1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "classfile/javaClasses.inline.hpp"
  33 #include "classfile/vmClasses.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "code/vtableStubs.hpp"
  39 #include "compiler/compilationPolicy.hpp"
  40 #include "compiler/compilerDefinitions.inline.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "compiler/oopMap.hpp"
  43 #include "gc/shared/barrierSet.hpp"
  44 #include "gc/shared/c1/barrierSetC1.hpp"
  45 #include "gc/shared/collectedHeap.hpp"
  46 #include "interpreter/bytecode.hpp"
  47 #include "interpreter/interpreter.hpp"
  48 #include "jfr/support/jfrIntrinsics.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/objArrayOop.inline.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/fieldDescriptor.inline.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/interfaceSupport.inline.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/perfData.inline.hpp"
  65 #include "runtime/runtimeUpcalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stackWatermarkSet.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vm_version.hpp"
  72 #include "services/management.hpp"
  73 #include "utilities/copy.hpp"
  74 #include "utilities/events.hpp"
  75 
  76 
  77 // Implementation of StubAssembler
  78 
  79 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  80   _name = name;
  81   _must_gc_arguments = false;
  82   _frame_size = no_frame_size;
  83   _num_rt_args = 0;
  84   _stub_id = stub_id;
  85 }
  86 
  87 
  88 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  89   _name = name;
  90   _must_gc_arguments = must_gc_arguments;
  91 }
  92 
  93 
  94 void StubAssembler::set_frame_size(int size) {
  95   if (_frame_size == no_frame_size) {
  96     _frame_size = size;
  97   }
  98   assert(_frame_size == size, "can't change the frame size");
  99 }
 100 
 101 
 102 void StubAssembler::set_num_rt_args(int args) {
 103   if (_num_rt_args == 0) {
 104     _num_rt_args = args;
 105   }
 106   assert(_num_rt_args == args, "can't change the number of args");
 107 }
 108 
 109 // Implementation of Runtime1
 110 
 111 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS];
 112 
 113 #define C1_BLOB_NAME_DEFINE(name)  "C1 Runtime " # name "_blob",
 114 const char *Runtime1::_blob_names[] = {
 115   C1_STUBS_DO(C1_BLOB_NAME_DEFINE)
 116 };
 117 #undef C1_STUB_NAME_DEFINE
 118 
 119 #ifndef PRODUCT
 120 // statistics
 121 uint Runtime1::_generic_arraycopystub_cnt = 0;
 122 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 123 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 124 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 125 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 126 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 127 uint Runtime1::_new_instance_slowcase_cnt = 0;
 128 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 129 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 130 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 131 uint Runtime1::_patch_code_slowcase_cnt = 0;
 132 uint Runtime1::_throw_range_check_exception_count = 0;
 133 uint Runtime1::_throw_index_exception_count = 0;
 134 uint Runtime1::_throw_div0_exception_count = 0;
 135 uint Runtime1::_throw_null_pointer_exception_count = 0;
 136 uint Runtime1::_throw_class_cast_exception_count = 0;
 137 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 138 uint Runtime1::_throw_count = 0;
 139 
 140 static uint _byte_arraycopy_stub_cnt = 0;
 141 static uint _short_arraycopy_stub_cnt = 0;
 142 static uint _int_arraycopy_stub_cnt = 0;
 143 static uint _long_arraycopy_stub_cnt = 0;
 144 static uint _oop_arraycopy_stub_cnt = 0;
 145 
 146 address Runtime1::arraycopy_count_address(BasicType type) {
 147   switch (type) {
 148   case T_BOOLEAN:
 149   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 150   case T_CHAR:
 151   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 152   case T_FLOAT:
 153   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 154   case T_DOUBLE:
 155   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 156   case T_ARRAY:
 157   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 158   default:
 159     ShouldNotReachHere();
 160     return nullptr;
 161   }
 162 }
 163 
 164 
 165 #endif
 166 
 167 // Simple helper to see if the caller of a runtime stub which
 168 // entered the VM has been deoptimized
 169 
 170 static bool caller_is_deopted(JavaThread* current) {
 171   RegisterMap reg_map(current,
 172                       RegisterMap::UpdateMap::skip,
 173                       RegisterMap::ProcessFrames::include,
 174                       RegisterMap::WalkContinuation::skip);
 175   frame runtime_frame = current->last_frame();
 176   frame caller_frame = runtime_frame.sender(&reg_map);
 177   assert(caller_frame.is_compiled_frame(), "must be compiled");
 178   return caller_frame.is_deoptimized_frame();
 179 }
 180 
 181 // Stress deoptimization
 182 static void deopt_caller(JavaThread* current) {
 183   if (!caller_is_deopted(current)) {
 184     RegisterMap reg_map(current,
 185                         RegisterMap::UpdateMap::skip,
 186                         RegisterMap::ProcessFrames::include,
 187                         RegisterMap::WalkContinuation::skip);
 188     frame runtime_frame = current->last_frame();
 189     frame caller_frame = runtime_frame.sender(&reg_map);
 190     Deoptimization::deoptimize_frame(current, caller_frame.id());
 191     assert(caller_is_deopted(current), "Must be deoptimized");
 192   }
 193 }
 194 
 195 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 196  private:
 197   C1StubId _id;
 198  public:
 199   C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {}
 200   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 201     return Runtime1::generate_code_for(_id, sasm);
 202   }
 203 };
 204 
 205 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 206   ResourceMark rm;
 207   // create code buffer for code storage
 208   CodeBuffer code(buffer_blob);
 209 
 210   OopMapSet* oop_maps;
 211   int frame_size;
 212   bool must_gc_arguments;
 213 
 214   Compilation::setup_code_buffer(&code, 0);
 215 
 216   // create assembler for code generation
 217   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 218   // generate code for runtime stub
 219   oop_maps = cl->generate_code(sasm);
 220   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 221          "if stub has an oop map it must have a valid frame size");
 222   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 223 
 224   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 225   sasm->align(BytesPerWord);
 226   // make sure all code is in code buffer
 227   sasm->flush();
 228 
 229   frame_size = sasm->frame_size();
 230   must_gc_arguments = sasm->must_gc_arguments();
 231   // create blob - distinguish a few special cases
 232   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 233                                                  &code,
 234                                                  CodeOffsets::frame_never_safe,
 235                                                  frame_size,
 236                                                  oop_maps,
 237                                                  must_gc_arguments);
 238   assert(blob != nullptr, "blob must exist");
 239   return blob;
 240 }
 241 
 242 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) {
 243   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 244   bool expect_oop_map = true;
 245 #ifdef ASSERT
 246   // Make sure that stubs that need oopmaps have them
 247   switch (id) {
 248     // These stubs don't need to have an oopmap
 249   case C1StubId::dtrace_object_alloc_id:
 250   case C1StubId::slow_subtype_check_id:
 251   case C1StubId::fpu2long_stub_id:
 252   case C1StubId::unwind_exception_id:
 253   case C1StubId::counter_overflow_id:
 254     expect_oop_map = false;
 255     break;
 256   default:
 257     break;
 258   }
 259 #endif
 260   C1StubIdStubAssemblerCodeGenClosure cl(id);
 261   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 262   // install blob
 263   _blobs[(int)id] = blob;
 264 }
 265 
 266 void Runtime1::initialize(BufferBlob* blob) {
 267   init_counters();
 268   // platform-dependent initialization
 269   initialize_pd();
 270   // generate stubs
 271   int limit = (int)C1StubId::NUM_STUBIDS;
 272   for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id);
 273   // printing
 274 #ifndef PRODUCT
 275   if (PrintSimpleStubs) {
 276     ResourceMark rm;
 277     for (int id = 0; id < limit; id++) {
 278       _blobs[id]->print();
 279       if (_blobs[id]->oop_maps() != nullptr) {
 280         _blobs[id]->oop_maps()->print();
 281       }
 282     }
 283   }
 284 #endif
 285   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 286   bs->generate_c1_runtime_stubs(blob);
 287 }
 288 
 289 CodeBlob* Runtime1::blob_for(C1StubId id) {
 290   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 291   return _blobs[(int)id];
 292 }
 293 
 294 
 295 const char* Runtime1::name_for(C1StubId id) {
 296   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 297   return _blob_names[(int)id];
 298 }
 299 
 300 const char* Runtime1::name_for_address(address entry) {
 301   int limit = (int)C1StubId::NUM_STUBIDS;
 302   for (int i = 0; i < limit; i++) {
 303     C1StubId id = (C1StubId)i;
 304     if (entry == entry_for(id)) return name_for(id);
 305   }
 306 
 307 #define FUNCTION_CASE(a, f) \
 308   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 309 
 310   FUNCTION_CASE(entry, os::javaTimeMillis);
 311   FUNCTION_CASE(entry, os::javaTimeNanos);
 312   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 313   FUNCTION_CASE(entry, SharedRuntime::d2f);
 314   FUNCTION_CASE(entry, SharedRuntime::d2i);
 315   FUNCTION_CASE(entry, SharedRuntime::d2l);
 316   FUNCTION_CASE(entry, SharedRuntime::dcos);
 317   FUNCTION_CASE(entry, SharedRuntime::dexp);
 318   FUNCTION_CASE(entry, SharedRuntime::dlog);
 319   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 320   FUNCTION_CASE(entry, SharedRuntime::dpow);
 321   FUNCTION_CASE(entry, SharedRuntime::drem);
 322   FUNCTION_CASE(entry, SharedRuntime::dsin);
 323   FUNCTION_CASE(entry, SharedRuntime::dtan);
 324   FUNCTION_CASE(entry, SharedRuntime::f2i);
 325   FUNCTION_CASE(entry, SharedRuntime::f2l);
 326   FUNCTION_CASE(entry, SharedRuntime::frem);
 327   FUNCTION_CASE(entry, SharedRuntime::l2d);
 328   FUNCTION_CASE(entry, SharedRuntime::l2f);
 329   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 330   FUNCTION_CASE(entry, SharedRuntime::lmul);
 331   FUNCTION_CASE(entry, SharedRuntime::lrem);
 332   FUNCTION_CASE(entry, SharedRuntime::lrem);
 333   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 334   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 335   FUNCTION_CASE(entry, is_instance_of);
 336   FUNCTION_CASE(entry, trace_block_entry);
 337 #ifdef JFR_HAVE_INTRINSICS
 338   FUNCTION_CASE(entry, JfrTime::time_function());
 339 #endif
 340   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 341   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 342   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 343   FUNCTION_CASE(entry, StubRoutines::dexp());
 344   FUNCTION_CASE(entry, StubRoutines::dlog());
 345   FUNCTION_CASE(entry, StubRoutines::dlog10());
 346   FUNCTION_CASE(entry, StubRoutines::dpow());
 347   FUNCTION_CASE(entry, StubRoutines::dsin());
 348   FUNCTION_CASE(entry, StubRoutines::dcos());
 349   FUNCTION_CASE(entry, StubRoutines::dtan());
 350   FUNCTION_CASE(entry, StubRoutines::dtanh());
 351 
 352 #undef FUNCTION_CASE
 353 
 354   // Runtime upcalls also has a map of addresses to names
 355   const char* upcall_name = RuntimeUpcalls::get_name_for_upcall_address(entry);
 356   if (upcall_name != nullptr) {
 357     return upcall_name;
 358   }
 359 
 360   // Soft float adds more runtime names.
 361   return pd_name_for_address(entry);
 362 }
 363 
 364 
 365 JRT_ENTRY_PROF(void, Runtime1, new_instance, Runtime1::new_instance(JavaThread* current, Klass* klass))
 366 #ifndef PRODUCT
 367   if (PrintC1Statistics) {
 368     _new_instance_slowcase_cnt++;
 369   }
 370 #endif
 371   assert(klass->is_klass(), "not a class");
 372   Handle holder(current, klass->klass_holder()); // keep the klass alive
 373   InstanceKlass* h = InstanceKlass::cast(klass);
 374   h->check_valid_for_instantiation(true, CHECK);
 375   // make sure klass is initialized
 376   h->initialize(CHECK);
 377   // allocate instance and return via TLS
 378   oop obj = h->allocate_instance(CHECK);
 379   current->set_vm_result(obj);
 380 JRT_END
 381 
 382 
 383 JRT_ENTRY_PROF(void, Runtime1, new_type_array, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 384 #ifndef PRODUCT
 385   if (PrintC1Statistics) {
 386     _new_type_array_slowcase_cnt++;
 387   }
 388 #endif
 389   // Note: no handle for klass needed since they are not used
 390   //       anymore after new_typeArray() and no GC can happen before.
 391   //       (This may have to change if this code changes!)
 392   assert(klass->is_klass(), "not a class");
 393   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 394   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 395   current->set_vm_result(obj);
 396   // This is pretty rare but this runtime patch is stressful to deoptimization
 397   // if we deoptimize here so force a deopt to stress the path.
 398   if (DeoptimizeALot) {
 399     deopt_caller(current);
 400   }
 401 
 402 JRT_END
 403 
 404 
 405 JRT_ENTRY_PROF(void, Runtime1, new_object_array, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 406 #ifndef PRODUCT
 407   if (PrintC1Statistics) {
 408     _new_object_array_slowcase_cnt++;
 409   }
 410 #endif
 411   // Note: no handle for klass needed since they are not used
 412   //       anymore after new_objArray() and no GC can happen before.
 413   //       (This may have to change if this code changes!)
 414   assert(array_klass->is_klass(), "not a class");
 415   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 416   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 417   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 418   current->set_vm_result(obj);
 419   // This is pretty rare but this runtime patch is stressful to deoptimization
 420   // if we deoptimize here so force a deopt to stress the path.
 421   if (DeoptimizeALot) {
 422     deopt_caller(current);
 423   }
 424 JRT_END
 425 
 426 
 427 JRT_ENTRY_PROF(void, Runtime1, new_multi_array, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 428 #ifndef PRODUCT
 429   if (PrintC1Statistics) {
 430     _new_multi_array_slowcase_cnt++;
 431   }
 432 #endif
 433   assert(klass->is_klass(), "not a class");
 434   assert(rank >= 1, "rank must be nonzero");
 435   Handle holder(current, klass->klass_holder()); // keep the klass alive
 436   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 437   current->set_vm_result(obj);
 438 JRT_END
 439 
 440 
 441 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 442   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 443 JRT_END
 444 
 445 
 446 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 447   ResourceMark rm(current);
 448   const char* klass_name = obj->klass()->external_name();
 449   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 450 JRT_END
 451 
 452 
 453 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 454 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 455 // method) method is passed as an argument. In order to do that it is embedded in the code as
 456 // a constant.
 457 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 458   nmethod* osr_nm = nullptr;
 459   methodHandle method(current, m);
 460 
 461   RegisterMap map(current,
 462                   RegisterMap::UpdateMap::skip,
 463                   RegisterMap::ProcessFrames::include,
 464                   RegisterMap::WalkContinuation::skip);
 465   frame fr =  current->last_frame().sender(&map);
 466   nmethod* nm = (nmethod*) fr.cb();
 467   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 468   methodHandle enclosing_method(current, nm->method());
 469 
 470   CompLevel level = (CompLevel)nm->comp_level();
 471   int bci = InvocationEntryBci;
 472   if (branch_bci != InvocationEntryBci) {
 473     // Compute destination bci
 474     address pc = method()->code_base() + branch_bci;
 475     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 476     int offset = 0;
 477     switch (branch) {
 478       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 479       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 480       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 481       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 482       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 483       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 484       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 485         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 486         break;
 487       case Bytecodes::_goto_w:
 488         offset = Bytes::get_Java_u4(pc + 1);
 489         break;
 490       default: ;
 491     }
 492     bci = branch_bci + offset;
 493   }
 494   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 495   return osr_nm;
 496 }
 497 
 498 JRT_BLOCK_ENTRY_PROF(address, Runtime1, counter_overflow, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 499   nmethod* osr_nm;
 500   JRT_BLOCK
 501     osr_nm = counter_overflow_helper(current, bci, method);
 502     if (osr_nm != nullptr) {
 503       RegisterMap map(current,
 504                       RegisterMap::UpdateMap::skip,
 505                       RegisterMap::ProcessFrames::include,
 506                       RegisterMap::WalkContinuation::skip);
 507       frame fr =  current->last_frame().sender(&map);
 508       Deoptimization::deoptimize_frame(current, fr.id());
 509     }
 510   JRT_BLOCK_END
 511   return nullptr;
 512 JRT_END
 513 
 514 extern void vm_exit(int code);
 515 
 516 // Enter this method from compiled code handler below. This is where we transition
 517 // to VM mode. This is done as a helper routine so that the method called directly
 518 // from compiled code does not have to transition to VM. This allows the entry
 519 // method to see if the nmethod that we have just looked up a handler for has
 520 // been deoptimized while we were in the vm. This simplifies the assembly code
 521 // cpu directories.
 522 //
 523 // We are entering here from exception stub (via the entry method below)
 524 // If there is a compiled exception handler in this method, we will continue there;
 525 // otherwise we will unwind the stack and continue at the caller of top frame method
 526 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 527 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 528 // check to see if the handler we are going to return is now in a nmethod that has
 529 // been deoptimized. If that is the case we return the deopt blob
 530 // unpack_with_exception entry instead. This makes life for the exception blob easier
 531 // because making that same check and diverting is painful from assembly language.
 532 JRT_ENTRY_NO_ASYNC_PROF(static address, Runtime1, exception_handler_for_pc_helper, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 533   // Reset method handle flag.
 534   current->set_is_method_handle_return(false);
 535 
 536   Handle exception(current, ex);
 537 
 538   // This function is called when we are about to throw an exception. Therefore,
 539   // we have to poll the stack watermark barrier to make sure that not yet safe
 540   // stack frames are made safe before returning into them.
 541   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 542     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 543     // frame has been unwound. It instead builds its own stub frame, to call the
 544     // runtime. But the throwing frame has already been unwound here.
 545     StackWatermarkSet::after_unwind(current);
 546   }
 547 
 548   nm = CodeCache::find_nmethod(pc);
 549   assert(nm != nullptr, "this is not an nmethod");
 550   // Adjust the pc as needed/
 551   if (nm->is_deopt_pc(pc)) {
 552     RegisterMap map(current,
 553                     RegisterMap::UpdateMap::skip,
 554                     RegisterMap::ProcessFrames::include,
 555                     RegisterMap::WalkContinuation::skip);
 556     frame exception_frame = current->last_frame().sender(&map);
 557     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 558     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 559     pc = exception_frame.pc();
 560   }
 561   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 562   // Check that exception is a subclass of Throwable
 563   assert(exception->is_a(vmClasses::Throwable_klass()),
 564          "Exception not subclass of Throwable");
 565 
 566   // debugging support
 567   // tracing
 568   if (log_is_enabled(Info, exceptions)) {
 569     ResourceMark rm; // print_value_string
 570     stringStream tempst;
 571     assert(nm->method() != nullptr, "Unexpected null method()");
 572     tempst.print("C1 compiled method <%s>\n"
 573                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 574                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 575     Exceptions::log_exception(exception, tempst.freeze());
 576   }
 577   // for AbortVMOnException flag
 578   Exceptions::debug_check_abort(exception);
 579 
 580   // Check the stack guard pages and re-enable them if necessary and there is
 581   // enough space on the stack to do so.  Use fast exceptions only if the guard
 582   // pages are enabled.
 583   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 584 
 585   if (JvmtiExport::can_post_on_exceptions()) {
 586     // To ensure correct notification of exception catches and throws
 587     // we have to deoptimize here.  If we attempted to notify the
 588     // catches and throws during this exception lookup it's possible
 589     // we could deoptimize on the way out of the VM and end back in
 590     // the interpreter at the throw site.  This would result in double
 591     // notifications since the interpreter would also notify about
 592     // these same catches and throws as it unwound the frame.
 593 
 594     RegisterMap reg_map(current,
 595                         RegisterMap::UpdateMap::include,
 596                         RegisterMap::ProcessFrames::include,
 597                         RegisterMap::WalkContinuation::skip);
 598     frame stub_frame = current->last_frame();
 599     frame caller_frame = stub_frame.sender(&reg_map);
 600 
 601     // We don't really want to deoptimize the nmethod itself since we
 602     // can actually continue in the exception handler ourselves but I
 603     // don't see an easy way to have the desired effect.
 604     Deoptimization::deoptimize_frame(current, caller_frame.id());
 605     assert(caller_is_deopted(current), "Must be deoptimized");
 606 
 607     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 608   }
 609 
 610   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 611   if (guard_pages_enabled) {
 612     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 613     if (fast_continuation != nullptr) {
 614       // Set flag if return address is a method handle call site.
 615       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 616       return fast_continuation;
 617     }
 618   }
 619 
 620   // If the stack guard pages are enabled, check whether there is a handler in
 621   // the current method.  Otherwise (guard pages disabled), force an unwind and
 622   // skip the exception cache update (i.e., just leave continuation as null).
 623   address continuation = nullptr;
 624   if (guard_pages_enabled) {
 625 
 626     // New exception handling mechanism can support inlined methods
 627     // with exception handlers since the mappings are from PC to PC
 628 
 629     // Clear out the exception oop and pc since looking up an
 630     // exception handler can cause class loading, which might throw an
 631     // exception and those fields are expected to be clear during
 632     // normal bytecode execution.
 633     current->clear_exception_oop_and_pc();
 634 
 635     bool recursive_exception = false;
 636     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 637     // If an exception was thrown during exception dispatch, the exception oop may have changed
 638     current->set_exception_oop(exception());
 639     current->set_exception_pc(pc);
 640 
 641     // the exception cache is used only by non-implicit exceptions
 642     // Update the exception cache only when there didn't happen
 643     // another exception during the computation of the compiled
 644     // exception handler. Checking for exception oop equality is not
 645     // sufficient because some exceptions are pre-allocated and reused.
 646     if (continuation != nullptr && !recursive_exception) {
 647       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 648     }
 649   }
 650 
 651   current->set_vm_result(exception());
 652   // Set flag if return address is a method handle call site.
 653   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 654 
 655   if (log_is_enabled(Info, exceptions)) {
 656     ResourceMark rm;
 657     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 658                          " for exception thrown at PC " PTR_FORMAT,
 659                          p2i(current), p2i(continuation), p2i(pc));
 660   }
 661 
 662   return continuation;
 663 JRT_END
 664 
 665 // Enter this method from compiled code only if there is a Java exception handler
 666 // in the method handling the exception.
 667 // We are entering here from exception stub. We don't do a normal VM transition here.
 668 // We do it in a helper. This is so we can check to see if the nmethod we have just
 669 // searched for an exception handler has been deoptimized in the meantime.
 670 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 671   oop exception = current->exception_oop();
 672   address pc = current->exception_pc();
 673   // Still in Java mode
 674   DEBUG_ONLY(NoHandleMark nhm);
 675   nmethod* nm = nullptr;
 676   address continuation = nullptr;
 677   {
 678     // Enter VM mode by calling the helper
 679     ResetNoHandleMark rnhm;
 680     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 681   }
 682   // Back in JAVA, use no oops DON'T safepoint
 683 
 684   // Now check to see if the nmethod we were called from is now deoptimized.
 685   // If so we must return to the deopt blob and deoptimize the nmethod
 686   if (nm != nullptr && caller_is_deopted(current)) {
 687     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 688   }
 689 
 690   assert(continuation != nullptr, "no handler found");
 691   return continuation;
 692 }
 693 
 694 
 695 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 696 #ifndef PRODUCT
 697   if (PrintC1Statistics) {
 698     _throw_range_check_exception_count++;
 699   }
 700 #endif
 701   const int len = 35;
 702   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 703   char message[2 * jintAsStringSize + len];
 704   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 705   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 706 JRT_END
 707 
 708 
 709 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 710 #ifndef PRODUCT
 711   if (PrintC1Statistics) {
 712     _throw_index_exception_count++;
 713   }
 714 #endif
 715   char message[16];
 716   os::snprintf_checked(message, sizeof(message), "%d", index);
 717   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 718 JRT_END
 719 
 720 
 721 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 722 #ifndef PRODUCT
 723   if (PrintC1Statistics) {
 724     _throw_div0_exception_count++;
 725   }
 726 #endif
 727   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 
 731 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 732 #ifndef PRODUCT
 733   if (PrintC1Statistics) {
 734     _throw_null_pointer_exception_count++;
 735   }
 736 #endif
 737   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 
 741 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 742 #ifndef PRODUCT
 743   if (PrintC1Statistics) {
 744     _throw_class_cast_exception_count++;
 745   }
 746 #endif
 747   ResourceMark rm(current);
 748   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 749   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 750 JRT_END
 751 
 752 
 753 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 754 #ifndef PRODUCT
 755   if (PrintC1Statistics) {
 756     _throw_incompatible_class_change_error_count++;
 757   }
 758 #endif
 759   ResourceMark rm(current);
 760   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 761 JRT_END
 762 
 763 
 764 JRT_BLOCK_ENTRY_PROF(void, Runtime1, monitorenter, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 765 #ifndef PRODUCT
 766   if (PrintC1Statistics) {
 767     _monitorenter_slowcase_cnt++;
 768   }
 769 #endif
 770   if (LockingMode == LM_MONITOR) {
 771     lock->set_obj(obj);
 772   }
 773   assert(obj == lock->obj(), "must match");
 774   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 775 JRT_END
 776 
 777 
 778 JRT_LEAF_PROF(void, Runtime1, monitorexit, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 779   assert(current == JavaThread::current(), "pre-condition");
 780 #ifndef PRODUCT
 781   if (PrintC1Statistics) {
 782     _monitorexit_slowcase_cnt++;
 783   }
 784 #endif
 785   assert(current->last_Java_sp(), "last_Java_sp must be set");
 786   oop obj = lock->obj();
 787   assert(oopDesc::is_oop(obj), "must be null or an object");
 788   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 789 JRT_END
 790 
 791 // Cf. OptoRuntime::deoptimize_caller_frame
 792 JRT_ENTRY_PROF(void, Runtime1, deoptimize, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 793   // Called from within the owner thread, so no need for safepoint
 794   RegisterMap reg_map(current,
 795                       RegisterMap::UpdateMap::skip,
 796                       RegisterMap::ProcessFrames::include,
 797                       RegisterMap::WalkContinuation::skip);
 798   frame stub_frame = current->last_frame();
 799   assert(stub_frame.is_runtime_frame(), "Sanity check");
 800   frame caller_frame = stub_frame.sender(&reg_map);
 801   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 802   assert(nm != nullptr, "Sanity check");
 803   methodHandle method(current, nm->method());
 804   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 805   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 806   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 807 
 808   if (action == Deoptimization::Action_make_not_entrant) {
 809     if (nm->make_not_entrant()) {
 810       if (reason == Deoptimization::Reason_tenured) {
 811         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 812         if (trap_mdo != nullptr) {
 813           trap_mdo->inc_tenure_traps();
 814         }
 815       }
 816     }
 817   }
 818 
 819   // Deoptimize the caller frame.
 820   Deoptimization::deoptimize_frame(current, caller_frame.id());
 821   // Return to the now deoptimized frame.
 822 JRT_END
 823 
 824 
 825 #ifndef DEOPTIMIZE_WHEN_PATCHING
 826 
 827 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 828   Bytecode_field field_access(caller, bci);
 829   // This can be static or non-static field access
 830   Bytecodes::Code code       = field_access.code();
 831 
 832   // We must load class, initialize class and resolve the field
 833   fieldDescriptor result; // initialize class if needed
 834   constantPoolHandle constants(THREAD, caller->constants());
 835   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller,
 836                                      Bytecodes::java_code(code), true /*initialize_class*/, CHECK_NULL);
 837   return result.field_holder();
 838 }
 839 
 840 
 841 //
 842 // This routine patches sites where a class wasn't loaded or
 843 // initialized at the time the code was generated.  It handles
 844 // references to classes, fields and forcing of initialization.  Most
 845 // of the cases are straightforward and involving simply forcing
 846 // resolution of a class, rewriting the instruction stream with the
 847 // needed constant and replacing the call in this function with the
 848 // patched code.  The case for static field is more complicated since
 849 // the thread which is in the process of initializing a class can
 850 // access it's static fields but other threads can't so the code
 851 // either has to deoptimize when this case is detected or execute a
 852 // check that the current thread is the initializing thread.  The
 853 // current
 854 //
 855 // Patches basically look like this:
 856 //
 857 //
 858 // patch_site: jmp patch stub     ;; will be patched
 859 // continue:   ...
 860 //             ...
 861 //             ...
 862 //             ...
 863 //
 864 // They have a stub which looks like this:
 865 //
 866 //             ;; patch body
 867 //             movl <const>, reg           (for class constants)
 868 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 869 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 870 //             <being_init offset> <bytes to copy> <bytes to skip>
 871 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 872 //             jmp patch_site
 873 //
 874 //
 875 // A normal patch is done by rewriting the patch body, usually a move,
 876 // and then copying it into place over top of the jmp instruction
 877 // being careful to flush caches and doing it in an MP-safe way.  The
 878 // constants following the patch body are used to find various pieces
 879 // of the patch relative to the call site for Runtime1::patch_code.
 880 // The case for getstatic and putstatic is more complicated because
 881 // getstatic and putstatic have special semantics when executing while
 882 // the class is being initialized.  getstatic/putstatic on a class
 883 // which is being_initialized may be executed by the initializing
 884 // thread but other threads have to block when they execute it.  This
 885 // is accomplished in compiled code by executing a test of the current
 886 // thread against the initializing thread of the class.  It's emitted
 887 // as boilerplate in their stub which allows the patched code to be
 888 // executed before it's copied back into the main body of the nmethod.
 889 //
 890 // being_init: get_thread(<tmp reg>
 891 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 892 //             jne patch_stub
 893 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 894 //             movl reg, [reg1 + <const>]  (for field offsets)
 895 //             jmp continue
 896 //             <being_init offset> <bytes to copy> <bytes to skip>
 897 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
 898 //             jmp patch_site
 899 //
 900 // If the class is being initialized the patch body is rewritten and
 901 // the patch site is rewritten to jump to being_init, instead of
 902 // patch_stub.  Whenever this code is executed it checks the current
 903 // thread against the initializing thread so other threads will enter
 904 // the runtime and end up blocked waiting the class to finish
 905 // initializing inside the calls to resolve_field below.  The
 906 // initializing class will continue on it's way.  Once the class is
 907 // fully_initialized, the intializing_thread of the class becomes
 908 // null, so the next thread to execute this code will fail the test,
 909 // call into patch_code and complete the patching process by copying
 910 // the patch body back into the main part of the nmethod and resume
 911 // executing.
 912 
 913 // NB:
 914 //
 915 // Patchable instruction sequences inherently exhibit race conditions,
 916 // where thread A is patching an instruction at the same time thread B
 917 // is executing it.  The algorithms we use ensure that any observation
 918 // that B can make on any intermediate states during A's patching will
 919 // always end up with a correct outcome.  This is easiest if there are
 920 // few or no intermediate states.  (Some inline caches have two
 921 // related instructions that must be patched in tandem.  For those,
 922 // intermediate states seem to be unavoidable, but we will get the
 923 // right answer from all possible observation orders.)
 924 //
 925 // When patching the entry instruction at the head of a method, or a
 926 // linkable call instruction inside of a method, we try very hard to
 927 // use a patch sequence which executes as a single memory transaction.
 928 // This means, in practice, that when thread A patches an instruction,
 929 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 930 // instruction or is contained in it.  We believe that memory hardware
 931 // will never break up such a word write, if it is naturally aligned
 932 // for the word being written.  We also know that some CPUs work very
 933 // hard to create atomic updates even of naturally unaligned words,
 934 // but we don't want to bet the farm on this always working.
 935 //
 936 // Therefore, if there is any chance of a race condition, we try to
 937 // patch only naturally aligned words, as single, full-word writes.
 938 
 939 JRT_ENTRY_PROF(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
 940 #ifndef PRODUCT
 941   if (PrintC1Statistics) {
 942     _patch_code_slowcase_cnt++;
 943   }
 944 #endif
 945 
 946   ResourceMark rm(current);
 947   RegisterMap reg_map(current,
 948                       RegisterMap::UpdateMap::skip,
 949                       RegisterMap::ProcessFrames::include,
 950                       RegisterMap::WalkContinuation::skip);
 951   frame runtime_frame = current->last_frame();
 952   frame caller_frame = runtime_frame.sender(&reg_map);
 953 
 954   // last java frame on stack
 955   vframeStream vfst(current, true);
 956   assert(!vfst.at_end(), "Java frame must exist");
 957 
 958   methodHandle caller_method(current, vfst.method());
 959   // Note that caller_method->code() may not be same as caller_code because of OSR's
 960   // Note also that in the presence of inlining it is not guaranteed
 961   // that caller_method() == caller_code->method()
 962 
 963   int bci = vfst.bci();
 964   Bytecodes::Code code = caller_method()->java_code_at(bci);
 965 
 966   // this is used by assertions in the access_field_patching_id
 967   BasicType patch_field_type = T_ILLEGAL;
 968   bool deoptimize_for_volatile = false;
 969   bool deoptimize_for_atomic = false;
 970   int patch_field_offset = -1;
 971   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 972   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 973   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 974   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 975   bool load_klass_or_mirror_patch_id =
 976     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
 977 
 978   if (stub_id == C1StubId::access_field_patching_id) {
 979 
 980     Bytecode_field field_access(caller_method, bci);
 981     fieldDescriptor result; // initialize class if needed
 982     Bytecodes::Code code = field_access.code();
 983     constantPoolHandle constants(current, caller_method->constants());
 984     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method,
 985                                        Bytecodes::java_code(code), true /*initialize_class*/, CHECK);
 986     patch_field_offset = result.offset();
 987 
 988     // If we're patching a field which is volatile then at compile it
 989     // must not have been know to be volatile, so the generated code
 990     // isn't correct for a volatile reference.  The nmethod has to be
 991     // deoptimized so that the code can be regenerated correctly.
 992     // This check is only needed for access_field_patching since this
 993     // is the path for patching field offsets.  load_klass is only
 994     // used for patching references to oops which don't need special
 995     // handling in the volatile case.
 996 
 997     deoptimize_for_volatile = result.access_flags().is_volatile();
 998 
 999     // If we are patching a field which should be atomic, then
1000     // the generated code is not correct either, force deoptimizing.
1001     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1002     // break access atomicity only for them.
1003 
1004     // Strictly speaking, the deoptimization on 64-bit platforms
1005     // is unnecessary, and T_LONG stores on 32-bit platforms need
1006     // to be handled by special patching code when AlwaysAtomicAccesses
1007     // becomes product feature. At this point, we are still going
1008     // for the deoptimization for consistency against volatile
1009     // accesses.
1010 
1011     patch_field_type = result.field_type();
1012     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1013 
1014   } else if (load_klass_or_mirror_patch_id) {
1015     Klass* k = nullptr;
1016     switch (code) {
1017       case Bytecodes::_putstatic:
1018       case Bytecodes::_getstatic:
1019         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1020           init_klass = klass;
1021           mirror = Handle(current, klass->java_mirror());
1022         }
1023         break;
1024       case Bytecodes::_new:
1025         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1026           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1027         }
1028         break;
1029       case Bytecodes::_multianewarray:
1030         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1031           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1032         }
1033         break;
1034       case Bytecodes::_instanceof:
1035         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1036           k = caller_method->constants()->klass_at(io.index(), CHECK);
1037         }
1038         break;
1039       case Bytecodes::_checkcast:
1040         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1041           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1042         }
1043         break;
1044       case Bytecodes::_anewarray:
1045         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1046           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1047           k = ek->array_klass(CHECK);
1048         }
1049         break;
1050       case Bytecodes::_ldc:
1051       case Bytecodes::_ldc_w:
1052       case Bytecodes::_ldc2_w:
1053         {
1054           Bytecode_loadconstant cc(caller_method, bci);
1055           oop m = cc.resolve_constant(CHECK);
1056           mirror = Handle(current, m);
1057         }
1058         break;
1059       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1060     }
1061     load_klass = k;
1062   } else if (stub_id == C1StubId::load_appendix_patching_id) {
1063     Bytecode_invoke bytecode(caller_method, bci);
1064     Bytecodes::Code bc = bytecode.invoke_code();
1065 
1066     CallInfo info;
1067     constantPoolHandle pool(current, caller_method->constants());
1068     int index = bytecode.index();
1069     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1070     switch (bc) {
1071       case Bytecodes::_invokehandle: {
1072         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1073         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1074         break;
1075       }
1076       case Bytecodes::_invokedynamic: {
1077         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1078         break;
1079       }
1080       default: fatal("unexpected bytecode for load_appendix_patching_id");
1081     }
1082   } else {
1083     ShouldNotReachHere();
1084   }
1085 
1086   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1087     // At compile time we assumed the field wasn't volatile/atomic but after
1088     // loading it turns out it was volatile/atomic so we have to throw the
1089     // compiled code out and let it be regenerated.
1090     if (TracePatching) {
1091       if (deoptimize_for_volatile) {
1092         tty->print_cr("Deoptimizing for patching volatile field reference");
1093       }
1094       if (deoptimize_for_atomic) {
1095         tty->print_cr("Deoptimizing for patching atomic field reference");
1096       }
1097     }
1098 
1099     // It's possible the nmethod was invalidated in the last
1100     // safepoint, but if it's still alive then make it not_entrant.
1101     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1102     if (nm != nullptr) {
1103       nm->make_not_entrant();
1104     }
1105 
1106     Deoptimization::deoptimize_frame(current, caller_frame.id());
1107 
1108     // Return to the now deoptimized frame.
1109   }
1110 
1111   // Now copy code back
1112 
1113   {
1114     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1115     //
1116     // Deoptimization may have happened while we waited for the lock.
1117     // In that case we don't bother to do any patching we just return
1118     // and let the deopt happen
1119     if (!caller_is_deopted(current)) {
1120       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1121       address instr_pc = jump->jump_destination();
1122       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1123       if (ni->is_jump() ) {
1124         // the jump has not been patched yet
1125         // The jump destination is slow case and therefore not part of the stubs
1126         // (stubs are only for StaticCalls)
1127 
1128         // format of buffer
1129         //    ....
1130         //    instr byte 0     <-- copy_buff
1131         //    instr byte 1
1132         //    ..
1133         //    instr byte n-1
1134         //      n
1135         //    ....             <-- call destination
1136 
1137         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1138         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1139         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1140         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1141         address copy_buff = stub_location - *byte_skip - *byte_count;
1142         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1143         if (TracePatching) {
1144           ttyLocker ttyl;
1145           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1146                         p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass");
1147           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1148           assert(caller_code != nullptr, "nmethod not found");
1149 
1150           // NOTE we use pc() not original_pc() because we already know they are
1151           // identical otherwise we'd have never entered this block of code
1152 
1153           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1154           assert(map != nullptr, "null check");
1155           map->print();
1156           tty->cr();
1157 
1158           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1159         }
1160         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1161         bool do_patch = true;
1162         if (stub_id == C1StubId::access_field_patching_id) {
1163           // The offset may not be correct if the class was not loaded at code generation time.
1164           // Set it now.
1165           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1166           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1167           assert(patch_field_offset >= 0, "illegal offset");
1168           n_move->add_offset_in_bytes(patch_field_offset);
1169         } else if (load_klass_or_mirror_patch_id) {
1170           // If a getstatic or putstatic is referencing a klass which
1171           // isn't fully initialized, the patch body isn't copied into
1172           // place until initialization is complete.  In this case the
1173           // patch site is setup so that any threads besides the
1174           // initializing thread are forced to come into the VM and
1175           // block.
1176           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1177                      InstanceKlass::cast(init_klass)->is_initialized();
1178           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1179           if (jump->jump_destination() == being_initialized_entry) {
1180             assert(do_patch == true, "initialization must be complete at this point");
1181           } else {
1182             // patch the instruction <move reg, klass>
1183             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1184 
1185             assert(n_copy->data() == 0 ||
1186                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1187                    "illegal init value");
1188             if (stub_id == C1StubId::load_klass_patching_id) {
1189               assert(load_klass != nullptr, "klass not set");
1190               n_copy->set_data((intx) (load_klass));
1191             } else {
1192               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1193               n_copy->set_data(cast_from_oop<intx>(mirror()));
1194             }
1195 
1196             if (TracePatching) {
1197               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1198             }
1199           }
1200         } else if (stub_id == C1StubId::load_appendix_patching_id) {
1201           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1202           assert(n_copy->data() == 0 ||
1203                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1204                  "illegal init value");
1205           n_copy->set_data(cast_from_oop<intx>(appendix()));
1206 
1207           if (TracePatching) {
1208             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1209           }
1210         } else {
1211           ShouldNotReachHere();
1212         }
1213 
1214         if (do_patch) {
1215           // replace instructions
1216           // first replace the tail, then the call
1217 #ifdef ARM
1218           if((load_klass_or_mirror_patch_id ||
1219               stub_id == C1StubId::load_appendix_patching_id) &&
1220               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1221             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1222             address addr = nullptr;
1223             assert(nm != nullptr, "invalid nmethod_pc");
1224             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1225             while (mds.next()) {
1226               if (mds.type() == relocInfo::oop_type) {
1227                 assert(stub_id == C1StubId::load_mirror_patching_id ||
1228                        stub_id == C1StubId::load_appendix_patching_id, "wrong stub id");
1229                 oop_Relocation* r = mds.oop_reloc();
1230                 addr = (address)r->oop_addr();
1231                 break;
1232               } else if (mds.type() == relocInfo::metadata_type) {
1233                 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id");
1234                 metadata_Relocation* r = mds.metadata_reloc();
1235                 addr = (address)r->metadata_addr();
1236                 break;
1237               }
1238             }
1239             assert(addr != nullptr, "metadata relocation must exist");
1240             copy_buff -= *byte_count;
1241             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1242             n_copy2->set_pc_relative_offset(addr, instr_pc);
1243           }
1244 #endif
1245 
1246           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1247             address ptr = copy_buff + i;
1248             int a_byte = (*ptr) & 0xFF;
1249             address dst = instr_pc + i;
1250             *(unsigned char*)dst = (unsigned char) a_byte;
1251           }
1252           ICache::invalidate_range(instr_pc, *byte_count);
1253           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1254 
1255           if (load_klass_or_mirror_patch_id ||
1256               stub_id == C1StubId::load_appendix_patching_id) {
1257             relocInfo::relocType rtype =
1258               (stub_id == C1StubId::load_klass_patching_id) ?
1259                                    relocInfo::metadata_type :
1260                                    relocInfo::oop_type;
1261             // update relocInfo to metadata
1262             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1263             assert(nm != nullptr, "invalid nmethod_pc");
1264 
1265             // The old patch site is now a move instruction so update
1266             // the reloc info so that it will get updated during
1267             // future GCs.
1268             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1269             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1270                                                      relocInfo::none, rtype);
1271           }
1272 
1273         } else {
1274           ICache::invalidate_range(copy_buff, *byte_count);
1275           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1276         }
1277       }
1278     }
1279     // If we are patching in a non-perm oop, make sure the nmethod
1280     // is on the right list.
1281     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1282     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1283 
1284     // Since we've patched some oops in the nmethod,
1285     // (re)register it with the heap.
1286     Universe::heap()->register_nmethod(nm);
1287   }
1288 JRT_END
1289 
1290 #else // DEOPTIMIZE_WHEN_PATCHING
1291 
1292 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) {
1293   if (stub_id == C1StubId::load_klass_patching_id ||
1294       stub_id == C1StubId::load_mirror_patching_id) {
1295     // last java frame on stack
1296     vframeStream vfst(current, true);
1297     assert(!vfst.at_end(), "Java frame must exist");
1298 
1299     methodHandle caller_method(current, vfst.method());
1300     int bci = vfst.bci();
1301     Bytecodes::Code code = caller_method()->java_code_at(bci);
1302 
1303     switch (code) {
1304       case Bytecodes::_new:
1305       case Bytecodes::_anewarray:
1306       case Bytecodes::_multianewarray:
1307       case Bytecodes::_instanceof:
1308       case Bytecodes::_checkcast: {
1309         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1310         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1311         if (tag.is_unresolved_klass_in_error()) {
1312           return false; // throws resolution error
1313         }
1314         break;
1315       }
1316 
1317       default: break;
1318     }
1319   }
1320   return true;
1321 }
1322 
1323 PROF_ENTRY(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
1324 #ifndef PRODUCT
1325   if (PrintC1Statistics) {
1326     _patch_code_slowcase_cnt++;
1327   }
1328 #endif
1329 
1330   // Enable WXWrite: the function is called by c1 stub as a runtime function
1331   // (see another implementation above).
1332   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1333 
1334   if (TracePatching) {
1335     tty->print_cr("Deoptimizing because patch is needed");
1336   }
1337 
1338   RegisterMap reg_map(current,
1339                       RegisterMap::UpdateMap::skip,
1340                       RegisterMap::ProcessFrames::include,
1341                       RegisterMap::WalkContinuation::skip);
1342 
1343   frame runtime_frame = current->last_frame();
1344   frame caller_frame = runtime_frame.sender(&reg_map);
1345   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1346 
1347   if (is_patching_needed(current, stub_id)) {
1348     // Make sure the nmethod is invalidated, i.e. made not entrant.
1349     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1350     if (nm != nullptr) {
1351       nm->make_not_entrant();
1352     }
1353   }
1354 
1355   Deoptimization::deoptimize_frame(current, caller_frame.id());
1356   // Return to the now deoptimized frame.
1357   postcond(caller_is_deopted(current));
1358 PROF_END
1359 
1360 #endif // DEOPTIMIZE_WHEN_PATCHING
1361 
1362 // Entry point for compiled code. We want to patch a nmethod.
1363 // We don't do a normal VM transition here because we want to
1364 // know after the patching is complete and any safepoint(s) are taken
1365 // if the calling nmethod was deoptimized. We do this by calling a
1366 // helper method which does the normal VM transition and when it
1367 // completes we can check for deoptimization. This simplifies the
1368 // assembly code in the cpu directories.
1369 //
1370 int Runtime1::move_klass_patching(JavaThread* current) {
1371 //
1372 // NOTE: we are still in Java
1373 //
1374   debug_only(NoHandleMark nhm;)
1375   {
1376     // Enter VM mode
1377     ResetNoHandleMark rnhm;
1378     patch_code(current, C1StubId::load_klass_patching_id);
1379   }
1380   // Back in JAVA, use no oops DON'T safepoint
1381 
1382   // Return true if calling code is deoptimized
1383 
1384   return caller_is_deopted(current);
1385 }
1386 
1387 int Runtime1::move_mirror_patching(JavaThread* current) {
1388 //
1389 // NOTE: we are still in Java
1390 //
1391   debug_only(NoHandleMark nhm;)
1392   {
1393     // Enter VM mode
1394     ResetNoHandleMark rnhm;
1395     patch_code(current, C1StubId::load_mirror_patching_id);
1396   }
1397   // Back in JAVA, use no oops DON'T safepoint
1398 
1399   // Return true if calling code is deoptimized
1400 
1401   return caller_is_deopted(current);
1402 }
1403 
1404 int Runtime1::move_appendix_patching(JavaThread* current) {
1405 //
1406 // NOTE: we are still in Java
1407 //
1408   debug_only(NoHandleMark nhm;)
1409   {
1410     // Enter VM mode
1411     ResetNoHandleMark rnhm;
1412     patch_code(current, C1StubId::load_appendix_patching_id);
1413   }
1414   // Back in JAVA, use no oops DON'T safepoint
1415 
1416   // Return true if calling code is deoptimized
1417 
1418   return caller_is_deopted(current);
1419 }
1420 
1421 // Entry point for compiled code. We want to patch a nmethod.
1422 // We don't do a normal VM transition here because we want to
1423 // know after the patching is complete and any safepoint(s) are taken
1424 // if the calling nmethod was deoptimized. We do this by calling a
1425 // helper method which does the normal VM transition and when it
1426 // completes we can check for deoptimization. This simplifies the
1427 // assembly code in the cpu directories.
1428 //
1429 int Runtime1::access_field_patching(JavaThread* current) {
1430   //
1431   // NOTE: we are still in Java
1432   //
1433   // Handles created in this function will be deleted by the
1434   // HandleMarkCleaner in the transition to the VM.
1435   NoHandleMark nhm;
1436   {
1437     // Enter VM mode
1438     ResetNoHandleMark rnhm;
1439     patch_code(current, C1StubId::access_field_patching_id);
1440   }
1441   // Back in JAVA, use no oops DON'T safepoint
1442 
1443   // Return true if calling code is deoptimized
1444 
1445   return caller_is_deopted(current);
1446 }
1447 
1448 
1449 JRT_LEAF_PROF_NO_THREAD(void, Runtime1, trace_block_entry, Runtime1::trace_block_entry(jint block_id))
1450   // for now we just print out the block id
1451   tty->print("%d ", block_id);
1452 JRT_END
1453 
1454 
1455 JRT_LEAF_PROF_NO_THREAD(int, Runtime1, is_instance_of, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1456   // had to return int instead of bool, otherwise there may be a mismatch
1457   // between the C calling convention and the Java one.
1458   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1459   // JVM takes the whole %eax as the return value, which may misinterpret
1460   // the return value as a boolean true.
1461 
1462   assert(mirror != nullptr, "should null-check on mirror before calling");
1463   Klass* k = java_lang_Class::as_Klass(mirror);
1464   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1465 JRT_END
1466 
1467 JRT_ENTRY_PROF(void, Runtime1, predicate_failed_trap, Runtime1::predicate_failed_trap(JavaThread* current))
1468   ResourceMark rm;
1469 
1470   RegisterMap reg_map(current,
1471                       RegisterMap::UpdateMap::skip,
1472                       RegisterMap::ProcessFrames::include,
1473                       RegisterMap::WalkContinuation::skip);
1474   frame runtime_frame = current->last_frame();
1475   frame caller_frame = runtime_frame.sender(&reg_map);
1476 
1477   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1478   assert (nm != nullptr, "no more nmethod?");
1479   nm->make_not_entrant();
1480 
1481   methodHandle m(current, nm->method());
1482   MethodData* mdo = m->method_data();
1483 
1484   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1485     // Build an MDO.  Ignore errors like OutOfMemory;
1486     // that simply means we won't have an MDO to update.
1487     Method::build_profiling_method_data(m, THREAD);
1488     if (HAS_PENDING_EXCEPTION) {
1489       // Only metaspace OOM is expected. No Java code executed.
1490       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1491       CLEAR_PENDING_EXCEPTION;
1492     }
1493     mdo = m->method_data();
1494   }
1495 
1496   if (mdo != nullptr) {
1497     mdo->inc_trap_count(Deoptimization::Reason_none);
1498   }
1499 
1500   if (TracePredicateFailedTraps) {
1501     stringStream ss1, ss2;
1502     vframeStream vfst(current);
1503     Method* inlinee = vfst.method();
1504     inlinee->print_short_name(&ss1);
1505     m->print_short_name(&ss2);
1506     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1507   }
1508 
1509 
1510   Deoptimization::deoptimize_frame(current, caller_frame.id());
1511 
1512 JRT_END
1513 
1514 // Check exception if AbortVMOnException flag set
1515 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1516   ResourceMark rm;
1517   const char* message = nullptr;
1518   if (ex->is_a(vmClasses::Throwable_klass())) {
1519     oop msg = java_lang_Throwable::message(ex);
1520     if (msg != nullptr) {
1521       message = java_lang_String::as_utf8_string(msg);
1522     }
1523   }
1524   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1525 JRT_END
1526 
1527 #define DO_COUNTERS(macro) \
1528   macro(Runtime1, new_instance) \
1529   macro(Runtime1, new_type_array) \
1530   macro(Runtime1, new_object_array) \
1531   macro(Runtime1, new_multi_array) \
1532   macro(Runtime1, counter_overflow) \
1533   macro(Runtime1, exception_handler_for_pc_helper) \
1534   macro(Runtime1, monitorenter) \
1535   macro(Runtime1, monitorexit) \
1536   macro(Runtime1, deoptimize) \
1537   macro(Runtime1, is_instance_of) \
1538   macro(Runtime1, predicate_failed_trap) \
1539   macro(Runtime1, patch_code)
1540 
1541 #define INIT_COUNTER(sub, name) \
1542   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
1543   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1544 
1545 void Runtime1::init_counters() {
1546   assert(CompilerConfig::is_c1_enabled(), "");
1547 
1548   if (UsePerfData) {
1549     EXCEPTION_MARK;
1550 
1551     DO_COUNTERS(INIT_COUNTER)
1552 
1553     if (HAS_PENDING_EXCEPTION) {
1554       vm_exit_during_initialization("Runtime1::init_counters() failed unexpectedly");
1555     }
1556   }
1557 }
1558 #undef INIT_COUNTER
1559 
1560 #define PRINT_COUNTER(sub, name) { \
1561   if (_perf_##sub##_##name##_count != nullptr) {  \
1562     jlong count = _perf_##sub##_##name##_count->get_value(); \
1563     if (count > 0) { \
1564       st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
1565                    _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
1566                    _perf_##sub##_##name##_timer->thread_counter_value_us(), \
1567                    count); \
1568     }}}
1569 
1570 
1571 void Runtime1::print_counters_on(outputStream* st) {
1572   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c1_enabled()) {
1573     DO_COUNTERS(PRINT_COUNTER)
1574   } else {
1575     st->print_cr("  Runtime1: no info (%s is disabled)",
1576                  (!CompilerConfig::is_c1_enabled() ? "C1" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
1577   }
1578 }
1579 
1580 #undef PRINT_COUNTER
1581 #undef DO_COUNTERS
1582 
1583 #ifndef PRODUCT
1584 void Runtime1::print_statistics_on(outputStream* st) {
1585   st->print_cr("C1 Runtime statistics:");
1586   st->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1587   st->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1588   st->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1589   st->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1590   st->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1591   st->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1592   st->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1593   st->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1594   st->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1595   st->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1596   st->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1597   st->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1598   st->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1599   st->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1600 
1601   st->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1602   st->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1603   st->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1604   st->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1605   st->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1606   st->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1607   st->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1608 
1609   st->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1610   st->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1611   st->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1612   st->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1613   st->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1614   st->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1615   st->print_cr(" _throw_count:                                  %u:", _throw_count);
1616 
1617   SharedRuntime::print_ic_miss_histogram_on(st);
1618   st->cr();
1619 }
1620 #endif // PRODUCT