1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"
  42 #include "compiler/compilerDefinitions.inline.hpp"
  43 #include "compiler/disassembler.hpp"
  44 #include "compiler/oopMap.hpp"
  45 #include "gc/shared/barrierSet.hpp"
  46 #include "gc/shared/c1/barrierSetC1.hpp"
  47 #include "gc/shared/collectedHeap.hpp"
  48 #include "interpreter/bytecode.hpp"
  49 #include "interpreter/interpreter.hpp"
  50 #include "jfr/support/jfrIntrinsics.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.inline.hpp"
  53 #include "memory/oopFactory.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/universe.hpp"
  56 #include "oops/access.inline.hpp"
  57 #include "oops/klass.inline.hpp"
  58 #include "oops/objArrayOop.inline.hpp"
  59 #include "oops/objArrayKlass.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/fieldDescriptor.inline.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/perfData.inline.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stackWatermarkSet.hpp"
  71 #include "runtime/stubRoutines.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/vframe.inline.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "runtime/vm_version.hpp"
  76 #include "services/management.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/events.hpp"
  79 
  80 
  81 // Implementation of StubAssembler
  82 
  83 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  84   _name = name;
  85   _must_gc_arguments = false;
  86   _frame_size = no_frame_size;
  87   _num_rt_args = 0;
  88   _stub_id = stub_id;
  89 }
  90 
  91 
  92 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  93   _name = name;
  94   _must_gc_arguments = must_gc_arguments;
  95 }
  96 
  97 
  98 void StubAssembler::set_frame_size(int size) {
  99   if (_frame_size == no_frame_size) {
 100     _frame_size = size;
 101   }
 102   assert(_frame_size == size, "can't change the frame size");
 103 }
 104 
 105 
 106 void StubAssembler::set_num_rt_args(int args) {
 107   if (_num_rt_args == 0) {
 108     _num_rt_args = args;
 109   }
 110   assert(_num_rt_args == args, "can't change the number of args");
 111 }
 112 
 113 // Implementation of Runtime1
 114 
 115 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 116 const char *Runtime1::_blob_names[] = {
 117   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 118 };
 119 
 120 #ifndef PRODUCT
 121 // statistics
 122 uint Runtime1::_generic_arraycopystub_cnt = 0;
 123 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 124 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 125 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 126 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 127 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 128 uint Runtime1::_new_instance_slowcase_cnt = 0;
 129 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 130 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 131 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 132 uint Runtime1::_patch_code_slowcase_cnt = 0;
 133 uint Runtime1::_throw_range_check_exception_count = 0;
 134 uint Runtime1::_throw_index_exception_count = 0;
 135 uint Runtime1::_throw_div0_exception_count = 0;
 136 uint Runtime1::_throw_null_pointer_exception_count = 0;
 137 uint Runtime1::_throw_class_cast_exception_count = 0;
 138 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 139 uint Runtime1::_throw_count = 0;
 140 
 141 static uint _byte_arraycopy_stub_cnt = 0;
 142 static uint _short_arraycopy_stub_cnt = 0;
 143 static uint _int_arraycopy_stub_cnt = 0;
 144 static uint _long_arraycopy_stub_cnt = 0;
 145 static uint _oop_arraycopy_stub_cnt = 0;
 146 
 147 address Runtime1::arraycopy_count_address(BasicType type) {
 148   switch (type) {
 149   case T_BOOLEAN:
 150   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 151   case T_CHAR:
 152   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 153   case T_FLOAT:
 154   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 155   case T_DOUBLE:
 156   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 157   case T_ARRAY:
 158   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 159   default:
 160     ShouldNotReachHere();
 161     return nullptr;
 162   }
 163 }
 164 
 165 
 166 #endif
 167 
 168 // Simple helper to see if the caller of a runtime stub which
 169 // entered the VM has been deoptimized
 170 
 171 static bool caller_is_deopted(JavaThread* current) {
 172   RegisterMap reg_map(current,
 173                       RegisterMap::UpdateMap::skip,
 174                       RegisterMap::ProcessFrames::include,
 175                       RegisterMap::WalkContinuation::skip);
 176   frame runtime_frame = current->last_frame();
 177   frame caller_frame = runtime_frame.sender(&reg_map);
 178   assert(caller_frame.is_compiled_frame(), "must be compiled");
 179   return caller_frame.is_deoptimized_frame();
 180 }
 181 
 182 // Stress deoptimization
 183 static void deopt_caller(JavaThread* current) {
 184   if (!caller_is_deopted(current)) {
 185     RegisterMap reg_map(current,
 186                         RegisterMap::UpdateMap::skip,
 187                         RegisterMap::ProcessFrames::include,
 188                         RegisterMap::WalkContinuation::skip);
 189     frame runtime_frame = current->last_frame();
 190     frame caller_frame = runtime_frame.sender(&reg_map);
 191     Deoptimization::deoptimize_frame(current, caller_frame.id());
 192     assert(caller_is_deopted(current), "Must be deoptimized");
 193   }
 194 }
 195 
 196 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 197  private:
 198   Runtime1::StubID _id;
 199  public:
 200   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 201   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 202     return Runtime1::generate_code_for(_id, sasm);
 203   }
 204 };
 205 
 206 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 207   ResourceMark rm;
 208   // create code buffer for code storage
 209   CodeBuffer code(buffer_blob);
 210 
 211   OopMapSet* oop_maps;
 212   int frame_size;
 213   bool must_gc_arguments;
 214 
 215   Compilation::setup_code_buffer(&code, 0);
 216 
 217   // create assembler for code generation
 218   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 219   // generate code for runtime stub
 220   oop_maps = cl->generate_code(sasm);
 221   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 222          "if stub has an oop map it must have a valid frame size");
 223   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 224 
 225   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 226   sasm->align(BytesPerWord);
 227   // make sure all code is in code buffer
 228   sasm->flush();
 229 
 230   frame_size = sasm->frame_size();
 231   must_gc_arguments = sasm->must_gc_arguments();
 232   // create blob - distinguish a few special cases
 233   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 234                                                  &code,
 235                                                  CodeOffsets::frame_never_safe,
 236                                                  frame_size,
 237                                                  oop_maps,
 238                                                  must_gc_arguments);
 239   assert(blob != nullptr, "blob must exist");
 240   return blob;
 241 }
 242 
 243 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 244   assert(0 <= id && id < number_of_ids, "illegal stub id");
 245   bool expect_oop_map = true;
 246 #ifdef ASSERT
 247   // Make sure that stubs that need oopmaps have them
 248   switch (id) {
 249     // These stubs don't need to have an oopmap
 250   case dtrace_object_alloc_id:
 251   case slow_subtype_check_id:
 252   case fpu2long_stub_id:
 253   case unwind_exception_id:
 254   case counter_overflow_id:
 255     expect_oop_map = false;
 256     break;
 257   default:
 258     break;
 259   }
 260 #endif
 261   StubIDStubAssemblerCodeGenClosure cl(id);
 262   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 263   // install blob
 264   _blobs[id] = blob;
 265 }
 266 
 267 void Runtime1::initialize(BufferBlob* blob) {
 268   init_counters();
 269   // platform-dependent initialization
 270   initialize_pd();
 271   // generate stubs
 272   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 273   // printing
 274 #ifndef PRODUCT
 275   if (PrintSimpleStubs) {
 276     ResourceMark rm;
 277     for (int id = 0; id < number_of_ids; id++) {
 278       _blobs[id]->print();
 279       if (_blobs[id]->oop_maps() != nullptr) {
 280         _blobs[id]->oop_maps()->print();
 281       }
 282     }
 283   }
 284 #endif
 285   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 286   bs->generate_c1_runtime_stubs(blob);
 287 }
 288 
 289 CodeBlob* Runtime1::blob_for(StubID id) {
 290   assert(0 <= id && id < number_of_ids, "illegal stub id");
 291   return _blobs[id];
 292 }
 293 
 294 
 295 const char* Runtime1::name_for(StubID id) {
 296   assert(0 <= id && id < number_of_ids, "illegal stub id");
 297   return _blob_names[id];
 298 }
 299 
 300 const char* Runtime1::name_for_address(address entry) {
 301   for (int id = 0; id < number_of_ids; id++) {
 302     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 303   }
 304 
 305 #define FUNCTION_CASE(a, f) \
 306   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 307 
 308   FUNCTION_CASE(entry, os::javaTimeMillis);
 309   FUNCTION_CASE(entry, os::javaTimeNanos);
 310   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 311   FUNCTION_CASE(entry, SharedRuntime::d2f);
 312   FUNCTION_CASE(entry, SharedRuntime::d2i);
 313   FUNCTION_CASE(entry, SharedRuntime::d2l);
 314   FUNCTION_CASE(entry, SharedRuntime::dcos);
 315   FUNCTION_CASE(entry, SharedRuntime::dexp);
 316   FUNCTION_CASE(entry, SharedRuntime::dlog);
 317   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 318   FUNCTION_CASE(entry, SharedRuntime::dpow);
 319   FUNCTION_CASE(entry, SharedRuntime::drem);
 320   FUNCTION_CASE(entry, SharedRuntime::dsin);
 321   FUNCTION_CASE(entry, SharedRuntime::dtan);
 322   FUNCTION_CASE(entry, SharedRuntime::f2i);
 323   FUNCTION_CASE(entry, SharedRuntime::f2l);
 324   FUNCTION_CASE(entry, SharedRuntime::frem);
 325   FUNCTION_CASE(entry, SharedRuntime::l2d);
 326   FUNCTION_CASE(entry, SharedRuntime::l2f);
 327   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 328   FUNCTION_CASE(entry, SharedRuntime::lmul);
 329   FUNCTION_CASE(entry, SharedRuntime::lrem);
 330   FUNCTION_CASE(entry, SharedRuntime::lrem);
 331   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 332   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 333   FUNCTION_CASE(entry, is_instance_of);
 334   FUNCTION_CASE(entry, trace_block_entry);
 335 #ifdef JFR_HAVE_INTRINSICS
 336   FUNCTION_CASE(entry, JfrTime::time_function());
 337 #endif
 338   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 339   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 340   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 341   FUNCTION_CASE(entry, StubRoutines::dexp());
 342   FUNCTION_CASE(entry, StubRoutines::dlog());
 343   FUNCTION_CASE(entry, StubRoutines::dlog10());
 344   FUNCTION_CASE(entry, StubRoutines::dpow());
 345   FUNCTION_CASE(entry, StubRoutines::dsin());
 346   FUNCTION_CASE(entry, StubRoutines::dcos());
 347   FUNCTION_CASE(entry, StubRoutines::dtan());
 348 
 349 #undef FUNCTION_CASE
 350 
 351   // Soft float adds more runtime names.
 352   return pd_name_for_address(entry);
 353 }
 354 
 355 
 356 JRT_ENTRY_PROF(void, Runtime1, new_instance, Runtime1::new_instance(JavaThread* current, Klass* klass))
 357 #ifndef PRODUCT
 358   if (PrintC1Statistics) {
 359     _new_instance_slowcase_cnt++;
 360   }
 361 #endif
 362   assert(klass->is_klass(), "not a class");
 363   Handle holder(current, klass->klass_holder()); // keep the klass alive
 364   InstanceKlass* h = InstanceKlass::cast(klass);
 365   h->check_valid_for_instantiation(true, CHECK);
 366   // make sure klass is initialized
 367   h->initialize(CHECK);
 368   // allocate instance and return via TLS
 369   oop obj = h->allocate_instance(CHECK);
 370   current->set_vm_result(obj);
 371 JRT_END
 372 
 373 
 374 JRT_ENTRY_PROF(void, Runtime1, new_type_array, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 375 #ifndef PRODUCT
 376   if (PrintC1Statistics) {
 377     _new_type_array_slowcase_cnt++;
 378   }
 379 #endif
 380   // Note: no handle for klass needed since they are not used
 381   //       anymore after new_typeArray() and no GC can happen before.
 382   //       (This may have to change if this code changes!)
 383   assert(klass->is_klass(), "not a class");
 384   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 385   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 386   current->set_vm_result(obj);
 387   // This is pretty rare but this runtime patch is stressful to deoptimization
 388   // if we deoptimize here so force a deopt to stress the path.
 389   if (DeoptimizeALot) {
 390     deopt_caller(current);
 391   }
 392 
 393 JRT_END
 394 
 395 
 396 JRT_ENTRY_PROF(void, Runtime1, new_object_array, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 397 #ifndef PRODUCT
 398   if (PrintC1Statistics) {
 399     _new_object_array_slowcase_cnt++;
 400   }
 401 #endif
 402   // Note: no handle for klass needed since they are not used
 403   //       anymore after new_objArray() and no GC can happen before.
 404   //       (This may have to change if this code changes!)
 405   assert(array_klass->is_klass(), "not a class");
 406   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 407   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 408   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 409   current->set_vm_result(obj);
 410   // This is pretty rare but this runtime patch is stressful to deoptimization
 411   // if we deoptimize here so force a deopt to stress the path.
 412   if (DeoptimizeALot) {
 413     deopt_caller(current);
 414   }
 415 JRT_END
 416 
 417 
 418 JRT_ENTRY_PROF(void, Runtime1, new_multi_array, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 419 #ifndef PRODUCT
 420   if (PrintC1Statistics) {
 421     _new_multi_array_slowcase_cnt++;
 422   }
 423 #endif
 424   assert(klass->is_klass(), "not a class");
 425   assert(rank >= 1, "rank must be nonzero");
 426   Handle holder(current, klass->klass_holder()); // keep the klass alive
 427   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 428   current->set_vm_result(obj);
 429 JRT_END
 430 
 431 
 432 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id))
 433   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 434 JRT_END
 435 
 436 
 437 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 438   ResourceMark rm(current);
 439   const char* klass_name = obj->klass()->external_name();
 440   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 441 JRT_END
 442 
 443 
 444 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 445 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 446 // method) method is passed as an argument. In order to do that it is embedded in the code as
 447 // a constant.
 448 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 449   nmethod* osr_nm = nullptr;
 450   methodHandle method(current, m);
 451 
 452   RegisterMap map(current,
 453                   RegisterMap::UpdateMap::skip,
 454                   RegisterMap::ProcessFrames::include,
 455                   RegisterMap::WalkContinuation::skip);
 456   frame fr =  current->last_frame().sender(&map);
 457   nmethod* nm = (nmethod*) fr.cb();
 458   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 459   methodHandle enclosing_method(current, nm->method());
 460 
 461   CompLevel level = (CompLevel)nm->comp_level();
 462   int bci = InvocationEntryBci;
 463   if (branch_bci != InvocationEntryBci) {
 464     // Compute destination bci
 465     address pc = method()->code_base() + branch_bci;
 466     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 467     int offset = 0;
 468     switch (branch) {
 469       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 470       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 471       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 472       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 473       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 474       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 475       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 476         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 477         break;
 478       case Bytecodes::_goto_w:
 479         offset = Bytes::get_Java_u4(pc + 1);
 480         break;
 481       default: ;
 482     }
 483     bci = branch_bci + offset;
 484   }
 485   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 486   return osr_nm;
 487 }
 488 
 489 JRT_BLOCK_ENTRY_PROF(address, Runtime1, counter_overflow, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 490   nmethod* osr_nm;
 491   JRT_BLOCK
 492     osr_nm = counter_overflow_helper(current, bci, method);
 493     if (osr_nm != nullptr) {
 494       RegisterMap map(current,
 495                       RegisterMap::UpdateMap::skip,
 496                       RegisterMap::ProcessFrames::include,
 497                       RegisterMap::WalkContinuation::skip);
 498       frame fr =  current->last_frame().sender(&map);
 499       Deoptimization::deoptimize_frame(current, fr.id());
 500     }
 501   JRT_BLOCK_END
 502   return nullptr;
 503 JRT_END
 504 
 505 extern void vm_exit(int code);
 506 
 507 // Enter this method from compiled code handler below. This is where we transition
 508 // to VM mode. This is done as a helper routine so that the method called directly
 509 // from compiled code does not have to transition to VM. This allows the entry
 510 // method to see if the nmethod that we have just looked up a handler for has
 511 // been deoptimized while we were in the vm. This simplifies the assembly code
 512 // cpu directories.
 513 //
 514 // We are entering here from exception stub (via the entry method below)
 515 // If there is a compiled exception handler in this method, we will continue there;
 516 // otherwise we will unwind the stack and continue at the caller of top frame method
 517 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 518 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 519 // check to see if the handler we are going to return is now in a nmethod that has
 520 // been deoptimized. If that is the case we return the deopt blob
 521 // unpack_with_exception entry instead. This makes life for the exception blob easier
 522 // because making that same check and diverting is painful from assembly language.
 523 JRT_ENTRY_NO_ASYNC_PROF(static address, Runtime1, exception_handler_for_pc_helper, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 524   // Reset method handle flag.
 525   current->set_is_method_handle_return(false);
 526 
 527   Handle exception(current, ex);
 528 
 529   // This function is called when we are about to throw an exception. Therefore,
 530   // we have to poll the stack watermark barrier to make sure that not yet safe
 531   // stack frames are made safe before returning into them.
 532   if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) {
 533     // The Runtime1::handle_exception_from_callee_id handler is invoked after the
 534     // frame has been unwound. It instead builds its own stub frame, to call the
 535     // runtime. But the throwing frame has already been unwound here.
 536     StackWatermarkSet::after_unwind(current);
 537   }
 538 
 539   nm = CodeCache::find_nmethod(pc);
 540   assert(nm != nullptr, "this is not an nmethod");
 541   // Adjust the pc as needed/
 542   if (nm->is_deopt_pc(pc)) {
 543     RegisterMap map(current,
 544                     RegisterMap::UpdateMap::skip,
 545                     RegisterMap::ProcessFrames::include,
 546                     RegisterMap::WalkContinuation::skip);
 547     frame exception_frame = current->last_frame().sender(&map);
 548     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 549     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 550     pc = exception_frame.pc();
 551   }
 552   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 553   // Check that exception is a subclass of Throwable
 554   assert(exception->is_a(vmClasses::Throwable_klass()),
 555          "Exception not subclass of Throwable");
 556 
 557   // debugging support
 558   // tracing
 559   if (log_is_enabled(Info, exceptions)) {
 560     ResourceMark rm; // print_value_string
 561     stringStream tempst;
 562     assert(nm->method() != nullptr, "Unexpected null method()");
 563     tempst.print("C1 compiled method <%s>\n"
 564                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 565                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 566     Exceptions::log_exception(exception, tempst.freeze());
 567   }
 568   // for AbortVMOnException flag
 569   Exceptions::debug_check_abort(exception);
 570 
 571   // Check the stack guard pages and re-enable them if necessary and there is
 572   // enough space on the stack to do so.  Use fast exceptions only if the guard
 573   // pages are enabled.
 574   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 575 
 576   if (JvmtiExport::can_post_on_exceptions()) {
 577     // To ensure correct notification of exception catches and throws
 578     // we have to deoptimize here.  If we attempted to notify the
 579     // catches and throws during this exception lookup it's possible
 580     // we could deoptimize on the way out of the VM and end back in
 581     // the interpreter at the throw site.  This would result in double
 582     // notifications since the interpreter would also notify about
 583     // these same catches and throws as it unwound the frame.
 584 
 585     RegisterMap reg_map(current,
 586                         RegisterMap::UpdateMap::include,
 587                         RegisterMap::ProcessFrames::include,
 588                         RegisterMap::WalkContinuation::skip);
 589     frame stub_frame = current->last_frame();
 590     frame caller_frame = stub_frame.sender(&reg_map);
 591 
 592     // We don't really want to deoptimize the nmethod itself since we
 593     // can actually continue in the exception handler ourselves but I
 594     // don't see an easy way to have the desired effect.
 595     Deoptimization::deoptimize_frame(current, caller_frame.id());
 596     assert(caller_is_deopted(current), "Must be deoptimized");
 597 
 598     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 599   }
 600 
 601   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 602   if (guard_pages_enabled) {
 603     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 604     if (fast_continuation != nullptr) {
 605       // Set flag if return address is a method handle call site.
 606       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 607       return fast_continuation;
 608     }
 609   }
 610 
 611   // If the stack guard pages are enabled, check whether there is a handler in
 612   // the current method.  Otherwise (guard pages disabled), force an unwind and
 613   // skip the exception cache update (i.e., just leave continuation as null).
 614   address continuation = nullptr;
 615   if (guard_pages_enabled) {
 616 
 617     // New exception handling mechanism can support inlined methods
 618     // with exception handlers since the mappings are from PC to PC
 619 
 620     // Clear out the exception oop and pc since looking up an
 621     // exception handler can cause class loading, which might throw an
 622     // exception and those fields are expected to be clear during
 623     // normal bytecode execution.
 624     current->clear_exception_oop_and_pc();
 625 
 626     bool recursive_exception = false;
 627     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 628     // If an exception was thrown during exception dispatch, the exception oop may have changed
 629     current->set_exception_oop(exception());
 630     current->set_exception_pc(pc);
 631 
 632     // the exception cache is used only by non-implicit exceptions
 633     // Update the exception cache only when there didn't happen
 634     // another exception during the computation of the compiled
 635     // exception handler. Checking for exception oop equality is not
 636     // sufficient because some exceptions are pre-allocated and reused.
 637     if (continuation != nullptr && !recursive_exception) {
 638       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 639     }
 640   }
 641 
 642   current->set_vm_result(exception());
 643   // Set flag if return address is a method handle call site.
 644   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 645 
 646   if (log_is_enabled(Info, exceptions)) {
 647     ResourceMark rm;
 648     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 649                          " for exception thrown at PC " PTR_FORMAT,
 650                          p2i(current), p2i(continuation), p2i(pc));
 651   }
 652 
 653   return continuation;
 654 JRT_END
 655 
 656 // Enter this method from compiled code only if there is a Java exception handler
 657 // in the method handling the exception.
 658 // We are entering here from exception stub. We don't do a normal VM transition here.
 659 // We do it in a helper. This is so we can check to see if the nmethod we have just
 660 // searched for an exception handler has been deoptimized in the meantime.
 661 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 662   oop exception = current->exception_oop();
 663   address pc = current->exception_pc();
 664   // Still in Java mode
 665   DEBUG_ONLY(NoHandleMark nhm);
 666   nmethod* nm = nullptr;
 667   address continuation = nullptr;
 668   {
 669     // Enter VM mode by calling the helper
 670     ResetNoHandleMark rnhm;
 671     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 672   }
 673   // Back in JAVA, use no oops DON'T safepoint
 674 
 675   // Now check to see if the nmethod we were called from is now deoptimized.
 676   // If so we must return to the deopt blob and deoptimize the nmethod
 677   if (nm != nullptr && caller_is_deopted(current)) {
 678     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 679   }
 680 
 681   assert(continuation != nullptr, "no handler found");
 682   return continuation;
 683 }
 684 
 685 
 686 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 687 #ifndef PRODUCT
 688   if (PrintC1Statistics) {
 689     _throw_range_check_exception_count++;
 690   }
 691 #endif
 692   const int len = 35;
 693   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 694   char message[2 * jintAsStringSize + len];
 695   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 696   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 697 JRT_END
 698 
 699 
 700 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 701 #ifndef PRODUCT
 702   if (PrintC1Statistics) {
 703     _throw_index_exception_count++;
 704   }
 705 #endif
 706   char message[16];
 707   os::snprintf_checked(message, sizeof(message), "%d", index);
 708   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 709 JRT_END
 710 
 711 
 712 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 713 #ifndef PRODUCT
 714   if (PrintC1Statistics) {
 715     _throw_div0_exception_count++;
 716   }
 717 #endif
 718   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 719 JRT_END
 720 
 721 
 722 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 723 #ifndef PRODUCT
 724   if (PrintC1Statistics) {
 725     _throw_null_pointer_exception_count++;
 726   }
 727 #endif
 728   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 729 JRT_END
 730 
 731 
 732 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 733 #ifndef PRODUCT
 734   if (PrintC1Statistics) {
 735     _throw_class_cast_exception_count++;
 736   }
 737 #endif
 738   ResourceMark rm(current);
 739   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 740   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 741 JRT_END
 742 
 743 
 744 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 745 #ifndef PRODUCT
 746   if (PrintC1Statistics) {
 747     _throw_incompatible_class_change_error_count++;
 748   }
 749 #endif
 750   ResourceMark rm(current);
 751   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 752 JRT_END
 753 
 754 
 755 JRT_BLOCK_ENTRY_PROF(void, Runtime1, monitorenter, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 756 #ifndef PRODUCT
 757   if (PrintC1Statistics) {
 758     _monitorenter_slowcase_cnt++;
 759   }
 760 #endif
 761   if (LockingMode == LM_MONITOR) {
 762     lock->set_obj(obj);
 763   }
 764   assert(LockingMode == LM_LIGHTWEIGHT || obj == lock->obj(), "must match");
 765   SharedRuntime::monitor_enter_helper(obj, LockingMode == LM_LIGHTWEIGHT ? nullptr : lock->lock(), current);
 766 JRT_END
 767 
 768 
 769 JRT_LEAF_PROF(void, Runtime1, monitorexit, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 770   assert(current == JavaThread::current(), "pre-condition");
 771 #ifndef PRODUCT
 772   if (PrintC1Statistics) {
 773     _monitorexit_slowcase_cnt++;
 774   }
 775 #endif
 776   assert(current->last_Java_sp(), "last_Java_sp must be set");
 777   oop obj = lock->obj();
 778   assert(oopDesc::is_oop(obj), "must be null or an object");
 779   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 780 JRT_END
 781 
 782 // Cf. OptoRuntime::deoptimize_caller_frame
 783 JRT_ENTRY_PROF(void, Runtime1, deoptimize, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 784   // Called from within the owner thread, so no need for safepoint
 785   RegisterMap reg_map(current,
 786                       RegisterMap::UpdateMap::skip,
 787                       RegisterMap::ProcessFrames::include,
 788                       RegisterMap::WalkContinuation::skip);
 789   frame stub_frame = current->last_frame();
 790   assert(stub_frame.is_runtime_frame(), "Sanity check");
 791   frame caller_frame = stub_frame.sender(&reg_map);
 792   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 793   assert(nm != nullptr, "Sanity check");
 794   methodHandle method(current, nm->method());
 795   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 796   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 797   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 798 
 799   if (action == Deoptimization::Action_make_not_entrant) {
 800     if (nm->make_not_entrant()) {
 801       if (reason == Deoptimization::Reason_tenured) {
 802         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 803         if (trap_mdo != nullptr) {
 804           trap_mdo->inc_tenure_traps();
 805         }
 806       }
 807     }
 808   }
 809 
 810   // Deoptimize the caller frame.
 811   Deoptimization::deoptimize_frame(current, caller_frame.id());
 812   // Return to the now deoptimized frame.
 813 JRT_END
 814 
 815 
 816 #ifndef DEOPTIMIZE_WHEN_PATCHING
 817 
 818 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 819   Bytecode_field field_access(caller, bci);
 820   // This can be static or non-static field access
 821   Bytecodes::Code code       = field_access.code();
 822 
 823   // We must load class, initialize class and resolve the field
 824   fieldDescriptor result; // initialize class if needed
 825   constantPoolHandle constants(THREAD, caller->constants());
 826   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller,
 827                                      Bytecodes::java_code(code), true /*initialize_class*/, CHECK_NULL);
 828   return result.field_holder();
 829 }
 830 
 831 
 832 //
 833 // This routine patches sites where a class wasn't loaded or
 834 // initialized at the time the code was generated.  It handles
 835 // references to classes, fields and forcing of initialization.  Most
 836 // of the cases are straightforward and involving simply forcing
 837 // resolution of a class, rewriting the instruction stream with the
 838 // needed constant and replacing the call in this function with the
 839 // patched code.  The case for static field is more complicated since
 840 // the thread which is in the process of initializing a class can
 841 // access it's static fields but other threads can't so the code
 842 // either has to deoptimize when this case is detected or execute a
 843 // check that the current thread is the initializing thread.  The
 844 // current
 845 //
 846 // Patches basically look like this:
 847 //
 848 //
 849 // patch_site: jmp patch stub     ;; will be patched
 850 // continue:   ...
 851 //             ...
 852 //             ...
 853 //             ...
 854 //
 855 // They have a stub which looks like this:
 856 //
 857 //             ;; patch body
 858 //             movl <const>, reg           (for class constants)
 859 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 860 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 861 //             <being_init offset> <bytes to copy> <bytes to skip>
 862 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 863 //             jmp patch_site
 864 //
 865 //
 866 // A normal patch is done by rewriting the patch body, usually a move,
 867 // and then copying it into place over top of the jmp instruction
 868 // being careful to flush caches and doing it in an MP-safe way.  The
 869 // constants following the patch body are used to find various pieces
 870 // of the patch relative to the call site for Runtime1::patch_code.
 871 // The case for getstatic and putstatic is more complicated because
 872 // getstatic and putstatic have special semantics when executing while
 873 // the class is being initialized.  getstatic/putstatic on a class
 874 // which is being_initialized may be executed by the initializing
 875 // thread but other threads have to block when they execute it.  This
 876 // is accomplished in compiled code by executing a test of the current
 877 // thread against the initializing thread of the class.  It's emitted
 878 // as boilerplate in their stub which allows the patched code to be
 879 // executed before it's copied back into the main body of the nmethod.
 880 //
 881 // being_init: get_thread(<tmp reg>
 882 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 883 //             jne patch_stub
 884 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 885 //             movl reg, [reg1 + <const>]  (for field offsets)
 886 //             jmp continue
 887 //             <being_init offset> <bytes to copy> <bytes to skip>
 888 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 889 //             jmp patch_site
 890 //
 891 // If the class is being initialized the patch body is rewritten and
 892 // the patch site is rewritten to jump to being_init, instead of
 893 // patch_stub.  Whenever this code is executed it checks the current
 894 // thread against the initializing thread so other threads will enter
 895 // the runtime and end up blocked waiting the class to finish
 896 // initializing inside the calls to resolve_field below.  The
 897 // initializing class will continue on it's way.  Once the class is
 898 // fully_initialized, the intializing_thread of the class becomes
 899 // null, so the next thread to execute this code will fail the test,
 900 // call into patch_code and complete the patching process by copying
 901 // the patch body back into the main part of the nmethod and resume
 902 // executing.
 903 
 904 // NB:
 905 //
 906 // Patchable instruction sequences inherently exhibit race conditions,
 907 // where thread A is patching an instruction at the same time thread B
 908 // is executing it.  The algorithms we use ensure that any observation
 909 // that B can make on any intermediate states during A's patching will
 910 // always end up with a correct outcome.  This is easiest if there are
 911 // few or no intermediate states.  (Some inline caches have two
 912 // related instructions that must be patched in tandem.  For those,
 913 // intermediate states seem to be unavoidable, but we will get the
 914 // right answer from all possible observation orders.)
 915 //
 916 // When patching the entry instruction at the head of a method, or a
 917 // linkable call instruction inside of a method, we try very hard to
 918 // use a patch sequence which executes as a single memory transaction.
 919 // This means, in practice, that when thread A patches an instruction,
 920 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 921 // instruction or is contained in it.  We believe that memory hardware
 922 // will never break up such a word write, if it is naturally aligned
 923 // for the word being written.  We also know that some CPUs work very
 924 // hard to create atomic updates even of naturally unaligned words,
 925 // but we don't want to bet the farm on this always working.
 926 //
 927 // Therefore, if there is any chance of a race condition, we try to
 928 // patch only naturally aligned words, as single, full-word writes.
 929 
 930 JRT_ENTRY_PROF(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id))
 931 #ifndef PRODUCT
 932   if (PrintC1Statistics) {
 933     _patch_code_slowcase_cnt++;
 934   }
 935 #endif
 936 
 937   ResourceMark rm(current);
 938   RegisterMap reg_map(current,
 939                       RegisterMap::UpdateMap::skip,
 940                       RegisterMap::ProcessFrames::include,
 941                       RegisterMap::WalkContinuation::skip);
 942   frame runtime_frame = current->last_frame();
 943   frame caller_frame = runtime_frame.sender(&reg_map);
 944 
 945   // last java frame on stack
 946   vframeStream vfst(current, true);
 947   assert(!vfst.at_end(), "Java frame must exist");
 948 
 949   methodHandle caller_method(current, vfst.method());
 950   // Note that caller_method->code() may not be same as caller_code because of OSR's
 951   // Note also that in the presence of inlining it is not guaranteed
 952   // that caller_method() == caller_code->method()
 953 
 954   int bci = vfst.bci();
 955   Bytecodes::Code code = caller_method()->java_code_at(bci);
 956 
 957   // this is used by assertions in the access_field_patching_id
 958   BasicType patch_field_type = T_ILLEGAL;
 959   bool deoptimize_for_volatile = false;
 960   bool deoptimize_for_atomic = false;
 961   int patch_field_offset = -1;
 962   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 963   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 964   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 965   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 966   bool load_klass_or_mirror_patch_id =
 967     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 968 
 969   if (stub_id == Runtime1::access_field_patching_id) {
 970 
 971     Bytecode_field field_access(caller_method, bci);
 972     fieldDescriptor result; // initialize class if needed
 973     Bytecodes::Code code = field_access.code();
 974     constantPoolHandle constants(current, caller_method->constants());
 975     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method,
 976                                        Bytecodes::java_code(code), true /*initialize_class*/, CHECK);
 977     patch_field_offset = result.offset();
 978 
 979     // If we're patching a field which is volatile then at compile it
 980     // must not have been know to be volatile, so the generated code
 981     // isn't correct for a volatile reference.  The nmethod has to be
 982     // deoptimized so that the code can be regenerated correctly.
 983     // This check is only needed for access_field_patching since this
 984     // is the path for patching field offsets.  load_klass is only
 985     // used for patching references to oops which don't need special
 986     // handling in the volatile case.
 987 
 988     deoptimize_for_volatile = result.access_flags().is_volatile();
 989 
 990     // If we are patching a field which should be atomic, then
 991     // the generated code is not correct either, force deoptimizing.
 992     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 993     // break access atomicity only for them.
 994 
 995     // Strictly speaking, the deoptimization on 64-bit platforms
 996     // is unnecessary, and T_LONG stores on 32-bit platforms need
 997     // to be handled by special patching code when AlwaysAtomicAccesses
 998     // becomes product feature. At this point, we are still going
 999     // for the deoptimization for consistency against volatile
1000     // accesses.
1001 
1002     patch_field_type = result.field_type();
1003     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1004 
1005   } else if (load_klass_or_mirror_patch_id) {
1006     Klass* k = nullptr;
1007     switch (code) {
1008       case Bytecodes::_putstatic:
1009       case Bytecodes::_getstatic:
1010         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1011           init_klass = klass;
1012           mirror = Handle(current, klass->java_mirror());
1013         }
1014         break;
1015       case Bytecodes::_new:
1016         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1017           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1018         }
1019         break;
1020       case Bytecodes::_multianewarray:
1021         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1022           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1023         }
1024         break;
1025       case Bytecodes::_instanceof:
1026         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1027           k = caller_method->constants()->klass_at(io.index(), CHECK);
1028         }
1029         break;
1030       case Bytecodes::_checkcast:
1031         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1032           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1033         }
1034         break;
1035       case Bytecodes::_anewarray:
1036         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1037           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1038           k = ek->array_klass(CHECK);
1039         }
1040         break;
1041       case Bytecodes::_ldc:
1042       case Bytecodes::_ldc_w:
1043       case Bytecodes::_ldc2_w:
1044         {
1045           Bytecode_loadconstant cc(caller_method, bci);
1046           oop m = cc.resolve_constant(CHECK);
1047           mirror = Handle(current, m);
1048         }
1049         break;
1050       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1051     }
1052     load_klass = k;
1053   } else if (stub_id == load_appendix_patching_id) {
1054     Bytecode_invoke bytecode(caller_method, bci);
1055     Bytecodes::Code bc = bytecode.invoke_code();
1056 
1057     CallInfo info;
1058     constantPoolHandle pool(current, caller_method->constants());
1059     int index = bytecode.index();
1060     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1061     switch (bc) {
1062       case Bytecodes::_invokehandle: {
1063         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1064         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1065         break;
1066       }
1067       case Bytecodes::_invokedynamic: {
1068         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1069         break;
1070       }
1071       default: fatal("unexpected bytecode for load_appendix_patching_id");
1072     }
1073   } else {
1074     ShouldNotReachHere();
1075   }
1076 
1077   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1078     // At compile time we assumed the field wasn't volatile/atomic but after
1079     // loading it turns out it was volatile/atomic so we have to throw the
1080     // compiled code out and let it be regenerated.
1081     if (TracePatching) {
1082       if (deoptimize_for_volatile) {
1083         tty->print_cr("Deoptimizing for patching volatile field reference");
1084       }
1085       if (deoptimize_for_atomic) {
1086         tty->print_cr("Deoptimizing for patching atomic field reference");
1087       }
1088     }
1089 
1090     // It's possible the nmethod was invalidated in the last
1091     // safepoint, but if it's still alive then make it not_entrant.
1092     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1093     if (nm != nullptr) {
1094       nm->make_not_entrant();
1095     }
1096 
1097     Deoptimization::deoptimize_frame(current, caller_frame.id());
1098 
1099     // Return to the now deoptimized frame.
1100   }
1101 
1102   // Now copy code back
1103 
1104   {
1105     MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag);
1106     //
1107     // Deoptimization may have happened while we waited for the lock.
1108     // In that case we don't bother to do any patching we just return
1109     // and let the deopt happen
1110     if (!caller_is_deopted(current)) {
1111       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1112       address instr_pc = jump->jump_destination();
1113       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1114       if (ni->is_jump() ) {
1115         // the jump has not been patched yet
1116         // The jump destination is slow case and therefore not part of the stubs
1117         // (stubs are only for StaticCalls)
1118 
1119         // format of buffer
1120         //    ....
1121         //    instr byte 0     <-- copy_buff
1122         //    instr byte 1
1123         //    ..
1124         //    instr byte n-1
1125         //      n
1126         //    ....             <-- call destination
1127 
1128         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1129         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1130         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1131         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1132         address copy_buff = stub_location - *byte_skip - *byte_count;
1133         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1134         if (TracePatching) {
1135           ttyLocker ttyl;
1136           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1137                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1138           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1139           assert(caller_code != nullptr, "nmethod not found");
1140 
1141           // NOTE we use pc() not original_pc() because we already know they are
1142           // identical otherwise we'd have never entered this block of code
1143 
1144           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1145           assert(map != nullptr, "null check");
1146           map->print();
1147           tty->cr();
1148 
1149           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1150         }
1151         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1152         bool do_patch = true;
1153         if (stub_id == Runtime1::access_field_patching_id) {
1154           // The offset may not be correct if the class was not loaded at code generation time.
1155           // Set it now.
1156           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1157           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1158           assert(patch_field_offset >= 0, "illegal offset");
1159           n_move->add_offset_in_bytes(patch_field_offset);
1160         } else if (load_klass_or_mirror_patch_id) {
1161           // If a getstatic or putstatic is referencing a klass which
1162           // isn't fully initialized, the patch body isn't copied into
1163           // place until initialization is complete.  In this case the
1164           // patch site is setup so that any threads besides the
1165           // initializing thread are forced to come into the VM and
1166           // block.
1167           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1168                      InstanceKlass::cast(init_klass)->is_initialized();
1169           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1170           if (jump->jump_destination() == being_initialized_entry) {
1171             assert(do_patch == true, "initialization must be complete at this point");
1172           } else {
1173             // patch the instruction <move reg, klass>
1174             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1175 
1176             assert(n_copy->data() == 0 ||
1177                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1178                    "illegal init value");
1179             if (stub_id == Runtime1::load_klass_patching_id) {
1180               assert(load_klass != nullptr, "klass not set");
1181               n_copy->set_data((intx) (load_klass));
1182             } else {
1183               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1184               n_copy->set_data(cast_from_oop<intx>(mirror()));
1185             }
1186 
1187             if (TracePatching) {
1188               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1189             }
1190           }
1191         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1192           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1193           assert(n_copy->data() == 0 ||
1194                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1195                  "illegal init value");
1196           n_copy->set_data(cast_from_oop<intx>(appendix()));
1197 
1198           if (TracePatching) {
1199             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1200           }
1201         } else {
1202           ShouldNotReachHere();
1203         }
1204 
1205         if (do_patch) {
1206           // replace instructions
1207           // first replace the tail, then the call
1208 #ifdef ARM
1209           if((load_klass_or_mirror_patch_id ||
1210               stub_id == Runtime1::load_appendix_patching_id) &&
1211               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1212             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1213             address addr = nullptr;
1214             assert(nm != nullptr, "invalid nmethod_pc");
1215             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1216             while (mds.next()) {
1217               if (mds.type() == relocInfo::oop_type) {
1218                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1219                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1220                 oop_Relocation* r = mds.oop_reloc();
1221                 addr = (address)r->oop_addr();
1222                 break;
1223               } else if (mds.type() == relocInfo::metadata_type) {
1224                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1225                 metadata_Relocation* r = mds.metadata_reloc();
1226                 addr = (address)r->metadata_addr();
1227                 break;
1228               }
1229             }
1230             assert(addr != nullptr, "metadata relocation must exist");
1231             copy_buff -= *byte_count;
1232             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1233             n_copy2->set_pc_relative_offset(addr, instr_pc);
1234           }
1235 #endif
1236 
1237           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1238             address ptr = copy_buff + i;
1239             int a_byte = (*ptr) & 0xFF;
1240             address dst = instr_pc + i;
1241             *(unsigned char*)dst = (unsigned char) a_byte;
1242           }
1243           ICache::invalidate_range(instr_pc, *byte_count);
1244           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1245 
1246           if (load_klass_or_mirror_patch_id ||
1247               stub_id == Runtime1::load_appendix_patching_id) {
1248             relocInfo::relocType rtype =
1249               (stub_id == Runtime1::load_klass_patching_id) ?
1250                                    relocInfo::metadata_type :
1251                                    relocInfo::oop_type;
1252             // update relocInfo to metadata
1253             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1254             assert(nm != nullptr, "invalid nmethod_pc");
1255 
1256             // The old patch site is now a move instruction so update
1257             // the reloc info so that it will get updated during
1258             // future GCs.
1259             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1260             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1261                                                      relocInfo::none, rtype);
1262           }
1263 
1264         } else {
1265           ICache::invalidate_range(copy_buff, *byte_count);
1266           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1267         }
1268       }
1269     }
1270   }
1271 
1272   // If we are patching in a non-perm oop, make sure the nmethod
1273   // is on the right list.
1274   {
1275     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1276     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1277     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1278 
1279     // Since we've patched some oops in the nmethod,
1280     // (re)register it with the heap.
1281     Universe::heap()->register_nmethod(nm);
1282   }
1283 JRT_END
1284 
1285 #else // DEOPTIMIZE_WHEN_PATCHING
1286 
1287 static bool is_patching_needed(JavaThread* current, Runtime1::StubID stub_id) {
1288   if (stub_id == Runtime1::load_klass_patching_id ||
1289       stub_id == Runtime1::load_mirror_patching_id) {
1290     // last java frame on stack
1291     vframeStream vfst(current, true);
1292     assert(!vfst.at_end(), "Java frame must exist");
1293 
1294     methodHandle caller_method(current, vfst.method());
1295     int bci = vfst.bci();
1296     Bytecodes::Code code = caller_method()->java_code_at(bci);
1297 
1298     switch (code) {
1299       case Bytecodes::_new:
1300       case Bytecodes::_anewarray:
1301       case Bytecodes::_multianewarray:
1302       case Bytecodes::_instanceof:
1303       case Bytecodes::_checkcast: {
1304         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1305         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1306         if (tag.is_unresolved_klass_in_error()) {
1307           return false; // throws resolution error
1308         }
1309         break;
1310       }
1311 
1312       default: break;
1313     }
1314   }
1315   return true;
1316 }
1317 
1318 PROF_ENTRY(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id))
1319 #ifndef PRODUCT
1320   if (PrintC1Statistics) {
1321     _patch_code_slowcase_cnt++;
1322   }
1323 #endif
1324 
1325   // Enable WXWrite: the function is called by c1 stub as a runtime function
1326   // (see another implementation above).
1327   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1328 
1329   if (TracePatching) {
1330     tty->print_cr("Deoptimizing because patch is needed");
1331   }
1332 
1333   RegisterMap reg_map(current,
1334                       RegisterMap::UpdateMap::skip,
1335                       RegisterMap::ProcessFrames::include,
1336                       RegisterMap::WalkContinuation::skip);
1337 
1338   frame runtime_frame = current->last_frame();
1339   frame caller_frame = runtime_frame.sender(&reg_map);
1340   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1341 
1342   if (is_patching_needed(current, stub_id)) {
1343     // Make sure the nmethod is invalidated, i.e. made not entrant.
1344     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1345     if (nm != nullptr) {
1346       nm->make_not_entrant();
1347     }
1348   }
1349 
1350   Deoptimization::deoptimize_frame(current, caller_frame.id());
1351   // Return to the now deoptimized frame.
1352   postcond(caller_is_deopted(current));
1353 PROF_END
1354 
1355 #endif // DEOPTIMIZE_WHEN_PATCHING
1356 
1357 // Entry point for compiled code. We want to patch a nmethod.
1358 // We don't do a normal VM transition here because we want to
1359 // know after the patching is complete and any safepoint(s) are taken
1360 // if the calling nmethod was deoptimized. We do this by calling a
1361 // helper method which does the normal VM transition and when it
1362 // completes we can check for deoptimization. This simplifies the
1363 // assembly code in the cpu directories.
1364 //
1365 int Runtime1::move_klass_patching(JavaThread* current) {
1366 //
1367 // NOTE: we are still in Java
1368 //
1369   debug_only(NoHandleMark nhm;)
1370   {
1371     // Enter VM mode
1372     ResetNoHandleMark rnhm;
1373     patch_code(current, load_klass_patching_id);
1374   }
1375   // Back in JAVA, use no oops DON'T safepoint
1376 
1377   // Return true if calling code is deoptimized
1378 
1379   return caller_is_deopted(current);
1380 }
1381 
1382 int Runtime1::move_mirror_patching(JavaThread* current) {
1383 //
1384 // NOTE: we are still in Java
1385 //
1386   debug_only(NoHandleMark nhm;)
1387   {
1388     // Enter VM mode
1389     ResetNoHandleMark rnhm;
1390     patch_code(current, load_mirror_patching_id);
1391   }
1392   // Back in JAVA, use no oops DON'T safepoint
1393 
1394   // Return true if calling code is deoptimized
1395 
1396   return caller_is_deopted(current);
1397 }
1398 
1399 int Runtime1::move_appendix_patching(JavaThread* current) {
1400 //
1401 // NOTE: we are still in Java
1402 //
1403   debug_only(NoHandleMark nhm;)
1404   {
1405     // Enter VM mode
1406     ResetNoHandleMark rnhm;
1407     patch_code(current, load_appendix_patching_id);
1408   }
1409   // Back in JAVA, use no oops DON'T safepoint
1410 
1411   // Return true if calling code is deoptimized
1412 
1413   return caller_is_deopted(current);
1414 }
1415 
1416 // Entry point for compiled code. We want to patch a nmethod.
1417 // We don't do a normal VM transition here because we want to
1418 // know after the patching is complete and any safepoint(s) are taken
1419 // if the calling nmethod was deoptimized. We do this by calling a
1420 // helper method which does the normal VM transition and when it
1421 // completes we can check for deoptimization. This simplifies the
1422 // assembly code in the cpu directories.
1423 //
1424 int Runtime1::access_field_patching(JavaThread* current) {
1425   //
1426   // NOTE: we are still in Java
1427   //
1428   // Handles created in this function will be deleted by the
1429   // HandleMarkCleaner in the transition to the VM.
1430   NoHandleMark nhm;
1431   {
1432     // Enter VM mode
1433     ResetNoHandleMark rnhm;
1434     patch_code(current, access_field_patching_id);
1435   }
1436   // Back in JAVA, use no oops DON'T safepoint
1437 
1438   // Return true if calling code is deoptimized
1439 
1440   return caller_is_deopted(current);
1441 }
1442 
1443 
1444 JRT_LEAF_PROF_NO_THREAD(void, Runtime1, trace_block_entry, Runtime1::trace_block_entry(jint block_id))
1445   // for now we just print out the block id
1446   tty->print("%d ", block_id);
1447 JRT_END
1448 
1449 
1450 JRT_LEAF_PROF_NO_THREAD(int, Runtime1, is_instance_of, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1451   // had to return int instead of bool, otherwise there may be a mismatch
1452   // between the C calling convention and the Java one.
1453   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1454   // JVM takes the whole %eax as the return value, which may misinterpret
1455   // the return value as a boolean true.
1456 
1457   assert(mirror != nullptr, "should null-check on mirror before calling");
1458   Klass* k = java_lang_Class::as_Klass(mirror);
1459   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1460 JRT_END
1461 
1462 JRT_ENTRY_PROF(void, Runtime1, predicate_failed_trap, Runtime1::predicate_failed_trap(JavaThread* current))
1463   ResourceMark rm;
1464 
1465   RegisterMap reg_map(current,
1466                       RegisterMap::UpdateMap::skip,
1467                       RegisterMap::ProcessFrames::include,
1468                       RegisterMap::WalkContinuation::skip);
1469   frame runtime_frame = current->last_frame();
1470   frame caller_frame = runtime_frame.sender(&reg_map);
1471 
1472   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1473   assert (nm != nullptr, "no more nmethod?");
1474   nm->make_not_entrant();
1475 
1476   methodHandle m(current, nm->method());
1477   MethodData* mdo = m->method_data();
1478 
1479   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1480     // Build an MDO.  Ignore errors like OutOfMemory;
1481     // that simply means we won't have an MDO to update.
1482     Method::build_profiling_method_data(m, THREAD);
1483     if (HAS_PENDING_EXCEPTION) {
1484       // Only metaspace OOM is expected. No Java code executed.
1485       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1486       CLEAR_PENDING_EXCEPTION;
1487     }
1488     mdo = m->method_data();
1489   }
1490 
1491   if (mdo != nullptr) {
1492     mdo->inc_trap_count(Deoptimization::Reason_none);
1493   }
1494 
1495   if (TracePredicateFailedTraps) {
1496     stringStream ss1, ss2;
1497     vframeStream vfst(current);
1498     Method* inlinee = vfst.method();
1499     inlinee->print_short_name(&ss1);
1500     m->print_short_name(&ss2);
1501     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1502   }
1503 
1504 
1505   Deoptimization::deoptimize_frame(current, caller_frame.id());
1506 
1507 JRT_END
1508 
1509 // Check exception if AbortVMOnException flag set
1510 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1511   ResourceMark rm;
1512   const char* message = nullptr;
1513   if (ex->is_a(vmClasses::Throwable_klass())) {
1514     oop msg = java_lang_Throwable::message(ex);
1515     if (msg != nullptr) {
1516       message = java_lang_String::as_utf8_string(msg);
1517     }
1518   }
1519   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1520 JRT_END
1521 
1522 #define DO_COUNTERS(macro) \
1523   macro(Runtime1, new_instance) \
1524   macro(Runtime1, new_type_array) \
1525   macro(Runtime1, new_object_array) \
1526   macro(Runtime1, new_multi_array) \
1527   macro(Runtime1, counter_overflow) \
1528   macro(Runtime1, exception_handler_for_pc_helper) \
1529   macro(Runtime1, monitorenter) \
1530   macro(Runtime1, monitorexit) \
1531   macro(Runtime1, deoptimize) \
1532   macro(Runtime1, is_instance_of) \
1533   macro(Runtime1, predicate_failed_trap) \
1534   macro(Runtime1, patch_code)
1535 
1536 #define INIT_COUNTER(sub, name) \
1537   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
1538   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1539 
1540 void Runtime1::init_counters() {
1541   assert(CompilerConfig::is_c1_enabled(), "");
1542 
1543   if (UsePerfData) {
1544     EXCEPTION_MARK;
1545 
1546     DO_COUNTERS(INIT_COUNTER)
1547 
1548     if (HAS_PENDING_EXCEPTION) {
1549       vm_exit_during_initialization("Runtime1::init_counters() failed unexpectedly");
1550     }
1551   }
1552 }
1553 #undef INIT_COUNTER
1554 
1555 #define PRINT_COUNTER(sub, name) { \
1556   if (_perf_##sub##_##name##_count != nullptr) {  \
1557     jlong count = _perf_##sub##_##name##_count->get_value(); \
1558     if (count > 0) { \
1559       st->print_cr("  %-30s = %4ldms (elapsed) %4ldms (thread) (%5ld events)", #sub "::" #name, \
1560                    _perf_##sub##_##name##_timer->elapsed_counter_value_ms(), \
1561                    _perf_##sub##_##name##_timer->thread_counter_value_ms(), \
1562                    count); \
1563     }}}
1564 
1565 
1566 void Runtime1::print_counters_on(outputStream* st) {
1567   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c1_enabled()) {
1568     DO_COUNTERS(PRINT_COUNTER)
1569   } else {
1570     st->print_cr("  Runtime1: no info (%s is disabled)",
1571                  (!CompilerConfig::is_c1_enabled() ? "C1" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
1572   }
1573 }
1574 
1575 #undef PRINT_COUNTER
1576 #undef DO_COUNTERS
1577 
1578 #ifndef PRODUCT
1579 void Runtime1::print_statistics_on(outputStream* st) {
1580   st->print_cr("C1 Runtime statistics:");
1581   st->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1582   st->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1583   st->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1584   st->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1585   st->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1586   st->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1587   st->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1588   st->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1589   st->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1590   st->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1591   st->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1592   st->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1593   st->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1594   st->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1595 
1596   st->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1597   st->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1598   st->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1599   st->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1600   st->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1601   st->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1602   st->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1603 
1604   st->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1605   st->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1606   st->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1607   st->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1608   st->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1609   st->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1610   st->print_cr(" _throw_count:                                  %u:", _throw_count);
1611 
1612   SharedRuntime::print_ic_miss_histogram_on(st);
1613   st->cr();
1614 }
1615 #endif // PRODUCT