1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "classfile/javaClasses.inline.hpp"
  33 #include "classfile/vmClasses.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "code/vtableStubs.hpp"
  39 #include "compiler/compilationPolicy.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "compiler/oopMap.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/c1/barrierSetC1.hpp"
  44 #include "gc/shared/collectedHeap.hpp"
  45 #include "interpreter/bytecode.hpp"
  46 #include "interpreter/interpreter.hpp"
  47 #include "jfr/support/jfrIntrinsics.hpp"
  48 #include "logging/log.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/access.inline.hpp"
  53 #include "oops/objArrayOop.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/fieldDescriptor.inline.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.inline.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/stackWatermarkSet.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/vframe.inline.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vm_version.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/events.hpp"
  71 
  72 
  73 // Implementation of StubAssembler
  74 
  75 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  76   _name = name;
  77   _must_gc_arguments = false;
  78   _frame_size = no_frame_size;
  79   _num_rt_args = 0;
  80   _stub_id = stub_id;
  81 }
  82 
  83 
  84 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  85   _name = name;
  86   _must_gc_arguments = must_gc_arguments;
  87 }
  88 
  89 
  90 void StubAssembler::set_frame_size(int size) {
  91   if (_frame_size == no_frame_size) {
  92     _frame_size = size;
  93   }
  94   assert(_frame_size == size, "can't change the frame size");
  95 }
  96 
  97 
  98 void StubAssembler::set_num_rt_args(int args) {
  99   if (_num_rt_args == 0) {
 100     _num_rt_args = args;
 101   }
 102   assert(_num_rt_args == args, "can't change the number of args");
 103 }
 104 
 105 // Implementation of Runtime1
 106 
 107 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS];
 108 
 109 #define C1_BLOB_NAME_DEFINE(name)  "C1 Runtime " # name "_blob",
 110 const char *Runtime1::_blob_names[] = {
 111   C1_STUBS_DO(C1_BLOB_NAME_DEFINE)
 112 };
 113 #undef C1_STUB_NAME_DEFINE
 114 
 115 #ifndef PRODUCT
 116 // statistics
 117 uint Runtime1::_generic_arraycopystub_cnt = 0;
 118 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 119 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 120 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 121 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 122 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 123 uint Runtime1::_new_instance_slowcase_cnt = 0;
 124 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 125 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 126 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 127 uint Runtime1::_patch_code_slowcase_cnt = 0;
 128 uint Runtime1::_throw_range_check_exception_count = 0;
 129 uint Runtime1::_throw_index_exception_count = 0;
 130 uint Runtime1::_throw_div0_exception_count = 0;
 131 uint Runtime1::_throw_null_pointer_exception_count = 0;
 132 uint Runtime1::_throw_class_cast_exception_count = 0;
 133 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 134 uint Runtime1::_throw_count = 0;
 135 
 136 static uint _byte_arraycopy_stub_cnt = 0;
 137 static uint _short_arraycopy_stub_cnt = 0;
 138 static uint _int_arraycopy_stub_cnt = 0;
 139 static uint _long_arraycopy_stub_cnt = 0;
 140 static uint _oop_arraycopy_stub_cnt = 0;
 141 
 142 address Runtime1::arraycopy_count_address(BasicType type) {
 143   switch (type) {
 144   case T_BOOLEAN:
 145   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 146   case T_CHAR:
 147   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 148   case T_FLOAT:
 149   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 150   case T_DOUBLE:
 151   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 152   case T_ARRAY:
 153   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 154   default:
 155     ShouldNotReachHere();
 156     return nullptr;
 157   }
 158 }
 159 
 160 
 161 #endif
 162 
 163 // Simple helper to see if the caller of a runtime stub which
 164 // entered the VM has been deoptimized
 165 
 166 static bool caller_is_deopted(JavaThread* current) {
 167   RegisterMap reg_map(current,
 168                       RegisterMap::UpdateMap::skip,
 169                       RegisterMap::ProcessFrames::include,
 170                       RegisterMap::WalkContinuation::skip);
 171   frame runtime_frame = current->last_frame();
 172   frame caller_frame = runtime_frame.sender(&reg_map);
 173   assert(caller_frame.is_compiled_frame(), "must be compiled");
 174   return caller_frame.is_deoptimized_frame();
 175 }
 176 
 177 // Stress deoptimization
 178 static void deopt_caller(JavaThread* current) {
 179   if (!caller_is_deopted(current)) {
 180     RegisterMap reg_map(current,
 181                         RegisterMap::UpdateMap::skip,
 182                         RegisterMap::ProcessFrames::include,
 183                         RegisterMap::WalkContinuation::skip);
 184     frame runtime_frame = current->last_frame();
 185     frame caller_frame = runtime_frame.sender(&reg_map);
 186     Deoptimization::deoptimize_frame(current, caller_frame.id());
 187     assert(caller_is_deopted(current), "Must be deoptimized");
 188   }
 189 }
 190 
 191 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 192  private:
 193   C1StubId _id;
 194  public:
 195   C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {}
 196   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 197     return Runtime1::generate_code_for(_id, sasm);
 198   }
 199 };
 200 
 201 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 202   ResourceMark rm;
 203   // create code buffer for code storage
 204   CodeBuffer code(buffer_blob);
 205 
 206   OopMapSet* oop_maps;
 207   int frame_size;
 208   bool must_gc_arguments;
 209 
 210   Compilation::setup_code_buffer(&code, 0);
 211 
 212   // create assembler for code generation
 213   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 214   // generate code for runtime stub
 215   oop_maps = cl->generate_code(sasm);
 216   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 217          "if stub has an oop map it must have a valid frame size");
 218   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 219 
 220   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 221   sasm->align(BytesPerWord);
 222   // make sure all code is in code buffer
 223   sasm->flush();
 224 
 225   frame_size = sasm->frame_size();
 226   must_gc_arguments = sasm->must_gc_arguments();
 227   // create blob - distinguish a few special cases
 228   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 229                                                  &code,
 230                                                  CodeOffsets::frame_never_safe,
 231                                                  frame_size,
 232                                                  oop_maps,
 233                                                  must_gc_arguments);
 234   assert(blob != nullptr, "blob must exist");
 235   return blob;
 236 }
 237 
 238 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) {
 239   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 240   bool expect_oop_map = true;
 241 #ifdef ASSERT
 242   // Make sure that stubs that need oopmaps have them
 243   switch (id) {
 244     // These stubs don't need to have an oopmap
 245   case C1StubId::dtrace_object_alloc_id:
 246   case C1StubId::slow_subtype_check_id:
 247   case C1StubId::fpu2long_stub_id:
 248   case C1StubId::unwind_exception_id:
 249   case C1StubId::counter_overflow_id:
 250     expect_oop_map = false;
 251     break;
 252   default:
 253     break;
 254   }
 255 #endif
 256   C1StubIdStubAssemblerCodeGenClosure cl(id);
 257   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 258   // install blob
 259   _blobs[(int)id] = blob;
 260 }
 261 
 262 void Runtime1::initialize(BufferBlob* blob) {
 263   // platform-dependent initialization
 264   initialize_pd();
 265   // generate stubs
 266   int limit = (int)C1StubId::NUM_STUBIDS;
 267   for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id);
 268   // printing
 269 #ifndef PRODUCT
 270   if (PrintSimpleStubs) {
 271     ResourceMark rm;
 272     for (int id = 0; id < limit; id++) {
 273       _blobs[id]->print();
 274       if (_blobs[id]->oop_maps() != nullptr) {
 275         _blobs[id]->oop_maps()->print();
 276       }
 277     }
 278   }
 279 #endif
 280   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 281   bs->generate_c1_runtime_stubs(blob);
 282 }
 283 
 284 CodeBlob* Runtime1::blob_for(C1StubId id) {
 285   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 286   return _blobs[(int)id];
 287 }
 288 
 289 
 290 const char* Runtime1::name_for(C1StubId id) {
 291   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 292   return _blob_names[(int)id];
 293 }
 294 
 295 const char* Runtime1::name_for_address(address entry) {
 296   int limit = (int)C1StubId::NUM_STUBIDS;
 297   for (int i = 0; i < limit; i++) {
 298     C1StubId id = (C1StubId)i;
 299     if (entry == entry_for(id)) return name_for(id);
 300   }
 301 
 302 #define FUNCTION_CASE(a, f) \
 303   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 304 
 305   FUNCTION_CASE(entry, os::javaTimeMillis);
 306   FUNCTION_CASE(entry, os::javaTimeNanos);
 307   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 308   FUNCTION_CASE(entry, SharedRuntime::d2f);
 309   FUNCTION_CASE(entry, SharedRuntime::d2i);
 310   FUNCTION_CASE(entry, SharedRuntime::d2l);
 311   FUNCTION_CASE(entry, SharedRuntime::dcos);
 312   FUNCTION_CASE(entry, SharedRuntime::dexp);
 313   FUNCTION_CASE(entry, SharedRuntime::dlog);
 314   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 315   FUNCTION_CASE(entry, SharedRuntime::dpow);
 316   FUNCTION_CASE(entry, SharedRuntime::drem);
 317   FUNCTION_CASE(entry, SharedRuntime::dsin);
 318   FUNCTION_CASE(entry, SharedRuntime::dtan);
 319   FUNCTION_CASE(entry, SharedRuntime::f2i);
 320   FUNCTION_CASE(entry, SharedRuntime::f2l);
 321   FUNCTION_CASE(entry, SharedRuntime::frem);
 322   FUNCTION_CASE(entry, SharedRuntime::l2d);
 323   FUNCTION_CASE(entry, SharedRuntime::l2f);
 324   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 325   FUNCTION_CASE(entry, SharedRuntime::lmul);
 326   FUNCTION_CASE(entry, SharedRuntime::lrem);
 327   FUNCTION_CASE(entry, SharedRuntime::lrem);
 328   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 329   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 330   FUNCTION_CASE(entry, is_instance_of);
 331   FUNCTION_CASE(entry, trace_block_entry);
 332 #ifdef JFR_HAVE_INTRINSICS
 333   FUNCTION_CASE(entry, JfrTime::time_function());
 334 #endif
 335   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 336   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 337   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 338   FUNCTION_CASE(entry, StubRoutines::dexp());
 339   FUNCTION_CASE(entry, StubRoutines::dlog());
 340   FUNCTION_CASE(entry, StubRoutines::dlog10());
 341   FUNCTION_CASE(entry, StubRoutines::dpow());
 342   FUNCTION_CASE(entry, StubRoutines::dsin());
 343   FUNCTION_CASE(entry, StubRoutines::dcos());
 344   FUNCTION_CASE(entry, StubRoutines::dtan());
 345   FUNCTION_CASE(entry, StubRoutines::dtanh());
 346 
 347 #undef FUNCTION_CASE
 348 
 349   // Soft float adds more runtime names.
 350   return pd_name_for_address(entry);
 351 }
 352 
 353 
 354 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 355 #ifndef PRODUCT
 356   if (PrintC1Statistics) {
 357     _new_instance_slowcase_cnt++;
 358   }
 359 #endif
 360   assert(klass->is_klass(), "not a class");
 361   Handle holder(current, klass->klass_holder()); // keep the klass alive
 362   InstanceKlass* h = InstanceKlass::cast(klass);
 363   h->check_valid_for_instantiation(true, CHECK);
 364   // make sure klass is initialized
 365   h->initialize(CHECK);
 366   // allocate instance and return via TLS
 367   oop obj = h->allocate_instance(CHECK);
 368   current->set_vm_result(obj);
 369 JRT_END
 370 
 371 
 372 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 373 #ifndef PRODUCT
 374   if (PrintC1Statistics) {
 375     _new_type_array_slowcase_cnt++;
 376   }
 377 #endif
 378   // Note: no handle for klass needed since they are not used
 379   //       anymore after new_typeArray() and no GC can happen before.
 380   //       (This may have to change if this code changes!)
 381   assert(klass->is_klass(), "not a class");
 382   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 383   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 384   current->set_vm_result(obj);
 385   // This is pretty rare but this runtime patch is stressful to deoptimization
 386   // if we deoptimize here so force a deopt to stress the path.
 387   if (DeoptimizeALot) {
 388     deopt_caller(current);
 389   }
 390 
 391 JRT_END
 392 
 393 
 394 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 395 #ifndef PRODUCT
 396   if (PrintC1Statistics) {
 397     _new_object_array_slowcase_cnt++;
 398   }
 399 #endif
 400   // Note: no handle for klass needed since they are not used
 401   //       anymore after new_objArray() and no GC can happen before.
 402   //       (This may have to change if this code changes!)
 403   assert(array_klass->is_klass(), "not a class");
 404   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 405   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 406   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 407   current->set_vm_result(obj);
 408   // This is pretty rare but this runtime patch is stressful to deoptimization
 409   // if we deoptimize here so force a deopt to stress the path.
 410   if (DeoptimizeALot) {
 411     deopt_caller(current);
 412   }
 413 JRT_END
 414 
 415 
 416 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 417 #ifndef PRODUCT
 418   if (PrintC1Statistics) {
 419     _new_multi_array_slowcase_cnt++;
 420   }
 421 #endif
 422   assert(klass->is_klass(), "not a class");
 423   assert(rank >= 1, "rank must be nonzero");
 424   Handle holder(current, klass->klass_holder()); // keep the klass alive
 425   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 426   current->set_vm_result(obj);
 427 JRT_END
 428 
 429 
 430 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 431   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 432 JRT_END
 433 
 434 
 435 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 436   ResourceMark rm(current);
 437   const char* klass_name = obj->klass()->external_name();
 438   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 439 JRT_END
 440 
 441 
 442 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 443 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 444 // method) method is passed as an argument. In order to do that it is embedded in the code as
 445 // a constant.
 446 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 447   nmethod* osr_nm = nullptr;
 448   methodHandle method(current, m);
 449 
 450   RegisterMap map(current,
 451                   RegisterMap::UpdateMap::skip,
 452                   RegisterMap::ProcessFrames::include,
 453                   RegisterMap::WalkContinuation::skip);
 454   frame fr =  current->last_frame().sender(&map);
 455   nmethod* nm = (nmethod*) fr.cb();
 456   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 457   methodHandle enclosing_method(current, nm->method());
 458 
 459   CompLevel level = (CompLevel)nm->comp_level();
 460   int bci = InvocationEntryBci;
 461   if (branch_bci != InvocationEntryBci) {
 462     // Compute destination bci
 463     address pc = method()->code_base() + branch_bci;
 464     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 465     int offset = 0;
 466     switch (branch) {
 467       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 468       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 469       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 470       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 471       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 472       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 473       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 474         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 475         break;
 476       case Bytecodes::_goto_w:
 477         offset = Bytes::get_Java_u4(pc + 1);
 478         break;
 479       default: ;
 480     }
 481     bci = branch_bci + offset;
 482   }
 483   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 484   return osr_nm;
 485 }
 486 
 487 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 488   nmethod* osr_nm;
 489   JRT_BLOCK
 490     osr_nm = counter_overflow_helper(current, bci, method);
 491     if (osr_nm != nullptr) {
 492       RegisterMap map(current,
 493                       RegisterMap::UpdateMap::skip,
 494                       RegisterMap::ProcessFrames::include,
 495                       RegisterMap::WalkContinuation::skip);
 496       frame fr =  current->last_frame().sender(&map);
 497       Deoptimization::deoptimize_frame(current, fr.id());
 498     }
 499   JRT_BLOCK_END
 500   return nullptr;
 501 JRT_END
 502 
 503 extern void vm_exit(int code);
 504 
 505 // Enter this method from compiled code handler below. This is where we transition
 506 // to VM mode. This is done as a helper routine so that the method called directly
 507 // from compiled code does not have to transition to VM. This allows the entry
 508 // method to see if the nmethod that we have just looked up a handler for has
 509 // been deoptimized while we were in the vm. This simplifies the assembly code
 510 // cpu directories.
 511 //
 512 // We are entering here from exception stub (via the entry method below)
 513 // If there is a compiled exception handler in this method, we will continue there;
 514 // otherwise we will unwind the stack and continue at the caller of top frame method
 515 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 516 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 517 // check to see if the handler we are going to return is now in a nmethod that has
 518 // been deoptimized. If that is the case we return the deopt blob
 519 // unpack_with_exception entry instead. This makes life for the exception blob easier
 520 // because making that same check and diverting is painful from assembly language.
 521 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 522   // Reset method handle flag.
 523   current->set_is_method_handle_return(false);
 524 
 525   Handle exception(current, ex);
 526 
 527   // This function is called when we are about to throw an exception. Therefore,
 528   // we have to poll the stack watermark barrier to make sure that not yet safe
 529   // stack frames are made safe before returning into them.
 530   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 531     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 532     // frame has been unwound. It instead builds its own stub frame, to call the
 533     // runtime. But the throwing frame has already been unwound here.
 534     StackWatermarkSet::after_unwind(current);
 535   }
 536 
 537   nm = CodeCache::find_nmethod(pc);
 538   assert(nm != nullptr, "this is not an nmethod");
 539   // Adjust the pc as needed/
 540   if (nm->is_deopt_pc(pc)) {
 541     RegisterMap map(current,
 542                     RegisterMap::UpdateMap::skip,
 543                     RegisterMap::ProcessFrames::include,
 544                     RegisterMap::WalkContinuation::skip);
 545     frame exception_frame = current->last_frame().sender(&map);
 546     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 547     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 548     pc = exception_frame.pc();
 549   }
 550   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 551   // Check that exception is a subclass of Throwable
 552   assert(exception->is_a(vmClasses::Throwable_klass()),
 553          "Exception not subclass of Throwable");
 554 
 555   // debugging support
 556   // tracing
 557   if (log_is_enabled(Info, exceptions)) {
 558     ResourceMark rm; // print_value_string
 559     stringStream tempst;
 560     assert(nm->method() != nullptr, "Unexpected null method()");
 561     tempst.print("C1 compiled method <%s>\n"
 562                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 563                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 564     Exceptions::log_exception(exception, tempst.freeze());
 565   }
 566   // for AbortVMOnException flag
 567   Exceptions::debug_check_abort(exception);
 568 
 569   // Check the stack guard pages and re-enable them if necessary and there is
 570   // enough space on the stack to do so.  Use fast exceptions only if the guard
 571   // pages are enabled.
 572   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 573 
 574   if (JvmtiExport::can_post_on_exceptions()) {
 575     // To ensure correct notification of exception catches and throws
 576     // we have to deoptimize here.  If we attempted to notify the
 577     // catches and throws during this exception lookup it's possible
 578     // we could deoptimize on the way out of the VM and end back in
 579     // the interpreter at the throw site.  This would result in double
 580     // notifications since the interpreter would also notify about
 581     // these same catches and throws as it unwound the frame.
 582 
 583     RegisterMap reg_map(current,
 584                         RegisterMap::UpdateMap::include,
 585                         RegisterMap::ProcessFrames::include,
 586                         RegisterMap::WalkContinuation::skip);
 587     frame stub_frame = current->last_frame();
 588     frame caller_frame = stub_frame.sender(&reg_map);
 589 
 590     // We don't really want to deoptimize the nmethod itself since we
 591     // can actually continue in the exception handler ourselves but I
 592     // don't see an easy way to have the desired effect.
 593     Deoptimization::deoptimize_frame(current, caller_frame.id());
 594     assert(caller_is_deopted(current), "Must be deoptimized");
 595 
 596     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 597   }
 598 
 599   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 600   if (guard_pages_enabled) {
 601     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 602     if (fast_continuation != nullptr) {
 603       // Set flag if return address is a method handle call site.
 604       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 605       return fast_continuation;
 606     }
 607   }
 608 
 609   // If the stack guard pages are enabled, check whether there is a handler in
 610   // the current method.  Otherwise (guard pages disabled), force an unwind and
 611   // skip the exception cache update (i.e., just leave continuation as null).
 612   address continuation = nullptr;
 613   if (guard_pages_enabled) {
 614 
 615     // New exception handling mechanism can support inlined methods
 616     // with exception handlers since the mappings are from PC to PC
 617 
 618     // Clear out the exception oop and pc since looking up an
 619     // exception handler can cause class loading, which might throw an
 620     // exception and those fields are expected to be clear during
 621     // normal bytecode execution.
 622     current->clear_exception_oop_and_pc();
 623 
 624     bool recursive_exception = false;
 625     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 626     // If an exception was thrown during exception dispatch, the exception oop may have changed
 627     current->set_exception_oop(exception());
 628     current->set_exception_pc(pc);
 629 
 630     // the exception cache is used only by non-implicit exceptions
 631     // Update the exception cache only when there didn't happen
 632     // another exception during the computation of the compiled
 633     // exception handler. Checking for exception oop equality is not
 634     // sufficient because some exceptions are pre-allocated and reused.
 635     if (continuation != nullptr && !recursive_exception) {
 636       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 637     }
 638   }
 639 
 640   current->set_vm_result(exception());
 641   // Set flag if return address is a method handle call site.
 642   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 643 
 644   if (log_is_enabled(Info, exceptions)) {
 645     ResourceMark rm;
 646     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 647                          " for exception thrown at PC " PTR_FORMAT,
 648                          p2i(current), p2i(continuation), p2i(pc));
 649   }
 650 
 651   return continuation;
 652 JRT_END
 653 
 654 // Enter this method from compiled code only if there is a Java exception handler
 655 // in the method handling the exception.
 656 // We are entering here from exception stub. We don't do a normal VM transition here.
 657 // We do it in a helper. This is so we can check to see if the nmethod we have just
 658 // searched for an exception handler has been deoptimized in the meantime.
 659 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 660   oop exception = current->exception_oop();
 661   address pc = current->exception_pc();
 662   // Still in Java mode
 663   DEBUG_ONLY(NoHandleMark nhm);
 664   nmethod* nm = nullptr;
 665   address continuation = nullptr;
 666   {
 667     // Enter VM mode by calling the helper
 668     ResetNoHandleMark rnhm;
 669     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 670   }
 671   // Back in JAVA, use no oops DON'T safepoint
 672 
 673   // Now check to see if the nmethod we were called from is now deoptimized.
 674   // If so we must return to the deopt blob and deoptimize the nmethod
 675   if (nm != nullptr && caller_is_deopted(current)) {
 676     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 677   }
 678 
 679   assert(continuation != nullptr, "no handler found");
 680   return continuation;
 681 }
 682 
 683 
 684 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 685 #ifndef PRODUCT
 686   if (PrintC1Statistics) {
 687     _throw_range_check_exception_count++;
 688   }
 689 #endif
 690   const int len = 35;
 691   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 692   char message[2 * jintAsStringSize + len];
 693   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 694   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 695 JRT_END
 696 
 697 
 698 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 699 #ifndef PRODUCT
 700   if (PrintC1Statistics) {
 701     _throw_index_exception_count++;
 702   }
 703 #endif
 704   char message[16];
 705   os::snprintf_checked(message, sizeof(message), "%d", index);
 706   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 707 JRT_END
 708 
 709 
 710 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 711 #ifndef PRODUCT
 712   if (PrintC1Statistics) {
 713     _throw_div0_exception_count++;
 714   }
 715 #endif
 716   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 717 JRT_END
 718 
 719 
 720 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 721 #ifndef PRODUCT
 722   if (PrintC1Statistics) {
 723     _throw_null_pointer_exception_count++;
 724   }
 725 #endif
 726   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 727 JRT_END
 728 
 729 
 730 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 731 #ifndef PRODUCT
 732   if (PrintC1Statistics) {
 733     _throw_class_cast_exception_count++;
 734   }
 735 #endif
 736   ResourceMark rm(current);
 737   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 738   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 739 JRT_END
 740 
 741 
 742 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 743 #ifndef PRODUCT
 744   if (PrintC1Statistics) {
 745     _throw_incompatible_class_change_error_count++;
 746   }
 747 #endif
 748   ResourceMark rm(current);
 749   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 750 JRT_END
 751 
 752 
 753 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 754 #ifndef PRODUCT
 755   if (PrintC1Statistics) {
 756     _monitorenter_slowcase_cnt++;
 757   }
 758 #endif
 759   if (LockingMode == LM_MONITOR) {
 760     lock->set_obj(obj);
 761   }
 762   assert(obj == lock->obj(), "must match");
 763   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 764 JRT_END
 765 
 766 
 767 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 768   assert(current == JavaThread::current(), "pre-condition");
 769 #ifndef PRODUCT
 770   if (PrintC1Statistics) {
 771     _monitorexit_slowcase_cnt++;
 772   }
 773 #endif
 774   assert(current->last_Java_sp(), "last_Java_sp must be set");
 775   oop obj = lock->obj();
 776   assert(oopDesc::is_oop(obj), "must be null or an object");
 777   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 778 JRT_END
 779 
 780 // Cf. OptoRuntime::deoptimize_caller_frame
 781 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 782   // Called from within the owner thread, so no need for safepoint
 783   RegisterMap reg_map(current,
 784                       RegisterMap::UpdateMap::skip,
 785                       RegisterMap::ProcessFrames::include,
 786                       RegisterMap::WalkContinuation::skip);
 787   frame stub_frame = current->last_frame();
 788   assert(stub_frame.is_runtime_frame(), "Sanity check");
 789   frame caller_frame = stub_frame.sender(&reg_map);
 790   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 791   assert(nm != nullptr, "Sanity check");
 792   methodHandle method(current, nm->method());
 793   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 794   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 795   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 796 
 797   if (action == Deoptimization::Action_make_not_entrant) {
 798     if (nm->make_not_entrant()) {
 799       if (reason == Deoptimization::Reason_tenured) {
 800         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 801         if (trap_mdo != nullptr) {
 802           trap_mdo->inc_tenure_traps();
 803         }
 804       }
 805     }
 806   }
 807 
 808   // Deoptimize the caller frame.
 809   Deoptimization::deoptimize_frame(current, caller_frame.id());
 810   // Return to the now deoptimized frame.
 811 JRT_END
 812 
 813 
 814 #ifndef DEOPTIMIZE_WHEN_PATCHING
 815 
 816 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 817   Bytecode_field field_access(caller, bci);
 818   // This can be static or non-static field access
 819   Bytecodes::Code code       = field_access.code();
 820 
 821   // We must load class, initialize class and resolve the field
 822   fieldDescriptor result; // initialize class if needed
 823   constantPoolHandle constants(THREAD, caller->constants());
 824   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 825   return result.field_holder();
 826 }
 827 
 828 
 829 //
 830 // This routine patches sites where a class wasn't loaded or
 831 // initialized at the time the code was generated.  It handles
 832 // references to classes, fields and forcing of initialization.  Most
 833 // of the cases are straightforward and involving simply forcing
 834 // resolution of a class, rewriting the instruction stream with the
 835 // needed constant and replacing the call in this function with the
 836 // patched code.  The case for static field is more complicated since
 837 // the thread which is in the process of initializing a class can
 838 // access it's static fields but other threads can't so the code
 839 // either has to deoptimize when this case is detected or execute a
 840 // check that the current thread is the initializing thread.  The
 841 // current
 842 //
 843 // Patches basically look like this:
 844 //
 845 //
 846 // patch_site: jmp patch stub     ;; will be patched
 847 // continue:   ...
 848 //             ...
 849 //             ...
 850 //             ...
 851 //
 852 // They have a stub which looks like this:
 853 //
 854 //             ;; patch body
 855 //             movl <const>, reg           (for class constants)
 856 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 857 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 858 //             <being_init offset> <bytes to copy> <bytes to skip>
 859 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 860 //             jmp patch_site
 861 //
 862 //
 863 // A normal patch is done by rewriting the patch body, usually a move,
 864 // and then copying it into place over top of the jmp instruction
 865 // being careful to flush caches and doing it in an MP-safe way.  The
 866 // constants following the patch body are used to find various pieces
 867 // of the patch relative to the call site for Runtime1::patch_code.
 868 // The case for getstatic and putstatic is more complicated because
 869 // getstatic and putstatic have special semantics when executing while
 870 // the class is being initialized.  getstatic/putstatic on a class
 871 // which is being_initialized may be executed by the initializing
 872 // thread but other threads have to block when they execute it.  This
 873 // is accomplished in compiled code by executing a test of the current
 874 // thread against the initializing thread of the class.  It's emitted
 875 // as boilerplate in their stub which allows the patched code to be
 876 // executed before it's copied back into the main body of the nmethod.
 877 //
 878 // being_init: get_thread(<tmp reg>
 879 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 880 //             jne patch_stub
 881 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 882 //             movl reg, [reg1 + <const>]  (for field offsets)
 883 //             jmp continue
 884 //             <being_init offset> <bytes to copy> <bytes to skip>
 885 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
 886 //             jmp patch_site
 887 //
 888 // If the class is being initialized the patch body is rewritten and
 889 // the patch site is rewritten to jump to being_init, instead of
 890 // patch_stub.  Whenever this code is executed it checks the current
 891 // thread against the initializing thread so other threads will enter
 892 // the runtime and end up blocked waiting the class to finish
 893 // initializing inside the calls to resolve_field below.  The
 894 // initializing class will continue on it's way.  Once the class is
 895 // fully_initialized, the intializing_thread of the class becomes
 896 // null, so the next thread to execute this code will fail the test,
 897 // call into patch_code and complete the patching process by copying
 898 // the patch body back into the main part of the nmethod and resume
 899 // executing.
 900 
 901 // NB:
 902 //
 903 // Patchable instruction sequences inherently exhibit race conditions,
 904 // where thread A is patching an instruction at the same time thread B
 905 // is executing it.  The algorithms we use ensure that any observation
 906 // that B can make on any intermediate states during A's patching will
 907 // always end up with a correct outcome.  This is easiest if there are
 908 // few or no intermediate states.  (Some inline caches have two
 909 // related instructions that must be patched in tandem.  For those,
 910 // intermediate states seem to be unavoidable, but we will get the
 911 // right answer from all possible observation orders.)
 912 //
 913 // When patching the entry instruction at the head of a method, or a
 914 // linkable call instruction inside of a method, we try very hard to
 915 // use a patch sequence which executes as a single memory transaction.
 916 // This means, in practice, that when thread A patches an instruction,
 917 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 918 // instruction or is contained in it.  We believe that memory hardware
 919 // will never break up such a word write, if it is naturally aligned
 920 // for the word being written.  We also know that some CPUs work very
 921 // hard to create atomic updates even of naturally unaligned words,
 922 // but we don't want to bet the farm on this always working.
 923 //
 924 // Therefore, if there is any chance of a race condition, we try to
 925 // patch only naturally aligned words, as single, full-word writes.
 926 
 927 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id ))
 928 #ifndef PRODUCT
 929   if (PrintC1Statistics) {
 930     _patch_code_slowcase_cnt++;
 931   }
 932 #endif
 933 
 934   ResourceMark rm(current);
 935   RegisterMap reg_map(current,
 936                       RegisterMap::UpdateMap::skip,
 937                       RegisterMap::ProcessFrames::include,
 938                       RegisterMap::WalkContinuation::skip);
 939   frame runtime_frame = current->last_frame();
 940   frame caller_frame = runtime_frame.sender(&reg_map);
 941 
 942   // last java frame on stack
 943   vframeStream vfst(current, true);
 944   assert(!vfst.at_end(), "Java frame must exist");
 945 
 946   methodHandle caller_method(current, vfst.method());
 947   // Note that caller_method->code() may not be same as caller_code because of OSR's
 948   // Note also that in the presence of inlining it is not guaranteed
 949   // that caller_method() == caller_code->method()
 950 
 951   int bci = vfst.bci();
 952   Bytecodes::Code code = caller_method()->java_code_at(bci);
 953 
 954   // this is used by assertions in the access_field_patching_id
 955   BasicType patch_field_type = T_ILLEGAL;
 956   bool deoptimize_for_volatile = false;
 957   bool deoptimize_for_atomic = false;
 958   int patch_field_offset = -1;
 959   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 960   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 961   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 962   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 963   bool load_klass_or_mirror_patch_id =
 964     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
 965 
 966   if (stub_id == C1StubId::access_field_patching_id) {
 967 
 968     Bytecode_field field_access(caller_method, bci);
 969     fieldDescriptor result; // initialize class if needed
 970     Bytecodes::Code code = field_access.code();
 971     constantPoolHandle constants(current, caller_method->constants());
 972     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 973     patch_field_offset = result.offset();
 974 
 975     // If we're patching a field which is volatile then at compile it
 976     // must not have been know to be volatile, so the generated code
 977     // isn't correct for a volatile reference.  The nmethod has to be
 978     // deoptimized so that the code can be regenerated correctly.
 979     // This check is only needed for access_field_patching since this
 980     // is the path for patching field offsets.  load_klass is only
 981     // used for patching references to oops which don't need special
 982     // handling in the volatile case.
 983 
 984     deoptimize_for_volatile = result.access_flags().is_volatile();
 985 
 986     // If we are patching a field which should be atomic, then
 987     // the generated code is not correct either, force deoptimizing.
 988     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 989     // break access atomicity only for them.
 990 
 991     // Strictly speaking, the deoptimization on 64-bit platforms
 992     // is unnecessary, and T_LONG stores on 32-bit platforms need
 993     // to be handled by special patching code when AlwaysAtomicAccesses
 994     // becomes product feature. At this point, we are still going
 995     // for the deoptimization for consistency against volatile
 996     // accesses.
 997 
 998     patch_field_type = result.field_type();
 999     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1000 
1001   } else if (load_klass_or_mirror_patch_id) {
1002     Klass* k = nullptr;
1003     switch (code) {
1004       case Bytecodes::_putstatic:
1005       case Bytecodes::_getstatic:
1006         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1007           init_klass = klass;
1008           mirror = Handle(current, klass->java_mirror());
1009         }
1010         break;
1011       case Bytecodes::_new:
1012         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1013           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1014         }
1015         break;
1016       case Bytecodes::_multianewarray:
1017         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1018           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1019         }
1020         break;
1021       case Bytecodes::_instanceof:
1022         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1023           k = caller_method->constants()->klass_at(io.index(), CHECK);
1024         }
1025         break;
1026       case Bytecodes::_checkcast:
1027         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1028           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1029         }
1030         break;
1031       case Bytecodes::_anewarray:
1032         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1033           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1034           k = ek->array_klass(CHECK);
1035         }
1036         break;
1037       case Bytecodes::_ldc:
1038       case Bytecodes::_ldc_w:
1039       case Bytecodes::_ldc2_w:
1040         {
1041           Bytecode_loadconstant cc(caller_method, bci);
1042           oop m = cc.resolve_constant(CHECK);
1043           mirror = Handle(current, m);
1044         }
1045         break;
1046       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1047     }
1048     load_klass = k;
1049   } else if (stub_id == C1StubId::load_appendix_patching_id) {
1050     Bytecode_invoke bytecode(caller_method, bci);
1051     Bytecodes::Code bc = bytecode.invoke_code();
1052 
1053     CallInfo info;
1054     constantPoolHandle pool(current, caller_method->constants());
1055     int index = bytecode.index();
1056     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1057     switch (bc) {
1058       case Bytecodes::_invokehandle: {
1059         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1060         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1061         break;
1062       }
1063       case Bytecodes::_invokedynamic: {
1064         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1065         break;
1066       }
1067       default: fatal("unexpected bytecode for load_appendix_patching_id");
1068     }
1069   } else {
1070     ShouldNotReachHere();
1071   }
1072 
1073   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1074     // At compile time we assumed the field wasn't volatile/atomic but after
1075     // loading it turns out it was volatile/atomic so we have to throw the
1076     // compiled code out and let it be regenerated.
1077     if (TracePatching) {
1078       if (deoptimize_for_volatile) {
1079         tty->print_cr("Deoptimizing for patching volatile field reference");
1080       }
1081       if (deoptimize_for_atomic) {
1082         tty->print_cr("Deoptimizing for patching atomic field reference");
1083       }
1084     }
1085 
1086     // It's possible the nmethod was invalidated in the last
1087     // safepoint, but if it's still alive then make it not_entrant.
1088     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1089     if (nm != nullptr) {
1090       nm->make_not_entrant();
1091     }
1092 
1093     Deoptimization::deoptimize_frame(current, caller_frame.id());
1094 
1095     // Return to the now deoptimized frame.
1096   }
1097 
1098   // Now copy code back
1099 
1100   {
1101     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1102     //
1103     // Deoptimization may have happened while we waited for the lock.
1104     // In that case we don't bother to do any patching we just return
1105     // and let the deopt happen
1106     if (!caller_is_deopted(current)) {
1107       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1108       address instr_pc = jump->jump_destination();
1109       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1110       if (ni->is_jump() ) {
1111         // the jump has not been patched yet
1112         // The jump destination is slow case and therefore not part of the stubs
1113         // (stubs are only for StaticCalls)
1114 
1115         // format of buffer
1116         //    ....
1117         //    instr byte 0     <-- copy_buff
1118         //    instr byte 1
1119         //    ..
1120         //    instr byte n-1
1121         //      n
1122         //    ....             <-- call destination
1123 
1124         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1125         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1126         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1127         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1128         address copy_buff = stub_location - *byte_skip - *byte_count;
1129         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1130         if (TracePatching) {
1131           ttyLocker ttyl;
1132           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1133                         p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass");
1134           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1135           assert(caller_code != nullptr, "nmethod not found");
1136 
1137           // NOTE we use pc() not original_pc() because we already know they are
1138           // identical otherwise we'd have never entered this block of code
1139 
1140           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1141           assert(map != nullptr, "null check");
1142           map->print();
1143           tty->cr();
1144 
1145           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1146         }
1147         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1148         bool do_patch = true;
1149         if (stub_id == C1StubId::access_field_patching_id) {
1150           // The offset may not be correct if the class was not loaded at code generation time.
1151           // Set it now.
1152           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1153           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1154           assert(patch_field_offset >= 0, "illegal offset");
1155           n_move->add_offset_in_bytes(patch_field_offset);
1156         } else if (load_klass_or_mirror_patch_id) {
1157           // If a getstatic or putstatic is referencing a klass which
1158           // isn't fully initialized, the patch body isn't copied into
1159           // place until initialization is complete.  In this case the
1160           // patch site is setup so that any threads besides the
1161           // initializing thread are forced to come into the VM and
1162           // block.
1163           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1164                      InstanceKlass::cast(init_klass)->is_initialized();
1165           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1166           if (jump->jump_destination() == being_initialized_entry) {
1167             assert(do_patch == true, "initialization must be complete at this point");
1168           } else {
1169             // patch the instruction <move reg, klass>
1170             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1171 
1172             assert(n_copy->data() == 0 ||
1173                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1174                    "illegal init value");
1175             if (stub_id == C1StubId::load_klass_patching_id) {
1176               assert(load_klass != nullptr, "klass not set");
1177               n_copy->set_data((intx) (load_klass));
1178             } else {
1179               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1180               n_copy->set_data(cast_from_oop<intx>(mirror()));
1181             }
1182 
1183             if (TracePatching) {
1184               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1185             }
1186           }
1187         } else if (stub_id == C1StubId::load_appendix_patching_id) {
1188           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1189           assert(n_copy->data() == 0 ||
1190                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1191                  "illegal init value");
1192           n_copy->set_data(cast_from_oop<intx>(appendix()));
1193 
1194           if (TracePatching) {
1195             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1196           }
1197         } else {
1198           ShouldNotReachHere();
1199         }
1200 
1201         if (do_patch) {
1202           // replace instructions
1203           // first replace the tail, then the call
1204 #ifdef ARM
1205           if((load_klass_or_mirror_patch_id ||
1206               stub_id == C1StubId::load_appendix_patching_id) &&
1207               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1208             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1209             address addr = nullptr;
1210             assert(nm != nullptr, "invalid nmethod_pc");
1211             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1212             while (mds.next()) {
1213               if (mds.type() == relocInfo::oop_type) {
1214                 assert(stub_id == C1StubId::load_mirror_patching_id ||
1215                        stub_id == C1StubId::load_appendix_patching_id, "wrong stub id");
1216                 oop_Relocation* r = mds.oop_reloc();
1217                 addr = (address)r->oop_addr();
1218                 break;
1219               } else if (mds.type() == relocInfo::metadata_type) {
1220                 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id");
1221                 metadata_Relocation* r = mds.metadata_reloc();
1222                 addr = (address)r->metadata_addr();
1223                 break;
1224               }
1225             }
1226             assert(addr != nullptr, "metadata relocation must exist");
1227             copy_buff -= *byte_count;
1228             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1229             n_copy2->set_pc_relative_offset(addr, instr_pc);
1230           }
1231 #endif
1232 
1233           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1234             address ptr = copy_buff + i;
1235             int a_byte = (*ptr) & 0xFF;
1236             address dst = instr_pc + i;
1237             *(unsigned char*)dst = (unsigned char) a_byte;
1238           }
1239           ICache::invalidate_range(instr_pc, *byte_count);
1240           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1241 
1242           if (load_klass_or_mirror_patch_id ||
1243               stub_id == C1StubId::load_appendix_patching_id) {
1244             relocInfo::relocType rtype =
1245               (stub_id == C1StubId::load_klass_patching_id) ?
1246                                    relocInfo::metadata_type :
1247                                    relocInfo::oop_type;
1248             // update relocInfo to metadata
1249             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1250             assert(nm != nullptr, "invalid nmethod_pc");
1251 
1252             // The old patch site is now a move instruction so update
1253             // the reloc info so that it will get updated during
1254             // future GCs.
1255             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1256             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1257                                                      relocInfo::none, rtype);
1258           }
1259 
1260         } else {
1261           ICache::invalidate_range(copy_buff, *byte_count);
1262           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1263         }
1264       }
1265     }
1266     // If we are patching in a non-perm oop, make sure the nmethod
1267     // is on the right list.
1268     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1269     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1270 
1271     // Since we've patched some oops in the nmethod,
1272     // (re)register it with the heap.
1273     Universe::heap()->register_nmethod(nm);
1274   }
1275 JRT_END
1276 
1277 #else // DEOPTIMIZE_WHEN_PATCHING
1278 
1279 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) {
1280   if (stub_id == C1StubId::load_klass_patching_id ||
1281       stub_id == C1StubId::load_mirror_patching_id) {
1282     // last java frame on stack
1283     vframeStream vfst(current, true);
1284     assert(!vfst.at_end(), "Java frame must exist");
1285 
1286     methodHandle caller_method(current, vfst.method());
1287     int bci = vfst.bci();
1288     Bytecodes::Code code = caller_method()->java_code_at(bci);
1289 
1290     switch (code) {
1291       case Bytecodes::_new:
1292       case Bytecodes::_anewarray:
1293       case Bytecodes::_multianewarray:
1294       case Bytecodes::_instanceof:
1295       case Bytecodes::_checkcast: {
1296         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1297         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1298         if (tag.is_unresolved_klass_in_error()) {
1299           return false; // throws resolution error
1300         }
1301         break;
1302       }
1303 
1304       default: break;
1305     }
1306   }
1307   return true;
1308 }
1309 
1310 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) {
1311 #ifndef PRODUCT
1312   if (PrintC1Statistics) {
1313     _patch_code_slowcase_cnt++;
1314   }
1315 #endif
1316 
1317   // Enable WXWrite: the function is called by c1 stub as a runtime function
1318   // (see another implementation above).
1319   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1320 
1321   if (TracePatching) {
1322     tty->print_cr("Deoptimizing because patch is needed");
1323   }
1324 
1325   RegisterMap reg_map(current,
1326                       RegisterMap::UpdateMap::skip,
1327                       RegisterMap::ProcessFrames::include,
1328                       RegisterMap::WalkContinuation::skip);
1329 
1330   frame runtime_frame = current->last_frame();
1331   frame caller_frame = runtime_frame.sender(&reg_map);
1332   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1333 
1334   if (is_patching_needed(current, stub_id)) {
1335     // Make sure the nmethod is invalidated, i.e. made not entrant.
1336     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1337     if (nm != nullptr) {
1338       nm->make_not_entrant();
1339     }
1340   }
1341 
1342   Deoptimization::deoptimize_frame(current, caller_frame.id());
1343   // Return to the now deoptimized frame.
1344   postcond(caller_is_deopted(current));
1345 }
1346 
1347 #endif // DEOPTIMIZE_WHEN_PATCHING
1348 
1349 // Entry point for compiled code. We want to patch a nmethod.
1350 // We don't do a normal VM transition here because we want to
1351 // know after the patching is complete and any safepoint(s) are taken
1352 // if the calling nmethod was deoptimized. We do this by calling a
1353 // helper method which does the normal VM transition and when it
1354 // completes we can check for deoptimization. This simplifies the
1355 // assembly code in the cpu directories.
1356 //
1357 int Runtime1::move_klass_patching(JavaThread* current) {
1358 //
1359 // NOTE: we are still in Java
1360 //
1361   debug_only(NoHandleMark nhm;)
1362   {
1363     // Enter VM mode
1364     ResetNoHandleMark rnhm;
1365     patch_code(current, C1StubId::load_klass_patching_id);
1366   }
1367   // Back in JAVA, use no oops DON'T safepoint
1368 
1369   // Return true if calling code is deoptimized
1370 
1371   return caller_is_deopted(current);
1372 }
1373 
1374 int Runtime1::move_mirror_patching(JavaThread* current) {
1375 //
1376 // NOTE: we are still in Java
1377 //
1378   debug_only(NoHandleMark nhm;)
1379   {
1380     // Enter VM mode
1381     ResetNoHandleMark rnhm;
1382     patch_code(current, C1StubId::load_mirror_patching_id);
1383   }
1384   // Back in JAVA, use no oops DON'T safepoint
1385 
1386   // Return true if calling code is deoptimized
1387 
1388   return caller_is_deopted(current);
1389 }
1390 
1391 int Runtime1::move_appendix_patching(JavaThread* current) {
1392 //
1393 // NOTE: we are still in Java
1394 //
1395   debug_only(NoHandleMark nhm;)
1396   {
1397     // Enter VM mode
1398     ResetNoHandleMark rnhm;
1399     patch_code(current, C1StubId::load_appendix_patching_id);
1400   }
1401   // Back in JAVA, use no oops DON'T safepoint
1402 
1403   // Return true if calling code is deoptimized
1404 
1405   return caller_is_deopted(current);
1406 }
1407 
1408 // Entry point for compiled code. We want to patch a nmethod.
1409 // We don't do a normal VM transition here because we want to
1410 // know after the patching is complete and any safepoint(s) are taken
1411 // if the calling nmethod was deoptimized. We do this by calling a
1412 // helper method which does the normal VM transition and when it
1413 // completes we can check for deoptimization. This simplifies the
1414 // assembly code in the cpu directories.
1415 //
1416 int Runtime1::access_field_patching(JavaThread* current) {
1417   //
1418   // NOTE: we are still in Java
1419   //
1420   // Handles created in this function will be deleted by the
1421   // HandleMarkCleaner in the transition to the VM.
1422   NoHandleMark nhm;
1423   {
1424     // Enter VM mode
1425     ResetNoHandleMark rnhm;
1426     patch_code(current, C1StubId::access_field_patching_id);
1427   }
1428   // Back in JAVA, use no oops DON'T safepoint
1429 
1430   // Return true if calling code is deoptimized
1431 
1432   return caller_is_deopted(current);
1433 }
1434 
1435 
1436 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1437   // for now we just print out the block id
1438   tty->print("%d ", block_id);
1439 JRT_END
1440 
1441 
1442 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1443   // had to return int instead of bool, otherwise there may be a mismatch
1444   // between the C calling convention and the Java one.
1445   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1446   // JVM takes the whole %eax as the return value, which may misinterpret
1447   // the return value as a boolean true.
1448 
1449   assert(mirror != nullptr, "should null-check on mirror before calling");
1450   Klass* k = java_lang_Class::as_Klass(mirror);
1451   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1452 JRT_END
1453 
1454 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1455   ResourceMark rm;
1456 
1457   RegisterMap reg_map(current,
1458                       RegisterMap::UpdateMap::skip,
1459                       RegisterMap::ProcessFrames::include,
1460                       RegisterMap::WalkContinuation::skip);
1461   frame runtime_frame = current->last_frame();
1462   frame caller_frame = runtime_frame.sender(&reg_map);
1463 
1464   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1465   assert (nm != nullptr, "no more nmethod?");
1466   nm->make_not_entrant();
1467 
1468   methodHandle m(current, nm->method());
1469   MethodData* mdo = m->method_data();
1470 
1471   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1472     // Build an MDO.  Ignore errors like OutOfMemory;
1473     // that simply means we won't have an MDO to update.
1474     Method::build_profiling_method_data(m, THREAD);
1475     if (HAS_PENDING_EXCEPTION) {
1476       // Only metaspace OOM is expected. No Java code executed.
1477       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1478       CLEAR_PENDING_EXCEPTION;
1479     }
1480     mdo = m->method_data();
1481   }
1482 
1483   if (mdo != nullptr) {
1484     mdo->inc_trap_count(Deoptimization::Reason_none);
1485   }
1486 
1487   if (TracePredicateFailedTraps) {
1488     stringStream ss1, ss2;
1489     vframeStream vfst(current);
1490     Method* inlinee = vfst.method();
1491     inlinee->print_short_name(&ss1);
1492     m->print_short_name(&ss2);
1493     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1494   }
1495 
1496 
1497   Deoptimization::deoptimize_frame(current, caller_frame.id());
1498 
1499 JRT_END
1500 
1501 // Check exception if AbortVMOnException flag set
1502 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1503   ResourceMark rm;
1504   const char* message = nullptr;
1505   if (ex->is_a(vmClasses::Throwable_klass())) {
1506     oop msg = java_lang_Throwable::message(ex);
1507     if (msg != nullptr) {
1508       message = java_lang_String::as_utf8_string(msg);
1509     }
1510   }
1511   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1512 JRT_END
1513 
1514 #ifndef PRODUCT
1515 void Runtime1::print_statistics() {
1516   tty->print_cr("C1 Runtime statistics:");
1517   tty->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1518   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1519   tty->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1520   tty->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1521   tty->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1522   tty->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1523   tty->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1524   tty->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1525   tty->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1526   tty->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1527   tty->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1528   tty->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1529   tty->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1530   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1531 
1532   tty->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1533   tty->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1534   tty->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1535   tty->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1536   tty->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1537   tty->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1538   tty->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1539 
1540   tty->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1541   tty->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1542   tty->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1543   tty->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1544   tty->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1545   tty->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1546   tty->print_cr(" _throw_count:                                  %u:", _throw_count);
1547 
1548   SharedRuntime::print_ic_miss_histogram();
1549   tty->cr();
1550 }
1551 #endif // PRODUCT