1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/codeBuffer.hpp"
26 #include "c1/c1_CodeStubs.hpp"
27 #include "c1/c1_Defs.hpp"
28 #include "c1/c1_LIRAssembler.hpp"
29 #include "c1/c1_MacroAssembler.hpp"
30 #include "c1/c1_Runtime1.hpp"
31 #include "classfile/javaClasses.inline.hpp"
32 #include "classfile/vmClasses.hpp"
33 #include "classfile/vmSymbols.hpp"
34 #include "code/aotCodeCache.hpp"
35 #include "code/codeBlob.hpp"
36 #include "code/compiledIC.hpp"
37 #include "code/scopeDesc.hpp"
38 #include "code/vtableStubs.hpp"
39 #include "compiler/compilationPolicy.hpp"
40 #include "compiler/compilerDefinitions.inline.hpp"
41 #include "compiler/disassembler.hpp"
42 #include "compiler/oopMap.hpp"
43 #include "gc/shared/barrierSet.hpp"
44 #include "gc/shared/c1/barrierSetC1.hpp"
45 #include "gc/shared/collectedHeap.hpp"
46 #include "interpreter/bytecode.hpp"
47 #include "interpreter/interpreter.hpp"
48 #include "jfr/support/jfrIntrinsics.hpp"
49 #include "logging/log.hpp"
50 #include "memory/oopFactory.hpp"
51 #include "memory/resourceArea.hpp"
52 #include "memory/universe.hpp"
53 #include "oops/access.inline.hpp"
54 #include "oops/objArrayKlass.hpp"
55 #include "oops/objArrayOop.inline.hpp"
56 #include "oops/oop.inline.hpp"
57 #include "prims/jvmtiExport.hpp"
58 #include "runtime/atomicAccess.hpp"
59 #include "runtime/fieldDescriptor.inline.hpp"
60 #include "runtime/frame.inline.hpp"
61 #include "runtime/handles.inline.hpp"
62 #include "runtime/interfaceSupport.inline.hpp"
63 #include "runtime/javaCalls.hpp"
64 #include "runtime/perfData.inline.hpp"
65 #include "runtime/runtimeUpcalls.hpp"
66 #include "runtime/sharedRuntime.hpp"
67 #include "runtime/stackWatermarkSet.hpp"
68 #include "runtime/stubInfo.hpp"
69 #include "runtime/stubRoutines.hpp"
70 #include "runtime/vframe.inline.hpp"
71 #include "runtime/vframeArray.hpp"
72 #include "runtime/vm_version.hpp"
73 #include "services/management.hpp"
74 #include "utilities/copy.hpp"
75 #include "utilities/events.hpp"
76
77
78 // Implementation of StubAssembler
79
80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
81 _name = name;
82 _must_gc_arguments = false;
83 _frame_size = no_frame_size;
84 _num_rt_args = 0;
85 _stub_id = stub_id;
86 }
87
88
89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
90 _name = name;
91 _must_gc_arguments = must_gc_arguments;
92 }
93
94
95 void StubAssembler::set_frame_size(int size) {
96 if (_frame_size == no_frame_size) {
97 _frame_size = size;
98 }
99 assert(_frame_size == size, "can't change the frame size");
100 }
101
102
103 void StubAssembler::set_num_rt_args(int args) {
104 if (_num_rt_args == 0) {
105 _num_rt_args = args;
106 }
107 assert(_num_rt_args == args, "can't change the number of args");
108 }
109
110 // Implementation of Runtime1
111 CodeBlob* Runtime1::_blobs[StubInfo::C1_STUB_COUNT];
112
113 #ifndef PRODUCT
114 // statistics
115 uint Runtime1::_generic_arraycopystub_cnt = 0;
116 uint Runtime1::_arraycopy_slowcase_cnt = 0;
117 uint Runtime1::_arraycopy_checkcast_cnt = 0;
118 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
119 uint Runtime1::_new_type_array_slowcase_cnt = 0;
120 uint Runtime1::_new_object_array_slowcase_cnt = 0;
121 uint Runtime1::_new_instance_slowcase_cnt = 0;
122 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
123 uint Runtime1::_monitorenter_slowcase_cnt = 0;
124 uint Runtime1::_monitorexit_slowcase_cnt = 0;
125 uint Runtime1::_patch_code_slowcase_cnt = 0;
126 uint Runtime1::_throw_range_check_exception_count = 0;
127 uint Runtime1::_throw_index_exception_count = 0;
128 uint Runtime1::_throw_div0_exception_count = 0;
129 uint Runtime1::_throw_null_pointer_exception_count = 0;
130 uint Runtime1::_throw_class_cast_exception_count = 0;
131 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
132 uint Runtime1::_throw_count = 0;
133
134 static uint _byte_arraycopy_stub_cnt = 0;
135 static uint _short_arraycopy_stub_cnt = 0;
136 static uint _int_arraycopy_stub_cnt = 0;
137 static uint _long_arraycopy_stub_cnt = 0;
138 static uint _oop_arraycopy_stub_cnt = 0;
139
140 address Runtime1::arraycopy_count_address(BasicType type) {
141 switch (type) {
142 case T_BOOLEAN:
143 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt;
144 case T_CHAR:
145 case T_SHORT: return (address)&_short_arraycopy_stub_cnt;
146 case T_FLOAT:
147 case T_INT: return (address)&_int_arraycopy_stub_cnt;
148 case T_DOUBLE:
149 case T_LONG: return (address)&_long_arraycopy_stub_cnt;
150 case T_ARRAY:
151 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
152 default:
153 ShouldNotReachHere();
154 return nullptr;
155 }
156 }
157
158
159 #endif
160
161 // Simple helper to see if the caller of a runtime stub which
162 // entered the VM has been deoptimized
163
164 static bool caller_is_deopted(JavaThread* current) {
165 RegisterMap reg_map(current,
166 RegisterMap::UpdateMap::skip,
167 RegisterMap::ProcessFrames::include,
168 RegisterMap::WalkContinuation::skip);
169 frame runtime_frame = current->last_frame();
170 frame caller_frame = runtime_frame.sender(®_map);
171 assert(caller_frame.is_compiled_frame(), "must be compiled");
172 return caller_frame.is_deoptimized_frame();
173 }
174
175 // Stress deoptimization
176 static void deopt_caller(JavaThread* current) {
177 if (!caller_is_deopted(current)) {
178 RegisterMap reg_map(current,
179 RegisterMap::UpdateMap::skip,
180 RegisterMap::ProcessFrames::include,
181 RegisterMap::WalkContinuation::skip);
182 frame runtime_frame = current->last_frame();
183 frame caller_frame = runtime_frame.sender(®_map);
184 Deoptimization::deoptimize_frame(current, caller_frame.id());
185 assert(caller_is_deopted(current), "Must be deoptimized");
186 }
187 }
188
189 class C1StubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
190 private:
191 StubId _id;
192 public:
193 C1StubAssemblerCodeGenClosure(StubId id) : _id(id) {
194 assert(StubInfo::is_c1(_id), "not a c1 stub id %s", StubInfo::name(_id));
195 }
196 virtual OopMapSet* generate_code(StubAssembler* sasm) {
197 return Runtime1::generate_code_for(_id, sasm);
198 }
199 };
200
201 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
202 if (id != StubId::NO_STUBID) {
203 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, StubInfo::blob(id));
204 if (blob != nullptr) {
205 return blob;
206 }
207 }
208
209 ResourceMark rm;
210 // create code buffer for code storage
211 CodeBuffer code(buffer_blob);
212
213 OopMapSet* oop_maps;
214 int frame_size;
215 bool must_gc_arguments;
216
217 Compilation::setup_code_buffer(&code, 0);
218
219 // create assembler for code generation
220 StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
221 // generate code for runtime stub
222 oop_maps = cl->generate_code(sasm);
223 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
224 "if stub has an oop map it must have a valid frame size");
225 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
226
227 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
228 sasm->align(BytesPerWord);
229 // make sure all code is in code buffer
230 sasm->flush();
231
232 frame_size = sasm->frame_size();
233 must_gc_arguments = sasm->must_gc_arguments();
234 // create blob - distinguish a few special cases
235 CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
236 &code,
237 CodeOffsets::frame_never_safe,
238 frame_size,
239 oop_maps,
240 must_gc_arguments,
241 false /* alloc_fail_is_fatal */ );
242 if (blob != nullptr && (int)id >= 0) {
243 AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, StubInfo::blob(id));
244 }
245 return blob;
246 }
247
248 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubId id) {
249 assert(StubInfo::is_c1(id), "not a c1 stub %s", StubInfo::name(id));
250 bool expect_oop_map = true;
251 #ifdef ASSERT
252 // Make sure that stubs that need oopmaps have them
253 switch (id) {
254 // These stubs don't need to have an oopmap
255 case StubId::c1_dtrace_object_alloc_id:
256 case StubId::c1_slow_subtype_check_id:
257 case StubId::c1_fpu2long_stub_id:
258 case StubId::c1_unwind_exception_id:
259 case StubId::c1_counter_overflow_id:
260 case StubId::c1_is_instance_of_id:
261 expect_oop_map = false;
262 break;
263 default:
264 break;
265 }
266 #endif
267 C1StubAssemblerCodeGenClosure cl(id);
268 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
269 // install blob
270 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id
271 _blobs[idx] = blob;
272 return blob != nullptr;
273 }
274
275 bool Runtime1::initialize(BufferBlob* blob) {
276 init_counters();
277 // platform-dependent initialization
278 initialize_pd();
279 // iterate blobs in C1 group and generate a single stub per blob
280 StubId id = StubInfo::stub_base(StubGroup::C1);
281 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
282 for (; id != limit; id = StubInfo::next(id)) {
283 if (!generate_blob_for(blob, id)) {
284 return false;
285 }
286 if (id == StubId::c1_forward_exception_id) {
287 // publish early c1 stubs at this point so later stubs can refer to them
288 AOTCodeCache::init_early_c1_table();
289 }
290 }
291 // printing
292 #ifndef PRODUCT
293 if (PrintSimpleStubs) {
294 ResourceMark rm;
295 id = StubInfo::stub_base(StubGroup::C1);
296 for (; id != limit; id = StubInfo::next(id)) {
297 CodeBlob* blob = blob_for(id);
298 blob->print();
299 if (blob->oop_maps() != nullptr) {
300 blob->oop_maps()->print();
301 }
302 }
303 }
304 #endif
305 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
306 return bs->generate_c1_runtime_stubs(blob);
307 }
308
309 CodeBlob* Runtime1::blob_for(StubId id) {
310 int idx = StubInfo::c1_offset(id); // will assert on non-c1 id
311 return _blobs[idx];
312 }
313
314
315 const char* Runtime1::name_for(StubId id) {
316 return StubInfo::name(id);
317 }
318
319 const char* Runtime1::name_for_address(address entry) {
320 // iterate stubs starting from C1 group base
321 StubId id = StubInfo::stub_base(StubGroup::C1);
322 StubId limit = StubInfo::next(StubInfo::stub_max(StubGroup::C1));
323 for (; id != limit; id = StubInfo::next(id)) {
324 if (entry == entry_for(id)) return StubInfo::name(id);
325 }
326
327 #define FUNCTION_CASE(a, f) \
328 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
329
330 FUNCTION_CASE(entry, os::javaTimeMillis);
331 FUNCTION_CASE(entry, os::javaTimeNanos);
332 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
333 FUNCTION_CASE(entry, SharedRuntime::d2f);
334 FUNCTION_CASE(entry, SharedRuntime::d2i);
335 FUNCTION_CASE(entry, SharedRuntime::d2l);
336 FUNCTION_CASE(entry, SharedRuntime::dcos);
337 FUNCTION_CASE(entry, SharedRuntime::dexp);
338 FUNCTION_CASE(entry, SharedRuntime::dlog);
339 FUNCTION_CASE(entry, SharedRuntime::dlog10);
340 FUNCTION_CASE(entry, SharedRuntime::dpow);
341 FUNCTION_CASE(entry, SharedRuntime::drem);
342 FUNCTION_CASE(entry, SharedRuntime::dsin);
343 FUNCTION_CASE(entry, SharedRuntime::dtan);
344 FUNCTION_CASE(entry, SharedRuntime::f2i);
345 FUNCTION_CASE(entry, SharedRuntime::f2l);
346 FUNCTION_CASE(entry, SharedRuntime::frem);
347 FUNCTION_CASE(entry, SharedRuntime::l2d);
348 FUNCTION_CASE(entry, SharedRuntime::l2f);
349 FUNCTION_CASE(entry, SharedRuntime::ldiv);
350 FUNCTION_CASE(entry, SharedRuntime::lmul);
351 FUNCTION_CASE(entry, SharedRuntime::lrem);
352 FUNCTION_CASE(entry, SharedRuntime::lrem);
353 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
354 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
355 FUNCTION_CASE(entry, is_instance_of);
356 FUNCTION_CASE(entry, trace_block_entry);
357 #ifdef JFR_HAVE_INTRINSICS
358 FUNCTION_CASE(entry, JfrTime::time_function());
359 #endif
360 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
361 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
362 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
363 FUNCTION_CASE(entry, StubRoutines::dexp());
364 FUNCTION_CASE(entry, StubRoutines::dlog());
365 FUNCTION_CASE(entry, StubRoutines::dlog10());
366 FUNCTION_CASE(entry, StubRoutines::dpow());
367 FUNCTION_CASE(entry, StubRoutines::dsin());
368 FUNCTION_CASE(entry, StubRoutines::dcos());
369 FUNCTION_CASE(entry, StubRoutines::dtan());
370 FUNCTION_CASE(entry, StubRoutines::dsinh());
371 FUNCTION_CASE(entry, StubRoutines::dtanh());
372 FUNCTION_CASE(entry, StubRoutines::dcbrt());
373
374 #undef FUNCTION_CASE
375
376 // Runtime upcalls also has a map of addresses to names
377 const char* upcall_name = RuntimeUpcalls::get_name_for_upcall_address(entry);
378 if (upcall_name != nullptr) {
379 return upcall_name;
380 }
381
382 // Soft float adds more runtime names.
383 return pd_name_for_address(entry);
384 }
385
386
387 JRT_ENTRY_PROF(void, Runtime1, new_instance, Runtime1::new_instance(JavaThread* current, Klass* klass))
388 #ifndef PRODUCT
389 if (PrintC1Statistics) {
390 _new_instance_slowcase_cnt++;
391 }
392 #endif
393 assert(klass->is_klass(), "not a class");
394 Handle holder(current, klass->klass_holder()); // keep the klass alive
395 InstanceKlass* h = InstanceKlass::cast(klass);
396 h->check_valid_for_instantiation(true, CHECK);
397 // make sure klass is initialized
398 h->initialize(CHECK);
399 // allocate instance and return via TLS
400 oop obj = h->allocate_instance(CHECK);
401 current->set_vm_result_oop(obj);
402 JRT_END
403
404
405 JRT_ENTRY_PROF(void, Runtime1, new_type_array, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
406 #ifndef PRODUCT
407 if (PrintC1Statistics) {
408 _new_type_array_slowcase_cnt++;
409 }
410 #endif
411 // Note: no handle for klass needed since they are not used
412 // anymore after new_typeArray() and no GC can happen before.
413 // (This may have to change if this code changes!)
414 assert(klass->is_klass(), "not a class");
415 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
416 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
417 current->set_vm_result_oop(obj);
418 // This is pretty rare but this runtime patch is stressful to deoptimization
419 // if we deoptimize here so force a deopt to stress the path.
420 if (DeoptimizeALot) {
421 deopt_caller(current);
422 }
423
424 JRT_END
425
426
427 JRT_ENTRY_PROF(void, Runtime1, new_object_array, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
428 #ifndef PRODUCT
429 if (PrintC1Statistics) {
430 _new_object_array_slowcase_cnt++;
431 }
432 #endif
433 // Note: no handle for klass needed since they are not used
434 // anymore after new_objArray() and no GC can happen before.
435 // (This may have to change if this code changes!)
436 assert(array_klass->is_klass(), "not a class");
437 Handle holder(current, array_klass->klass_holder()); // keep the klass alive
438 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
439 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
440 current->set_vm_result_oop(obj);
441 // This is pretty rare but this runtime patch is stressful to deoptimization
442 // if we deoptimize here so force a deopt to stress the path.
443 if (DeoptimizeALot) {
444 deopt_caller(current);
445 }
446 JRT_END
447
448
449 JRT_ENTRY_PROF(void, Runtime1, new_multi_array, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
450 #ifndef PRODUCT
451 if (PrintC1Statistics) {
452 _new_multi_array_slowcase_cnt++;
453 }
454 #endif
455 assert(klass->is_klass(), "not a class");
456 assert(rank >= 1, "rank must be nonzero");
457 Handle holder(current, klass->klass_holder()); // keep the klass alive
458 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
459 current->set_vm_result_oop(obj);
460 JRT_END
461
462
463 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubId id))
464 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
465 JRT_END
466
467
468 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
469 ResourceMark rm(current);
470 const char* klass_name = obj->klass()->external_name();
471 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
472 JRT_END
473
474
475 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
476 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
477 // method) method is passed as an argument. In order to do that it is embedded in the code as
478 // a constant.
479 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
480 nmethod* osr_nm = nullptr;
481 methodHandle method(current, m);
482
483 RegisterMap map(current,
484 RegisterMap::UpdateMap::skip,
485 RegisterMap::ProcessFrames::include,
486 RegisterMap::WalkContinuation::skip);
487 frame fr = current->last_frame().sender(&map);
488 nmethod* nm = (nmethod*) fr.cb();
489 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
490 methodHandle enclosing_method(current, nm->method());
491
492 CompLevel level = (CompLevel)nm->comp_level();
493 int bci = InvocationEntryBci;
494 if (branch_bci != InvocationEntryBci) {
495 // Compute destination bci
496 address pc = method()->code_base() + branch_bci;
497 Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
498 int offset = 0;
499 switch (branch) {
500 case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
501 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
502 case Bytecodes::_if_icmple: case Bytecodes::_ifle:
503 case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
504 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
505 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
506 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
507 offset = (int16_t)Bytes::get_Java_u2(pc + 1);
508 break;
509 case Bytecodes::_goto_w:
510 offset = Bytes::get_Java_u4(pc + 1);
511 break;
512 default: ;
513 }
514 bci = branch_bci + offset;
515 }
516 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
517 return osr_nm;
518 }
519
520 JRT_BLOCK_ENTRY_PROF(address, Runtime1, counter_overflow, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
521 nmethod* osr_nm;
522 JRT_BLOCK_NO_ASYNC
523 osr_nm = counter_overflow_helper(current, bci, method);
524 if (osr_nm != nullptr) {
525 RegisterMap map(current,
526 RegisterMap::UpdateMap::skip,
527 RegisterMap::ProcessFrames::include,
528 RegisterMap::WalkContinuation::skip);
529 frame fr = current->last_frame().sender(&map);
530 Deoptimization::deoptimize_frame(current, fr.id());
531 }
532 JRT_BLOCK_END
533 return nullptr;
534 JRT_END
535
536 extern void vm_exit(int code);
537
538 // Enter this method from compiled code handler below. This is where we transition
539 // to VM mode. This is done as a helper routine so that the method called directly
540 // from compiled code does not have to transition to VM. This allows the entry
541 // method to see if the nmethod that we have just looked up a handler for has
542 // been deoptimized while we were in the vm. This simplifies the assembly code
543 // cpu directories.
544 //
545 // We are entering here from exception stub (via the entry method below)
546 // If there is a compiled exception handler in this method, we will continue there;
547 // otherwise we will unwind the stack and continue at the caller of top frame method
548 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
549 // control the area where we can allow a safepoint. After we exit the safepoint area we can
550 // check to see if the handler we are going to return is now in a nmethod that has
551 // been deoptimized. If that is the case we return the deopt blob
552 // unpack_with_exception entry instead. This makes life for the exception blob easier
553 // because making that same check and diverting is painful from assembly language.
554 JRT_ENTRY_NO_ASYNC_PROF(static address, Runtime1, exception_handler_for_pc_helper, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
555 Handle exception(current, ex);
556
557 // This function is called when we are about to throw an exception. Therefore,
558 // we have to poll the stack watermark barrier to make sure that not yet safe
559 // stack frames are made safe before returning into them.
560 if (current->last_frame().cb() == Runtime1::blob_for(StubId::c1_handle_exception_from_callee_id)) {
561 // The StubId::c1_handle_exception_from_callee_id handler is invoked after the
562 // frame has been unwound. It instead builds its own stub frame, to call the
563 // runtime. But the throwing frame has already been unwound here.
564 StackWatermarkSet::after_unwind(current);
565 }
566
567 nm = CodeCache::find_nmethod(pc);
568 assert(nm != nullptr, "this is not an nmethod");
569 // Adjust the pc as needed/
570 if (nm->is_deopt_pc(pc)) {
571 RegisterMap map(current,
572 RegisterMap::UpdateMap::skip,
573 RegisterMap::ProcessFrames::include,
574 RegisterMap::WalkContinuation::skip);
575 frame exception_frame = current->last_frame().sender(&map);
576 // if the frame isn't deopted then pc must not correspond to the caller of last_frame
577 assert(exception_frame.is_deoptimized_frame(), "must be deopted");
578 pc = exception_frame.pc();
579 }
580 assert(exception.not_null(), "null exceptions should be handled by throw_exception");
581 // Check that exception is a subclass of Throwable
582 assert(exception->is_a(vmClasses::Throwable_klass()),
583 "Exception not subclass of Throwable");
584
585 // debugging support
586 // tracing
587 if (log_is_enabled(Info, exceptions)) {
588 ResourceMark rm; // print_value_string
589 stringStream tempst;
590 assert(nm->method() != nullptr, "Unexpected null method()");
591 tempst.print("C1 compiled method <%s>\n"
592 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
593 nm->method()->print_value_string(), p2i(pc), p2i(current));
594 Exceptions::log_exception(exception, tempst.freeze());
595 }
596 // for AbortVMOnException flag
597 Exceptions::debug_check_abort(exception);
598
599 // Check the stack guard pages and re-enable them if necessary and there is
600 // enough space on the stack to do so. Use fast exceptions only if the guard
601 // pages are enabled.
602 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
603
604 if (JvmtiExport::can_post_on_exceptions()) {
605 // To ensure correct notification of exception catches and throws
606 // we have to deoptimize here. If we attempted to notify the
607 // catches and throws during this exception lookup it's possible
608 // we could deoptimize on the way out of the VM and end back in
609 // the interpreter at the throw site. This would result in double
610 // notifications since the interpreter would also notify about
611 // these same catches and throws as it unwound the frame.
612
613 RegisterMap reg_map(current,
614 RegisterMap::UpdateMap::include,
615 RegisterMap::ProcessFrames::include,
616 RegisterMap::WalkContinuation::skip);
617 frame stub_frame = current->last_frame();
618 frame caller_frame = stub_frame.sender(®_map);
619
620 // We don't really want to deoptimize the nmethod itself since we
621 // can actually continue in the exception handler ourselves but I
622 // don't see an easy way to have the desired effect.
623 Deoptimization::deoptimize_frame(current, caller_frame.id());
624 assert(caller_is_deopted(current), "Must be deoptimized");
625
626 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
627 }
628
629 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
630 if (guard_pages_enabled) {
631 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
632 if (fast_continuation != nullptr) {
633 return fast_continuation;
634 }
635 }
636
637 // If the stack guard pages are enabled, check whether there is a handler in
638 // the current method. Otherwise (guard pages disabled), force an unwind and
639 // skip the exception cache update (i.e., just leave continuation as null).
640 address continuation = nullptr;
641 if (guard_pages_enabled) {
642
643 // New exception handling mechanism can support inlined methods
644 // with exception handlers since the mappings are from PC to PC
645
646 // Clear out the exception oop and pc since looking up an
647 // exception handler can cause class loading, which might throw an
648 // exception and those fields are expected to be clear during
649 // normal bytecode execution.
650 current->clear_exception_oop_and_pc();
651
652 bool recursive_exception = false;
653 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
654 // If an exception was thrown during exception dispatch, the exception oop may have changed
655 current->set_exception_oop(exception());
656 current->set_exception_pc(pc);
657
658 // the exception cache is used only by non-implicit exceptions
659 // Update the exception cache only when there didn't happen
660 // another exception during the computation of the compiled
661 // exception handler. Checking for exception oop equality is not
662 // sufficient because some exceptions are pre-allocated and reused.
663 if (continuation != nullptr && !recursive_exception) {
664 nm->add_handler_for_exception_and_pc(exception, pc, continuation);
665 }
666 }
667
668 current->set_vm_result_oop(exception());
669
670 if (log_is_enabled(Info, exceptions)) {
671 ResourceMark rm;
672 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
673 " for exception thrown at PC " PTR_FORMAT,
674 p2i(current), p2i(continuation), p2i(pc));
675 }
676
677 return continuation;
678 JRT_END
679
680 // Enter this method from compiled code only if there is a Java exception handler
681 // in the method handling the exception.
682 // We are entering here from exception stub. We don't do a normal VM transition here.
683 // We do it in a helper. This is so we can check to see if the nmethod we have just
684 // searched for an exception handler has been deoptimized in the meantime.
685 address Runtime1::exception_handler_for_pc(JavaThread* current) {
686 oop exception = current->exception_oop();
687 address pc = current->exception_pc();
688 // Still in Java mode
689 DEBUG_ONLY(NoHandleMark nhm);
690 nmethod* nm = nullptr;
691 address continuation = nullptr;
692 {
693 // Enter VM mode by calling the helper
694 ResetNoHandleMark rnhm;
695 continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
696 }
697 // Back in JAVA, use no oops DON'T safepoint
698
699 // Now check to see if the nmethod we were called from is now deoptimized.
700 // If so we must return to the deopt blob and deoptimize the nmethod
701 if (nm != nullptr && caller_is_deopted(current)) {
702 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
703 }
704
705 assert(continuation != nullptr, "no handler found");
706 return continuation;
707 }
708
709
710 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
711 #ifndef PRODUCT
712 if (PrintC1Statistics) {
713 _throw_range_check_exception_count++;
714 }
715 #endif
716 const int len = 35;
717 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
718 char message[2 * jintAsStringSize + len];
719 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
720 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
721 JRT_END
722
723
724 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
725 #ifndef PRODUCT
726 if (PrintC1Statistics) {
727 _throw_index_exception_count++;
728 }
729 #endif
730 char message[16];
731 os::snprintf_checked(message, sizeof(message), "%d", index);
732 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
733 JRT_END
734
735
736 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
737 #ifndef PRODUCT
738 if (PrintC1Statistics) {
739 _throw_div0_exception_count++;
740 }
741 #endif
742 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
743 JRT_END
744
745
746 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
747 #ifndef PRODUCT
748 if (PrintC1Statistics) {
749 _throw_null_pointer_exception_count++;
750 }
751 #endif
752 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
753 JRT_END
754
755
756 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
757 #ifndef PRODUCT
758 if (PrintC1Statistics) {
759 _throw_class_cast_exception_count++;
760 }
761 #endif
762 ResourceMark rm(current);
763 char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
764 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
765 JRT_END
766
767
768 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
769 #ifndef PRODUCT
770 if (PrintC1Statistics) {
771 _throw_incompatible_class_change_error_count++;
772 }
773 #endif
774 ResourceMark rm(current);
775 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
776 JRT_END
777
778
779 JRT_BLOCK_ENTRY_PROF(void, Runtime1, monitorenter, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
780 #ifndef PRODUCT
781 if (PrintC1Statistics) {
782 _monitorenter_slowcase_cnt++;
783 }
784 #endif
785 assert(obj == lock->obj(), "must match");
786 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
787 JRT_END
788
789
790 JRT_LEAF_PROF(void, Runtime1, monitorexit, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
791 assert(current == JavaThread::current(), "pre-condition");
792 #ifndef PRODUCT
793 if (PrintC1Statistics) {
794 _monitorexit_slowcase_cnt++;
795 }
796 #endif
797 assert(current->last_Java_sp(), "last_Java_sp must be set");
798 oop obj = lock->obj();
799 assert(oopDesc::is_oop(obj), "must be null or an object");
800 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
801 JRT_END
802
803 // Cf. OptoRuntime::deoptimize_caller_frame
804 JRT_ENTRY_PROF(void, Runtime1, deoptimize, Runtime1::deoptimize(JavaThread* current, jint trap_request))
805 // Called from within the owner thread, so no need for safepoint
806 RegisterMap reg_map(current,
807 RegisterMap::UpdateMap::skip,
808 RegisterMap::ProcessFrames::include,
809 RegisterMap::WalkContinuation::skip);
810 frame stub_frame = current->last_frame();
811 assert(stub_frame.is_runtime_frame(), "Sanity check");
812 frame caller_frame = stub_frame.sender(®_map);
813 nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
814 assert(nm != nullptr, "Sanity check");
815 methodHandle method(current, nm->method());
816 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
817 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
818 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
819
820 if (action == Deoptimization::Action_make_not_entrant) {
821 if (nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE)) {
822 if (reason == Deoptimization::Reason_tenured) {
823 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
824 if (trap_mdo != nullptr) {
825 trap_mdo->inc_tenure_traps();
826 }
827 }
828 }
829 }
830
831 // Deoptimize the caller frame.
832 Deoptimization::deoptimize_frame(current, caller_frame.id());
833 // Return to the now deoptimized frame.
834 JRT_END
835
836
837 #ifndef DEOPTIMIZE_WHEN_PATCHING
838
839 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
840 Bytecode_field field_access(caller, bci);
841 // This can be static or non-static field access
842 Bytecodes::Code code = field_access.code();
843
844 // We must load class, initialize class and resolve the field
845 fieldDescriptor result; // initialize class if needed
846 constantPoolHandle constants(THREAD, caller->constants());
847 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller,
848 Bytecodes::java_code(code), true /*initialize_class*/, CHECK_NULL);
849 return result.field_holder();
850 }
851
852
853 //
854 // This routine patches sites where a class wasn't loaded or
855 // initialized at the time the code was generated. It handles
856 // references to classes, fields and forcing of initialization. Most
857 // of the cases are straightforward and involving simply forcing
858 // resolution of a class, rewriting the instruction stream with the
859 // needed constant and replacing the call in this function with the
860 // patched code. The case for static field is more complicated since
861 // the thread which is in the process of initializing a class can
862 // access it's static fields but other threads can't so the code
863 // either has to deoptimize when this case is detected or execute a
864 // check that the current thread is the initializing thread. The
865 // current
866 //
867 // Patches basically look like this:
868 //
869 //
870 // patch_site: jmp patch stub ;; will be patched
871 // continue: ...
872 // ...
873 // ...
874 // ...
875 //
876 // They have a stub which looks like this:
877 //
878 // ;; patch body
879 // movl <const>, reg (for class constants)
880 // <or> movl [reg1 + <const>], reg (for field offsets)
881 // <or> movl reg, [reg1 + <const>] (for field offsets)
882 // <being_init offset> <bytes to copy> <bytes to skip>
883 // patch_stub: call Runtime1::patch_code (through a runtime stub)
884 // jmp patch_site
885 //
886 //
887 // A normal patch is done by rewriting the patch body, usually a move,
888 // and then copying it into place over top of the jmp instruction
889 // being careful to flush caches and doing it in an MP-safe way. The
890 // constants following the patch body are used to find various pieces
891 // of the patch relative to the call site for Runtime1::patch_code.
892 // The case for getstatic and putstatic is more complicated because
893 // getstatic and putstatic have special semantics when executing while
894 // the class is being initialized. getstatic/putstatic on a class
895 // which is being_initialized may be executed by the initializing
896 // thread but other threads have to block when they execute it. This
897 // is accomplished in compiled code by executing a test of the current
898 // thread against the initializing thread of the class. It's emitted
899 // as boilerplate in their stub which allows the patched code to be
900 // executed before it's copied back into the main body of the nmethod.
901 //
902 // being_init: get_thread(<tmp reg>
903 // cmpl [reg1 + <init_thread_offset>], <tmp reg>
904 // jne patch_stub
905 // movl [reg1 + <const>], reg (for field offsets) <or>
906 // movl reg, [reg1 + <const>] (for field offsets)
907 // jmp continue
908 // <being_init offset> <bytes to copy> <bytes to skip>
909 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
910 // jmp patch_site
911 //
912 // If the class is being initialized the patch body is rewritten and
913 // the patch site is rewritten to jump to being_init, instead of
914 // patch_stub. Whenever this code is executed it checks the current
915 // thread against the initializing thread so other threads will enter
916 // the runtime and end up blocked waiting the class to finish
917 // initializing inside the calls to resolve_field below. The
918 // initializing class will continue on it's way. Once the class is
919 // fully_initialized, the intializing_thread of the class becomes
920 // null, so the next thread to execute this code will fail the test,
921 // call into patch_code and complete the patching process by copying
922 // the patch body back into the main part of the nmethod and resume
923 // executing.
924
925 // NB:
926 //
927 // Patchable instruction sequences inherently exhibit race conditions,
928 // where thread A is patching an instruction at the same time thread B
929 // is executing it. The algorithms we use ensure that any observation
930 // that B can make on any intermediate states during A's patching will
931 // always end up with a correct outcome. This is easiest if there are
932 // few or no intermediate states. (Some inline caches have two
933 // related instructions that must be patched in tandem. For those,
934 // intermediate states seem to be unavoidable, but we will get the
935 // right answer from all possible observation orders.)
936 //
937 // When patching the entry instruction at the head of a method, or a
938 // linkable call instruction inside of a method, we try very hard to
939 // use a patch sequence which executes as a single memory transaction.
940 // This means, in practice, that when thread A patches an instruction,
941 // it should patch a 32-bit or 64-bit word that somehow overlaps the
942 // instruction or is contained in it. We believe that memory hardware
943 // will never break up such a word write, if it is naturally aligned
944 // for the word being written. We also know that some CPUs work very
945 // hard to create atomic updates even of naturally unaligned words,
946 // but we don't want to bet the farm on this always working.
947 //
948 // Therefore, if there is any chance of a race condition, we try to
949 // patch only naturally aligned words, as single, full-word writes.
950
951 JRT_ENTRY_PROF(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, StubId stub_id))
952 #ifndef PRODUCT
953 if (PrintC1Statistics) {
954 _patch_code_slowcase_cnt++;
955 }
956 #endif
957
958 ResourceMark rm(current);
959 RegisterMap reg_map(current,
960 RegisterMap::UpdateMap::skip,
961 RegisterMap::ProcessFrames::include,
962 RegisterMap::WalkContinuation::skip);
963 frame runtime_frame = current->last_frame();
964 frame caller_frame = runtime_frame.sender(®_map);
965
966 // last java frame on stack
967 vframeStream vfst(current, true);
968 assert(!vfst.at_end(), "Java frame must exist");
969
970 methodHandle caller_method(current, vfst.method());
971 // Note that caller_method->code() may not be same as caller_code because of OSR's
972 // Note also that in the presence of inlining it is not guaranteed
973 // that caller_method() == caller_code->method()
974
975 int bci = vfst.bci();
976 Bytecodes::Code code = caller_method()->java_code_at(bci);
977
978 // this is used by assertions in the access_field_patching_id
979 BasicType patch_field_type = T_ILLEGAL;
980 bool deoptimize_for_volatile = false;
981 bool deoptimize_for_atomic = false;
982 int patch_field_offset = -1;
983 Klass* init_klass = nullptr; // klass needed by load_klass_patching code
984 Klass* load_klass = nullptr; // klass needed by load_klass_patching code
985 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
986 Handle appendix(current, nullptr); // oop needed by appendix_patching code
987 bool load_klass_or_mirror_patch_id =
988 (stub_id == StubId::c1_load_klass_patching_id || stub_id == StubId::c1_load_mirror_patching_id);
989
990 if (stub_id == StubId::c1_access_field_patching_id) {
991
992 Bytecode_field field_access(caller_method, bci);
993 fieldDescriptor result; // initialize class if needed
994 Bytecodes::Code code = field_access.code();
995 constantPoolHandle constants(current, caller_method->constants());
996 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method,
997 Bytecodes::java_code(code), true /*initialize_class*/, CHECK);
998 patch_field_offset = result.offset();
999
1000 // If we're patching a field which is volatile then at compile it
1001 // must not have been know to be volatile, so the generated code
1002 // isn't correct for a volatile reference. The nmethod has to be
1003 // deoptimized so that the code can be regenerated correctly.
1004 // This check is only needed for access_field_patching since this
1005 // is the path for patching field offsets. load_klass is only
1006 // used for patching references to oops which don't need special
1007 // handling in the volatile case.
1008
1009 deoptimize_for_volatile = result.access_flags().is_volatile();
1010
1011 // If we are patching a field which should be atomic, then
1012 // the generated code is not correct either, force deoptimizing.
1013 // We need to only cover T_LONG and T_DOUBLE fields, as we can
1014 // break access atomicity only for them.
1015
1016 // Strictly speaking, the deoptimization on 64-bit platforms
1017 // is unnecessary, and T_LONG stores on 32-bit platforms need
1018 // to be handled by special patching code when AlwaysAtomicAccesses
1019 // becomes product feature. At this point, we are still going
1020 // for the deoptimization for consistency against volatile
1021 // accesses.
1022
1023 patch_field_type = result.field_type();
1024 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1025
1026 } else if (load_klass_or_mirror_patch_id) {
1027 Klass* k = nullptr;
1028 switch (code) {
1029 case Bytecodes::_putstatic:
1030 case Bytecodes::_getstatic:
1031 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1032 init_klass = klass;
1033 mirror = Handle(current, klass->java_mirror());
1034 }
1035 break;
1036 case Bytecodes::_new:
1037 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1038 k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1039 }
1040 break;
1041 case Bytecodes::_multianewarray:
1042 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1043 k = caller_method->constants()->klass_at(mna.index(), CHECK);
1044 }
1045 break;
1046 case Bytecodes::_instanceof:
1047 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1048 k = caller_method->constants()->klass_at(io.index(), CHECK);
1049 }
1050 break;
1051 case Bytecodes::_checkcast:
1052 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1053 k = caller_method->constants()->klass_at(cc.index(), CHECK);
1054 }
1055 break;
1056 case Bytecodes::_anewarray:
1057 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1058 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1059 k = ek->array_klass(CHECK);
1060 }
1061 break;
1062 case Bytecodes::_ldc:
1063 case Bytecodes::_ldc_w:
1064 case Bytecodes::_ldc2_w:
1065 {
1066 Bytecode_loadconstant cc(caller_method, bci);
1067 oop m = cc.resolve_constant(CHECK);
1068 mirror = Handle(current, m);
1069 }
1070 break;
1071 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1072 }
1073 load_klass = k;
1074 } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1075 Bytecode_invoke bytecode(caller_method, bci);
1076 Bytecodes::Code bc = bytecode.invoke_code();
1077
1078 CallInfo info;
1079 constantPoolHandle pool(current, caller_method->constants());
1080 int index = bytecode.index();
1081 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1082 switch (bc) {
1083 case Bytecodes::_invokehandle: {
1084 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1085 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1086 break;
1087 }
1088 case Bytecodes::_invokedynamic: {
1089 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1090 break;
1091 }
1092 default: fatal("unexpected bytecode for load_appendix_patching_id");
1093 }
1094 } else {
1095 ShouldNotReachHere();
1096 }
1097
1098 if (deoptimize_for_volatile || deoptimize_for_atomic) {
1099 // At compile time we assumed the field wasn't volatile/atomic but after
1100 // loading it turns out it was volatile/atomic so we have to throw the
1101 // compiled code out and let it be regenerated.
1102 if (TracePatching) {
1103 if (deoptimize_for_volatile) {
1104 tty->print_cr("Deoptimizing for patching volatile field reference");
1105 }
1106 if (deoptimize_for_atomic) {
1107 tty->print_cr("Deoptimizing for patching atomic field reference");
1108 }
1109 }
1110
1111 // It's possible the nmethod was invalidated in the last
1112 // safepoint, but if it's still alive then make it not_entrant.
1113 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1114 if (nm != nullptr) {
1115 nm->make_not_entrant(nmethod::InvalidationReason::C1_CODEPATCH);
1116 }
1117
1118 Deoptimization::deoptimize_frame(current, caller_frame.id());
1119
1120 // Return to the now deoptimized frame.
1121 }
1122
1123 // Now copy code back
1124
1125 {
1126 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1127 //
1128 // Deoptimization may have happened while we waited for the lock.
1129 // In that case we don't bother to do any patching we just return
1130 // and let the deopt happen
1131 if (!caller_is_deopted(current)) {
1132 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1133 address instr_pc = jump->jump_destination();
1134 NativeInstruction* ni = nativeInstruction_at(instr_pc);
1135 if (ni->is_jump() ) {
1136 // the jump has not been patched yet
1137 // The jump destination is slow case and therefore not part of the stubs
1138 // (stubs are only for StaticCalls)
1139
1140 // format of buffer
1141 // ....
1142 // instr byte 0 <-- copy_buff
1143 // instr byte 1
1144 // ..
1145 // instr byte n-1
1146 // n
1147 // .... <-- call destination
1148
1149 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1150 unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1151 unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1152 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1153 address copy_buff = stub_location - *byte_skip - *byte_count;
1154 address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1155 if (TracePatching) {
1156 ttyLocker ttyl;
1157 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci,
1158 p2i(instr_pc), (stub_id == StubId::c1_access_field_patching_id) ? "field" : "klass");
1159 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1160 assert(caller_code != nullptr, "nmethod not found");
1161
1162 // NOTE we use pc() not original_pc() because we already know they are
1163 // identical otherwise we'd have never entered this block of code
1164
1165 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1166 assert(map != nullptr, "null check");
1167 map->print();
1168 tty->cr();
1169
1170 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1171 }
1172 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1173 bool do_patch = true;
1174 if (stub_id == StubId::c1_access_field_patching_id) {
1175 // The offset may not be correct if the class was not loaded at code generation time.
1176 // Set it now.
1177 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1178 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1179 assert(patch_field_offset >= 0, "illegal offset");
1180 n_move->add_offset_in_bytes(patch_field_offset);
1181 } else if (load_klass_or_mirror_patch_id) {
1182 // If a getstatic or putstatic is referencing a klass which
1183 // isn't fully initialized, the patch body isn't copied into
1184 // place until initialization is complete. In this case the
1185 // patch site is setup so that any threads besides the
1186 // initializing thread are forced to come into the VM and
1187 // block.
1188 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1189 InstanceKlass::cast(init_klass)->is_initialized();
1190 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1191 if (jump->jump_destination() == being_initialized_entry) {
1192 assert(do_patch == true, "initialization must be complete at this point");
1193 } else {
1194 // patch the instruction <move reg, klass>
1195 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1196
1197 assert(n_copy->data() == 0 ||
1198 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1199 "illegal init value");
1200 if (stub_id == StubId::c1_load_klass_patching_id) {
1201 assert(load_klass != nullptr, "klass not set");
1202 n_copy->set_data((intx) (load_klass));
1203 } else {
1204 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1205 n_copy->set_data(cast_from_oop<intx>(mirror()));
1206 }
1207
1208 if (TracePatching) {
1209 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1210 }
1211 }
1212 } else if (stub_id == StubId::c1_load_appendix_patching_id) {
1213 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1214 assert(n_copy->data() == 0 ||
1215 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1216 "illegal init value");
1217 n_copy->set_data(cast_from_oop<intx>(appendix()));
1218
1219 if (TracePatching) {
1220 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1221 }
1222 } else {
1223 ShouldNotReachHere();
1224 }
1225
1226 if (do_patch) {
1227 // replace instructions
1228 // first replace the tail, then the call
1229 #ifdef ARM
1230 if((load_klass_or_mirror_patch_id ||
1231 stub_id == StubId::c1_load_appendix_patching_id) &&
1232 nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1233 nmethod* nm = CodeCache::find_nmethod(instr_pc);
1234 address addr = nullptr;
1235 assert(nm != nullptr, "invalid nmethod_pc");
1236 RelocIterator mds(nm, copy_buff, copy_buff + 1);
1237 while (mds.next()) {
1238 if (mds.type() == relocInfo::oop_type) {
1239 assert(stub_id == StubId::c1_load_mirror_patching_id ||
1240 stub_id == StubId::c1_load_appendix_patching_id, "wrong stub id");
1241 oop_Relocation* r = mds.oop_reloc();
1242 addr = (address)r->oop_addr();
1243 break;
1244 } else if (mds.type() == relocInfo::metadata_type) {
1245 assert(stub_id == StubId::c1_load_klass_patching_id, "wrong stub id");
1246 metadata_Relocation* r = mds.metadata_reloc();
1247 addr = (address)r->metadata_addr();
1248 break;
1249 }
1250 }
1251 assert(addr != nullptr, "metadata relocation must exist");
1252 copy_buff -= *byte_count;
1253 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1254 n_copy2->set_pc_relative_offset(addr, instr_pc);
1255 }
1256 #endif
1257
1258 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1259 address ptr = copy_buff + i;
1260 int a_byte = (*ptr) & 0xFF;
1261 address dst = instr_pc + i;
1262 *(unsigned char*)dst = (unsigned char) a_byte;
1263 }
1264 ICache::invalidate_range(instr_pc, *byte_count);
1265 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1266
1267 if (load_klass_or_mirror_patch_id ||
1268 stub_id == StubId::c1_load_appendix_patching_id) {
1269 relocInfo::relocType rtype =
1270 (stub_id == StubId::c1_load_klass_patching_id) ?
1271 relocInfo::metadata_type :
1272 relocInfo::oop_type;
1273 // update relocInfo to metadata
1274 nmethod* nm = CodeCache::find_nmethod(instr_pc);
1275 assert(nm != nullptr, "invalid nmethod_pc");
1276
1277 // The old patch site is now a move instruction so update
1278 // the reloc info so that it will get updated during
1279 // future GCs.
1280 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1281 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1282 relocInfo::none, rtype);
1283 }
1284
1285 } else {
1286 ICache::invalidate_range(copy_buff, *byte_count);
1287 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1288 }
1289 }
1290 }
1291 // If we are patching in a non-perm oop, make sure the nmethod
1292 // is on the right list.
1293 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1294 guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1295
1296 // Since we've patched some oops in the nmethod,
1297 // (re)register it with the heap.
1298 Universe::heap()->register_nmethod(nm);
1299 }
1300 JRT_END
1301
1302 #else // DEOPTIMIZE_WHEN_PATCHING
1303
1304 static bool is_patching_needed(JavaThread* current, StubId stub_id) {
1305 if (stub_id == StubId::c1_load_klass_patching_id ||
1306 stub_id == StubId::c1_load_mirror_patching_id) {
1307 // last java frame on stack
1308 vframeStream vfst(current, true);
1309 assert(!vfst.at_end(), "Java frame must exist");
1310
1311 methodHandle caller_method(current, vfst.method());
1312 int bci = vfst.bci();
1313 Bytecodes::Code code = caller_method()->java_code_at(bci);
1314
1315 switch (code) {
1316 case Bytecodes::_new:
1317 case Bytecodes::_anewarray:
1318 case Bytecodes::_multianewarray:
1319 case Bytecodes::_instanceof:
1320 case Bytecodes::_checkcast: {
1321 Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1322 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1323 if (tag.is_unresolved_klass_in_error()) {
1324 return false; // throws resolution error
1325 }
1326 break;
1327 }
1328
1329 default: break;
1330 }
1331 }
1332 return true;
1333 }
1334
1335 PROF_ENTRY(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, StubId stub_id))
1336 #ifndef PRODUCT
1337 if (PrintC1Statistics) {
1338 _patch_code_slowcase_cnt++;
1339 }
1340 #endif
1341
1342 // Enable WXWrite: the function is called by c1 stub as a runtime function
1343 // (see another implementation above).
1344 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1345
1346 if (TracePatching) {
1347 tty->print_cr("Deoptimizing because patch is needed");
1348 }
1349
1350 RegisterMap reg_map(current,
1351 RegisterMap::UpdateMap::skip,
1352 RegisterMap::ProcessFrames::include,
1353 RegisterMap::WalkContinuation::skip);
1354
1355 frame runtime_frame = current->last_frame();
1356 frame caller_frame = runtime_frame.sender(®_map);
1357 assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1358
1359 if (is_patching_needed(current, stub_id)) {
1360 // Make sure the nmethod is invalidated, i.e. made not entrant.
1361 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1362 if (nm != nullptr) {
1363 nm->make_not_entrant(nmethod::InvalidationReason::C1_DEOPTIMIZE_FOR_PATCHING);
1364 }
1365 }
1366
1367 Deoptimization::deoptimize_frame(current, caller_frame.id());
1368 // Return to the now deoptimized frame.
1369 postcond(caller_is_deopted(current));
1370 PROF_END
1371
1372 #endif // DEOPTIMIZE_WHEN_PATCHING
1373
1374 // Entry point for compiled code. We want to patch a nmethod.
1375 // We don't do a normal VM transition here because we want to
1376 // know after the patching is complete and any safepoint(s) are taken
1377 // if the calling nmethod was deoptimized. We do this by calling a
1378 // helper method which does the normal VM transition and when it
1379 // completes we can check for deoptimization. This simplifies the
1380 // assembly code in the cpu directories.
1381 //
1382 int Runtime1::move_klass_patching(JavaThread* current) {
1383 //
1384 // NOTE: we are still in Java
1385 //
1386 DEBUG_ONLY(NoHandleMark nhm;)
1387 {
1388 // Enter VM mode
1389 ResetNoHandleMark rnhm;
1390 patch_code(current, StubId::c1_load_klass_patching_id);
1391 }
1392 // Back in JAVA, use no oops DON'T safepoint
1393
1394 // Return true if calling code is deoptimized
1395
1396 return caller_is_deopted(current);
1397 }
1398
1399 int Runtime1::move_mirror_patching(JavaThread* current) {
1400 //
1401 // NOTE: we are still in Java
1402 //
1403 DEBUG_ONLY(NoHandleMark nhm;)
1404 {
1405 // Enter VM mode
1406 ResetNoHandleMark rnhm;
1407 patch_code(current, StubId::c1_load_mirror_patching_id);
1408 }
1409 // Back in JAVA, use no oops DON'T safepoint
1410
1411 // Return true if calling code is deoptimized
1412
1413 return caller_is_deopted(current);
1414 }
1415
1416 int Runtime1::move_appendix_patching(JavaThread* current) {
1417 //
1418 // NOTE: we are still in Java
1419 //
1420 DEBUG_ONLY(NoHandleMark nhm;)
1421 {
1422 // Enter VM mode
1423 ResetNoHandleMark rnhm;
1424 patch_code(current, StubId::c1_load_appendix_patching_id);
1425 }
1426 // Back in JAVA, use no oops DON'T safepoint
1427
1428 // Return true if calling code is deoptimized
1429
1430 return caller_is_deopted(current);
1431 }
1432
1433 // Entry point for compiled code. We want to patch a nmethod.
1434 // We don't do a normal VM transition here because we want to
1435 // know after the patching is complete and any safepoint(s) are taken
1436 // if the calling nmethod was deoptimized. We do this by calling a
1437 // helper method which does the normal VM transition and when it
1438 // completes we can check for deoptimization. This simplifies the
1439 // assembly code in the cpu directories.
1440 //
1441 int Runtime1::access_field_patching(JavaThread* current) {
1442 //
1443 // NOTE: we are still in Java
1444 //
1445 // Handles created in this function will be deleted by the
1446 // HandleMarkCleaner in the transition to the VM.
1447 NoHandleMark nhm;
1448 {
1449 // Enter VM mode
1450 ResetNoHandleMark rnhm;
1451 patch_code(current, StubId::c1_access_field_patching_id);
1452 }
1453 // Back in JAVA, use no oops DON'T safepoint
1454
1455 // Return true if calling code is deoptimized
1456
1457 return caller_is_deopted(current);
1458 }
1459
1460
1461 JRT_LEAF_PROF_NO_THREAD(void, Runtime1, trace_block_entry, Runtime1::trace_block_entry(jint block_id))
1462 // for now we just print out the block id
1463 tty->print("%d ", block_id);
1464 JRT_END
1465
1466
1467 JRT_LEAF_PROF_NO_THREAD(int, Runtime1, is_instance_of, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1468 // had to return int instead of bool, otherwise there may be a mismatch
1469 // between the C calling convention and the Java one.
1470 // e.g., on x86, GCC may clear only %al when returning a bool false, but
1471 // JVM takes the whole %eax as the return value, which may misinterpret
1472 // the return value as a boolean true.
1473
1474 assert(mirror != nullptr, "should null-check on mirror before calling");
1475 Klass* k = java_lang_Class::as_Klass(mirror);
1476 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1477 JRT_END
1478
1479 JRT_ENTRY_PROF(void, Runtime1, predicate_failed_trap, Runtime1::predicate_failed_trap(JavaThread* current))
1480 ResourceMark rm;
1481
1482 RegisterMap reg_map(current,
1483 RegisterMap::UpdateMap::skip,
1484 RegisterMap::ProcessFrames::include,
1485 RegisterMap::WalkContinuation::skip);
1486 frame runtime_frame = current->last_frame();
1487 frame caller_frame = runtime_frame.sender(®_map);
1488
1489 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1490 assert (nm != nullptr, "no more nmethod?");
1491 nm->make_not_entrant(nmethod::InvalidationReason::C1_PREDICATE_FAILED_TRAP);
1492
1493 methodHandle m(current, nm->method());
1494 MethodData* mdo = m->method_data();
1495
1496 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1497 // Build an MDO. Ignore errors like OutOfMemory;
1498 // that simply means we won't have an MDO to update.
1499 Method::build_profiling_method_data(m, THREAD);
1500 if (HAS_PENDING_EXCEPTION) {
1501 // Only metaspace OOM is expected. No Java code executed.
1502 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1503 CLEAR_PENDING_EXCEPTION;
1504 }
1505 mdo = m->method_data();
1506 }
1507
1508 if (mdo != nullptr) {
1509 mdo->inc_trap_count(Deoptimization::Reason_none);
1510 }
1511
1512 if (TracePredicateFailedTraps) {
1513 stringStream ss1, ss2;
1514 vframeStream vfst(current);
1515 Method* inlinee = vfst.method();
1516 inlinee->print_short_name(&ss1);
1517 m->print_short_name(&ss2);
1518 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1519 }
1520
1521
1522 Deoptimization::deoptimize_frame(current, caller_frame.id());
1523
1524 JRT_END
1525
1526 // Check exception if AbortVMOnException flag set
1527 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1528 ResourceMark rm;
1529 const char* message = nullptr;
1530 if (ex->is_a(vmClasses::Throwable_klass())) {
1531 oop msg = java_lang_Throwable::message(ex);
1532 if (msg != nullptr) {
1533 message = java_lang_String::as_utf8_string(msg);
1534 }
1535 }
1536 Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1537 JRT_END
1538
1539 #define DO_COUNTERS(macro) \
1540 macro(Runtime1, new_instance) \
1541 macro(Runtime1, new_type_array) \
1542 macro(Runtime1, new_object_array) \
1543 macro(Runtime1, new_multi_array) \
1544 macro(Runtime1, counter_overflow) \
1545 macro(Runtime1, exception_handler_for_pc_helper) \
1546 macro(Runtime1, monitorenter) \
1547 macro(Runtime1, monitorexit) \
1548 macro(Runtime1, deoptimize) \
1549 macro(Runtime1, is_instance_of) \
1550 macro(Runtime1, predicate_failed_trap) \
1551 macro(Runtime1, patch_code)
1552
1553 #define INIT_COUNTER(sub, name) \
1554 NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
1555 NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1556
1557 void Runtime1::init_counters() {
1558 assert(CompilerConfig::is_c1_enabled(), "");
1559
1560 if (UsePerfData) {
1561 EXCEPTION_MARK;
1562
1563 DO_COUNTERS(INIT_COUNTER)
1564
1565 if (HAS_PENDING_EXCEPTION) {
1566 vm_exit_during_initialization("Runtime1::init_counters() failed unexpectedly");
1567 }
1568 }
1569 }
1570 #undef INIT_COUNTER
1571
1572 #define PRINT_COUNTER(sub, name) { \
1573 if (_perf_##sub##_##name##_count != nullptr) { \
1574 jlong count = _perf_##sub##_##name##_count->get_value(); \
1575 if (count > 0) { \
1576 st->print_cr(" %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
1577 _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
1578 _perf_##sub##_##name##_timer->thread_counter_value_us(), \
1579 count); \
1580 }}}
1581
1582
1583 void Runtime1::print_counters_on(outputStream* st) {
1584 if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c1_enabled()) {
1585 DO_COUNTERS(PRINT_COUNTER)
1586 } else {
1587 st->print_cr(" Runtime1: no info (%s is disabled)",
1588 (!CompilerConfig::is_c1_enabled() ? "C1" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
1589 }
1590 }
1591
1592 #undef PRINT_COUNTER
1593 #undef DO_COUNTERS
1594
1595 #ifndef PRODUCT
1596 void Runtime1::print_statistics_on(outputStream* st) {
1597 st->print_cr("C1 Runtime statistics:");
1598 st->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr);
1599 st->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1600 st->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr);
1601 st->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr);
1602 st->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr);
1603 st->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt);
1604 st->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt);
1605 st->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt);
1606 st->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt);
1607 st->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt);
1608 st->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt);
1609 st->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt);
1610 st->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt);
1611 st->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1612
1613 st->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt);
1614 st->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt);
1615 st->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt);
1616 st->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt);
1617 st->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt);
1618 st->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt);
1619 st->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt);
1620
1621 st->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count);
1622 st->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count);
1623 st->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count);
1624 st->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count);
1625 st->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count);
1626 st->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count);
1627 st->print_cr(" _throw_count: %u:", _throw_count);
1628
1629 SharedRuntime::print_ic_miss_histogram_on(st);
1630 st->cr();
1631 }
1632 #endif // PRODUCT