1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/codeBuffer.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/javaClasses.inline.hpp" 32 #include "classfile/vmClasses.hpp" 33 #include "classfile/vmSymbols.hpp" 34 #include "code/aotCodeCache.hpp" 35 #include "code/codeBlob.hpp" 36 #include "code/compiledIC.hpp" 37 #include "code/scopeDesc.hpp" 38 #include "code/vtableStubs.hpp" 39 #include "compiler/compilationPolicy.hpp" 40 #include "compiler/compilerDefinitions.inline.hpp" 41 #include "compiler/disassembler.hpp" 42 #include "compiler/oopMap.hpp" 43 #include "gc/shared/barrierSet.hpp" 44 #include "gc/shared/c1/barrierSetC1.hpp" 45 #include "gc/shared/collectedHeap.hpp" 46 #include "interpreter/bytecode.hpp" 47 #include "interpreter/interpreter.hpp" 48 #include "jfr/support/jfrIntrinsics.hpp" 49 #include "logging/log.hpp" 50 #include "memory/oopFactory.hpp" 51 #include "memory/resourceArea.hpp" 52 #include "memory/universe.hpp" 53 #include "oops/access.inline.hpp" 54 #include "oops/objArrayKlass.hpp" 55 #include "oops/objArrayOop.inline.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "runtime/atomic.hpp" 59 #include "runtime/fieldDescriptor.inline.hpp" 60 #include "runtime/frame.inline.hpp" 61 #include "runtime/handles.inline.hpp" 62 #include "runtime/interfaceSupport.inline.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/perfData.inline.hpp" 65 #include "runtime/runtimeUpcalls.hpp" 66 #include "runtime/sharedRuntime.hpp" 67 #include "runtime/stackWatermarkSet.hpp" 68 #include "runtime/stubInfo.hpp" 69 #include "runtime/stubRoutines.hpp" 70 #include "runtime/vframe.inline.hpp" 71 #include "runtime/vframeArray.hpp" 72 #include "runtime/vm_version.hpp" 73 #include "services/management.hpp" 74 #include "utilities/copy.hpp" 75 #include "utilities/events.hpp" 76 77 78 // Implementation of StubAssembler 79 80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 81 _name = name; 82 _must_gc_arguments = false; 83 _frame_size = no_frame_size; 84 _num_rt_args = 0; 85 _stub_id = stub_id; 86 } 87 88 89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 90 _name = name; 91 _must_gc_arguments = must_gc_arguments; 92 } 93 94 95 void StubAssembler::set_frame_size(int size) { 96 if (_frame_size == no_frame_size) { 97 _frame_size = size; 98 } 99 assert(_frame_size == size, "can't change the frame size"); 100 } 101 102 103 void StubAssembler::set_num_rt_args(int args) { 104 if (_num_rt_args == 0) { 105 _num_rt_args = args; 106 } 107 assert(_num_rt_args == args, "can't change the number of args"); 108 } 109 110 // Implementation of Runtime1 111 CodeBlob* Runtime1::_blobs[StubInfo::C1_STUB_COUNT]; 112 113 #ifndef PRODUCT 114 // statistics 115 uint Runtime1::_generic_arraycopystub_cnt = 0; 116 uint Runtime1::_arraycopy_slowcase_cnt = 0; 117 uint Runtime1::_arraycopy_checkcast_cnt = 0; 118 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 119 uint Runtime1::_new_type_array_slowcase_cnt = 0; 120 uint Runtime1::_new_object_array_slowcase_cnt = 0; 121 uint Runtime1::_new_instance_slowcase_cnt = 0; 122 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 123 uint Runtime1::_monitorenter_slowcase_cnt = 0; 124 uint Runtime1::_monitorexit_slowcase_cnt = 0; 125 uint Runtime1::_patch_code_slowcase_cnt = 0; 126 uint Runtime1::_throw_range_check_exception_count = 0; 127 uint Runtime1::_throw_index_exception_count = 0; 128 uint Runtime1::_throw_div0_exception_count = 0; 129 uint Runtime1::_throw_null_pointer_exception_count = 0; 130 uint Runtime1::_throw_class_cast_exception_count = 0; 131 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 132 uint Runtime1::_throw_count = 0; 133 134 static uint _byte_arraycopy_stub_cnt = 0; 135 static uint _short_arraycopy_stub_cnt = 0; 136 static uint _int_arraycopy_stub_cnt = 0; 137 static uint _long_arraycopy_stub_cnt = 0; 138 static uint _oop_arraycopy_stub_cnt = 0; 139 140 address Runtime1::arraycopy_count_address(BasicType type) { 141 switch (type) { 142 case T_BOOLEAN: 143 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 144 case T_CHAR: 145 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 146 case T_FLOAT: 147 case T_INT: return (address)&_int_arraycopy_stub_cnt; 148 case T_DOUBLE: 149 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 150 case T_ARRAY: 151 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 152 default: 153 ShouldNotReachHere(); 154 return nullptr; 155 } 156 } 157 158 159 #endif 160 161 // Simple helper to see if the caller of a runtime stub which 162 // entered the VM has been deoptimized 163 164 static bool caller_is_deopted(JavaThread* current) { 165 RegisterMap reg_map(current, 166 RegisterMap::UpdateMap::skip, 167 RegisterMap::ProcessFrames::include, 168 RegisterMap::WalkContinuation::skip); 169 frame runtime_frame = current->last_frame(); 170 frame caller_frame = runtime_frame.sender(®_map); 171 assert(caller_frame.is_compiled_frame(), "must be compiled"); 172 return caller_frame.is_deoptimized_frame(); 173 } 174 175 // Stress deoptimization 176 static void deopt_caller(JavaThread* current) { 177 if (!caller_is_deopted(current)) { 178 RegisterMap reg_map(current, 179 RegisterMap::UpdateMap::skip, 180 RegisterMap::ProcessFrames::include, 181 RegisterMap::WalkContinuation::skip); 182 frame runtime_frame = current->last_frame(); 183 frame caller_frame = runtime_frame.sender(®_map); 184 Deoptimization::deoptimize_frame(current, caller_frame.id()); 185 assert(caller_is_deopted(current), "Must be deoptimized"); 186 } 187 } 188 189 class C1StubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 190 private: 191 StubId _id; 192 public: 193 C1StubAssemblerCodeGenClosure(StubId id) : _id(id) { 194 assert(StubInfo::is_c1(_id), "not a c1 stub id %s", StubInfo::name(_id)); 195 } 196 virtual OopMapSet* generate_code(StubAssembler* sasm) { 197 return Runtime1::generate_code_for(_id, sasm); 198 } 199 }; 200 201 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 202 if (id != StubId::NO_STUBID) { 203 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, StubInfo::blob(id)); 204 if (blob != nullptr) { 205 return blob; 206 } 207 } 208 209 ResourceMark rm; 210 // create code buffer for code storage 211 CodeBuffer code(buffer_blob); 212 213 OopMapSet* oop_maps; 214 int frame_size; 215 bool must_gc_arguments; 216 217 Compilation::setup_code_buffer(&code, 0); 218 219 // create assembler for code generation 220 StubAssembler* sasm = new StubAssembler(&code, name, (int)id); 221 // generate code for runtime stub 222 oop_maps = cl->generate_code(sasm); 223 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 224 "if stub has an oop map it must have a valid frame size"); 225 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 226 227 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 228 sasm->align(BytesPerWord); 229 // make sure all code is in code buffer 230 sasm->flush(); 231 232 frame_size = sasm->frame_size(); 233 must_gc_arguments = sasm->must_gc_arguments(); 234 // create blob - distinguish a few special cases 235 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 236 &code, 237 CodeOffsets::frame_never_safe, 238 frame_size, 239 oop_maps, 240 must_gc_arguments, 241 false /* alloc_fail_is_fatal */ ); 242 if (blob != nullptr && (int)id >= 0) { 243 AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, StubInfo::blob(id)); 244 } 245 return blob; 246 } 247 248 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubId id) { 249 assert(StubInfo::is_c1(id), "not a c1 stub %s", StubInfo::name(id)); 250 bool expect_oop_map = true; 251 #ifdef ASSERT 252 // Make sure that stubs that need oopmaps have them 253 switch (id) { 254 // These stubs don't need to have an oopmap 255 case StubId::c1_dtrace_object_alloc_id: 256 case StubId::c1_slow_subtype_check_id: 257 case StubId::c1_fpu2long_stub_id: 258 case StubId::c1_unwind_exception_id: 259 case StubId::c1_counter_overflow_id: 260 case StubId::c1_is_instance_of_id: 261 expect_oop_map = false; 262 break; 263 default: 264 break; 265 } 266 #endif 267 C1StubAssemblerCodeGenClosure cl(id); 268 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 269 // install blob 270 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id 271 _blobs[idx] = blob; 272 return blob != nullptr; 273 } 274 275 bool Runtime1::initialize(BufferBlob* blob) { 276 init_counters(); 277 // platform-dependent initialization 278 initialize_pd(); 279 // iterate blobs in C1 group and generate a single stub per blob 280 StubId id = StubInfo::stub_base(StubGroup::C1); 281 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1)); 282 for (; id != limit; id = StubInfo::next(id)) { 283 if (!generate_blob_for(blob, id)) { 284 return false; 285 } 286 if (id == StubId::c1_forward_exception_id) { 287 // publish early c1 stubs at this point so later stubs can refer to them 288 AOTCodeCache::init_early_c1_table(); 289 } 290 } 291 // printing 292 #ifndef PRODUCT 293 if (PrintSimpleStubs) { 294 ResourceMark rm; 295 id = StubInfo::stub_base(StubGroup::C1); 296 for (; id != limit; id = StubInfo::next(id)) { 297 CodeBlob* blob = blob_for(id); 298 blob->print(); 299 if (blob->oop_maps() != nullptr) { 300 blob->oop_maps()->print(); 301 } 302 } 303 } 304 #endif 305 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 306 return bs->generate_c1_runtime_stubs(blob); 307 } 308 309 CodeBlob* Runtime1::blob_for(StubId id) { 310 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id 311 return _blobs[idx]; 312 } 313 314 315 const char* Runtime1::name_for(StubId id) { 316 return StubInfo::name(id); 317 } 318 319 const char* Runtime1::name_for_address(address entry) { 320 // iterate stubs starting from C1 group base 321 StubId id = StubInfo::stub_base(StubGroup::C1); 322 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1)); 323 for (; id != limit; id = StubInfo::next(id)) { 324 if (entry == entry_for(id)) return StubInfo::name(id); 325 } 326 327 #define FUNCTION_CASE(a, f) \ 328 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 329 330 FUNCTION_CASE(entry, os::javaTimeMillis); 331 FUNCTION_CASE(entry, os::javaTimeNanos); 332 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 333 FUNCTION_CASE(entry, SharedRuntime::d2f); 334 FUNCTION_CASE(entry, SharedRuntime::d2i); 335 FUNCTION_CASE(entry, SharedRuntime::d2l); 336 FUNCTION_CASE(entry, SharedRuntime::dcos); 337 FUNCTION_CASE(entry, SharedRuntime::dexp); 338 FUNCTION_CASE(entry, SharedRuntime::dlog); 339 FUNCTION_CASE(entry, SharedRuntime::dlog10); 340 FUNCTION_CASE(entry, SharedRuntime::dpow); 341 FUNCTION_CASE(entry, SharedRuntime::drem); 342 FUNCTION_CASE(entry, SharedRuntime::dsin); 343 FUNCTION_CASE(entry, SharedRuntime::dtan); 344 FUNCTION_CASE(entry, SharedRuntime::f2i); 345 FUNCTION_CASE(entry, SharedRuntime::f2l); 346 FUNCTION_CASE(entry, SharedRuntime::frem); 347 FUNCTION_CASE(entry, SharedRuntime::l2d); 348 FUNCTION_CASE(entry, SharedRuntime::l2f); 349 FUNCTION_CASE(entry, SharedRuntime::ldiv); 350 FUNCTION_CASE(entry, SharedRuntime::lmul); 351 FUNCTION_CASE(entry, SharedRuntime::lrem); 352 FUNCTION_CASE(entry, SharedRuntime::lrem); 353 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 354 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 355 FUNCTION_CASE(entry, is_instance_of); 356 FUNCTION_CASE(entry, trace_block_entry); 357 #ifdef JFR_HAVE_INTRINSICS 358 FUNCTION_CASE(entry, JfrTime::time_function()); 359 #endif 360 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 361 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 362 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 363 FUNCTION_CASE(entry, StubRoutines::dexp()); 364 FUNCTION_CASE(entry, StubRoutines::dlog()); 365 FUNCTION_CASE(entry, StubRoutines::dlog10()); 366 FUNCTION_CASE(entry, StubRoutines::dpow()); 367 FUNCTION_CASE(entry, StubRoutines::dsin()); 368 FUNCTION_CASE(entry, StubRoutines::dcos()); 369 FUNCTION_CASE(entry, StubRoutines::dtan()); 370 FUNCTION_CASE(entry, StubRoutines::dsinh()); 371 FUNCTION_CASE(entry, StubRoutines::dtanh()); 372 FUNCTION_CASE(entry, StubRoutines::dcbrt()); 373 374 #undef FUNCTION_CASE 375 376 // Runtime upcalls also has a map of addresses to names 377 const char* upcall_name = RuntimeUpcalls::get_name_for_upcall_address(entry); 378 if (upcall_name != nullptr) { 379 return upcall_name; 380 } 381 382 // Soft float adds more runtime names. 383 return pd_name_for_address(entry); 384 } 385 386 387 JRT_ENTRY_PROF(void, Runtime1, new_instance, Runtime1::new_instance(JavaThread* current, Klass* klass)) 388 #ifndef PRODUCT 389 if (PrintC1Statistics) { 390 _new_instance_slowcase_cnt++; 391 } 392 #endif 393 assert(klass->is_klass(), "not a class"); 394 Handle holder(current, klass->klass_holder()); // keep the klass alive 395 InstanceKlass* h = InstanceKlass::cast(klass); 396 h->check_valid_for_instantiation(true, CHECK); 397 // make sure klass is initialized 398 h->initialize(CHECK); 399 // allocate instance and return via TLS 400 oop obj = h->allocate_instance(CHECK); 401 current->set_vm_result_oop(obj); 402 JRT_END 403 404 405 JRT_ENTRY_PROF(void, Runtime1, new_type_array, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 406 #ifndef PRODUCT 407 if (PrintC1Statistics) { 408 _new_type_array_slowcase_cnt++; 409 } 410 #endif 411 // Note: no handle for klass needed since they are not used 412 // anymore after new_typeArray() and no GC can happen before. 413 // (This may have to change if this code changes!) 414 assert(klass->is_klass(), "not a class"); 415 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 416 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 417 current->set_vm_result_oop(obj); 418 // This is pretty rare but this runtime patch is stressful to deoptimization 419 // if we deoptimize here so force a deopt to stress the path. 420 if (DeoptimizeALot) { 421 deopt_caller(current); 422 } 423 424 JRT_END 425 426 427 JRT_ENTRY_PROF(void, Runtime1, new_object_array, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 428 #ifndef PRODUCT 429 if (PrintC1Statistics) { 430 _new_object_array_slowcase_cnt++; 431 } 432 #endif 433 // Note: no handle for klass needed since they are not used 434 // anymore after new_objArray() and no GC can happen before. 435 // (This may have to change if this code changes!) 436 assert(array_klass->is_klass(), "not a class"); 437 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 438 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 439 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 440 current->set_vm_result_oop(obj); 441 // This is pretty rare but this runtime patch is stressful to deoptimization 442 // if we deoptimize here so force a deopt to stress the path. 443 if (DeoptimizeALot) { 444 deopt_caller(current); 445 } 446 JRT_END 447 448 449 JRT_ENTRY_PROF(void, Runtime1, new_multi_array, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 450 #ifndef PRODUCT 451 if (PrintC1Statistics) { 452 _new_multi_array_slowcase_cnt++; 453 } 454 #endif 455 assert(klass->is_klass(), "not a class"); 456 assert(rank >= 1, "rank must be nonzero"); 457 Handle holder(current, klass->klass_holder()); // keep the klass alive 458 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 459 current->set_vm_result_oop(obj); 460 JRT_END 461 462 463 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubId id)) 464 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id); 465 JRT_END 466 467 468 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 469 ResourceMark rm(current); 470 const char* klass_name = obj->klass()->external_name(); 471 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 472 JRT_END 473 474 475 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 476 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 477 // method) method is passed as an argument. In order to do that it is embedded in the code as 478 // a constant. 479 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 480 nmethod* osr_nm = nullptr; 481 methodHandle method(current, m); 482 483 RegisterMap map(current, 484 RegisterMap::UpdateMap::skip, 485 RegisterMap::ProcessFrames::include, 486 RegisterMap::WalkContinuation::skip); 487 frame fr = current->last_frame().sender(&map); 488 nmethod* nm = (nmethod*) fr.cb(); 489 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 490 methodHandle enclosing_method(current, nm->method()); 491 492 CompLevel level = (CompLevel)nm->comp_level(); 493 int bci = InvocationEntryBci; 494 if (branch_bci != InvocationEntryBci) { 495 // Compute destination bci 496 address pc = method()->code_base() + branch_bci; 497 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 498 int offset = 0; 499 switch (branch) { 500 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 501 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 502 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 503 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 504 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 505 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 506 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 507 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 508 break; 509 case Bytecodes::_goto_w: 510 offset = Bytes::get_Java_u4(pc + 1); 511 break; 512 default: ; 513 } 514 bci = branch_bci + offset; 515 } 516 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 517 return osr_nm; 518 } 519 520 JRT_BLOCK_ENTRY_PROF(address, Runtime1, counter_overflow, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 521 nmethod* osr_nm; 522 JRT_BLOCK_NO_ASYNC 523 osr_nm = counter_overflow_helper(current, bci, method); 524 if (osr_nm != nullptr) { 525 RegisterMap map(current, 526 RegisterMap::UpdateMap::skip, 527 RegisterMap::ProcessFrames::include, 528 RegisterMap::WalkContinuation::skip); 529 frame fr = current->last_frame().sender(&map); 530 Deoptimization::deoptimize_frame(current, fr.id()); 531 } 532 JRT_BLOCK_END 533 return nullptr; 534 JRT_END 535 536 extern void vm_exit(int code); 537 538 // Enter this method from compiled code handler below. This is where we transition 539 // to VM mode. This is done as a helper routine so that the method called directly 540 // from compiled code does not have to transition to VM. This allows the entry 541 // method to see if the nmethod that we have just looked up a handler for has 542 // been deoptimized while we were in the vm. This simplifies the assembly code 543 // cpu directories. 544 // 545 // We are entering here from exception stub (via the entry method below) 546 // If there is a compiled exception handler in this method, we will continue there; 547 // otherwise we will unwind the stack and continue at the caller of top frame method 548 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 549 // control the area where we can allow a safepoint. After we exit the safepoint area we can 550 // check to see if the handler we are going to return is now in a nmethod that has 551 // been deoptimized. If that is the case we return the deopt blob 552 // unpack_with_exception entry instead. This makes life for the exception blob easier 553 // because making that same check and diverting is painful from assembly language. 554 JRT_ENTRY_NO_ASYNC_PROF(static address, Runtime1, exception_handler_for_pc_helper, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 555 // Reset method handle flag. 556 current->set_is_method_handle_return(false); 557 558 Handle exception(current, ex); 559 560 // This function is called when we are about to throw an exception. Therefore, 561 // we have to poll the stack watermark barrier to make sure that not yet safe 562 // stack frames are made safe before returning into them. 563 if (current->last_frame().cb() == Runtime1::blob_for(StubId::c1_handle_exception_from_callee_id)) { 564 // The StubId::c1_handle_exception_from_callee_id handler is invoked after the 565 // frame has been unwound. It instead builds its own stub frame, to call the 566 // runtime. But the throwing frame has already been unwound here. 567 StackWatermarkSet::after_unwind(current); 568 } 569 570 nm = CodeCache::find_nmethod(pc); 571 assert(nm != nullptr, "this is not an nmethod"); 572 // Adjust the pc as needed/ 573 if (nm->is_deopt_pc(pc)) { 574 RegisterMap map(current, 575 RegisterMap::UpdateMap::skip, 576 RegisterMap::ProcessFrames::include, 577 RegisterMap::WalkContinuation::skip); 578 frame exception_frame = current->last_frame().sender(&map); 579 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 580 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 581 pc = exception_frame.pc(); 582 } 583 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 584 // Check that exception is a subclass of Throwable 585 assert(exception->is_a(vmClasses::Throwable_klass()), 586 "Exception not subclass of Throwable"); 587 588 // debugging support 589 // tracing 590 if (log_is_enabled(Info, exceptions)) { 591 ResourceMark rm; // print_value_string 592 stringStream tempst; 593 assert(nm->method() != nullptr, "Unexpected null method()"); 594 tempst.print("C1 compiled method <%s>\n" 595 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 596 nm->method()->print_value_string(), p2i(pc), p2i(current)); 597 Exceptions::log_exception(exception, tempst.freeze()); 598 } 599 // for AbortVMOnException flag 600 Exceptions::debug_check_abort(exception); 601 602 // Check the stack guard pages and re-enable them if necessary and there is 603 // enough space on the stack to do so. Use fast exceptions only if the guard 604 // pages are enabled. 605 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 606 607 if (JvmtiExport::can_post_on_exceptions()) { 608 // To ensure correct notification of exception catches and throws 609 // we have to deoptimize here. If we attempted to notify the 610 // catches and throws during this exception lookup it's possible 611 // we could deoptimize on the way out of the VM and end back in 612 // the interpreter at the throw site. This would result in double 613 // notifications since the interpreter would also notify about 614 // these same catches and throws as it unwound the frame. 615 616 RegisterMap reg_map(current, 617 RegisterMap::UpdateMap::include, 618 RegisterMap::ProcessFrames::include, 619 RegisterMap::WalkContinuation::skip); 620 frame stub_frame = current->last_frame(); 621 frame caller_frame = stub_frame.sender(®_map); 622 623 // We don't really want to deoptimize the nmethod itself since we 624 // can actually continue in the exception handler ourselves but I 625 // don't see an easy way to have the desired effect. 626 Deoptimization::deoptimize_frame(current, caller_frame.id()); 627 assert(caller_is_deopted(current), "Must be deoptimized"); 628 629 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 630 } 631 632 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 633 if (guard_pages_enabled) { 634 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 635 if (fast_continuation != nullptr) { 636 // Set flag if return address is a method handle call site. 637 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 638 return fast_continuation; 639 } 640 } 641 642 // If the stack guard pages are enabled, check whether there is a handler in 643 // the current method. Otherwise (guard pages disabled), force an unwind and 644 // skip the exception cache update (i.e., just leave continuation as null). 645 address continuation = nullptr; 646 if (guard_pages_enabled) { 647 648 // New exception handling mechanism can support inlined methods 649 // with exception handlers since the mappings are from PC to PC 650 651 // Clear out the exception oop and pc since looking up an 652 // exception handler can cause class loading, which might throw an 653 // exception and those fields are expected to be clear during 654 // normal bytecode execution. 655 current->clear_exception_oop_and_pc(); 656 657 bool recursive_exception = false; 658 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 659 // If an exception was thrown during exception dispatch, the exception oop may have changed 660 current->set_exception_oop(exception()); 661 current->set_exception_pc(pc); 662 663 // the exception cache is used only by non-implicit exceptions 664 // Update the exception cache only when there didn't happen 665 // another exception during the computation of the compiled 666 // exception handler. Checking for exception oop equality is not 667 // sufficient because some exceptions are pre-allocated and reused. 668 if (continuation != nullptr && !recursive_exception) { 669 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 670 } 671 } 672 673 current->set_vm_result_oop(exception()); 674 // Set flag if return address is a method handle call site. 675 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 676 677 if (log_is_enabled(Info, exceptions)) { 678 ResourceMark rm; 679 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 680 " for exception thrown at PC " PTR_FORMAT, 681 p2i(current), p2i(continuation), p2i(pc)); 682 } 683 684 return continuation; 685 JRT_END 686 687 // Enter this method from compiled code only if there is a Java exception handler 688 // in the method handling the exception. 689 // We are entering here from exception stub. We don't do a normal VM transition here. 690 // We do it in a helper. This is so we can check to see if the nmethod we have just 691 // searched for an exception handler has been deoptimized in the meantime. 692 address Runtime1::exception_handler_for_pc(JavaThread* current) { 693 oop exception = current->exception_oop(); 694 address pc = current->exception_pc(); 695 // Still in Java mode 696 DEBUG_ONLY(NoHandleMark nhm); 697 nmethod* nm = nullptr; 698 address continuation = nullptr; 699 { 700 // Enter VM mode by calling the helper 701 ResetNoHandleMark rnhm; 702 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 703 } 704 // Back in JAVA, use no oops DON'T safepoint 705 706 // Now check to see if the nmethod we were called from is now deoptimized. 707 // If so we must return to the deopt blob and deoptimize the nmethod 708 if (nm != nullptr && caller_is_deopted(current)) { 709 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 710 } 711 712 assert(continuation != nullptr, "no handler found"); 713 return continuation; 714 } 715 716 717 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 718 #ifndef PRODUCT 719 if (PrintC1Statistics) { 720 _throw_range_check_exception_count++; 721 } 722 #endif 723 const int len = 35; 724 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 725 char message[2 * jintAsStringSize + len]; 726 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 727 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 728 JRT_END 729 730 731 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 732 #ifndef PRODUCT 733 if (PrintC1Statistics) { 734 _throw_index_exception_count++; 735 } 736 #endif 737 char message[16]; 738 os::snprintf_checked(message, sizeof(message), "%d", index); 739 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 740 JRT_END 741 742 743 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 744 #ifndef PRODUCT 745 if (PrintC1Statistics) { 746 _throw_div0_exception_count++; 747 } 748 #endif 749 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 750 JRT_END 751 752 753 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 754 #ifndef PRODUCT 755 if (PrintC1Statistics) { 756 _throw_null_pointer_exception_count++; 757 } 758 #endif 759 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 760 JRT_END 761 762 763 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 764 #ifndef PRODUCT 765 if (PrintC1Statistics) { 766 _throw_class_cast_exception_count++; 767 } 768 #endif 769 ResourceMark rm(current); 770 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 771 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 772 JRT_END 773 774 775 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 776 #ifndef PRODUCT 777 if (PrintC1Statistics) { 778 _throw_incompatible_class_change_error_count++; 779 } 780 #endif 781 ResourceMark rm(current); 782 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 783 JRT_END 784 785 786 JRT_BLOCK_ENTRY_PROF(void, Runtime1, monitorenter, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 787 #ifndef PRODUCT 788 if (PrintC1Statistics) { 789 _monitorenter_slowcase_cnt++; 790 } 791 #endif 792 if (LockingMode == LM_MONITOR) { 793 lock->set_obj(obj); 794 } 795 assert(obj == lock->obj(), "must match"); 796 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 797 JRT_END 798 799 800 JRT_LEAF_PROF(void, Runtime1, monitorexit, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 801 assert(current == JavaThread::current(), "pre-condition"); 802 #ifndef PRODUCT 803 if (PrintC1Statistics) { 804 _monitorexit_slowcase_cnt++; 805 } 806 #endif 807 assert(current->last_Java_sp(), "last_Java_sp must be set"); 808 oop obj = lock->obj(); 809 assert(oopDesc::is_oop(obj), "must be null or an object"); 810 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 811 JRT_END 812 813 // Cf. OptoRuntime::deoptimize_caller_frame 814 JRT_ENTRY_PROF(void, Runtime1, deoptimize, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 815 // Called from within the owner thread, so no need for safepoint 816 RegisterMap reg_map(current, 817 RegisterMap::UpdateMap::skip, 818 RegisterMap::ProcessFrames::include, 819 RegisterMap::WalkContinuation::skip); 820 frame stub_frame = current->last_frame(); 821 assert(stub_frame.is_runtime_frame(), "Sanity check"); 822 frame caller_frame = stub_frame.sender(®_map); 823 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 824 assert(nm != nullptr, "Sanity check"); 825 methodHandle method(current, nm->method()); 826 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 827 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 828 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 829 830 if (action == Deoptimization::Action_make_not_entrant) { 831 if (nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE)) { 832 if (reason == Deoptimization::Reason_tenured) { 833 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 834 if (trap_mdo != nullptr) { 835 trap_mdo->inc_tenure_traps(); 836 } 837 } 838 } 839 } 840 841 // Deoptimize the caller frame. 842 Deoptimization::deoptimize_frame(current, caller_frame.id()); 843 // Return to the now deoptimized frame. 844 JRT_END 845 846 847 #ifndef DEOPTIMIZE_WHEN_PATCHING 848 849 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 850 Bytecode_field field_access(caller, bci); 851 // This can be static or non-static field access 852 Bytecodes::Code code = field_access.code(); 853 854 // We must load class, initialize class and resolve the field 855 fieldDescriptor result; // initialize class if needed 856 constantPoolHandle constants(THREAD, caller->constants()); 857 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, 858 Bytecodes::java_code(code), true /*initialize_class*/, CHECK_NULL); 859 return result.field_holder(); 860 } 861 862 863 // 864 // This routine patches sites where a class wasn't loaded or 865 // initialized at the time the code was generated. It handles 866 // references to classes, fields and forcing of initialization. Most 867 // of the cases are straightforward and involving simply forcing 868 // resolution of a class, rewriting the instruction stream with the 869 // needed constant and replacing the call in this function with the 870 // patched code. The case for static field is more complicated since 871 // the thread which is in the process of initializing a class can 872 // access it's static fields but other threads can't so the code 873 // either has to deoptimize when this case is detected or execute a 874 // check that the current thread is the initializing thread. The 875 // current 876 // 877 // Patches basically look like this: 878 // 879 // 880 // patch_site: jmp patch stub ;; will be patched 881 // continue: ... 882 // ... 883 // ... 884 // ... 885 // 886 // They have a stub which looks like this: 887 // 888 // ;; patch body 889 // movl <const>, reg (for class constants) 890 // <or> movl [reg1 + <const>], reg (for field offsets) 891 // <or> movl reg, [reg1 + <const>] (for field offsets) 892 // <being_init offset> <bytes to copy> <bytes to skip> 893 // patch_stub: call Runtime1::patch_code (through a runtime stub) 894 // jmp patch_site 895 // 896 // 897 // A normal patch is done by rewriting the patch body, usually a move, 898 // and then copying it into place over top of the jmp instruction 899 // being careful to flush caches and doing it in an MP-safe way. The 900 // constants following the patch body are used to find various pieces 901 // of the patch relative to the call site for Runtime1::patch_code. 902 // The case for getstatic and putstatic is more complicated because 903 // getstatic and putstatic have special semantics when executing while 904 // the class is being initialized. getstatic/putstatic on a class 905 // which is being_initialized may be executed by the initializing 906 // thread but other threads have to block when they execute it. This 907 // is accomplished in compiled code by executing a test of the current 908 // thread against the initializing thread of the class. It's emitted 909 // as boilerplate in their stub which allows the patched code to be 910 // executed before it's copied back into the main body of the nmethod. 911 // 912 // being_init: get_thread(<tmp reg> 913 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 914 // jne patch_stub 915 // movl [reg1 + <const>], reg (for field offsets) <or> 916 // movl reg, [reg1 + <const>] (for field offsets) 917 // jmp continue 918 // <being_init offset> <bytes to copy> <bytes to skip> 919 // patch_stub: jmp Runtime1::patch_code (through a runtime stub) 920 // jmp patch_site 921 // 922 // If the class is being initialized the patch body is rewritten and 923 // the patch site is rewritten to jump to being_init, instead of 924 // patch_stub. Whenever this code is executed it checks the current 925 // thread against the initializing thread so other threads will enter 926 // the runtime and end up blocked waiting the class to finish 927 // initializing inside the calls to resolve_field below. The 928 // initializing class will continue on it's way. Once the class is 929 // fully_initialized, the intializing_thread of the class becomes 930 // null, so the next thread to execute this code will fail the test, 931 // call into patch_code and complete the patching process by copying 932 // the patch body back into the main part of the nmethod and resume 933 // executing. 934 935 // NB: 936 // 937 // Patchable instruction sequences inherently exhibit race conditions, 938 // where thread A is patching an instruction at the same time thread B 939 // is executing it. The algorithms we use ensure that any observation 940 // that B can make on any intermediate states during A's patching will 941 // always end up with a correct outcome. This is easiest if there are 942 // few or no intermediate states. (Some inline caches have two 943 // related instructions that must be patched in tandem. For those, 944 // intermediate states seem to be unavoidable, but we will get the 945 // right answer from all possible observation orders.) 946 // 947 // When patching the entry instruction at the head of a method, or a 948 // linkable call instruction inside of a method, we try very hard to 949 // use a patch sequence which executes as a single memory transaction. 950 // This means, in practice, that when thread A patches an instruction, 951 // it should patch a 32-bit or 64-bit word that somehow overlaps the 952 // instruction or is contained in it. We believe that memory hardware 953 // will never break up such a word write, if it is naturally aligned 954 // for the word being written. We also know that some CPUs work very 955 // hard to create atomic updates even of naturally unaligned words, 956 // but we don't want to bet the farm on this always working. 957 // 958 // Therefore, if there is any chance of a race condition, we try to 959 // patch only naturally aligned words, as single, full-word writes. 960 961 JRT_ENTRY_PROF(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, StubId stub_id)) 962 #ifndef PRODUCT 963 if (PrintC1Statistics) { 964 _patch_code_slowcase_cnt++; 965 } 966 #endif 967 968 ResourceMark rm(current); 969 RegisterMap reg_map(current, 970 RegisterMap::UpdateMap::skip, 971 RegisterMap::ProcessFrames::include, 972 RegisterMap::WalkContinuation::skip); 973 frame runtime_frame = current->last_frame(); 974 frame caller_frame = runtime_frame.sender(®_map); 975 976 // last java frame on stack 977 vframeStream vfst(current, true); 978 assert(!vfst.at_end(), "Java frame must exist"); 979 980 methodHandle caller_method(current, vfst.method()); 981 // Note that caller_method->code() may not be same as caller_code because of OSR's 982 // Note also that in the presence of inlining it is not guaranteed 983 // that caller_method() == caller_code->method() 984 985 int bci = vfst.bci(); 986 Bytecodes::Code code = caller_method()->java_code_at(bci); 987 988 // this is used by assertions in the access_field_patching_id 989 BasicType patch_field_type = T_ILLEGAL; 990 bool deoptimize_for_volatile = false; 991 bool deoptimize_for_atomic = false; 992 int patch_field_offset = -1; 993 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 994 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 995 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 996 Handle appendix(current, nullptr); // oop needed by appendix_patching code 997 bool load_klass_or_mirror_patch_id = 998 (stub_id == StubId::c1_load_klass_patching_id || stub_id == StubId::c1_load_mirror_patching_id); 999 1000 if (stub_id == StubId::c1_access_field_patching_id) { 1001 1002 Bytecode_field field_access(caller_method, bci); 1003 fieldDescriptor result; // initialize class if needed 1004 Bytecodes::Code code = field_access.code(); 1005 constantPoolHandle constants(current, caller_method->constants()); 1006 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, 1007 Bytecodes::java_code(code), true /*initialize_class*/, CHECK); 1008 patch_field_offset = result.offset(); 1009 1010 // If we're patching a field which is volatile then at compile it 1011 // must not have been know to be volatile, so the generated code 1012 // isn't correct for a volatile reference. The nmethod has to be 1013 // deoptimized so that the code can be regenerated correctly. 1014 // This check is only needed for access_field_patching since this 1015 // is the path for patching field offsets. load_klass is only 1016 // used for patching references to oops which don't need special 1017 // handling in the volatile case. 1018 1019 deoptimize_for_volatile = result.access_flags().is_volatile(); 1020 1021 // If we are patching a field which should be atomic, then 1022 // the generated code is not correct either, force deoptimizing. 1023 // We need to only cover T_LONG and T_DOUBLE fields, as we can 1024 // break access atomicity only for them. 1025 1026 // Strictly speaking, the deoptimization on 64-bit platforms 1027 // is unnecessary, and T_LONG stores on 32-bit platforms need 1028 // to be handled by special patching code when AlwaysAtomicAccesses 1029 // becomes product feature. At this point, we are still going 1030 // for the deoptimization for consistency against volatile 1031 // accesses. 1032 1033 patch_field_type = result.field_type(); 1034 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 1035 1036 } else if (load_klass_or_mirror_patch_id) { 1037 Klass* k = nullptr; 1038 switch (code) { 1039 case Bytecodes::_putstatic: 1040 case Bytecodes::_getstatic: 1041 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1042 init_klass = klass; 1043 mirror = Handle(current, klass->java_mirror()); 1044 } 1045 break; 1046 case Bytecodes::_new: 1047 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1048 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1049 } 1050 break; 1051 case Bytecodes::_multianewarray: 1052 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1053 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1054 } 1055 break; 1056 case Bytecodes::_instanceof: 1057 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1058 k = caller_method->constants()->klass_at(io.index(), CHECK); 1059 } 1060 break; 1061 case Bytecodes::_checkcast: 1062 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1063 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1064 } 1065 break; 1066 case Bytecodes::_anewarray: 1067 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1068 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1069 k = ek->array_klass(CHECK); 1070 } 1071 break; 1072 case Bytecodes::_ldc: 1073 case Bytecodes::_ldc_w: 1074 case Bytecodes::_ldc2_w: 1075 { 1076 Bytecode_loadconstant cc(caller_method, bci); 1077 oop m = cc.resolve_constant(CHECK); 1078 mirror = Handle(current, m); 1079 } 1080 break; 1081 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1082 } 1083 load_klass = k; 1084 } else if (stub_id == StubId::c1_load_appendix_patching_id) { 1085 Bytecode_invoke bytecode(caller_method, bci); 1086 Bytecodes::Code bc = bytecode.invoke_code(); 1087 1088 CallInfo info; 1089 constantPoolHandle pool(current, caller_method->constants()); 1090 int index = bytecode.index(); 1091 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1092 switch (bc) { 1093 case Bytecodes::_invokehandle: { 1094 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1095 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1096 break; 1097 } 1098 case Bytecodes::_invokedynamic: { 1099 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1100 break; 1101 } 1102 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1103 } 1104 } else { 1105 ShouldNotReachHere(); 1106 } 1107 1108 if (deoptimize_for_volatile || deoptimize_for_atomic) { 1109 // At compile time we assumed the field wasn't volatile/atomic but after 1110 // loading it turns out it was volatile/atomic so we have to throw the 1111 // compiled code out and let it be regenerated. 1112 if (TracePatching) { 1113 if (deoptimize_for_volatile) { 1114 tty->print_cr("Deoptimizing for patching volatile field reference"); 1115 } 1116 if (deoptimize_for_atomic) { 1117 tty->print_cr("Deoptimizing for patching atomic field reference"); 1118 } 1119 } 1120 1121 // It's possible the nmethod was invalidated in the last 1122 // safepoint, but if it's still alive then make it not_entrant. 1123 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1124 if (nm != nullptr) { 1125 nm->make_not_entrant(nmethod::InvalidationReason::C1_CODEPATCH); 1126 } 1127 1128 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1129 1130 // Return to the now deoptimized frame. 1131 } 1132 1133 // Now copy code back 1134 1135 { 1136 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1137 // 1138 // Deoptimization may have happened while we waited for the lock. 1139 // In that case we don't bother to do any patching we just return 1140 // and let the deopt happen 1141 if (!caller_is_deopted(current)) { 1142 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1143 address instr_pc = jump->jump_destination(); 1144 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1145 if (ni->is_jump() ) { 1146 // the jump has not been patched yet 1147 // The jump destination is slow case and therefore not part of the stubs 1148 // (stubs are only for StaticCalls) 1149 1150 // format of buffer 1151 // .... 1152 // instr byte 0 <-- copy_buff 1153 // instr byte 1 1154 // .. 1155 // instr byte n-1 1156 // n 1157 // .... <-- call destination 1158 1159 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1160 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1161 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1162 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1163 address copy_buff = stub_location - *byte_skip - *byte_count; 1164 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1165 if (TracePatching) { 1166 ttyLocker ttyl; 1167 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1168 p2i(instr_pc), (stub_id == StubId::c1_access_field_patching_id) ? "field" : "klass"); 1169 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1170 assert(caller_code != nullptr, "nmethod not found"); 1171 1172 // NOTE we use pc() not original_pc() because we already know they are 1173 // identical otherwise we'd have never entered this block of code 1174 1175 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1176 assert(map != nullptr, "null check"); 1177 map->print(); 1178 tty->cr(); 1179 1180 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1181 } 1182 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1183 bool do_patch = true; 1184 if (stub_id == StubId::c1_access_field_patching_id) { 1185 // The offset may not be correct if the class was not loaded at code generation time. 1186 // Set it now. 1187 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1188 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1189 assert(patch_field_offset >= 0, "illegal offset"); 1190 n_move->add_offset_in_bytes(patch_field_offset); 1191 } else if (load_klass_or_mirror_patch_id) { 1192 // If a getstatic or putstatic is referencing a klass which 1193 // isn't fully initialized, the patch body isn't copied into 1194 // place until initialization is complete. In this case the 1195 // patch site is setup so that any threads besides the 1196 // initializing thread are forced to come into the VM and 1197 // block. 1198 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1199 InstanceKlass::cast(init_klass)->is_initialized(); 1200 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1201 if (jump->jump_destination() == being_initialized_entry) { 1202 assert(do_patch == true, "initialization must be complete at this point"); 1203 } else { 1204 // patch the instruction <move reg, klass> 1205 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1206 1207 assert(n_copy->data() == 0 || 1208 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1209 "illegal init value"); 1210 if (stub_id == StubId::c1_load_klass_patching_id) { 1211 assert(load_klass != nullptr, "klass not set"); 1212 n_copy->set_data((intx) (load_klass)); 1213 } else { 1214 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1215 n_copy->set_data(cast_from_oop<intx>(mirror())); 1216 } 1217 1218 if (TracePatching) { 1219 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1220 } 1221 } 1222 } else if (stub_id == StubId::c1_load_appendix_patching_id) { 1223 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1224 assert(n_copy->data() == 0 || 1225 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1226 "illegal init value"); 1227 n_copy->set_data(cast_from_oop<intx>(appendix())); 1228 1229 if (TracePatching) { 1230 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1231 } 1232 } else { 1233 ShouldNotReachHere(); 1234 } 1235 1236 if (do_patch) { 1237 // replace instructions 1238 // first replace the tail, then the call 1239 #ifdef ARM 1240 if((load_klass_or_mirror_patch_id || 1241 stub_id == StubId::c1_load_appendix_patching_id) && 1242 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1243 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1244 address addr = nullptr; 1245 assert(nm != nullptr, "invalid nmethod_pc"); 1246 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1247 while (mds.next()) { 1248 if (mds.type() == relocInfo::oop_type) { 1249 assert(stub_id == StubId::c1_load_mirror_patching_id || 1250 stub_id == StubId::c1_load_appendix_patching_id, "wrong stub id"); 1251 oop_Relocation* r = mds.oop_reloc(); 1252 addr = (address)r->oop_addr(); 1253 break; 1254 } else if (mds.type() == relocInfo::metadata_type) { 1255 assert(stub_id == StubId::c1_load_klass_patching_id, "wrong stub id"); 1256 metadata_Relocation* r = mds.metadata_reloc(); 1257 addr = (address)r->metadata_addr(); 1258 break; 1259 } 1260 } 1261 assert(addr != nullptr, "metadata relocation must exist"); 1262 copy_buff -= *byte_count; 1263 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1264 n_copy2->set_pc_relative_offset(addr, instr_pc); 1265 } 1266 #endif 1267 1268 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1269 address ptr = copy_buff + i; 1270 int a_byte = (*ptr) & 0xFF; 1271 address dst = instr_pc + i; 1272 *(unsigned char*)dst = (unsigned char) a_byte; 1273 } 1274 ICache::invalidate_range(instr_pc, *byte_count); 1275 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1276 1277 if (load_klass_or_mirror_patch_id || 1278 stub_id == StubId::c1_load_appendix_patching_id) { 1279 relocInfo::relocType rtype = 1280 (stub_id == StubId::c1_load_klass_patching_id) ? 1281 relocInfo::metadata_type : 1282 relocInfo::oop_type; 1283 // update relocInfo to metadata 1284 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1285 assert(nm != nullptr, "invalid nmethod_pc"); 1286 1287 // The old patch site is now a move instruction so update 1288 // the reloc info so that it will get updated during 1289 // future GCs. 1290 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1291 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1292 relocInfo::none, rtype); 1293 } 1294 1295 } else { 1296 ICache::invalidate_range(copy_buff, *byte_count); 1297 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1298 } 1299 } 1300 } 1301 // If we are patching in a non-perm oop, make sure the nmethod 1302 // is on the right list. 1303 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1304 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1305 1306 // Since we've patched some oops in the nmethod, 1307 // (re)register it with the heap. 1308 Universe::heap()->register_nmethod(nm); 1309 } 1310 JRT_END 1311 1312 #else // DEOPTIMIZE_WHEN_PATCHING 1313 1314 static bool is_patching_needed(JavaThread* current, StubId stub_id) { 1315 if (stub_id == StubId::c1_load_klass_patching_id || 1316 stub_id == StubId::c1_load_mirror_patching_id) { 1317 // last java frame on stack 1318 vframeStream vfst(current, true); 1319 assert(!vfst.at_end(), "Java frame must exist"); 1320 1321 methodHandle caller_method(current, vfst.method()); 1322 int bci = vfst.bci(); 1323 Bytecodes::Code code = caller_method()->java_code_at(bci); 1324 1325 switch (code) { 1326 case Bytecodes::_new: 1327 case Bytecodes::_anewarray: 1328 case Bytecodes::_multianewarray: 1329 case Bytecodes::_instanceof: 1330 case Bytecodes::_checkcast: { 1331 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1332 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1333 if (tag.is_unresolved_klass_in_error()) { 1334 return false; // throws resolution error 1335 } 1336 break; 1337 } 1338 1339 default: break; 1340 } 1341 } 1342 return true; 1343 } 1344 1345 PROF_ENTRY(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, StubId stub_id)) 1346 #ifndef PRODUCT 1347 if (PrintC1Statistics) { 1348 _patch_code_slowcase_cnt++; 1349 } 1350 #endif 1351 1352 // Enable WXWrite: the function is called by c1 stub as a runtime function 1353 // (see another implementation above). 1354 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1355 1356 if (TracePatching) { 1357 tty->print_cr("Deoptimizing because patch is needed"); 1358 } 1359 1360 RegisterMap reg_map(current, 1361 RegisterMap::UpdateMap::skip, 1362 RegisterMap::ProcessFrames::include, 1363 RegisterMap::WalkContinuation::skip); 1364 1365 frame runtime_frame = current->last_frame(); 1366 frame caller_frame = runtime_frame.sender(®_map); 1367 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1368 1369 if (is_patching_needed(current, stub_id)) { 1370 // Make sure the nmethod is invalidated, i.e. made not entrant. 1371 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1372 if (nm != nullptr) { 1373 nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE_FOR_PATCHING); 1374 } 1375 } 1376 1377 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1378 // Return to the now deoptimized frame. 1379 postcond(caller_is_deopted(current)); 1380 PROF_END 1381 1382 #endif // DEOPTIMIZE_WHEN_PATCHING 1383 1384 // Entry point for compiled code. We want to patch a nmethod. 1385 // We don't do a normal VM transition here because we want to 1386 // know after the patching is complete and any safepoint(s) are taken 1387 // if the calling nmethod was deoptimized. We do this by calling a 1388 // helper method which does the normal VM transition and when it 1389 // completes we can check for deoptimization. This simplifies the 1390 // assembly code in the cpu directories. 1391 // 1392 int Runtime1::move_klass_patching(JavaThread* current) { 1393 // 1394 // NOTE: we are still in Java 1395 // 1396 DEBUG_ONLY(NoHandleMark nhm;) 1397 { 1398 // Enter VM mode 1399 ResetNoHandleMark rnhm; 1400 patch_code(current, StubId::c1_load_klass_patching_id); 1401 } 1402 // Back in JAVA, use no oops DON'T safepoint 1403 1404 // Return true if calling code is deoptimized 1405 1406 return caller_is_deopted(current); 1407 } 1408 1409 int Runtime1::move_mirror_patching(JavaThread* current) { 1410 // 1411 // NOTE: we are still in Java 1412 // 1413 DEBUG_ONLY(NoHandleMark nhm;) 1414 { 1415 // Enter VM mode 1416 ResetNoHandleMark rnhm; 1417 patch_code(current, StubId::c1_load_mirror_patching_id); 1418 } 1419 // Back in JAVA, use no oops DON'T safepoint 1420 1421 // Return true if calling code is deoptimized 1422 1423 return caller_is_deopted(current); 1424 } 1425 1426 int Runtime1::move_appendix_patching(JavaThread* current) { 1427 // 1428 // NOTE: we are still in Java 1429 // 1430 DEBUG_ONLY(NoHandleMark nhm;) 1431 { 1432 // Enter VM mode 1433 ResetNoHandleMark rnhm; 1434 patch_code(current, StubId::c1_load_appendix_patching_id); 1435 } 1436 // Back in JAVA, use no oops DON'T safepoint 1437 1438 // Return true if calling code is deoptimized 1439 1440 return caller_is_deopted(current); 1441 } 1442 1443 // Entry point for compiled code. We want to patch a nmethod. 1444 // We don't do a normal VM transition here because we want to 1445 // know after the patching is complete and any safepoint(s) are taken 1446 // if the calling nmethod was deoptimized. We do this by calling a 1447 // helper method which does the normal VM transition and when it 1448 // completes we can check for deoptimization. This simplifies the 1449 // assembly code in the cpu directories. 1450 // 1451 int Runtime1::access_field_patching(JavaThread* current) { 1452 // 1453 // NOTE: we are still in Java 1454 // 1455 // Handles created in this function will be deleted by the 1456 // HandleMarkCleaner in the transition to the VM. 1457 NoHandleMark nhm; 1458 { 1459 // Enter VM mode 1460 ResetNoHandleMark rnhm; 1461 patch_code(current, StubId::c1_access_field_patching_id); 1462 } 1463 // Back in JAVA, use no oops DON'T safepoint 1464 1465 // Return true if calling code is deoptimized 1466 1467 return caller_is_deopted(current); 1468 } 1469 1470 1471 JRT_LEAF_PROF_NO_THREAD(void, Runtime1, trace_block_entry, Runtime1::trace_block_entry(jint block_id)) 1472 // for now we just print out the block id 1473 tty->print("%d ", block_id); 1474 JRT_END 1475 1476 1477 JRT_LEAF_PROF_NO_THREAD(int, Runtime1, is_instance_of, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1478 // had to return int instead of bool, otherwise there may be a mismatch 1479 // between the C calling convention and the Java one. 1480 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1481 // JVM takes the whole %eax as the return value, which may misinterpret 1482 // the return value as a boolean true. 1483 1484 assert(mirror != nullptr, "should null-check on mirror before calling"); 1485 Klass* k = java_lang_Class::as_Klass(mirror); 1486 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1487 JRT_END 1488 1489 JRT_ENTRY_PROF(void, Runtime1, predicate_failed_trap, Runtime1::predicate_failed_trap(JavaThread* current)) 1490 ResourceMark rm; 1491 1492 RegisterMap reg_map(current, 1493 RegisterMap::UpdateMap::skip, 1494 RegisterMap::ProcessFrames::include, 1495 RegisterMap::WalkContinuation::skip); 1496 frame runtime_frame = current->last_frame(); 1497 frame caller_frame = runtime_frame.sender(®_map); 1498 1499 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1500 assert (nm != nullptr, "no more nmethod?"); 1501 nm->make_not_entrant(nmethod::InvalidationReason::C1_PREDICATE_FAILED_TRAP); 1502 1503 methodHandle m(current, nm->method()); 1504 MethodData* mdo = m->method_data(); 1505 1506 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1507 // Build an MDO. Ignore errors like OutOfMemory; 1508 // that simply means we won't have an MDO to update. 1509 Method::build_profiling_method_data(m, THREAD); 1510 if (HAS_PENDING_EXCEPTION) { 1511 // Only metaspace OOM is expected. No Java code executed. 1512 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1513 CLEAR_PENDING_EXCEPTION; 1514 } 1515 mdo = m->method_data(); 1516 } 1517 1518 if (mdo != nullptr) { 1519 mdo->inc_trap_count(Deoptimization::Reason_none); 1520 } 1521 1522 if (TracePredicateFailedTraps) { 1523 stringStream ss1, ss2; 1524 vframeStream vfst(current); 1525 Method* inlinee = vfst.method(); 1526 inlinee->print_short_name(&ss1); 1527 m->print_short_name(&ss2); 1528 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1529 } 1530 1531 1532 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1533 1534 JRT_END 1535 1536 // Check exception if AbortVMOnException flag set 1537 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1538 ResourceMark rm; 1539 const char* message = nullptr; 1540 if (ex->is_a(vmClasses::Throwable_klass())) { 1541 oop msg = java_lang_Throwable::message(ex); 1542 if (msg != nullptr) { 1543 message = java_lang_String::as_utf8_string(msg); 1544 } 1545 } 1546 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1547 JRT_END 1548 1549 #define DO_COUNTERS(macro) \ 1550 macro(Runtime1, new_instance) \ 1551 macro(Runtime1, new_type_array) \ 1552 macro(Runtime1, new_object_array) \ 1553 macro(Runtime1, new_multi_array) \ 1554 macro(Runtime1, counter_overflow) \ 1555 macro(Runtime1, exception_handler_for_pc_helper) \ 1556 macro(Runtime1, monitorenter) \ 1557 macro(Runtime1, monitorexit) \ 1558 macro(Runtime1, deoptimize) \ 1559 macro(Runtime1, is_instance_of) \ 1560 macro(Runtime1, predicate_failed_trap) \ 1561 macro(Runtime1, patch_code) 1562 1563 #define INIT_COUNTER(sub, name) \ 1564 NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \ 1565 NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count"); 1566 1567 void Runtime1::init_counters() { 1568 assert(CompilerConfig::is_c1_enabled(), ""); 1569 1570 if (UsePerfData) { 1571 EXCEPTION_MARK; 1572 1573 DO_COUNTERS(INIT_COUNTER) 1574 1575 if (HAS_PENDING_EXCEPTION) { 1576 vm_exit_during_initialization("Runtime1::init_counters() failed unexpectedly"); 1577 } 1578 } 1579 } 1580 #undef INIT_COUNTER 1581 1582 #define PRINT_COUNTER(sub, name) { \ 1583 if (_perf_##sub##_##name##_count != nullptr) { \ 1584 jlong count = _perf_##sub##_##name##_count->get_value(); \ 1585 if (count > 0) { \ 1586 st->print_cr(" %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \ 1587 _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \ 1588 _perf_##sub##_##name##_timer->thread_counter_value_us(), \ 1589 count); \ 1590 }}} 1591 1592 1593 void Runtime1::print_counters_on(outputStream* st) { 1594 if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c1_enabled()) { 1595 DO_COUNTERS(PRINT_COUNTER) 1596 } else { 1597 st->print_cr(" Runtime1: no info (%s is disabled)", 1598 (!CompilerConfig::is_c1_enabled() ? "C1" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"))); 1599 } 1600 } 1601 1602 #undef PRINT_COUNTER 1603 #undef DO_COUNTERS 1604 1605 #ifndef PRODUCT 1606 void Runtime1::print_statistics_on(outputStream* st) { 1607 st->print_cr("C1 Runtime statistics:"); 1608 st->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1609 st->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1610 st->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1611 st->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1612 st->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1613 st->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1614 st->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1615 st->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1616 st->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1617 st->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1618 st->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1619 st->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1620 st->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1621 st->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1622 1623 st->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1624 st->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1625 st->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1626 st->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1627 st->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1628 st->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1629 st->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1630 1631 st->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1632 st->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1633 st->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1634 st->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1635 st->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1636 st->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1637 st->print_cr(" _throw_count: %u:", _throw_count); 1638 1639 SharedRuntime::print_ic_miss_histogram_on(st); 1640 st->cr(); 1641 } 1642 #endif // PRODUCT