1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "code/SCCache.hpp" 38 #include "compiler/compilerDefinitions.inline.hpp" 39 #include "compiler/compilerOracle.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c1/barrierSetC1.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/methodCounters.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/vm_version.hpp" 47 #include "utilities/bitMap.inline.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 #ifdef ASSERT 52 #define __ gen()->lir(__FILE__, __LINE__)-> 53 #else 54 #define __ gen()->lir()-> 55 #endif 56 57 #ifndef PATCHED_ADDR 58 #define PATCHED_ADDR (max_jint) 59 #endif 60 61 void PhiResolverState::reset() { 62 _virtual_operands.clear(); 63 _other_operands.clear(); 64 _vreg_table.clear(); 65 } 66 67 68 //-------------------------------------------------------------- 69 // PhiResolver 70 71 // Resolves cycles: 72 // 73 // r1 := r2 becomes temp := r1 74 // r2 := r1 r1 := r2 75 // r2 := temp 76 // and orders moves: 77 // 78 // r2 := r3 becomes r1 := r2 79 // r1 := r2 r2 := r3 80 81 PhiResolver::PhiResolver(LIRGenerator* gen) 82 : _gen(gen) 83 , _state(gen->resolver_state()) 84 , _loop(nullptr) 85 , _temp(LIR_OprFact::illegalOpr) 86 { 87 // reinitialize the shared state arrays 88 _state.reset(); 89 } 90 91 92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 93 assert(src->is_valid(), ""); 94 assert(dest->is_valid(), ""); 95 __ move(src, dest); 96 } 97 98 99 void PhiResolver::move_temp_to(LIR_Opr dest) { 100 assert(_temp->is_valid(), ""); 101 emit_move(_temp, dest); 102 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 103 } 104 105 106 void PhiResolver::move_to_temp(LIR_Opr src) { 107 assert(_temp->is_illegal(), ""); 108 _temp = _gen->new_register(src->type()); 109 emit_move(src, _temp); 110 } 111 112 113 // Traverse assignment graph in depth first order and generate moves in post order 114 // ie. two assignments: b := c, a := b start with node c: 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 116 // Generates moves in this order: move b to a and move c to b 117 // ie. cycle a := b, b := a start with node a 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 119 // Generates moves in this order: move b to temp, move a to b, move temp to a 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 121 if (!dest->visited()) { 122 dest->set_visited(); 123 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 124 move(dest, dest->destination_at(i)); 125 } 126 } else if (!dest->start_node()) { 127 // cylce in graph detected 128 assert(_loop == nullptr, "only one loop valid!"); 129 _loop = dest; 130 move_to_temp(src->operand()); 131 return; 132 } // else dest is a start node 133 134 if (!dest->assigned()) { 135 if (_loop == dest) { 136 move_temp_to(dest->operand()); 137 dest->set_assigned(); 138 } else if (src != nullptr) { 139 emit_move(src->operand(), dest->operand()); 140 dest->set_assigned(); 141 } 142 } 143 } 144 145 146 PhiResolver::~PhiResolver() { 147 int i; 148 // resolve any cycles in moves from and to virtual registers 149 for (i = virtual_operands().length() - 1; i >= 0; i --) { 150 ResolveNode* node = virtual_operands().at(i); 151 if (!node->visited()) { 152 _loop = nullptr; 153 move(nullptr, node); 154 node->set_start_node(); 155 assert(_temp->is_illegal(), "move_temp_to() call missing"); 156 } 157 } 158 159 // generate move for move from non virtual register to abitrary destination 160 for (i = other_operands().length() - 1; i >= 0; i --) { 161 ResolveNode* node = other_operands().at(i); 162 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 163 emit_move(node->operand(), node->destination_at(j)->operand()); 164 } 165 } 166 } 167 168 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 170 ResolveNode* node; 171 if (opr->is_virtual()) { 172 int vreg_num = opr->vreg_number(); 173 node = vreg_table().at_grow(vreg_num, nullptr); 174 assert(node == nullptr || node->operand() == opr, ""); 175 if (node == nullptr) { 176 node = new ResolveNode(opr); 177 vreg_table().at_put(vreg_num, node); 178 } 179 // Make sure that all virtual operands show up in the list when 180 // they are used as the source of a move. 181 if (source && !virtual_operands().contains(node)) { 182 virtual_operands().append(node); 183 } 184 } else { 185 assert(source, ""); 186 node = new ResolveNode(opr); 187 other_operands().append(node); 188 } 189 return node; 190 } 191 192 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 194 assert(dest->is_virtual(), ""); 195 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 196 assert(src->is_valid(), ""); 197 assert(dest->is_valid(), ""); 198 ResolveNode* source = source_node(src); 199 source->append(destination_node(dest)); 200 } 201 202 203 //-------------------------------------------------------------- 204 // LIRItem 205 206 void LIRItem::set_result(LIR_Opr opr) { 207 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 208 value()->set_operand(opr); 209 210 #ifdef ASSERT 211 if (opr->is_virtual()) { 212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 213 } 214 #endif 215 216 _result = opr; 217 } 218 219 void LIRItem::load_item() { 220 if (result()->is_illegal()) { 221 // update the items result 222 _result = value()->operand(); 223 } 224 if (!result()->is_register()) { 225 LIR_Opr reg = _gen->new_register(value()->type()); 226 __ move(result(), reg); 227 if (result()->is_constant()) { 228 _result = reg; 229 } else { 230 set_result(reg); 231 } 232 } 233 } 234 235 236 void LIRItem::load_for_store(BasicType type) { 237 if (_gen->can_store_as_constant(value(), type)) { 238 _result = value()->operand(); 239 if (!_result->is_constant()) { 240 _result = LIR_OprFact::value_type(value()->type()); 241 } 242 } else if (type == T_BYTE || type == T_BOOLEAN) { 243 load_byte_item(); 244 } else { 245 load_item(); 246 } 247 } 248 249 void LIRItem::load_item_force(LIR_Opr reg) { 250 LIR_Opr r = result(); 251 if (r != reg) { 252 #if !defined(ARM) && !defined(E500V2) 253 if (r->type() != reg->type()) { 254 // moves between different types need an intervening spill slot 255 r = _gen->force_to_spill(r, reg->type()); 256 } 257 #endif 258 __ move(r, reg); 259 _result = reg; 260 } 261 } 262 263 ciObject* LIRItem::get_jobject_constant() const { 264 ObjectType* oc = type()->as_ObjectType(); 265 if (oc) { 266 return oc->constant_value(); 267 } 268 return nullptr; 269 } 270 271 272 jint LIRItem::get_jint_constant() const { 273 assert(is_constant() && value() != nullptr, ""); 274 assert(type()->as_IntConstant() != nullptr, "type check"); 275 return type()->as_IntConstant()->value(); 276 } 277 278 279 jint LIRItem::get_address_constant() const { 280 assert(is_constant() && value() != nullptr, ""); 281 assert(type()->as_AddressConstant() != nullptr, "type check"); 282 return type()->as_AddressConstant()->value(); 283 } 284 285 286 jfloat LIRItem::get_jfloat_constant() const { 287 assert(is_constant() && value() != nullptr, ""); 288 assert(type()->as_FloatConstant() != nullptr, "type check"); 289 return type()->as_FloatConstant()->value(); 290 } 291 292 293 jdouble LIRItem::get_jdouble_constant() const { 294 assert(is_constant() && value() != nullptr, ""); 295 assert(type()->as_DoubleConstant() != nullptr, "type check"); 296 return type()->as_DoubleConstant()->value(); 297 } 298 299 300 jlong LIRItem::get_jlong_constant() const { 301 assert(is_constant() && value() != nullptr, ""); 302 assert(type()->as_LongConstant() != nullptr, "type check"); 303 return type()->as_LongConstant()->value(); 304 } 305 306 307 308 //-------------------------------------------------------------- 309 310 311 void LIRGenerator::block_do_prolog(BlockBegin* block) { 312 #ifndef PRODUCT 313 if (PrintIRWithLIR) { 314 block->print(); 315 } 316 #endif 317 318 // set up the list of LIR instructions 319 assert(block->lir() == nullptr, "LIR list already computed for this block"); 320 _lir = new LIR_List(compilation(), block); 321 block->set_lir(_lir); 322 323 __ branch_destination(block->label()); 324 325 if (LIRTraceExecution && 326 Compilation::current()->hir()->start()->block_id() != block->block_id() && 327 !block->is_set(BlockBegin::exception_entry_flag)) { 328 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 329 trace_block_entry(block); 330 } 331 } 332 333 334 void LIRGenerator::block_do_epilog(BlockBegin* block) { 335 #ifndef PRODUCT 336 if (PrintIRWithLIR) { 337 tty->cr(); 338 } 339 #endif 340 341 // LIR_Opr for unpinned constants shouldn't be referenced by other 342 // blocks so clear them out after processing the block. 343 for (int i = 0; i < _unpinned_constants.length(); i++) { 344 _unpinned_constants.at(i)->clear_operand(); 345 } 346 _unpinned_constants.trunc_to(0); 347 348 // clear our any registers for other local constants 349 _constants.trunc_to(0); 350 _reg_for_constants.trunc_to(0); 351 } 352 353 354 void LIRGenerator::block_do(BlockBegin* block) { 355 CHECK_BAILOUT(); 356 357 block_do_prolog(block); 358 set_block(block); 359 360 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 361 if (instr->is_pinned()) do_root(instr); 362 } 363 364 set_block(nullptr); 365 block_do_epilog(block); 366 } 367 368 369 //-------------------------LIRGenerator----------------------------- 370 371 // This is where the tree-walk starts; instr must be root; 372 void LIRGenerator::do_root(Value instr) { 373 CHECK_BAILOUT(); 374 375 InstructionMark im(compilation(), instr); 376 377 assert(instr->is_pinned(), "use only with roots"); 378 assert(instr->subst() == instr, "shouldn't have missed substitution"); 379 380 instr->visit(this); 381 382 assert(!instr->has_uses() || instr->operand()->is_valid() || 383 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 384 } 385 386 387 // This is called for each node in tree; the walk stops if a root is reached 388 void LIRGenerator::walk(Value instr) { 389 InstructionMark im(compilation(), instr); 390 //stop walk when encounter a root 391 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 392 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 393 } else { 394 assert(instr->subst() == instr, "shouldn't have missed substitution"); 395 instr->visit(this); 396 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 397 } 398 } 399 400 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 402 assert(state != nullptr, "state must be defined"); 403 404 #ifndef PRODUCT 405 state->verify(); 406 #endif 407 408 ValueStack* s = state; 409 for_each_state(s) { 410 if (s->kind() == ValueStack::EmptyExceptionState || 411 s->kind() == ValueStack::CallerEmptyExceptionState) 412 { 413 #ifdef ASSERT 414 int index; 415 Value value; 416 for_each_stack_value(s, index, value) { 417 fatal("state must be empty"); 418 } 419 for_each_local_value(s, index, value) { 420 fatal("state must be empty"); 421 } 422 #endif 423 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 424 continue; 425 } 426 427 int index; 428 Value value; 429 for_each_stack_value(s, index, value) { 430 assert(value->subst() == value, "missed substitution"); 431 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 432 walk(value); 433 assert(value->operand()->is_valid(), "must be evaluated now"); 434 } 435 } 436 437 int bci = s->bci(); 438 IRScope* scope = s->scope(); 439 ciMethod* method = scope->method(); 440 441 MethodLivenessResult liveness = method->liveness_at_bci(bci); 442 if (bci == SynchronizationEntryBCI) { 443 if (x->as_ExceptionObject() || x->as_Throw()) { 444 // all locals are dead on exit from the synthetic unlocker 445 liveness.clear(); 446 } else { 447 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 448 } 449 } 450 if (!liveness.is_valid()) { 451 // Degenerate or breakpointed method. 452 bailout("Degenerate or breakpointed method"); 453 } else { 454 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 455 for_each_local_value(s, index, value) { 456 assert(value->subst() == value, "missed substitution"); 457 if (liveness.at(index) && !value->type()->is_illegal()) { 458 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 459 walk(value); 460 assert(value->operand()->is_valid(), "must be evaluated now"); 461 } 462 } else { 463 // null out this local so that linear scan can assume that all non-null values are live. 464 s->invalidate_local(index); 465 } 466 } 467 } 468 } 469 470 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 471 } 472 473 474 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 475 return state_for(x, x->exception_state()); 476 } 477 478 479 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 480 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 481 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 482 * the class. */ 483 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 484 assert(info != nullptr, "info must be set if class is not loaded"); 485 __ klass2reg_patch(nullptr, r, info); 486 } else { 487 // no patching needed 488 __ metadata2reg(obj->constant_encoding(), r); 489 } 490 } 491 492 493 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 494 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 495 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 496 if (index->is_constant()) { 497 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 498 index->as_jint(), null_check_info); 499 __ branch(lir_cond_belowEqual, stub); // forward branch 500 } else { 501 cmp_reg_mem(lir_cond_aboveEqual, index, array, 502 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 503 __ branch(lir_cond_aboveEqual, stub); // forward branch 504 } 505 } 506 507 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 508 LIR_Opr result_op = result; 509 LIR_Opr left_op = left; 510 LIR_Opr right_op = right; 511 512 if (two_operand_lir_form && left_op != result_op) { 513 assert(right_op != result_op, "malformed"); 514 __ move(left_op, result_op); 515 left_op = result_op; 516 } 517 518 switch(code) { 519 case Bytecodes::_dadd: 520 case Bytecodes::_fadd: 521 case Bytecodes::_ladd: 522 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 523 case Bytecodes::_fmul: 524 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 525 526 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 527 528 case Bytecodes::_imul: 529 { 530 bool did_strength_reduce = false; 531 532 if (right->is_constant()) { 533 jint c = right->as_jint(); 534 if (c > 0 && is_power_of_2(c)) { 535 // do not need tmp here 536 __ shift_left(left_op, exact_log2(c), result_op); 537 did_strength_reduce = true; 538 } else { 539 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 540 } 541 } 542 // we couldn't strength reduce so just emit the multiply 543 if (!did_strength_reduce) { 544 __ mul(left_op, right_op, result_op); 545 } 546 } 547 break; 548 549 case Bytecodes::_dsub: 550 case Bytecodes::_fsub: 551 case Bytecodes::_lsub: 552 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 553 554 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 555 // ldiv and lrem are implemented with a direct runtime call 556 557 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 558 559 case Bytecodes::_drem: 560 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 561 562 default: ShouldNotReachHere(); 563 } 564 } 565 566 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 568 arithmetic_op(code, result, left, right, tmp); 569 } 570 571 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 573 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 574 } 575 576 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 578 arithmetic_op(code, result, left, right, tmp); 579 } 580 581 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 583 584 if (two_operand_lir_form && value != result_op 585 // Only 32bit right shifts require two operand form on S390. 586 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 587 assert(count != result_op, "malformed"); 588 __ move(value, result_op); 589 value = result_op; 590 } 591 592 assert(count->is_constant() || count->is_register(), "must be"); 593 switch(code) { 594 case Bytecodes::_ishl: 595 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 596 case Bytecodes::_ishr: 597 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 598 case Bytecodes::_iushr: 599 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 600 default: ShouldNotReachHere(); 601 } 602 } 603 604 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 606 if (two_operand_lir_form && left_op != result_op) { 607 assert(right_op != result_op, "malformed"); 608 __ move(left_op, result_op); 609 left_op = result_op; 610 } 611 612 switch(code) { 613 case Bytecodes::_iand: 614 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 615 616 case Bytecodes::_ior: 617 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 618 619 case Bytecodes::_ixor: 620 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 621 622 default: ShouldNotReachHere(); 623 } 624 } 625 626 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 628 if (!GenerateSynchronizationCode) return; 629 // for slow path, use debug info for state after successful locking 630 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 631 __ load_stack_address_monitor(monitor_no, lock); 632 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 633 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 634 } 635 636 637 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 638 if (!GenerateSynchronizationCode) return; 639 // setup registers 640 LIR_Opr hdr = lock; 641 lock = new_hdr; 642 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 643 __ load_stack_address_monitor(monitor_no, lock); 644 __ unlock_object(hdr, object, lock, scratch, slow_path); 645 } 646 647 #ifndef PRODUCT 648 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 649 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 650 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 651 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 652 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 653 } 654 } 655 #endif 656 657 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 658 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 659 // If klass is not loaded we do not know if the klass has finalizers: 660 if (UseFastNewInstance && klass->is_loaded() 661 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 662 663 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 664 665 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 666 667 assert(klass->is_loaded(), "must be loaded"); 668 // allocate space for instance 669 assert(klass->size_helper() > 0, "illegal instance size"); 670 const int instance_size = align_object_size(klass->size_helper()); 671 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 672 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 673 } else { 674 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 675 __ branch(lir_cond_always, slow_path); 676 __ branch_destination(slow_path->continuation()); 677 } 678 } 679 680 681 static bool is_constant_zero(Instruction* inst) { 682 IntConstant* c = inst->type()->as_IntConstant(); 683 if (c) { 684 return (c->value() == 0); 685 } 686 return false; 687 } 688 689 690 static bool positive_constant(Instruction* inst) { 691 IntConstant* c = inst->type()->as_IntConstant(); 692 if (c) { 693 return (c->value() >= 0); 694 } 695 return false; 696 } 697 698 699 static ciArrayKlass* as_array_klass(ciType* type) { 700 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 701 return (ciArrayKlass*)type; 702 } else { 703 return nullptr; 704 } 705 } 706 707 static ciType* phi_declared_type(Phi* phi) { 708 ciType* t = phi->operand_at(0)->declared_type(); 709 if (t == nullptr) { 710 return nullptr; 711 } 712 for(int i = 1; i < phi->operand_count(); i++) { 713 if (t != phi->operand_at(i)->declared_type()) { 714 return nullptr; 715 } 716 } 717 return t; 718 } 719 720 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 721 Instruction* src = x->argument_at(0); 722 Instruction* src_pos = x->argument_at(1); 723 Instruction* dst = x->argument_at(2); 724 Instruction* dst_pos = x->argument_at(3); 725 Instruction* length = x->argument_at(4); 726 727 // first try to identify the likely type of the arrays involved 728 ciArrayKlass* expected_type = nullptr; 729 bool is_exact = false, src_objarray = false, dst_objarray = false; 730 { 731 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 732 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 733 Phi* phi; 734 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 735 src_declared_type = as_array_klass(phi_declared_type(phi)); 736 } 737 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 738 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 739 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 740 dst_declared_type = as_array_klass(phi_declared_type(phi)); 741 } 742 743 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 744 // the types exactly match so the type is fully known 745 is_exact = true; 746 expected_type = src_exact_type; 747 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 748 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 749 ciArrayKlass* src_type = nullptr; 750 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 751 src_type = (ciArrayKlass*) src_exact_type; 752 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 753 src_type = (ciArrayKlass*) src_declared_type; 754 } 755 if (src_type != nullptr) { 756 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 757 is_exact = true; 758 expected_type = dst_type; 759 } 760 } 761 } 762 // at least pass along a good guess 763 if (expected_type == nullptr) expected_type = dst_exact_type; 764 if (expected_type == nullptr) expected_type = src_declared_type; 765 if (expected_type == nullptr) expected_type = dst_declared_type; 766 767 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 768 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 769 } 770 771 // if a probable array type has been identified, figure out if any 772 // of the required checks for a fast case can be elided. 773 int flags = LIR_OpArrayCopy::all_flags; 774 775 if (!src_objarray) 776 flags &= ~LIR_OpArrayCopy::src_objarray; 777 if (!dst_objarray) 778 flags &= ~LIR_OpArrayCopy::dst_objarray; 779 780 if (!x->arg_needs_null_check(0)) 781 flags &= ~LIR_OpArrayCopy::src_null_check; 782 if (!x->arg_needs_null_check(2)) 783 flags &= ~LIR_OpArrayCopy::dst_null_check; 784 785 786 if (expected_type != nullptr) { 787 Value length_limit = nullptr; 788 789 IfOp* ifop = length->as_IfOp(); 790 if (ifop != nullptr) { 791 // look for expressions like min(v, a.length) which ends up as 792 // x > y ? y : x or x >= y ? y : x 793 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 794 ifop->x() == ifop->fval() && 795 ifop->y() == ifop->tval()) { 796 length_limit = ifop->y(); 797 } 798 } 799 800 // try to skip null checks and range checks 801 NewArray* src_array = src->as_NewArray(); 802 if (src_array != nullptr) { 803 flags &= ~LIR_OpArrayCopy::src_null_check; 804 if (length_limit != nullptr && 805 src_array->length() == length_limit && 806 is_constant_zero(src_pos)) { 807 flags &= ~LIR_OpArrayCopy::src_range_check; 808 } 809 } 810 811 NewArray* dst_array = dst->as_NewArray(); 812 if (dst_array != nullptr) { 813 flags &= ~LIR_OpArrayCopy::dst_null_check; 814 if (length_limit != nullptr && 815 dst_array->length() == length_limit && 816 is_constant_zero(dst_pos)) { 817 flags &= ~LIR_OpArrayCopy::dst_range_check; 818 } 819 } 820 821 // check from incoming constant values 822 if (positive_constant(src_pos)) 823 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 824 if (positive_constant(dst_pos)) 825 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 826 if (positive_constant(length)) 827 flags &= ~LIR_OpArrayCopy::length_positive_check; 828 829 // see if the range check can be elided, which might also imply 830 // that src or dst is non-null. 831 ArrayLength* al = length->as_ArrayLength(); 832 if (al != nullptr) { 833 if (al->array() == src) { 834 // it's the length of the source array 835 flags &= ~LIR_OpArrayCopy::length_positive_check; 836 flags &= ~LIR_OpArrayCopy::src_null_check; 837 if (is_constant_zero(src_pos)) 838 flags &= ~LIR_OpArrayCopy::src_range_check; 839 } 840 if (al->array() == dst) { 841 // it's the length of the destination array 842 flags &= ~LIR_OpArrayCopy::length_positive_check; 843 flags &= ~LIR_OpArrayCopy::dst_null_check; 844 if (is_constant_zero(dst_pos)) 845 flags &= ~LIR_OpArrayCopy::dst_range_check; 846 } 847 } 848 if (is_exact) { 849 flags &= ~LIR_OpArrayCopy::type_check; 850 } 851 } 852 853 IntConstant* src_int = src_pos->type()->as_IntConstant(); 854 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 855 if (src_int && dst_int) { 856 int s_offs = src_int->value(); 857 int d_offs = dst_int->value(); 858 if (src_int->value() >= dst_int->value()) { 859 flags &= ~LIR_OpArrayCopy::overlapping; 860 } 861 if (expected_type != nullptr) { 862 BasicType t = expected_type->element_type()->basic_type(); 863 int element_size = type2aelembytes(t); 864 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 865 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 866 flags &= ~LIR_OpArrayCopy::unaligned; 867 } 868 } 869 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 870 // src and dest positions are the same, or dst is zero so assume 871 // nonoverlapping copy. 872 flags &= ~LIR_OpArrayCopy::overlapping; 873 } 874 875 if (src == dst) { 876 // moving within a single array so no type checks are needed 877 if (flags & LIR_OpArrayCopy::type_check) { 878 flags &= ~LIR_OpArrayCopy::type_check; 879 } 880 } 881 *flagsp = flags; 882 *expected_typep = (ciArrayKlass*)expected_type; 883 } 884 885 886 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 887 assert(opr->is_register(), "why spill if item is not register?"); 888 889 if (strict_fp_requires_explicit_rounding) { 890 #ifdef IA32 891 if (UseSSE < 1 && opr->is_single_fpu()) { 892 LIR_Opr result = new_register(T_FLOAT); 893 set_vreg_flag(result, must_start_in_memory); 894 assert(opr->is_register(), "only a register can be spilled"); 895 assert(opr->value_type()->is_float(), "rounding only for floats available"); 896 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 897 return result; 898 } 899 #else 900 Unimplemented(); 901 #endif // IA32 902 } 903 return opr; 904 } 905 906 907 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 908 assert(type2size[t] == type2size[value->type()], 909 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 910 if (!value->is_register()) { 911 // force into a register 912 LIR_Opr r = new_register(value->type()); 913 __ move(value, r); 914 value = r; 915 } 916 917 // create a spill location 918 LIR_Opr tmp = new_register(t); 919 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 920 921 // move from register to spill 922 __ move(value, tmp); 923 return tmp; 924 } 925 926 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 927 if (if_instr->should_profile()) { 928 ciMethod* method = if_instr->profiled_method(); 929 assert(method != nullptr, "method should be set if branch is profiled"); 930 ciMethodData* md = method->method_data_or_null(); 931 assert(md != nullptr, "Sanity"); 932 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 933 assert(data != nullptr, "must have profiling data"); 934 assert(data->is_BranchData(), "need BranchData for two-way branches"); 935 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 936 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 937 if (if_instr->is_swapped()) { 938 int t = taken_count_offset; 939 taken_count_offset = not_taken_count_offset; 940 not_taken_count_offset = t; 941 } 942 943 LIR_Opr md_reg = new_register(T_METADATA); 944 __ metadata2reg(md->constant_encoding(), md_reg); 945 946 LIR_Opr data_offset_reg = new_pointer_register(); 947 __ cmove(lir_cond(cond), 948 LIR_OprFact::intptrConst(taken_count_offset), 949 LIR_OprFact::intptrConst(not_taken_count_offset), 950 data_offset_reg, as_BasicType(if_instr->x()->type())); 951 952 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 953 LIR_Opr data_reg = new_pointer_register(); 954 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 955 __ move(data_addr, data_reg); 956 // Use leal instead of add to avoid destroying condition codes on x86 957 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 958 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 959 __ move(data_reg, data_addr); 960 } 961 } 962 963 // Phi technique: 964 // This is about passing live values from one basic block to the other. 965 // In code generated with Java it is rather rare that more than one 966 // value is on the stack from one basic block to the other. 967 // We optimize our technique for efficient passing of one value 968 // (of type long, int, double..) but it can be extended. 969 // When entering or leaving a basic block, all registers and all spill 970 // slots are release and empty. We use the released registers 971 // and spill slots to pass the live values from one block 972 // to the other. The topmost value, i.e., the value on TOS of expression 973 // stack is passed in registers. All other values are stored in spilling 974 // area. Every Phi has an index which designates its spill slot 975 // At exit of a basic block, we fill the register(s) and spill slots. 976 // At entry of a basic block, the block_prolog sets up the content of phi nodes 977 // and locks necessary registers and spilling slots. 978 979 980 // move current value to referenced phi function 981 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 982 Phi* phi = sux_val->as_Phi(); 983 // cur_val can be null without phi being null in conjunction with inlining 984 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 985 if (phi->is_local()) { 986 for (int i = 0; i < phi->operand_count(); i++) { 987 Value op = phi->operand_at(i); 988 if (op != nullptr && op->type()->is_illegal()) { 989 bailout("illegal phi operand"); 990 } 991 } 992 } 993 Phi* cur_phi = cur_val->as_Phi(); 994 if (cur_phi != nullptr && cur_phi->is_illegal()) { 995 // Phi and local would need to get invalidated 996 // (which is unexpected for Linear Scan). 997 // But this case is very rare so we simply bail out. 998 bailout("propagation of illegal phi"); 999 return; 1000 } 1001 LIR_Opr operand = cur_val->operand(); 1002 if (operand->is_illegal()) { 1003 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1004 "these can be produced lazily"); 1005 operand = operand_for_instruction(cur_val); 1006 } 1007 resolver->move(operand, operand_for_instruction(phi)); 1008 } 1009 } 1010 1011 1012 // Moves all stack values into their PHI position 1013 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1014 BlockBegin* bb = block(); 1015 if (bb->number_of_sux() == 1) { 1016 BlockBegin* sux = bb->sux_at(0); 1017 assert(sux->number_of_preds() > 0, "invalid CFG"); 1018 1019 // a block with only one predecessor never has phi functions 1020 if (sux->number_of_preds() > 1) { 1021 PhiResolver resolver(this); 1022 1023 ValueStack* sux_state = sux->state(); 1024 Value sux_value; 1025 int index; 1026 1027 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1028 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1029 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1030 1031 for_each_stack_value(sux_state, index, sux_value) { 1032 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1033 } 1034 1035 for_each_local_value(sux_state, index, sux_value) { 1036 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1037 } 1038 1039 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1040 } 1041 } 1042 } 1043 1044 1045 LIR_Opr LIRGenerator::new_register(BasicType type) { 1046 int vreg_num = _virtual_register_number; 1047 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1048 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1049 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1050 bailout("out of virtual registers in LIR generator"); 1051 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1052 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1053 _virtual_register_number = LIR_Opr::vreg_base; 1054 vreg_num = LIR_Opr::vreg_base; 1055 } 1056 } 1057 _virtual_register_number += 1; 1058 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1059 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1060 return vreg; 1061 } 1062 1063 1064 // Try to lock using register in hint 1065 LIR_Opr LIRGenerator::rlock(Value instr) { 1066 return new_register(instr->type()); 1067 } 1068 1069 1070 // does an rlock and sets result 1071 LIR_Opr LIRGenerator::rlock_result(Value x) { 1072 LIR_Opr reg = rlock(x); 1073 set_result(x, reg); 1074 return reg; 1075 } 1076 1077 1078 // does an rlock and sets result 1079 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1080 LIR_Opr reg; 1081 switch (type) { 1082 case T_BYTE: 1083 case T_BOOLEAN: 1084 reg = rlock_byte(type); 1085 break; 1086 default: 1087 reg = rlock(x); 1088 break; 1089 } 1090 1091 set_result(x, reg); 1092 return reg; 1093 } 1094 1095 1096 //--------------------------------------------------------------------- 1097 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1098 ObjectType* oc = value->type()->as_ObjectType(); 1099 if (oc) { 1100 return oc->constant_value(); 1101 } 1102 return nullptr; 1103 } 1104 1105 1106 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1107 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1108 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1109 1110 // no moves are created for phi functions at the begin of exception 1111 // handlers, so assign operands manually here 1112 for_each_phi_fun(block(), phi, 1113 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1114 1115 LIR_Opr thread_reg = getThreadPointer(); 1116 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1117 exceptionOopOpr()); 1118 __ move_wide(LIR_OprFact::oopConst(nullptr), 1119 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1120 __ move_wide(LIR_OprFact::oopConst(nullptr), 1121 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1122 1123 LIR_Opr result = new_register(T_OBJECT); 1124 __ move(exceptionOopOpr(), result); 1125 set_result(x, result); 1126 } 1127 1128 1129 //---------------------------------------------------------------------- 1130 //---------------------------------------------------------------------- 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 // visitor functions 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 //---------------------------------------------------------------------- 1138 1139 void LIRGenerator::do_Phi(Phi* x) { 1140 // phi functions are never visited directly 1141 ShouldNotReachHere(); 1142 } 1143 1144 1145 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1146 void LIRGenerator::do_Constant(Constant* x) { 1147 if (x->state_before() != nullptr) { 1148 // Any constant with a ValueStack requires patching so emit the patch here 1149 LIR_Opr reg = rlock_result(x); 1150 CodeEmitInfo* info = state_for(x, x->state_before()); 1151 __ oop2reg_patch(nullptr, reg, info); 1152 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1153 if (!x->is_pinned()) { 1154 // unpinned constants are handled specially so that they can be 1155 // put into registers when they are used multiple times within a 1156 // block. After the block completes their operand will be 1157 // cleared so that other blocks can't refer to that register. 1158 set_result(x, load_constant(x)); 1159 } else { 1160 LIR_Opr res = x->operand(); 1161 if (!res->is_valid()) { 1162 res = LIR_OprFact::value_type(x->type()); 1163 } 1164 if (res->is_constant()) { 1165 LIR_Opr reg = rlock_result(x); 1166 __ move(res, reg); 1167 } else { 1168 set_result(x, res); 1169 } 1170 } 1171 } else { 1172 set_result(x, LIR_OprFact::value_type(x->type())); 1173 } 1174 } 1175 1176 1177 void LIRGenerator::do_Local(Local* x) { 1178 // operand_for_instruction has the side effect of setting the result 1179 // so there's no need to do it here. 1180 operand_for_instruction(x); 1181 } 1182 1183 1184 void LIRGenerator::do_Return(Return* x) { 1185 if (compilation()->env()->dtrace_method_probes()) { 1186 BasicTypeList signature; 1187 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1188 signature.append(T_METADATA); // Method* 1189 LIR_OprList* args = new LIR_OprList(); 1190 args->append(getThreadPointer()); 1191 LIR_Opr meth = new_register(T_METADATA); 1192 __ metadata2reg(method()->constant_encoding(), meth); 1193 args->append(meth); 1194 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1195 } 1196 1197 if (x->type()->is_void()) { 1198 __ return_op(LIR_OprFact::illegalOpr); 1199 } else { 1200 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1201 LIRItem result(x->result(), this); 1202 1203 result.load_item_force(reg); 1204 __ return_op(result.result()); 1205 } 1206 set_no_result(x); 1207 } 1208 1209 // Example: ref.get() 1210 // Combination of LoadField and g1 pre-write barrier 1211 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1212 1213 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1214 1215 assert(x->number_of_arguments() == 1, "wrong type"); 1216 1217 LIRItem reference(x->argument_at(0), this); 1218 reference.load_item(); 1219 1220 // need to perform the null check on the reference object 1221 CodeEmitInfo* info = nullptr; 1222 if (x->needs_null_check()) { 1223 info = state_for(x); 1224 } 1225 1226 LIR_Opr result = rlock_result(x, T_OBJECT); 1227 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1228 reference, LIR_OprFact::intConst(referent_offset), result, 1229 nullptr, info); 1230 } 1231 1232 // Example: clazz.isInstance(object) 1233 void LIRGenerator::do_isInstance(Intrinsic* x) { 1234 assert(x->number_of_arguments() == 2, "wrong type"); 1235 1236 // TODO could try to substitute this node with an equivalent InstanceOf 1237 // if clazz is known to be a constant Class. This will pick up newly found 1238 // constants after HIR construction. I'll leave this to a future change. 1239 1240 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1241 // could follow the aastore example in a future change. 1242 1243 LIRItem clazz(x->argument_at(0), this); 1244 LIRItem object(x->argument_at(1), this); 1245 clazz.load_item(); 1246 object.load_item(); 1247 LIR_Opr result = rlock_result(x); 1248 1249 // need to perform null check on clazz 1250 if (x->needs_null_check()) { 1251 CodeEmitInfo* info = state_for(x); 1252 __ null_check(clazz.result(), info); 1253 } 1254 1255 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1256 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1257 x->type(), 1258 nullptr); // null CodeEmitInfo results in a leaf call 1259 __ move(call_result, result); 1260 } 1261 1262 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1263 __ load_klass(obj, klass, null_check_info); 1264 } 1265 1266 // Example: object.getClass () 1267 void LIRGenerator::do_getClass(Intrinsic* x) { 1268 assert(x->number_of_arguments() == 1, "wrong type"); 1269 1270 LIRItem rcvr(x->argument_at(0), this); 1271 rcvr.load_item(); 1272 LIR_Opr temp = new_register(T_ADDRESS); 1273 LIR_Opr result = rlock_result(x); 1274 1275 // need to perform the null check on the rcvr 1276 CodeEmitInfo* info = nullptr; 1277 if (x->needs_null_check()) { 1278 info = state_for(x); 1279 } 1280 1281 LIR_Opr klass = new_register(T_METADATA); 1282 load_klass(rcvr.result(), klass, info); 1283 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1284 // mirror = ((OopHandle)mirror)->resolve(); 1285 access_load(IN_NATIVE, T_OBJECT, 1286 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1287 } 1288 1289 // java.lang.Class::isPrimitive() 1290 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1291 assert(x->number_of_arguments() == 1, "wrong type"); 1292 1293 LIRItem rcvr(x->argument_at(0), this); 1294 rcvr.load_item(); 1295 LIR_Opr temp = new_register(T_METADATA); 1296 LIR_Opr result = rlock_result(x); 1297 1298 CodeEmitInfo* info = nullptr; 1299 if (x->needs_null_check()) { 1300 info = state_for(x); 1301 } 1302 1303 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1304 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(nullptr)); 1305 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1306 } 1307 1308 // Example: Foo.class.getModifiers() 1309 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1310 assert(x->number_of_arguments() == 1, "wrong type"); 1311 1312 LIRItem receiver(x->argument_at(0), this); 1313 receiver.load_item(); 1314 LIR_Opr result = rlock_result(x); 1315 1316 CodeEmitInfo* info = nullptr; 1317 if (x->needs_null_check()) { 1318 info = state_for(x); 1319 } 1320 1321 // While reading off the universal constant mirror is less efficient than doing 1322 // another branch and returning the constant answer, this branchless code runs into 1323 // much less risk of confusion for C1 register allocator. The choice of the universe 1324 // object here is correct as long as it returns the same modifiers we would expect 1325 // from the primitive class itself. See spec for Class.getModifiers that provides 1326 // the typed array klasses with similar modifiers as their component types. 1327 1328 Klass* univ_klass = Universe::byteArrayKlass(); 1329 assert(univ_klass->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1330 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass); 1331 1332 LIR_Opr recv_klass = new_register(T_METADATA); 1333 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1334 1335 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1336 LIR_Opr klass = new_register(T_METADATA); 1337 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(nullptr)); 1338 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1339 1340 // Get the answer. 1341 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1342 } 1343 1344 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1345 assert(x->number_of_arguments() == 3, "wrong type"); 1346 LIR_Opr result_reg = rlock_result(x); 1347 1348 LIRItem value(x->argument_at(2), this); 1349 value.load_item(); 1350 1351 LIR_Opr klass = new_register(T_METADATA); 1352 load_klass(value.result(), klass, nullptr); 1353 LIR_Opr layout = new_register(T_INT); 1354 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1355 1356 LabelObj* L_done = new LabelObj(); 1357 LabelObj* L_array = new LabelObj(); 1358 1359 __ cmp(lir_cond_lessEqual, layout, 0); 1360 __ branch(lir_cond_lessEqual, L_array->label()); 1361 1362 // Instance case: the layout helper gives us instance size almost directly, 1363 // but we need to mask out the _lh_instance_slow_path_bit. 1364 1365 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1366 1367 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1368 __ logical_and(layout, mask, layout); 1369 __ convert(Bytecodes::_i2l, layout, result_reg); 1370 1371 __ branch(lir_cond_always, L_done->label()); 1372 1373 // Array case: size is round(header + element_size*arraylength). 1374 // Since arraylength is different for every array instance, we have to 1375 // compute the whole thing at runtime. 1376 1377 __ branch_destination(L_array->label()); 1378 1379 int round_mask = MinObjAlignmentInBytes - 1; 1380 1381 // Figure out header sizes first. 1382 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1383 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1384 1385 LIR_Opr header_size = new_register(T_INT); 1386 __ move(layout, header_size); 1387 LIR_Opr tmp = new_register(T_INT); 1388 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1389 __ logical_and(header_size, hsm, header_size); 1390 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1391 1392 // Figure out the array length in bytes 1393 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1394 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1395 __ logical_and(layout, l2esm, layout); 1396 1397 LIR_Opr length_int = new_register(T_INT); 1398 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1399 1400 #ifdef _LP64 1401 LIR_Opr length = new_register(T_LONG); 1402 __ convert(Bytecodes::_i2l, length_int, length); 1403 #endif 1404 1405 // Shift-left awkwardness. Normally it is just: 1406 // __ shift_left(length, layout, length); 1407 // But C1 cannot perform shift_left with non-constant count, so we end up 1408 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1409 // longs, so we have to act on ints. 1410 LabelObj* L_shift_loop = new LabelObj(); 1411 LabelObj* L_shift_exit = new LabelObj(); 1412 1413 __ branch_destination(L_shift_loop->label()); 1414 __ cmp(lir_cond_equal, layout, 0); 1415 __ branch(lir_cond_equal, L_shift_exit->label()); 1416 1417 #ifdef _LP64 1418 __ shift_left(length, 1, length); 1419 #else 1420 __ shift_left(length_int, 1, length_int); 1421 #endif 1422 1423 __ sub(layout, LIR_OprFact::intConst(1), layout); 1424 1425 __ branch(lir_cond_always, L_shift_loop->label()); 1426 __ branch_destination(L_shift_exit->label()); 1427 1428 // Mix all up, round, and push to the result. 1429 #ifdef _LP64 1430 LIR_Opr header_size_long = new_register(T_LONG); 1431 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1432 __ add(length, header_size_long, length); 1433 if (round_mask != 0) { 1434 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1435 __ logical_and(length, round_mask_opr, length); 1436 } 1437 __ move(length, result_reg); 1438 #else 1439 __ add(length_int, header_size, length_int); 1440 if (round_mask != 0) { 1441 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1442 __ logical_and(length_int, round_mask_opr, length_int); 1443 } 1444 __ convert(Bytecodes::_i2l, length_int, result_reg); 1445 #endif 1446 1447 __ branch_destination(L_done->label()); 1448 } 1449 1450 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1451 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1452 } 1453 1454 // Example: Thread.currentCarrierThread() 1455 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1456 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1457 } 1458 1459 void LIRGenerator::do_vthread(Intrinsic* x) { 1460 do_JavaThreadField(x, JavaThread::vthread_offset()); 1461 } 1462 1463 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1464 assert(x->number_of_arguments() == 0, "wrong type"); 1465 LIR_Opr temp = new_register(T_ADDRESS); 1466 LIR_Opr reg = rlock_result(x); 1467 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1468 access_load(IN_NATIVE, T_OBJECT, 1469 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1470 } 1471 1472 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1473 assert(x->number_of_arguments() == 1, "wrong type"); 1474 LIRItem receiver(x->argument_at(0), this); 1475 1476 receiver.load_item(); 1477 BasicTypeList signature; 1478 signature.append(T_OBJECT); // receiver 1479 LIR_OprList* args = new LIR_OprList(); 1480 args->append(receiver.result()); 1481 CodeEmitInfo* info = state_for(x, x->state()); 1482 call_runtime(&signature, args, 1483 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1484 voidType, info); 1485 1486 set_no_result(x); 1487 } 1488 1489 1490 //------------------------local access-------------------------------------- 1491 1492 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1493 if (x->operand()->is_illegal()) { 1494 Constant* c = x->as_Constant(); 1495 if (c != nullptr) { 1496 x->set_operand(LIR_OprFact::value_type(c->type())); 1497 } else { 1498 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1499 // allocate a virtual register for this local or phi 1500 x->set_operand(rlock(x)); 1501 #ifdef ASSERT 1502 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1503 #endif 1504 } 1505 } 1506 return x->operand(); 1507 } 1508 1509 #ifdef ASSERT 1510 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1511 if (reg_num < _instruction_for_operand.length()) { 1512 return _instruction_for_operand.at(reg_num); 1513 } 1514 return nullptr; 1515 } 1516 #endif 1517 1518 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1519 if (_vreg_flags.size_in_bits() == 0) { 1520 BitMap2D temp(100, num_vreg_flags); 1521 _vreg_flags = temp; 1522 } 1523 _vreg_flags.at_put_grow(vreg_num, f, true); 1524 } 1525 1526 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1527 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1528 return false; 1529 } 1530 return _vreg_flags.at(vreg_num, f); 1531 } 1532 1533 1534 // Block local constant handling. This code is useful for keeping 1535 // unpinned constants and constants which aren't exposed in the IR in 1536 // registers. Unpinned Constant instructions have their operands 1537 // cleared when the block is finished so that other blocks can't end 1538 // up referring to their registers. 1539 1540 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1541 assert(!x->is_pinned(), "only for unpinned constants"); 1542 _unpinned_constants.append(x); 1543 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1544 } 1545 1546 1547 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1548 BasicType t = c->type(); 1549 for (int i = 0; i < _constants.length(); i++) { 1550 LIR_Const* other = _constants.at(i); 1551 if (t == other->type()) { 1552 switch (t) { 1553 case T_INT: 1554 case T_FLOAT: 1555 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1556 break; 1557 case T_LONG: 1558 case T_DOUBLE: 1559 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1560 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1561 break; 1562 case T_OBJECT: 1563 if (c->as_jobject() != other->as_jobject()) continue; 1564 break; 1565 default: 1566 break; 1567 } 1568 return _reg_for_constants.at(i); 1569 } 1570 } 1571 1572 LIR_Opr result = new_register(t); 1573 __ move((LIR_Opr)c, result); 1574 _constants.append(c); 1575 _reg_for_constants.append(result); 1576 return result; 1577 } 1578 1579 //------------------------field access-------------------------------------- 1580 1581 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1582 assert(x->number_of_arguments() == 4, "wrong type"); 1583 LIRItem obj (x->argument_at(0), this); // object 1584 LIRItem offset(x->argument_at(1), this); // offset of field 1585 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1586 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1587 assert(obj.type()->tag() == objectTag, "invalid type"); 1588 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1589 assert(val.type()->tag() == type->tag(), "invalid type"); 1590 1591 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1592 obj, offset, cmp, val); 1593 set_result(x, result); 1594 } 1595 1596 // Comment copied form templateTable_i486.cpp 1597 // ---------------------------------------------------------------------------- 1598 // Volatile variables demand their effects be made known to all CPU's in 1599 // order. Store buffers on most chips allow reads & writes to reorder; the 1600 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1601 // memory barrier (i.e., it's not sufficient that the interpreter does not 1602 // reorder volatile references, the hardware also must not reorder them). 1603 // 1604 // According to the new Java Memory Model (JMM): 1605 // (1) All volatiles are serialized wrt to each other. 1606 // ALSO reads & writes act as acquire & release, so: 1607 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1608 // the read float up to before the read. It's OK for non-volatile memory refs 1609 // that happen before the volatile read to float down below it. 1610 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1611 // that happen BEFORE the write float down to after the write. It's OK for 1612 // non-volatile memory refs that happen after the volatile write to float up 1613 // before it. 1614 // 1615 // We only put in barriers around volatile refs (they are expensive), not 1616 // _between_ memory refs (that would require us to track the flavor of the 1617 // previous memory refs). Requirements (2) and (3) require some barriers 1618 // before volatile stores and after volatile loads. These nearly cover 1619 // requirement (1) but miss the volatile-store-volatile-load case. This final 1620 // case is placed after volatile-stores although it could just as well go 1621 // before volatile-loads. 1622 1623 1624 void LIRGenerator::do_StoreField(StoreField* x) { 1625 bool needs_patching = x->needs_patching(); 1626 bool is_volatile = x->field()->is_volatile(); 1627 BasicType field_type = x->field_type(); 1628 1629 CodeEmitInfo* info = nullptr; 1630 if (needs_patching) { 1631 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1632 info = state_for(x, x->state_before()); 1633 } else if (x->needs_null_check()) { 1634 NullCheck* nc = x->explicit_null_check(); 1635 if (nc == nullptr) { 1636 info = state_for(x); 1637 } else { 1638 info = state_for(nc); 1639 } 1640 } 1641 1642 LIRItem object(x->obj(), this); 1643 LIRItem value(x->value(), this); 1644 1645 object.load_item(); 1646 1647 if (is_volatile || needs_patching) { 1648 // load item if field is volatile (fewer special cases for volatiles) 1649 // load item if field not initialized 1650 // load item if field not constant 1651 // because of code patching we cannot inline constants 1652 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1653 value.load_byte_item(); 1654 } else { 1655 value.load_item(); 1656 } 1657 } else { 1658 value.load_for_store(field_type); 1659 } 1660 1661 set_no_result(x); 1662 1663 #ifndef PRODUCT 1664 if (PrintNotLoaded && needs_patching) { 1665 tty->print_cr(" ###class not loaded at store_%s bci %d", 1666 x->is_static() ? "static" : "field", x->printable_bci()); 1667 } 1668 #endif 1669 1670 if (x->needs_null_check() && 1671 (needs_patching || 1672 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1673 // Emit an explicit null check because the offset is too large. 1674 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1675 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1676 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1677 } 1678 1679 DecoratorSet decorators = IN_HEAP; 1680 if (is_volatile) { 1681 decorators |= MO_SEQ_CST; 1682 } 1683 if (needs_patching) { 1684 decorators |= C1_NEEDS_PATCHING; 1685 } 1686 1687 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1688 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1689 } 1690 1691 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1692 assert(x->is_pinned(),""); 1693 bool needs_range_check = x->compute_needs_range_check(); 1694 bool use_length = x->length() != nullptr; 1695 bool obj_store = is_reference_type(x->elt_type()); 1696 bool needs_store_check = obj_store && (x->value()->as_Constant() == nullptr || 1697 !get_jobject_constant(x->value())->is_null_object() || 1698 x->should_profile()); 1699 1700 LIRItem array(x->array(), this); 1701 LIRItem index(x->index(), this); 1702 LIRItem value(x->value(), this); 1703 LIRItem length(this); 1704 1705 array.load_item(); 1706 index.load_nonconstant(); 1707 1708 if (use_length && needs_range_check) { 1709 length.set_instruction(x->length()); 1710 length.load_item(); 1711 1712 } 1713 if (needs_store_check || x->check_boolean()) { 1714 value.load_item(); 1715 } else { 1716 value.load_for_store(x->elt_type()); 1717 } 1718 1719 set_no_result(x); 1720 1721 // the CodeEmitInfo must be duplicated for each different 1722 // LIR-instruction because spilling can occur anywhere between two 1723 // instructions and so the debug information must be different 1724 CodeEmitInfo* range_check_info = state_for(x); 1725 CodeEmitInfo* null_check_info = nullptr; 1726 if (x->needs_null_check()) { 1727 null_check_info = new CodeEmitInfo(range_check_info); 1728 } 1729 1730 if (needs_range_check) { 1731 if (use_length) { 1732 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1733 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1734 } else { 1735 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1736 // range_check also does the null check 1737 null_check_info = nullptr; 1738 } 1739 } 1740 1741 if (GenerateArrayStoreCheck && needs_store_check) { 1742 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1743 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1744 } 1745 1746 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1747 if (x->check_boolean()) { 1748 decorators |= C1_MASK_BOOLEAN; 1749 } 1750 1751 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1752 nullptr, null_check_info); 1753 } 1754 1755 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1756 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1757 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1758 decorators |= ACCESS_READ; 1759 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1760 if (access.is_raw()) { 1761 _barrier_set->BarrierSetC1::load_at(access, result); 1762 } else { 1763 _barrier_set->load_at(access, result); 1764 } 1765 } 1766 1767 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1768 LIR_Opr addr, LIR_Opr result) { 1769 decorators |= ACCESS_READ; 1770 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1771 access.set_resolved_addr(addr); 1772 if (access.is_raw()) { 1773 _barrier_set->BarrierSetC1::load(access, result); 1774 } else { 1775 _barrier_set->load(access, result); 1776 } 1777 } 1778 1779 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1780 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1781 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1782 decorators |= ACCESS_WRITE; 1783 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1784 if (access.is_raw()) { 1785 _barrier_set->BarrierSetC1::store_at(access, value); 1786 } else { 1787 _barrier_set->store_at(access, value); 1788 } 1789 } 1790 1791 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1792 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1793 decorators |= ACCESS_READ; 1794 decorators |= ACCESS_WRITE; 1795 // Atomic operations are SEQ_CST by default 1796 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1797 LIRAccess access(this, decorators, base, offset, type); 1798 if (access.is_raw()) { 1799 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1800 } else { 1801 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1802 } 1803 } 1804 1805 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1806 LIRItem& base, LIRItem& offset, LIRItem& value) { 1807 decorators |= ACCESS_READ; 1808 decorators |= ACCESS_WRITE; 1809 // Atomic operations are SEQ_CST by default 1810 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1811 LIRAccess access(this, decorators, base, offset, type); 1812 if (access.is_raw()) { 1813 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1814 } else { 1815 return _barrier_set->atomic_xchg_at(access, value); 1816 } 1817 } 1818 1819 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1820 LIRItem& base, LIRItem& offset, LIRItem& value) { 1821 decorators |= ACCESS_READ; 1822 decorators |= ACCESS_WRITE; 1823 // Atomic operations are SEQ_CST by default 1824 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1825 LIRAccess access(this, decorators, base, offset, type); 1826 if (access.is_raw()) { 1827 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1828 } else { 1829 return _barrier_set->atomic_add_at(access, value); 1830 } 1831 } 1832 1833 void LIRGenerator::do_LoadField(LoadField* x) { 1834 bool needs_patching = x->needs_patching(); 1835 bool is_volatile = x->field()->is_volatile(); 1836 BasicType field_type = x->field_type(); 1837 1838 CodeEmitInfo* info = nullptr; 1839 if (needs_patching) { 1840 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1841 info = state_for(x, x->state_before()); 1842 } else if (x->needs_null_check()) { 1843 NullCheck* nc = x->explicit_null_check(); 1844 if (nc == nullptr) { 1845 info = state_for(x); 1846 } else { 1847 info = state_for(nc); 1848 } 1849 } 1850 1851 LIRItem object(x->obj(), this); 1852 1853 object.load_item(); 1854 1855 #ifndef PRODUCT 1856 if (PrintNotLoaded && needs_patching) { 1857 tty->print_cr(" ###class not loaded at load_%s bci %d", 1858 x->is_static() ? "static" : "field", x->printable_bci()); 1859 } 1860 #endif 1861 1862 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1863 if (x->needs_null_check() && 1864 (needs_patching || 1865 MacroAssembler::needs_explicit_null_check(x->offset()) || 1866 stress_deopt)) { 1867 LIR_Opr obj = object.result(); 1868 if (stress_deopt) { 1869 obj = new_register(T_OBJECT); 1870 __ move(LIR_OprFact::oopConst(nullptr), obj); 1871 } 1872 // Emit an explicit null check because the offset is too large. 1873 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1874 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1875 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1876 } 1877 1878 DecoratorSet decorators = IN_HEAP; 1879 if (is_volatile) { 1880 decorators |= MO_SEQ_CST; 1881 } 1882 if (needs_patching) { 1883 decorators |= C1_NEEDS_PATCHING; 1884 } 1885 1886 LIR_Opr result = rlock_result(x, field_type); 1887 access_load_at(decorators, field_type, 1888 object, LIR_OprFact::intConst(x->offset()), result, 1889 info ? new CodeEmitInfo(info) : nullptr, info); 1890 } 1891 1892 // int/long jdk.internal.util.Preconditions.checkIndex 1893 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 1894 assert(x->number_of_arguments() == 3, "wrong type"); 1895 LIRItem index(x->argument_at(0), this); 1896 LIRItem length(x->argument_at(1), this); 1897 LIRItem oobef(x->argument_at(2), this); 1898 1899 index.load_item(); 1900 length.load_item(); 1901 oobef.load_item(); 1902 1903 LIR_Opr result = rlock_result(x); 1904 // x->state() is created from copy_state_for_exception, it does not contains arguments 1905 // we should prepare them before entering into interpreter mode due to deoptimization. 1906 ValueStack* state = x->state(); 1907 for (int i = 0; i < x->number_of_arguments(); i++) { 1908 Value arg = x->argument_at(i); 1909 state->push(arg->type(), arg); 1910 } 1911 CodeEmitInfo* info = state_for(x, state); 1912 1913 LIR_Opr len = length.result(); 1914 LIR_Opr zero; 1915 if (type == T_INT) { 1916 zero = LIR_OprFact::intConst(0); 1917 if (length.result()->is_constant()){ 1918 len = LIR_OprFact::intConst(length.result()->as_jint()); 1919 } 1920 } else { 1921 assert(type == T_LONG, "sanity check"); 1922 zero = LIR_OprFact::longConst(0); 1923 if (length.result()->is_constant()){ 1924 len = LIR_OprFact::longConst(length.result()->as_jlong()); 1925 } 1926 } 1927 // C1 can not handle the case that comparing index with constant value while condition 1928 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 1929 LIR_Opr zero_reg = new_register(type); 1930 __ move(zero, zero_reg); 1931 #if defined(X86) && !defined(_LP64) 1932 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 1933 LIR_Opr index_copy = new_register(index.type()); 1934 // index >= 0 1935 __ move(index.result(), index_copy); 1936 __ cmp(lir_cond_less, index_copy, zero_reg); 1937 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1938 Deoptimization::Action_make_not_entrant)); 1939 // index < length 1940 __ move(index.result(), index_copy); 1941 __ cmp(lir_cond_greaterEqual, index_copy, len); 1942 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1943 Deoptimization::Action_make_not_entrant)); 1944 #else 1945 // index >= 0 1946 __ cmp(lir_cond_less, index.result(), zero_reg); 1947 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1948 Deoptimization::Action_make_not_entrant)); 1949 // index < length 1950 __ cmp(lir_cond_greaterEqual, index.result(), len); 1951 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 1952 Deoptimization::Action_make_not_entrant)); 1953 #endif 1954 __ move(index.result(), result); 1955 } 1956 1957 //------------------------array access-------------------------------------- 1958 1959 1960 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1961 LIRItem array(x->array(), this); 1962 array.load_item(); 1963 LIR_Opr reg = rlock_result(x); 1964 1965 CodeEmitInfo* info = nullptr; 1966 if (x->needs_null_check()) { 1967 NullCheck* nc = x->explicit_null_check(); 1968 if (nc == nullptr) { 1969 info = state_for(x); 1970 } else { 1971 info = state_for(nc); 1972 } 1973 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1974 LIR_Opr obj = new_register(T_OBJECT); 1975 __ move(LIR_OprFact::oopConst(nullptr), obj); 1976 __ null_check(obj, new CodeEmitInfo(info)); 1977 } 1978 } 1979 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1980 } 1981 1982 1983 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1984 bool use_length = x->length() != nullptr; 1985 LIRItem array(x->array(), this); 1986 LIRItem index(x->index(), this); 1987 LIRItem length(this); 1988 bool needs_range_check = x->compute_needs_range_check(); 1989 1990 if (use_length && needs_range_check) { 1991 length.set_instruction(x->length()); 1992 length.load_item(); 1993 } 1994 1995 array.load_item(); 1996 if (index.is_constant() && can_inline_as_constant(x->index())) { 1997 // let it be a constant 1998 index.dont_load_item(); 1999 } else { 2000 index.load_item(); 2001 } 2002 2003 CodeEmitInfo* range_check_info = state_for(x); 2004 CodeEmitInfo* null_check_info = nullptr; 2005 if (x->needs_null_check()) { 2006 NullCheck* nc = x->explicit_null_check(); 2007 if (nc != nullptr) { 2008 null_check_info = state_for(nc); 2009 } else { 2010 null_check_info = range_check_info; 2011 } 2012 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2013 LIR_Opr obj = new_register(T_OBJECT); 2014 __ move(LIR_OprFact::oopConst(nullptr), obj); 2015 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2016 } 2017 } 2018 2019 if (needs_range_check) { 2020 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2021 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2022 } else if (use_length) { 2023 // TODO: use a (modified) version of array_range_check that does not require a 2024 // constant length to be loaded to a register 2025 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2026 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2027 } else { 2028 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2029 // The range check performs the null check, so clear it out for the load 2030 null_check_info = nullptr; 2031 } 2032 } 2033 2034 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2035 2036 LIR_Opr result = rlock_result(x, x->elt_type()); 2037 access_load_at(decorators, x->elt_type(), 2038 array, index.result(), result, 2039 nullptr, null_check_info); 2040 } 2041 2042 2043 void LIRGenerator::do_NullCheck(NullCheck* x) { 2044 if (x->can_trap()) { 2045 LIRItem value(x->obj(), this); 2046 value.load_item(); 2047 CodeEmitInfo* info = state_for(x); 2048 __ null_check(value.result(), info); 2049 } 2050 } 2051 2052 2053 void LIRGenerator::do_TypeCast(TypeCast* x) { 2054 LIRItem value(x->obj(), this); 2055 value.load_item(); 2056 // the result is the same as from the node we are casting 2057 set_result(x, value.result()); 2058 } 2059 2060 2061 void LIRGenerator::do_Throw(Throw* x) { 2062 LIRItem exception(x->exception(), this); 2063 exception.load_item(); 2064 set_no_result(x); 2065 LIR_Opr exception_opr = exception.result(); 2066 CodeEmitInfo* info = state_for(x, x->state()); 2067 2068 #ifndef PRODUCT 2069 if (PrintC1Statistics) { 2070 increment_counter(Runtime1::throw_count_address(), T_INT); 2071 } 2072 #endif 2073 2074 // check if the instruction has an xhandler in any of the nested scopes 2075 bool unwind = false; 2076 if (info->exception_handlers()->length() == 0) { 2077 // this throw is not inside an xhandler 2078 unwind = true; 2079 } else { 2080 // get some idea of the throw type 2081 bool type_is_exact = true; 2082 ciType* throw_type = x->exception()->exact_type(); 2083 if (throw_type == nullptr) { 2084 type_is_exact = false; 2085 throw_type = x->exception()->declared_type(); 2086 } 2087 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2088 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2089 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2090 } 2091 } 2092 2093 // do null check before moving exception oop into fixed register 2094 // to avoid a fixed interval with an oop during the null check. 2095 // Use a copy of the CodeEmitInfo because debug information is 2096 // different for null_check and throw. 2097 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2098 // if the exception object wasn't created using new then it might be null. 2099 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2100 } 2101 2102 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2103 // we need to go through the exception lookup path to get JVMTI 2104 // notification done 2105 unwind = false; 2106 } 2107 2108 // move exception oop into fixed register 2109 __ move(exception_opr, exceptionOopOpr()); 2110 2111 if (unwind) { 2112 __ unwind_exception(exceptionOopOpr()); 2113 } else { 2114 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2115 } 2116 } 2117 2118 2119 void LIRGenerator::do_RoundFP(RoundFP* x) { 2120 assert(strict_fp_requires_explicit_rounding, "not required"); 2121 2122 LIRItem input(x->input(), this); 2123 input.load_item(); 2124 LIR_Opr input_opr = input.result(); 2125 assert(input_opr->is_register(), "why round if value is not in a register?"); 2126 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2127 if (input_opr->is_single_fpu()) { 2128 set_result(x, round_item(input_opr)); // This code path not currently taken 2129 } else { 2130 LIR_Opr result = new_register(T_DOUBLE); 2131 set_vreg_flag(result, must_start_in_memory); 2132 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2133 set_result(x, result); 2134 } 2135 } 2136 2137 2138 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2139 BasicType type = x->basic_type(); 2140 LIRItem src(x->object(), this); 2141 LIRItem off(x->offset(), this); 2142 2143 off.load_item(); 2144 src.load_item(); 2145 2146 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2147 2148 if (x->is_volatile()) { 2149 decorators |= MO_SEQ_CST; 2150 } 2151 if (type == T_BOOLEAN) { 2152 decorators |= C1_MASK_BOOLEAN; 2153 } 2154 if (is_reference_type(type)) { 2155 decorators |= ON_UNKNOWN_OOP_REF; 2156 } 2157 2158 LIR_Opr result = rlock_result(x, type); 2159 if (!x->is_raw()) { 2160 access_load_at(decorators, type, src, off.result(), result); 2161 } else { 2162 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2163 // It reads the value from [src + offset] directly. 2164 #ifdef _LP64 2165 LIR_Opr offset = new_register(T_LONG); 2166 __ convert(Bytecodes::_i2l, off.result(), offset); 2167 #else 2168 LIR_Opr offset = off.result(); 2169 #endif 2170 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2171 if (is_reference_type(type)) { 2172 __ move_wide(addr, result); 2173 } else { 2174 __ move(addr, result); 2175 } 2176 } 2177 } 2178 2179 2180 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2181 BasicType type = x->basic_type(); 2182 LIRItem src(x->object(), this); 2183 LIRItem off(x->offset(), this); 2184 LIRItem data(x->value(), this); 2185 2186 src.load_item(); 2187 if (type == T_BOOLEAN || type == T_BYTE) { 2188 data.load_byte_item(); 2189 } else { 2190 data.load_item(); 2191 } 2192 off.load_item(); 2193 2194 set_no_result(x); 2195 2196 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2197 if (is_reference_type(type)) { 2198 decorators |= ON_UNKNOWN_OOP_REF; 2199 } 2200 if (x->is_volatile()) { 2201 decorators |= MO_SEQ_CST; 2202 } 2203 access_store_at(decorators, type, src, off.result(), data.result()); 2204 } 2205 2206 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2207 BasicType type = x->basic_type(); 2208 LIRItem src(x->object(), this); 2209 LIRItem off(x->offset(), this); 2210 LIRItem value(x->value(), this); 2211 2212 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2213 2214 if (is_reference_type(type)) { 2215 decorators |= ON_UNKNOWN_OOP_REF; 2216 } 2217 2218 LIR_Opr result; 2219 if (x->is_add()) { 2220 result = access_atomic_add_at(decorators, type, src, off, value); 2221 } else { 2222 result = access_atomic_xchg_at(decorators, type, src, off, value); 2223 } 2224 set_result(x, result); 2225 } 2226 2227 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2228 int lng = x->length(); 2229 2230 for (int i = 0; i < lng; i++) { 2231 C1SwitchRange* one_range = x->at(i); 2232 int low_key = one_range->low_key(); 2233 int high_key = one_range->high_key(); 2234 BlockBegin* dest = one_range->sux(); 2235 if (low_key == high_key) { 2236 __ cmp(lir_cond_equal, value, low_key); 2237 __ branch(lir_cond_equal, dest); 2238 } else if (high_key - low_key == 1) { 2239 __ cmp(lir_cond_equal, value, low_key); 2240 __ branch(lir_cond_equal, dest); 2241 __ cmp(lir_cond_equal, value, high_key); 2242 __ branch(lir_cond_equal, dest); 2243 } else { 2244 LabelObj* L = new LabelObj(); 2245 __ cmp(lir_cond_less, value, low_key); 2246 __ branch(lir_cond_less, L->label()); 2247 __ cmp(lir_cond_lessEqual, value, high_key); 2248 __ branch(lir_cond_lessEqual, dest); 2249 __ branch_destination(L->label()); 2250 } 2251 } 2252 __ jump(default_sux); 2253 } 2254 2255 2256 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2257 SwitchRangeList* res = new SwitchRangeList(); 2258 int len = x->length(); 2259 if (len > 0) { 2260 BlockBegin* sux = x->sux_at(0); 2261 int low = x->lo_key(); 2262 BlockBegin* default_sux = x->default_sux(); 2263 C1SwitchRange* range = new C1SwitchRange(low, sux); 2264 for (int i = 0; i < len; i++) { 2265 int key = low + i; 2266 BlockBegin* new_sux = x->sux_at(i); 2267 if (sux == new_sux) { 2268 // still in same range 2269 range->set_high_key(key); 2270 } else { 2271 // skip tests which explicitly dispatch to the default 2272 if (sux != default_sux) { 2273 res->append(range); 2274 } 2275 range = new C1SwitchRange(key, new_sux); 2276 } 2277 sux = new_sux; 2278 } 2279 if (res->length() == 0 || res->last() != range) res->append(range); 2280 } 2281 return res; 2282 } 2283 2284 2285 // we expect the keys to be sorted by increasing value 2286 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2287 SwitchRangeList* res = new SwitchRangeList(); 2288 int len = x->length(); 2289 if (len > 0) { 2290 BlockBegin* default_sux = x->default_sux(); 2291 int key = x->key_at(0); 2292 BlockBegin* sux = x->sux_at(0); 2293 C1SwitchRange* range = new C1SwitchRange(key, sux); 2294 for (int i = 1; i < len; i++) { 2295 int new_key = x->key_at(i); 2296 BlockBegin* new_sux = x->sux_at(i); 2297 if (key+1 == new_key && sux == new_sux) { 2298 // still in same range 2299 range->set_high_key(new_key); 2300 } else { 2301 // skip tests which explicitly dispatch to the default 2302 if (range->sux() != default_sux) { 2303 res->append(range); 2304 } 2305 range = new C1SwitchRange(new_key, new_sux); 2306 } 2307 key = new_key; 2308 sux = new_sux; 2309 } 2310 if (res->length() == 0 || res->last() != range) res->append(range); 2311 } 2312 return res; 2313 } 2314 2315 2316 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2317 LIRItem tag(x->tag(), this); 2318 tag.load_item(); 2319 set_no_result(x); 2320 2321 if (x->is_safepoint()) { 2322 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2323 } 2324 2325 // move values into phi locations 2326 move_to_phi(x->state()); 2327 2328 int lo_key = x->lo_key(); 2329 int len = x->length(); 2330 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2331 LIR_Opr value = tag.result(); 2332 2333 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2334 ciMethod* method = x->state()->scope()->method(); 2335 ciMethodData* md = method->method_data_or_null(); 2336 assert(md != nullptr, "Sanity"); 2337 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2338 assert(data != nullptr, "must have profiling data"); 2339 assert(data->is_MultiBranchData(), "bad profile data?"); 2340 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2341 LIR_Opr md_reg = new_register(T_METADATA); 2342 __ metadata2reg(md->constant_encoding(), md_reg); 2343 LIR_Opr data_offset_reg = new_pointer_register(); 2344 LIR_Opr tmp_reg = new_pointer_register(); 2345 2346 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2347 for (int i = 0; i < len; i++) { 2348 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2349 __ cmp(lir_cond_equal, value, i + lo_key); 2350 __ move(data_offset_reg, tmp_reg); 2351 __ cmove(lir_cond_equal, 2352 LIR_OprFact::intptrConst(count_offset), 2353 tmp_reg, 2354 data_offset_reg, T_INT); 2355 } 2356 2357 LIR_Opr data_reg = new_pointer_register(); 2358 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2359 __ move(data_addr, data_reg); 2360 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2361 __ move(data_reg, data_addr); 2362 } 2363 2364 if (UseTableRanges) { 2365 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2366 } else { 2367 for (int i = 0; i < len; i++) { 2368 __ cmp(lir_cond_equal, value, i + lo_key); 2369 __ branch(lir_cond_equal, x->sux_at(i)); 2370 } 2371 __ jump(x->default_sux()); 2372 } 2373 } 2374 2375 2376 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2377 LIRItem tag(x->tag(), this); 2378 tag.load_item(); 2379 set_no_result(x); 2380 2381 if (x->is_safepoint()) { 2382 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2383 } 2384 2385 // move values into phi locations 2386 move_to_phi(x->state()); 2387 2388 LIR_Opr value = tag.result(); 2389 int len = x->length(); 2390 2391 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2392 ciMethod* method = x->state()->scope()->method(); 2393 ciMethodData* md = method->method_data_or_null(); 2394 assert(md != nullptr, "Sanity"); 2395 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2396 assert(data != nullptr, "must have profiling data"); 2397 assert(data->is_MultiBranchData(), "bad profile data?"); 2398 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2399 LIR_Opr md_reg = new_register(T_METADATA); 2400 __ metadata2reg(md->constant_encoding(), md_reg); 2401 LIR_Opr data_offset_reg = new_pointer_register(); 2402 LIR_Opr tmp_reg = new_pointer_register(); 2403 2404 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2405 for (int i = 0; i < len; i++) { 2406 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2407 __ cmp(lir_cond_equal, value, x->key_at(i)); 2408 __ move(data_offset_reg, tmp_reg); 2409 __ cmove(lir_cond_equal, 2410 LIR_OprFact::intptrConst(count_offset), 2411 tmp_reg, 2412 data_offset_reg, T_INT); 2413 } 2414 2415 LIR_Opr data_reg = new_pointer_register(); 2416 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2417 __ move(data_addr, data_reg); 2418 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2419 __ move(data_reg, data_addr); 2420 } 2421 2422 if (UseTableRanges) { 2423 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2424 } else { 2425 int len = x->length(); 2426 for (int i = 0; i < len; i++) { 2427 __ cmp(lir_cond_equal, value, x->key_at(i)); 2428 __ branch(lir_cond_equal, x->sux_at(i)); 2429 } 2430 __ jump(x->default_sux()); 2431 } 2432 } 2433 2434 2435 void LIRGenerator::do_Goto(Goto* x) { 2436 set_no_result(x); 2437 2438 if (block()->next()->as_OsrEntry()) { 2439 // need to free up storage used for OSR entry point 2440 LIR_Opr osrBuffer = block()->next()->operand(); 2441 BasicTypeList signature; 2442 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2443 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2444 __ move(osrBuffer, cc->args()->at(0)); 2445 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2446 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2447 } 2448 2449 if (x->is_safepoint()) { 2450 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2451 2452 // increment backedge counter if needed 2453 CodeEmitInfo* info = state_for(x, state); 2454 increment_backedge_counter(info, x->profiled_bci()); 2455 CodeEmitInfo* safepoint_info = state_for(x, state); 2456 __ safepoint(safepoint_poll_register(), safepoint_info); 2457 } 2458 2459 // Gotos can be folded Ifs, handle this case. 2460 if (x->should_profile()) { 2461 ciMethod* method = x->profiled_method(); 2462 assert(method != nullptr, "method should be set if branch is profiled"); 2463 ciMethodData* md = method->method_data_or_null(); 2464 assert(md != nullptr, "Sanity"); 2465 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2466 assert(data != nullptr, "must have profiling data"); 2467 int offset; 2468 if (x->direction() == Goto::taken) { 2469 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2470 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2471 } else if (x->direction() == Goto::not_taken) { 2472 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2473 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2474 } else { 2475 assert(data->is_JumpData(), "need JumpData for branches"); 2476 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2477 } 2478 LIR_Opr md_reg = new_register(T_METADATA); 2479 __ metadata2reg(md->constant_encoding(), md_reg); 2480 2481 increment_counter(new LIR_Address(md_reg, offset, 2482 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2483 } 2484 2485 // emit phi-instruction move after safepoint since this simplifies 2486 // describing the state as the safepoint. 2487 move_to_phi(x->state()); 2488 2489 __ jump(x->default_sux()); 2490 } 2491 2492 /** 2493 * Emit profiling code if needed for arguments, parameters, return value types 2494 * 2495 * @param md MDO the code will update at runtime 2496 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2497 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2498 * @param profiled_k current profile 2499 * @param obj IR node for the object to be profiled 2500 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2501 * Set once we find an update to make and use for next ones. 2502 * @param not_null true if we know obj cannot be null 2503 * @param signature_at_call_k signature at call for obj 2504 * @param callee_signature_k signature of callee for obj 2505 * at call and callee signatures differ at method handle call 2506 * @return the only klass we know will ever be seen at this profile point 2507 */ 2508 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2509 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2510 ciKlass* callee_signature_k) { 2511 ciKlass* result = nullptr; 2512 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2513 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2514 // known not to be null or null bit already set and already set to 2515 // unknown: nothing we can do to improve profiling 2516 if (!do_null && !do_update) { 2517 return result; 2518 } 2519 2520 ciKlass* exact_klass = nullptr; 2521 Compilation* comp = Compilation::current(); 2522 if (do_update) { 2523 // try to find exact type, using CHA if possible, so that loading 2524 // the klass from the object can be avoided 2525 ciType* type = obj->exact_type(); 2526 if (type == nullptr) { 2527 type = obj->declared_type(); 2528 type = comp->cha_exact_type(type); 2529 } 2530 assert(type == nullptr || type->is_klass(), "type should be class"); 2531 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2532 2533 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2534 } 2535 2536 if (!do_null && !do_update) { 2537 return result; 2538 } 2539 2540 ciKlass* exact_signature_k = nullptr; 2541 if (do_update) { 2542 // Is the type from the signature exact (the only one possible)? 2543 exact_signature_k = signature_at_call_k->exact_klass(); 2544 if (exact_signature_k == nullptr) { 2545 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2546 } else { 2547 result = exact_signature_k; 2548 // Known statically. No need to emit any code: prevent 2549 // LIR_Assembler::emit_profile_type() from emitting useless code 2550 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2551 } 2552 // exact_klass and exact_signature_k can be both non null but 2553 // different if exact_klass is loaded after the ciObject for 2554 // exact_signature_k is created. 2555 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2556 // sometimes the type of the signature is better than the best type 2557 // the compiler has 2558 exact_klass = exact_signature_k; 2559 } 2560 if (callee_signature_k != nullptr && 2561 callee_signature_k != signature_at_call_k) { 2562 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2563 if (improved_klass == nullptr) { 2564 improved_klass = comp->cha_exact_type(callee_signature_k); 2565 } 2566 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2567 exact_klass = exact_signature_k; 2568 } 2569 } 2570 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2571 } 2572 2573 if (!do_null && !do_update) { 2574 return result; 2575 } 2576 2577 if (mdp == LIR_OprFact::illegalOpr) { 2578 mdp = new_register(T_METADATA); 2579 __ metadata2reg(md->constant_encoding(), mdp); 2580 if (md_base_offset != 0) { 2581 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2582 mdp = new_pointer_register(); 2583 __ leal(LIR_OprFact::address(base_type_address), mdp); 2584 } 2585 } 2586 LIRItem value(obj, this); 2587 value.load_item(); 2588 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2589 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2590 return result; 2591 } 2592 2593 // profile parameters on entry to the root of the compilation 2594 void LIRGenerator::profile_parameters(Base* x) { 2595 if (compilation()->profile_parameters()) { 2596 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2597 ciMethodData* md = scope()->method()->method_data_or_null(); 2598 assert(md != nullptr, "Sanity"); 2599 2600 if (md->parameters_type_data() != nullptr) { 2601 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2602 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2603 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2604 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2605 LIR_Opr src = args->at(i); 2606 assert(!src->is_illegal(), "check"); 2607 BasicType t = src->type(); 2608 if (is_reference_type(t)) { 2609 intptr_t profiled_k = parameters->type(j); 2610 Local* local = x->state()->local_at(java_index)->as_Local(); 2611 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2612 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2613 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2614 // If the profile is known statically set it once for all and do not emit any code 2615 if (exact != nullptr) { 2616 md->set_parameter_type(j, exact); 2617 } 2618 j++; 2619 } 2620 java_index += type2size[t]; 2621 } 2622 } 2623 } 2624 } 2625 2626 void LIRGenerator::do_Base(Base* x) { 2627 __ std_entry(LIR_OprFact::illegalOpr); 2628 // Emit moves from physical registers / stack slots to virtual registers 2629 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2630 IRScope* irScope = compilation()->hir()->top_scope(); 2631 int java_index = 0; 2632 for (int i = 0; i < args->length(); i++) { 2633 LIR_Opr src = args->at(i); 2634 assert(!src->is_illegal(), "check"); 2635 BasicType t = src->type(); 2636 2637 // Types which are smaller than int are passed as int, so 2638 // correct the type which passed. 2639 switch (t) { 2640 case T_BYTE: 2641 case T_BOOLEAN: 2642 case T_SHORT: 2643 case T_CHAR: 2644 t = T_INT; 2645 break; 2646 default: 2647 break; 2648 } 2649 2650 LIR_Opr dest = new_register(t); 2651 __ move(src, dest); 2652 2653 // Assign new location to Local instruction for this local 2654 Local* local = x->state()->local_at(java_index)->as_Local(); 2655 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2656 #ifndef __SOFTFP__ 2657 // The java calling convention passes double as long and float as int. 2658 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2659 #endif // __SOFTFP__ 2660 local->set_operand(dest); 2661 #ifdef ASSERT 2662 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2663 #endif 2664 java_index += type2size[t]; 2665 } 2666 2667 if (compilation()->env()->dtrace_method_probes()) { 2668 BasicTypeList signature; 2669 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2670 signature.append(T_METADATA); // Method* 2671 LIR_OprList* args = new LIR_OprList(); 2672 args->append(getThreadPointer()); 2673 LIR_Opr meth = new_register(T_METADATA); 2674 __ metadata2reg(method()->constant_encoding(), meth); 2675 args->append(meth); 2676 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 2677 } 2678 2679 if (method()->is_synchronized()) { 2680 LIR_Opr obj; 2681 if (method()->is_static()) { 2682 obj = new_register(T_OBJECT); 2683 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2684 } else { 2685 Local* receiver = x->state()->local_at(0)->as_Local(); 2686 assert(receiver != nullptr, "must already exist"); 2687 obj = receiver->operand(); 2688 } 2689 assert(obj->is_valid(), "must be valid"); 2690 2691 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2692 LIR_Opr lock = syncLockOpr(); 2693 __ load_stack_address_monitor(0, lock); 2694 2695 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 2696 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2697 2698 // receiver is guaranteed non-null so don't need CodeEmitInfo 2699 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 2700 } 2701 } 2702 // increment invocation counters if needed 2703 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2704 profile_parameters(x); 2705 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 2706 increment_invocation_counter(info); 2707 } 2708 2709 // all blocks with a successor must end with an unconditional jump 2710 // to the successor even if they are consecutive 2711 __ jump(x->default_sux()); 2712 } 2713 2714 2715 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2716 // construct our frame and model the production of incoming pointer 2717 // to the OSR buffer. 2718 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2719 LIR_Opr result = rlock_result(x); 2720 __ move(LIR_Assembler::osrBufferPointer(), result); 2721 } 2722 2723 2724 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2725 assert(args->length() == arg_list->length(), 2726 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2727 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2728 LIRItem* param = args->at(i); 2729 LIR_Opr loc = arg_list->at(i); 2730 if (loc->is_register()) { 2731 param->load_item_force(loc); 2732 } else { 2733 LIR_Address* addr = loc->as_address_ptr(); 2734 param->load_for_store(addr->type()); 2735 if (addr->type() == T_OBJECT) { 2736 __ move_wide(param->result(), addr); 2737 } else 2738 __ move(param->result(), addr); 2739 } 2740 } 2741 2742 if (x->has_receiver()) { 2743 LIRItem* receiver = args->at(0); 2744 LIR_Opr loc = arg_list->at(0); 2745 if (loc->is_register()) { 2746 receiver->load_item_force(loc); 2747 } else { 2748 assert(loc->is_address(), "just checking"); 2749 receiver->load_for_store(T_OBJECT); 2750 __ move_wide(receiver->result(), loc->as_address_ptr()); 2751 } 2752 } 2753 } 2754 2755 2756 // Visits all arguments, returns appropriate items without loading them 2757 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2758 LIRItemList* argument_items = new LIRItemList(); 2759 if (x->has_receiver()) { 2760 LIRItem* receiver = new LIRItem(x->receiver(), this); 2761 argument_items->append(receiver); 2762 } 2763 for (int i = 0; i < x->number_of_arguments(); i++) { 2764 LIRItem* param = new LIRItem(x->argument_at(i), this); 2765 argument_items->append(param); 2766 } 2767 return argument_items; 2768 } 2769 2770 2771 // The invoke with receiver has following phases: 2772 // a) traverse and load/lock receiver; 2773 // b) traverse all arguments -> item-array (invoke_visit_argument) 2774 // c) push receiver on stack 2775 // d) load each of the items and push on stack 2776 // e) unlock receiver 2777 // f) move receiver into receiver-register %o0 2778 // g) lock result registers and emit call operation 2779 // 2780 // Before issuing a call, we must spill-save all values on stack 2781 // that are in caller-save register. "spill-save" moves those registers 2782 // either in a free callee-save register or spills them if no free 2783 // callee save register is available. 2784 // 2785 // The problem is where to invoke spill-save. 2786 // - if invoked between e) and f), we may lock callee save 2787 // register in "spill-save" that destroys the receiver register 2788 // before f) is executed 2789 // - if we rearrange f) to be earlier (by loading %o0) it 2790 // may destroy a value on the stack that is currently in %o0 2791 // and is waiting to be spilled 2792 // - if we keep the receiver locked while doing spill-save, 2793 // we cannot spill it as it is spill-locked 2794 // 2795 void LIRGenerator::do_Invoke(Invoke* x) { 2796 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2797 2798 LIR_OprList* arg_list = cc->args(); 2799 LIRItemList* args = invoke_visit_arguments(x); 2800 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2801 2802 // setup result register 2803 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2804 if (x->type() != voidType) { 2805 result_register = result_register_for(x->type()); 2806 } 2807 2808 CodeEmitInfo* info = state_for(x, x->state()); 2809 2810 invoke_load_arguments(x, args, arg_list); 2811 2812 if (x->has_receiver()) { 2813 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2814 receiver = args->at(0)->result(); 2815 } 2816 2817 // emit invoke code 2818 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2819 2820 // JSR 292 2821 // Preserve the SP over MethodHandle call sites, if needed. 2822 ciMethod* target = x->target(); 2823 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2824 target->is_method_handle_intrinsic() || 2825 target->is_compiled_lambda_form()); 2826 if (is_method_handle_invoke) { 2827 info->set_is_method_handle_invoke(true); 2828 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2829 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2830 } 2831 } 2832 2833 switch (x->code()) { 2834 case Bytecodes::_invokestatic: 2835 __ call_static(target, result_register, 2836 SharedRuntime::get_resolve_static_call_stub(), 2837 arg_list, info); 2838 break; 2839 case Bytecodes::_invokespecial: 2840 case Bytecodes::_invokevirtual: 2841 case Bytecodes::_invokeinterface: 2842 // for loaded and final (method or class) target we still produce an inline cache, 2843 // in order to be able to call mixed mode 2844 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2845 __ call_opt_virtual(target, receiver, result_register, 2846 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2847 arg_list, info); 2848 } else { 2849 __ call_icvirtual(target, receiver, result_register, 2850 SharedRuntime::get_resolve_virtual_call_stub(), 2851 arg_list, info); 2852 } 2853 break; 2854 case Bytecodes::_invokedynamic: { 2855 __ call_dynamic(target, receiver, result_register, 2856 SharedRuntime::get_resolve_static_call_stub(), 2857 arg_list, info); 2858 break; 2859 } 2860 default: 2861 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2862 break; 2863 } 2864 2865 // JSR 292 2866 // Restore the SP after MethodHandle call sites, if needed. 2867 if (is_method_handle_invoke 2868 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2869 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2870 } 2871 2872 if (result_register->is_valid()) { 2873 LIR_Opr result = rlock_result(x); 2874 __ move(result_register, result); 2875 } 2876 } 2877 2878 2879 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2880 assert(x->number_of_arguments() == 1, "wrong type"); 2881 LIRItem value (x->argument_at(0), this); 2882 LIR_Opr reg = rlock_result(x); 2883 value.load_item(); 2884 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2885 __ move(tmp, reg); 2886 } 2887 2888 2889 2890 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2891 void LIRGenerator::do_IfOp(IfOp* x) { 2892 #ifdef ASSERT 2893 { 2894 ValueTag xtag = x->x()->type()->tag(); 2895 ValueTag ttag = x->tval()->type()->tag(); 2896 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2897 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2898 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2899 } 2900 #endif 2901 2902 LIRItem left(x->x(), this); 2903 LIRItem right(x->y(), this); 2904 left.load_item(); 2905 if (can_inline_as_constant(right.value())) { 2906 right.dont_load_item(); 2907 } else { 2908 right.load_item(); 2909 } 2910 2911 LIRItem t_val(x->tval(), this); 2912 LIRItem f_val(x->fval(), this); 2913 t_val.dont_load_item(); 2914 f_val.dont_load_item(); 2915 LIR_Opr reg = rlock_result(x); 2916 2917 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2918 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2919 } 2920 2921 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2922 assert(x->number_of_arguments() == 0, "wrong type"); 2923 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2924 BasicTypeList signature; 2925 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2926 LIR_Opr reg = result_register_for(x->type()); 2927 __ call_runtime_leaf(routine, getThreadTemp(), 2928 reg, new LIR_OprList()); 2929 LIR_Opr result = rlock_result(x); 2930 __ move(reg, result); 2931 } 2932 2933 2934 2935 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 2936 switch (x->id()) { 2937 case vmIntrinsics::_intBitsToFloat : 2938 case vmIntrinsics::_doubleToRawLongBits : 2939 case vmIntrinsics::_longBitsToDouble : 2940 case vmIntrinsics::_floatToRawIntBits : { 2941 do_FPIntrinsics(x); 2942 break; 2943 } 2944 2945 #ifdef JFR_HAVE_INTRINSICS 2946 case vmIntrinsics::_counterTime: 2947 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 2948 break; 2949 #endif 2950 2951 case vmIntrinsics::_currentTimeMillis: 2952 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 2953 break; 2954 2955 case vmIntrinsics::_nanoTime: 2956 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 2957 break; 2958 2959 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 2960 case vmIntrinsics::_isInstance: do_isInstance(x); break; 2961 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 2962 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 2963 case vmIntrinsics::_getClass: do_getClass(x); break; 2964 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 2965 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 2966 case vmIntrinsics::_currentThread: do_vthread(x); break; 2967 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 2968 2969 case vmIntrinsics::_dlog: // fall through 2970 case vmIntrinsics::_dlog10: // fall through 2971 case vmIntrinsics::_dabs: // fall through 2972 case vmIntrinsics::_dsqrt: // fall through 2973 case vmIntrinsics::_dsqrt_strict: // fall through 2974 case vmIntrinsics::_dtan: // fall through 2975 case vmIntrinsics::_dtanh: // fall through 2976 case vmIntrinsics::_dsin : // fall through 2977 case vmIntrinsics::_dcos : // fall through 2978 case vmIntrinsics::_dexp : // fall through 2979 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 2980 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 2981 2982 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 2983 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 2984 2985 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 2986 case vmIntrinsics::_floatToFloat16: // fall through 2987 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 2988 2989 case vmIntrinsics::_Preconditions_checkIndex: 2990 do_PreconditionsCheckIndex(x, T_INT); 2991 break; 2992 case vmIntrinsics::_Preconditions_checkLongIndex: 2993 do_PreconditionsCheckIndex(x, T_LONG); 2994 break; 2995 2996 case vmIntrinsics::_compareAndSetReference: 2997 do_CompareAndSwap(x, objectType); 2998 break; 2999 case vmIntrinsics::_compareAndSetInt: 3000 do_CompareAndSwap(x, intType); 3001 break; 3002 case vmIntrinsics::_compareAndSetLong: 3003 do_CompareAndSwap(x, longType); 3004 break; 3005 3006 case vmIntrinsics::_loadFence : 3007 __ membar_acquire(); 3008 break; 3009 case vmIntrinsics::_storeFence: 3010 __ membar_release(); 3011 break; 3012 case vmIntrinsics::_storeStoreFence: 3013 __ membar_storestore(); 3014 break; 3015 case vmIntrinsics::_fullFence : 3016 __ membar(); 3017 break; 3018 case vmIntrinsics::_onSpinWait: 3019 __ on_spin_wait(); 3020 break; 3021 case vmIntrinsics::_Reference_get: 3022 do_Reference_get(x); 3023 break; 3024 3025 case vmIntrinsics::_updateCRC32: 3026 case vmIntrinsics::_updateBytesCRC32: 3027 case vmIntrinsics::_updateByteBufferCRC32: 3028 do_update_CRC32(x); 3029 break; 3030 3031 case vmIntrinsics::_updateBytesCRC32C: 3032 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3033 do_update_CRC32C(x); 3034 break; 3035 3036 case vmIntrinsics::_vectorizedMismatch: 3037 do_vectorizedMismatch(x); 3038 break; 3039 3040 case vmIntrinsics::_blackhole: 3041 do_blackhole(x); 3042 break; 3043 3044 default: ShouldNotReachHere(); break; 3045 } 3046 } 3047 3048 void LIRGenerator::profile_arguments(ProfileCall* x) { 3049 if (compilation()->profile_arguments()) { 3050 int bci = x->bci_of_invoke(); 3051 ciMethodData* md = x->method()->method_data_or_null(); 3052 assert(md != nullptr, "Sanity"); 3053 ciProfileData* data = md->bci_to_data(bci); 3054 if (data != nullptr) { 3055 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3056 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3057 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3058 int base_offset = md->byte_offset_of_slot(data, extra); 3059 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3060 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3061 3062 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3063 int start = 0; 3064 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3065 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3066 // first argument is not profiled at call (method handle invoke) 3067 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3068 start = 1; 3069 } 3070 ciSignature* callee_signature = x->callee()->signature(); 3071 // method handle call to virtual method 3072 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3073 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3074 3075 bool ignored_will_link; 3076 ciSignature* signature_at_call = nullptr; 3077 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3078 ciSignatureStream signature_at_call_stream(signature_at_call); 3079 3080 // if called through method handle invoke, some arguments may have been popped 3081 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3082 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3083 ciKlass* exact = profile_type(md, base_offset, off, 3084 args->type(i), x->profiled_arg_at(i+start), mdp, 3085 !x->arg_needs_null_check(i+start), 3086 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3087 if (exact != nullptr) { 3088 md->set_argument_type(bci, i, exact); 3089 } 3090 } 3091 } else { 3092 #ifdef ASSERT 3093 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3094 int n = x->nb_profiled_args(); 3095 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3096 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3097 "only at JSR292 bytecodes"); 3098 #endif 3099 } 3100 } 3101 } 3102 } 3103 3104 // profile parameters on entry to an inlined method 3105 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3106 if (compilation()->profile_parameters() && x->inlined()) { 3107 ciMethodData* md = x->callee()->method_data_or_null(); 3108 if (md != nullptr) { 3109 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3110 if (parameters_type_data != nullptr) { 3111 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3112 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3113 bool has_receiver = !x->callee()->is_static(); 3114 ciSignature* sig = x->callee()->signature(); 3115 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3116 int i = 0; // to iterate on the Instructions 3117 Value arg = x->recv(); 3118 bool not_null = false; 3119 int bci = x->bci_of_invoke(); 3120 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3121 // The first parameter is the receiver so that's what we start 3122 // with if it exists. One exception is method handle call to 3123 // virtual method: the receiver is in the args list 3124 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3125 i = 1; 3126 arg = x->profiled_arg_at(0); 3127 not_null = !x->arg_needs_null_check(0); 3128 } 3129 int k = 0; // to iterate on the profile data 3130 for (;;) { 3131 intptr_t profiled_k = parameters->type(k); 3132 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3133 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3134 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3135 // If the profile is known statically set it once for all and do not emit any code 3136 if (exact != nullptr) { 3137 md->set_parameter_type(k, exact); 3138 } 3139 k++; 3140 if (k >= parameters_type_data->number_of_parameters()) { 3141 #ifdef ASSERT 3142 int extra = 0; 3143 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3144 x->nb_profiled_args() >= TypeProfileParmsLimit && 3145 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3146 extra += 1; 3147 } 3148 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3149 #endif 3150 break; 3151 } 3152 arg = x->profiled_arg_at(i); 3153 not_null = !x->arg_needs_null_check(i); 3154 i++; 3155 } 3156 } 3157 } 3158 } 3159 } 3160 3161 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3162 // Need recv in a temporary register so it interferes with the other temporaries 3163 LIR_Opr recv = LIR_OprFact::illegalOpr; 3164 LIR_Opr mdo = new_register(T_METADATA); 3165 // tmp is used to hold the counters on SPARC 3166 LIR_Opr tmp = new_pointer_register(); 3167 3168 if (x->nb_profiled_args() > 0) { 3169 profile_arguments(x); 3170 } 3171 3172 // profile parameters on inlined method entry including receiver 3173 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3174 profile_parameters_at_call(x); 3175 } 3176 3177 if (x->recv() != nullptr) { 3178 LIRItem value(x->recv(), this); 3179 value.load_item(); 3180 recv = new_register(T_OBJECT); 3181 __ move(value.result(), recv); 3182 } 3183 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3184 } 3185 3186 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3187 int bci = x->bci_of_invoke(); 3188 ciMethodData* md = x->method()->method_data_or_null(); 3189 assert(md != nullptr, "Sanity"); 3190 ciProfileData* data = md->bci_to_data(bci); 3191 if (data != nullptr) { 3192 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3193 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3194 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3195 3196 bool ignored_will_link; 3197 ciSignature* signature_at_call = nullptr; 3198 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3199 3200 // The offset within the MDO of the entry to update may be too large 3201 // to be used in load/store instructions on some platforms. So have 3202 // profile_type() compute the address of the profile in a register. 3203 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3204 ret->type(), x->ret(), mdp, 3205 !x->needs_null_check(), 3206 signature_at_call->return_type()->as_klass(), 3207 x->callee()->signature()->return_type()->as_klass()); 3208 if (exact != nullptr) { 3209 md->set_return_type(bci, exact); 3210 } 3211 } 3212 } 3213 3214 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3215 // We can safely ignore accessors here, since c2 will inline them anyway, 3216 // accessors are also always mature. 3217 if (!x->inlinee()->is_accessor()) { 3218 CodeEmitInfo* info = state_for(x, x->state(), true); 3219 // Notify the runtime very infrequently only to take care of counter overflows 3220 int freq_log = Tier23InlineeNotifyFreqLog; 3221 double scale; 3222 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3223 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3224 } 3225 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3226 } 3227 } 3228 3229 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3230 if (compilation()->is_profiling()) { 3231 #if defined(X86) && !defined(_LP64) 3232 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3233 LIR_Opr left_copy = new_register(left->type()); 3234 __ move(left, left_copy); 3235 __ cmp(cond, left_copy, right); 3236 #else 3237 __ cmp(cond, left, right); 3238 #endif 3239 LIR_Opr step = new_register(T_INT); 3240 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3241 LIR_Opr zero = LIR_OprFact::intConst(0); 3242 __ cmove(cond, 3243 (left_bci < bci) ? plus_one : zero, 3244 (right_bci < bci) ? plus_one : zero, 3245 step, left->type()); 3246 increment_backedge_counter(info, step, bci); 3247 } 3248 } 3249 3250 3251 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3252 int freq_log = 0; 3253 int level = compilation()->env()->comp_level(); 3254 if (level == CompLevel_limited_profile) { 3255 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3256 } else if (level == CompLevel_full_profile) { 3257 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3258 } else { 3259 ShouldNotReachHere(); 3260 } 3261 // Increment the appropriate invocation/backedge counter and notify the runtime. 3262 double scale; 3263 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3264 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3265 } 3266 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3267 } 3268 3269 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3270 ciMethod *method, LIR_Opr step, int frequency, 3271 int bci, bool backedge, bool notify) { 3272 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3273 int level = _compilation->env()->comp_level(); 3274 assert(level > CompLevel_simple, "Shouldn't be here"); 3275 3276 int offset = -1; 3277 LIR_Opr counter_holder; 3278 if (level == CompLevel_limited_profile) { 3279 MethodCounters* counters_adr = method->ensure_method_counters(); 3280 if (counters_adr == nullptr) { 3281 bailout("method counters allocation failed"); 3282 return; 3283 } 3284 if (SCCache::is_on()) { 3285 counter_holder = new_register(T_METADATA); 3286 __ metadata2reg(counters_adr, counter_holder); 3287 } else { 3288 counter_holder = new_pointer_register(); 3289 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3290 } 3291 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3292 MethodCounters::invocation_counter_offset()); 3293 } else if (level == CompLevel_full_profile) { 3294 counter_holder = new_register(T_METADATA); 3295 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3296 MethodData::invocation_counter_offset()); 3297 ciMethodData* md = method->method_data_or_null(); 3298 assert(md != nullptr, "Sanity"); 3299 __ metadata2reg(md->constant_encoding(), counter_holder); 3300 } else { 3301 ShouldNotReachHere(); 3302 } 3303 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3304 LIR_Opr result = new_register(T_INT); 3305 __ load(counter, result); 3306 __ add(result, step, result); 3307 __ store(result, counter); 3308 if (notify && (!backedge || UseOnStackReplacement)) { 3309 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3310 // The bci for info can point to cmp for if's we want the if bci 3311 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3312 int freq = frequency << InvocationCounter::count_shift; 3313 if (freq == 0) { 3314 if (!step->is_constant()) { 3315 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3316 __ branch(lir_cond_notEqual, overflow); 3317 } else { 3318 __ branch(lir_cond_always, overflow); 3319 } 3320 } else { 3321 LIR_Opr mask = load_immediate(freq, T_INT); 3322 if (!step->is_constant()) { 3323 // If step is 0, make sure the overflow check below always fails 3324 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3325 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3326 } 3327 __ logical_and(result, mask, result); 3328 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3329 __ branch(lir_cond_equal, overflow); 3330 } 3331 __ branch_destination(overflow->continuation()); 3332 } 3333 } 3334 3335 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3336 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3337 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3338 3339 if (x->pass_thread()) { 3340 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3341 args->append(getThreadPointer()); 3342 } 3343 3344 for (int i = 0; i < x->number_of_arguments(); i++) { 3345 Value a = x->argument_at(i); 3346 LIRItem* item = new LIRItem(a, this); 3347 item->load_item(); 3348 args->append(item->result()); 3349 signature->append(as_BasicType(a->type())); 3350 } 3351 3352 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3353 if (x->type() == voidType) { 3354 set_no_result(x); 3355 } else { 3356 __ move(result, rlock_result(x)); 3357 } 3358 } 3359 3360 #ifdef ASSERT 3361 void LIRGenerator::do_Assert(Assert *x) { 3362 ValueTag tag = x->x()->type()->tag(); 3363 If::Condition cond = x->cond(); 3364 3365 LIRItem xitem(x->x(), this); 3366 LIRItem yitem(x->y(), this); 3367 LIRItem* xin = &xitem; 3368 LIRItem* yin = &yitem; 3369 3370 assert(tag == intTag, "Only integer assertions are valid!"); 3371 3372 xin->load_item(); 3373 yin->dont_load_item(); 3374 3375 set_no_result(x); 3376 3377 LIR_Opr left = xin->result(); 3378 LIR_Opr right = yin->result(); 3379 3380 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3381 } 3382 #endif 3383 3384 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3385 3386 3387 Instruction *a = x->x(); 3388 Instruction *b = x->y(); 3389 if (!a || StressRangeCheckElimination) { 3390 assert(!b || StressRangeCheckElimination, "B must also be null"); 3391 3392 CodeEmitInfo *info = state_for(x, x->state()); 3393 CodeStub* stub = new PredicateFailedStub(info); 3394 3395 __ jump(stub); 3396 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3397 int a_int = a->type()->as_IntConstant()->value(); 3398 int b_int = b->type()->as_IntConstant()->value(); 3399 3400 bool ok = false; 3401 3402 switch(x->cond()) { 3403 case Instruction::eql: ok = (a_int == b_int); break; 3404 case Instruction::neq: ok = (a_int != b_int); break; 3405 case Instruction::lss: ok = (a_int < b_int); break; 3406 case Instruction::leq: ok = (a_int <= b_int); break; 3407 case Instruction::gtr: ok = (a_int > b_int); break; 3408 case Instruction::geq: ok = (a_int >= b_int); break; 3409 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3410 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3411 default: ShouldNotReachHere(); 3412 } 3413 3414 if (ok) { 3415 3416 CodeEmitInfo *info = state_for(x, x->state()); 3417 CodeStub* stub = new PredicateFailedStub(info); 3418 3419 __ jump(stub); 3420 } 3421 } else { 3422 3423 ValueTag tag = x->x()->type()->tag(); 3424 If::Condition cond = x->cond(); 3425 LIRItem xitem(x->x(), this); 3426 LIRItem yitem(x->y(), this); 3427 LIRItem* xin = &xitem; 3428 LIRItem* yin = &yitem; 3429 3430 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3431 3432 xin->load_item(); 3433 yin->dont_load_item(); 3434 set_no_result(x); 3435 3436 LIR_Opr left = xin->result(); 3437 LIR_Opr right = yin->result(); 3438 3439 CodeEmitInfo *info = state_for(x, x->state()); 3440 CodeStub* stub = new PredicateFailedStub(info); 3441 3442 __ cmp(lir_cond(cond), left, right); 3443 __ branch(lir_cond(cond), stub); 3444 } 3445 } 3446 3447 void LIRGenerator::do_blackhole(Intrinsic *x) { 3448 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3449 for (int c = 0; c < x->number_of_arguments(); c++) { 3450 // Load the argument 3451 LIRItem vitem(x->argument_at(c), this); 3452 vitem.load_item(); 3453 // ...and leave it unused. 3454 } 3455 } 3456 3457 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3458 LIRItemList args(1); 3459 LIRItem value(arg1, this); 3460 args.append(&value); 3461 BasicTypeList signature; 3462 signature.append(as_BasicType(arg1->type())); 3463 3464 return call_runtime(&signature, &args, entry, result_type, info); 3465 } 3466 3467 3468 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3469 LIRItemList args(2); 3470 LIRItem value1(arg1, this); 3471 LIRItem value2(arg2, this); 3472 args.append(&value1); 3473 args.append(&value2); 3474 BasicTypeList signature; 3475 signature.append(as_BasicType(arg1->type())); 3476 signature.append(as_BasicType(arg2->type())); 3477 3478 return call_runtime(&signature, &args, entry, result_type, info); 3479 } 3480 3481 3482 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3483 address entry, ValueType* result_type, CodeEmitInfo* info) { 3484 // get a result register 3485 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3486 LIR_Opr result = LIR_OprFact::illegalOpr; 3487 if (result_type->tag() != voidTag) { 3488 result = new_register(result_type); 3489 phys_reg = result_register_for(result_type); 3490 } 3491 3492 // move the arguments into the correct location 3493 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3494 assert(cc->length() == args->length(), "argument mismatch"); 3495 for (int i = 0; i < args->length(); i++) { 3496 LIR_Opr arg = args->at(i); 3497 LIR_Opr loc = cc->at(i); 3498 if (loc->is_register()) { 3499 __ move(arg, loc); 3500 } else { 3501 LIR_Address* addr = loc->as_address_ptr(); 3502 // if (!can_store_as_constant(arg)) { 3503 // LIR_Opr tmp = new_register(arg->type()); 3504 // __ move(arg, tmp); 3505 // arg = tmp; 3506 // } 3507 __ move(arg, addr); 3508 } 3509 } 3510 3511 if (info) { 3512 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3513 } else { 3514 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3515 } 3516 if (result->is_valid()) { 3517 __ move(phys_reg, result); 3518 } 3519 return result; 3520 } 3521 3522 3523 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3524 address entry, ValueType* result_type, CodeEmitInfo* info) { 3525 // get a result register 3526 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3527 LIR_Opr result = LIR_OprFact::illegalOpr; 3528 if (result_type->tag() != voidTag) { 3529 result = new_register(result_type); 3530 phys_reg = result_register_for(result_type); 3531 } 3532 3533 // move the arguments into the correct location 3534 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3535 3536 assert(cc->length() == args->length(), "argument mismatch"); 3537 for (int i = 0; i < args->length(); i++) { 3538 LIRItem* arg = args->at(i); 3539 LIR_Opr loc = cc->at(i); 3540 if (loc->is_register()) { 3541 arg->load_item_force(loc); 3542 } else { 3543 LIR_Address* addr = loc->as_address_ptr(); 3544 arg->load_for_store(addr->type()); 3545 __ move(arg->result(), addr); 3546 } 3547 } 3548 3549 if (info) { 3550 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3551 } else { 3552 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3553 } 3554 if (result->is_valid()) { 3555 __ move(phys_reg, result); 3556 } 3557 return result; 3558 } 3559 3560 void LIRGenerator::do_MemBar(MemBar* x) { 3561 LIR_Code code = x->code(); 3562 switch(code) { 3563 case lir_membar_acquire : __ membar_acquire(); break; 3564 case lir_membar_release : __ membar_release(); break; 3565 case lir_membar : __ membar(); break; 3566 case lir_membar_loadload : __ membar_loadload(); break; 3567 case lir_membar_storestore: __ membar_storestore(); break; 3568 case lir_membar_loadstore : __ membar_loadstore(); break; 3569 case lir_membar_storeload : __ membar_storeload(); break; 3570 default : ShouldNotReachHere(); break; 3571 } 3572 } 3573 3574 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3575 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3576 if (two_operand_lir_form) { 3577 __ move(value, value_fixed); 3578 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3579 } else { 3580 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3581 } 3582 LIR_Opr klass = new_register(T_METADATA); 3583 load_klass(array, klass, null_check_info); 3584 null_check_info = nullptr; 3585 LIR_Opr layout = new_register(T_INT); 3586 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3587 int diffbit = Klass::layout_helper_boolean_diffbit(); 3588 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3589 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3590 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3591 value = value_fixed; 3592 return value; 3593 }