reg_patch(nullptr, r, info);
 486   } else {
 487     // no patching needed
 488     __ metadata2reg(obj->constant_encoding(), r);
 489   }
 490 }
 491 
 492 
 493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 494                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 495   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 496   if (index->is_constant()) {
 497     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 498                 index->as_jint(), null_check_info);
 499     __ branch(lir_cond_belowEqual, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 502                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 503     __ branch(lir_cond_aboveEqual, stub); // forward branch
 504   }
 505 }
 506 
 507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
 508   LIR_Opr result_op = result;
 509   LIR_Opr left_op   = left;
 510   LIR_Opr right_op  = right;
 511 
 512   if (two_operand_lir_form && left_op != result_op) {
 513     assert(right_op != result_op, "malformed");
 514     __ move(left_op, result_op);
 515     left_op = result_op;
 516   }
 517 
 518   switch(code) {
 519     case Bytecodes::_dadd:
 520     case Bytecodes::_fadd:
 521     case Bytecodes::_ladd:
 522     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 523     case Bytecodes::_fmul:
 524     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 525 
 526     case Bytecodes::_dmul:  __ mul(left_op, right_op, result_op, tmp_op); break;
 527 
 528     case Bytecodes::_imul:
 529       {
 530         bool did_strength_reduce = false;
 531 
 532         if (right->is_constant()) {
 533           jint c = right->as_jint();
 534           if (c > 0 && is_power_of_2(c)) {
 535             // do not need tmp here
 536             __ shift_left(left_op, exact_log2(c), result_op);
 537             did_strength_reduce = true;
 538           } else {
 539             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 540           }
 541         }
 542         // we couldn't strength reduce so just emit the multiply
 543         if (!did_strength_reduce) {
 544           __ mul(left_op, right_op, result_op);
 545         }
 546       }
 547       break;
 548 
 549     case Bytecodes::_dsub:
 550     case Bytecodes::_fsub:
 551     case Bytecodes::_lsub:
 552     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 553 
 554     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 555     // ldiv and lrem are implemented with a direct runtime call
 556 
 557     case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
 558 
 559     case Bytecodes::_drem:
 560     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 561 
 562     default: ShouldNotReachHere();
 563   }
 564 }
 565 
 566 
 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 568   arithmetic_op(code, result, left, right, tmp);
 569 }
 570 
 571 
 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 573   arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
 574 }
 575 
 576 
 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 578   arithmetic_op(code, result, left, right, tmp);
 579 }
 580 
 581 
 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 583 
 584   if (two_operand_lir_form && value != result_op
 585       // Only 32bit right shifts require two operand form on S390.
 586       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 587     assert(count != result_op, "malformed");
 588     __ move(value, result_op);
 589     value = result_op;
 590   }
 591 
 592   assert(count->is_constant() || count->is_register(), "must be");
 593   switch(code) {
 594   case Bytecodes::_ishl:
 595   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 596   case Bytecodes::_ishr:
 597   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 598   case Bytecodes::_iushr:
 599   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 600   default: ShouldNotReachHere();
 601   }
 602 }
 603 
 604 
 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 606   if (two_operand_lir_form && left_op != result_op) {
 607     assert(right_op != result_op, "malformed");
 608     __ move(left_op, result_op);
 609     left_op = result_op;
 610   }
 611 
 612   switch(code) {
 613     case Bytecodes::_iand:
 614     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 615 
 616     case Bytecodes::_ior:
 617     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 618 
 619     case Bytecodes::_ixor:
 620     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 621 
 622     default: ShouldNotReachHere();
 623   }
 624 }
 625 
 626 
 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 628   if (!GenerateSynchronizationCode) return;
 629   // for slow path, use debug info for state after successful locking
 630   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 631   __ load_stack_address_monitor(monitor_no, lock);
 632   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 633   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 634 }
 635 
 636 
 637 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 638   if (!GenerateSynchronizationCode) return;
 639   // setup registers
 640   LIR_Opr hdr = lock;
 641   lock = new_hdr;
 642   CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no);
 643   __ load_stack_address_monitor(monitor_no, lock);
 644   __ unlock_object(hdr, object, lock, scratch, slow_path);
 645 }
 646 
 647 #ifndef PRODUCT
 648 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 649   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 650     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 651   } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
 652     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 653   }
 654 }
 655 #endif
 656 
 657 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 658   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 659   // If klass is not loaded we do not know if the klass has finalizers:
 660   if (UseFastNewInstance && klass->is_loaded()
 661       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 662 
 663     bool known_initialized = klass->is_initialized() && !compilation()->env()->is_precompile();
 664     C1StubId stub_id = known_initialized ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id;
 665 
 666     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 667 
 668     assert(klass->is_loaded(), "must be loaded");
 669     // allocate space for instance
 670     assert(klass->size_helper() > 0, "illegal instance size");
 671     const int instance_size = align_object_size(klass->size_helper());
 672     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 673                        oopDesc::header_size(), instance_size, klass_reg, !known_initialized, slow_path);
 674   } else {
 675     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id);
 676     __ branch(lir_cond_always, slow_path);
 677     __ branch_destination(slow_path->continuation());
 678   }
 679 }
 680 
 681 
 682 static bool is_constant_zero(Instruction* inst) {
 683   IntConstant* c = inst->type()->as_IntConstant();
 684   if (c) {
 685     return (c->value() == 0);
 686   }
 687   return false;
 688 }
 689 
 690 
 691 static bool positive_constant(Instruction* inst) {
 692   IntConstant* c = inst->type()->as_IntConstant();
 693   if (c) {
 694     return (c->value() >= 0);
 695   }
 696   return false;
 697 }
 698 
 699 
 700 static ciArrayKlass* as_array_klass(ciType* type) {
 701   if (type != nullptr && type->is_array_klass() && type->is_loaded()) {
 702     return (ciArrayKlass*)type;
 703   } else {
 704     return nullptr;
 705   }
 706 }
 707 
 708 static ciType* phi_declared_type(Phi* phi) {
 709   ciType* t = phi->operand_at(0)->declared_type();
 710   if (t == nullptr) {
 711     return nullptr;
 712   }
 713   for(int i = 1; i < phi->operand_count(); i++) {
 714     if (t != phi->operand_at(i)->declared_type()) {
 715       return nullptr;
 716     }
 717   }
 718   return t;
 719 }
 720 
 721 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 722   Instruction* src     = x->argument_at(0);
 723   Instruction* src_pos = x->argument_at(1);
 724   Instruction* dst     = x->argument_at(2);
 725   Instruction* dst_pos = x->argument_at(3);
 726   Instruction* length  = x->argument_at(4);
 727 
 728   // first try to identify the likely type of the arrays involved
 729   ciArrayKlass* expected_type = nullptr;
 730   bool is_exact = false, src_objarray = false, dst_objarray = false;
 731   {
 732     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 733     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 734     Phi* phi;
 735     if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) {
 736       src_declared_type = as_array_klass(phi_declared_type(phi));
 737     }
 738     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 739     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 740     if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) {
 741       dst_declared_type = as_array_klass(phi_declared_type(phi));
 742     }
 743 
 744     if (src_exact_type != nullptr && src_exact_type == dst_exact_type) {
 745       // the types exactly match so the type is fully known
 746       is_exact = true;
 747       expected_type = src_exact_type;
 748     } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) {
 749       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 750       ciArrayKlass* src_type = nullptr;
 751       if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) {
 752         src_type = (ciArrayKlass*) src_exact_type;
 753       } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) {
 754         src_type = (ciArrayKlass*) src_declared_type;
 755       }
 756       if (src_type != nullptr) {
 757         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 758           is_exact = true;
 759           expected_type = dst_type;
 760         }
 761       }
 762     }
 763     // at least pass along a good guess
 764     if (expected_type == nullptr) expected_type = dst_exact_type;
 765     if (expected_type == nullptr) expected_type = src_declared_type;
 766     if (expected_type == nullptr) expected_type = dst_declared_type;
 767 
 768     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 769     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 770   }
 771 
 772   // if a probable array type has been identified, figure out if any
 773   // of the required checks for a fast case can be elided.
 774   int flags = LIR_OpArrayCopy::all_flags;
 775 
 776   if (!src_objarray)
 777     flags &= ~LIR_OpArrayCopy::src_objarray;
 778   if (!dst_objarray)
 779     flags &= ~LIR_OpArrayCopy::dst_objarray;
 780 
 781   if (!x->arg_needs_null_check(0))
 782     flags &= ~LIR_OpArrayCopy::src_null_check;
 783   if (!x->arg_needs_null_check(2))
 784     flags &= ~LIR_OpArrayCopy::dst_null_check;
 785 
 786 
 787   if (expected_type != nullptr) {
 788     Value length_limit = nullptr;
 789 
 790     IfOp* ifop = length->as_IfOp();
 791     if (ifop != nullptr) {
 792       // look for expressions like min(v, a.length) which ends up as
 793       //   x > y ? y : x  or  x >= y ? y : x
 794       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 795           ifop->x() == ifop->fval() &&
 796           ifop->y() == ifop->tval()) {
 797         length_limit = ifop->y();
 798       }
 799     }
 800 
 801     // try to skip null checks and range checks
 802     NewArray* src_array = src->as_NewArray();
 803     if (src_array != nullptr) {
 804       flags &= ~LIR_OpArrayCopy::src_null_check;
 805       if (length_limit != nullptr &&
 806           src_array->length() == length_limit &&
 807           is_constant_zero(src_pos)) {
 808         flags &= ~LIR_OpArrayCopy::src_range_check;
 809       }
 810     }
 811 
 812     NewArray* dst_array = dst->as_NewArray();
 813     if (dst_array != nullptr) {
 814       flags &= ~LIR_OpArrayCopy::dst_null_check;
 815       if (length_limit != nullptr &&
 816           dst_array->length() == length_limit &&
 817           is_constant_zero(dst_pos)) {
 818         flags &= ~LIR_OpArrayCopy::dst_range_check;
 819       }
 820     }
 821 
 822     // check from incoming constant values
 823     if (positive_constant(src_pos))
 824       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 825     if (positive_constant(dst_pos))
 826       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 827     if (positive_constant(length))
 828       flags &= ~LIR_OpArrayCopy::length_positive_check;
 829 
 830     // see if the range check can be elided, which might also imply
 831     // that src or dst is non-null.
 832     ArrayLength* al = length->as_ArrayLength();
 833     if (al != nullptr) {
 834       if (al->array() == src) {
 835         // it's the length of the source array
 836         flags &= ~LIR_OpArrayCopy::length_positive_check;
 837         flags &= ~LIR_OpArrayCopy::src_null_check;
 838         if (is_constant_zero(src_pos))
 839           flags &= ~LIR_OpArrayCopy::src_range_check;
 840       }
 841       if (al->array() == dst) {
 842         // it's the length of the destination array
 843         flags &= ~LIR_OpArrayCopy::length_positive_check;
 844         flags &= ~LIR_OpArrayCopy::dst_null_check;
 845         if (is_constant_zero(dst_pos))
 846           flags &= ~LIR_OpArrayCopy::dst_range_check;
 847       }
 848     }
 849     if (is_exact) {
 850       flags &= ~LIR_OpArrayCopy::type_check;
 851     }
 852   }
 853 
 854   IntConstant* src_int = src_pos->type()->as_IntConstant();
 855   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 856   if (src_int && dst_int) {
 857     int s_offs = src_int->value();
 858     int d_offs = dst_int->value();
 859     if (src_int->value() >= dst_int->value()) {
 860       flags &= ~LIR_OpArrayCopy::overlapping;
 861     }
 862     if (expected_type != nullptr) {
 863       BasicType t = expected_type->element_type()->basic_type();
 864       int element_size = type2aelembytes(t);
 865       if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) &&
 866           ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) {
 867         flags &= ~LIR_OpArrayCopy::unaligned;
 868       }
 869     }
 870   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 871     // src and dest positions are the same, or dst is zero so assume
 872     // nonoverlapping copy.
 873     flags &= ~LIR_OpArrayCopy::overlapping;
 874   }
 875 
 876   if (src == dst) {
 877     // moving within a single array so no type checks are needed
 878     if (flags & LIR_OpArrayCopy::type_check) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882   *flagsp = flags;
 883   *expected_typep = (ciArrayKlass*)expected_type;
 884 }
 885 
 886 
 887 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 888   assert(type2size[t] == type2size[value->type()],
 889          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 890   if (!value->is_register()) {
 891     // force into a register
 892     LIR_Opr r = new_register(value->type());
 893     __ move(value, r);
 894     value = r;
 895   }
 896 
 897   // create a spill location
 898   LIR_Opr tmp = new_register(t);
 899   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 900 
 901   // move from register to spill
 902   __ move(value, tmp);
 903   return tmp;
 904 }
 905 
 906 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 907   if (if_instr->should_profile()) {
 908     ciMethod* method = if_instr->profiled_method();
 909     assert(method != nullptr, "method should be set if branch is profiled");
 910     ciMethodData* md = method->method_data_or_null();
 911     assert(md != nullptr, "Sanity");
 912     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 913     assert(data != nullptr, "must have profiling data");
 914     assert(data->is_BranchData(), "need BranchData for two-way branches");
 915     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 916     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 917     if (if_instr->is_swapped()) {
 918       int t = taken_count_offset;
 919       taken_count_offset = not_taken_count_offset;
 920       not_taken_count_offset = t;
 921     }
 922 
 923     LIR_Opr md_reg = new_register(T_METADATA);
 924     __ metadata2reg(md->constant_encoding(), md_reg);
 925 
 926     LIR_Opr data_offset_reg = new_pointer_register();
 927     __ cmove(lir_cond(cond),
 928              LIR_OprFact::intptrConst(taken_count_offset),
 929              LIR_OprFact::intptrConst(not_taken_count_offset),
 930              data_offset_reg, as_BasicType(if_instr->x()->type()));
 931 
 932     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 933     LIR_Opr data_reg = new_pointer_register();
 934     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 935     __ move(data_addr, data_reg);
 936     // Use leal instead of add to avoid destroying condition codes on x86
 937     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 938     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 939     __ move(data_reg, data_addr);
 940   }
 941 }
 942 
 943 // Phi technique:
 944 // This is about passing live values from one basic block to the other.
 945 // In code generated with Java it is rather rare that more than one
 946 // value is on the stack from one basic block to the other.
 947 // We optimize our technique for efficient passing of one value
 948 // (of type long, int, double..) but it can be extended.
 949 // When entering or leaving a basic block, all registers and all spill
 950 // slots are release and empty. We use the released registers
 951 // and spill slots to pass the live values from one block
 952 // to the other. The topmost value, i.e., the value on TOS of expression
 953 // stack is passed in registers. All other values are stored in spilling
 954 // area. Every Phi has an index which designates its spill slot
 955 // At exit of a basic block, we fill the register(s) and spill slots.
 956 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 957 // and locks necessary registers and spilling slots.
 958 
 959 
 960 // move current value to referenced phi function
 961 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 962   Phi* phi = sux_val->as_Phi();
 963   // cur_val can be null without phi being null in conjunction with inlining
 964   if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) {
 965     if (phi->is_local()) {
 966       for (int i = 0; i < phi->operand_count(); i++) {
 967         Value op = phi->operand_at(i);
 968         if (op != nullptr && op->type()->is_illegal()) {
 969           bailout("illegal phi operand");
 970         }
 971       }
 972     }
 973     Phi* cur_phi = cur_val->as_Phi();
 974     if (cur_phi != nullptr && cur_phi->is_illegal()) {
 975       // Phi and local would need to get invalidated
 976       // (which is unexpected for Linear Scan).
 977       // But this case is very rare so we simply bail out.
 978       bailout("propagation of illegal phi");
 979       return;
 980     }
 981     LIR_Opr operand = cur_val->operand();
 982     if (operand->is_illegal()) {
 983       assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr,
 984              "these can be produced lazily");
 985       operand = operand_for_instruction(cur_val);
 986     }
 987     resolver->move(operand, operand_for_instruction(phi));
 988   }
 989 }
 990 
 991 
 992 // Moves all stack values into their PHI position
 993 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 994   BlockBegin* bb = block();
 995   if (bb->number_of_sux() == 1) {
 996     BlockBegin* sux = bb->sux_at(0);
 997     assert(sux->number_of_preds() > 0, "invalid CFG");
 998 
 999     // a block with only one predecessor never has phi functions
1000     if (sux->number_of_preds() > 1) {
1001       PhiResolver resolver(this);
1002 
1003       ValueStack* sux_state = sux->state();
1004       Value sux_value;
1005       int index;
1006 
1007       assert(cur_state->scope() == sux_state->scope(), "not matching");
1008       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1009       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1010 
1011       for_each_stack_value(sux_state, index, sux_value) {
1012         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1013       }
1014 
1015       for_each_local_value(sux_state, index, sux_value) {
1016         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1017       }
1018 
1019       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1020     }
1021   }
1022 }
1023 
1024 
1025 LIR_Opr LIRGenerator::new_register(BasicType type) {
1026   int vreg_num = _virtual_register_number;
1027   // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1028   // a few extra registers before we really run out which helps to avoid to trip over assertions.
1029   if (vreg_num + 20 >= LIR_Opr::vreg_max) {
1030     bailout("out of virtual registers in LIR generator");
1031     if (vreg_num + 2 >= LIR_Opr::vreg_max) {
1032       // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1033       _virtual_register_number = LIR_Opr::vreg_base;
1034       vreg_num = LIR_Opr::vreg_base;
1035     }
1036   }
1037   _virtual_register_number += 1;
1038   LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1039   assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1040   return vreg;
1041 }
1042 
1043 
1044 // Try to lock using register in hint
1045 LIR_Opr LIRGenerator::rlock(Value instr) {
1046   return new_register(instr->type());
1047 }
1048 
1049 
1050 // does an rlock and sets result
1051 LIR_Opr LIRGenerator::rlock_result(Value x) {
1052   LIR_Opr reg = rlock(x);
1053   set_result(x, reg);
1054   return reg;
1055 }
1056 
1057 
1058 // does an rlock and sets result
1059 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1060   LIR_Opr reg;
1061   switch (type) {
1062   case T_BYTE:
1063   case T_BOOLEAN:
1064     reg = rlock_byte(type);
1065     break;
1066   default:
1067     reg = rlock(x);
1068     break;
1069   }
1070 
1071   set_result(x, reg);
1072   return reg;
1073 }
1074 
1075 
1076 //---------------------------------------------------------------------
1077 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1078   ObjectType* oc = value->type()->as_ObjectType();
1079   if (oc) {
1080     return oc->constant_value();
1081   }
1082   return nullptr;
1083 }
1084 
1085 
1086 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1087   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1088   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1089 
1090   // no moves are created for phi functions at the begin of exception
1091   // handlers, so assign operands manually here
1092   for_each_phi_fun(block(), phi,
1093                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1094 
1095   LIR_Opr thread_reg = getThreadPointer();
1096   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1097                exceptionOopOpr());
1098   __ move_wide(LIR_OprFact::oopConst(nullptr),
1099                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1100   __ move_wide(LIR_OprFact::oopConst(nullptr),
1101                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1102 
1103   LIR_Opr result = new_register(T_OBJECT);
1104   __ move(exceptionOopOpr(), result);
1105   set_result(x, result);
1106 }
1107 
1108 
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113 //                        visitor functions
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 //----------------------------------------------------------------------
1117 //----------------------------------------------------------------------
1118 
1119 void LIRGenerator::do_Phi(Phi* x) {
1120   // phi functions are never visited directly
1121   ShouldNotReachHere();
1122 }
1123 
1124 
1125 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1126 void LIRGenerator::do_Constant(Constant* x) {
1127   if (x->state_before() != nullptr) {
1128     // Any constant with a ValueStack requires patching so emit the patch here
1129     LIR_Opr reg = rlock_result(x);
1130     CodeEmitInfo* info = state_for(x, x->state_before());
1131     __ oop2reg_patch(nullptr, reg, info);
1132   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1133     if (!x->is_pinned()) {
1134       // unpinned constants are handled specially so that they can be
1135       // put into registers when they are used multiple times within a
1136       // block.  After the block completes their operand will be
1137       // cleared so that other blocks can't refer to that register.
1138       set_result(x, load_constant(x));
1139     } else {
1140       LIR_Opr res = x->operand();
1141       if (!res->is_valid()) {
1142         res = LIR_OprFact::value_type(x->type());
1143       }
1144       if (res->is_constant()) {
1145         LIR_Opr reg = rlock_result(x);
1146         __ move(res, reg);
1147       } else {
1148         set_result(x, res);
1149       }
1150     }
1151   } else {
1152     set_result(x, LIR_OprFact::value_type(x->type()));
1153   }
1154 }
1155 
1156 
1157 void LIRGenerator::do_Local(Local* x) {
1158   // operand_for_instruction has the side effect of setting the result
1159   // so there's no need to do it here.
1160   operand_for_instruction(x);
1161 }
1162 
1163 
1164 void LIRGenerator::do_Return(Return* x) {
1165   if (compilation()->env()->dtrace_method_probes()) {
1166     BasicTypeList signature;
1167     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1168     signature.append(T_METADATA); // Method*
1169     LIR_OprList* args = new LIR_OprList();
1170     args->append(getThreadPointer());
1171     LIR_Opr meth = new_register(T_METADATA);
1172     __ metadata2reg(method()->constant_encoding(), meth);
1173     args->append(meth);
1174     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr);
1175   }
1176 
1177   if (x->type()->is_void()) {
1178     __ return_op(LIR_OprFact::illegalOpr);
1179   } else {
1180     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1181     LIRItem result(x->result(), this);
1182 
1183     result.load_item_force(reg);
1184     __ return_op(result.result());
1185   }
1186   set_no_result(x);
1187 }
1188 
1189 // Example: ref.get()
1190 // Combination of LoadField and g1 pre-write barrier
1191 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1192 
1193   const int referent_offset = java_lang_ref_Reference::referent_offset();
1194 
1195   assert(x->number_of_arguments() == 1, "wrong type");
1196 
1197   LIRItem reference(x->argument_at(0), this);
1198   reference.load_item();
1199 
1200   // need to perform the null check on the reference object
1201   CodeEmitInfo* info = nullptr;
1202   if (x->needs_null_check()) {
1203     info = state_for(x);
1204   }
1205 
1206   LIR_Opr result = rlock_result(x, T_OBJECT);
1207   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1208                  reference, LIR_OprFact::intConst(referent_offset), result,
1209                  nullptr, info);
1210 }
1211 
1212 // Example: clazz.isInstance(object)
1213 void LIRGenerator::do_isInstance(Intrinsic* x) {
1214   assert(x->number_of_arguments() == 2, "wrong type");
1215 
1216   LIRItem clazz(x->argument_at(0), this);
1217   LIRItem object(x->argument_at(1), this);
1218   clazz.load_item();
1219   object.load_item();
1220   LIR_Opr result = rlock_result(x);
1221 
1222   // need to perform null check on clazz
1223   if (x->needs_null_check()) {
1224     CodeEmitInfo* info = state_for(x);
1225     __ null_check(clazz.result(), info);
1226   }
1227 
1228   address pd_instanceof_fn = isInstance_entry();
1229   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1230                                      pd_instanceof_fn,
1231                                      x->type(),
1232                                      nullptr); // null CodeEmitInfo results in a leaf call
1233   __ move(call_result, result);
1234 }
1235 
1236 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1237   __ load_klass(obj, klass, null_check_info);
1238 }
1239 
1240 // Example: object.getClass ()
1241 void LIRGenerator::do_getClass(Intrinsic* x) {
1242   assert(x->number_of_arguments() == 1, "wrong type");
1243 
1244   LIRItem rcvr(x->argument_at(0), this);
1245   rcvr.load_item();
1246   LIR_Opr temp = new_register(T_ADDRESS);
1247   LIR_Opr result = rlock_result(x);
1248 
1249   // need to perform the null check on the rcvr
1250   CodeEmitInfo* info = nullptr;
1251   if (x->needs_null_check()) {
1252     info = state_for(x);
1253   }
1254 
1255   LIR_Opr klass = new_register(T_METADATA);
1256   load_klass(rcvr.result(), klass, info);
1257   __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1258   // mirror = ((OopHandle)mirror)->resolve();
1259   access_load(IN_NATIVE, T_OBJECT,
1260               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1261 }
1262 
1263 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1264   assert(x->number_of_arguments() == 3, "wrong type");
1265   LIR_Opr result_reg = rlock_result(x);
1266 
1267   LIRItem value(x->argument_at(2), this);
1268   value.load_item();
1269 
1270   LIR_Opr klass = new_register(T_METADATA);
1271   load_klass(value.result(), klass, nullptr);
1272   LIR_Opr layout = new_register(T_INT);
1273   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1274 
1275   LabelObj* L_done = new LabelObj();
1276   LabelObj* L_array = new LabelObj();
1277 
1278   __ cmp(lir_cond_lessEqual, layout, 0);
1279   __ branch(lir_cond_lessEqual, L_array->label());
1280 
1281   // Instance case: the layout helper gives us instance size almost directly,
1282   // but we need to mask out the _lh_instance_slow_path_bit.
1283 
1284   assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1285 
1286   LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT);
1287   __ logical_and(layout, mask, layout);
1288   __ convert(Bytecodes::_i2l, layout, result_reg);
1289 
1290   __ branch(lir_cond_always, L_done->label());
1291 
1292   // Array case: size is round(header + element_size*arraylength).
1293   // Since arraylength is different for every array instance, we have to
1294   // compute the whole thing at runtime.
1295 
1296   __ branch_destination(L_array->label());
1297 
1298   int round_mask = MinObjAlignmentInBytes - 1;
1299 
1300   // Figure out header sizes first.
1301   LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT);
1302   LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT);
1303 
1304   LIR_Opr header_size = new_register(T_INT);
1305   __ move(layout, header_size);
1306   LIR_Opr tmp = new_register(T_INT);
1307   __ unsigned_shift_right(header_size, hss, header_size, tmp);
1308   __ logical_and(header_size, hsm, header_size);
1309   __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1310 
1311   // Figure out the array length in bytes
1312   assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1313   LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT);
1314   __ logical_and(layout, l2esm, layout);
1315 
1316   LIR_Opr length_int = new_register(T_INT);
1317   __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1318 
1319 #ifdef _LP64
1320   LIR_Opr length = new_register(T_LONG);
1321   __ convert(Bytecodes::_i2l, length_int, length);
1322 #endif
1323 
1324   // Shift-left awkwardness. Normally it is just:
1325   //   __ shift_left(length, layout, length);
1326   // But C1 cannot perform shift_left with non-constant count, so we end up
1327   // doing the per-bit loop dance here. x86_32 also does not know how to shift
1328   // longs, so we have to act on ints.
1329   LabelObj* L_shift_loop = new LabelObj();
1330   LabelObj* L_shift_exit = new LabelObj();
1331 
1332   __ branch_destination(L_shift_loop->label());
1333   __ cmp(lir_cond_equal, layout, 0);
1334   __ branch(lir_cond_equal, L_shift_exit->label());
1335 
1336 #ifdef _LP64
1337   __ shift_left(length, 1, length);
1338 #else
1339   __ shift_left(length_int, 1, length_int);
1340 #endif
1341 
1342   __ sub(layout, LIR_OprFact::intConst(1), layout);
1343 
1344   __ branch(lir_cond_always, L_shift_loop->label());
1345   __ branch_destination(L_shift_exit->label());
1346 
1347   // Mix all up, round, and push to the result.
1348 #ifdef _LP64
1349   LIR_Opr header_size_long = new_register(T_LONG);
1350   __ convert(Bytecodes::_i2l, header_size, header_size_long);
1351   __ add(length, header_size_long, length);
1352   if (round_mask != 0) {
1353     LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG);
1354     __ logical_and(length, round_mask_opr, length);
1355   }
1356   __ move(length, result_reg);
1357 #else
1358   __ add(length_int, header_size, length_int);
1359   if (round_mask != 0) {
1360     LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT);
1361     __ logical_and(length_int, round_mask_opr, length_int);
1362   }
1363   __ convert(Bytecodes::_i2l, length_int, result_reg);
1364 #endif
1365 
1366   __ branch_destination(L_done->label());
1367 }
1368 
1369 void LIRGenerator::do_scopedValueCache(Intrinsic* x) {
1370   do_JavaThreadField(x, JavaThread::scopedValueCache_offset());
1371 }
1372 
1373 // Example: Thread.currentCarrierThread()
1374 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) {
1375   do_JavaThreadField(x, JavaThread::threadObj_offset());
1376 }
1377 
1378 void LIRGenerator::do_vthread(Intrinsic* x) {
1379   do_JavaThreadField(x, JavaThread::vthread_offset());
1380 }
1381 
1382 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) {
1383   assert(x->number_of_arguments() == 0, "wrong type");
1384   LIR_Opr temp = new_register(T_ADDRESS);
1385   LIR_Opr reg = rlock_result(x);
1386   __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp);
1387   access_load(IN_NATIVE, T_OBJECT,
1388               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1389 }
1390 
1391 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1392   assert(x->number_of_arguments() == 1, "wrong type");
1393   LIRItem receiver(x->argument_at(0), this);
1394 
1395   receiver.load_item();
1396   BasicTypeList signature;
1397   signature.append(T_OBJECT); // receiver
1398   LIR_OprList* args = new LIR_OprList();
1399   args->append(receiver.result());
1400   CodeEmitInfo* info = state_for(x, x->state());
1401   call_runtime(&signature, args,
1402                CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)),
1403                voidType, info);
1404 
1405   set_no_result(x);
1406 }
1407 
1408 
1409 //------------------------local access--------------------------------------
1410 
1411 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1412   if (x->operand()->is_illegal()) {
1413     Constant* c = x->as_Constant();
1414     if (c != nullptr) {
1415       x->set_operand(LIR_OprFact::value_type(c->type()));
1416     } else {
1417       assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local");
1418       // allocate a virtual register for this local or phi
1419       x->set_operand(rlock(x));
1420 #ifdef ASSERT
1421       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr);
1422 #endif
1423     }
1424   }
1425   return x->operand();
1426 }
1427 
1428 #ifdef ASSERT
1429 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1430   if (reg_num < _instruction_for_operand.length()) {
1431     return _instruction_for_operand.at(reg_num);
1432   }
1433   return nullptr;
1434 }
1435 #endif
1436 
1437 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1438   if (_vreg_flags.size_in_bits() == 0) {
1439     BitMap2D temp(100, num_vreg_flags);
1440     _vreg_flags = temp;
1441   }
1442   _vreg_flags.at_put_grow(vreg_num, f, true);
1443 }
1444 
1445 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1446   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1447     return false;
1448   }
1449   return _vreg_flags.at(vreg_num, f);
1450 }
1451 
1452 
1453 // Block local constant handling.  This code is useful for keeping
1454 // unpinned constants and constants which aren't exposed in the IR in
1455 // registers.  Unpinned Constant instructions have their operands
1456 // cleared when the block is finished so that other blocks can't end
1457 // up referring to their registers.
1458 
1459 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1460   assert(!x->is_pinned(), "only for unpinned constants");
1461   _unpinned_constants.append(x);
1462   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1463 }
1464 
1465 
1466 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1467   BasicType t = c->type();
1468   for (int i = 0; i < _constants.length(); i++) {
1469     LIR_Const* other = _constants.at(i);
1470     if (t == other->type()) {
1471       switch (t) {
1472       case T_INT:
1473       case T_FLOAT:
1474         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1475         break;
1476       case T_LONG:
1477       case T_DOUBLE:
1478         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1479         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1480         break;
1481       case T_OBJECT:
1482         if (c->as_jobject() != other->as_jobject()) continue;
1483         break;
1484       default:
1485         break;
1486       }
1487       return _reg_for_constants.at(i);
1488     }
1489   }
1490 
1491   LIR_Opr result = new_register(t);
1492   __ move((LIR_Opr)c, result);
1493   _constants.append(c);
1494   _reg_for_constants.append(result);
1495   return result;
1496 }
1497 
1498 //------------------------field access--------------------------------------
1499 
1500 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1501   assert(x->number_of_arguments() == 4, "wrong type");
1502   LIRItem obj   (x->argument_at(0), this);  // object
1503   LIRItem offset(x->argument_at(1), this);  // offset of field
1504   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1505   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1506   assert(obj.type()->tag() == objectTag, "invalid type");
1507   assert(cmp.type()->tag() == type->tag(), "invalid type");
1508   assert(val.type()->tag() == type->tag(), "invalid type");
1509 
1510   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1511                                             obj, offset, cmp, val);
1512   set_result(x, result);
1513 }
1514 
1515 // Comment copied form templateTable_i486.cpp
1516 // ----------------------------------------------------------------------------
1517 // Volatile variables demand their effects be made known to all CPU's in
1518 // order.  Store buffers on most chips allow reads & writes to reorder; the
1519 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1520 // memory barrier (i.e., it's not sufficient that the interpreter does not
1521 // reorder volatile references, the hardware also must not reorder them).
1522 //
1523 // According to the new Java Memory Model (JMM):
1524 // (1) All volatiles are serialized wrt to each other.
1525 // ALSO reads & writes act as acquire & release, so:
1526 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1527 // the read float up to before the read.  It's OK for non-volatile memory refs
1528 // that happen before the volatile read to float down below it.
1529 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1530 // that happen BEFORE the write float down to after the write.  It's OK for
1531 // non-volatile memory refs that happen after the volatile write to float up
1532 // before it.
1533 //
1534 // We only put in barriers around volatile refs (they are expensive), not
1535 // _between_ memory refs (that would require us to track the flavor of the
1536 // previous memory refs).  Requirements (2) and (3) require some barriers
1537 // before volatile stores and after volatile loads.  These nearly cover
1538 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1539 // case is placed after volatile-stores although it could just as well go
1540 // before volatile-loads.
1541 
1542 
1543 void LIRGenerator::do_StoreField(StoreField* x) {
1544   bool needs_patching = x->needs_patching();
1545   bool is_volatile = x->field()->is_volatile();
1546   BasicType field_type = x->field_type();
1547 
1548   CodeEmitInfo* info = nullptr;
1549   if (needs_patching) {
1550     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1551     info = state_for(x, x->state_before());
1552   } else if (x->needs_null_check()) {
1553     NullCheck* nc = x->explicit_null_check();
1554     if (nc == nullptr) {
1555       info = state_for(x);
1556     } else {
1557       info = state_for(nc);
1558     }
1559   }
1560 
1561   LIRItem object(x->obj(), this);
1562   LIRItem value(x->value(),  this);
1563 
1564   object.load_item();
1565 
1566   if (is_volatile || needs_patching) {
1567     // load item if field is volatile (fewer special cases for volatiles)
1568     // load item if field not initialized
1569     // load item if field not constant
1570     // because of code patching we cannot inline constants
1571     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1572       value.load_byte_item();
1573     } else  {
1574       value.load_item();
1575     }
1576   } else {
1577     value.load_for_store(field_type);
1578   }
1579 
1580   set_no_result(x);
1581 
1582 #ifndef PRODUCT
1583   if (PrintNotLoaded && needs_patching) {
1584     tty->print_cr("   ###class not loaded at store_%s bci %d",
1585                   x->is_static() ?  "static" : "field", x->printable_bci());
1586   }
1587 #endif
1588 
1589   if (x->needs_null_check() &&
1590       (needs_patching ||
1591        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1592     // Emit an explicit null check because the offset is too large.
1593     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1594     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1595     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1596   }
1597 
1598   DecoratorSet decorators = IN_HEAP;
1599   if (is_volatile) {
1600     decorators |= MO_SEQ_CST;
1601   }
1602   if (needs_patching) {
1603     decorators |= C1_NEEDS_PATCHING;
1604   }
1605 
1606   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1607                   value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info);
1608 }
1609 
1610 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1611   assert(x->is_pinned(),"");
1612   bool needs_range_check = x->compute_needs_range_check();
1613   bool use_length = x->length() != nullptr;
1614   bool obj_store = is_reference_type(x->elt_type());
1615   bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr ||
1616                                          !get_jobject_constant(x->value())->is_null_object() ||
1617                                          x->should_profile());
1618 
1619   LIRItem array(x->array(), this);
1620   LIRItem index(x->index(), this);
1621   LIRItem value(x->value(), this);
1622   LIRItem length(this);
1623 
1624   array.load_item();
1625   index.load_nonconstant();
1626 
1627   if (use_length && needs_range_check) {
1628     length.set_instruction(x->length());
1629     length.load_item();
1630 
1631   }
1632   if (needs_store_check || x->check_boolean()) {
1633     value.load_item();
1634   } else {
1635     value.load_for_store(x->elt_type());
1636   }
1637 
1638   set_no_result(x);
1639 
1640   // the CodeEmitInfo must be duplicated for each different
1641   // LIR-instruction because spilling can occur anywhere between two
1642   // instructions and so the debug information must be different
1643   CodeEmitInfo* range_check_info = state_for(x);
1644   CodeEmitInfo* null_check_info = nullptr;
1645   if (x->needs_null_check()) {
1646     null_check_info = new CodeEmitInfo(range_check_info);
1647   }
1648 
1649   if (needs_range_check) {
1650     if (use_length) {
1651       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1652       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1653     } else {
1654       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1655       // range_check also does the null check
1656       null_check_info = nullptr;
1657     }
1658   }
1659 
1660   if (GenerateArrayStoreCheck && needs_store_check) {
1661     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1662     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1663   }
1664 
1665   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1666   if (x->check_boolean()) {
1667     decorators |= C1_MASK_BOOLEAN;
1668   }
1669 
1670   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1671                   nullptr, null_check_info);
1672 }
1673 
1674 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1675                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1676                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1677   decorators |= ACCESS_READ;
1678   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1679   if (access.is_raw()) {
1680     _barrier_set->BarrierSetC1::load_at(access, result);
1681   } else {
1682     _barrier_set->load_at(access, result);
1683   }
1684 }
1685 
1686 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1687                                LIR_Opr addr, LIR_Opr result) {
1688   decorators |= ACCESS_READ;
1689   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1690   access.set_resolved_addr(addr);
1691   if (access.is_raw()) {
1692     _barrier_set->BarrierSetC1::load(access, result);
1693   } else {
1694     _barrier_set->load(access, result);
1695   }
1696 }
1697 
1698 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1699                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1700                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1701   decorators |= ACCESS_WRITE;
1702   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1703   if (access.is_raw()) {
1704     _barrier_set->BarrierSetC1::store_at(access, value);
1705   } else {
1706     _barrier_set->store_at(access, value);
1707   }
1708 }
1709 
1710 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1711                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1712   decorators |= ACCESS_READ;
1713   decorators |= ACCESS_WRITE;
1714   // Atomic operations are SEQ_CST by default
1715   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1716   LIRAccess access(this, decorators, base, offset, type);
1717   if (access.is_raw()) {
1718     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1719   } else {
1720     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1721   }
1722 }
1723 
1724 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1725                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1726   decorators |= ACCESS_READ;
1727   decorators |= ACCESS_WRITE;
1728   // Atomic operations are SEQ_CST by default
1729   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1730   LIRAccess access(this, decorators, base, offset, type);
1731   if (access.is_raw()) {
1732     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1733   } else {
1734     return _barrier_set->atomic_xchg_at(access, value);
1735   }
1736 }
1737 
1738 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1739                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1740   decorators |= ACCESS_READ;
1741   decorators |= ACCESS_WRITE;
1742   // Atomic operations are SEQ_CST by default
1743   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1744   LIRAccess access(this, decorators, base, offset, type);
1745   if (access.is_raw()) {
1746     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1747   } else {
1748     return _barrier_set->atomic_add_at(access, value);
1749   }
1750 }
1751 
1752 void LIRGenerator::do_LoadField(LoadField* x) {
1753   bool needs_patching = x->needs_patching();
1754   bool is_volatile = x->field()->is_volatile();
1755   BasicType field_type = x->field_type();
1756 
1757   CodeEmitInfo* info = nullptr;
1758   if (needs_patching) {
1759     assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access");
1760     info = state_for(x, x->state_before());
1761   } else if (x->needs_null_check()) {
1762     NullCheck* nc = x->explicit_null_check();
1763     if (nc == nullptr) {
1764       info = state_for(x);
1765     } else {
1766       info = state_for(nc);
1767     }
1768   }
1769 
1770   LIRItem object(x->obj(), this);
1771 
1772   object.load_item();
1773 
1774 #ifndef PRODUCT
1775   if (PrintNotLoaded && needs_patching) {
1776     tty->print_cr("   ###class not loaded at load_%s bci %d",
1777                   x->is_static() ?  "static" : "field", x->printable_bci());
1778   }
1779 #endif
1780 
1781   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1782   if (x->needs_null_check() &&
1783       (needs_patching ||
1784        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1785        stress_deopt)) {
1786     LIR_Opr obj = object.result();
1787     if (stress_deopt) {
1788       obj = new_register(T_OBJECT);
1789       __ move(LIR_OprFact::oopConst(nullptr), obj);
1790     }
1791     // Emit an explicit null check because the offset is too large.
1792     // If the class is not loaded and the object is null, we need to deoptimize to throw a
1793     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1794     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1795   }
1796 
1797   DecoratorSet decorators = IN_HEAP;
1798   if (is_volatile) {
1799     decorators |= MO_SEQ_CST;
1800   }
1801   if (needs_patching) {
1802     decorators |= C1_NEEDS_PATCHING;
1803   }
1804 
1805   LIR_Opr result = rlock_result(x, field_type);
1806   access_load_at(decorators, field_type,
1807                  object, LIR_OprFact::intConst(x->offset()), result,
1808                  info ? new CodeEmitInfo(info) : nullptr, info);
1809 }
1810 
1811 // int/long jdk.internal.util.Preconditions.checkIndex
1812 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) {
1813   assert(x->number_of_arguments() == 3, "wrong type");
1814   LIRItem index(x->argument_at(0), this);
1815   LIRItem length(x->argument_at(1), this);
1816   LIRItem oobef(x->argument_at(2), this);
1817 
1818   index.load_item();
1819   length.load_item();
1820   oobef.load_item();
1821 
1822   LIR_Opr result = rlock_result(x);
1823   // x->state() is created from copy_state_for_exception, it does not contains arguments
1824   // we should prepare them before entering into interpreter mode due to deoptimization.
1825   ValueStack* state = x->state();
1826   for (int i = 0; i < x->number_of_arguments(); i++) {
1827     Value arg = x->argument_at(i);
1828     state->push(arg->type(), arg);
1829   }
1830   CodeEmitInfo* info = state_for(x, state);
1831 
1832   LIR_Opr len = length.result();
1833   LIR_Opr zero;
1834   if (type == T_INT) {
1835     zero = LIR_OprFact::intConst(0);
1836     if (length.result()->is_constant()){
1837       len = LIR_OprFact::intConst(length.result()->as_jint());
1838     }
1839   } else {
1840     assert(type == T_LONG, "sanity check");
1841     zero = LIR_OprFact::longConst(0);
1842     if (length.result()->is_constant()){
1843       len = LIR_OprFact::longConst(length.result()->as_jlong());
1844     }
1845   }
1846   // C1 can not handle the case that comparing index with constant value while condition
1847   // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op.
1848   LIR_Opr zero_reg = new_register(type);
1849   __ move(zero, zero_reg);
1850 #if defined(X86) && !defined(_LP64)
1851   // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
1852   LIR_Opr index_copy = new_register(index.type());
1853   // index >= 0
1854   __ move(index.result(), index_copy);
1855   __ cmp(lir_cond_less, index_copy, zero_reg);
1856   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1857                                                     Deoptimization::Action_make_not_entrant));
1858   // index < length
1859   __ move(index.result(), index_copy);
1860   __ cmp(lir_cond_greaterEqual, index_copy, len);
1861   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1862                                                             Deoptimization::Action_make_not_entrant));
1863 #else
1864   // index >= 0
1865   __ cmp(lir_cond_less, index.result(), zero_reg);
1866   __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1867                                                     Deoptimization::Action_make_not_entrant));
1868   // index < length
1869   __ cmp(lir_cond_greaterEqual, index.result(), len);
1870   __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check,
1871                                                             Deoptimization::Action_make_not_entrant));
1872 #endif
1873   __ move(index.result(), result);
1874 }
1875 
1876 //------------------------array access--------------------------------------
1877 
1878 
1879 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1880   LIRItem array(x->array(), this);
1881   array.load_item();
1882   LIR_Opr reg = rlock_result(x);
1883 
1884   CodeEmitInfo* info = nullptr;
1885   if (x->needs_null_check()) {
1886     NullCheck* nc = x->explicit_null_check();
1887     if (nc == nullptr) {
1888       info = state_for(x);
1889     } else {
1890       info = state_for(nc);
1891     }
1892     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1893       LIR_Opr obj = new_register(T_OBJECT);
1894       __ move(LIR_OprFact::oopConst(nullptr), obj);
1895       __ null_check(obj, new CodeEmitInfo(info));
1896     }
1897   }
1898   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1899 }
1900 
1901 
1902 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1903   bool use_length = x->length() != nullptr;
1904   LIRItem array(x->array(), this);
1905   LIRItem index(x->index(), this);
1906   LIRItem length(this);
1907   bool needs_range_check = x->compute_needs_range_check();
1908 
1909   if (use_length && needs_range_check) {
1910     length.set_instruction(x->length());
1911     length.load_item();
1912   }
1913 
1914   array.load_item();
1915   if (index.is_constant() && can_inline_as_constant(x->index())) {
1916     // let it be a constant
1917     index.dont_load_item();
1918   } else {
1919     index.load_item();
1920   }
1921 
1922   CodeEmitInfo* range_check_info = state_for(x);
1923   CodeEmitInfo* null_check_info = nullptr;
1924   if (x->needs_null_check()) {
1925     NullCheck* nc = x->explicit_null_check();
1926     if (nc != nullptr) {
1927       null_check_info = state_for(nc);
1928     } else {
1929       null_check_info = range_check_info;
1930     }
1931     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1932       LIR_Opr obj = new_register(T_OBJECT);
1933       __ move(LIR_OprFact::oopConst(nullptr), obj);
1934       __ null_check(obj, new CodeEmitInfo(null_check_info));
1935     }
1936   }
1937 
1938   if (needs_range_check) {
1939     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1940       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1941     } else if (use_length) {
1942       // TODO: use a (modified) version of array_range_check that does not require a
1943       //       constant length to be loaded to a register
1944       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1945       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1946     } else {
1947       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1948       // The range check performs the null check, so clear it out for the load
1949       null_check_info = nullptr;
1950     }
1951   }
1952 
1953   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1954 
1955   LIR_Opr result = rlock_result(x, x->elt_type());
1956   access_load_at(decorators, x->elt_type(),
1957                  array, index.result(), result,
1958                  nullptr, null_check_info);
1959 }
1960 
1961 
1962 void LIRGenerator::do_NullCheck(NullCheck* x) {
1963   if (x->can_trap()) {
1964     LIRItem value(x->obj(), this);
1965     value.load_item();
1966     CodeEmitInfo* info = state_for(x);
1967     __ null_check(value.result(), info);
1968   }
1969 }
1970 
1971 
1972 void LIRGenerator::do_TypeCast(TypeCast* x) {
1973   LIRItem value(x->obj(), this);
1974   value.load_item();
1975   // the result is the same as from the node we are casting
1976   set_result(x, value.result());
1977 }
1978 
1979 
1980 void LIRGenerator::do_Throw(Throw* x) {
1981   LIRItem exception(x->exception(), this);
1982   exception.load_item();
1983   set_no_result(x);
1984   LIR_Opr exception_opr = exception.result();
1985   CodeEmitInfo* info = state_for(x, x->state());
1986 
1987 #ifndef PRODUCT
1988   if (PrintC1Statistics) {
1989     increment_counter(Runtime1::throw_count_address(), T_INT);
1990   }
1991 #endif
1992 
1993   // check if the instruction has an xhandler in any of the nested scopes
1994   bool unwind = false;
1995   if (info->exception_handlers()->length() == 0) {
1996     // this throw is not inside an xhandler
1997     unwind = true;
1998   } else {
1999     // get some idea of the throw type
2000     bool type_is_exact = true;
2001     ciType* throw_type = x->exception()->exact_type();
2002     if (throw_type == nullptr) {
2003       type_is_exact = false;
2004       throw_type = x->exception()->declared_type();
2005     }
2006     if (throw_type != nullptr && throw_type->is_instance_klass()) {
2007       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2008       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2009     }
2010   }
2011 
2012   // do null check before moving exception oop into fixed register
2013   // to avoid a fixed interval with an oop during the null check.
2014   // Use a copy of the CodeEmitInfo because debug information is
2015   // different for null_check and throw.
2016   if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) {
2017     // if the exception object wasn't created using new then it might be null.
2018     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2019   }
2020 
2021   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2022     // we need to go through the exception lookup path to get JVMTI
2023     // notification done
2024     unwind = false;
2025   }
2026 
2027   // move exception oop into fixed register
2028   __ move(exception_opr, exceptionOopOpr());
2029 
2030   if (unwind) {
2031     __ unwind_exception(exceptionOopOpr());
2032   } else {
2033     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2034   }
2035 }
2036 
2037 
2038 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) {
2039   BasicType type = x->basic_type();
2040   LIRItem src(x->object(), this);
2041   LIRItem off(x->offset(), this);
2042 
2043   off.load_item();
2044   src.load_item();
2045 
2046   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2047 
2048   if (x->is_volatile()) {
2049     decorators |= MO_SEQ_CST;
2050   }
2051   if (type == T_BOOLEAN) {
2052     decorators |= C1_MASK_BOOLEAN;
2053   }
2054   if (is_reference_type(type)) {
2055     decorators |= ON_UNKNOWN_OOP_REF;
2056   }
2057 
2058   LIR_Opr result = rlock_result(x, type);
2059   if (!x->is_raw()) {
2060     access_load_at(decorators, type, src, off.result(), result);
2061   } else {
2062     // Currently it is only used in GraphBuilder::setup_osr_entry_block.
2063     // It reads the value from [src + offset] directly.
2064 #ifdef _LP64
2065     LIR_Opr offset = new_register(T_LONG);
2066     __ convert(Bytecodes::_i2l, off.result(), offset);
2067 #else
2068     LIR_Opr offset = off.result();
2069 #endif
2070     LIR_Address* addr = new LIR_Address(src.result(), offset, type);
2071     if (is_reference_type(type)) {
2072       __ move_wide(addr, result);
2073     } else {
2074       __ move(addr, result);
2075     }
2076   }
2077 }
2078 
2079 
2080 void LIRGenerator::do_UnsafePut(UnsafePut* x) {
2081   BasicType type = x->basic_type();
2082   LIRItem src(x->object(), this);
2083   LIRItem off(x->offset(), this);
2084   LIRItem data(x->value(), this);
2085 
2086   src.load_item();
2087   if (type == T_BOOLEAN || type == T_BYTE) {
2088     data.load_byte_item();
2089   } else {
2090     data.load_item();
2091   }
2092   off.load_item();
2093 
2094   set_no_result(x);
2095 
2096   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2097   if (is_reference_type(type)) {
2098     decorators |= ON_UNKNOWN_OOP_REF;
2099   }
2100   if (x->is_volatile()) {
2101     decorators |= MO_SEQ_CST;
2102   }
2103   access_store_at(decorators, type, src, off.result(), data.result());
2104 }
2105 
2106 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) {
2107   BasicType type = x->basic_type();
2108   LIRItem src(x->object(), this);
2109   LIRItem off(x->offset(), this);
2110   LIRItem value(x->value(), this);
2111 
2112   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2113 
2114   if (is_reference_type(type)) {
2115     decorators |= ON_UNKNOWN_OOP_REF;
2116   }
2117 
2118   LIR_Opr result;
2119   if (x->is_add()) {
2120     result = access_atomic_add_at(decorators, type, src, off, value);
2121   } else {
2122     result = access_atomic_xchg_at(decorators, type, src, off, value);
2123   }
2124   set_result(x, result);
2125 }
2126 
2127 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2128   int lng = x->length();
2129 
2130   for (int i = 0; i < lng; i++) {
2131     C1SwitchRange* one_range = x->at(i);
2132     int low_key = one_range->low_key();
2133     int high_key = one_range->high_key();
2134     BlockBegin* dest = one_range->sux();
2135     if (low_key == high_key) {
2136       __ cmp(lir_cond_equal, value, low_key);
2137       __ branch(lir_cond_equal, dest);
2138     } else if (high_key - low_key == 1) {
2139       __ cmp(lir_cond_equal, value, low_key);
2140       __ branch(lir_cond_equal, dest);
2141       __ cmp(lir_cond_equal, value, high_key);
2142       __ branch(lir_cond_equal, dest);
2143     } else {
2144       LabelObj* L = new LabelObj();
2145       __ cmp(lir_cond_less, value, low_key);
2146       __ branch(lir_cond_less, L->label());
2147       __ cmp(lir_cond_lessEqual, value, high_key);
2148       __ branch(lir_cond_lessEqual, dest);
2149       __ branch_destination(L->label());
2150     }
2151   }
2152   __ jump(default_sux);
2153 }
2154 
2155 
2156 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2157   SwitchRangeList* res = new SwitchRangeList();
2158   int len = x->length();
2159   if (len > 0) {
2160     BlockBegin* sux = x->sux_at(0);
2161     int low = x->lo_key();
2162     BlockBegin* default_sux = x->default_sux();
2163     C1SwitchRange* range = new C1SwitchRange(low, sux);
2164     for (int i = 0; i < len; i++) {
2165       int key = low + i;
2166       BlockBegin* new_sux = x->sux_at(i);
2167       if (sux == new_sux) {
2168         // still in same range
2169         range->set_high_key(key);
2170       } else {
2171         // skip tests which explicitly dispatch to the default
2172         if (sux != default_sux) {
2173           res->append(range);
2174         }
2175         range = new C1SwitchRange(key, new_sux);
2176       }
2177       sux = new_sux;
2178     }
2179     if (res->length() == 0 || res->last() != range)  res->append(range);
2180   }
2181   return res;
2182 }
2183 
2184 
2185 // we expect the keys to be sorted by increasing value
2186 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2187   SwitchRangeList* res = new SwitchRangeList();
2188   int len = x->length();
2189   if (len > 0) {
2190     BlockBegin* default_sux = x->default_sux();
2191     int key = x->key_at(0);
2192     BlockBegin* sux = x->sux_at(0);
2193     C1SwitchRange* range = new C1SwitchRange(key, sux);
2194     for (int i = 1; i < len; i++) {
2195       int new_key = x->key_at(i);
2196       BlockBegin* new_sux = x->sux_at(i);
2197       if (key+1 == new_key && sux == new_sux) {
2198         // still in same range
2199         range->set_high_key(new_key);
2200       } else {
2201         // skip tests which explicitly dispatch to the default
2202         if (range->sux() != default_sux) {
2203           res->append(range);
2204         }
2205         range = new C1SwitchRange(new_key, new_sux);
2206       }
2207       key = new_key;
2208       sux = new_sux;
2209     }
2210     if (res->length() == 0 || res->last() != range)  res->append(range);
2211   }
2212   return res;
2213 }
2214 
2215 
2216 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2217   LIRItem tag(x->tag(), this);
2218   tag.load_item();
2219   set_no_result(x);
2220 
2221   if (x->is_safepoint()) {
2222     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2223   }
2224 
2225   // move values into phi locations
2226   move_to_phi(x->state());
2227 
2228   int lo_key = x->lo_key();
2229   int len = x->length();
2230   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2231   LIR_Opr value = tag.result();
2232 
2233   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2234     ciMethod* method = x->state()->scope()->method();
2235     ciMethodData* md = method->method_data_or_null();
2236     assert(md != nullptr, "Sanity");
2237     ciProfileData* data = md->bci_to_data(x->state()->bci());
2238     assert(data != nullptr, "must have profiling data");
2239     assert(data->is_MultiBranchData(), "bad profile data?");
2240     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2241     LIR_Opr md_reg = new_register(T_METADATA);
2242     __ metadata2reg(md->constant_encoding(), md_reg);
2243     LIR_Opr data_offset_reg = new_pointer_register();
2244     LIR_Opr tmp_reg = new_pointer_register();
2245 
2246     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2247     for (int i = 0; i < len; i++) {
2248       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2249       __ cmp(lir_cond_equal, value, i + lo_key);
2250       __ move(data_offset_reg, tmp_reg);
2251       __ cmove(lir_cond_equal,
2252                LIR_OprFact::intptrConst(count_offset),
2253                tmp_reg,
2254                data_offset_reg, T_INT);
2255     }
2256 
2257     LIR_Opr data_reg = new_pointer_register();
2258     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2259     __ move(data_addr, data_reg);
2260     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2261     __ move(data_reg, data_addr);
2262   }
2263 
2264   if (UseTableRanges) {
2265     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2266   } else {
2267     for (int i = 0; i < len; i++) {
2268       __ cmp(lir_cond_equal, value, i + lo_key);
2269       __ branch(lir_cond_equal, x->sux_at(i));
2270     }
2271     __ jump(x->default_sux());
2272   }
2273 }
2274 
2275 
2276 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2277   LIRItem tag(x->tag(), this);
2278   tag.load_item();
2279   set_no_result(x);
2280 
2281   if (x->is_safepoint()) {
2282     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2283   }
2284 
2285   // move values into phi locations
2286   move_to_phi(x->state());
2287 
2288   LIR_Opr value = tag.result();
2289   int len = x->length();
2290 
2291   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2292     ciMethod* method = x->state()->scope()->method();
2293     ciMethodData* md = method->method_data_or_null();
2294     assert(md != nullptr, "Sanity");
2295     ciProfileData* data = md->bci_to_data(x->state()->bci());
2296     assert(data != nullptr, "must have profiling data");
2297     assert(data->is_MultiBranchData(), "bad profile data?");
2298     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2299     LIR_Opr md_reg = new_register(T_METADATA);
2300     __ metadata2reg(md->constant_encoding(), md_reg);
2301     LIR_Opr data_offset_reg = new_pointer_register();
2302     LIR_Opr tmp_reg = new_pointer_register();
2303 
2304     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2305     for (int i = 0; i < len; i++) {
2306       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2307       __ cmp(lir_cond_equal, value, x->key_at(i));
2308       __ move(data_offset_reg, tmp_reg);
2309       __ cmove(lir_cond_equal,
2310                LIR_OprFact::intptrConst(count_offset),
2311                tmp_reg,
2312                data_offset_reg, T_INT);
2313     }
2314 
2315     LIR_Opr data_reg = new_pointer_register();
2316     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2317     __ move(data_addr, data_reg);
2318     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2319     __ move(data_reg, data_addr);
2320   }
2321 
2322   if (UseTableRanges) {
2323     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2324   } else {
2325     int len = x->length();
2326     for (int i = 0; i < len; i++) {
2327       __ cmp(lir_cond_equal, value, x->key_at(i));
2328       __ branch(lir_cond_equal, x->sux_at(i));
2329     }
2330     __ jump(x->default_sux());
2331   }
2332 }
2333 
2334 
2335 void LIRGenerator::do_Goto(Goto* x) {
2336   set_no_result(x);
2337 
2338   if (block()->next()->as_OsrEntry()) {
2339     // need to free up storage used for OSR entry point
2340     LIR_Opr osrBuffer = block()->next()->operand();
2341     BasicTypeList signature;
2342     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2343     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2344     __ move(osrBuffer, cc->args()->at(0));
2345     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2346                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2347   }
2348 
2349   if (x->is_safepoint()) {
2350     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2351 
2352     // increment backedge counter if needed
2353     CodeEmitInfo* info = state_for(x, state);
2354     increment_backedge_counter(info, x->profiled_bci());
2355     CodeEmitInfo* safepoint_info = state_for(x, state);
2356     __ safepoint(safepoint_poll_register(), safepoint_info);
2357   }
2358 
2359   // Gotos can be folded Ifs, handle this case.
2360   if (x->should_profile()) {
2361     ciMethod* method = x->profiled_method();
2362     assert(method != nullptr, "method should be set if branch is profiled");
2363     ciMethodData* md = method->method_data_or_null();
2364     assert(md != nullptr, "Sanity");
2365     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2366     assert(data != nullptr, "must have profiling data");
2367     int offset;
2368     if (x->direction() == Goto::taken) {
2369       assert(data->is_BranchData(), "need BranchData for two-way branches");
2370       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2371     } else if (x->direction() == Goto::not_taken) {
2372       assert(data->is_BranchData(), "need BranchData for two-way branches");
2373       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2374     } else {
2375       assert(data->is_JumpData(), "need JumpData for branches");
2376       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2377     }
2378     LIR_Opr md_reg = new_register(T_METADATA);
2379     __ metadata2reg(md->constant_encoding(), md_reg);
2380 
2381     increment_counter(new LIR_Address(md_reg, offset,
2382                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2383   }
2384 
2385   // emit phi-instruction move after safepoint since this simplifies
2386   // describing the state as the safepoint.
2387   move_to_phi(x->state());
2388 
2389   __ jump(x->default_sux());
2390 }
2391 
2392 /**
2393  * Emit profiling code if needed for arguments, parameters, return value types
2394  *
2395  * @param md                    MDO the code will update at runtime
2396  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2397  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2398  * @param profiled_k            current profile
2399  * @param obj                   IR node for the object to be profiled
2400  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2401  *                              Set once we find an update to make and use for next ones.
2402  * @param not_null              true if we know obj cannot be null
2403  * @param signature_at_call_k   signature at call for obj
2404  * @param callee_signature_k    signature of callee for obj
2405  *                              at call and callee signatures differ at method handle call
2406  * @return                      the only klass we know will ever be seen at this profile point
2407  */
2408 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2409                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2410                                     ciKlass* callee_signature_k) {
2411   ciKlass* result = nullptr;
2412   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2413   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2414   // known not to be null or null bit already set and already set to
2415   // unknown: nothing we can do to improve profiling
2416   if (!do_null && !do_update) {
2417     return result;
2418   }
2419 
2420   ciKlass* exact_klass = nullptr;
2421   Compilation* comp = Compilation::current();
2422   if (do_update) {
2423     // try to find exact type, using CHA if possible, so that loading
2424     // the klass from the object can be avoided
2425     ciType* type = obj->exact_type();
2426     if (type == nullptr) {
2427       type = obj->declared_type();
2428       type = comp->cha_exact_type(type);
2429     }
2430     assert(type == nullptr || type->is_klass(), "type should be class");
2431     exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr;
2432 
2433     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2434   }
2435 
2436   if (!do_null && !do_update) {
2437     return result;
2438   }
2439 
2440   ciKlass* exact_signature_k = nullptr;
2441   if (do_update) {
2442     // Is the type from the signature exact (the only one possible)?
2443     exact_signature_k = signature_at_call_k->exact_klass();
2444     if (exact_signature_k == nullptr) {
2445       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2446     } else {
2447       result = exact_signature_k;
2448       // Known statically. No need to emit any code: prevent
2449       // LIR_Assembler::emit_profile_type() from emitting useless code
2450       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2451     }
2452     // exact_klass and exact_signature_k can be both non null but
2453     // different if exact_klass is loaded after the ciObject for
2454     // exact_signature_k is created.
2455     if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) {
2456       // sometimes the type of the signature is better than the best type
2457       // the compiler has
2458       exact_klass = exact_signature_k;
2459     }
2460     if (callee_signature_k != nullptr &&
2461         callee_signature_k != signature_at_call_k) {
2462       ciKlass* improved_klass = callee_signature_k->exact_klass();
2463       if (improved_klass == nullptr) {
2464         improved_klass = comp->cha_exact_type(callee_signature_k);
2465       }
2466       if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) {
2467         exact_klass = exact_signature_k;
2468       }
2469     }
2470     do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2471   }
2472 
2473   if (!do_null && !do_update) {
2474     return result;
2475   }
2476 
2477   if (mdp == LIR_OprFact::illegalOpr) {
2478     mdp = new_register(T_METADATA);
2479     __ metadata2reg(md->constant_encoding(), mdp);
2480     if (md_base_offset != 0) {
2481       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2482       mdp = new_pointer_register();
2483       __ leal(LIR_OprFact::address(base_type_address), mdp);
2484     }
2485   }
2486   LIRItem value(obj, this);
2487   value.load_item();
2488   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2489                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr);
2490   return result;
2491 }
2492 
2493 // profile parameters on entry to the root of the compilation
2494 void LIRGenerator::profile_parameters(Base* x) {
2495   if (compilation()->profile_parameters()) {
2496     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2497     ciMethodData* md = scope()->method()->method_data_or_null();
2498     assert(md != nullptr, "Sanity");
2499 
2500     if (md->parameters_type_data() != nullptr) {
2501       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2502       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2503       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2504       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2505         LIR_Opr src = args->at(i);
2506         assert(!src->is_illegal(), "check");
2507         BasicType t = src->type();
2508         if (is_reference_type(t)) {
2509           intptr_t profiled_k = parameters->type(j);
2510           Local* local = x->state()->local_at(java_index)->as_Local();
2511           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2512                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2513                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr);
2514           // If the profile is known statically set it once for all and do not emit any code
2515           if (exact != nullptr) {
2516             md->set_parameter_type(j, exact);
2517           }
2518           j++;
2519         }
2520         java_index += type2size[t];
2521       }
2522     }
2523   }
2524 }
2525 
2526 void LIRGenerator::do_Base(Base* x) {
2527   __ std_entry(LIR_OprFact::illegalOpr);
2528   // Emit moves from physical registers / stack slots to virtual registers
2529   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2530   IRScope* irScope = compilation()->hir()->top_scope();
2531   int java_index = 0;
2532   for (int i = 0; i < args->length(); i++) {
2533     LIR_Opr src = args->at(i);
2534     assert(!src->is_illegal(), "check");
2535     BasicType t = src->type();
2536 
2537     // Types which are smaller than int are passed as int, so
2538     // correct the type which passed.
2539     switch (t) {
2540     case T_BYTE:
2541     case T_BOOLEAN:
2542     case T_SHORT:
2543     case T_CHAR:
2544       t = T_INT;
2545       break;
2546     default:
2547       break;
2548     }
2549 
2550     LIR_Opr dest = new_register(t);
2551     __ move(src, dest);
2552 
2553     // Assign new location to Local instruction for this local
2554     Local* local = x->state()->local_at(java_index)->as_Local();
2555     assert(local != nullptr, "Locals for incoming arguments must have been created");
2556 #ifndef __SOFTFP__
2557     // The java calling convention passes double as long and float as int.
2558     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2559 #endif // __SOFTFP__
2560     local->set_operand(dest);
2561 #ifdef ASSERT
2562     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr);
2563 #endif
2564     java_index += type2size[t];
2565   }
2566 
2567   if (compilation()->env()->dtrace_method_probes()) {
2568     BasicTypeList signature;
2569     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2570     signature.append(T_METADATA); // Method*
2571     LIR_OprList* args = new LIR_OprList();
2572     args->append(getThreadPointer());
2573     LIR_Opr meth = new_register(T_METADATA);
2574     __ metadata2reg(method()->constant_encoding(), meth);
2575     args->append(meth);
2576     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr);
2577   }
2578 
2579   MethodDetails method_details(method());
2580   RuntimeUpcallInfo* upcall = RuntimeUpcalls::get_first_upcall(RuntimeUpcallType::onMethodEntry, method_details);
2581   while (upcall != nullptr) {
2582     BasicTypeList signature;
2583     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2584     LIR_OprList* args = new LIR_OprList();
2585     args->append(getThreadPointer());
2586     call_runtime(&signature, args, upcall->upcall_address(), voidType, nullptr);
2587     upcall = RuntimeUpcalls::get_next_upcall(RuntimeUpcallType::onMethodEntry, method_details, upcall);
2588   }
2589 
2590   if (method()->is_synchronized()) {
2591     LIR_Opr obj;
2592     if (method()->is_static()) {
2593       obj = new_register(T_OBJECT);
2594       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2595     } else {
2596       Local* receiver = x->state()->local_at(0)->as_Local();
2597       assert(receiver != nullptr, "must already exist");
2598       obj = receiver->operand();
2599     }
2600     assert(obj->is_valid(), "must be valid");
2601 
2602     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2603       LIR_Opr lock = syncLockOpr();
2604       __ load_stack_address_monitor(0, lock);
2605 
2606       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException));
2607       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2608 
2609       // receiver is guaranteed non-null so don't need CodeEmitInfo
2610       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr);
2611     }
2612   }
2613   // increment invocation counters if needed
2614   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2615     profile_parameters(x);
2616     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false);
2617     increment_invocation_counter(info);
2618   }
2619 
2620   // all blocks with a successor must end with an unconditional jump
2621   // to the successor even if they are consecutive
2622   __ jump(x->default_sux());
2623 }
2624 
2625 
2626 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2627   // construct our frame and model the production of incoming pointer
2628   // to the OSR buffer.
2629   __ osr_entry(LIR_Assembler::osrBufferPointer());
2630   LIR_Opr result = rlock_result(x);
2631   __ move(LIR_Assembler::osrBufferPointer(), result);
2632 }
2633 
2634 
2635 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2636   assert(args->length() == arg_list->length(),
2637          "args=%d, arg_list=%d", args->length(), arg_list->length());
2638   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2639     LIRItem* param = args->at(i);
2640     LIR_Opr loc = arg_list->at(i);
2641     if (loc->is_register()) {
2642       param->load_item_force(loc);
2643     } else {
2644       LIR_Address* addr = loc->as_address_ptr();
2645       param->load_for_store(addr->type());
2646       if (addr->type() == T_OBJECT) {
2647         __ move_wide(param->result(), addr);
2648       } else
2649         __ move(param->result(), addr);
2650     }
2651   }
2652 
2653   if (x->has_receiver()) {
2654     LIRItem* receiver = args->at(0);
2655     LIR_Opr loc = arg_list->at(0);
2656     if (loc->is_register()) {
2657       receiver->load_item_force(loc);
2658     } else {
2659       assert(loc->is_address(), "just checking");
2660       receiver->load_for_store(T_OBJECT);
2661       __ move_wide(receiver->result(), loc->as_address_ptr());
2662     }
2663   }
2664 }
2665 
2666 
2667 // Visits all arguments, returns appropriate items without loading them
2668 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2669   LIRItemList* argument_items = new LIRItemList();
2670   if (x->has_receiver()) {
2671     LIRItem* receiver = new LIRItem(x->receiver(), this);
2672     argument_items->append(receiver);
2673   }
2674   for (int i = 0; i < x->number_of_arguments(); i++) {
2675     LIRItem* param = new LIRItem(x->argument_at(i), this);
2676     argument_items->append(param);
2677   }
2678   return argument_items;
2679 }
2680 
2681 
2682 // The invoke with receiver has following phases:
2683 //   a) traverse and load/lock receiver;
2684 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2685 //   c) push receiver on stack
2686 //   d) load each of the items and push on stack
2687 //   e) unlock receiver
2688 //   f) move receiver into receiver-register %o0
2689 //   g) lock result registers and emit call operation
2690 //
2691 // Before issuing a call, we must spill-save all values on stack
2692 // that are in caller-save register. "spill-save" moves those registers
2693 // either in a free callee-save register or spills them if no free
2694 // callee save register is available.
2695 //
2696 // The problem is where to invoke spill-save.
2697 // - if invoked between e) and f), we may lock callee save
2698 //   register in "spill-save" that destroys the receiver register
2699 //   before f) is executed
2700 // - if we rearrange f) to be earlier (by loading %o0) it
2701 //   may destroy a value on the stack that is currently in %o0
2702 //   and is waiting to be spilled
2703 // - if we keep the receiver locked while doing spill-save,
2704 //   we cannot spill it as it is spill-locked
2705 //
2706 void LIRGenerator::do_Invoke(Invoke* x) {
2707   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2708 
2709   LIR_OprList* arg_list = cc->args();
2710   LIRItemList* args = invoke_visit_arguments(x);
2711   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2712 
2713   // setup result register
2714   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2715   if (x->type() != voidType) {
2716     result_register = result_register_for(x->type());
2717   }
2718 
2719   CodeEmitInfo* info = state_for(x, x->state());
2720 
2721   invoke_load_arguments(x, args, arg_list);
2722 
2723   if (x->has_receiver()) {
2724     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2725     receiver = args->at(0)->result();
2726   }
2727 
2728   // emit invoke code
2729   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2730 
2731   // JSR 292
2732   // Preserve the SP over MethodHandle call sites, if needed.
2733   ciMethod* target = x->target();
2734   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2735                                   target->is_method_handle_intrinsic() ||
2736                                   target->is_compiled_lambda_form());
2737   if (is_method_handle_invoke) {
2738     info->set_is_method_handle_invoke(true);
2739     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2740         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2741     }
2742   }
2743 
2744   switch (x->code()) {
2745     case Bytecodes::_invokestatic:
2746       __ call_static(target, result_register,
2747                      SharedRuntime::get_resolve_static_call_stub(),
2748                      arg_list, info);
2749       break;
2750     case Bytecodes::_invokespecial:
2751     case Bytecodes::_invokevirtual:
2752     case Bytecodes::_invokeinterface:
2753       // for loaded and final (method or class) target we still produce an inline cache,
2754       // in order to be able to call mixed mode
2755       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2756         __ call_opt_virtual(target, receiver, result_register,
2757                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2758                             arg_list, info);
2759       } else {
2760         __ call_icvirtual(target, receiver, result_register,
2761                           SharedRuntime::get_resolve_virtual_call_stub(),
2762                           arg_list, info);
2763       }
2764       break;
2765     case Bytecodes::_invokedynamic: {
2766       __ call_dynamic(target, receiver, result_register,
2767                       SharedRuntime::get_resolve_static_call_stub(),
2768                       arg_list, info);
2769       break;
2770     }
2771     default:
2772       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2773       break;
2774   }
2775 
2776   // JSR 292
2777   // Restore the SP after MethodHandle call sites, if needed.
2778   if (is_method_handle_invoke
2779       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2780     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2781   }
2782 
2783   if (result_register->is_valid()) {
2784     LIR_Opr result = rlock_result(x);
2785     __ move(result_register, result);
2786   }
2787 }
2788 
2789 
2790 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2791   assert(x->number_of_arguments() == 1, "wrong type");
2792   LIRItem value       (x->argument_at(0), this);
2793   LIR_Opr reg = rlock_result(x);
2794   value.load_item();
2795   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2796   __ move(tmp, reg);
2797 }
2798 
2799 
2800 
2801 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2802 void LIRGenerator::do_IfOp(IfOp* x) {
2803 #ifdef ASSERT
2804   {
2805     ValueTag xtag = x->x()->type()->tag();
2806     ValueTag ttag = x->tval()->type()->tag();
2807     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2808     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2809     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2810   }
2811 #endif
2812 
2813   LIRItem left(x->x(), this);
2814   LIRItem right(x->y(), this);
2815   left.load_item();
2816   if (can_inline_as_constant(right.value())) {
2817     right.dont_load_item();
2818   } else {
2819     right.load_item();
2820   }
2821 
2822   LIRItem t_val(x->tval(), this);
2823   LIRItem f_val(x->fval(), this);
2824   t_val.dont_load_item();
2825   f_val.dont_load_item();
2826   LIR_Opr reg = rlock_result(x);
2827 
2828   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2829   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2830 }
2831 
2832 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2833   assert(x->number_of_arguments() == 0, "wrong type");
2834   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2835   BasicTypeList signature;
2836   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2837   LIR_Opr reg = result_register_for(x->type());
2838   __ call_runtime_leaf(routine, getThreadTemp(),
2839                        reg, new LIR_OprList());
2840   LIR_Opr result = rlock_result(x);
2841   __ move(reg, result);
2842 }
2843 
2844 
2845 
2846 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2847   switch (x->id()) {
2848   case vmIntrinsics::_intBitsToFloat      :
2849   case vmIntrinsics::_doubleToRawLongBits :
2850   case vmIntrinsics::_longBitsToDouble    :
2851   case vmIntrinsics::_floatToRawIntBits   : {
2852     do_FPIntrinsics(x);
2853     break;
2854   }
2855 
2856 #ifdef JFR_HAVE_INTRINSICS
2857   case vmIntrinsics::_counterTime:
2858     do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x);
2859     break;
2860 #endif
2861 
2862   case vmIntrinsics::_currentTimeMillis:
2863     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2864     break;
2865 
2866   case vmIntrinsics::_nanoTime:
2867     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2868     break;
2869 
2870   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2871   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2872   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2873   case vmIntrinsics::_getObjectSize:  do_getObjectSize(x); break;
2874   case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break;
2875   case vmIntrinsics::_currentThread:  do_vthread(x);       break;
2876   case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break;
2877 
2878   case vmIntrinsics::_dlog:           // fall through
2879   case vmIntrinsics::_dlog10:         // fall through
2880   case vmIntrinsics::_dabs:           // fall through
2881   case vmIntrinsics::_dsqrt:          // fall through
2882   case vmIntrinsics::_dsqrt_strict:   // fall through
2883   case vmIntrinsics::_dtan:           // fall through
2884   case vmIntrinsics::_dtanh:          // fall through
2885   case vmIntrinsics::_dsin :          // fall through
2886   case vmIntrinsics::_dcos :          // fall through
2887   case vmIntrinsics::_dcbrt :         // fall through
2888   case vmIntrinsics::_dexp :          // fall through
2889   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2890   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2891 
2892   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2893   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2894 
2895   // Use java.lang.Math intrinsics code since it works for these intrinsics too.
2896   case vmIntrinsics::_floatToFloat16: // fall through
2897   case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break;
2898 
2899   case vmIntrinsics::_Preconditions_checkIndex:
2900     do_PreconditionsCheckIndex(x, T_INT);
2901     break;
2902   case vmIntrinsics::_Preconditions_checkLongIndex:
2903     do_PreconditionsCheckIndex(x, T_LONG);
2904     break;
2905 
2906   case vmIntrinsics::_compareAndSetReference:
2907     do_CompareAndSwap(x, objectType);
2908     break;
2909   case vmIntrinsics::_compareAndSetInt:
2910     do_CompareAndSwap(x, intType);
2911     break;
2912   case vmIntrinsics::_compareAndSetLong:
2913     do_CompareAndSwap(x, longType);
2914     break;
2915 
2916   case vmIntrinsics::_loadFence :
2917     __ membar_acquire();
2918     break;
2919   case vmIntrinsics::_storeFence:
2920     __ membar_release();
2921     break;
2922   case vmIntrinsics::_storeStoreFence:
2923     __ membar_storestore();
2924     break;
2925   case vmIntrinsics::_fullFence :
2926     __ membar();
2927     break;
2928   case vmIntrinsics::_onSpinWait:
2929     __ on_spin_wait();
2930     break;
2931   case vmIntrinsics::_Reference_get:
2932     do_Reference_get(x);
2933     break;
2934 
2935   case vmIntrinsics::_updateCRC32:
2936   case vmIntrinsics::_updateBytesCRC32:
2937   case vmIntrinsics::_updateByteBufferCRC32:
2938     do_update_CRC32(x);
2939     break;
2940 
2941   case vmIntrinsics::_updateBytesCRC32C:
2942   case vmIntrinsics::_updateDirectByteBufferCRC32C:
2943     do_update_CRC32C(x);
2944     break;
2945 
2946   case vmIntrinsics::_vectorizedMismatch:
2947     do_vectorizedMismatch(x);
2948     break;
2949 
2950   case vmIntrinsics::_blackhole:
2951     do_blackhole(x);
2952     break;
2953 
2954   default: ShouldNotReachHere(); break;
2955   }
2956 }
2957 
2958 void LIRGenerator::profile_arguments(ProfileCall* x) {
2959   if (compilation()->profile_arguments()) {
2960     int bci = x->bci_of_invoke();
2961     ciMethodData* md = x->method()->method_data_or_null();
2962     assert(md != nullptr, "Sanity");
2963     ciProfileData* data = md->bci_to_data(bci);
2964     if (data != nullptr) {
2965       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
2966           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
2967         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
2968         int base_offset = md->byte_offset_of_slot(data, extra);
2969         LIR_Opr mdp = LIR_OprFact::illegalOpr;
2970         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
2971 
2972         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
2973         int start = 0;
2974         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
2975         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
2976           // first argument is not profiled at call (method handle invoke)
2977           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
2978           start = 1;
2979         }
2980         ciSignature* callee_signature = x->callee()->signature();
2981         // method handle call to virtual method
2982         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
2983         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr);
2984 
2985         bool ignored_will_link;
2986         ciSignature* signature_at_call = nullptr;
2987         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
2988         ciSignatureStream signature_at_call_stream(signature_at_call);
2989 
2990         // if called through method handle invoke, some arguments may have been popped
2991         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
2992           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
2993           ciKlass* exact = profile_type(md, base_offset, off,
2994               args->type(i), x->profiled_arg_at(i+start), mdp,
2995               !x->arg_needs_null_check(i+start),
2996               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
2997           if (exact != nullptr) {
2998             md->set_argument_type(bci, i, exact);
2999           }
3000         }
3001       } else {
3002 #ifdef ASSERT
3003         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3004         int n = x->nb_profiled_args();
3005         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3006             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3007             "only at JSR292 bytecodes");
3008 #endif
3009       }
3010     }
3011   }
3012 }
3013 
3014 // profile parameters on entry to an inlined method
3015 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3016   if (compilation()->profile_parameters() && x->inlined()) {
3017     ciMethodData* md = x->callee()->method_data_or_null();
3018     if (md != nullptr) {
3019       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3020       if (parameters_type_data != nullptr) {
3021         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3022         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3023         bool has_receiver = !x->callee()->is_static();
3024         ciSignature* sig = x->callee()->signature();
3025         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr);
3026         int i = 0; // to iterate on the Instructions
3027         Value arg = x->recv();
3028         bool not_null = false;
3029         int bci = x->bci_of_invoke();
3030         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3031         // The first parameter is the receiver so that's what we start
3032         // with if it exists. One exception is method handle call to
3033         // virtual method: the receiver is in the args list
3034         if (arg == nullptr || !Bytecodes::has_receiver(bc)) {
3035           i = 1;
3036           arg = x->profiled_arg_at(0);
3037           not_null = !x->arg_needs_null_check(0);
3038         }
3039         int k = 0; // to iterate on the profile data
3040         for (;;) {
3041           intptr_t profiled_k = parameters->type(k);
3042           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3043                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3044                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr);
3045           // If the profile is known statically set it once for all and do not emit any code
3046           if (exact != nullptr) {
3047             md->set_parameter_type(k, exact);
3048           }
3049           k++;
3050           if (k >= parameters_type_data->number_of_parameters()) {
3051 #ifdef ASSERT
3052             int extra = 0;
3053             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3054                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3055                 x->recv() != nullptr && Bytecodes::has_receiver(bc)) {
3056               extra += 1;
3057             }
3058             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3059 #endif
3060             break;
3061           }
3062           arg = x->profiled_arg_at(i);
3063           not_null = !x->arg_needs_null_check(i);
3064           i++;
3065         }
3066       }
3067     }
3068   }
3069 }
3070 
3071 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3072   // Need recv in a temporary register so it interferes with the other temporaries
3073   LIR_Opr recv = LIR_OprFact::illegalOpr;
3074   LIR_Opr mdo = new_register(T_METADATA);
3075   // tmp is used to hold the counters on SPARC
3076   LIR_Opr tmp = new_pointer_register();
3077 
3078   if (x->nb_profiled_args() > 0) {
3079     profile_arguments(x);
3080   }
3081 
3082   // profile parameters on inlined method entry including receiver
3083   if (x->recv() != nullptr || x->nb_profiled_args() > 0) {
3084     profile_parameters_at_call(x);
3085   }
3086 
3087   if (x->recv() != nullptr) {
3088     LIRItem value(x->recv(), this);
3089     value.load_item();
3090     recv = new_register(T_OBJECT);
3091     __ move(value.result(), recv);
3092   }
3093   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3094 }
3095 
3096 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3097   int bci = x->bci_of_invoke();
3098   ciMethodData* md = x->method()->method_data_or_null();
3099   assert(md != nullptr, "Sanity");
3100   ciProfileData* data = md->bci_to_data(bci);
3101   if (data != nullptr) {
3102     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3103     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3104     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3105 
3106     bool ignored_will_link;
3107     ciSignature* signature_at_call = nullptr;
3108     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3109 
3110     // The offset within the MDO of the entry to update may be too large
3111     // to be used in load/store instructions on some platforms. So have
3112     // profile_type() compute the address of the profile in a register.
3113     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3114         ret->type(), x->ret(), mdp,
3115         !x->needs_null_check(),
3116         signature_at_call->return_type()->as_klass(),
3117         x->callee()->signature()->return_type()->as_klass());
3118     if (exact != nullptr) {
3119       md->set_return_type(bci, exact);
3120     }
3121   }
3122 }
3123 
3124 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3125   // We can safely ignore accessors here, since c2 will inline them anyway,
3126   // accessors are also always mature.
3127   if (!x->inlinee()->is_accessor()) {
3128     CodeEmitInfo* info = state_for(x, x->state(), true);
3129     // Notify the runtime very infrequently only to take care of counter overflows
3130     int freq_log = Tier23InlineeNotifyFreqLog;
3131     double scale;
3132     if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3133       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3134     }
3135     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3136   }
3137 }
3138 
3139 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3140   if (compilation()->is_profiling()) {
3141 #if defined(X86) && !defined(_LP64)
3142     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3143     LIR_Opr left_copy = new_register(left->type());
3144     __ move(left, left_copy);
3145     __ cmp(cond, left_copy, right);
3146 #else
3147     __ cmp(cond, left, right);
3148 #endif
3149     LIR_Opr step = new_register(T_INT);
3150     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3151     LIR_Opr zero = LIR_OprFact::intConst(0);
3152     __ cmove(cond,
3153         (left_bci < bci) ? plus_one : zero,
3154         (right_bci < bci) ? plus_one : zero,
3155         step, left->type());
3156     increment_backedge_counter(info, step, bci);
3157   }
3158 }
3159 
3160 
3161 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3162   int freq_log = 0;
3163   int level = compilation()->env()->comp_level();
3164   if (level == CompLevel_limited_profile) {
3165     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3166   } else if (level == CompLevel_full_profile) {
3167     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3168   } else {
3169     ShouldNotReachHere();
3170   }
3171   // Increment the appropriate invocation/backedge counter and notify the runtime.
3172   double scale;
3173   if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) {
3174     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3175   }
3176   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3177 }
3178 
3179 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3180                                                 ciMethod *method, LIR_Opr step, int frequency,
3181                                                 int bci, bool backedge, bool notify) {
3182   if (PreloadOnly) {
3183     // Nothing to do if we only use preload code.
3184     return;
3185   }
3186   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3187   int level = _compilation->env()->comp_level();
3188   assert(level > CompLevel_simple, "Shouldn't be here");
3189 
3190   int offset = -1;
3191   LIR_Opr counter_holder;
3192   if (level == CompLevel_limited_profile) {
3193     MethodCounters* counters_adr = method->ensure_method_counters();
3194     if (counters_adr == nullptr) {
3195       bailout("method counters allocation failed");
3196       return;
3197     }
3198     if (AOTCodeCache::is_on()) {
3199       counter_holder = new_register(T_METADATA);
3200       __ metadata2reg(counters_adr, counter_holder);
3201     } else {
3202       counter_holder = new_pointer_register();
3203       __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3204     }
3205     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3206                                  MethodCounters::invocation_counter_offset());
3207   } else if (level == CompLevel_full_profile) {
3208     counter_holder = new_register(T_METADATA);
3209     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3210                                  MethodData::invocation_counter_offset());
3211     ciMethodData* md = method->method_data_or_null();
3212     assert(md != nullptr, "Sanity");
3213     __ metadata2reg(md->constant_encoding(), counter_holder);
3214   } else {
3215     ShouldNotReachHere();
3216   }
3217   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3218   LIR_Opr result = new_register(T_INT);
3219   __ load(counter, result);
3220   __ add(result, step, result);
3221   __ store(result, counter);
3222   if (notify && (!backedge || UseOnStackReplacement)) {
3223     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3224     // The bci for info can point to cmp for if's we want the if bci
3225     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3226     int freq = frequency << InvocationCounter::count_shift;
3227     if (freq == 0) {
3228       if (!step->is_constant()) {
3229         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3230         __ branch(lir_cond_notEqual, overflow);
3231       } else {
3232         __ branch(lir_cond_always, overflow);
3233       }
3234     } else {
3235       LIR_Opr mask = load_immediate(freq, T_INT);
3236       if (!step->is_constant()) {
3237         // If step is 0, make sure the overflow check below always fails
3238         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3239         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3240       }
3241       __ logical_and(result, mask, result);
3242       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3243       __ branch(lir_cond_equal, overflow);
3244     }
3245     __ branch_destination(overflow->continuation());
3246   }
3247 }
3248 
3249 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3250   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3251   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3252 
3253   if (x->pass_thread()) {
3254     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3255     args->append(getThreadPointer());
3256   }
3257 
3258   for (int i = 0; i < x->number_of_arguments(); i++) {
3259     Value a = x->argument_at(i);
3260     LIRItem* item = new LIRItem(a, this);
3261     item->load_item();
3262     args->append(item->result());
3263     signature->append(as_BasicType(a->type()));
3264   }
3265 
3266   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr);
3267   if (x->type() == voidType) {
3268     set_no_result(x);
3269   } else {
3270     __ move(result, rlock_result(x));
3271   }
3272 }
3273 
3274 #ifdef ASSERT
3275 void LIRGenerator::do_Assert(Assert *x) {
3276   ValueTag tag = x->x()->type()->tag();
3277   If::Condition cond = x->cond();
3278 
3279   LIRItem xitem(x->x(), this);
3280   LIRItem yitem(x->y(), this);
3281   LIRItem* xin = &xitem;
3282   LIRItem* yin = &yitem;
3283 
3284   assert(tag == intTag, "Only integer assertions are valid!");
3285 
3286   xin->load_item();
3287   yin->dont_load_item();
3288 
3289   set_no_result(x);
3290 
3291   LIR_Opr left = xin->result();
3292   LIR_Opr right = yin->result();
3293 
3294   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3295 }
3296 #endif
3297 
3298 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3299 
3300 
3301   Instruction *a = x->x();
3302   Instruction *b = x->y();
3303   if (!a || StressRangeCheckElimination) {
3304     assert(!b || StressRangeCheckElimination, "B must also be null");
3305 
3306     CodeEmitInfo *info = state_for(x, x->state());
3307     CodeStub* stub = new PredicateFailedStub(info);
3308 
3309     __ jump(stub);
3310   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3311     int a_int = a->type()->as_IntConstant()->value();
3312     int b_int = b->type()->as_IntConstant()->value();
3313 
3314     bool ok = false;
3315 
3316     switch(x->cond()) {
3317       case Instruction::eql: ok = (a_int == b_int); break;
3318       case Instruction::neq: ok = (a_int != b_int); break;
3319       case Instruction::lss: ok = (a_int < b_int); break;
3320       case Instruction::leq: ok = (a_int <= b_int); break;
3321       case Instruction::gtr: ok = (a_int > b_int); break;
3322       case Instruction::geq: ok = (a_int >= b_int); break;
3323       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3324       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3325       default: ShouldNotReachHere();
3326     }
3327 
3328     if (ok) {
3329 
3330       CodeEmitInfo *info = state_for(x, x->state());
3331       CodeStub* stub = new PredicateFailedStub(info);
3332 
3333       __ jump(stub);
3334     }
3335   } else {
3336 
3337     ValueTag tag = x->x()->type()->tag();
3338     If::Condition cond = x->cond();
3339     LIRItem xitem(x->x(), this);
3340     LIRItem yitem(x->y(), this);
3341     LIRItem* xin = &xitem;
3342     LIRItem* yin = &yitem;
3343 
3344     assert(tag == intTag, "Only integer deoptimizations are valid!");
3345 
3346     xin->load_item();
3347     yin->dont_load_item();
3348     set_no_result(x);
3349 
3350     LIR_Opr left = xin->result();
3351     LIR_Opr right = yin->result();
3352 
3353     CodeEmitInfo *info = state_for(x, x->state());
3354     CodeStub* stub = new PredicateFailedStub(info);
3355 
3356     __ cmp(lir_cond(cond), left, right);
3357     __ branch(lir_cond(cond), stub);
3358   }
3359 }
3360 
3361 void LIRGenerator::do_blackhole(Intrinsic *x) {
3362   assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3363   for (int c = 0; c < x->number_of_arguments(); c++) {
3364     // Load the argument
3365     LIRItem vitem(x->argument_at(c), this);
3366     vitem.load_item();
3367     // ...and leave it unused.
3368   }
3369 }
3370 
3371 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3372   LIRItemList args(1);
3373   LIRItem value(arg1, this);
3374   args.append(&value);
3375   BasicTypeList signature;
3376   signature.append(as_BasicType(arg1->type()));
3377 
3378   return call_runtime(&signature, &args, entry, result_type, info);
3379 }
3380 
3381 
3382 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3383   LIRItemList args(2);
3384   LIRItem value1(arg1, this);
3385   LIRItem value2(arg2, this);
3386   args.append(&value1);
3387   args.append(&value2);
3388   BasicTypeList signature;
3389   signature.append(as_BasicType(arg1->type()));
3390   signature.append(as_BasicType(arg2->type()));
3391 
3392   return call_runtime(&signature, &args, entry, result_type, info);
3393 }
3394 
3395 
3396 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3397                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3398   // get a result register
3399   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3400   LIR_Opr result = LIR_OprFact::illegalOpr;
3401   if (result_type->tag() != voidTag) {
3402     result = new_register(result_type);
3403     phys_reg = result_register_for(result_type);
3404   }
3405 
3406   // move the arguments into the correct location
3407   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3408   assert(cc->length() == args->length(), "argument mismatch");
3409   for (int i = 0; i < args->length(); i++) {
3410     LIR_Opr arg = args->at(i);
3411     LIR_Opr loc = cc->at(i);
3412     if (loc->is_register()) {
3413       __ move(arg, loc);
3414     } else {
3415       LIR_Address* addr = loc->as_address_ptr();
3416 //           if (!can_store_as_constant(arg)) {
3417 //             LIR_Opr tmp = new_register(arg->type());
3418 //             __ move(arg, tmp);
3419 //             arg = tmp;
3420 //           }
3421       __ move(arg, addr);
3422     }
3423   }
3424 
3425   if (info) {
3426     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3427   } else {
3428     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3429   }
3430   if (result->is_valid()) {
3431     __ move(phys_reg, result);
3432   }
3433   return result;
3434 }
3435 
3436 
3437 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3438                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3439   // get a result register
3440   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3441   LIR_Opr result = LIR_OprFact::illegalOpr;
3442   if (result_type->tag() != voidTag) {
3443     result = new_register(result_type);
3444     phys_reg = result_register_for(result_type);
3445   }
3446 
3447   // move the arguments into the correct location
3448   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3449 
3450   assert(cc->length() == args->length(), "argument mismatch");
3451   for (int i = 0; i < args->length(); i++) {
3452     LIRItem* arg = args->at(i);
3453     LIR_Opr loc = cc->at(i);
3454     if (loc->is_register()) {
3455       arg->load_item_force(loc);
3456     } else {
3457       LIR_Address* addr = loc->as_address_ptr();
3458       arg->load_for_store(addr->type());
3459       __ move(arg->result(), addr);
3460     }
3461   }
3462 
3463   if (info) {
3464     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3465   } else {
3466     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3467   }
3468   if (result->is_valid()) {
3469     __ move(phys_reg, result);
3470   }
3471   return result;
3472 }
3473 
3474 void LIRGenerator::do_MemBar(MemBar* x) {
3475   LIR_Code code = x->code();
3476   switch(code) {
3477   case lir_membar_acquire   : __ membar_acquire(); break;
3478   case lir_membar_release   : __ membar_release(); break;
3479   case lir_membar           : __ membar(); break;
3480   case lir_membar_loadload  : __ membar_loadload(); break;
3481   case lir_membar_storestore: __ membar_storestore(); break;
3482   case lir_membar_loadstore : __ membar_loadstore(); break;
3483   case lir_membar_storeload : __ membar_storeload(); break;
3484   default                   : ShouldNotReachHere(); break;
3485   }
3486 }
3487 
3488 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3489   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3490   if (two_operand_lir_form) {
3491     __ move(value, value_fixed);
3492     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3493   } else {
3494     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3495   }
3496   LIR_Opr klass = new_register(T_METADATA);
3497   load_klass(array, klass, null_check_info);
3498   null_check_info = nullptr;
3499   LIR_Opr layout = new_register(T_INT);
3500   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3501   int diffbit = Klass::layout_helper_boolean_diffbit();
3502   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3503   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3504   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3505   value = value_fixed;
3506   return value;
3507 }