1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/codeBuffer.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/vmClasses.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/aotCodeCache.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "code/vtableStubs.hpp"
  39 #include "compiler/compilationPolicy.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "compiler/oopMap.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/c1/barrierSetC1.hpp"
  44 #include "gc/shared/collectedHeap.hpp"
  45 #include "interpreter/bytecode.hpp"
  46 #include "interpreter/interpreter.hpp"
  47 #include "jfr/support/jfrIntrinsics.hpp"
  48 #include "logging/log.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/access.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "runtime/atomicAccess.hpp"
  58 #include "runtime/fieldDescriptor.inline.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.inline.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/stackWatermarkSet.hpp"
  65 #include "runtime/stubInfo.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/vframe.inline.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "runtime/vm_version.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/events.hpp"
  72 
  73 
  74 // Implementation of StubAssembler
  75 
  76 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  77   _name = name;
  78   _must_gc_arguments = false;
  79   _frame_size = no_frame_size;
  80   _num_rt_args = 0;
  81   _stub_id = stub_id;
  82 }
  83 
  84 
  85 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  86   _name = name;
  87   _must_gc_arguments = must_gc_arguments;
  88 }
  89 
  90 
  91 void StubAssembler::set_frame_size(int size) {
  92   if (_frame_size == no_frame_size) {
  93     _frame_size = size;
  94   }
  95   assert(_frame_size == size, "can't change the frame size");
  96 }
  97 
  98 
  99 void StubAssembler::set_num_rt_args(int args) {
 100   if (_num_rt_args == 0) {
 101     _num_rt_args = args;
 102   }
 103   assert(_num_rt_args == args, "can't change the number of args");
 104 }
 105 
 106 // Implementation of Runtime1
 107 CodeBlob* Runtime1::_blobs[StubInfo::C1_STUB_COUNT];
 108 
 109 #ifndef PRODUCT
 110 // statistics
 111 uint Runtime1::_generic_arraycopystub_cnt = 0;
 112 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 113 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 114 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 115 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 116 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 117 uint Runtime1::_new_instance_slowcase_cnt = 0;
 118 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 119 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 120 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 121 uint Runtime1::_patch_code_slowcase_cnt = 0;
 122 uint Runtime1::_throw_range_check_exception_count = 0;
 123 uint Runtime1::_throw_index_exception_count = 0;
 124 uint Runtime1::_throw_div0_exception_count = 0;
 125 uint Runtime1::_throw_null_pointer_exception_count = 0;
 126 uint Runtime1::_throw_class_cast_exception_count = 0;
 127 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 128 uint Runtime1::_throw_count = 0;
 129 
 130 static uint _byte_arraycopy_stub_cnt = 0;
 131 static uint _short_arraycopy_stub_cnt = 0;
 132 static uint _int_arraycopy_stub_cnt = 0;
 133 static uint _long_arraycopy_stub_cnt = 0;
 134 static uint _oop_arraycopy_stub_cnt = 0;
 135 
 136 address Runtime1::arraycopy_count_address(BasicType type) {
 137   switch (type) {
 138   case T_BOOLEAN:
 139   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 140   case T_CHAR:
 141   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 142   case T_FLOAT:
 143   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 144   case T_DOUBLE:
 145   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 146   case T_ARRAY:
 147   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 148   default:
 149     ShouldNotReachHere();
 150     return nullptr;
 151   }
 152 }
 153 
 154 
 155 #endif
 156 
 157 // Simple helper to see if the caller of a runtime stub which
 158 // entered the VM has been deoptimized
 159 
 160 static bool caller_is_deopted(JavaThread* current) {
 161   RegisterMap reg_map(current,
 162                       RegisterMap::UpdateMap::skip,
 163                       RegisterMap::ProcessFrames::include,
 164                       RegisterMap::WalkContinuation::skip);
 165   frame runtime_frame = current->last_frame();
 166   frame caller_frame = runtime_frame.sender(&reg_map);
 167   assert(caller_frame.is_compiled_frame(), "must be compiled");
 168   return caller_frame.is_deoptimized_frame();
 169 }
 170 
 171 // Stress deoptimization
 172 static void deopt_caller(JavaThread* current) {
 173   if (!caller_is_deopted(current)) {
 174     RegisterMap reg_map(current,
 175                         RegisterMap::UpdateMap::skip,
 176                         RegisterMap::ProcessFrames::include,
 177                         RegisterMap::WalkContinuation::skip);
 178     frame runtime_frame = current->last_frame();
 179     frame caller_frame = runtime_frame.sender(&reg_map);
 180     Deoptimization::deoptimize_frame(current, caller_frame.id());
 181     assert(caller_is_deopted(current), "Must be deoptimized");
 182   }
 183 }
 184 
 185 class C1StubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 186  private:
 187   StubId _id;
 188  public:
 189   C1StubAssemblerCodeGenClosure(StubId id) : _id(id) {
 190     assert(StubInfo::is_c1(_id), "not a c1 stub id %s", StubInfo::name(_id));
 191   }
 192   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 193     return Runtime1::generate_code_for(_id, sasm);
 194   }
 195 };
 196 
 197 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 198   if (id != StubId::NO_STUBID) {
 199     CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, StubInfo::blob(id));
 200     if (blob != nullptr) {
 201       return blob;
 202     }
 203   }
 204 
 205   ResourceMark rm;
 206   // create code buffer for code storage
 207   CodeBuffer code(buffer_blob);
 208 
 209   OopMapSet* oop_maps;
 210   int frame_size;
 211   bool must_gc_arguments;
 212 
 213   Compilation::setup_code_buffer(&code, 0);
 214 
 215   // create assembler for code generation
 216   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 217   // generate code for runtime stub
 218   oop_maps = cl->generate_code(sasm);
 219   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 220          "if stub has an oop map it must have a valid frame size");
 221   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 222 
 223   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 224   sasm->align(BytesPerWord);
 225   // make sure all code is in code buffer
 226   sasm->flush();
 227 
 228   frame_size = sasm->frame_size();
 229   must_gc_arguments = sasm->must_gc_arguments();
 230   // create blob - distinguish a few special cases
 231   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 232                                                  &code,
 233                                                  CodeOffsets::frame_never_safe,
 234                                                  frame_size,
 235                                                  oop_maps,
 236                                                  must_gc_arguments,
 237                                                  false /* alloc_fail_is_fatal */ );
 238   if (blob != nullptr && (int)id >= 0) {
 239     AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, StubInfo::blob(id));
 240   }
 241   return blob;
 242 }
 243 
 244 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubId id) {
 245   assert(StubInfo::is_c1(id), "not a c1 stub %s", StubInfo::name(id));
 246   bool expect_oop_map = true;
 247 #ifdef ASSERT
 248   // Make sure that stubs that need oopmaps have them
 249   switch (id) {
 250     // These stubs don't need to have an oopmap
 251   case StubId::c1_dtrace_object_alloc_id:
 252   case StubId::c1_slow_subtype_check_id:
 253   case StubId::c1_fpu2long_stub_id:
 254   case StubId::c1_unwind_exception_id:
 255   case StubId::c1_counter_overflow_id:
 256   case StubId::c1_is_instance_of_id:
 257     expect_oop_map = false;
 258     break;
 259   default:
 260     break;
 261   }
 262 #endif
 263   C1StubAssemblerCodeGenClosure cl(id);
 264   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 265   // install blob
 266   int idx = StubInfo::c1_offset(id);   // will assert on non-c1 id
 267   _blobs[idx] = blob;
 268   return blob != nullptr;
 269 }
 270 
 271 bool Runtime1::initialize(BufferBlob* blob) {
 272   // platform-dependent initialization
 273   initialize_pd();
 274   // iterate blobs in C1 group and generate a single stub per blob
 275   StubId id = StubInfo::stub_base(StubGroup::C1);
 276   StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
 277   for (; id != limit; id = StubInfo::next(id)) {
 278     if (!generate_blob_for(blob, id)) {
 279       return false;
 280     }
 281     if (id == StubId::c1_forward_exception_id) {
 282       // publish early c1 stubs at this point so later stubs can refer to them
 283       AOTCodeCache::init_early_c1_table();
 284     }
 285   }
 286   // printing
 287 #ifndef PRODUCT
 288   if (PrintSimpleStubs) {
 289     ResourceMark rm;
 290     id = StubInfo::stub_base(StubGroup::C1);
 291     for (; id != limit; id = StubInfo::next(id)) {
 292       CodeBlob* blob = blob_for(id);
 293       blob->print();
 294       if (blob->oop_maps() != nullptr) {
 295         blob->oop_maps()->print();
 296       }
 297     }
 298   }
 299 #endif
 300   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 301   return bs->generate_c1_runtime_stubs(blob);
 302 }
 303 
 304 CodeBlob* Runtime1::blob_for(StubId id) {
 305   int idx = StubInfo::c1_offset(id);   // will assert on non-c1 id
 306   return _blobs[idx];
 307 }
 308 
 309 
 310 const char* Runtime1::name_for(StubId id) {
 311   return StubInfo::name(id);
 312 }
 313 
 314 const char* Runtime1::name_for_address(address entry) {
 315   // iterate stubs starting from C1 group base
 316   StubId id = StubInfo::stub_base(StubGroup::C1);
 317   StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
 318   for (; id != limit; id = StubInfo::next(id)) {
 319     if (entry == entry_for(id)) return StubInfo::name(id);
 320   }
 321 
 322 #define FUNCTION_CASE(a, f) \
 323   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 324 
 325   FUNCTION_CASE(entry, os::javaTimeMillis);
 326   FUNCTION_CASE(entry, os::javaTimeNanos);
 327   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 328   FUNCTION_CASE(entry, SharedRuntime::d2f);
 329   FUNCTION_CASE(entry, SharedRuntime::d2i);
 330   FUNCTION_CASE(entry, SharedRuntime::d2l);
 331   FUNCTION_CASE(entry, SharedRuntime::dcos);
 332   FUNCTION_CASE(entry, SharedRuntime::dexp);
 333   FUNCTION_CASE(entry, SharedRuntime::dlog);
 334   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 335   FUNCTION_CASE(entry, SharedRuntime::dpow);
 336   FUNCTION_CASE(entry, SharedRuntime::drem);
 337   FUNCTION_CASE(entry, SharedRuntime::dsin);
 338   FUNCTION_CASE(entry, SharedRuntime::dtan);
 339   FUNCTION_CASE(entry, SharedRuntime::f2i);
 340   FUNCTION_CASE(entry, SharedRuntime::f2l);
 341   FUNCTION_CASE(entry, SharedRuntime::frem);
 342   FUNCTION_CASE(entry, SharedRuntime::l2d);
 343   FUNCTION_CASE(entry, SharedRuntime::l2f);
 344   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 345   FUNCTION_CASE(entry, SharedRuntime::lmul);
 346   FUNCTION_CASE(entry, SharedRuntime::lrem);
 347   FUNCTION_CASE(entry, SharedRuntime::lrem);
 348   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 349   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 350   FUNCTION_CASE(entry, is_instance_of);
 351   FUNCTION_CASE(entry, trace_block_entry);
 352 #ifdef JFR_HAVE_INTRINSICS
 353   FUNCTION_CASE(entry, JfrTime::time_function());
 354 #endif
 355   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 356   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 357   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 358   FUNCTION_CASE(entry, StubRoutines::dexp());
 359   FUNCTION_CASE(entry, StubRoutines::dlog());
 360   FUNCTION_CASE(entry, StubRoutines::dlog10());
 361   FUNCTION_CASE(entry, StubRoutines::dpow());
 362   FUNCTION_CASE(entry, StubRoutines::dsin());
 363   FUNCTION_CASE(entry, StubRoutines::dcos());
 364   FUNCTION_CASE(entry, StubRoutines::dtan());
 365   FUNCTION_CASE(entry, StubRoutines::dsinh());
 366   FUNCTION_CASE(entry, StubRoutines::dtanh());
 367   FUNCTION_CASE(entry, StubRoutines::dcbrt());
 368 
 369 #undef FUNCTION_CASE
 370 
 371   // Soft float adds more runtime names.
 372   return pd_name_for_address(entry);
 373 }
 374 
 375 
 376 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 377 #ifndef PRODUCT
 378   if (PrintC1Statistics) {
 379     _new_instance_slowcase_cnt++;
 380   }
 381 #endif
 382   assert(klass->is_klass(), "not a class");
 383   Handle holder(current, klass->klass_holder()); // keep the klass alive
 384   InstanceKlass* h = InstanceKlass::cast(klass);
 385   h->check_valid_for_instantiation(true, CHECK);
 386   // make sure klass is initialized
 387   h->initialize(CHECK);
 388   // allocate instance and return via TLS
 389   oop obj = h->allocate_instance(CHECK);
 390   current->set_vm_result_oop(obj);
 391 JRT_END
 392 
 393 
 394 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 395 #ifndef PRODUCT
 396   if (PrintC1Statistics) {
 397     _new_type_array_slowcase_cnt++;
 398   }
 399 #endif
 400   // Note: no handle for klass needed since they are not used
 401   //       anymore after new_typeArray() and no GC can happen before.
 402   //       (This may have to change if this code changes!)
 403   assert(klass->is_klass(), "not a class");
 404   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 405   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 406   current->set_vm_result_oop(obj);
 407   // This is pretty rare but this runtime patch is stressful to deoptimization
 408   // if we deoptimize here so force a deopt to stress the path.
 409   if (DeoptimizeALot) {
 410     deopt_caller(current);
 411   }
 412 
 413 JRT_END
 414 
 415 
 416 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 417 #ifndef PRODUCT
 418   if (PrintC1Statistics) {
 419     _new_object_array_slowcase_cnt++;
 420   }
 421 #endif
 422   // Note: no handle for klass needed since they are not used
 423   //       anymore after new_objArray() and no GC can happen before.
 424   //       (This may have to change if this code changes!)
 425   assert(array_klass->is_klass(), "not a class");
 426   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 427   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 428   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 429   current->set_vm_result_oop(obj);
 430   // This is pretty rare but this runtime patch is stressful to deoptimization
 431   // if we deoptimize here so force a deopt to stress the path.
 432   if (DeoptimizeALot) {
 433     deopt_caller(current);
 434   }
 435 JRT_END
 436 
 437 
 438 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 439 #ifndef PRODUCT
 440   if (PrintC1Statistics) {
 441     _new_multi_array_slowcase_cnt++;
 442   }
 443 #endif
 444   assert(klass->is_klass(), "not a class");
 445   assert(rank >= 1, "rank must be nonzero");
 446   Handle holder(current, klass->klass_holder()); // keep the klass alive
 447   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 448   current->set_vm_result_oop(obj);
 449 JRT_END
 450 
 451 
 452 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubId id))
 453   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 454 JRT_END
 455 
 456 
 457 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 458   ResourceMark rm(current);
 459   const char* klass_name = obj->klass()->external_name();
 460   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 461 JRT_END
 462 
 463 
 464 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 465 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 466 // method) method is passed as an argument. In order to do that it is embedded in the code as
 467 // a constant.
 468 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 469   nmethod* osr_nm = nullptr;
 470   methodHandle method(current, m);
 471 
 472   RegisterMap map(current,
 473                   RegisterMap::UpdateMap::skip,
 474                   RegisterMap::ProcessFrames::include,
 475                   RegisterMap::WalkContinuation::skip);
 476   frame fr =  current->last_frame().sender(&map);
 477   nmethod* nm = (nmethod*) fr.cb();
 478   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 479   methodHandle enclosing_method(current, nm->method());
 480 
 481   CompLevel level = (CompLevel)nm->comp_level();
 482   int bci = InvocationEntryBci;
 483   if (branch_bci != InvocationEntryBci) {
 484     // Compute destination bci
 485     address pc = method()->code_base() + branch_bci;
 486     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 487     int offset = 0;
 488     switch (branch) {
 489       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 490       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 491       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 492       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 493       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 494       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 495       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 496         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 497         break;
 498       case Bytecodes::_goto_w:
 499         offset = Bytes::get_Java_u4(pc + 1);
 500         break;
 501       default: ;
 502     }
 503     bci = branch_bci + offset;
 504   }
 505   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 506   return osr_nm;
 507 }
 508 
 509 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 510   nmethod* osr_nm;
 511   JRT_BLOCK_NO_ASYNC
 512     osr_nm = counter_overflow_helper(current, bci, method);
 513     if (osr_nm != nullptr) {
 514       RegisterMap map(current,
 515                       RegisterMap::UpdateMap::skip,
 516                       RegisterMap::ProcessFrames::include,
 517                       RegisterMap::WalkContinuation::skip);
 518       frame fr =  current->last_frame().sender(&map);
 519       Deoptimization::deoptimize_frame(current, fr.id());
 520     }
 521   JRT_BLOCK_END
 522   return nullptr;
 523 JRT_END
 524 
 525 extern void vm_exit(int code);
 526 
 527 // Enter this method from compiled code handler below. This is where we transition
 528 // to VM mode. This is done as a helper routine so that the method called directly
 529 // from compiled code does not have to transition to VM. This allows the entry
 530 // method to see if the nmethod that we have just looked up a handler for has
 531 // been deoptimized while we were in the vm. This simplifies the assembly code
 532 // cpu directories.
 533 //
 534 // We are entering here from exception stub (via the entry method below)
 535 // If there is a compiled exception handler in this method, we will continue there;
 536 // otherwise we will unwind the stack and continue at the caller of top frame method
 537 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 538 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 539 // check to see if the handler we are going to return is now in a nmethod that has
 540 // been deoptimized. If that is the case we return the deopt blob
 541 // unpack_with_exception entry instead. This makes life for the exception blob easier
 542 // because making that same check and diverting is painful from assembly language.
 543 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 544   // Reset method handle flag.
 545   current->set_is_method_handle_return(false);
 546 
 547   Handle exception(current, ex);
 548 
 549   // This function is called when we are about to throw an exception. Therefore,
 550   // we have to poll the stack watermark barrier to make sure that not yet safe
 551   // stack frames are made safe before returning into them.
 552   if (current->last_frame().cb() == Runtime1::blob_for(StubId::c1_handle_exception_from_callee_id)) {
 553     // The StubId::c1_handle_exception_from_callee_id handler is invoked after the
 554     // frame has been unwound. It instead builds its own stub frame, to call the
 555     // runtime. But the throwing frame has already been unwound here.
 556     StackWatermarkSet::after_unwind(current);
 557   }
 558 
 559   nm = CodeCache::find_nmethod(pc);
 560   assert(nm != nullptr, "this is not an nmethod");
 561   // Adjust the pc as needed/
 562   if (nm->is_deopt_pc(pc)) {
 563     RegisterMap map(current,
 564                     RegisterMap::UpdateMap::skip,
 565                     RegisterMap::ProcessFrames::include,
 566                     RegisterMap::WalkContinuation::skip);
 567     frame exception_frame = current->last_frame().sender(&map);
 568     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 569     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 570     pc = exception_frame.pc();
 571   }
 572   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 573   // Check that exception is a subclass of Throwable
 574   assert(exception->is_a(vmClasses::Throwable_klass()),
 575          "Exception not subclass of Throwable");
 576 
 577   // debugging support
 578   // tracing
 579   if (log_is_enabled(Info, exceptions)) {
 580     ResourceMark rm; // print_value_string
 581     stringStream tempst;
 582     assert(nm->method() != nullptr, "Unexpected null method()");
 583     tempst.print("C1 compiled method <%s>\n"
 584                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 585                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 586     Exceptions::log_exception(exception, tempst.freeze());
 587   }
 588   // for AbortVMOnException flag
 589   Exceptions::debug_check_abort(exception);
 590 
 591   // Check the stack guard pages and re-enable them if necessary and there is
 592   // enough space on the stack to do so.  Use fast exceptions only if the guard
 593   // pages are enabled.
 594   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 595 
 596   if (JvmtiExport::can_post_on_exceptions()) {
 597     // To ensure correct notification of exception catches and throws
 598     // we have to deoptimize here.  If we attempted to notify the
 599     // catches and throws during this exception lookup it's possible
 600     // we could deoptimize on the way out of the VM and end back in
 601     // the interpreter at the throw site.  This would result in double
 602     // notifications since the interpreter would also notify about
 603     // these same catches and throws as it unwound the frame.
 604 
 605     RegisterMap reg_map(current,
 606                         RegisterMap::UpdateMap::include,
 607                         RegisterMap::ProcessFrames::include,
 608                         RegisterMap::WalkContinuation::skip);
 609     frame stub_frame = current->last_frame();
 610     frame caller_frame = stub_frame.sender(&reg_map);
 611 
 612     // We don't really want to deoptimize the nmethod itself since we
 613     // can actually continue in the exception handler ourselves but I
 614     // don't see an easy way to have the desired effect.
 615     Deoptimization::deoptimize_frame(current, caller_frame.id());
 616     assert(caller_is_deopted(current), "Must be deoptimized");
 617 
 618     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 619   }
 620 
 621   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 622   if (guard_pages_enabled) {
 623     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 624     if (fast_continuation != nullptr) {
 625       // Set flag if return address is a method handle call site.
 626       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 627       return fast_continuation;
 628     }
 629   }
 630 
 631   // If the stack guard pages are enabled, check whether there is a handler in
 632   // the current method.  Otherwise (guard pages disabled), force an unwind and
 633   // skip the exception cache update (i.e., just leave continuation as null).
 634   address continuation = nullptr;
 635   if (guard_pages_enabled) {
 636 
 637     // New exception handling mechanism can support inlined methods
 638     // with exception handlers since the mappings are from PC to PC
 639 
 640     // Clear out the exception oop and pc since looking up an
 641     // exception handler can cause class loading, which might throw an
 642     // exception and those fields are expected to be clear during
 643     // normal bytecode execution.
 644     current->clear_exception_oop_and_pc();
 645 
 646     bool recursive_exception = false;
 647     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 648     // If an exception was thrown during exception dispatch, the exception oop may have changed
 649     current->set_exception_oop(exception());
 650     current->set_exception_pc(pc);
 651 
 652     // the exception cache is used only by non-implicit exceptions
 653     // Update the exception cache only when there didn't happen
 654     // another exception during the computation of the compiled
 655     // exception handler. Checking for exception oop equality is not
 656     // sufficient because some exceptions are pre-allocated and reused.
 657     if (continuation != nullptr && !recursive_exception) {
 658       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 659     }
 660   }
 661 
 662   current->set_vm_result_oop(exception());
 663   // Set flag if return address is a method handle call site.
 664   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 665 
 666   if (log_is_enabled(Info, exceptions)) {
 667     ResourceMark rm;
 668     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 669                          " for exception thrown at PC " PTR_FORMAT,
 670                          p2i(current), p2i(continuation), p2i(pc));
 671   }
 672 
 673   return continuation;
 674 JRT_END
 675 
 676 // Enter this method from compiled code only if there is a Java exception handler
 677 // in the method handling the exception.
 678 // We are entering here from exception stub. We don't do a normal VM transition here.
 679 // We do it in a helper. This is so we can check to see if the nmethod we have just
 680 // searched for an exception handler has been deoptimized in the meantime.
 681 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 682   oop exception = current->exception_oop();
 683   address pc = current->exception_pc();
 684   // Still in Java mode
 685   DEBUG_ONLY(NoHandleMark nhm);
 686   nmethod* nm = nullptr;
 687   address continuation = nullptr;
 688   {
 689     // Enter VM mode by calling the helper
 690     ResetNoHandleMark rnhm;
 691     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 692   }
 693   // Back in JAVA, use no oops DON'T safepoint
 694 
 695   // Now check to see if the nmethod we were called from is now deoptimized.
 696   // If so we must return to the deopt blob and deoptimize the nmethod
 697   if (nm != nullptr && caller_is_deopted(current)) {
 698     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 699   }
 700 
 701   assert(continuation != nullptr, "no handler found");
 702   return continuation;
 703 }
 704 
 705 
 706 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 707 #ifndef PRODUCT
 708   if (PrintC1Statistics) {
 709     _throw_range_check_exception_count++;
 710   }
 711 #endif
 712   const int len = 35;
 713   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 714   char message[2 * jintAsStringSize + len];
 715   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 716   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 717 JRT_END
 718 
 719 
 720 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 721 #ifndef PRODUCT
 722   if (PrintC1Statistics) {
 723     _throw_index_exception_count++;
 724   }
 725 #endif
 726   char message[16];
 727   os::snprintf_checked(message, sizeof(message), "%d", index);
 728   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 729 JRT_END
 730 
 731 
 732 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 733 #ifndef PRODUCT
 734   if (PrintC1Statistics) {
 735     _throw_div0_exception_count++;
 736   }
 737 #endif
 738   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 739 JRT_END
 740 
 741 
 742 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 743 #ifndef PRODUCT
 744   if (PrintC1Statistics) {
 745     _throw_null_pointer_exception_count++;
 746   }
 747 #endif
 748   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 749 JRT_END
 750 
 751 
 752 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 753 #ifndef PRODUCT
 754   if (PrintC1Statistics) {
 755     _throw_class_cast_exception_count++;
 756   }
 757 #endif
 758   ResourceMark rm(current);
 759   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 760   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 761 JRT_END
 762 
 763 
 764 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 765 #ifndef PRODUCT
 766   if (PrintC1Statistics) {
 767     _throw_incompatible_class_change_error_count++;
 768   }
 769 #endif
 770   ResourceMark rm(current);
 771   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 772 JRT_END
 773 
 774 
 775 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 776 #ifndef PRODUCT
 777   if (PrintC1Statistics) {
 778     _monitorenter_slowcase_cnt++;
 779   }
 780 #endif
 781   assert(obj == lock->obj(), "must match");
 782   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 783 JRT_END
 784 
 785 
 786 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 787   assert(current == JavaThread::current(), "pre-condition");
 788 #ifndef PRODUCT
 789   if (PrintC1Statistics) {
 790     _monitorexit_slowcase_cnt++;
 791   }
 792 #endif
 793   assert(current->last_Java_sp(), "last_Java_sp must be set");
 794   oop obj = lock->obj();
 795   assert(oopDesc::is_oop(obj), "must be null or an object");
 796   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 797 JRT_END
 798 
 799 // Cf. OptoRuntime::deoptimize_caller_frame
 800 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 801   // Called from within the owner thread, so no need for safepoint
 802   RegisterMap reg_map(current,
 803                       RegisterMap::UpdateMap::skip,
 804                       RegisterMap::ProcessFrames::include,
 805                       RegisterMap::WalkContinuation::skip);
 806   frame stub_frame = current->last_frame();
 807   assert(stub_frame.is_runtime_frame(), "Sanity check");
 808   frame caller_frame = stub_frame.sender(&reg_map);
 809   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 810   assert(nm != nullptr, "Sanity check");
 811   methodHandle method(current, nm->method());
 812   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 813   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 814   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 815 
 816   if (action == Deoptimization::Action_make_not_entrant) {
 817     if (nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE)) {
 818       if (reason == Deoptimization::Reason_tenured) {
 819         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 820         if (trap_mdo != nullptr) {
 821           trap_mdo->inc_tenure_traps();
 822         }
 823       }
 824     }
 825   }
 826 
 827   // Deoptimize the caller frame.
 828   Deoptimization::deoptimize_frame(current, caller_frame.id());
 829   // Return to the now deoptimized frame.
 830 JRT_END
 831 
 832 
 833 #ifndef DEOPTIMIZE_WHEN_PATCHING
 834 
 835 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 836   Bytecode_field field_access(caller, bci);
 837   // This can be static or non-static field access
 838   Bytecodes::Code code       = field_access.code();
 839 
 840   // We must load class, initialize class and resolve the field
 841   fieldDescriptor result; // initialize class if needed
 842   constantPoolHandle constants(THREAD, caller->constants());
 843   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 844   return result.field_holder();
 845 }
 846 
 847 
 848 //
 849 // This routine patches sites where a class wasn't loaded or
 850 // initialized at the time the code was generated.  It handles
 851 // references to classes, fields and forcing of initialization.  Most
 852 // of the cases are straightforward and involving simply forcing
 853 // resolution of a class, rewriting the instruction stream with the
 854 // needed constant and replacing the call in this function with the
 855 // patched code.  The case for static field is more complicated since
 856 // the thread which is in the process of initializing a class can
 857 // access it's static fields but other threads can't so the code
 858 // either has to deoptimize when this case is detected or execute a
 859 // check that the current thread is the initializing thread.  The
 860 // current
 861 //
 862 // Patches basically look like this:
 863 //
 864 //
 865 // patch_site: jmp patch stub     ;; will be patched
 866 // continue:   ...
 867 //             ...
 868 //             ...
 869 //             ...
 870 //
 871 // They have a stub which looks like this:
 872 //
 873 //             ;; patch body
 874 //             movl <const>, reg           (for class constants)
 875 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 876 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 877 //             <being_init offset> <bytes to copy> <bytes to skip>
 878 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 879 //             jmp patch_site
 880 //
 881 //
 882 // A normal patch is done by rewriting the patch body, usually a move,
 883 // and then copying it into place over top of the jmp instruction
 884 // being careful to flush caches and doing it in an MP-safe way.  The
 885 // constants following the patch body are used to find various pieces
 886 // of the patch relative to the call site for Runtime1::patch_code.
 887 // The case for getstatic and putstatic is more complicated because
 888 // getstatic and putstatic have special semantics when executing while
 889 // the class is being initialized.  getstatic/putstatic on a class
 890 // which is being_initialized may be executed by the initializing
 891 // thread but other threads have to block when they execute it.  This
 892 // is accomplished in compiled code by executing a test of the current
 893 // thread against the initializing thread of the class.  It's emitted
 894 // as boilerplate in their stub which allows the patched code to be
 895 // executed before it's copied back into the main body of the nmethod.
 896 //
 897 // being_init: get_thread(<tmp reg>
 898 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 899 //             jne patch_stub
 900 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 901 //             movl reg, [reg1 + <const>]  (for field offsets)
 902 //             jmp continue
 903 //             <being_init offset> <bytes to copy> <bytes to skip>
 904 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
 905 //             jmp patch_site
 906 //
 907 // If the class is being initialized the patch body is rewritten and
 908 // the patch site is rewritten to jump to being_init, instead of
 909 // patch_stub.  Whenever this code is executed it checks the current
 910 // thread against the initializing thread so other threads will enter
 911 // the runtime and end up blocked waiting the class to finish
 912 // initializing inside the calls to resolve_field below.  The
 913 // initializing class will continue on it's way.  Once the class is
 914 // fully_initialized, the intializing_thread of the class becomes
 915 // null, so the next thread to execute this code will fail the test,
 916 // call into patch_code and complete the patching process by copying
 917 // the patch body back into the main part of the nmethod and resume
 918 // executing.
 919 
 920 // NB:
 921 //
 922 // Patchable instruction sequences inherently exhibit race conditions,
 923 // where thread A is patching an instruction at the same time thread B
 924 // is executing it.  The algorithms we use ensure that any observation
 925 // that B can make on any intermediate states during A's patching will
 926 // always end up with a correct outcome.  This is easiest if there are
 927 // few or no intermediate states.  (Some inline caches have two
 928 // related instructions that must be patched in tandem.  For those,
 929 // intermediate states seem to be unavoidable, but we will get the
 930 // right answer from all possible observation orders.)
 931 //
 932 // When patching the entry instruction at the head of a method, or a
 933 // linkable call instruction inside of a method, we try very hard to
 934 // use a patch sequence which executes as a single memory transaction.
 935 // This means, in practice, that when thread A patches an instruction,
 936 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 937 // instruction or is contained in it.  We believe that memory hardware
 938 // will never break up such a word write, if it is naturally aligned
 939 // for the word being written.  We also know that some CPUs work very
 940 // hard to create atomic updates even of naturally unaligned words,
 941 // but we don't want to bet the farm on this always working.
 942 //
 943 // Therefore, if there is any chance of a race condition, we try to
 944 // patch only naturally aligned words, as single, full-word writes.
 945 
 946 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, StubId stub_id ))
 947 #ifndef PRODUCT
 948   if (PrintC1Statistics) {
 949     _patch_code_slowcase_cnt++;
 950   }
 951 #endif
 952 
 953   ResourceMark rm(current);
 954   RegisterMap reg_map(current,
 955                       RegisterMap::UpdateMap::skip,
 956                       RegisterMap::ProcessFrames::include,
 957                       RegisterMap::WalkContinuation::skip);
 958   frame runtime_frame = current->last_frame();
 959   frame caller_frame = runtime_frame.sender(&reg_map);
 960 
 961   // last java frame on stack
 962   vframeStream vfst(current, true);
 963   assert(!vfst.at_end(), "Java frame must exist");
 964 
 965   methodHandle caller_method(current, vfst.method());
 966   // Note that caller_method->code() may not be same as caller_code because of OSR's
 967   // Note also that in the presence of inlining it is not guaranteed
 968   // that caller_method() == caller_code->method()
 969 
 970   int bci = vfst.bci();
 971   Bytecodes::Code code = caller_method()->java_code_at(bci);
 972 
 973   // this is used by assertions in the access_field_patching_id
 974   BasicType patch_field_type = T_ILLEGAL;
 975   bool deoptimize_for_volatile = false;
 976   bool deoptimize_for_atomic = false;
 977   int patch_field_offset = -1;
 978   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 979   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 980   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 981   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 982   bool load_klass_or_mirror_patch_id =
 983     (stub_id == StubId::c1_load_klass_patching_id || stub_id == StubId::c1_load_mirror_patching_id);
 984 
 985   if (stub_id == StubId::c1_access_field_patching_id) {
 986 
 987     Bytecode_field field_access(caller_method, bci);
 988     fieldDescriptor result; // initialize class if needed
 989     Bytecodes::Code code = field_access.code();
 990     constantPoolHandle constants(current, caller_method->constants());
 991     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 992     patch_field_offset = result.offset();
 993 
 994     // If we're patching a field which is volatile then at compile it
 995     // must not have been know to be volatile, so the generated code
 996     // isn't correct for a volatile reference.  The nmethod has to be
 997     // deoptimized so that the code can be regenerated correctly.
 998     // This check is only needed for access_field_patching since this
 999     // is the path for patching field offsets.  load_klass is only
1000     // used for patching references to oops which don't need special
1001     // handling in the volatile case.
1002 
1003     deoptimize_for_volatile = result.access_flags().is_volatile();
1004 
1005     // If we are patching a field which should be atomic, then
1006     // the generated code is not correct either, force deoptimizing.
1007     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1008     // break access atomicity only for them.
1009 
1010     // Strictly speaking, the deoptimization on 64-bit platforms
1011     // is unnecessary, and T_LONG stores on 32-bit platforms need
1012     // to be handled by special patching code when AlwaysAtomicAccesses
1013     // becomes product feature. At this point, we are still going
1014     // for the deoptimization for consistency against volatile
1015     // accesses.
1016 
1017     patch_field_type = result.field_type();
1018     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1019 
1020   } else if (load_klass_or_mirror_patch_id) {
1021     Klass* k = nullptr;
1022     switch (code) {
1023       case Bytecodes::_putstatic:
1024       case Bytecodes::_getstatic:
1025         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1026           init_klass = klass;
1027           mirror = Handle(current, klass->java_mirror());
1028         }
1029         break;
1030       case Bytecodes::_new:
1031         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1032           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1033         }
1034         break;
1035       case Bytecodes::_multianewarray:
1036         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1037           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1038         }
1039         break;
1040       case Bytecodes::_instanceof:
1041         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1042           k = caller_method->constants()->klass_at(io.index(), CHECK);
1043         }
1044         break;
1045       case Bytecodes::_checkcast:
1046         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1047           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1048         }
1049         break;
1050       case Bytecodes::_anewarray:
1051         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1052           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1053           k = ek->array_klass(CHECK);
1054         }
1055         break;
1056       case Bytecodes::_ldc:
1057       case Bytecodes::_ldc_w:
1058       case Bytecodes::_ldc2_w:
1059         {
1060           Bytecode_loadconstant cc(caller_method, bci);
1061           oop m = cc.resolve_constant(CHECK);
1062           mirror = Handle(current, m);
1063         }
1064         break;
1065       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1066     }
1067     load_klass = k;
1068   } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1069     Bytecode_invoke bytecode(caller_method, bci);
1070     Bytecodes::Code bc = bytecode.invoke_code();
1071 
1072     CallInfo info;
1073     constantPoolHandle pool(current, caller_method->constants());
1074     int index = bytecode.index();
1075     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1076     switch (bc) {
1077       case Bytecodes::_invokehandle: {
1078         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1079         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1080         break;
1081       }
1082       case Bytecodes::_invokedynamic: {
1083         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1084         break;
1085       }
1086       default: fatal("unexpected bytecode for load_appendix_patching_id");
1087     }
1088   } else {
1089     ShouldNotReachHere();
1090   }
1091 
1092   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1093     // At compile time we assumed the field wasn't volatile/atomic but after
1094     // loading it turns out it was volatile/atomic so we have to throw the
1095     // compiled code out and let it be regenerated.
1096     if (TracePatching) {
1097       if (deoptimize_for_volatile) {
1098         tty->print_cr("Deoptimizing for patching volatile field reference");
1099       }
1100       if (deoptimize_for_atomic) {
1101         tty->print_cr("Deoptimizing for patching atomic field reference");
1102       }
1103     }
1104 
1105     // It's possible the nmethod was invalidated in the last
1106     // safepoint, but if it's still alive then make it not_entrant.
1107     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1108     if (nm != nullptr) {
1109       nm->make_not_entrant(nmethod::InvalidationReason::C1_CODEPATCH);
1110     }
1111 
1112     Deoptimization::deoptimize_frame(current, caller_frame.id());
1113 
1114     // Return to the now deoptimized frame.
1115   }
1116 
1117   // Now copy code back
1118 
1119   {
1120     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1121     //
1122     // Deoptimization may have happened while we waited for the lock.
1123     // In that case we don't bother to do any patching we just return
1124     // and let the deopt happen
1125     if (!caller_is_deopted(current)) {
1126       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1127       address instr_pc = jump->jump_destination();
1128       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1129       if (ni->is_jump() ) {
1130         // the jump has not been patched yet
1131         // The jump destination is slow case and therefore not part of the stubs
1132         // (stubs are only for StaticCalls)
1133 
1134         // format of buffer
1135         //    ....
1136         //    instr byte 0     <-- copy_buff
1137         //    instr byte 1
1138         //    ..
1139         //    instr byte n-1
1140         //      n
1141         //    ....             <-- call destination
1142 
1143         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1144         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1145         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1146         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1147         address copy_buff = stub_location - *byte_skip - *byte_count;
1148         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1149         if (TracePatching) {
1150           ttyLocker ttyl;
1151           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1152                         p2i(instr_pc), (stub_id == StubId::c1_access_field_patching_id) ? "field" : "klass");
1153           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1154           assert(caller_code != nullptr, "nmethod not found");
1155 
1156           // NOTE we use pc() not original_pc() because we already know they are
1157           // identical otherwise we'd have never entered this block of code
1158 
1159           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1160           assert(map != nullptr, "null check");
1161           map->print();
1162           tty->cr();
1163 
1164           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1165         }
1166         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1167         bool do_patch = true;
1168         if (stub_id == StubId::c1_access_field_patching_id) {
1169           // The offset may not be correct if the class was not loaded at code generation time.
1170           // Set it now.
1171           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1172           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1173           assert(patch_field_offset >= 0, "illegal offset");
1174           n_move->add_offset_in_bytes(patch_field_offset);
1175         } else if (load_klass_or_mirror_patch_id) {
1176           // If a getstatic or putstatic is referencing a klass which
1177           // isn't fully initialized, the patch body isn't copied into
1178           // place until initialization is complete.  In this case the
1179           // patch site is setup so that any threads besides the
1180           // initializing thread are forced to come into the VM and
1181           // block.
1182           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1183                      InstanceKlass::cast(init_klass)->is_initialized();
1184           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1185           if (jump->jump_destination() == being_initialized_entry) {
1186             assert(do_patch == true, "initialization must be complete at this point");
1187           } else {
1188             // patch the instruction <move reg, klass>
1189             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1190 
1191             assert(n_copy->data() == 0 ||
1192                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1193                    "illegal init value");
1194             if (stub_id == StubId::c1_load_klass_patching_id) {
1195               assert(load_klass != nullptr, "klass not set");
1196               n_copy->set_data((intx) (load_klass));
1197             } else {
1198               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1199               n_copy->set_data(cast_from_oop<intx>(mirror()));
1200             }
1201 
1202             if (TracePatching) {
1203               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1204             }
1205           }
1206         } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1207           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1208           assert(n_copy->data() == 0 ||
1209                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1210                  "illegal init value");
1211           n_copy->set_data(cast_from_oop<intx>(appendix()));
1212 
1213           if (TracePatching) {
1214             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1215           }
1216         } else {
1217           ShouldNotReachHere();
1218         }
1219 
1220         if (do_patch) {
1221           // replace instructions
1222           // first replace the tail, then the call
1223 #ifdef ARM
1224           if((load_klass_or_mirror_patch_id ||
1225               stub_id == StubId::c1_load_appendix_patching_id) &&
1226               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1227             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1228             address addr = nullptr;
1229             assert(nm != nullptr, "invalid nmethod_pc");
1230             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1231             while (mds.next()) {
1232               if (mds.type() == relocInfo::oop_type) {
1233                 assert(stub_id == StubId::c1_load_mirror_patching_id ||
1234                        stub_id == StubId::c1_load_appendix_patching_id, "wrong stub id");
1235                 oop_Relocation* r = mds.oop_reloc();
1236                 addr = (address)r->oop_addr();
1237                 break;
1238               } else if (mds.type() == relocInfo::metadata_type) {
1239                 assert(stub_id == StubId::c1_load_klass_patching_id, "wrong stub id");
1240                 metadata_Relocation* r = mds.metadata_reloc();
1241                 addr = (address)r->metadata_addr();
1242                 break;
1243               }
1244             }
1245             assert(addr != nullptr, "metadata relocation must exist");
1246             copy_buff -= *byte_count;
1247             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1248             n_copy2->set_pc_relative_offset(addr, instr_pc);
1249           }
1250 #endif
1251 
1252           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1253             address ptr = copy_buff + i;
1254             int a_byte = (*ptr) & 0xFF;
1255             address dst = instr_pc + i;
1256             *(unsigned char*)dst = (unsigned char) a_byte;
1257           }
1258           ICache::invalidate_range(instr_pc, *byte_count);
1259           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1260 
1261           if (load_klass_or_mirror_patch_id ||
1262               stub_id == StubId::c1_load_appendix_patching_id) {
1263             relocInfo::relocType rtype =
1264               (stub_id == StubId::c1_load_klass_patching_id) ?
1265                                    relocInfo::metadata_type :
1266                                    relocInfo::oop_type;
1267             // update relocInfo to metadata
1268             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1269             assert(nm != nullptr, "invalid nmethod_pc");
1270 
1271             // The old patch site is now a move instruction so update
1272             // the reloc info so that it will get updated during
1273             // future GCs.
1274             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1275             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1276                                                      relocInfo::none, rtype);
1277           }
1278 
1279         } else {
1280           ICache::invalidate_range(copy_buff, *byte_count);
1281           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1282         }
1283       }
1284     }
1285     // If we are patching in a non-perm oop, make sure the nmethod
1286     // is on the right list.
1287     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1288     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1289 
1290     // Since we've patched some oops in the nmethod,
1291     // (re)register it with the heap.
1292     Universe::heap()->register_nmethod(nm);
1293   }
1294 JRT_END
1295 
1296 #else // DEOPTIMIZE_WHEN_PATCHING
1297 
1298 static bool is_patching_needed(JavaThread* current, StubId stub_id) {
1299   if (stub_id == StubId::c1_load_klass_patching_id ||
1300       stub_id == StubId::c1_load_mirror_patching_id) {
1301     // last java frame on stack
1302     vframeStream vfst(current, true);
1303     assert(!vfst.at_end(), "Java frame must exist");
1304 
1305     methodHandle caller_method(current, vfst.method());
1306     int bci = vfst.bci();
1307     Bytecodes::Code code = caller_method()->java_code_at(bci);
1308 
1309     switch (code) {
1310       case Bytecodes::_new:
1311       case Bytecodes::_anewarray:
1312       case Bytecodes::_multianewarray:
1313       case Bytecodes::_instanceof:
1314       case Bytecodes::_checkcast: {
1315         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1316         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1317         if (tag.is_unresolved_klass_in_error()) {
1318           return false; // throws resolution error
1319         }
1320         break;
1321       }
1322 
1323       default: break;
1324     }
1325   }
1326   return true;
1327 }
1328 
1329 void Runtime1::patch_code(JavaThread* current, StubId stub_id) {
1330 #ifndef PRODUCT
1331   if (PrintC1Statistics) {
1332     _patch_code_slowcase_cnt++;
1333   }
1334 #endif
1335 
1336   // Enable WXWrite: the function is called by c1 stub as a runtime function
1337   // (see another implementation above).
1338   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1339 
1340   if (TracePatching) {
1341     tty->print_cr("Deoptimizing because patch is needed");
1342   }
1343 
1344   RegisterMap reg_map(current,
1345                       RegisterMap::UpdateMap::skip,
1346                       RegisterMap::ProcessFrames::include,
1347                       RegisterMap::WalkContinuation::skip);
1348 
1349   frame runtime_frame = current->last_frame();
1350   frame caller_frame = runtime_frame.sender(&reg_map);
1351   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1352 
1353   if (is_patching_needed(current, stub_id)) {
1354     // Make sure the nmethod is invalidated, i.e. made not entrant.
1355     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1356     if (nm != nullptr) {
1357       nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE_FOR_PATCHING);
1358     }
1359   }
1360 
1361   Deoptimization::deoptimize_frame(current, caller_frame.id());
1362   // Return to the now deoptimized frame.
1363   postcond(caller_is_deopted(current));
1364 }
1365 
1366 #endif // DEOPTIMIZE_WHEN_PATCHING
1367 
1368 // Entry point for compiled code. We want to patch a nmethod.
1369 // We don't do a normal VM transition here because we want to
1370 // know after the patching is complete and any safepoint(s) are taken
1371 // if the calling nmethod was deoptimized. We do this by calling a
1372 // helper method which does the normal VM transition and when it
1373 // completes we can check for deoptimization. This simplifies the
1374 // assembly code in the cpu directories.
1375 //
1376 int Runtime1::move_klass_patching(JavaThread* current) {
1377 //
1378 // NOTE: we are still in Java
1379 //
1380   DEBUG_ONLY(NoHandleMark nhm;)
1381   {
1382     // Enter VM mode
1383     ResetNoHandleMark rnhm;
1384     patch_code(current, StubId::c1_load_klass_patching_id);
1385   }
1386   // Back in JAVA, use no oops DON'T safepoint
1387 
1388   // Return true if calling code is deoptimized
1389 
1390   return caller_is_deopted(current);
1391 }
1392 
1393 int Runtime1::move_mirror_patching(JavaThread* current) {
1394 //
1395 // NOTE: we are still in Java
1396 //
1397   DEBUG_ONLY(NoHandleMark nhm;)
1398   {
1399     // Enter VM mode
1400     ResetNoHandleMark rnhm;
1401     patch_code(current, StubId::c1_load_mirror_patching_id);
1402   }
1403   // Back in JAVA, use no oops DON'T safepoint
1404 
1405   // Return true if calling code is deoptimized
1406 
1407   return caller_is_deopted(current);
1408 }
1409 
1410 int Runtime1::move_appendix_patching(JavaThread* current) {
1411 //
1412 // NOTE: we are still in Java
1413 //
1414   DEBUG_ONLY(NoHandleMark nhm;)
1415   {
1416     // Enter VM mode
1417     ResetNoHandleMark rnhm;
1418     patch_code(current, StubId::c1_load_appendix_patching_id);
1419   }
1420   // Back in JAVA, use no oops DON'T safepoint
1421 
1422   // Return true if calling code is deoptimized
1423 
1424   return caller_is_deopted(current);
1425 }
1426 
1427 // Entry point for compiled code. We want to patch a nmethod.
1428 // We don't do a normal VM transition here because we want to
1429 // know after the patching is complete and any safepoint(s) are taken
1430 // if the calling nmethod was deoptimized. We do this by calling a
1431 // helper method which does the normal VM transition and when it
1432 // completes we can check for deoptimization. This simplifies the
1433 // assembly code in the cpu directories.
1434 //
1435 int Runtime1::access_field_patching(JavaThread* current) {
1436   //
1437   // NOTE: we are still in Java
1438   //
1439   // Handles created in this function will be deleted by the
1440   // HandleMarkCleaner in the transition to the VM.
1441   NoHandleMark nhm;
1442   {
1443     // Enter VM mode
1444     ResetNoHandleMark rnhm;
1445     patch_code(current, StubId::c1_access_field_patching_id);
1446   }
1447   // Back in JAVA, use no oops DON'T safepoint
1448 
1449   // Return true if calling code is deoptimized
1450 
1451   return caller_is_deopted(current);
1452 }
1453 
1454 
1455 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1456   // for now we just print out the block id
1457   tty->print("%d ", block_id);
1458 JRT_END
1459 
1460 
1461 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1462   // had to return int instead of bool, otherwise there may be a mismatch
1463   // between the C calling convention and the Java one.
1464   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1465   // JVM takes the whole %eax as the return value, which may misinterpret
1466   // the return value as a boolean true.
1467 
1468   assert(mirror != nullptr, "should null-check on mirror before calling");
1469   Klass* k = java_lang_Class::as_Klass(mirror);
1470   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1471 JRT_END
1472 
1473 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1474   ResourceMark rm;
1475 
1476   RegisterMap reg_map(current,
1477                       RegisterMap::UpdateMap::skip,
1478                       RegisterMap::ProcessFrames::include,
1479                       RegisterMap::WalkContinuation::skip);
1480   frame runtime_frame = current->last_frame();
1481   frame caller_frame = runtime_frame.sender(&reg_map);
1482 
1483   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1484   assert (nm != nullptr, "no more nmethod?");
1485   nm->make_not_entrant(nmethod::InvalidationReason::C1_PREDICATE_FAILED_TRAP);
1486 
1487   methodHandle m(current, nm->method());
1488   MethodData* mdo = m->method_data();
1489 
1490   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1491     // Build an MDO.  Ignore errors like OutOfMemory;
1492     // that simply means we won't have an MDO to update.
1493     Method::build_profiling_method_data(m, THREAD);
1494     if (HAS_PENDING_EXCEPTION) {
1495       // Only metaspace OOM is expected. No Java code executed.
1496       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1497       CLEAR_PENDING_EXCEPTION;
1498     }
1499     mdo = m->method_data();
1500   }
1501 
1502   if (mdo != nullptr) {
1503     mdo->inc_trap_count(Deoptimization::Reason_none);
1504   }
1505 
1506   if (TracePredicateFailedTraps) {
1507     stringStream ss1, ss2;
1508     vframeStream vfst(current);
1509     Method* inlinee = vfst.method();
1510     inlinee->print_short_name(&ss1);
1511     m->print_short_name(&ss2);
1512     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1513   }
1514 
1515 
1516   Deoptimization::deoptimize_frame(current, caller_frame.id());
1517 
1518 JRT_END
1519 
1520 // Check exception if AbortVMOnException flag set
1521 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1522   ResourceMark rm;
1523   const char* message = nullptr;
1524   if (ex->is_a(vmClasses::Throwable_klass())) {
1525     oop msg = java_lang_Throwable::message(ex);
1526     if (msg != nullptr) {
1527       message = java_lang_String::as_utf8_string(msg);
1528     }
1529   }
1530   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1531 JRT_END
1532 
1533 #ifndef PRODUCT
1534 void Runtime1::print_statistics() {
1535   tty->print_cr("C1 Runtime statistics:");
1536   tty->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1537   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1538   tty->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1539   tty->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1540   tty->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1541   tty->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1542   tty->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1543   tty->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1544   tty->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1545   tty->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1546   tty->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1547   tty->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1548   tty->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1549   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1550 
1551   tty->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1552   tty->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1553   tty->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1554   tty->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1555   tty->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1556   tty->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1557   tty->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1558 
1559   tty->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1560   tty->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1561   tty->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1562   tty->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1563   tty->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1564   tty->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1565   tty->print_cr(" _throw_count:                                  %u:", _throw_count);
1566 
1567   SharedRuntime::print_ic_miss_histogram();
1568   tty->cr();
1569 }
1570 #endif // PRODUCT