1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"
  42 #include "compiler/disassembler.hpp"
  43 #include "compiler/oopMap.hpp"
  44 #include "gc/shared/barrierSet.hpp"
  45 #include "gc/shared/c1/barrierSetC1.hpp"
  46 #include "gc/shared/collectedHeap.hpp"
  47 #include "interpreter/bytecode.hpp"
  48 #include "interpreter/interpreter.hpp"
  49 #include "jfr/support/jfrIntrinsics.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/klass.inline.hpp"
  57 #include "oops/objArrayOop.inline.hpp"
  58 #include "oops/objArrayKlass.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/fieldDescriptor.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/interfaceSupport.inline.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stackWatermarkSet.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/vframe.inline.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "utilities/copy.hpp"
  75 #include "utilities/events.hpp"
  76 
  77 
  78 // Implementation of StubAssembler
  79 
  80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  81   _name = name;
  82   _must_gc_arguments = false;
  83   _frame_size = no_frame_size;
  84   _num_rt_args = 0;
  85   _stub_id = stub_id;
  86 }
  87 
  88 
  89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  90   _name = name;
  91   _must_gc_arguments = must_gc_arguments;
  92 }
  93 
  94 
  95 void StubAssembler::set_frame_size(int size) {
  96   if (_frame_size == no_frame_size) {
  97     _frame_size = size;
  98   }
  99   assert(_frame_size == size, "can't change the frame size");
 100 }
 101 
 102 
 103 void StubAssembler::set_num_rt_args(int args) {
 104   if (_num_rt_args == 0) {
 105     _num_rt_args = args;
 106   }
 107   assert(_num_rt_args == args, "can't change the number of args");
 108 }
 109 
 110 // Implementation of Runtime1
 111 
 112 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS];
 113 
 114 #define C1_BLOB_NAME_DEFINE(name)  "C1 Runtime " # name "_blob",
 115 const char *Runtime1::_blob_names[] = {
 116   C1_STUBS_DO(C1_BLOB_NAME_DEFINE)
 117 };
 118 #undef C1_STUB_NAME_DEFINE
 119 
 120 #ifndef PRODUCT
 121 // statistics
 122 uint Runtime1::_generic_arraycopystub_cnt = 0;
 123 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 124 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 125 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 126 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 127 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 128 uint Runtime1::_new_instance_slowcase_cnt = 0;
 129 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 130 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 131 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 132 uint Runtime1::_patch_code_slowcase_cnt = 0;
 133 uint Runtime1::_throw_range_check_exception_count = 0;
 134 uint Runtime1::_throw_index_exception_count = 0;
 135 uint Runtime1::_throw_div0_exception_count = 0;
 136 uint Runtime1::_throw_null_pointer_exception_count = 0;
 137 uint Runtime1::_throw_class_cast_exception_count = 0;
 138 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 139 uint Runtime1::_throw_count = 0;
 140 
 141 static uint _byte_arraycopy_stub_cnt = 0;
 142 static uint _short_arraycopy_stub_cnt = 0;
 143 static uint _int_arraycopy_stub_cnt = 0;
 144 static uint _long_arraycopy_stub_cnt = 0;
 145 static uint _oop_arraycopy_stub_cnt = 0;
 146 
 147 address Runtime1::arraycopy_count_address(BasicType type) {
 148   switch (type) {
 149   case T_BOOLEAN:
 150   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 151   case T_CHAR:
 152   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 153   case T_FLOAT:
 154   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 155   case T_DOUBLE:
 156   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 157   case T_ARRAY:
 158   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 159   default:
 160     ShouldNotReachHere();
 161     return nullptr;
 162   }
 163 }
 164 
 165 
 166 #endif
 167 
 168 // Simple helper to see if the caller of a runtime stub which
 169 // entered the VM has been deoptimized
 170 
 171 static bool caller_is_deopted(JavaThread* current) {
 172   RegisterMap reg_map(current,
 173                       RegisterMap::UpdateMap::skip,
 174                       RegisterMap::ProcessFrames::include,
 175                       RegisterMap::WalkContinuation::skip);
 176   frame runtime_frame = current->last_frame();
 177   frame caller_frame = runtime_frame.sender(&reg_map);
 178   assert(caller_frame.is_compiled_frame(), "must be compiled");
 179   return caller_frame.is_deoptimized_frame();
 180 }
 181 
 182 // Stress deoptimization
 183 static void deopt_caller(JavaThread* current) {
 184   if (!caller_is_deopted(current)) {
 185     RegisterMap reg_map(current,
 186                         RegisterMap::UpdateMap::skip,
 187                         RegisterMap::ProcessFrames::include,
 188                         RegisterMap::WalkContinuation::skip);
 189     frame runtime_frame = current->last_frame();
 190     frame caller_frame = runtime_frame.sender(&reg_map);
 191     Deoptimization::deoptimize_frame(current, caller_frame.id());
 192     assert(caller_is_deopted(current), "Must be deoptimized");
 193   }
 194 }
 195 
 196 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 197  private:
 198   C1StubId _id;
 199  public:
 200   C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {}
 201   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 202     return Runtime1::generate_code_for(_id, sasm);
 203   }
 204 };
 205 
 206 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 207   ResourceMark rm;
 208   // create code buffer for code storage
 209   CodeBuffer code(buffer_blob);
 210 
 211   OopMapSet* oop_maps;
 212   int frame_size;
 213   bool must_gc_arguments;
 214 
 215   Compilation::setup_code_buffer(&code, 0);
 216 
 217   // create assembler for code generation
 218   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 219   // generate code for runtime stub
 220   oop_maps = cl->generate_code(sasm);
 221   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 222          "if stub has an oop map it must have a valid frame size");
 223   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 224 
 225   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 226   sasm->align(BytesPerWord);
 227   // make sure all code is in code buffer
 228   sasm->flush();
 229 
 230   frame_size = sasm->frame_size();
 231   must_gc_arguments = sasm->must_gc_arguments();
 232   // create blob - distinguish a few special cases
 233   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 234                                                  &code,
 235                                                  CodeOffsets::frame_never_safe,
 236                                                  frame_size,
 237                                                  oop_maps,
 238                                                  must_gc_arguments);
 239   assert(blob != nullptr, "blob must exist");
 240   return blob;
 241 }
 242 
 243 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) {
 244   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 245   bool expect_oop_map = true;
 246 #ifdef ASSERT
 247   // Make sure that stubs that need oopmaps have them
 248   switch (id) {
 249     // These stubs don't need to have an oopmap
 250   case C1StubId::dtrace_object_alloc_id:
 251   case C1StubId::slow_subtype_check_id:
 252   case C1StubId::fpu2long_stub_id:
 253   case C1StubId::unwind_exception_id:
 254   case C1StubId::counter_overflow_id:
 255     expect_oop_map = false;
 256     break;
 257   default:
 258     break;
 259   }
 260 #endif
 261   C1StubIdStubAssemblerCodeGenClosure cl(id);
 262   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 263   // install blob
 264   _blobs[(int)id] = blob;
 265 }
 266 
 267 void Runtime1::initialize(BufferBlob* blob) {
 268   // platform-dependent initialization
 269   initialize_pd();
 270   // generate stubs
 271   int limit = (int)C1StubId::NUM_STUBIDS;
 272   for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id);
 273   // printing
 274 #ifndef PRODUCT
 275   if (PrintSimpleStubs) {
 276     ResourceMark rm;
 277     for (int id = 0; id < limit; id++) {
 278       _blobs[id]->print();
 279       if (_blobs[id]->oop_maps() != nullptr) {
 280         _blobs[id]->oop_maps()->print();
 281       }
 282     }
 283   }
 284 #endif
 285   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 286   bs->generate_c1_runtime_stubs(blob);
 287 }
 288 
 289 CodeBlob* Runtime1::blob_for(C1StubId id) {
 290   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 291   return _blobs[(int)id];
 292 }
 293 
 294 
 295 const char* Runtime1::name_for(C1StubId id) {
 296   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 297   return _blob_names[(int)id];
 298 }
 299 
 300 const char* Runtime1::name_for_address(address entry) {
 301   int limit = (int)C1StubId::NUM_STUBIDS;
 302   for (int i = 0; i < limit; i++) {
 303     C1StubId id = (C1StubId)i;
 304     if (entry == entry_for(id)) return name_for(id);
 305   }
 306 
 307 #define FUNCTION_CASE(a, f) \
 308   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 309 
 310   FUNCTION_CASE(entry, os::javaTimeMillis);
 311   FUNCTION_CASE(entry, os::javaTimeNanos);
 312   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 313   FUNCTION_CASE(entry, SharedRuntime::d2f);
 314   FUNCTION_CASE(entry, SharedRuntime::d2i);
 315   FUNCTION_CASE(entry, SharedRuntime::d2l);
 316   FUNCTION_CASE(entry, SharedRuntime::dcos);
 317   FUNCTION_CASE(entry, SharedRuntime::dexp);
 318   FUNCTION_CASE(entry, SharedRuntime::dlog);
 319   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 320   FUNCTION_CASE(entry, SharedRuntime::dpow);
 321   FUNCTION_CASE(entry, SharedRuntime::drem);
 322   FUNCTION_CASE(entry, SharedRuntime::dsin);
 323   FUNCTION_CASE(entry, SharedRuntime::dtan);
 324   FUNCTION_CASE(entry, SharedRuntime::f2i);
 325   FUNCTION_CASE(entry, SharedRuntime::f2l);
 326   FUNCTION_CASE(entry, SharedRuntime::frem);
 327   FUNCTION_CASE(entry, SharedRuntime::l2d);
 328   FUNCTION_CASE(entry, SharedRuntime::l2f);
 329   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 330   FUNCTION_CASE(entry, SharedRuntime::lmul);
 331   FUNCTION_CASE(entry, SharedRuntime::lrem);
 332   FUNCTION_CASE(entry, SharedRuntime::lrem);
 333   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 334   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 335   FUNCTION_CASE(entry, is_instance_of);
 336   FUNCTION_CASE(entry, trace_block_entry);
 337 #ifdef JFR_HAVE_INTRINSICS
 338   FUNCTION_CASE(entry, JfrTime::time_function());
 339 #endif
 340   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 341   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 342   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 343   FUNCTION_CASE(entry, StubRoutines::dexp());
 344   FUNCTION_CASE(entry, StubRoutines::dlog());
 345   FUNCTION_CASE(entry, StubRoutines::dlog10());
 346   FUNCTION_CASE(entry, StubRoutines::dpow());
 347   FUNCTION_CASE(entry, StubRoutines::dsin());
 348   FUNCTION_CASE(entry, StubRoutines::dcos());
 349   FUNCTION_CASE(entry, StubRoutines::dtan());
 350   FUNCTION_CASE(entry, StubRoutines::dtanh());
 351 
 352 #undef FUNCTION_CASE
 353 
 354   // Soft float adds more runtime names.
 355   return pd_name_for_address(entry);
 356 }
 357 
 358 
 359 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 360 #ifndef PRODUCT
 361   if (PrintC1Statistics) {
 362     _new_instance_slowcase_cnt++;
 363   }
 364 #endif
 365   assert(klass->is_klass(), "not a class");
 366   Handle holder(current, klass->klass_holder()); // keep the klass alive
 367   InstanceKlass* h = InstanceKlass::cast(klass);
 368   h->check_valid_for_instantiation(true, CHECK);
 369   // make sure klass is initialized
 370   h->initialize(CHECK);
 371   // allocate instance and return via TLS
 372   oop obj = h->allocate_instance(CHECK);
 373   current->set_vm_result(obj);
 374 JRT_END
 375 
 376 
 377 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 378 #ifndef PRODUCT
 379   if (PrintC1Statistics) {
 380     _new_type_array_slowcase_cnt++;
 381   }
 382 #endif
 383   // Note: no handle for klass needed since they are not used
 384   //       anymore after new_typeArray() and no GC can happen before.
 385   //       (This may have to change if this code changes!)
 386   assert(klass->is_klass(), "not a class");
 387   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 388   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 389   current->set_vm_result(obj);
 390   // This is pretty rare but this runtime patch is stressful to deoptimization
 391   // if we deoptimize here so force a deopt to stress the path.
 392   if (DeoptimizeALot) {
 393     deopt_caller(current);
 394   }
 395 
 396 JRT_END
 397 
 398 
 399 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 400 #ifndef PRODUCT
 401   if (PrintC1Statistics) {
 402     _new_object_array_slowcase_cnt++;
 403   }
 404 #endif
 405   // Note: no handle for klass needed since they are not used
 406   //       anymore after new_objArray() and no GC can happen before.
 407   //       (This may have to change if this code changes!)
 408   assert(array_klass->is_klass(), "not a class");
 409   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 410   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 411   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 412   current->set_vm_result(obj);
 413   // This is pretty rare but this runtime patch is stressful to deoptimization
 414   // if we deoptimize here so force a deopt to stress the path.
 415   if (DeoptimizeALot) {
 416     deopt_caller(current);
 417   }
 418 JRT_END
 419 
 420 
 421 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 422 #ifndef PRODUCT
 423   if (PrintC1Statistics) {
 424     _new_multi_array_slowcase_cnt++;
 425   }
 426 #endif
 427   assert(klass->is_klass(), "not a class");
 428   assert(rank >= 1, "rank must be nonzero");
 429   Handle holder(current, klass->klass_holder()); // keep the klass alive
 430   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 431   current->set_vm_result(obj);
 432 JRT_END
 433 
 434 
 435 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 436   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 437 JRT_END
 438 
 439 
 440 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 441   ResourceMark rm(current);
 442   const char* klass_name = obj->klass()->external_name();
 443   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 444 JRT_END
 445 
 446 
 447 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 448 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 449 // method) method is passed as an argument. In order to do that it is embedded in the code as
 450 // a constant.
 451 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 452   nmethod* osr_nm = nullptr;
 453   methodHandle method(current, m);
 454 
 455   RegisterMap map(current,
 456                   RegisterMap::UpdateMap::skip,
 457                   RegisterMap::ProcessFrames::include,
 458                   RegisterMap::WalkContinuation::skip);
 459   frame fr =  current->last_frame().sender(&map);
 460   nmethod* nm = (nmethod*) fr.cb();
 461   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 462   methodHandle enclosing_method(current, nm->method());
 463 
 464   CompLevel level = (CompLevel)nm->comp_level();
 465   int bci = InvocationEntryBci;
 466   if (branch_bci != InvocationEntryBci) {
 467     // Compute destination bci
 468     address pc = method()->code_base() + branch_bci;
 469     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 470     int offset = 0;
 471     switch (branch) {
 472       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 473       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 474       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 475       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 476       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 477       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 478       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 479         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 480         break;
 481       case Bytecodes::_goto_w:
 482         offset = Bytes::get_Java_u4(pc + 1);
 483         break;
 484       default: ;
 485     }
 486     bci = branch_bci + offset;
 487   }
 488   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 489   return osr_nm;
 490 }
 491 
 492 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 493   nmethod* osr_nm;
 494   JRT_BLOCK
 495     osr_nm = counter_overflow_helper(current, bci, method);
 496     if (osr_nm != nullptr) {
 497       RegisterMap map(current,
 498                       RegisterMap::UpdateMap::skip,
 499                       RegisterMap::ProcessFrames::include,
 500                       RegisterMap::WalkContinuation::skip);
 501       frame fr =  current->last_frame().sender(&map);
 502       Deoptimization::deoptimize_frame(current, fr.id());
 503     }
 504   JRT_BLOCK_END
 505   return nullptr;
 506 JRT_END
 507 
 508 extern void vm_exit(int code);
 509 
 510 // Enter this method from compiled code handler below. This is where we transition
 511 // to VM mode. This is done as a helper routine so that the method called directly
 512 // from compiled code does not have to transition to VM. This allows the entry
 513 // method to see if the nmethod that we have just looked up a handler for has
 514 // been deoptimized while we were in the vm. This simplifies the assembly code
 515 // cpu directories.
 516 //
 517 // We are entering here from exception stub (via the entry method below)
 518 // If there is a compiled exception handler in this method, we will continue there;
 519 // otherwise we will unwind the stack and continue at the caller of top frame method
 520 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 521 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 522 // check to see if the handler we are going to return is now in a nmethod that has
 523 // been deoptimized. If that is the case we return the deopt blob
 524 // unpack_with_exception entry instead. This makes life for the exception blob easier
 525 // because making that same check and diverting is painful from assembly language.
 526 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 527   // Reset method handle flag.
 528   current->set_is_method_handle_return(false);
 529 
 530   Handle exception(current, ex);
 531 
 532   // This function is called when we are about to throw an exception. Therefore,
 533   // we have to poll the stack watermark barrier to make sure that not yet safe
 534   // stack frames are made safe before returning into them.
 535   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 536     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 537     // frame has been unwound. It instead builds its own stub frame, to call the
 538     // runtime. But the throwing frame has already been unwound here.
 539     StackWatermarkSet::after_unwind(current);
 540   }
 541 
 542   nm = CodeCache::find_nmethod(pc);
 543   assert(nm != nullptr, "this is not an nmethod");
 544   // Adjust the pc as needed/
 545   if (nm->is_deopt_pc(pc)) {
 546     RegisterMap map(current,
 547                     RegisterMap::UpdateMap::skip,
 548                     RegisterMap::ProcessFrames::include,
 549                     RegisterMap::WalkContinuation::skip);
 550     frame exception_frame = current->last_frame().sender(&map);
 551     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 552     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 553     pc = exception_frame.pc();
 554   }
 555   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 556   // Check that exception is a subclass of Throwable
 557   assert(exception->is_a(vmClasses::Throwable_klass()),
 558          "Exception not subclass of Throwable");
 559 
 560   // debugging support
 561   // tracing
 562   if (log_is_enabled(Info, exceptions)) {
 563     ResourceMark rm; // print_value_string
 564     stringStream tempst;
 565     assert(nm->method() != nullptr, "Unexpected null method()");
 566     tempst.print("C1 compiled method <%s>\n"
 567                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 568                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 569     Exceptions::log_exception(exception, tempst.freeze());
 570   }
 571   // for AbortVMOnException flag
 572   Exceptions::debug_check_abort(exception);
 573 
 574   // Check the stack guard pages and re-enable them if necessary and there is
 575   // enough space on the stack to do so.  Use fast exceptions only if the guard
 576   // pages are enabled.
 577   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 578 
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     // To ensure correct notification of exception catches and throws
 581     // we have to deoptimize here.  If we attempted to notify the
 582     // catches and throws during this exception lookup it's possible
 583     // we could deoptimize on the way out of the VM and end back in
 584     // the interpreter at the throw site.  This would result in double
 585     // notifications since the interpreter would also notify about
 586     // these same catches and throws as it unwound the frame.
 587 
 588     RegisterMap reg_map(current,
 589                         RegisterMap::UpdateMap::include,
 590                         RegisterMap::ProcessFrames::include,
 591                         RegisterMap::WalkContinuation::skip);
 592     frame stub_frame = current->last_frame();
 593     frame caller_frame = stub_frame.sender(&reg_map);
 594 
 595     // We don't really want to deoptimize the nmethod itself since we
 596     // can actually continue in the exception handler ourselves but I
 597     // don't see an easy way to have the desired effect.
 598     Deoptimization::deoptimize_frame(current, caller_frame.id());
 599     assert(caller_is_deopted(current), "Must be deoptimized");
 600 
 601     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 602   }
 603 
 604   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 605   if (guard_pages_enabled) {
 606     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 607     if (fast_continuation != nullptr) {
 608       // Set flag if return address is a method handle call site.
 609       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 610       return fast_continuation;
 611     }
 612   }
 613 
 614   // If the stack guard pages are enabled, check whether there is a handler in
 615   // the current method.  Otherwise (guard pages disabled), force an unwind and
 616   // skip the exception cache update (i.e., just leave continuation as null).
 617   address continuation = nullptr;
 618   if (guard_pages_enabled) {
 619 
 620     // New exception handling mechanism can support inlined methods
 621     // with exception handlers since the mappings are from PC to PC
 622 
 623     // Clear out the exception oop and pc since looking up an
 624     // exception handler can cause class loading, which might throw an
 625     // exception and those fields are expected to be clear during
 626     // normal bytecode execution.
 627     current->clear_exception_oop_and_pc();
 628 
 629     bool recursive_exception = false;
 630     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 631     // If an exception was thrown during exception dispatch, the exception oop may have changed
 632     current->set_exception_oop(exception());
 633     current->set_exception_pc(pc);
 634 
 635     // the exception cache is used only by non-implicit exceptions
 636     // Update the exception cache only when there didn't happen
 637     // another exception during the computation of the compiled
 638     // exception handler. Checking for exception oop equality is not
 639     // sufficient because some exceptions are pre-allocated and reused.
 640     if (continuation != nullptr && !recursive_exception) {
 641       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 642     }
 643   }
 644 
 645   current->set_vm_result(exception());
 646   // Set flag if return address is a method handle call site.
 647   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 648 
 649   if (log_is_enabled(Info, exceptions)) {
 650     ResourceMark rm;
 651     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 652                          " for exception thrown at PC " PTR_FORMAT,
 653                          p2i(current), p2i(continuation), p2i(pc));
 654   }
 655 
 656   return continuation;
 657 JRT_END
 658 
 659 // Enter this method from compiled code only if there is a Java exception handler
 660 // in the method handling the exception.
 661 // We are entering here from exception stub. We don't do a normal VM transition here.
 662 // We do it in a helper. This is so we can check to see if the nmethod we have just
 663 // searched for an exception handler has been deoptimized in the meantime.
 664 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 665   oop exception = current->exception_oop();
 666   address pc = current->exception_pc();
 667   // Still in Java mode
 668   DEBUG_ONLY(NoHandleMark nhm);
 669   nmethod* nm = nullptr;
 670   address continuation = nullptr;
 671   {
 672     // Enter VM mode by calling the helper
 673     ResetNoHandleMark rnhm;
 674     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 675   }
 676   // Back in JAVA, use no oops DON'T safepoint
 677 
 678   // Now check to see if the nmethod we were called from is now deoptimized.
 679   // If so we must return to the deopt blob and deoptimize the nmethod
 680   if (nm != nullptr && caller_is_deopted(current)) {
 681     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 682   }
 683 
 684   assert(continuation != nullptr, "no handler found");
 685   return continuation;
 686 }
 687 
 688 
 689 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 690 #ifndef PRODUCT
 691   if (PrintC1Statistics) {
 692     _throw_range_check_exception_count++;
 693   }
 694 #endif
 695   const int len = 35;
 696   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 697   char message[2 * jintAsStringSize + len];
 698   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 699   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 700 JRT_END
 701 
 702 
 703 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 704 #ifndef PRODUCT
 705   if (PrintC1Statistics) {
 706     _throw_index_exception_count++;
 707   }
 708 #endif
 709   char message[16];
 710   os::snprintf_checked(message, sizeof(message), "%d", index);
 711   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 712 JRT_END
 713 
 714 
 715 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 716 #ifndef PRODUCT
 717   if (PrintC1Statistics) {
 718     _throw_div0_exception_count++;
 719   }
 720 #endif
 721   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 722 JRT_END
 723 
 724 
 725 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 726 #ifndef PRODUCT
 727   if (PrintC1Statistics) {
 728     _throw_null_pointer_exception_count++;
 729   }
 730 #endif
 731   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 
 735 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 736 #ifndef PRODUCT
 737   if (PrintC1Statistics) {
 738     _throw_class_cast_exception_count++;
 739   }
 740 #endif
 741   ResourceMark rm(current);
 742   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 743   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 744 JRT_END
 745 
 746 
 747 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 748 #ifndef PRODUCT
 749   if (PrintC1Statistics) {
 750     _throw_incompatible_class_change_error_count++;
 751   }
 752 #endif
 753   ResourceMark rm(current);
 754   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 755 JRT_END
 756 
 757 
 758 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 759 #ifndef PRODUCT
 760   if (PrintC1Statistics) {
 761     _monitorenter_slowcase_cnt++;
 762   }
 763 #endif
 764   if (LockingMode == LM_MONITOR) {
 765     lock->set_obj(obj);
 766   }
 767   assert(obj == lock->obj(), "must match");
 768   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 769 JRT_END
 770 
 771 
 772 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 773   assert(current == JavaThread::current(), "pre-condition");
 774 #ifndef PRODUCT
 775   if (PrintC1Statistics) {
 776     _monitorexit_slowcase_cnt++;
 777   }
 778 #endif
 779   assert(current->last_Java_sp(), "last_Java_sp must be set");
 780   oop obj = lock->obj();
 781   assert(oopDesc::is_oop(obj), "must be null or an object");
 782   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 783 JRT_END
 784 
 785 // Cf. OptoRuntime::deoptimize_caller_frame
 786 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 787   // Called from within the owner thread, so no need for safepoint
 788   RegisterMap reg_map(current,
 789                       RegisterMap::UpdateMap::skip,
 790                       RegisterMap::ProcessFrames::include,
 791                       RegisterMap::WalkContinuation::skip);
 792   frame stub_frame = current->last_frame();
 793   assert(stub_frame.is_runtime_frame(), "Sanity check");
 794   frame caller_frame = stub_frame.sender(&reg_map);
 795   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 796   assert(nm != nullptr, "Sanity check");
 797   methodHandle method(current, nm->method());
 798   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 799   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 800   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 801 
 802   if (action == Deoptimization::Action_make_not_entrant) {
 803     if (nm->make_not_entrant()) {
 804       if (reason == Deoptimization::Reason_tenured) {
 805         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 806         if (trap_mdo != nullptr) {
 807           trap_mdo->inc_tenure_traps();
 808         }
 809       }
 810     }
 811   }
 812 
 813   // Deoptimize the caller frame.
 814   Deoptimization::deoptimize_frame(current, caller_frame.id());
 815   // Return to the now deoptimized frame.
 816 JRT_END
 817 
 818 
 819 #ifndef DEOPTIMIZE_WHEN_PATCHING
 820 
 821 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 822   Bytecode_field field_access(caller, bci);
 823   // This can be static or non-static field access
 824   Bytecodes::Code code       = field_access.code();
 825 
 826   // We must load class, initialize class and resolve the field
 827   fieldDescriptor result; // initialize class if needed
 828   constantPoolHandle constants(THREAD, caller->constants());
 829   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 830   return result.field_holder();
 831 }
 832 
 833 
 834 //
 835 // This routine patches sites where a class wasn't loaded or
 836 // initialized at the time the code was generated.  It handles
 837 // references to classes, fields and forcing of initialization.  Most
 838 // of the cases are straightforward and involving simply forcing
 839 // resolution of a class, rewriting the instruction stream with the
 840 // needed constant and replacing the call in this function with the
 841 // patched code.  The case for static field is more complicated since
 842 // the thread which is in the process of initializing a class can
 843 // access it's static fields but other threads can't so the code
 844 // either has to deoptimize when this case is detected or execute a
 845 // check that the current thread is the initializing thread.  The
 846 // current
 847 //
 848 // Patches basically look like this:
 849 //
 850 //
 851 // patch_site: jmp patch stub     ;; will be patched
 852 // continue:   ...
 853 //             ...
 854 //             ...
 855 //             ...
 856 //
 857 // They have a stub which looks like this:
 858 //
 859 //             ;; patch body
 860 //             movl <const>, reg           (for class constants)
 861 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 862 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 863 //             <being_init offset> <bytes to copy> <bytes to skip>
 864 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 865 //             jmp patch_site
 866 //
 867 //
 868 // A normal patch is done by rewriting the patch body, usually a move,
 869 // and then copying it into place over top of the jmp instruction
 870 // being careful to flush caches and doing it in an MP-safe way.  The
 871 // constants following the patch body are used to find various pieces
 872 // of the patch relative to the call site for Runtime1::patch_code.
 873 // The case for getstatic and putstatic is more complicated because
 874 // getstatic and putstatic have special semantics when executing while
 875 // the class is being initialized.  getstatic/putstatic on a class
 876 // which is being_initialized may be executed by the initializing
 877 // thread but other threads have to block when they execute it.  This
 878 // is accomplished in compiled code by executing a test of the current
 879 // thread against the initializing thread of the class.  It's emitted
 880 // as boilerplate in their stub which allows the patched code to be
 881 // executed before it's copied back into the main body of the nmethod.
 882 //
 883 // being_init: get_thread(<tmp reg>
 884 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 885 //             jne patch_stub
 886 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 887 //             movl reg, [reg1 + <const>]  (for field offsets)
 888 //             jmp continue
 889 //             <being_init offset> <bytes to copy> <bytes to skip>
 890 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 891 //             jmp patch_site
 892 //
 893 // If the class is being initialized the patch body is rewritten and
 894 // the patch site is rewritten to jump to being_init, instead of
 895 // patch_stub.  Whenever this code is executed it checks the current
 896 // thread against the initializing thread so other threads will enter
 897 // the runtime and end up blocked waiting the class to finish
 898 // initializing inside the calls to resolve_field below.  The
 899 // initializing class will continue on it's way.  Once the class is
 900 // fully_initialized, the intializing_thread of the class becomes
 901 // null, so the next thread to execute this code will fail the test,
 902 // call into patch_code and complete the patching process by copying
 903 // the patch body back into the main part of the nmethod and resume
 904 // executing.
 905 
 906 // NB:
 907 //
 908 // Patchable instruction sequences inherently exhibit race conditions,
 909 // where thread A is patching an instruction at the same time thread B
 910 // is executing it.  The algorithms we use ensure that any observation
 911 // that B can make on any intermediate states during A's patching will
 912 // always end up with a correct outcome.  This is easiest if there are
 913 // few or no intermediate states.  (Some inline caches have two
 914 // related instructions that must be patched in tandem.  For those,
 915 // intermediate states seem to be unavoidable, but we will get the
 916 // right answer from all possible observation orders.)
 917 //
 918 // When patching the entry instruction at the head of a method, or a
 919 // linkable call instruction inside of a method, we try very hard to
 920 // use a patch sequence which executes as a single memory transaction.
 921 // This means, in practice, that when thread A patches an instruction,
 922 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 923 // instruction or is contained in it.  We believe that memory hardware
 924 // will never break up such a word write, if it is naturally aligned
 925 // for the word being written.  We also know that some CPUs work very
 926 // hard to create atomic updates even of naturally unaligned words,
 927 // but we don't want to bet the farm on this always working.
 928 //
 929 // Therefore, if there is any chance of a race condition, we try to
 930 // patch only naturally aligned words, as single, full-word writes.
 931 
 932 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id ))
 933 #ifndef PRODUCT
 934   if (PrintC1Statistics) {
 935     _patch_code_slowcase_cnt++;
 936   }
 937 #endif
 938 
 939   ResourceMark rm(current);
 940   RegisterMap reg_map(current,
 941                       RegisterMap::UpdateMap::skip,
 942                       RegisterMap::ProcessFrames::include,
 943                       RegisterMap::WalkContinuation::skip);
 944   frame runtime_frame = current->last_frame();
 945   frame caller_frame = runtime_frame.sender(&reg_map);
 946 
 947   // last java frame on stack
 948   vframeStream vfst(current, true);
 949   assert(!vfst.at_end(), "Java frame must exist");
 950 
 951   methodHandle caller_method(current, vfst.method());
 952   // Note that caller_method->code() may not be same as caller_code because of OSR's
 953   // Note also that in the presence of inlining it is not guaranteed
 954   // that caller_method() == caller_code->method()
 955 
 956   int bci = vfst.bci();
 957   Bytecodes::Code code = caller_method()->java_code_at(bci);
 958 
 959   // this is used by assertions in the access_field_patching_id
 960   BasicType patch_field_type = T_ILLEGAL;
 961   bool deoptimize_for_volatile = false;
 962   bool deoptimize_for_atomic = false;
 963   int patch_field_offset = -1;
 964   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 965   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 966   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 967   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 968   bool load_klass_or_mirror_patch_id =
 969     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
 970 
 971   if (stub_id == C1StubId::access_field_patching_id) {
 972 
 973     Bytecode_field field_access(caller_method, bci);
 974     fieldDescriptor result; // initialize class if needed
 975     Bytecodes::Code code = field_access.code();
 976     constantPoolHandle constants(current, caller_method->constants());
 977     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 978     patch_field_offset = result.offset();
 979 
 980     // If we're patching a field which is volatile then at compile it
 981     // must not have been know to be volatile, so the generated code
 982     // isn't correct for a volatile reference.  The nmethod has to be
 983     // deoptimized so that the code can be regenerated correctly.
 984     // This check is only needed for access_field_patching since this
 985     // is the path for patching field offsets.  load_klass is only
 986     // used for patching references to oops which don't need special
 987     // handling in the volatile case.
 988 
 989     deoptimize_for_volatile = result.access_flags().is_volatile();
 990 
 991     // If we are patching a field which should be atomic, then
 992     // the generated code is not correct either, force deoptimizing.
 993     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 994     // break access atomicity only for them.
 995 
 996     // Strictly speaking, the deoptimization on 64-bit platforms
 997     // is unnecessary, and T_LONG stores on 32-bit platforms need
 998     // to be handled by special patching code when AlwaysAtomicAccesses
 999     // becomes product feature. At this point, we are still going
1000     // for the deoptimization for consistency against volatile
1001     // accesses.
1002 
1003     patch_field_type = result.field_type();
1004     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1005 
1006   } else if (load_klass_or_mirror_patch_id) {
1007     Klass* k = nullptr;
1008     switch (code) {
1009       case Bytecodes::_putstatic:
1010       case Bytecodes::_getstatic:
1011         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1012           init_klass = klass;
1013           mirror = Handle(current, klass->java_mirror());
1014         }
1015         break;
1016       case Bytecodes::_new:
1017         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1018           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1019         }
1020         break;
1021       case Bytecodes::_multianewarray:
1022         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1023           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1024         }
1025         break;
1026       case Bytecodes::_instanceof:
1027         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1028           k = caller_method->constants()->klass_at(io.index(), CHECK);
1029         }
1030         break;
1031       case Bytecodes::_checkcast:
1032         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1033           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1034         }
1035         break;
1036       case Bytecodes::_anewarray:
1037         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1038           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1039           k = ek->array_klass(CHECK);
1040         }
1041         break;
1042       case Bytecodes::_ldc:
1043       case Bytecodes::_ldc_w:
1044       case Bytecodes::_ldc2_w:
1045         {
1046           Bytecode_loadconstant cc(caller_method, bci);
1047           oop m = cc.resolve_constant(CHECK);
1048           mirror = Handle(current, m);
1049         }
1050         break;
1051       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1052     }
1053     load_klass = k;
1054   } else if (stub_id == C1StubId::load_appendix_patching_id) {
1055     Bytecode_invoke bytecode(caller_method, bci);
1056     Bytecodes::Code bc = bytecode.invoke_code();
1057 
1058     CallInfo info;
1059     constantPoolHandle pool(current, caller_method->constants());
1060     int index = bytecode.index();
1061     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1062     switch (bc) {
1063       case Bytecodes::_invokehandle: {
1064         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1065         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1066         break;
1067       }
1068       case Bytecodes::_invokedynamic: {
1069         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1070         break;
1071       }
1072       default: fatal("unexpected bytecode for load_appendix_patching_id");
1073     }
1074   } else {
1075     ShouldNotReachHere();
1076   }
1077 
1078   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1079     // At compile time we assumed the field wasn't volatile/atomic but after
1080     // loading it turns out it was volatile/atomic so we have to throw the
1081     // compiled code out and let it be regenerated.
1082     if (TracePatching) {
1083       if (deoptimize_for_volatile) {
1084         tty->print_cr("Deoptimizing for patching volatile field reference");
1085       }
1086       if (deoptimize_for_atomic) {
1087         tty->print_cr("Deoptimizing for patching atomic field reference");
1088       }
1089     }
1090 
1091     // It's possible the nmethod was invalidated in the last
1092     // safepoint, but if it's still alive then make it not_entrant.
1093     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1094     if (nm != nullptr) {
1095       nm->make_not_entrant();
1096     }
1097 
1098     Deoptimization::deoptimize_frame(current, caller_frame.id());
1099 
1100     // Return to the now deoptimized frame.
1101   }
1102 
1103   // Now copy code back
1104 
1105   {
1106     MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag);
1107     //
1108     // Deoptimization may have happened while we waited for the lock.
1109     // In that case we don't bother to do any patching we just return
1110     // and let the deopt happen
1111     if (!caller_is_deopted(current)) {
1112       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1113       address instr_pc = jump->jump_destination();
1114       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1115       if (ni->is_jump() ) {
1116         // the jump has not been patched yet
1117         // The jump destination is slow case and therefore not part of the stubs
1118         // (stubs are only for StaticCalls)
1119 
1120         // format of buffer
1121         //    ....
1122         //    instr byte 0     <-- copy_buff
1123         //    instr byte 1
1124         //    ..
1125         //    instr byte n-1
1126         //      n
1127         //    ....             <-- call destination
1128 
1129         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1130         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1131         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1132         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1133         address copy_buff = stub_location - *byte_skip - *byte_count;
1134         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1135         if (TracePatching) {
1136           ttyLocker ttyl;
1137           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1138                         p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass");
1139           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1140           assert(caller_code != nullptr, "nmethod not found");
1141 
1142           // NOTE we use pc() not original_pc() because we already know they are
1143           // identical otherwise we'd have never entered this block of code
1144 
1145           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1146           assert(map != nullptr, "null check");
1147           map->print();
1148           tty->cr();
1149 
1150           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1151         }
1152         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1153         bool do_patch = true;
1154         if (stub_id == C1StubId::access_field_patching_id) {
1155           // The offset may not be correct if the class was not loaded at code generation time.
1156           // Set it now.
1157           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1158           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1159           assert(patch_field_offset >= 0, "illegal offset");
1160           n_move->add_offset_in_bytes(patch_field_offset);
1161         } else if (load_klass_or_mirror_patch_id) {
1162           // If a getstatic or putstatic is referencing a klass which
1163           // isn't fully initialized, the patch body isn't copied into
1164           // place until initialization is complete.  In this case the
1165           // patch site is setup so that any threads besides the
1166           // initializing thread are forced to come into the VM and
1167           // block.
1168           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1169                      InstanceKlass::cast(init_klass)->is_initialized();
1170           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1171           if (jump->jump_destination() == being_initialized_entry) {
1172             assert(do_patch == true, "initialization must be complete at this point");
1173           } else {
1174             // patch the instruction <move reg, klass>
1175             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1176 
1177             assert(n_copy->data() == 0 ||
1178                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1179                    "illegal init value");
1180             if (stub_id == C1StubId::load_klass_patching_id) {
1181               assert(load_klass != nullptr, "klass not set");
1182               n_copy->set_data((intx) (load_klass));
1183             } else {
1184               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1185               n_copy->set_data(cast_from_oop<intx>(mirror()));
1186             }
1187 
1188             if (TracePatching) {
1189               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1190             }
1191           }
1192         } else if (stub_id == C1StubId::load_appendix_patching_id) {
1193           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1194           assert(n_copy->data() == 0 ||
1195                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1196                  "illegal init value");
1197           n_copy->set_data(cast_from_oop<intx>(appendix()));
1198 
1199           if (TracePatching) {
1200             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1201           }
1202         } else {
1203           ShouldNotReachHere();
1204         }
1205 
1206         if (do_patch) {
1207           // replace instructions
1208           // first replace the tail, then the call
1209 #ifdef ARM
1210           if((load_klass_or_mirror_patch_id ||
1211               stub_id == C1StubId::load_appendix_patching_id) &&
1212               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1213             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1214             address addr = nullptr;
1215             assert(nm != nullptr, "invalid nmethod_pc");
1216             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1217             while (mds.next()) {
1218               if (mds.type() == relocInfo::oop_type) {
1219                 assert(stub_id == C1StubId::load_mirror_patching_id ||
1220                        stub_id == C1StubId::load_appendix_patching_id, "wrong stub id");
1221                 oop_Relocation* r = mds.oop_reloc();
1222                 addr = (address)r->oop_addr();
1223                 break;
1224               } else if (mds.type() == relocInfo::metadata_type) {
1225                 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id");
1226                 metadata_Relocation* r = mds.metadata_reloc();
1227                 addr = (address)r->metadata_addr();
1228                 break;
1229               }
1230             }
1231             assert(addr != nullptr, "metadata relocation must exist");
1232             copy_buff -= *byte_count;
1233             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1234             n_copy2->set_pc_relative_offset(addr, instr_pc);
1235           }
1236 #endif
1237 
1238           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1239             address ptr = copy_buff + i;
1240             int a_byte = (*ptr) & 0xFF;
1241             address dst = instr_pc + i;
1242             *(unsigned char*)dst = (unsigned char) a_byte;
1243           }
1244           ICache::invalidate_range(instr_pc, *byte_count);
1245           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1246 
1247           if (load_klass_or_mirror_patch_id ||
1248               stub_id == C1StubId::load_appendix_patching_id) {
1249             relocInfo::relocType rtype =
1250               (stub_id == C1StubId::load_klass_patching_id) ?
1251                                    relocInfo::metadata_type :
1252                                    relocInfo::oop_type;
1253             // update relocInfo to metadata
1254             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1255             assert(nm != nullptr, "invalid nmethod_pc");
1256 
1257             // The old patch site is now a move instruction so update
1258             // the reloc info so that it will get updated during
1259             // future GCs.
1260             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1261             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1262                                                      relocInfo::none, rtype);
1263           }
1264 
1265         } else {
1266           ICache::invalidate_range(copy_buff, *byte_count);
1267           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1268         }
1269       }
1270     }
1271   }
1272 
1273   // If we are patching in a non-perm oop, make sure the nmethod
1274   // is on the right list.
1275   {
1276     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1277     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1278     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1279 
1280     // Since we've patched some oops in the nmethod,
1281     // (re)register it with the heap.
1282     Universe::heap()->register_nmethod(nm);
1283   }
1284 JRT_END
1285 
1286 #else // DEOPTIMIZE_WHEN_PATCHING
1287 
1288 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) {
1289   if (stub_id == C1StubId::load_klass_patching_id ||
1290       stub_id == C1StubId::load_mirror_patching_id) {
1291     // last java frame on stack
1292     vframeStream vfst(current, true);
1293     assert(!vfst.at_end(), "Java frame must exist");
1294 
1295     methodHandle caller_method(current, vfst.method());
1296     int bci = vfst.bci();
1297     Bytecodes::Code code = caller_method()->java_code_at(bci);
1298 
1299     switch (code) {
1300       case Bytecodes::_new:
1301       case Bytecodes::_anewarray:
1302       case Bytecodes::_multianewarray:
1303       case Bytecodes::_instanceof:
1304       case Bytecodes::_checkcast: {
1305         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1306         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1307         if (tag.is_unresolved_klass_in_error()) {
1308           return false; // throws resolution error
1309         }
1310         break;
1311       }
1312 
1313       default: break;
1314     }
1315   }
1316   return true;
1317 }
1318 
1319 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) {
1320 #ifndef PRODUCT
1321   if (PrintC1Statistics) {
1322     _patch_code_slowcase_cnt++;
1323   }
1324 #endif
1325 
1326   // Enable WXWrite: the function is called by c1 stub as a runtime function
1327   // (see another implementation above).
1328   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1329 
1330   if (TracePatching) {
1331     tty->print_cr("Deoptimizing because patch is needed");
1332   }
1333 
1334   RegisterMap reg_map(current,
1335                       RegisterMap::UpdateMap::skip,
1336                       RegisterMap::ProcessFrames::include,
1337                       RegisterMap::WalkContinuation::skip);
1338 
1339   frame runtime_frame = current->last_frame();
1340   frame caller_frame = runtime_frame.sender(&reg_map);
1341   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1342 
1343   if (is_patching_needed(current, stub_id)) {
1344     // Make sure the nmethod is invalidated, i.e. made not entrant.
1345     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1346     if (nm != nullptr) {
1347       nm->make_not_entrant();
1348     }
1349   }
1350 
1351   Deoptimization::deoptimize_frame(current, caller_frame.id());
1352   // Return to the now deoptimized frame.
1353   postcond(caller_is_deopted(current));
1354 }
1355 
1356 #endif // DEOPTIMIZE_WHEN_PATCHING
1357 
1358 // Entry point for compiled code. We want to patch a nmethod.
1359 // We don't do a normal VM transition here because we want to
1360 // know after the patching is complete and any safepoint(s) are taken
1361 // if the calling nmethod was deoptimized. We do this by calling a
1362 // helper method which does the normal VM transition and when it
1363 // completes we can check for deoptimization. This simplifies the
1364 // assembly code in the cpu directories.
1365 //
1366 int Runtime1::move_klass_patching(JavaThread* current) {
1367 //
1368 // NOTE: we are still in Java
1369 //
1370   debug_only(NoHandleMark nhm;)
1371   {
1372     // Enter VM mode
1373     ResetNoHandleMark rnhm;
1374     patch_code(current, C1StubId::load_klass_patching_id);
1375   }
1376   // Back in JAVA, use no oops DON'T safepoint
1377 
1378   // Return true if calling code is deoptimized
1379 
1380   return caller_is_deopted(current);
1381 }
1382 
1383 int Runtime1::move_mirror_patching(JavaThread* current) {
1384 //
1385 // NOTE: we are still in Java
1386 //
1387   debug_only(NoHandleMark nhm;)
1388   {
1389     // Enter VM mode
1390     ResetNoHandleMark rnhm;
1391     patch_code(current, C1StubId::load_mirror_patching_id);
1392   }
1393   // Back in JAVA, use no oops DON'T safepoint
1394 
1395   // Return true if calling code is deoptimized
1396 
1397   return caller_is_deopted(current);
1398 }
1399 
1400 int Runtime1::move_appendix_patching(JavaThread* current) {
1401 //
1402 // NOTE: we are still in Java
1403 //
1404   debug_only(NoHandleMark nhm;)
1405   {
1406     // Enter VM mode
1407     ResetNoHandleMark rnhm;
1408     patch_code(current, C1StubId::load_appendix_patching_id);
1409   }
1410   // Back in JAVA, use no oops DON'T safepoint
1411 
1412   // Return true if calling code is deoptimized
1413 
1414   return caller_is_deopted(current);
1415 }
1416 
1417 // Entry point for compiled code. We want to patch a nmethod.
1418 // We don't do a normal VM transition here because we want to
1419 // know after the patching is complete and any safepoint(s) are taken
1420 // if the calling nmethod was deoptimized. We do this by calling a
1421 // helper method which does the normal VM transition and when it
1422 // completes we can check for deoptimization. This simplifies the
1423 // assembly code in the cpu directories.
1424 //
1425 int Runtime1::access_field_patching(JavaThread* current) {
1426   //
1427   // NOTE: we are still in Java
1428   //
1429   // Handles created in this function will be deleted by the
1430   // HandleMarkCleaner in the transition to the VM.
1431   NoHandleMark nhm;
1432   {
1433     // Enter VM mode
1434     ResetNoHandleMark rnhm;
1435     patch_code(current, C1StubId::access_field_patching_id);
1436   }
1437   // Back in JAVA, use no oops DON'T safepoint
1438 
1439   // Return true if calling code is deoptimized
1440 
1441   return caller_is_deopted(current);
1442 }
1443 
1444 
1445 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1446   // for now we just print out the block id
1447   tty->print("%d ", block_id);
1448 JRT_END
1449 
1450 
1451 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1452   // had to return int instead of bool, otherwise there may be a mismatch
1453   // between the C calling convention and the Java one.
1454   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1455   // JVM takes the whole %eax as the return value, which may misinterpret
1456   // the return value as a boolean true.
1457 
1458   assert(mirror != nullptr, "should null-check on mirror before calling");
1459   Klass* k = java_lang_Class::as_Klass(mirror);
1460   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1461 JRT_END
1462 
1463 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1464   ResourceMark rm;
1465 
1466   RegisterMap reg_map(current,
1467                       RegisterMap::UpdateMap::skip,
1468                       RegisterMap::ProcessFrames::include,
1469                       RegisterMap::WalkContinuation::skip);
1470   frame runtime_frame = current->last_frame();
1471   frame caller_frame = runtime_frame.sender(&reg_map);
1472 
1473   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1474   assert (nm != nullptr, "no more nmethod?");
1475   nm->make_not_entrant();
1476 
1477   methodHandle m(current, nm->method());
1478   MethodData* mdo = m->method_data();
1479 
1480   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1481     // Build an MDO.  Ignore errors like OutOfMemory;
1482     // that simply means we won't have an MDO to update.
1483     Method::build_profiling_method_data(m, THREAD);
1484     if (HAS_PENDING_EXCEPTION) {
1485       // Only metaspace OOM is expected. No Java code executed.
1486       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1487       CLEAR_PENDING_EXCEPTION;
1488     }
1489     mdo = m->method_data();
1490   }
1491 
1492   if (mdo != nullptr) {
1493     mdo->inc_trap_count(Deoptimization::Reason_none);
1494   }
1495 
1496   if (TracePredicateFailedTraps) {
1497     stringStream ss1, ss2;
1498     vframeStream vfst(current);
1499     Method* inlinee = vfst.method();
1500     inlinee->print_short_name(&ss1);
1501     m->print_short_name(&ss2);
1502     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1503   }
1504 
1505 
1506   Deoptimization::deoptimize_frame(current, caller_frame.id());
1507 
1508 JRT_END
1509 
1510 // Check exception if AbortVMOnException flag set
1511 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1512   ResourceMark rm;
1513   const char* message = nullptr;
1514   if (ex->is_a(vmClasses::Throwable_klass())) {
1515     oop msg = java_lang_Throwable::message(ex);
1516     if (msg != nullptr) {
1517       message = java_lang_String::as_utf8_string(msg);
1518     }
1519   }
1520   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1521 JRT_END
1522 
1523 #ifndef PRODUCT
1524 void Runtime1::print_statistics() {
1525   tty->print_cr("C1 Runtime statistics:");
1526   tty->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1527   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1528   tty->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1529   tty->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1530   tty->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1531   tty->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1532   tty->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1533   tty->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1534   tty->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1535   tty->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1536   tty->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1537   tty->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1538   tty->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1539   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1540 
1541   tty->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1542   tty->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1543   tty->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1544   tty->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1545   tty->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1546   tty->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1547   tty->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1548 
1549   tty->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1550   tty->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1551   tty->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1552   tty->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1553   tty->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1554   tty->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1555   tty->print_cr(" _throw_count:                                  %u:", _throw_count);
1556 
1557   SharedRuntime::print_ic_miss_histogram();
1558   tty->cr();
1559 }
1560 #endif // PRODUCT