1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/codeBuffer.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/vmClasses.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/aotCodeCache.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "code/vtableStubs.hpp"
  39 #include "compiler/compilationPolicy.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "compiler/oopMap.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/c1/barrierSetC1.hpp"
  44 #include "gc/shared/collectedHeap.hpp"
  45 #include "interpreter/bytecode.hpp"
  46 #include "interpreter/interpreter.hpp"
  47 #include "jfr/support/jfrIntrinsics.hpp"
  48 #include "logging/log.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/access.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/fieldDescriptor.inline.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.inline.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/stackWatermarkSet.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/vframe.inline.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vm_version.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/events.hpp"
  71 
  72 
  73 // Implementation of StubAssembler
  74 
  75 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  76   _name = name;
  77   _must_gc_arguments = false;
  78   _frame_size = no_frame_size;
  79   _num_rt_args = 0;
  80   _stub_id = stub_id;
  81 }
  82 
  83 
  84 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  85   _name = name;
  86   _must_gc_arguments = must_gc_arguments;
  87 }
  88 
  89 
  90 void StubAssembler::set_frame_size(int size) {
  91   if (_frame_size == no_frame_size) {
  92     _frame_size = size;
  93   }
  94   assert(_frame_size == size, "can't change the frame size");
  95 }
  96 
  97 
  98 void StubAssembler::set_num_rt_args(int args) {
  99   if (_num_rt_args == 0) {
 100     _num_rt_args = args;
 101   }
 102   assert(_num_rt_args == args, "can't change the number of args");
 103 }
 104 
 105 // Implementation of Runtime1
 106 
 107 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS];
 108 
 109 #define C1_BLOB_NAME_DEFINE(name)  "C1 Runtime " # name "_blob",
 110 const char *Runtime1::_blob_names[] = {
 111   C1_STUBS_DO(C1_BLOB_NAME_DEFINE)
 112 };
 113 #undef C1_STUB_NAME_DEFINE
 114 
 115 #ifndef PRODUCT
 116 // statistics
 117 uint Runtime1::_generic_arraycopystub_cnt = 0;
 118 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 119 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 120 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 121 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 122 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 123 uint Runtime1::_new_instance_slowcase_cnt = 0;
 124 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 125 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 126 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 127 uint Runtime1::_patch_code_slowcase_cnt = 0;
 128 uint Runtime1::_throw_range_check_exception_count = 0;
 129 uint Runtime1::_throw_index_exception_count = 0;
 130 uint Runtime1::_throw_div0_exception_count = 0;
 131 uint Runtime1::_throw_null_pointer_exception_count = 0;
 132 uint Runtime1::_throw_class_cast_exception_count = 0;
 133 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 134 uint Runtime1::_throw_count = 0;
 135 
 136 static uint _byte_arraycopy_stub_cnt = 0;
 137 static uint _short_arraycopy_stub_cnt = 0;
 138 static uint _int_arraycopy_stub_cnt = 0;
 139 static uint _long_arraycopy_stub_cnt = 0;
 140 static uint _oop_arraycopy_stub_cnt = 0;
 141 
 142 address Runtime1::arraycopy_count_address(BasicType type) {
 143   switch (type) {
 144   case T_BOOLEAN:
 145   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 146   case T_CHAR:
 147   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 148   case T_FLOAT:
 149   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 150   case T_DOUBLE:
 151   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 152   case T_ARRAY:
 153   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 154   default:
 155     ShouldNotReachHere();
 156     return nullptr;
 157   }
 158 }
 159 
 160 
 161 #endif
 162 
 163 // Simple helper to see if the caller of a runtime stub which
 164 // entered the VM has been deoptimized
 165 
 166 static bool caller_is_deopted(JavaThread* current) {
 167   RegisterMap reg_map(current,
 168                       RegisterMap::UpdateMap::skip,
 169                       RegisterMap::ProcessFrames::include,
 170                       RegisterMap::WalkContinuation::skip);
 171   frame runtime_frame = current->last_frame();
 172   frame caller_frame = runtime_frame.sender(&reg_map);
 173   assert(caller_frame.is_compiled_frame(), "must be compiled");
 174   return caller_frame.is_deoptimized_frame();
 175 }
 176 
 177 // Stress deoptimization
 178 static void deopt_caller(JavaThread* current) {
 179   if (!caller_is_deopted(current)) {
 180     RegisterMap reg_map(current,
 181                         RegisterMap::UpdateMap::skip,
 182                         RegisterMap::ProcessFrames::include,
 183                         RegisterMap::WalkContinuation::skip);
 184     frame runtime_frame = current->last_frame();
 185     frame caller_frame = runtime_frame.sender(&reg_map);
 186     Deoptimization::deoptimize_frame(current, caller_frame.id());
 187     assert(caller_is_deopted(current), "Must be deoptimized");
 188   }
 189 }
 190 
 191 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 192  private:
 193   C1StubId _id;
 194  public:
 195   C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {}
 196   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 197     return Runtime1::generate_code_for(_id, sasm);
 198   }
 199 };
 200 
 201 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 202   if ((int)id >= 0) {
 203     CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr);
 204     if (blob != nullptr) {
 205       return blob;
 206     }
 207   }
 208 
 209   ResourceMark rm;
 210   // create code buffer for code storage
 211   CodeBuffer code(buffer_blob);
 212 
 213   OopMapSet* oop_maps;
 214   int frame_size;
 215   bool must_gc_arguments;
 216 
 217   Compilation::setup_code_buffer(&code, 0);
 218 
 219   // create assembler for code generation
 220   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 221   // generate code for runtime stub
 222   oop_maps = cl->generate_code(sasm);
 223   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 224          "if stub has an oop map it must have a valid frame size");
 225   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 226 
 227   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 228   sasm->align(BytesPerWord);
 229   // make sure all code is in code buffer
 230   sasm->flush();
 231 
 232   frame_size = sasm->frame_size();
 233   must_gc_arguments = sasm->must_gc_arguments();
 234   // create blob - distinguish a few special cases
 235   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 236                                                  &code,
 237                                                  CodeOffsets::frame_never_safe,
 238                                                  frame_size,
 239                                                  oop_maps,
 240                                                  must_gc_arguments,
 241                                                  false /* alloc_fail_is_fatal */ );
 242   if (blob != nullptr && (int)id >= 0) {
 243     AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr);
 244   }
 245   return blob;
 246 }
 247 
 248 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) {
 249   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 250   bool expect_oop_map = true;
 251 #ifdef ASSERT
 252   // Make sure that stubs that need oopmaps have them
 253   switch (id) {
 254     // These stubs don't need to have an oopmap
 255   case C1StubId::dtrace_object_alloc_id:
 256   case C1StubId::slow_subtype_check_id:
 257   case C1StubId::fpu2long_stub_id:
 258   case C1StubId::unwind_exception_id:
 259   case C1StubId::counter_overflow_id:
 260   case C1StubId::is_instance_of_id:
 261     expect_oop_map = false;
 262     break;
 263   default:
 264     break;
 265   }
 266 #endif
 267   C1StubIdStubAssemblerCodeGenClosure cl(id);
 268   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 269   // install blob
 270   _blobs[(int)id] = blob;
 271   return blob != nullptr;
 272 }
 273 
 274 bool Runtime1::initialize(BufferBlob* blob) {
 275   // platform-dependent initialization
 276   initialize_pd();
 277   // generate stubs
 278   int limit = (int)C1StubId::NUM_STUBIDS;
 279   for (int id = 0; id <= (int)C1StubId::forward_exception_id; id++) {
 280     if (!generate_blob_for(blob, (C1StubId) id)) {
 281       return false;
 282     }
 283   }
 284   AOTCodeCache::init_early_c1_table();
 285   for (int id = (int)C1StubId::forward_exception_id+1; id < limit; id++) {
 286     if (!generate_blob_for(blob, (C1StubId) id)) {
 287       return false;
 288     }
 289   }
 290   // printing
 291 #ifndef PRODUCT
 292   if (PrintSimpleStubs) {
 293     ResourceMark rm;
 294     for (int id = 0; id < limit; id++) {
 295       _blobs[id]->print();
 296       if (_blobs[id]->oop_maps() != nullptr) {
 297         _blobs[id]->oop_maps()->print();
 298       }
 299     }
 300   }
 301 #endif
 302   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 303   return bs->generate_c1_runtime_stubs(blob);
 304 }
 305 
 306 CodeBlob* Runtime1::blob_for(C1StubId id) {
 307   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 308   return _blobs[(int)id];
 309 }
 310 
 311 
 312 const char* Runtime1::name_for(C1StubId id) {
 313   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 314   return _blob_names[(int)id];
 315 }
 316 
 317 const char* Runtime1::name_for_address(address entry) {
 318   int limit = (int)C1StubId::NUM_STUBIDS;
 319   for (int i = 0; i < limit; i++) {
 320     C1StubId id = (C1StubId)i;
 321     if (entry == entry_for(id)) return name_for(id);
 322   }
 323 
 324 #define FUNCTION_CASE(a, f) \
 325   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 326 
 327   FUNCTION_CASE(entry, os::javaTimeMillis);
 328   FUNCTION_CASE(entry, os::javaTimeNanos);
 329   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 330   FUNCTION_CASE(entry, SharedRuntime::d2f);
 331   FUNCTION_CASE(entry, SharedRuntime::d2i);
 332   FUNCTION_CASE(entry, SharedRuntime::d2l);
 333   FUNCTION_CASE(entry, SharedRuntime::dcos);
 334   FUNCTION_CASE(entry, SharedRuntime::dexp);
 335   FUNCTION_CASE(entry, SharedRuntime::dlog);
 336   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 337   FUNCTION_CASE(entry, SharedRuntime::dpow);
 338   FUNCTION_CASE(entry, SharedRuntime::drem);
 339   FUNCTION_CASE(entry, SharedRuntime::dsin);
 340   FUNCTION_CASE(entry, SharedRuntime::dtan);
 341   FUNCTION_CASE(entry, SharedRuntime::f2i);
 342   FUNCTION_CASE(entry, SharedRuntime::f2l);
 343   FUNCTION_CASE(entry, SharedRuntime::frem);
 344   FUNCTION_CASE(entry, SharedRuntime::l2d);
 345   FUNCTION_CASE(entry, SharedRuntime::l2f);
 346   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 347   FUNCTION_CASE(entry, SharedRuntime::lmul);
 348   FUNCTION_CASE(entry, SharedRuntime::lrem);
 349   FUNCTION_CASE(entry, SharedRuntime::lrem);
 350   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 351   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 352   FUNCTION_CASE(entry, is_instance_of);
 353   FUNCTION_CASE(entry, trace_block_entry);
 354 #ifdef JFR_HAVE_INTRINSICS
 355   FUNCTION_CASE(entry, JfrTime::time_function());
 356 #endif
 357   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 358   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 359   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 360   FUNCTION_CASE(entry, StubRoutines::dexp());
 361   FUNCTION_CASE(entry, StubRoutines::dlog());
 362   FUNCTION_CASE(entry, StubRoutines::dlog10());
 363   FUNCTION_CASE(entry, StubRoutines::dpow());
 364   FUNCTION_CASE(entry, StubRoutines::dsin());
 365   FUNCTION_CASE(entry, StubRoutines::dcos());
 366   FUNCTION_CASE(entry, StubRoutines::dtan());
 367   FUNCTION_CASE(entry, StubRoutines::dtanh());
 368   FUNCTION_CASE(entry, StubRoutines::dcbrt());
 369 
 370 #undef FUNCTION_CASE
 371 
 372   // Soft float adds more runtime names.
 373   return pd_name_for_address(entry);
 374 }
 375 
 376 
 377 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 378 #ifndef PRODUCT
 379   if (PrintC1Statistics) {
 380     _new_instance_slowcase_cnt++;
 381   }
 382 #endif
 383   assert(klass->is_klass(), "not a class");
 384   Handle holder(current, klass->klass_holder()); // keep the klass alive
 385   InstanceKlass* h = InstanceKlass::cast(klass);
 386   h->check_valid_for_instantiation(true, CHECK);
 387   // make sure klass is initialized
 388   h->initialize(CHECK);
 389   // allocate instance and return via TLS
 390   oop obj = h->allocate_instance(CHECK);
 391   current->set_vm_result_oop(obj);
 392 JRT_END
 393 
 394 
 395 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 396 #ifndef PRODUCT
 397   if (PrintC1Statistics) {
 398     _new_type_array_slowcase_cnt++;
 399   }
 400 #endif
 401   // Note: no handle for klass needed since they are not used
 402   //       anymore after new_typeArray() and no GC can happen before.
 403   //       (This may have to change if this code changes!)
 404   assert(klass->is_klass(), "not a class");
 405   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 406   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 407   current->set_vm_result_oop(obj);
 408   // This is pretty rare but this runtime patch is stressful to deoptimization
 409   // if we deoptimize here so force a deopt to stress the path.
 410   if (DeoptimizeALot) {
 411     deopt_caller(current);
 412   }
 413 
 414 JRT_END
 415 
 416 
 417 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 418 #ifndef PRODUCT
 419   if (PrintC1Statistics) {
 420     _new_object_array_slowcase_cnt++;
 421   }
 422 #endif
 423   // Note: no handle for klass needed since they are not used
 424   //       anymore after new_objArray() and no GC can happen before.
 425   //       (This may have to change if this code changes!)
 426   assert(array_klass->is_klass(), "not a class");
 427   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 428   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 429   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 430   current->set_vm_result_oop(obj);
 431   // This is pretty rare but this runtime patch is stressful to deoptimization
 432   // if we deoptimize here so force a deopt to stress the path.
 433   if (DeoptimizeALot) {
 434     deopt_caller(current);
 435   }
 436 JRT_END
 437 
 438 
 439 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 440 #ifndef PRODUCT
 441   if (PrintC1Statistics) {
 442     _new_multi_array_slowcase_cnt++;
 443   }
 444 #endif
 445   assert(klass->is_klass(), "not a class");
 446   assert(rank >= 1, "rank must be nonzero");
 447   Handle holder(current, klass->klass_holder()); // keep the klass alive
 448   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 449   current->set_vm_result_oop(obj);
 450 JRT_END
 451 
 452 
 453 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 454   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 455 JRT_END
 456 
 457 
 458 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 459   ResourceMark rm(current);
 460   const char* klass_name = obj->klass()->external_name();
 461   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 462 JRT_END
 463 
 464 
 465 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 466 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 467 // method) method is passed as an argument. In order to do that it is embedded in the code as
 468 // a constant.
 469 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 470   nmethod* osr_nm = nullptr;
 471   methodHandle method(current, m);
 472 
 473   RegisterMap map(current,
 474                   RegisterMap::UpdateMap::skip,
 475                   RegisterMap::ProcessFrames::include,
 476                   RegisterMap::WalkContinuation::skip);
 477   frame fr =  current->last_frame().sender(&map);
 478   nmethod* nm = (nmethod*) fr.cb();
 479   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 480   methodHandle enclosing_method(current, nm->method());
 481 
 482   CompLevel level = (CompLevel)nm->comp_level();
 483   int bci = InvocationEntryBci;
 484   if (branch_bci != InvocationEntryBci) {
 485     // Compute destination bci
 486     address pc = method()->code_base() + branch_bci;
 487     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 488     int offset = 0;
 489     switch (branch) {
 490       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 491       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 492       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 493       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 494       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 495       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 496       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 497         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 498         break;
 499       case Bytecodes::_goto_w:
 500         offset = Bytes::get_Java_u4(pc + 1);
 501         break;
 502       default: ;
 503     }
 504     bci = branch_bci + offset;
 505   }
 506   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 507   return osr_nm;
 508 }
 509 
 510 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 511   nmethod* osr_nm;
 512   JRT_BLOCK_NO_ASYNC
 513     osr_nm = counter_overflow_helper(current, bci, method);
 514     if (osr_nm != nullptr) {
 515       RegisterMap map(current,
 516                       RegisterMap::UpdateMap::skip,
 517                       RegisterMap::ProcessFrames::include,
 518                       RegisterMap::WalkContinuation::skip);
 519       frame fr =  current->last_frame().sender(&map);
 520       Deoptimization::deoptimize_frame(current, fr.id());
 521     }
 522   JRT_BLOCK_END
 523   return nullptr;
 524 JRT_END
 525 
 526 extern void vm_exit(int code);
 527 
 528 // Enter this method from compiled code handler below. This is where we transition
 529 // to VM mode. This is done as a helper routine so that the method called directly
 530 // from compiled code does not have to transition to VM. This allows the entry
 531 // method to see if the nmethod that we have just looked up a handler for has
 532 // been deoptimized while we were in the vm. This simplifies the assembly code
 533 // cpu directories.
 534 //
 535 // We are entering here from exception stub (via the entry method below)
 536 // If there is a compiled exception handler in this method, we will continue there;
 537 // otherwise we will unwind the stack and continue at the caller of top frame method
 538 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 539 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 540 // check to see if the handler we are going to return is now in a nmethod that has
 541 // been deoptimized. If that is the case we return the deopt blob
 542 // unpack_with_exception entry instead. This makes life for the exception blob easier
 543 // because making that same check and diverting is painful from assembly language.
 544 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 545   // Reset method handle flag.
 546   current->set_is_method_handle_return(false);
 547 
 548   Handle exception(current, ex);
 549 
 550   // This function is called when we are about to throw an exception. Therefore,
 551   // we have to poll the stack watermark barrier to make sure that not yet safe
 552   // stack frames are made safe before returning into them.
 553   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 554     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 555     // frame has been unwound. It instead builds its own stub frame, to call the
 556     // runtime. But the throwing frame has already been unwound here.
 557     StackWatermarkSet::after_unwind(current);
 558   }
 559 
 560   nm = CodeCache::find_nmethod(pc);
 561   assert(nm != nullptr, "this is not an nmethod");
 562   // Adjust the pc as needed/
 563   if (nm->is_deopt_pc(pc)) {
 564     RegisterMap map(current,
 565                     RegisterMap::UpdateMap::skip,
 566                     RegisterMap::ProcessFrames::include,
 567                     RegisterMap::WalkContinuation::skip);
 568     frame exception_frame = current->last_frame().sender(&map);
 569     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 570     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 571     pc = exception_frame.pc();
 572   }
 573   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 574   // Check that exception is a subclass of Throwable
 575   assert(exception->is_a(vmClasses::Throwable_klass()),
 576          "Exception not subclass of Throwable");
 577 
 578   // debugging support
 579   // tracing
 580   if (log_is_enabled(Info, exceptions)) {
 581     ResourceMark rm; // print_value_string
 582     stringStream tempst;
 583     assert(nm->method() != nullptr, "Unexpected null method()");
 584     tempst.print("C1 compiled method <%s>\n"
 585                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 586                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 587     Exceptions::log_exception(exception, tempst.freeze());
 588   }
 589   // for AbortVMOnException flag
 590   Exceptions::debug_check_abort(exception);
 591 
 592   // Check the stack guard pages and re-enable them if necessary and there is
 593   // enough space on the stack to do so.  Use fast exceptions only if the guard
 594   // pages are enabled.
 595   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 596 
 597   if (JvmtiExport::can_post_on_exceptions()) {
 598     // To ensure correct notification of exception catches and throws
 599     // we have to deoptimize here.  If we attempted to notify the
 600     // catches and throws during this exception lookup it's possible
 601     // we could deoptimize on the way out of the VM and end back in
 602     // the interpreter at the throw site.  This would result in double
 603     // notifications since the interpreter would also notify about
 604     // these same catches and throws as it unwound the frame.
 605 
 606     RegisterMap reg_map(current,
 607                         RegisterMap::UpdateMap::include,
 608                         RegisterMap::ProcessFrames::include,
 609                         RegisterMap::WalkContinuation::skip);
 610     frame stub_frame = current->last_frame();
 611     frame caller_frame = stub_frame.sender(&reg_map);
 612 
 613     // We don't really want to deoptimize the nmethod itself since we
 614     // can actually continue in the exception handler ourselves but I
 615     // don't see an easy way to have the desired effect.
 616     Deoptimization::deoptimize_frame(current, caller_frame.id());
 617     assert(caller_is_deopted(current), "Must be deoptimized");
 618 
 619     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 620   }
 621 
 622   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 623   if (guard_pages_enabled) {
 624     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 625     if (fast_continuation != nullptr) {
 626       // Set flag if return address is a method handle call site.
 627       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 628       return fast_continuation;
 629     }
 630   }
 631 
 632   // If the stack guard pages are enabled, check whether there is a handler in
 633   // the current method.  Otherwise (guard pages disabled), force an unwind and
 634   // skip the exception cache update (i.e., just leave continuation as null).
 635   address continuation = nullptr;
 636   if (guard_pages_enabled) {
 637 
 638     // New exception handling mechanism can support inlined methods
 639     // with exception handlers since the mappings are from PC to PC
 640 
 641     // Clear out the exception oop and pc since looking up an
 642     // exception handler can cause class loading, which might throw an
 643     // exception and those fields are expected to be clear during
 644     // normal bytecode execution.
 645     current->clear_exception_oop_and_pc();
 646 
 647     bool recursive_exception = false;
 648     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 649     // If an exception was thrown during exception dispatch, the exception oop may have changed
 650     current->set_exception_oop(exception());
 651     current->set_exception_pc(pc);
 652 
 653     // the exception cache is used only by non-implicit exceptions
 654     // Update the exception cache only when there didn't happen
 655     // another exception during the computation of the compiled
 656     // exception handler. Checking for exception oop equality is not
 657     // sufficient because some exceptions are pre-allocated and reused.
 658     if (continuation != nullptr && !recursive_exception) {
 659       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 660     }
 661   }
 662 
 663   current->set_vm_result_oop(exception());
 664   // Set flag if return address is a method handle call site.
 665   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 666 
 667   if (log_is_enabled(Info, exceptions)) {
 668     ResourceMark rm;
 669     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 670                          " for exception thrown at PC " PTR_FORMAT,
 671                          p2i(current), p2i(continuation), p2i(pc));
 672   }
 673 
 674   return continuation;
 675 JRT_END
 676 
 677 // Enter this method from compiled code only if there is a Java exception handler
 678 // in the method handling the exception.
 679 // We are entering here from exception stub. We don't do a normal VM transition here.
 680 // We do it in a helper. This is so we can check to see if the nmethod we have just
 681 // searched for an exception handler has been deoptimized in the meantime.
 682 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 683   oop exception = current->exception_oop();
 684   address pc = current->exception_pc();
 685   // Still in Java mode
 686   DEBUG_ONLY(NoHandleMark nhm);
 687   nmethod* nm = nullptr;
 688   address continuation = nullptr;
 689   {
 690     // Enter VM mode by calling the helper
 691     ResetNoHandleMark rnhm;
 692     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 693   }
 694   // Back in JAVA, use no oops DON'T safepoint
 695 
 696   // Now check to see if the nmethod we were called from is now deoptimized.
 697   // If so we must return to the deopt blob and deoptimize the nmethod
 698   if (nm != nullptr && caller_is_deopted(current)) {
 699     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 700   }
 701 
 702   assert(continuation != nullptr, "no handler found");
 703   return continuation;
 704 }
 705 
 706 
 707 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 708 #ifndef PRODUCT
 709   if (PrintC1Statistics) {
 710     _throw_range_check_exception_count++;
 711   }
 712 #endif
 713   const int len = 35;
 714   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 715   char message[2 * jintAsStringSize + len];
 716   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 717   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 718 JRT_END
 719 
 720 
 721 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 722 #ifndef PRODUCT
 723   if (PrintC1Statistics) {
 724     _throw_index_exception_count++;
 725   }
 726 #endif
 727   char message[16];
 728   os::snprintf_checked(message, sizeof(message), "%d", index);
 729   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 730 JRT_END
 731 
 732 
 733 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 734 #ifndef PRODUCT
 735   if (PrintC1Statistics) {
 736     _throw_div0_exception_count++;
 737   }
 738 #endif
 739   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 740 JRT_END
 741 
 742 
 743 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 744 #ifndef PRODUCT
 745   if (PrintC1Statistics) {
 746     _throw_null_pointer_exception_count++;
 747   }
 748 #endif
 749   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 750 JRT_END
 751 
 752 
 753 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 754 #ifndef PRODUCT
 755   if (PrintC1Statistics) {
 756     _throw_class_cast_exception_count++;
 757   }
 758 #endif
 759   ResourceMark rm(current);
 760   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 761   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 762 JRT_END
 763 
 764 
 765 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 766 #ifndef PRODUCT
 767   if (PrintC1Statistics) {
 768     _throw_incompatible_class_change_error_count++;
 769   }
 770 #endif
 771   ResourceMark rm(current);
 772   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 773 JRT_END
 774 
 775 
 776 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 777 #ifndef PRODUCT
 778   if (PrintC1Statistics) {
 779     _monitorenter_slowcase_cnt++;
 780   }
 781 #endif
 782   if (LockingMode == LM_MONITOR) {
 783     lock->set_obj(obj);
 784   }
 785   assert(obj == lock->obj(), "must match");
 786   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 787 JRT_END
 788 
 789 
 790 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 791   assert(current == JavaThread::current(), "pre-condition");
 792 #ifndef PRODUCT
 793   if (PrintC1Statistics) {
 794     _monitorexit_slowcase_cnt++;
 795   }
 796 #endif
 797   assert(current->last_Java_sp(), "last_Java_sp must be set");
 798   oop obj = lock->obj();
 799   assert(oopDesc::is_oop(obj), "must be null or an object");
 800   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 801 JRT_END
 802 
 803 // Cf. OptoRuntime::deoptimize_caller_frame
 804 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 805   // Called from within the owner thread, so no need for safepoint
 806   RegisterMap reg_map(current,
 807                       RegisterMap::UpdateMap::skip,
 808                       RegisterMap::ProcessFrames::include,
 809                       RegisterMap::WalkContinuation::skip);
 810   frame stub_frame = current->last_frame();
 811   assert(stub_frame.is_runtime_frame(), "Sanity check");
 812   frame caller_frame = stub_frame.sender(&reg_map);
 813   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 814   assert(nm != nullptr, "Sanity check");
 815   methodHandle method(current, nm->method());
 816   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 817   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 818   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 819 
 820   if (action == Deoptimization::Action_make_not_entrant) {
 821     if (nm->make_not_entrant("C1 deoptimize")) {
 822       if (reason == Deoptimization::Reason_tenured) {
 823         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 824         if (trap_mdo != nullptr) {
 825           trap_mdo->inc_tenure_traps();
 826         }
 827       }
 828     }
 829   }
 830 
 831   // Deoptimize the caller frame.
 832   Deoptimization::deoptimize_frame(current, caller_frame.id());
 833   // Return to the now deoptimized frame.
 834 JRT_END
 835 
 836 
 837 #ifndef DEOPTIMIZE_WHEN_PATCHING
 838 
 839 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 840   Bytecode_field field_access(caller, bci);
 841   // This can be static or non-static field access
 842   Bytecodes::Code code       = field_access.code();
 843 
 844   // We must load class, initialize class and resolve the field
 845   fieldDescriptor result; // initialize class if needed
 846   constantPoolHandle constants(THREAD, caller->constants());
 847   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 848   return result.field_holder();
 849 }
 850 
 851 
 852 //
 853 // This routine patches sites where a class wasn't loaded or
 854 // initialized at the time the code was generated.  It handles
 855 // references to classes, fields and forcing of initialization.  Most
 856 // of the cases are straightforward and involving simply forcing
 857 // resolution of a class, rewriting the instruction stream with the
 858 // needed constant and replacing the call in this function with the
 859 // patched code.  The case for static field is more complicated since
 860 // the thread which is in the process of initializing a class can
 861 // access it's static fields but other threads can't so the code
 862 // either has to deoptimize when this case is detected or execute a
 863 // check that the current thread is the initializing thread.  The
 864 // current
 865 //
 866 // Patches basically look like this:
 867 //
 868 //
 869 // patch_site: jmp patch stub     ;; will be patched
 870 // continue:   ...
 871 //             ...
 872 //             ...
 873 //             ...
 874 //
 875 // They have a stub which looks like this:
 876 //
 877 //             ;; patch body
 878 //             movl <const>, reg           (for class constants)
 879 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 880 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 881 //             <being_init offset> <bytes to copy> <bytes to skip>
 882 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 883 //             jmp patch_site
 884 //
 885 //
 886 // A normal patch is done by rewriting the patch body, usually a move,
 887 // and then copying it into place over top of the jmp instruction
 888 // being careful to flush caches and doing it in an MP-safe way.  The
 889 // constants following the patch body are used to find various pieces
 890 // of the patch relative to the call site for Runtime1::patch_code.
 891 // The case for getstatic and putstatic is more complicated because
 892 // getstatic and putstatic have special semantics when executing while
 893 // the class is being initialized.  getstatic/putstatic on a class
 894 // which is being_initialized may be executed by the initializing
 895 // thread but other threads have to block when they execute it.  This
 896 // is accomplished in compiled code by executing a test of the current
 897 // thread against the initializing thread of the class.  It's emitted
 898 // as boilerplate in their stub which allows the patched code to be
 899 // executed before it's copied back into the main body of the nmethod.
 900 //
 901 // being_init: get_thread(<tmp reg>
 902 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 903 //             jne patch_stub
 904 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 905 //             movl reg, [reg1 + <const>]  (for field offsets)
 906 //             jmp continue
 907 //             <being_init offset> <bytes to copy> <bytes to skip>
 908 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
 909 //             jmp patch_site
 910 //
 911 // If the class is being initialized the patch body is rewritten and
 912 // the patch site is rewritten to jump to being_init, instead of
 913 // patch_stub.  Whenever this code is executed it checks the current
 914 // thread against the initializing thread so other threads will enter
 915 // the runtime and end up blocked waiting the class to finish
 916 // initializing inside the calls to resolve_field below.  The
 917 // initializing class will continue on it's way.  Once the class is
 918 // fully_initialized, the intializing_thread of the class becomes
 919 // null, so the next thread to execute this code will fail the test,
 920 // call into patch_code and complete the patching process by copying
 921 // the patch body back into the main part of the nmethod and resume
 922 // executing.
 923 
 924 // NB:
 925 //
 926 // Patchable instruction sequences inherently exhibit race conditions,
 927 // where thread A is patching an instruction at the same time thread B
 928 // is executing it.  The algorithms we use ensure that any observation
 929 // that B can make on any intermediate states during A's patching will
 930 // always end up with a correct outcome.  This is easiest if there are
 931 // few or no intermediate states.  (Some inline caches have two
 932 // related instructions that must be patched in tandem.  For those,
 933 // intermediate states seem to be unavoidable, but we will get the
 934 // right answer from all possible observation orders.)
 935 //
 936 // When patching the entry instruction at the head of a method, or a
 937 // linkable call instruction inside of a method, we try very hard to
 938 // use a patch sequence which executes as a single memory transaction.
 939 // This means, in practice, that when thread A patches an instruction,
 940 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 941 // instruction or is contained in it.  We believe that memory hardware
 942 // will never break up such a word write, if it is naturally aligned
 943 // for the word being written.  We also know that some CPUs work very
 944 // hard to create atomic updates even of naturally unaligned words,
 945 // but we don't want to bet the farm on this always working.
 946 //
 947 // Therefore, if there is any chance of a race condition, we try to
 948 // patch only naturally aligned words, as single, full-word writes.
 949 
 950 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id ))
 951 #ifndef PRODUCT
 952   if (PrintC1Statistics) {
 953     _patch_code_slowcase_cnt++;
 954   }
 955 #endif
 956 
 957   ResourceMark rm(current);
 958   RegisterMap reg_map(current,
 959                       RegisterMap::UpdateMap::skip,
 960                       RegisterMap::ProcessFrames::include,
 961                       RegisterMap::WalkContinuation::skip);
 962   frame runtime_frame = current->last_frame();
 963   frame caller_frame = runtime_frame.sender(&reg_map);
 964 
 965   // last java frame on stack
 966   vframeStream vfst(current, true);
 967   assert(!vfst.at_end(), "Java frame must exist");
 968 
 969   methodHandle caller_method(current, vfst.method());
 970   // Note that caller_method->code() may not be same as caller_code because of OSR's
 971   // Note also that in the presence of inlining it is not guaranteed
 972   // that caller_method() == caller_code->method()
 973 
 974   int bci = vfst.bci();
 975   Bytecodes::Code code = caller_method()->java_code_at(bci);
 976 
 977   // this is used by assertions in the access_field_patching_id
 978   BasicType patch_field_type = T_ILLEGAL;
 979   bool deoptimize_for_volatile = false;
 980   bool deoptimize_for_atomic = false;
 981   int patch_field_offset = -1;
 982   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 983   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 984   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 985   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 986   bool load_klass_or_mirror_patch_id =
 987     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
 988 
 989   if (stub_id == C1StubId::access_field_patching_id) {
 990 
 991     Bytecode_field field_access(caller_method, bci);
 992     fieldDescriptor result; // initialize class if needed
 993     Bytecodes::Code code = field_access.code();
 994     constantPoolHandle constants(current, caller_method->constants());
 995     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 996     patch_field_offset = result.offset();
 997 
 998     // If we're patching a field which is volatile then at compile it
 999     // must not have been know to be volatile, so the generated code
1000     // isn't correct for a volatile reference.  The nmethod has to be
1001     // deoptimized so that the code can be regenerated correctly.
1002     // This check is only needed for access_field_patching since this
1003     // is the path for patching field offsets.  load_klass is only
1004     // used for patching references to oops which don't need special
1005     // handling in the volatile case.
1006 
1007     deoptimize_for_volatile = result.access_flags().is_volatile();
1008 
1009     // If we are patching a field which should be atomic, then
1010     // the generated code is not correct either, force deoptimizing.
1011     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1012     // break access atomicity only for them.
1013 
1014     // Strictly speaking, the deoptimization on 64-bit platforms
1015     // is unnecessary, and T_LONG stores on 32-bit platforms need
1016     // to be handled by special patching code when AlwaysAtomicAccesses
1017     // becomes product feature. At this point, we are still going
1018     // for the deoptimization for consistency against volatile
1019     // accesses.
1020 
1021     patch_field_type = result.field_type();
1022     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1023 
1024   } else if (load_klass_or_mirror_patch_id) {
1025     Klass* k = nullptr;
1026     switch (code) {
1027       case Bytecodes::_putstatic:
1028       case Bytecodes::_getstatic:
1029         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1030           init_klass = klass;
1031           mirror = Handle(current, klass->java_mirror());
1032         }
1033         break;
1034       case Bytecodes::_new:
1035         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1036           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1037         }
1038         break;
1039       case Bytecodes::_multianewarray:
1040         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1041           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1042         }
1043         break;
1044       case Bytecodes::_instanceof:
1045         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1046           k = caller_method->constants()->klass_at(io.index(), CHECK);
1047         }
1048         break;
1049       case Bytecodes::_checkcast:
1050         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1051           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1052         }
1053         break;
1054       case Bytecodes::_anewarray:
1055         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1056           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1057           k = ek->array_klass(CHECK);
1058         }
1059         break;
1060       case Bytecodes::_ldc:
1061       case Bytecodes::_ldc_w:
1062       case Bytecodes::_ldc2_w:
1063         {
1064           Bytecode_loadconstant cc(caller_method, bci);
1065           oop m = cc.resolve_constant(CHECK);
1066           mirror = Handle(current, m);
1067         }
1068         break;
1069       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1070     }
1071     load_klass = k;
1072   } else if (stub_id == C1StubId::load_appendix_patching_id) {
1073     Bytecode_invoke bytecode(caller_method, bci);
1074     Bytecodes::Code bc = bytecode.invoke_code();
1075 
1076     CallInfo info;
1077     constantPoolHandle pool(current, caller_method->constants());
1078     int index = bytecode.index();
1079     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1080     switch (bc) {
1081       case Bytecodes::_invokehandle: {
1082         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1083         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1084         break;
1085       }
1086       case Bytecodes::_invokedynamic: {
1087         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1088         break;
1089       }
1090       default: fatal("unexpected bytecode for load_appendix_patching_id");
1091     }
1092   } else {
1093     ShouldNotReachHere();
1094   }
1095 
1096   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1097     // At compile time we assumed the field wasn't volatile/atomic but after
1098     // loading it turns out it was volatile/atomic so we have to throw the
1099     // compiled code out and let it be regenerated.
1100     if (TracePatching) {
1101       if (deoptimize_for_volatile) {
1102         tty->print_cr("Deoptimizing for patching volatile field reference");
1103       }
1104       if (deoptimize_for_atomic) {
1105         tty->print_cr("Deoptimizing for patching atomic field reference");
1106       }
1107     }
1108 
1109     // It's possible the nmethod was invalidated in the last
1110     // safepoint, but if it's still alive then make it not_entrant.
1111     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1112     if (nm != nullptr) {
1113       nm->make_not_entrant("C1 code patch");
1114     }
1115 
1116     Deoptimization::deoptimize_frame(current, caller_frame.id());
1117 
1118     // Return to the now deoptimized frame.
1119   }
1120 
1121   // Now copy code back
1122 
1123   {
1124     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1125     //
1126     // Deoptimization may have happened while we waited for the lock.
1127     // In that case we don't bother to do any patching we just return
1128     // and let the deopt happen
1129     if (!caller_is_deopted(current)) {
1130       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1131       address instr_pc = jump->jump_destination();
1132       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1133       if (ni->is_jump() ) {
1134         // the jump has not been patched yet
1135         // The jump destination is slow case and therefore not part of the stubs
1136         // (stubs are only for StaticCalls)
1137 
1138         // format of buffer
1139         //    ....
1140         //    instr byte 0     <-- copy_buff
1141         //    instr byte 1
1142         //    ..
1143         //    instr byte n-1
1144         //      n
1145         //    ....             <-- call destination
1146 
1147         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1148         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1149         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1150         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1151         address copy_buff = stub_location - *byte_skip - *byte_count;
1152         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1153         if (TracePatching) {
1154           ttyLocker ttyl;
1155           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1156                         p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass");
1157           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1158           assert(caller_code != nullptr, "nmethod not found");
1159 
1160           // NOTE we use pc() not original_pc() because we already know they are
1161           // identical otherwise we'd have never entered this block of code
1162 
1163           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1164           assert(map != nullptr, "null check");
1165           map->print();
1166           tty->cr();
1167 
1168           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1169         }
1170         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1171         bool do_patch = true;
1172         if (stub_id == C1StubId::access_field_patching_id) {
1173           // The offset may not be correct if the class was not loaded at code generation time.
1174           // Set it now.
1175           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1176           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1177           assert(patch_field_offset >= 0, "illegal offset");
1178           n_move->add_offset_in_bytes(patch_field_offset);
1179         } else if (load_klass_or_mirror_patch_id) {
1180           // If a getstatic or putstatic is referencing a klass which
1181           // isn't fully initialized, the patch body isn't copied into
1182           // place until initialization is complete.  In this case the
1183           // patch site is setup so that any threads besides the
1184           // initializing thread are forced to come into the VM and
1185           // block.
1186           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1187                      InstanceKlass::cast(init_klass)->is_initialized();
1188           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1189           if (jump->jump_destination() == being_initialized_entry) {
1190             assert(do_patch == true, "initialization must be complete at this point");
1191           } else {
1192             // patch the instruction <move reg, klass>
1193             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1194 
1195             assert(n_copy->data() == 0 ||
1196                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1197                    "illegal init value");
1198             if (stub_id == C1StubId::load_klass_patching_id) {
1199               assert(load_klass != nullptr, "klass not set");
1200               n_copy->set_data((intx) (load_klass));
1201             } else {
1202               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1203               n_copy->set_data(cast_from_oop<intx>(mirror()));
1204             }
1205 
1206             if (TracePatching) {
1207               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1208             }
1209           }
1210         } else if (stub_id == C1StubId::load_appendix_patching_id) {
1211           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1212           assert(n_copy->data() == 0 ||
1213                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1214                  "illegal init value");
1215           n_copy->set_data(cast_from_oop<intx>(appendix()));
1216 
1217           if (TracePatching) {
1218             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1219           }
1220         } else {
1221           ShouldNotReachHere();
1222         }
1223 
1224         if (do_patch) {
1225           // replace instructions
1226           // first replace the tail, then the call
1227 #ifdef ARM
1228           if((load_klass_or_mirror_patch_id ||
1229               stub_id == C1StubId::load_appendix_patching_id) &&
1230               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1231             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1232             address addr = nullptr;
1233             assert(nm != nullptr, "invalid nmethod_pc");
1234             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1235             while (mds.next()) {
1236               if (mds.type() == relocInfo::oop_type) {
1237                 assert(stub_id == C1StubId::load_mirror_patching_id ||
1238                        stub_id == C1StubId::load_appendix_patching_id, "wrong stub id");
1239                 oop_Relocation* r = mds.oop_reloc();
1240                 addr = (address)r->oop_addr();
1241                 break;
1242               } else if (mds.type() == relocInfo::metadata_type) {
1243                 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id");
1244                 metadata_Relocation* r = mds.metadata_reloc();
1245                 addr = (address)r->metadata_addr();
1246                 break;
1247               }
1248             }
1249             assert(addr != nullptr, "metadata relocation must exist");
1250             copy_buff -= *byte_count;
1251             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1252             n_copy2->set_pc_relative_offset(addr, instr_pc);
1253           }
1254 #endif
1255 
1256           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1257             address ptr = copy_buff + i;
1258             int a_byte = (*ptr) & 0xFF;
1259             address dst = instr_pc + i;
1260             *(unsigned char*)dst = (unsigned char) a_byte;
1261           }
1262           ICache::invalidate_range(instr_pc, *byte_count);
1263           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1264 
1265           if (load_klass_or_mirror_patch_id ||
1266               stub_id == C1StubId::load_appendix_patching_id) {
1267             relocInfo::relocType rtype =
1268               (stub_id == C1StubId::load_klass_patching_id) ?
1269                                    relocInfo::metadata_type :
1270                                    relocInfo::oop_type;
1271             // update relocInfo to metadata
1272             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1273             assert(nm != nullptr, "invalid nmethod_pc");
1274 
1275             // The old patch site is now a move instruction so update
1276             // the reloc info so that it will get updated during
1277             // future GCs.
1278             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1279             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1280                                                      relocInfo::none, rtype);
1281           }
1282 
1283         } else {
1284           ICache::invalidate_range(copy_buff, *byte_count);
1285           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1286         }
1287       }
1288     }
1289     // If we are patching in a non-perm oop, make sure the nmethod
1290     // is on the right list.
1291     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1292     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1293 
1294     // Since we've patched some oops in the nmethod,
1295     // (re)register it with the heap.
1296     Universe::heap()->register_nmethod(nm);
1297   }
1298 JRT_END
1299 
1300 #else // DEOPTIMIZE_WHEN_PATCHING
1301 
1302 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) {
1303   if (stub_id == C1StubId::load_klass_patching_id ||
1304       stub_id == C1StubId::load_mirror_patching_id) {
1305     // last java frame on stack
1306     vframeStream vfst(current, true);
1307     assert(!vfst.at_end(), "Java frame must exist");
1308 
1309     methodHandle caller_method(current, vfst.method());
1310     int bci = vfst.bci();
1311     Bytecodes::Code code = caller_method()->java_code_at(bci);
1312 
1313     switch (code) {
1314       case Bytecodes::_new:
1315       case Bytecodes::_anewarray:
1316       case Bytecodes::_multianewarray:
1317       case Bytecodes::_instanceof:
1318       case Bytecodes::_checkcast: {
1319         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1320         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1321         if (tag.is_unresolved_klass_in_error()) {
1322           return false; // throws resolution error
1323         }
1324         break;
1325       }
1326 
1327       default: break;
1328     }
1329   }
1330   return true;
1331 }
1332 
1333 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) {
1334 #ifndef PRODUCT
1335   if (PrintC1Statistics) {
1336     _patch_code_slowcase_cnt++;
1337   }
1338 #endif
1339 
1340   // Enable WXWrite: the function is called by c1 stub as a runtime function
1341   // (see another implementation above).
1342   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1343 
1344   if (TracePatching) {
1345     tty->print_cr("Deoptimizing because patch is needed");
1346   }
1347 
1348   RegisterMap reg_map(current,
1349                       RegisterMap::UpdateMap::skip,
1350                       RegisterMap::ProcessFrames::include,
1351                       RegisterMap::WalkContinuation::skip);
1352 
1353   frame runtime_frame = current->last_frame();
1354   frame caller_frame = runtime_frame.sender(&reg_map);
1355   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1356 
1357   if (is_patching_needed(current, stub_id)) {
1358     // Make sure the nmethod is invalidated, i.e. made not entrant.
1359     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1360     if (nm != nullptr) {
1361       nm->make_not_entrant("C1 deoptimize for patching");
1362     }
1363   }
1364 
1365   Deoptimization::deoptimize_frame(current, caller_frame.id());
1366   // Return to the now deoptimized frame.
1367   postcond(caller_is_deopted(current));
1368 }
1369 
1370 #endif // DEOPTIMIZE_WHEN_PATCHING
1371 
1372 // Entry point for compiled code. We want to patch a nmethod.
1373 // We don't do a normal VM transition here because we want to
1374 // know after the patching is complete and any safepoint(s) are taken
1375 // if the calling nmethod was deoptimized. We do this by calling a
1376 // helper method which does the normal VM transition and when it
1377 // completes we can check for deoptimization. This simplifies the
1378 // assembly code in the cpu directories.
1379 //
1380 int Runtime1::move_klass_patching(JavaThread* current) {
1381 //
1382 // NOTE: we are still in Java
1383 //
1384   DEBUG_ONLY(NoHandleMark nhm;)
1385   {
1386     // Enter VM mode
1387     ResetNoHandleMark rnhm;
1388     patch_code(current, C1StubId::load_klass_patching_id);
1389   }
1390   // Back in JAVA, use no oops DON'T safepoint
1391 
1392   // Return true if calling code is deoptimized
1393 
1394   return caller_is_deopted(current);
1395 }
1396 
1397 int Runtime1::move_mirror_patching(JavaThread* current) {
1398 //
1399 // NOTE: we are still in Java
1400 //
1401   DEBUG_ONLY(NoHandleMark nhm;)
1402   {
1403     // Enter VM mode
1404     ResetNoHandleMark rnhm;
1405     patch_code(current, C1StubId::load_mirror_patching_id);
1406   }
1407   // Back in JAVA, use no oops DON'T safepoint
1408 
1409   // Return true if calling code is deoptimized
1410 
1411   return caller_is_deopted(current);
1412 }
1413 
1414 int Runtime1::move_appendix_patching(JavaThread* current) {
1415 //
1416 // NOTE: we are still in Java
1417 //
1418   DEBUG_ONLY(NoHandleMark nhm;)
1419   {
1420     // Enter VM mode
1421     ResetNoHandleMark rnhm;
1422     patch_code(current, C1StubId::load_appendix_patching_id);
1423   }
1424   // Back in JAVA, use no oops DON'T safepoint
1425 
1426   // Return true if calling code is deoptimized
1427 
1428   return caller_is_deopted(current);
1429 }
1430 
1431 // Entry point for compiled code. We want to patch a nmethod.
1432 // We don't do a normal VM transition here because we want to
1433 // know after the patching is complete and any safepoint(s) are taken
1434 // if the calling nmethod was deoptimized. We do this by calling a
1435 // helper method which does the normal VM transition and when it
1436 // completes we can check for deoptimization. This simplifies the
1437 // assembly code in the cpu directories.
1438 //
1439 int Runtime1::access_field_patching(JavaThread* current) {
1440   //
1441   // NOTE: we are still in Java
1442   //
1443   // Handles created in this function will be deleted by the
1444   // HandleMarkCleaner in the transition to the VM.
1445   NoHandleMark nhm;
1446   {
1447     // Enter VM mode
1448     ResetNoHandleMark rnhm;
1449     patch_code(current, C1StubId::access_field_patching_id);
1450   }
1451   // Back in JAVA, use no oops DON'T safepoint
1452 
1453   // Return true if calling code is deoptimized
1454 
1455   return caller_is_deopted(current);
1456 }
1457 
1458 
1459 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1460   // for now we just print out the block id
1461   tty->print("%d ", block_id);
1462 JRT_END
1463 
1464 
1465 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1466   // had to return int instead of bool, otherwise there may be a mismatch
1467   // between the C calling convention and the Java one.
1468   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1469   // JVM takes the whole %eax as the return value, which may misinterpret
1470   // the return value as a boolean true.
1471 
1472   assert(mirror != nullptr, "should null-check on mirror before calling");
1473   Klass* k = java_lang_Class::as_Klass(mirror);
1474   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1475 JRT_END
1476 
1477 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1478   ResourceMark rm;
1479 
1480   RegisterMap reg_map(current,
1481                       RegisterMap::UpdateMap::skip,
1482                       RegisterMap::ProcessFrames::include,
1483                       RegisterMap::WalkContinuation::skip);
1484   frame runtime_frame = current->last_frame();
1485   frame caller_frame = runtime_frame.sender(&reg_map);
1486 
1487   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1488   assert (nm != nullptr, "no more nmethod?");
1489   nm->make_not_entrant("C1 predicate failed trap");
1490 
1491   methodHandle m(current, nm->method());
1492   MethodData* mdo = m->method_data();
1493 
1494   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1495     // Build an MDO.  Ignore errors like OutOfMemory;
1496     // that simply means we won't have an MDO to update.
1497     Method::build_profiling_method_data(m, THREAD);
1498     if (HAS_PENDING_EXCEPTION) {
1499       // Only metaspace OOM is expected. No Java code executed.
1500       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1501       CLEAR_PENDING_EXCEPTION;
1502     }
1503     mdo = m->method_data();
1504   }
1505 
1506   if (mdo != nullptr) {
1507     mdo->inc_trap_count(Deoptimization::Reason_none);
1508   }
1509 
1510   if (TracePredicateFailedTraps) {
1511     stringStream ss1, ss2;
1512     vframeStream vfst(current);
1513     Method* inlinee = vfst.method();
1514     inlinee->print_short_name(&ss1);
1515     m->print_short_name(&ss2);
1516     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1517   }
1518 
1519 
1520   Deoptimization::deoptimize_frame(current, caller_frame.id());
1521 
1522 JRT_END
1523 
1524 // Check exception if AbortVMOnException flag set
1525 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1526   ResourceMark rm;
1527   const char* message = nullptr;
1528   if (ex->is_a(vmClasses::Throwable_klass())) {
1529     oop msg = java_lang_Throwable::message(ex);
1530     if (msg != nullptr) {
1531       message = java_lang_String::as_utf8_string(msg);
1532     }
1533   }
1534   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1535 JRT_END
1536 
1537 #ifndef PRODUCT
1538 void Runtime1::print_statistics() {
1539   tty->print_cr("C1 Runtime statistics:");
1540   tty->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1541   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1542   tty->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1543   tty->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1544   tty->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1545   tty->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1546   tty->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1547   tty->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1548   tty->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1549   tty->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1550   tty->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1551   tty->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1552   tty->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1553   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1554 
1555   tty->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1556   tty->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1557   tty->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1558   tty->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1559   tty->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1560   tty->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1561   tty->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1562 
1563   tty->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1564   tty->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1565   tty->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1566   tty->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1567   tty->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1568   tty->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1569   tty->print_cr(" _throw_count:                                  %u:", _throw_count);
1570 
1571   SharedRuntime::print_ic_miss_histogram();
1572   tty->cr();
1573 }
1574 #endif // PRODUCT