1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/codeBuffer.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/vmClasses.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/aotCodeCache.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "code/vtableStubs.hpp"
  39 #include "compiler/compilationPolicy.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "compiler/oopMap.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/c1/barrierSetC1.hpp"
  44 #include "gc/shared/collectedHeap.hpp"
  45 #include "interpreter/bytecode.hpp"
  46 #include "interpreter/interpreter.hpp"
  47 #include "jfr/support/jfrIntrinsics.hpp"
  48 #include "logging/log.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/access.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/fieldDescriptor.inline.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.inline.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/stackWatermarkSet.hpp"
  65 #include "runtime/stubInfo.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/vframe.inline.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "runtime/vm_version.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/events.hpp"
  72 
  73 
  74 // Implementation of StubAssembler
  75 
  76 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  77   _name = name;
  78   _must_gc_arguments = false;
  79   _frame_size = no_frame_size;
  80   _num_rt_args = 0;
  81   _stub_id = stub_id;
  82 }
  83 
  84 
  85 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  86   _name = name;
  87   _must_gc_arguments = must_gc_arguments;
  88 }
  89 
  90 
  91 void StubAssembler::set_frame_size(int size) {
  92   if (_frame_size == no_frame_size) {
  93     _frame_size = size;
  94   }
  95   assert(_frame_size == size, "can't change the frame size");
  96 }
  97 
  98 
  99 void StubAssembler::set_num_rt_args(int args) {
 100   if (_num_rt_args == 0) {
 101     _num_rt_args = args;
 102   }
 103   assert(_num_rt_args == args, "can't change the number of args");
 104 }
 105 
 106 // Implementation of Runtime1
 107 CodeBlob* Runtime1::_blobs[StubInfo::C1_STUB_COUNT];
 108 
 109 #ifndef PRODUCT
 110 // statistics
 111 uint Runtime1::_generic_arraycopystub_cnt = 0;
 112 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 113 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 114 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 115 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 116 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 117 uint Runtime1::_new_instance_slowcase_cnt = 0;
 118 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 119 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 120 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 121 uint Runtime1::_patch_code_slowcase_cnt = 0;
 122 uint Runtime1::_throw_range_check_exception_count = 0;
 123 uint Runtime1::_throw_index_exception_count = 0;
 124 uint Runtime1::_throw_div0_exception_count = 0;
 125 uint Runtime1::_throw_null_pointer_exception_count = 0;
 126 uint Runtime1::_throw_class_cast_exception_count = 0;
 127 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 128 uint Runtime1::_throw_count = 0;
 129 
 130 static uint _byte_arraycopy_stub_cnt = 0;
 131 static uint _short_arraycopy_stub_cnt = 0;
 132 static uint _int_arraycopy_stub_cnt = 0;
 133 static uint _long_arraycopy_stub_cnt = 0;
 134 static uint _oop_arraycopy_stub_cnt = 0;
 135 
 136 address Runtime1::arraycopy_count_address(BasicType type) {
 137   switch (type) {
 138   case T_BOOLEAN:
 139   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 140   case T_CHAR:
 141   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 142   case T_FLOAT:
 143   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 144   case T_DOUBLE:
 145   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 146   case T_ARRAY:
 147   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 148   default:
 149     ShouldNotReachHere();
 150     return nullptr;
 151   }
 152 }
 153 
 154 
 155 #endif
 156 
 157 // Simple helper to see if the caller of a runtime stub which
 158 // entered the VM has been deoptimized
 159 
 160 static bool caller_is_deopted(JavaThread* current) {
 161   RegisterMap reg_map(current,
 162                       RegisterMap::UpdateMap::skip,
 163                       RegisterMap::ProcessFrames::include,
 164                       RegisterMap::WalkContinuation::skip);
 165   frame runtime_frame = current->last_frame();
 166   frame caller_frame = runtime_frame.sender(&reg_map);
 167   assert(caller_frame.is_compiled_frame(), "must be compiled");
 168   return caller_frame.is_deoptimized_frame();
 169 }
 170 
 171 // Stress deoptimization
 172 static void deopt_caller(JavaThread* current) {
 173   if (!caller_is_deopted(current)) {
 174     RegisterMap reg_map(current,
 175                         RegisterMap::UpdateMap::skip,
 176                         RegisterMap::ProcessFrames::include,
 177                         RegisterMap::WalkContinuation::skip);
 178     frame runtime_frame = current->last_frame();
 179     frame caller_frame = runtime_frame.sender(&reg_map);
 180     Deoptimization::deoptimize_frame(current, caller_frame.id());
 181     assert(caller_is_deopted(current), "Must be deoptimized");
 182   }
 183 }
 184 
 185 class C1StubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 186  private:
 187   StubId _id;
 188  public:
 189   C1StubAssemblerCodeGenClosure(StubId id) : _id(id) {
 190     assert(StubInfo::is_c1(_id), "not a c1 stub id %s", StubInfo::name(_id));
 191   }
 192   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 193     return Runtime1::generate_code_for(_id, sasm);
 194   }
 195 };
 196 
 197 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 198   if (id != StubId::NO_STUBID) {
 199     CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, StubInfo::blob(id));
 200     if (blob != nullptr) {
 201       return blob;
 202     }
 203   }
 204 
 205   ResourceMark rm;
 206   // create code buffer for code storage
 207   CodeBuffer code(buffer_blob);
 208 
 209   OopMapSet* oop_maps;
 210   int frame_size;
 211   bool must_gc_arguments;
 212 
 213   Compilation::setup_code_buffer(&code, 0);
 214 
 215   // create assembler for code generation
 216   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 217   // generate code for runtime stub
 218   oop_maps = cl->generate_code(sasm);
 219   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 220          "if stub has an oop map it must have a valid frame size");
 221   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 222 
 223   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 224   sasm->align(BytesPerWord);
 225   // make sure all code is in code buffer
 226   sasm->flush();
 227 
 228   frame_size = sasm->frame_size();
 229   must_gc_arguments = sasm->must_gc_arguments();
 230   // create blob - distinguish a few special cases
 231   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 232                                                  &code,
 233                                                  CodeOffsets::frame_never_safe,
 234                                                  frame_size,
 235                                                  oop_maps,
 236                                                  must_gc_arguments,
 237                                                  false /* alloc_fail_is_fatal */ );
 238   if (blob != nullptr && (int)id >= 0) {
 239     AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, StubInfo::blob(id));
 240   }
 241   return blob;
 242 }
 243 
 244 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubId id) {
 245   assert(StubInfo::is_c1(id), "not a c1 stub %s", StubInfo::name(id));
 246   bool expect_oop_map = true;
 247 #ifdef ASSERT
 248   // Make sure that stubs that need oopmaps have them
 249   switch (id) {
 250     // These stubs don't need to have an oopmap
 251   case StubId::c1_dtrace_object_alloc_id:
 252   case StubId::c1_slow_subtype_check_id:
 253   case StubId::c1_fpu2long_stub_id:
 254   case StubId::c1_unwind_exception_id:
 255   case StubId::c1_counter_overflow_id:
 256   case StubId::c1_is_instance_of_id:
 257     expect_oop_map = false;
 258     break;
 259   default:
 260     break;
 261   }
 262 #endif
 263   C1StubAssemblerCodeGenClosure cl(id);
 264   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 265   // install blob
 266   int idx = StubInfo::c1_offset(id);   // will assert on non-c1 id
 267   _blobs[idx] = blob;
 268   return blob != nullptr;
 269 }
 270 
 271 bool Runtime1::initialize(BufferBlob* blob) {
 272   // platform-dependent initialization
 273   initialize_pd();
 274   // iterate blobs in C1 group and generate a single stub per blob
 275   StubId id = StubInfo::stub_base(StubGroup::C1);
 276   StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
 277   for (; id != limit; id = StubInfo::next(id)) {
 278     if (!generate_blob_for(blob, id)) {
 279       return false;
 280     }
 281     if (id == StubId::c1_forward_exception_id) {
 282       // publish early c1 stubs at this point so later stubs can refer to them
 283       AOTCodeCache::init_early_c1_table();
 284     }
 285   }
 286   // printing
 287 #ifndef PRODUCT
 288   if (PrintSimpleStubs) {
 289     ResourceMark rm;
 290     id = StubInfo::stub_base(StubGroup::C1);
 291     for (; id != limit; id = StubInfo::next(id)) {
 292       CodeBlob* blob = blob_for(id);
 293       blob->print();
 294       if (blob->oop_maps() != nullptr) {
 295         blob->oop_maps()->print();
 296       }
 297     }
 298   }
 299 #endif
 300   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 301   return bs->generate_c1_runtime_stubs(blob);
 302 }
 303 
 304 CodeBlob* Runtime1::blob_for(StubId id) {
 305   int idx = StubInfo::c1_offset(id);   // will assert on non-c1 id
 306   return _blobs[idx];
 307 }
 308 
 309 
 310 const char* Runtime1::name_for(StubId id) {
 311   return StubInfo::name(id);
 312 }
 313 
 314 const char* Runtime1::name_for_address(address entry) {
 315   // iterate stubs starting from C1 group base
 316   StubId id = StubInfo::stub_base(StubGroup::C1);
 317   StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
 318   for (; id != limit; id = StubInfo::next(id)) {
 319     if (entry == entry_for(id)) return StubInfo::name(id);
 320   }
 321 
 322 #define FUNCTION_CASE(a, f) \
 323   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 324 
 325   FUNCTION_CASE(entry, os::javaTimeMillis);
 326   FUNCTION_CASE(entry, os::javaTimeNanos);
 327   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 328   FUNCTION_CASE(entry, SharedRuntime::d2f);
 329   FUNCTION_CASE(entry, SharedRuntime::d2i);
 330   FUNCTION_CASE(entry, SharedRuntime::d2l);
 331   FUNCTION_CASE(entry, SharedRuntime::dcos);
 332   FUNCTION_CASE(entry, SharedRuntime::dexp);
 333   FUNCTION_CASE(entry, SharedRuntime::dlog);
 334   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 335   FUNCTION_CASE(entry, SharedRuntime::dpow);
 336   FUNCTION_CASE(entry, SharedRuntime::drem);
 337   FUNCTION_CASE(entry, SharedRuntime::dsin);
 338   FUNCTION_CASE(entry, SharedRuntime::dtan);
 339   FUNCTION_CASE(entry, SharedRuntime::f2i);
 340   FUNCTION_CASE(entry, SharedRuntime::f2l);
 341   FUNCTION_CASE(entry, SharedRuntime::frem);
 342   FUNCTION_CASE(entry, SharedRuntime::l2d);
 343   FUNCTION_CASE(entry, SharedRuntime::l2f);
 344   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 345   FUNCTION_CASE(entry, SharedRuntime::lmul);
 346   FUNCTION_CASE(entry, SharedRuntime::lrem);
 347   FUNCTION_CASE(entry, SharedRuntime::lrem);
 348   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 349   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 350   FUNCTION_CASE(entry, is_instance_of);
 351   FUNCTION_CASE(entry, trace_block_entry);
 352 #ifdef JFR_HAVE_INTRINSICS
 353   FUNCTION_CASE(entry, JfrTime::time_function());
 354 #endif
 355   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 356   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 357   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 358   FUNCTION_CASE(entry, StubRoutines::dexp());
 359   FUNCTION_CASE(entry, StubRoutines::dlog());
 360   FUNCTION_CASE(entry, StubRoutines::dlog10());
 361   FUNCTION_CASE(entry, StubRoutines::dpow());
 362   FUNCTION_CASE(entry, StubRoutines::dsin());
 363   FUNCTION_CASE(entry, StubRoutines::dcos());
 364   FUNCTION_CASE(entry, StubRoutines::dtan());
 365   FUNCTION_CASE(entry, StubRoutines::dsinh());
 366   FUNCTION_CASE(entry, StubRoutines::dtanh());
 367   FUNCTION_CASE(entry, StubRoutines::dcbrt());
 368 
 369 #undef FUNCTION_CASE
 370 
 371   // Soft float adds more runtime names.
 372   return pd_name_for_address(entry);
 373 }
 374 
 375 
 376 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 377 #ifndef PRODUCT
 378   if (PrintC1Statistics) {
 379     _new_instance_slowcase_cnt++;
 380   }
 381 #endif
 382   assert(klass->is_klass(), "not a class");
 383   Handle holder(current, klass->klass_holder()); // keep the klass alive
 384   InstanceKlass* h = InstanceKlass::cast(klass);
 385   h->check_valid_for_instantiation(true, CHECK);
 386   // make sure klass is initialized
 387   h->initialize(CHECK);
 388   // allocate instance and return via TLS
 389   oop obj = h->allocate_instance(CHECK);
 390   current->set_vm_result_oop(obj);
 391 JRT_END
 392 
 393 
 394 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 395 #ifndef PRODUCT
 396   if (PrintC1Statistics) {
 397     _new_type_array_slowcase_cnt++;
 398   }
 399 #endif
 400   // Note: no handle for klass needed since they are not used
 401   //       anymore after new_typeArray() and no GC can happen before.
 402   //       (This may have to change if this code changes!)
 403   assert(klass->is_klass(), "not a class");
 404   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 405   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 406   current->set_vm_result_oop(obj);
 407   // This is pretty rare but this runtime patch is stressful to deoptimization
 408   // if we deoptimize here so force a deopt to stress the path.
 409   if (DeoptimizeALot) {
 410     deopt_caller(current);
 411   }
 412 
 413 JRT_END
 414 
 415 
 416 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 417 #ifndef PRODUCT
 418   if (PrintC1Statistics) {
 419     _new_object_array_slowcase_cnt++;
 420   }
 421 #endif
 422   // Note: no handle for klass needed since they are not used
 423   //       anymore after new_objArray() and no GC can happen before.
 424   //       (This may have to change if this code changes!)
 425   assert(array_klass->is_klass(), "not a class");
 426   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 427   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 428   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 429   current->set_vm_result_oop(obj);
 430   // This is pretty rare but this runtime patch is stressful to deoptimization
 431   // if we deoptimize here so force a deopt to stress the path.
 432   if (DeoptimizeALot) {
 433     deopt_caller(current);
 434   }
 435 JRT_END
 436 
 437 
 438 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 439 #ifndef PRODUCT
 440   if (PrintC1Statistics) {
 441     _new_multi_array_slowcase_cnt++;
 442   }
 443 #endif
 444   assert(klass->is_klass(), "not a class");
 445   assert(rank >= 1, "rank must be nonzero");
 446   Handle holder(current, klass->klass_holder()); // keep the klass alive
 447   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 448   current->set_vm_result_oop(obj);
 449 JRT_END
 450 
 451 
 452 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubId id))
 453   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 454 JRT_END
 455 
 456 
 457 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 458   ResourceMark rm(current);
 459   const char* klass_name = obj->klass()->external_name();
 460   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 461 JRT_END
 462 
 463 
 464 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 465 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 466 // method) method is passed as an argument. In order to do that it is embedded in the code as
 467 // a constant.
 468 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 469   nmethod* osr_nm = nullptr;
 470   methodHandle method(current, m);
 471 
 472   RegisterMap map(current,
 473                   RegisterMap::UpdateMap::skip,
 474                   RegisterMap::ProcessFrames::include,
 475                   RegisterMap::WalkContinuation::skip);
 476   frame fr =  current->last_frame().sender(&map);
 477   nmethod* nm = (nmethod*) fr.cb();
 478   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 479   methodHandle enclosing_method(current, nm->method());
 480 
 481   CompLevel level = (CompLevel)nm->comp_level();
 482   int bci = InvocationEntryBci;
 483   if (branch_bci != InvocationEntryBci) {
 484     // Compute destination bci
 485     address pc = method()->code_base() + branch_bci;
 486     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 487     int offset = 0;
 488     switch (branch) {
 489       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 490       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 491       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 492       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 493       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 494       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 495       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 496         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 497         break;
 498       case Bytecodes::_goto_w:
 499         offset = Bytes::get_Java_u4(pc + 1);
 500         break;
 501       default: ;
 502     }
 503     bci = branch_bci + offset;
 504   }
 505   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 506   return osr_nm;
 507 }
 508 
 509 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 510   nmethod* osr_nm;
 511   JRT_BLOCK_NO_ASYNC
 512     osr_nm = counter_overflow_helper(current, bci, method);
 513     if (osr_nm != nullptr) {
 514       RegisterMap map(current,
 515                       RegisterMap::UpdateMap::skip,
 516                       RegisterMap::ProcessFrames::include,
 517                       RegisterMap::WalkContinuation::skip);
 518       frame fr =  current->last_frame().sender(&map);
 519       Deoptimization::deoptimize_frame(current, fr.id());
 520     }
 521   JRT_BLOCK_END
 522   return nullptr;
 523 JRT_END
 524 
 525 extern void vm_exit(int code);
 526 
 527 // Enter this method from compiled code handler below. This is where we transition
 528 // to VM mode. This is done as a helper routine so that the method called directly
 529 // from compiled code does not have to transition to VM. This allows the entry
 530 // method to see if the nmethod that we have just looked up a handler for has
 531 // been deoptimized while we were in the vm. This simplifies the assembly code
 532 // cpu directories.
 533 //
 534 // We are entering here from exception stub (via the entry method below)
 535 // If there is a compiled exception handler in this method, we will continue there;
 536 // otherwise we will unwind the stack and continue at the caller of top frame method
 537 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 538 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 539 // check to see if the handler we are going to return is now in a nmethod that has
 540 // been deoptimized. If that is the case we return the deopt blob
 541 // unpack_with_exception entry instead. This makes life for the exception blob easier
 542 // because making that same check and diverting is painful from assembly language.
 543 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 544   // Reset method handle flag.
 545   current->set_is_method_handle_return(false);
 546 
 547   Handle exception(current, ex);
 548 
 549   // This function is called when we are about to throw an exception. Therefore,
 550   // we have to poll the stack watermark barrier to make sure that not yet safe
 551   // stack frames are made safe before returning into them.
 552   if (current->last_frame().cb() == Runtime1::blob_for(StubId::c1_handle_exception_from_callee_id)) {
 553     // The StubId::c1_handle_exception_from_callee_id handler is invoked after the
 554     // frame has been unwound. It instead builds its own stub frame, to call the
 555     // runtime. But the throwing frame has already been unwound here.
 556     StackWatermarkSet::after_unwind(current);
 557   }
 558 
 559   nm = CodeCache::find_nmethod(pc);
 560   assert(nm != nullptr, "this is not an nmethod");
 561   // Adjust the pc as needed/
 562   if (nm->is_deopt_pc(pc)) {
 563     RegisterMap map(current,
 564                     RegisterMap::UpdateMap::skip,
 565                     RegisterMap::ProcessFrames::include,
 566                     RegisterMap::WalkContinuation::skip);
 567     frame exception_frame = current->last_frame().sender(&map);
 568     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 569     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 570     pc = exception_frame.pc();
 571   }
 572   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 573   // Check that exception is a subclass of Throwable
 574   assert(exception->is_a(vmClasses::Throwable_klass()),
 575          "Exception not subclass of Throwable");
 576 
 577   // debugging support
 578   // tracing
 579   if (log_is_enabled(Info, exceptions)) {
 580     ResourceMark rm; // print_value_string
 581     stringStream tempst;
 582     assert(nm->method() != nullptr, "Unexpected null method()");
 583     tempst.print("C1 compiled method <%s>\n"
 584                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 585                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 586     Exceptions::log_exception(exception, tempst.freeze());
 587   }
 588   // for AbortVMOnException flag
 589   Exceptions::debug_check_abort(exception);
 590 
 591   // Check the stack guard pages and re-enable them if necessary and there is
 592   // enough space on the stack to do so.  Use fast exceptions only if the guard
 593   // pages are enabled.
 594   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 595 
 596   if (JvmtiExport::can_post_on_exceptions()) {
 597     // To ensure correct notification of exception catches and throws
 598     // we have to deoptimize here.  If we attempted to notify the
 599     // catches and throws during this exception lookup it's possible
 600     // we could deoptimize on the way out of the VM and end back in
 601     // the interpreter at the throw site.  This would result in double
 602     // notifications since the interpreter would also notify about
 603     // these same catches and throws as it unwound the frame.
 604 
 605     RegisterMap reg_map(current,
 606                         RegisterMap::UpdateMap::include,
 607                         RegisterMap::ProcessFrames::include,
 608                         RegisterMap::WalkContinuation::skip);
 609     frame stub_frame = current->last_frame();
 610     frame caller_frame = stub_frame.sender(&reg_map);
 611 
 612     // We don't really want to deoptimize the nmethod itself since we
 613     // can actually continue in the exception handler ourselves but I
 614     // don't see an easy way to have the desired effect.
 615     Deoptimization::deoptimize_frame(current, caller_frame.id());
 616     assert(caller_is_deopted(current), "Must be deoptimized");
 617 
 618     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 619   }
 620 
 621   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 622   if (guard_pages_enabled) {
 623     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 624     if (fast_continuation != nullptr) {
 625       // Set flag if return address is a method handle call site.
 626       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 627       return fast_continuation;
 628     }
 629   }
 630 
 631   // If the stack guard pages are enabled, check whether there is a handler in
 632   // the current method.  Otherwise (guard pages disabled), force an unwind and
 633   // skip the exception cache update (i.e., just leave continuation as null).
 634   address continuation = nullptr;
 635   if (guard_pages_enabled) {
 636 
 637     // New exception handling mechanism can support inlined methods
 638     // with exception handlers since the mappings are from PC to PC
 639 
 640     // Clear out the exception oop and pc since looking up an
 641     // exception handler can cause class loading, which might throw an
 642     // exception and those fields are expected to be clear during
 643     // normal bytecode execution.
 644     current->clear_exception_oop_and_pc();
 645 
 646     bool recursive_exception = false;
 647     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 648     // If an exception was thrown during exception dispatch, the exception oop may have changed
 649     current->set_exception_oop(exception());
 650     current->set_exception_pc(pc);
 651 
 652     // the exception cache is used only by non-implicit exceptions
 653     // Update the exception cache only when there didn't happen
 654     // another exception during the computation of the compiled
 655     // exception handler. Checking for exception oop equality is not
 656     // sufficient because some exceptions are pre-allocated and reused.
 657     if (continuation != nullptr && !recursive_exception) {
 658       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 659     }
 660   }
 661 
 662   current->set_vm_result_oop(exception());
 663   // Set flag if return address is a method handle call site.
 664   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 665 
 666   if (log_is_enabled(Info, exceptions)) {
 667     ResourceMark rm;
 668     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 669                          " for exception thrown at PC " PTR_FORMAT,
 670                          p2i(current), p2i(continuation), p2i(pc));
 671   }
 672 
 673   return continuation;
 674 JRT_END
 675 
 676 // Enter this method from compiled code only if there is a Java exception handler
 677 // in the method handling the exception.
 678 // We are entering here from exception stub. We don't do a normal VM transition here.
 679 // We do it in a helper. This is so we can check to see if the nmethod we have just
 680 // searched for an exception handler has been deoptimized in the meantime.
 681 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 682   oop exception = current->exception_oop();
 683   address pc = current->exception_pc();
 684   // Still in Java mode
 685   DEBUG_ONLY(NoHandleMark nhm);
 686   nmethod* nm = nullptr;
 687   address continuation = nullptr;
 688   {
 689     // Enter VM mode by calling the helper
 690     ResetNoHandleMark rnhm;
 691     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 692   }
 693   // Back in JAVA, use no oops DON'T safepoint
 694 
 695   // Now check to see if the nmethod we were called from is now deoptimized.
 696   // If so we must return to the deopt blob and deoptimize the nmethod
 697   if (nm != nullptr && caller_is_deopted(current)) {
 698     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 699   }
 700 
 701   assert(continuation != nullptr, "no handler found");
 702   return continuation;
 703 }
 704 
 705 
 706 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 707 #ifndef PRODUCT
 708   if (PrintC1Statistics) {
 709     _throw_range_check_exception_count++;
 710   }
 711 #endif
 712   const int len = 35;
 713   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 714   char message[2 * jintAsStringSize + len];
 715   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 716   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 717 JRT_END
 718 
 719 
 720 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 721 #ifndef PRODUCT
 722   if (PrintC1Statistics) {
 723     _throw_index_exception_count++;
 724   }
 725 #endif
 726   char message[16];
 727   os::snprintf_checked(message, sizeof(message), "%d", index);
 728   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 729 JRT_END
 730 
 731 
 732 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 733 #ifndef PRODUCT
 734   if (PrintC1Statistics) {
 735     _throw_div0_exception_count++;
 736   }
 737 #endif
 738   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 739 JRT_END
 740 
 741 
 742 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 743 #ifndef PRODUCT
 744   if (PrintC1Statistics) {
 745     _throw_null_pointer_exception_count++;
 746   }
 747 #endif
 748   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 749 JRT_END
 750 
 751 
 752 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 753 #ifndef PRODUCT
 754   if (PrintC1Statistics) {
 755     _throw_class_cast_exception_count++;
 756   }
 757 #endif
 758   ResourceMark rm(current);
 759   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 760   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 761 JRT_END
 762 
 763 
 764 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 765 #ifndef PRODUCT
 766   if (PrintC1Statistics) {
 767     _throw_incompatible_class_change_error_count++;
 768   }
 769 #endif
 770   ResourceMark rm(current);
 771   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 772 JRT_END
 773 
 774 
 775 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 776 #ifndef PRODUCT
 777   if (PrintC1Statistics) {
 778     _monitorenter_slowcase_cnt++;
 779   }
 780 #endif
 781   if (LockingMode == LM_MONITOR) {
 782     lock->set_obj(obj);
 783   }
 784   assert(obj == lock->obj(), "must match");
 785   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 786 JRT_END
 787 
 788 
 789 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 790   assert(current == JavaThread::current(), "pre-condition");
 791 #ifndef PRODUCT
 792   if (PrintC1Statistics) {
 793     _monitorexit_slowcase_cnt++;
 794   }
 795 #endif
 796   assert(current->last_Java_sp(), "last_Java_sp must be set");
 797   oop obj = lock->obj();
 798   assert(oopDesc::is_oop(obj), "must be null or an object");
 799   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 800 JRT_END
 801 
 802 // Cf. OptoRuntime::deoptimize_caller_frame
 803 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 804   // Called from within the owner thread, so no need for safepoint
 805   RegisterMap reg_map(current,
 806                       RegisterMap::UpdateMap::skip,
 807                       RegisterMap::ProcessFrames::include,
 808                       RegisterMap::WalkContinuation::skip);
 809   frame stub_frame = current->last_frame();
 810   assert(stub_frame.is_runtime_frame(), "Sanity check");
 811   frame caller_frame = stub_frame.sender(&reg_map);
 812   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 813   assert(nm != nullptr, "Sanity check");
 814   methodHandle method(current, nm->method());
 815   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 816   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 817   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 818 
 819   if (action == Deoptimization::Action_make_not_entrant) {
 820     if (nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE)) {
 821       if (reason == Deoptimization::Reason_tenured) {
 822         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 823         if (trap_mdo != nullptr) {
 824           trap_mdo->inc_tenure_traps();
 825         }
 826       }
 827     }
 828   }
 829 
 830   // Deoptimize the caller frame.
 831   Deoptimization::deoptimize_frame(current, caller_frame.id());
 832   // Return to the now deoptimized frame.
 833 JRT_END
 834 
 835 
 836 #ifndef DEOPTIMIZE_WHEN_PATCHING
 837 
 838 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 839   Bytecode_field field_access(caller, bci);
 840   // This can be static or non-static field access
 841   Bytecodes::Code code       = field_access.code();
 842 
 843   // We must load class, initialize class and resolve the field
 844   fieldDescriptor result; // initialize class if needed
 845   constantPoolHandle constants(THREAD, caller->constants());
 846   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 847   return result.field_holder();
 848 }
 849 
 850 
 851 //
 852 // This routine patches sites where a class wasn't loaded or
 853 // initialized at the time the code was generated.  It handles
 854 // references to classes, fields and forcing of initialization.  Most
 855 // of the cases are straightforward and involving simply forcing
 856 // resolution of a class, rewriting the instruction stream with the
 857 // needed constant and replacing the call in this function with the
 858 // patched code.  The case for static field is more complicated since
 859 // the thread which is in the process of initializing a class can
 860 // access it's static fields but other threads can't so the code
 861 // either has to deoptimize when this case is detected or execute a
 862 // check that the current thread is the initializing thread.  The
 863 // current
 864 //
 865 // Patches basically look like this:
 866 //
 867 //
 868 // patch_site: jmp patch stub     ;; will be patched
 869 // continue:   ...
 870 //             ...
 871 //             ...
 872 //             ...
 873 //
 874 // They have a stub which looks like this:
 875 //
 876 //             ;; patch body
 877 //             movl <const>, reg           (for class constants)
 878 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 879 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 880 //             <being_init offset> <bytes to copy> <bytes to skip>
 881 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 882 //             jmp patch_site
 883 //
 884 //
 885 // A normal patch is done by rewriting the patch body, usually a move,
 886 // and then copying it into place over top of the jmp instruction
 887 // being careful to flush caches and doing it in an MP-safe way.  The
 888 // constants following the patch body are used to find various pieces
 889 // of the patch relative to the call site for Runtime1::patch_code.
 890 // The case for getstatic and putstatic is more complicated because
 891 // getstatic and putstatic have special semantics when executing while
 892 // the class is being initialized.  getstatic/putstatic on a class
 893 // which is being_initialized may be executed by the initializing
 894 // thread but other threads have to block when they execute it.  This
 895 // is accomplished in compiled code by executing a test of the current
 896 // thread against the initializing thread of the class.  It's emitted
 897 // as boilerplate in their stub which allows the patched code to be
 898 // executed before it's copied back into the main body of the nmethod.
 899 //
 900 // being_init: get_thread(<tmp reg>
 901 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 902 //             jne patch_stub
 903 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 904 //             movl reg, [reg1 + <const>]  (for field offsets)
 905 //             jmp continue
 906 //             <being_init offset> <bytes to copy> <bytes to skip>
 907 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
 908 //             jmp patch_site
 909 //
 910 // If the class is being initialized the patch body is rewritten and
 911 // the patch site is rewritten to jump to being_init, instead of
 912 // patch_stub.  Whenever this code is executed it checks the current
 913 // thread against the initializing thread so other threads will enter
 914 // the runtime and end up blocked waiting the class to finish
 915 // initializing inside the calls to resolve_field below.  The
 916 // initializing class will continue on it's way.  Once the class is
 917 // fully_initialized, the intializing_thread of the class becomes
 918 // null, so the next thread to execute this code will fail the test,
 919 // call into patch_code and complete the patching process by copying
 920 // the patch body back into the main part of the nmethod and resume
 921 // executing.
 922 
 923 // NB:
 924 //
 925 // Patchable instruction sequences inherently exhibit race conditions,
 926 // where thread A is patching an instruction at the same time thread B
 927 // is executing it.  The algorithms we use ensure that any observation
 928 // that B can make on any intermediate states during A's patching will
 929 // always end up with a correct outcome.  This is easiest if there are
 930 // few or no intermediate states.  (Some inline caches have two
 931 // related instructions that must be patched in tandem.  For those,
 932 // intermediate states seem to be unavoidable, but we will get the
 933 // right answer from all possible observation orders.)
 934 //
 935 // When patching the entry instruction at the head of a method, or a
 936 // linkable call instruction inside of a method, we try very hard to
 937 // use a patch sequence which executes as a single memory transaction.
 938 // This means, in practice, that when thread A patches an instruction,
 939 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 940 // instruction or is contained in it.  We believe that memory hardware
 941 // will never break up such a word write, if it is naturally aligned
 942 // for the word being written.  We also know that some CPUs work very
 943 // hard to create atomic updates even of naturally unaligned words,
 944 // but we don't want to bet the farm on this always working.
 945 //
 946 // Therefore, if there is any chance of a race condition, we try to
 947 // patch only naturally aligned words, as single, full-word writes.
 948 
 949 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, StubId stub_id ))
 950 #ifndef PRODUCT
 951   if (PrintC1Statistics) {
 952     _patch_code_slowcase_cnt++;
 953   }
 954 #endif
 955 
 956   ResourceMark rm(current);
 957   RegisterMap reg_map(current,
 958                       RegisterMap::UpdateMap::skip,
 959                       RegisterMap::ProcessFrames::include,
 960                       RegisterMap::WalkContinuation::skip);
 961   frame runtime_frame = current->last_frame();
 962   frame caller_frame = runtime_frame.sender(&reg_map);
 963 
 964   // last java frame on stack
 965   vframeStream vfst(current, true);
 966   assert(!vfst.at_end(), "Java frame must exist");
 967 
 968   methodHandle caller_method(current, vfst.method());
 969   // Note that caller_method->code() may not be same as caller_code because of OSR's
 970   // Note also that in the presence of inlining it is not guaranteed
 971   // that caller_method() == caller_code->method()
 972 
 973   int bci = vfst.bci();
 974   Bytecodes::Code code = caller_method()->java_code_at(bci);
 975 
 976   // this is used by assertions in the access_field_patching_id
 977   BasicType patch_field_type = T_ILLEGAL;
 978   bool deoptimize_for_volatile = false;
 979   bool deoptimize_for_atomic = false;
 980   int patch_field_offset = -1;
 981   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 982   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 983   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 984   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 985   bool load_klass_or_mirror_patch_id =
 986     (stub_id == StubId::c1_load_klass_patching_id || stub_id == StubId::c1_load_mirror_patching_id);
 987 
 988   if (stub_id == StubId::c1_access_field_patching_id) {
 989 
 990     Bytecode_field field_access(caller_method, bci);
 991     fieldDescriptor result; // initialize class if needed
 992     Bytecodes::Code code = field_access.code();
 993     constantPoolHandle constants(current, caller_method->constants());
 994     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 995     patch_field_offset = result.offset();
 996 
 997     // If we're patching a field which is volatile then at compile it
 998     // must not have been know to be volatile, so the generated code
 999     // isn't correct for a volatile reference.  The nmethod has to be
1000     // deoptimized so that the code can be regenerated correctly.
1001     // This check is only needed for access_field_patching since this
1002     // is the path for patching field offsets.  load_klass is only
1003     // used for patching references to oops which don't need special
1004     // handling in the volatile case.
1005 
1006     deoptimize_for_volatile = result.access_flags().is_volatile();
1007 
1008     // If we are patching a field which should be atomic, then
1009     // the generated code is not correct either, force deoptimizing.
1010     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1011     // break access atomicity only for them.
1012 
1013     // Strictly speaking, the deoptimization on 64-bit platforms
1014     // is unnecessary, and T_LONG stores on 32-bit platforms need
1015     // to be handled by special patching code when AlwaysAtomicAccesses
1016     // becomes product feature. At this point, we are still going
1017     // for the deoptimization for consistency against volatile
1018     // accesses.
1019 
1020     patch_field_type = result.field_type();
1021     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1022 
1023   } else if (load_klass_or_mirror_patch_id) {
1024     Klass* k = nullptr;
1025     switch (code) {
1026       case Bytecodes::_putstatic:
1027       case Bytecodes::_getstatic:
1028         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1029           init_klass = klass;
1030           mirror = Handle(current, klass->java_mirror());
1031         }
1032         break;
1033       case Bytecodes::_new:
1034         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1035           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1036         }
1037         break;
1038       case Bytecodes::_multianewarray:
1039         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1040           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1041         }
1042         break;
1043       case Bytecodes::_instanceof:
1044         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1045           k = caller_method->constants()->klass_at(io.index(), CHECK);
1046         }
1047         break;
1048       case Bytecodes::_checkcast:
1049         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1050           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1051         }
1052         break;
1053       case Bytecodes::_anewarray:
1054         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1055           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1056           k = ek->array_klass(CHECK);
1057         }
1058         break;
1059       case Bytecodes::_ldc:
1060       case Bytecodes::_ldc_w:
1061       case Bytecodes::_ldc2_w:
1062         {
1063           Bytecode_loadconstant cc(caller_method, bci);
1064           oop m = cc.resolve_constant(CHECK);
1065           mirror = Handle(current, m);
1066         }
1067         break;
1068       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1069     }
1070     load_klass = k;
1071   } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1072     Bytecode_invoke bytecode(caller_method, bci);
1073     Bytecodes::Code bc = bytecode.invoke_code();
1074 
1075     CallInfo info;
1076     constantPoolHandle pool(current, caller_method->constants());
1077     int index = bytecode.index();
1078     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1079     switch (bc) {
1080       case Bytecodes::_invokehandle: {
1081         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1082         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1083         break;
1084       }
1085       case Bytecodes::_invokedynamic: {
1086         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1087         break;
1088       }
1089       default: fatal("unexpected bytecode for load_appendix_patching_id");
1090     }
1091   } else {
1092     ShouldNotReachHere();
1093   }
1094 
1095   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1096     // At compile time we assumed the field wasn't volatile/atomic but after
1097     // loading it turns out it was volatile/atomic so we have to throw the
1098     // compiled code out and let it be regenerated.
1099     if (TracePatching) {
1100       if (deoptimize_for_volatile) {
1101         tty->print_cr("Deoptimizing for patching volatile field reference");
1102       }
1103       if (deoptimize_for_atomic) {
1104         tty->print_cr("Deoptimizing for patching atomic field reference");
1105       }
1106     }
1107 
1108     // It's possible the nmethod was invalidated in the last
1109     // safepoint, but if it's still alive then make it not_entrant.
1110     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1111     if (nm != nullptr) {
1112       nm->make_not_entrant(nmethod::InvalidationReason::C1_CODEPATCH);
1113     }
1114 
1115     Deoptimization::deoptimize_frame(current, caller_frame.id());
1116 
1117     // Return to the now deoptimized frame.
1118   }
1119 
1120   // Now copy code back
1121 
1122   {
1123     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1124     //
1125     // Deoptimization may have happened while we waited for the lock.
1126     // In that case we don't bother to do any patching we just return
1127     // and let the deopt happen
1128     if (!caller_is_deopted(current)) {
1129       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1130       address instr_pc = jump->jump_destination();
1131       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1132       if (ni->is_jump() ) {
1133         // the jump has not been patched yet
1134         // The jump destination is slow case and therefore not part of the stubs
1135         // (stubs are only for StaticCalls)
1136 
1137         // format of buffer
1138         //    ....
1139         //    instr byte 0     <-- copy_buff
1140         //    instr byte 1
1141         //    ..
1142         //    instr byte n-1
1143         //      n
1144         //    ....             <-- call destination
1145 
1146         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1147         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1148         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1149         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1150         address copy_buff = stub_location - *byte_skip - *byte_count;
1151         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1152         if (TracePatching) {
1153           ttyLocker ttyl;
1154           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1155                         p2i(instr_pc), (stub_id == StubId::c1_access_field_patching_id) ? "field" : "klass");
1156           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1157           assert(caller_code != nullptr, "nmethod not found");
1158 
1159           // NOTE we use pc() not original_pc() because we already know they are
1160           // identical otherwise we'd have never entered this block of code
1161 
1162           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1163           assert(map != nullptr, "null check");
1164           map->print();
1165           tty->cr();
1166 
1167           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1168         }
1169         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1170         bool do_patch = true;
1171         if (stub_id == StubId::c1_access_field_patching_id) {
1172           // The offset may not be correct if the class was not loaded at code generation time.
1173           // Set it now.
1174           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1175           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1176           assert(patch_field_offset >= 0, "illegal offset");
1177           n_move->add_offset_in_bytes(patch_field_offset);
1178         } else if (load_klass_or_mirror_patch_id) {
1179           // If a getstatic or putstatic is referencing a klass which
1180           // isn't fully initialized, the patch body isn't copied into
1181           // place until initialization is complete.  In this case the
1182           // patch site is setup so that any threads besides the
1183           // initializing thread are forced to come into the VM and
1184           // block.
1185           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1186                      InstanceKlass::cast(init_klass)->is_initialized();
1187           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1188           if (jump->jump_destination() == being_initialized_entry) {
1189             assert(do_patch == true, "initialization must be complete at this point");
1190           } else {
1191             // patch the instruction <move reg, klass>
1192             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1193 
1194             assert(n_copy->data() == 0 ||
1195                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1196                    "illegal init value");
1197             if (stub_id == StubId::c1_load_klass_patching_id) {
1198               assert(load_klass != nullptr, "klass not set");
1199               n_copy->set_data((intx) (load_klass));
1200             } else {
1201               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1202               n_copy->set_data(cast_from_oop<intx>(mirror()));
1203             }
1204 
1205             if (TracePatching) {
1206               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1207             }
1208           }
1209         } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1210           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1211           assert(n_copy->data() == 0 ||
1212                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1213                  "illegal init value");
1214           n_copy->set_data(cast_from_oop<intx>(appendix()));
1215 
1216           if (TracePatching) {
1217             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1218           }
1219         } else {
1220           ShouldNotReachHere();
1221         }
1222 
1223         if (do_patch) {
1224           // replace instructions
1225           // first replace the tail, then the call
1226 #ifdef ARM
1227           if((load_klass_or_mirror_patch_id ||
1228               stub_id == StubId::c1_load_appendix_patching_id) &&
1229               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1230             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1231             address addr = nullptr;
1232             assert(nm != nullptr, "invalid nmethod_pc");
1233             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1234             while (mds.next()) {
1235               if (mds.type() == relocInfo::oop_type) {
1236                 assert(stub_id == StubId::c1_load_mirror_patching_id ||
1237                        stub_id == StubId::c1_load_appendix_patching_id, "wrong stub id");
1238                 oop_Relocation* r = mds.oop_reloc();
1239                 addr = (address)r->oop_addr();
1240                 break;
1241               } else if (mds.type() == relocInfo::metadata_type) {
1242                 assert(stub_id == StubId::c1_load_klass_patching_id, "wrong stub id");
1243                 metadata_Relocation* r = mds.metadata_reloc();
1244                 addr = (address)r->metadata_addr();
1245                 break;
1246               }
1247             }
1248             assert(addr != nullptr, "metadata relocation must exist");
1249             copy_buff -= *byte_count;
1250             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1251             n_copy2->set_pc_relative_offset(addr, instr_pc);
1252           }
1253 #endif
1254 
1255           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1256             address ptr = copy_buff + i;
1257             int a_byte = (*ptr) & 0xFF;
1258             address dst = instr_pc + i;
1259             *(unsigned char*)dst = (unsigned char) a_byte;
1260           }
1261           ICache::invalidate_range(instr_pc, *byte_count);
1262           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1263 
1264           if (load_klass_or_mirror_patch_id ||
1265               stub_id == StubId::c1_load_appendix_patching_id) {
1266             relocInfo::relocType rtype =
1267               (stub_id == StubId::c1_load_klass_patching_id) ?
1268                                    relocInfo::metadata_type :
1269                                    relocInfo::oop_type;
1270             // update relocInfo to metadata
1271             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1272             assert(nm != nullptr, "invalid nmethod_pc");
1273 
1274             // The old patch site is now a move instruction so update
1275             // the reloc info so that it will get updated during
1276             // future GCs.
1277             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1278             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1279                                                      relocInfo::none, rtype);
1280           }
1281 
1282         } else {
1283           ICache::invalidate_range(copy_buff, *byte_count);
1284           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1285         }
1286       }
1287     }
1288     // If we are patching in a non-perm oop, make sure the nmethod
1289     // is on the right list.
1290     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1291     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1292 
1293     // Since we've patched some oops in the nmethod,
1294     // (re)register it with the heap.
1295     Universe::heap()->register_nmethod(nm);
1296   }
1297 JRT_END
1298 
1299 #else // DEOPTIMIZE_WHEN_PATCHING
1300 
1301 static bool is_patching_needed(JavaThread* current, StubId stub_id) {
1302   if (stub_id == StubId::c1_load_klass_patching_id ||
1303       stub_id == StubId::c1_load_mirror_patching_id) {
1304     // last java frame on stack
1305     vframeStream vfst(current, true);
1306     assert(!vfst.at_end(), "Java frame must exist");
1307 
1308     methodHandle caller_method(current, vfst.method());
1309     int bci = vfst.bci();
1310     Bytecodes::Code code = caller_method()->java_code_at(bci);
1311 
1312     switch (code) {
1313       case Bytecodes::_new:
1314       case Bytecodes::_anewarray:
1315       case Bytecodes::_multianewarray:
1316       case Bytecodes::_instanceof:
1317       case Bytecodes::_checkcast: {
1318         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1319         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1320         if (tag.is_unresolved_klass_in_error()) {
1321           return false; // throws resolution error
1322         }
1323         break;
1324       }
1325 
1326       default: break;
1327     }
1328   }
1329   return true;
1330 }
1331 
1332 void Runtime1::patch_code(JavaThread* current, StubId stub_id) {
1333 #ifndef PRODUCT
1334   if (PrintC1Statistics) {
1335     _patch_code_slowcase_cnt++;
1336   }
1337 #endif
1338 
1339   // Enable WXWrite: the function is called by c1 stub as a runtime function
1340   // (see another implementation above).
1341   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1342 
1343   if (TracePatching) {
1344     tty->print_cr("Deoptimizing because patch is needed");
1345   }
1346 
1347   RegisterMap reg_map(current,
1348                       RegisterMap::UpdateMap::skip,
1349                       RegisterMap::ProcessFrames::include,
1350                       RegisterMap::WalkContinuation::skip);
1351 
1352   frame runtime_frame = current->last_frame();
1353   frame caller_frame = runtime_frame.sender(&reg_map);
1354   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1355 
1356   if (is_patching_needed(current, stub_id)) {
1357     // Make sure the nmethod is invalidated, i.e. made not entrant.
1358     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1359     if (nm != nullptr) {
1360       nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE_FOR_PATCHING);
1361     }
1362   }
1363 
1364   Deoptimization::deoptimize_frame(current, caller_frame.id());
1365   // Return to the now deoptimized frame.
1366   postcond(caller_is_deopted(current));
1367 }
1368 
1369 #endif // DEOPTIMIZE_WHEN_PATCHING
1370 
1371 // Entry point for compiled code. We want to patch a nmethod.
1372 // We don't do a normal VM transition here because we want to
1373 // know after the patching is complete and any safepoint(s) are taken
1374 // if the calling nmethod was deoptimized. We do this by calling a
1375 // helper method which does the normal VM transition and when it
1376 // completes we can check for deoptimization. This simplifies the
1377 // assembly code in the cpu directories.
1378 //
1379 int Runtime1::move_klass_patching(JavaThread* current) {
1380 //
1381 // NOTE: we are still in Java
1382 //
1383   DEBUG_ONLY(NoHandleMark nhm;)
1384   {
1385     // Enter VM mode
1386     ResetNoHandleMark rnhm;
1387     patch_code(current, StubId::c1_load_klass_patching_id);
1388   }
1389   // Back in JAVA, use no oops DON'T safepoint
1390 
1391   // Return true if calling code is deoptimized
1392 
1393   return caller_is_deopted(current);
1394 }
1395 
1396 int Runtime1::move_mirror_patching(JavaThread* current) {
1397 //
1398 // NOTE: we are still in Java
1399 //
1400   DEBUG_ONLY(NoHandleMark nhm;)
1401   {
1402     // Enter VM mode
1403     ResetNoHandleMark rnhm;
1404     patch_code(current, StubId::c1_load_mirror_patching_id);
1405   }
1406   // Back in JAVA, use no oops DON'T safepoint
1407 
1408   // Return true if calling code is deoptimized
1409 
1410   return caller_is_deopted(current);
1411 }
1412 
1413 int Runtime1::move_appendix_patching(JavaThread* current) {
1414 //
1415 // NOTE: we are still in Java
1416 //
1417   DEBUG_ONLY(NoHandleMark nhm;)
1418   {
1419     // Enter VM mode
1420     ResetNoHandleMark rnhm;
1421     patch_code(current, StubId::c1_load_appendix_patching_id);
1422   }
1423   // Back in JAVA, use no oops DON'T safepoint
1424 
1425   // Return true if calling code is deoptimized
1426 
1427   return caller_is_deopted(current);
1428 }
1429 
1430 // Entry point for compiled code. We want to patch a nmethod.
1431 // We don't do a normal VM transition here because we want to
1432 // know after the patching is complete and any safepoint(s) are taken
1433 // if the calling nmethod was deoptimized. We do this by calling a
1434 // helper method which does the normal VM transition and when it
1435 // completes we can check for deoptimization. This simplifies the
1436 // assembly code in the cpu directories.
1437 //
1438 int Runtime1::access_field_patching(JavaThread* current) {
1439   //
1440   // NOTE: we are still in Java
1441   //
1442   // Handles created in this function will be deleted by the
1443   // HandleMarkCleaner in the transition to the VM.
1444   NoHandleMark nhm;
1445   {
1446     // Enter VM mode
1447     ResetNoHandleMark rnhm;
1448     patch_code(current, StubId::c1_access_field_patching_id);
1449   }
1450   // Back in JAVA, use no oops DON'T safepoint
1451 
1452   // Return true if calling code is deoptimized
1453 
1454   return caller_is_deopted(current);
1455 }
1456 
1457 
1458 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1459   // for now we just print out the block id
1460   tty->print("%d ", block_id);
1461 JRT_END
1462 
1463 
1464 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1465   // had to return int instead of bool, otherwise there may be a mismatch
1466   // between the C calling convention and the Java one.
1467   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1468   // JVM takes the whole %eax as the return value, which may misinterpret
1469   // the return value as a boolean true.
1470 
1471   assert(mirror != nullptr, "should null-check on mirror before calling");
1472   Klass* k = java_lang_Class::as_Klass(mirror);
1473   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1474 JRT_END
1475 
1476 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1477   ResourceMark rm;
1478 
1479   RegisterMap reg_map(current,
1480                       RegisterMap::UpdateMap::skip,
1481                       RegisterMap::ProcessFrames::include,
1482                       RegisterMap::WalkContinuation::skip);
1483   frame runtime_frame = current->last_frame();
1484   frame caller_frame = runtime_frame.sender(&reg_map);
1485 
1486   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1487   assert (nm != nullptr, "no more nmethod?");
1488   nm->make_not_entrant(nmethod::InvalidationReason::C1_PREDICATE_FAILED_TRAP);
1489 
1490   methodHandle m(current, nm->method());
1491   MethodData* mdo = m->method_data();
1492 
1493   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1494     // Build an MDO.  Ignore errors like OutOfMemory;
1495     // that simply means we won't have an MDO to update.
1496     Method::build_profiling_method_data(m, THREAD);
1497     if (HAS_PENDING_EXCEPTION) {
1498       // Only metaspace OOM is expected. No Java code executed.
1499       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1500       CLEAR_PENDING_EXCEPTION;
1501     }
1502     mdo = m->method_data();
1503   }
1504 
1505   if (mdo != nullptr) {
1506     mdo->inc_trap_count(Deoptimization::Reason_none);
1507   }
1508 
1509   if (TracePredicateFailedTraps) {
1510     stringStream ss1, ss2;
1511     vframeStream vfst(current);
1512     Method* inlinee = vfst.method();
1513     inlinee->print_short_name(&ss1);
1514     m->print_short_name(&ss2);
1515     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1516   }
1517 
1518 
1519   Deoptimization::deoptimize_frame(current, caller_frame.id());
1520 
1521 JRT_END
1522 
1523 // Check exception if AbortVMOnException flag set
1524 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1525   ResourceMark rm;
1526   const char* message = nullptr;
1527   if (ex->is_a(vmClasses::Throwable_klass())) {
1528     oop msg = java_lang_Throwable::message(ex);
1529     if (msg != nullptr) {
1530       message = java_lang_String::as_utf8_string(msg);
1531     }
1532   }
1533   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1534 JRT_END
1535 
1536 #ifndef PRODUCT
1537 void Runtime1::print_statistics() {
1538   tty->print_cr("C1 Runtime statistics:");
1539   tty->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1540   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1541   tty->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1542   tty->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1543   tty->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1544   tty->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1545   tty->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1546   tty->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1547   tty->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1548   tty->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1549   tty->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1550   tty->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1551   tty->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1552   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1553 
1554   tty->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1555   tty->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1556   tty->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1557   tty->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1558   tty->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1559   tty->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1560   tty->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1561 
1562   tty->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1563   tty->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1564   tty->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1565   tty->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1566   tty->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1567   tty->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1568   tty->print_cr(" _throw_count:                                  %u:", _throw_count);
1569 
1570   SharedRuntime::print_ic_miss_histogram();
1571   tty->cr();
1572 }
1573 #endif // PRODUCT