1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/codeBuffer.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "classfile/javaClasses.inline.hpp"
  32 #include "classfile/vmClasses.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/aotCodeCache.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "code/vtableStubs.hpp"
  39 #include "compiler/compilationPolicy.hpp"
  40 #include "compiler/compilerDefinitions.inline.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "compiler/oopMap.hpp"
  43 #include "gc/shared/barrierSet.hpp"
  44 #include "gc/shared/c1/barrierSetC1.hpp"
  45 #include "gc/shared/collectedHeap.hpp"
  46 #include "interpreter/bytecode.hpp"
  47 #include "interpreter/interpreter.hpp"
  48 #include "jfr/support/jfrIntrinsics.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/fieldDescriptor.inline.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/interfaceSupport.inline.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/perfData.inline.hpp"
  65 #include "runtime/runtimeUpcalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stackWatermarkSet.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vm_version.hpp"
  72 #include "services/management.hpp"
  73 #include "utilities/copy.hpp"
  74 #include "utilities/events.hpp"
  75 
  76 
  77 // Implementation of StubAssembler
  78 
  79 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  80   _name = name;
  81   _must_gc_arguments = false;
  82   _frame_size = no_frame_size;
  83   _num_rt_args = 0;
  84   _stub_id = stub_id;
  85 }
  86 
  87 
  88 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  89   _name = name;
  90   _must_gc_arguments = must_gc_arguments;
  91 }
  92 
  93 
  94 void StubAssembler::set_frame_size(int size) {
  95   if (_frame_size == no_frame_size) {
  96     _frame_size = size;
  97   }
  98   assert(_frame_size == size, "can't change the frame size");
  99 }
 100 
 101 
 102 void StubAssembler::set_num_rt_args(int args) {
 103   if (_num_rt_args == 0) {
 104     _num_rt_args = args;
 105   }
 106   assert(_num_rt_args == args, "can't change the number of args");
 107 }
 108 
 109 // Implementation of Runtime1
 110 
 111 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS];
 112 
 113 #define C1_BLOB_NAME_DEFINE(name)  "C1 Runtime " # name "_blob",
 114 const char *Runtime1::_blob_names[] = {
 115   C1_STUBS_DO(C1_BLOB_NAME_DEFINE)
 116 };
 117 #undef C1_STUB_NAME_DEFINE
 118 
 119 #ifndef PRODUCT
 120 // statistics
 121 uint Runtime1::_generic_arraycopystub_cnt = 0;
 122 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 123 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 124 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 125 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 126 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 127 uint Runtime1::_new_instance_slowcase_cnt = 0;
 128 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 129 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 130 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 131 uint Runtime1::_patch_code_slowcase_cnt = 0;
 132 uint Runtime1::_throw_range_check_exception_count = 0;
 133 uint Runtime1::_throw_index_exception_count = 0;
 134 uint Runtime1::_throw_div0_exception_count = 0;
 135 uint Runtime1::_throw_null_pointer_exception_count = 0;
 136 uint Runtime1::_throw_class_cast_exception_count = 0;
 137 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 138 uint Runtime1::_throw_count = 0;
 139 
 140 static uint _byte_arraycopy_stub_cnt = 0;
 141 static uint _short_arraycopy_stub_cnt = 0;
 142 static uint _int_arraycopy_stub_cnt = 0;
 143 static uint _long_arraycopy_stub_cnt = 0;
 144 static uint _oop_arraycopy_stub_cnt = 0;
 145 
 146 address Runtime1::arraycopy_count_address(BasicType type) {
 147   switch (type) {
 148   case T_BOOLEAN:
 149   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 150   case T_CHAR:
 151   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 152   case T_FLOAT:
 153   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 154   case T_DOUBLE:
 155   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 156   case T_ARRAY:
 157   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 158   default:
 159     ShouldNotReachHere();
 160     return nullptr;
 161   }
 162 }
 163 
 164 
 165 #endif
 166 
 167 // Simple helper to see if the caller of a runtime stub which
 168 // entered the VM has been deoptimized
 169 
 170 static bool caller_is_deopted(JavaThread* current) {
 171   RegisterMap reg_map(current,
 172                       RegisterMap::UpdateMap::skip,
 173                       RegisterMap::ProcessFrames::include,
 174                       RegisterMap::WalkContinuation::skip);
 175   frame runtime_frame = current->last_frame();
 176   frame caller_frame = runtime_frame.sender(&reg_map);
 177   assert(caller_frame.is_compiled_frame(), "must be compiled");
 178   return caller_frame.is_deoptimized_frame();
 179 }
 180 
 181 // Stress deoptimization
 182 static void deopt_caller(JavaThread* current) {
 183   if (!caller_is_deopted(current)) {
 184     RegisterMap reg_map(current,
 185                         RegisterMap::UpdateMap::skip,
 186                         RegisterMap::ProcessFrames::include,
 187                         RegisterMap::WalkContinuation::skip);
 188     frame runtime_frame = current->last_frame();
 189     frame caller_frame = runtime_frame.sender(&reg_map);
 190     Deoptimization::deoptimize_frame(current, caller_frame.id());
 191     assert(caller_is_deopted(current), "Must be deoptimized");
 192   }
 193 }
 194 
 195 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 196  private:
 197   C1StubId _id;
 198  public:
 199   C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {}
 200   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 201     return Runtime1::generate_code_for(_id, sasm);
 202   }
 203 };
 204 
 205 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 206   if ((int)id >= 0) {
 207     CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr);
 208     if (blob != nullptr) {
 209       return blob;
 210     }
 211   }
 212 
 213   ResourceMark rm;
 214   // create code buffer for code storage
 215   CodeBuffer code(buffer_blob);
 216 
 217   OopMapSet* oop_maps;
 218   int frame_size;
 219   bool must_gc_arguments;
 220 
 221   Compilation::setup_code_buffer(&code, 0);
 222 
 223   // create assembler for code generation
 224   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 225   // generate code for runtime stub
 226   oop_maps = cl->generate_code(sasm);
 227   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 228          "if stub has an oop map it must have a valid frame size");
 229   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 230 
 231   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 232   sasm->align(BytesPerWord);
 233   // make sure all code is in code buffer
 234   sasm->flush();
 235 
 236   frame_size = sasm->frame_size();
 237   must_gc_arguments = sasm->must_gc_arguments();
 238   // create blob - distinguish a few special cases
 239   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 240                                                  &code,
 241                                                  CodeOffsets::frame_never_safe,
 242                                                  frame_size,
 243                                                  oop_maps,
 244                                                  must_gc_arguments,
 245                                                  false /* alloc_fail_is_fatal */ );
 246   if (blob != nullptr && (int)id >= 0) {
 247     AOTCodeCache::store_code_blob(*blob, AOTCodeEntry::C1Blob, (uint)id, name, 0, nullptr);
 248   }
 249   return blob;
 250 }
 251 
 252 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) {
 253   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 254   bool expect_oop_map = true;
 255 #ifdef ASSERT
 256   // Make sure that stubs that need oopmaps have them
 257   switch (id) {
 258     // These stubs don't need to have an oopmap
 259   case C1StubId::dtrace_object_alloc_id:
 260   case C1StubId::slow_subtype_check_id:
 261   case C1StubId::fpu2long_stub_id:
 262   case C1StubId::unwind_exception_id:
 263   case C1StubId::counter_overflow_id:
 264   case C1StubId::is_instance_of_id:
 265     expect_oop_map = false;
 266     break;
 267   default:
 268     break;
 269   }
 270 #endif
 271   C1StubIdStubAssemblerCodeGenClosure cl(id);
 272   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 273   // install blob
 274   _blobs[(int)id] = blob;
 275   return blob != nullptr;
 276 }
 277 
 278 bool Runtime1::initialize(BufferBlob* blob) {
 279   init_counters();
 280   // platform-dependent initialization
 281   initialize_pd();
 282   // generate stubs
 283   int limit = (int)C1StubId::NUM_STUBIDS;
 284   for (int id = 0; id <= (int)C1StubId::forward_exception_id; id++) {
 285     if (!generate_blob_for(blob, (C1StubId) id)) {
 286       return false;
 287     }
 288   }
 289   AOTCodeCache::init_early_c1_table();
 290   for (int id = (int)C1StubId::forward_exception_id+1; id < limit; id++) {
 291     if (!generate_blob_for(blob, (C1StubId) id)) {
 292       return false;
 293     }
 294   }
 295   // printing
 296 #ifndef PRODUCT
 297   if (PrintSimpleStubs) {
 298     ResourceMark rm;
 299     for (int id = 0; id < limit; id++) {
 300       _blobs[id]->print();
 301       if (_blobs[id]->oop_maps() != nullptr) {
 302         _blobs[id]->oop_maps()->print();
 303       }
 304     }
 305   }
 306 #endif
 307   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 308   return bs->generate_c1_runtime_stubs(blob);
 309 }
 310 
 311 CodeBlob* Runtime1::blob_for(C1StubId id) {
 312   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 313   return _blobs[(int)id];
 314 }
 315 
 316 
 317 const char* Runtime1::name_for(C1StubId id) {
 318   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 319   return _blob_names[(int)id];
 320 }
 321 
 322 const char* Runtime1::name_for_address(address entry) {
 323   int limit = (int)C1StubId::NUM_STUBIDS;
 324   for (int i = 0; i < limit; i++) {
 325     C1StubId id = (C1StubId)i;
 326     if (entry == entry_for(id)) return name_for(id);
 327   }
 328 
 329 #define FUNCTION_CASE(a, f) \
 330   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 331 
 332   FUNCTION_CASE(entry, os::javaTimeMillis);
 333   FUNCTION_CASE(entry, os::javaTimeNanos);
 334   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 335   FUNCTION_CASE(entry, SharedRuntime::d2f);
 336   FUNCTION_CASE(entry, SharedRuntime::d2i);
 337   FUNCTION_CASE(entry, SharedRuntime::d2l);
 338   FUNCTION_CASE(entry, SharedRuntime::dcos);
 339   FUNCTION_CASE(entry, SharedRuntime::dexp);
 340   FUNCTION_CASE(entry, SharedRuntime::dlog);
 341   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 342   FUNCTION_CASE(entry, SharedRuntime::dpow);
 343   FUNCTION_CASE(entry, SharedRuntime::drem);
 344   FUNCTION_CASE(entry, SharedRuntime::dsin);
 345   FUNCTION_CASE(entry, SharedRuntime::dtan);
 346   FUNCTION_CASE(entry, SharedRuntime::f2i);
 347   FUNCTION_CASE(entry, SharedRuntime::f2l);
 348   FUNCTION_CASE(entry, SharedRuntime::frem);
 349   FUNCTION_CASE(entry, SharedRuntime::l2d);
 350   FUNCTION_CASE(entry, SharedRuntime::l2f);
 351   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 352   FUNCTION_CASE(entry, SharedRuntime::lmul);
 353   FUNCTION_CASE(entry, SharedRuntime::lrem);
 354   FUNCTION_CASE(entry, SharedRuntime::lrem);
 355   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 356   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 357   FUNCTION_CASE(entry, is_instance_of);
 358   FUNCTION_CASE(entry, trace_block_entry);
 359 #ifdef JFR_HAVE_INTRINSICS
 360   FUNCTION_CASE(entry, JfrTime::time_function());
 361 #endif
 362   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 363   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 364   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 365   FUNCTION_CASE(entry, StubRoutines::dexp());
 366   FUNCTION_CASE(entry, StubRoutines::dlog());
 367   FUNCTION_CASE(entry, StubRoutines::dlog10());
 368   FUNCTION_CASE(entry, StubRoutines::dpow());
 369   FUNCTION_CASE(entry, StubRoutines::dsin());
 370   FUNCTION_CASE(entry, StubRoutines::dcos());
 371   FUNCTION_CASE(entry, StubRoutines::dtan());
 372   FUNCTION_CASE(entry, StubRoutines::dtanh());
 373   FUNCTION_CASE(entry, StubRoutines::dcbrt());
 374 
 375 #undef FUNCTION_CASE
 376 
 377   // Runtime upcalls also has a map of addresses to names
 378   const char* upcall_name = RuntimeUpcalls::get_name_for_upcall_address(entry);
 379   if (upcall_name != nullptr) {
 380     return upcall_name;
 381   }
 382 
 383   // Soft float adds more runtime names.
 384   return pd_name_for_address(entry);
 385 }
 386 
 387 
 388 JRT_ENTRY_PROF(void, Runtime1, new_instance, Runtime1::new_instance(JavaThread* current, Klass* klass))
 389 #ifndef PRODUCT
 390   if (PrintC1Statistics) {
 391     _new_instance_slowcase_cnt++;
 392   }
 393 #endif
 394   assert(klass->is_klass(), "not a class");
 395   Handle holder(current, klass->klass_holder()); // keep the klass alive
 396   InstanceKlass* h = InstanceKlass::cast(klass);
 397   h->check_valid_for_instantiation(true, CHECK);
 398   // make sure klass is initialized
 399   h->initialize(CHECK);
 400   // allocate instance and return via TLS
 401   oop obj = h->allocate_instance(CHECK);
 402   current->set_vm_result_oop(obj);
 403 JRT_END
 404 
 405 
 406 JRT_ENTRY_PROF(void, Runtime1, new_type_array, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 407 #ifndef PRODUCT
 408   if (PrintC1Statistics) {
 409     _new_type_array_slowcase_cnt++;
 410   }
 411 #endif
 412   // Note: no handle for klass needed since they are not used
 413   //       anymore after new_typeArray() and no GC can happen before.
 414   //       (This may have to change if this code changes!)
 415   assert(klass->is_klass(), "not a class");
 416   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 417   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 418   current->set_vm_result_oop(obj);
 419   // This is pretty rare but this runtime patch is stressful to deoptimization
 420   // if we deoptimize here so force a deopt to stress the path.
 421   if (DeoptimizeALot) {
 422     deopt_caller(current);
 423   }
 424 
 425 JRT_END
 426 
 427 
 428 JRT_ENTRY_PROF(void, Runtime1, new_object_array, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 429 #ifndef PRODUCT
 430   if (PrintC1Statistics) {
 431     _new_object_array_slowcase_cnt++;
 432   }
 433 #endif
 434   // Note: no handle for klass needed since they are not used
 435   //       anymore after new_objArray() and no GC can happen before.
 436   //       (This may have to change if this code changes!)
 437   assert(array_klass->is_klass(), "not a class");
 438   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 439   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 440   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 441   current->set_vm_result_oop(obj);
 442   // This is pretty rare but this runtime patch is stressful to deoptimization
 443   // if we deoptimize here so force a deopt to stress the path.
 444   if (DeoptimizeALot) {
 445     deopt_caller(current);
 446   }
 447 JRT_END
 448 
 449 
 450 JRT_ENTRY_PROF(void, Runtime1, new_multi_array, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 451 #ifndef PRODUCT
 452   if (PrintC1Statistics) {
 453     _new_multi_array_slowcase_cnt++;
 454   }
 455 #endif
 456   assert(klass->is_klass(), "not a class");
 457   assert(rank >= 1, "rank must be nonzero");
 458   Handle holder(current, klass->klass_holder()); // keep the klass alive
 459   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 460   current->set_vm_result_oop(obj);
 461 JRT_END
 462 
 463 
 464 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 465   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 466 JRT_END
 467 
 468 
 469 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 470   ResourceMark rm(current);
 471   const char* klass_name = obj->klass()->external_name();
 472   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 473 JRT_END
 474 
 475 
 476 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 477 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 478 // method) method is passed as an argument. In order to do that it is embedded in the code as
 479 // a constant.
 480 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 481   nmethod* osr_nm = nullptr;
 482   methodHandle method(current, m);
 483 
 484   RegisterMap map(current,
 485                   RegisterMap::UpdateMap::skip,
 486                   RegisterMap::ProcessFrames::include,
 487                   RegisterMap::WalkContinuation::skip);
 488   frame fr =  current->last_frame().sender(&map);
 489   nmethod* nm = (nmethod*) fr.cb();
 490   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 491   methodHandle enclosing_method(current, nm->method());
 492 
 493   CompLevel level = (CompLevel)nm->comp_level();
 494   int bci = InvocationEntryBci;
 495   if (branch_bci != InvocationEntryBci) {
 496     // Compute destination bci
 497     address pc = method()->code_base() + branch_bci;
 498     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 499     int offset = 0;
 500     switch (branch) {
 501       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 502       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 503       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 504       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 505       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 506       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 507       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 508         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 509         break;
 510       case Bytecodes::_goto_w:
 511         offset = Bytes::get_Java_u4(pc + 1);
 512         break;
 513       default: ;
 514     }
 515     bci = branch_bci + offset;
 516   }
 517   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 518   return osr_nm;
 519 }
 520 
 521 JRT_BLOCK_ENTRY_PROF(address, Runtime1, counter_overflow, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 522   nmethod* osr_nm;
 523   JRT_BLOCK_NO_ASYNC
 524     osr_nm = counter_overflow_helper(current, bci, method);
 525     if (osr_nm != nullptr) {
 526       RegisterMap map(current,
 527                       RegisterMap::UpdateMap::skip,
 528                       RegisterMap::ProcessFrames::include,
 529                       RegisterMap::WalkContinuation::skip);
 530       frame fr =  current->last_frame().sender(&map);
 531       Deoptimization::deoptimize_frame(current, fr.id());
 532     }
 533   JRT_BLOCK_END
 534   return nullptr;
 535 JRT_END
 536 
 537 extern void vm_exit(int code);
 538 
 539 // Enter this method from compiled code handler below. This is where we transition
 540 // to VM mode. This is done as a helper routine so that the method called directly
 541 // from compiled code does not have to transition to VM. This allows the entry
 542 // method to see if the nmethod that we have just looked up a handler for has
 543 // been deoptimized while we were in the vm. This simplifies the assembly code
 544 // cpu directories.
 545 //
 546 // We are entering here from exception stub (via the entry method below)
 547 // If there is a compiled exception handler in this method, we will continue there;
 548 // otherwise we will unwind the stack and continue at the caller of top frame method
 549 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 550 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 551 // check to see if the handler we are going to return is now in a nmethod that has
 552 // been deoptimized. If that is the case we return the deopt blob
 553 // unpack_with_exception entry instead. This makes life for the exception blob easier
 554 // because making that same check and diverting is painful from assembly language.
 555 JRT_ENTRY_NO_ASYNC_PROF(static address, Runtime1, exception_handler_for_pc_helper, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 556   // Reset method handle flag.
 557   current->set_is_method_handle_return(false);
 558 
 559   Handle exception(current, ex);
 560 
 561   // This function is called when we are about to throw an exception. Therefore,
 562   // we have to poll the stack watermark barrier to make sure that not yet safe
 563   // stack frames are made safe before returning into them.
 564   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 565     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 566     // frame has been unwound. It instead builds its own stub frame, to call the
 567     // runtime. But the throwing frame has already been unwound here.
 568     StackWatermarkSet::after_unwind(current);
 569   }
 570 
 571   nm = CodeCache::find_nmethod(pc);
 572   assert(nm != nullptr, "this is not an nmethod");
 573   // Adjust the pc as needed/
 574   if (nm->is_deopt_pc(pc)) {
 575     RegisterMap map(current,
 576                     RegisterMap::UpdateMap::skip,
 577                     RegisterMap::ProcessFrames::include,
 578                     RegisterMap::WalkContinuation::skip);
 579     frame exception_frame = current->last_frame().sender(&map);
 580     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 581     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 582     pc = exception_frame.pc();
 583   }
 584   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 585   // Check that exception is a subclass of Throwable
 586   assert(exception->is_a(vmClasses::Throwable_klass()),
 587          "Exception not subclass of Throwable");
 588 
 589   // debugging support
 590   // tracing
 591   if (log_is_enabled(Info, exceptions)) {
 592     ResourceMark rm; // print_value_string
 593     stringStream tempst;
 594     assert(nm->method() != nullptr, "Unexpected null method()");
 595     tempst.print("C1 compiled method <%s>\n"
 596                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 597                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 598     Exceptions::log_exception(exception, tempst.freeze());
 599   }
 600   // for AbortVMOnException flag
 601   Exceptions::debug_check_abort(exception);
 602 
 603   // Check the stack guard pages and re-enable them if necessary and there is
 604   // enough space on the stack to do so.  Use fast exceptions only if the guard
 605   // pages are enabled.
 606   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 607 
 608   if (JvmtiExport::can_post_on_exceptions()) {
 609     // To ensure correct notification of exception catches and throws
 610     // we have to deoptimize here.  If we attempted to notify the
 611     // catches and throws during this exception lookup it's possible
 612     // we could deoptimize on the way out of the VM and end back in
 613     // the interpreter at the throw site.  This would result in double
 614     // notifications since the interpreter would also notify about
 615     // these same catches and throws as it unwound the frame.
 616 
 617     RegisterMap reg_map(current,
 618                         RegisterMap::UpdateMap::include,
 619                         RegisterMap::ProcessFrames::include,
 620                         RegisterMap::WalkContinuation::skip);
 621     frame stub_frame = current->last_frame();
 622     frame caller_frame = stub_frame.sender(&reg_map);
 623 
 624     // We don't really want to deoptimize the nmethod itself since we
 625     // can actually continue in the exception handler ourselves but I
 626     // don't see an easy way to have the desired effect.
 627     Deoptimization::deoptimize_frame(current, caller_frame.id());
 628     assert(caller_is_deopted(current), "Must be deoptimized");
 629 
 630     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 631   }
 632 
 633   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 634   if (guard_pages_enabled) {
 635     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 636     if (fast_continuation != nullptr) {
 637       // Set flag if return address is a method handle call site.
 638       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 639       return fast_continuation;
 640     }
 641   }
 642 
 643   // If the stack guard pages are enabled, check whether there is a handler in
 644   // the current method.  Otherwise (guard pages disabled), force an unwind and
 645   // skip the exception cache update (i.e., just leave continuation as null).
 646   address continuation = nullptr;
 647   if (guard_pages_enabled) {
 648 
 649     // New exception handling mechanism can support inlined methods
 650     // with exception handlers since the mappings are from PC to PC
 651 
 652     // Clear out the exception oop and pc since looking up an
 653     // exception handler can cause class loading, which might throw an
 654     // exception and those fields are expected to be clear during
 655     // normal bytecode execution.
 656     current->clear_exception_oop_and_pc();
 657 
 658     bool recursive_exception = false;
 659     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 660     // If an exception was thrown during exception dispatch, the exception oop may have changed
 661     current->set_exception_oop(exception());
 662     current->set_exception_pc(pc);
 663 
 664     // the exception cache is used only by non-implicit exceptions
 665     // Update the exception cache only when there didn't happen
 666     // another exception during the computation of the compiled
 667     // exception handler. Checking for exception oop equality is not
 668     // sufficient because some exceptions are pre-allocated and reused.
 669     if (continuation != nullptr && !recursive_exception) {
 670       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 671     }
 672   }
 673 
 674   current->set_vm_result_oop(exception());
 675   // Set flag if return address is a method handle call site.
 676   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 677 
 678   if (log_is_enabled(Info, exceptions)) {
 679     ResourceMark rm;
 680     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 681                          " for exception thrown at PC " PTR_FORMAT,
 682                          p2i(current), p2i(continuation), p2i(pc));
 683   }
 684 
 685   return continuation;
 686 JRT_END
 687 
 688 // Enter this method from compiled code only if there is a Java exception handler
 689 // in the method handling the exception.
 690 // We are entering here from exception stub. We don't do a normal VM transition here.
 691 // We do it in a helper. This is so we can check to see if the nmethod we have just
 692 // searched for an exception handler has been deoptimized in the meantime.
 693 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 694   oop exception = current->exception_oop();
 695   address pc = current->exception_pc();
 696   // Still in Java mode
 697   DEBUG_ONLY(NoHandleMark nhm);
 698   nmethod* nm = nullptr;
 699   address continuation = nullptr;
 700   {
 701     // Enter VM mode by calling the helper
 702     ResetNoHandleMark rnhm;
 703     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 704   }
 705   // Back in JAVA, use no oops DON'T safepoint
 706 
 707   // Now check to see if the nmethod we were called from is now deoptimized.
 708   // If so we must return to the deopt blob and deoptimize the nmethod
 709   if (nm != nullptr && caller_is_deopted(current)) {
 710     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 711   }
 712 
 713   assert(continuation != nullptr, "no handler found");
 714   return continuation;
 715 }
 716 
 717 
 718 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 719 #ifndef PRODUCT
 720   if (PrintC1Statistics) {
 721     _throw_range_check_exception_count++;
 722   }
 723 #endif
 724   const int len = 35;
 725   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 726   char message[2 * jintAsStringSize + len];
 727   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 728   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 729 JRT_END
 730 
 731 
 732 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 733 #ifndef PRODUCT
 734   if (PrintC1Statistics) {
 735     _throw_index_exception_count++;
 736   }
 737 #endif
 738   char message[16];
 739   os::snprintf_checked(message, sizeof(message), "%d", index);
 740   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 741 JRT_END
 742 
 743 
 744 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 745 #ifndef PRODUCT
 746   if (PrintC1Statistics) {
 747     _throw_div0_exception_count++;
 748   }
 749 #endif
 750   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 751 JRT_END
 752 
 753 
 754 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 755 #ifndef PRODUCT
 756   if (PrintC1Statistics) {
 757     _throw_null_pointer_exception_count++;
 758   }
 759 #endif
 760   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 761 JRT_END
 762 
 763 
 764 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 765 #ifndef PRODUCT
 766   if (PrintC1Statistics) {
 767     _throw_class_cast_exception_count++;
 768   }
 769 #endif
 770   ResourceMark rm(current);
 771   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 772   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 773 JRT_END
 774 
 775 
 776 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 777 #ifndef PRODUCT
 778   if (PrintC1Statistics) {
 779     _throw_incompatible_class_change_error_count++;
 780   }
 781 #endif
 782   ResourceMark rm(current);
 783   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 784 JRT_END
 785 
 786 
 787 JRT_BLOCK_ENTRY_PROF(void, Runtime1, monitorenter, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 788 #ifndef PRODUCT
 789   if (PrintC1Statistics) {
 790     _monitorenter_slowcase_cnt++;
 791   }
 792 #endif
 793   if (LockingMode == LM_MONITOR) {
 794     lock->set_obj(obj);
 795   }
 796   assert(obj == lock->obj(), "must match");
 797   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 798 JRT_END
 799 
 800 
 801 JRT_LEAF_PROF(void, Runtime1, monitorexit, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 802   assert(current == JavaThread::current(), "pre-condition");
 803 #ifndef PRODUCT
 804   if (PrintC1Statistics) {
 805     _monitorexit_slowcase_cnt++;
 806   }
 807 #endif
 808   assert(current->last_Java_sp(), "last_Java_sp must be set");
 809   oop obj = lock->obj();
 810   assert(oopDesc::is_oop(obj), "must be null or an object");
 811   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 812 JRT_END
 813 
 814 // Cf. OptoRuntime::deoptimize_caller_frame
 815 JRT_ENTRY_PROF(void, Runtime1, deoptimize, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 816   // Called from within the owner thread, so no need for safepoint
 817   RegisterMap reg_map(current,
 818                       RegisterMap::UpdateMap::skip,
 819                       RegisterMap::ProcessFrames::include,
 820                       RegisterMap::WalkContinuation::skip);
 821   frame stub_frame = current->last_frame();
 822   assert(stub_frame.is_runtime_frame(), "Sanity check");
 823   frame caller_frame = stub_frame.sender(&reg_map);
 824   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 825   assert(nm != nullptr, "Sanity check");
 826   methodHandle method(current, nm->method());
 827   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 828   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 829   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 830 
 831   if (action == Deoptimization::Action_make_not_entrant) {
 832     if (nm->make_not_entrant("C1 deoptimize")) {
 833       if (reason == Deoptimization::Reason_tenured) {
 834         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 835         if (trap_mdo != nullptr) {
 836           trap_mdo->inc_tenure_traps();
 837         }
 838       }
 839     }
 840   }
 841 
 842   // Deoptimize the caller frame.
 843   Deoptimization::deoptimize_frame(current, caller_frame.id());
 844   // Return to the now deoptimized frame.
 845 JRT_END
 846 
 847 
 848 #ifndef DEOPTIMIZE_WHEN_PATCHING
 849 
 850 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 851   Bytecode_field field_access(caller, bci);
 852   // This can be static or non-static field access
 853   Bytecodes::Code code       = field_access.code();
 854 
 855   // We must load class, initialize class and resolve the field
 856   fieldDescriptor result; // initialize class if needed
 857   constantPoolHandle constants(THREAD, caller->constants());
 858   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller,
 859                                      Bytecodes::java_code(code), true /*initialize_class*/, CHECK_NULL);
 860   return result.field_holder();
 861 }
 862 
 863 
 864 //
 865 // This routine patches sites where a class wasn't loaded or
 866 // initialized at the time the code was generated.  It handles
 867 // references to classes, fields and forcing of initialization.  Most
 868 // of the cases are straightforward and involving simply forcing
 869 // resolution of a class, rewriting the instruction stream with the
 870 // needed constant and replacing the call in this function with the
 871 // patched code.  The case for static field is more complicated since
 872 // the thread which is in the process of initializing a class can
 873 // access it's static fields but other threads can't so the code
 874 // either has to deoptimize when this case is detected or execute a
 875 // check that the current thread is the initializing thread.  The
 876 // current
 877 //
 878 // Patches basically look like this:
 879 //
 880 //
 881 // patch_site: jmp patch stub     ;; will be patched
 882 // continue:   ...
 883 //             ...
 884 //             ...
 885 //             ...
 886 //
 887 // They have a stub which looks like this:
 888 //
 889 //             ;; patch body
 890 //             movl <const>, reg           (for class constants)
 891 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 892 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 893 //             <being_init offset> <bytes to copy> <bytes to skip>
 894 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 895 //             jmp patch_site
 896 //
 897 //
 898 // A normal patch is done by rewriting the patch body, usually a move,
 899 // and then copying it into place over top of the jmp instruction
 900 // being careful to flush caches and doing it in an MP-safe way.  The
 901 // constants following the patch body are used to find various pieces
 902 // of the patch relative to the call site for Runtime1::patch_code.
 903 // The case for getstatic and putstatic is more complicated because
 904 // getstatic and putstatic have special semantics when executing while
 905 // the class is being initialized.  getstatic/putstatic on a class
 906 // which is being_initialized may be executed by the initializing
 907 // thread but other threads have to block when they execute it.  This
 908 // is accomplished in compiled code by executing a test of the current
 909 // thread against the initializing thread of the class.  It's emitted
 910 // as boilerplate in their stub which allows the patched code to be
 911 // executed before it's copied back into the main body of the nmethod.
 912 //
 913 // being_init: get_thread(<tmp reg>
 914 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 915 //             jne patch_stub
 916 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 917 //             movl reg, [reg1 + <const>]  (for field offsets)
 918 //             jmp continue
 919 //             <being_init offset> <bytes to copy> <bytes to skip>
 920 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
 921 //             jmp patch_site
 922 //
 923 // If the class is being initialized the patch body is rewritten and
 924 // the patch site is rewritten to jump to being_init, instead of
 925 // patch_stub.  Whenever this code is executed it checks the current
 926 // thread against the initializing thread so other threads will enter
 927 // the runtime and end up blocked waiting the class to finish
 928 // initializing inside the calls to resolve_field below.  The
 929 // initializing class will continue on it's way.  Once the class is
 930 // fully_initialized, the intializing_thread of the class becomes
 931 // null, so the next thread to execute this code will fail the test,
 932 // call into patch_code and complete the patching process by copying
 933 // the patch body back into the main part of the nmethod and resume
 934 // executing.
 935 
 936 // NB:
 937 //
 938 // Patchable instruction sequences inherently exhibit race conditions,
 939 // where thread A is patching an instruction at the same time thread B
 940 // is executing it.  The algorithms we use ensure that any observation
 941 // that B can make on any intermediate states during A's patching will
 942 // always end up with a correct outcome.  This is easiest if there are
 943 // few or no intermediate states.  (Some inline caches have two
 944 // related instructions that must be patched in tandem.  For those,
 945 // intermediate states seem to be unavoidable, but we will get the
 946 // right answer from all possible observation orders.)
 947 //
 948 // When patching the entry instruction at the head of a method, or a
 949 // linkable call instruction inside of a method, we try very hard to
 950 // use a patch sequence which executes as a single memory transaction.
 951 // This means, in practice, that when thread A patches an instruction,
 952 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 953 // instruction or is contained in it.  We believe that memory hardware
 954 // will never break up such a word write, if it is naturally aligned
 955 // for the word being written.  We also know that some CPUs work very
 956 // hard to create atomic updates even of naturally unaligned words,
 957 // but we don't want to bet the farm on this always working.
 958 //
 959 // Therefore, if there is any chance of a race condition, we try to
 960 // patch only naturally aligned words, as single, full-word writes.
 961 
 962 JRT_ENTRY_PROF(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
 963 #ifndef PRODUCT
 964   if (PrintC1Statistics) {
 965     _patch_code_slowcase_cnt++;
 966   }
 967 #endif
 968 
 969   ResourceMark rm(current);
 970   RegisterMap reg_map(current,
 971                       RegisterMap::UpdateMap::skip,
 972                       RegisterMap::ProcessFrames::include,
 973                       RegisterMap::WalkContinuation::skip);
 974   frame runtime_frame = current->last_frame();
 975   frame caller_frame = runtime_frame.sender(&reg_map);
 976 
 977   // last java frame on stack
 978   vframeStream vfst(current, true);
 979   assert(!vfst.at_end(), "Java frame must exist");
 980 
 981   methodHandle caller_method(current, vfst.method());
 982   // Note that caller_method->code() may not be same as caller_code because of OSR's
 983   // Note also that in the presence of inlining it is not guaranteed
 984   // that caller_method() == caller_code->method()
 985 
 986   int bci = vfst.bci();
 987   Bytecodes::Code code = caller_method()->java_code_at(bci);
 988 
 989   // this is used by assertions in the access_field_patching_id
 990   BasicType patch_field_type = T_ILLEGAL;
 991   bool deoptimize_for_volatile = false;
 992   bool deoptimize_for_atomic = false;
 993   int patch_field_offset = -1;
 994   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 995   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 996   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 997   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 998   bool load_klass_or_mirror_patch_id =
 999     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
1000 
1001   if (stub_id == C1StubId::access_field_patching_id) {
1002 
1003     Bytecode_field field_access(caller_method, bci);
1004     fieldDescriptor result; // initialize class if needed
1005     Bytecodes::Code code = field_access.code();
1006     constantPoolHandle constants(current, caller_method->constants());
1007     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method,
1008                                        Bytecodes::java_code(code), true /*initialize_class*/, CHECK);
1009     patch_field_offset = result.offset();
1010 
1011     // If we're patching a field which is volatile then at compile it
1012     // must not have been know to be volatile, so the generated code
1013     // isn't correct for a volatile reference.  The nmethod has to be
1014     // deoptimized so that the code can be regenerated correctly.
1015     // This check is only needed for access_field_patching since this
1016     // is the path for patching field offsets.  load_klass is only
1017     // used for patching references to oops which don't need special
1018     // handling in the volatile case.
1019 
1020     deoptimize_for_volatile = result.access_flags().is_volatile();
1021 
1022     // If we are patching a field which should be atomic, then
1023     // the generated code is not correct either, force deoptimizing.
1024     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1025     // break access atomicity only for them.
1026 
1027     // Strictly speaking, the deoptimization on 64-bit platforms
1028     // is unnecessary, and T_LONG stores on 32-bit platforms need
1029     // to be handled by special patching code when AlwaysAtomicAccesses
1030     // becomes product feature. At this point, we are still going
1031     // for the deoptimization for consistency against volatile
1032     // accesses.
1033 
1034     patch_field_type = result.field_type();
1035     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1036 
1037   } else if (load_klass_or_mirror_patch_id) {
1038     Klass* k = nullptr;
1039     switch (code) {
1040       case Bytecodes::_putstatic:
1041       case Bytecodes::_getstatic:
1042         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1043           init_klass = klass;
1044           mirror = Handle(current, klass->java_mirror());
1045         }
1046         break;
1047       case Bytecodes::_new:
1048         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1049           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1050         }
1051         break;
1052       case Bytecodes::_multianewarray:
1053         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1054           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1055         }
1056         break;
1057       case Bytecodes::_instanceof:
1058         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1059           k = caller_method->constants()->klass_at(io.index(), CHECK);
1060         }
1061         break;
1062       case Bytecodes::_checkcast:
1063         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1064           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1065         }
1066         break;
1067       case Bytecodes::_anewarray:
1068         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1069           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1070           k = ek->array_klass(CHECK);
1071         }
1072         break;
1073       case Bytecodes::_ldc:
1074       case Bytecodes::_ldc_w:
1075       case Bytecodes::_ldc2_w:
1076         {
1077           Bytecode_loadconstant cc(caller_method, bci);
1078           oop m = cc.resolve_constant(CHECK);
1079           mirror = Handle(current, m);
1080         }
1081         break;
1082       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1083     }
1084     load_klass = k;
1085   } else if (stub_id == C1StubId::load_appendix_patching_id) {
1086     Bytecode_invoke bytecode(caller_method, bci);
1087     Bytecodes::Code bc = bytecode.invoke_code();
1088 
1089     CallInfo info;
1090     constantPoolHandle pool(current, caller_method->constants());
1091     int index = bytecode.index();
1092     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1093     switch (bc) {
1094       case Bytecodes::_invokehandle: {
1095         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1096         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1097         break;
1098       }
1099       case Bytecodes::_invokedynamic: {
1100         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1101         break;
1102       }
1103       default: fatal("unexpected bytecode for load_appendix_patching_id");
1104     }
1105   } else {
1106     ShouldNotReachHere();
1107   }
1108 
1109   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1110     // At compile time we assumed the field wasn't volatile/atomic but after
1111     // loading it turns out it was volatile/atomic so we have to throw the
1112     // compiled code out and let it be regenerated.
1113     if (TracePatching) {
1114       if (deoptimize_for_volatile) {
1115         tty->print_cr("Deoptimizing for patching volatile field reference");
1116       }
1117       if (deoptimize_for_atomic) {
1118         tty->print_cr("Deoptimizing for patching atomic field reference");
1119       }
1120     }
1121 
1122     // It's possible the nmethod was invalidated in the last
1123     // safepoint, but if it's still alive then make it not_entrant.
1124     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1125     if (nm != nullptr) {
1126       nm->make_not_entrant("C1 code patch");
1127     }
1128 
1129     Deoptimization::deoptimize_frame(current, caller_frame.id());
1130 
1131     // Return to the now deoptimized frame.
1132   }
1133 
1134   // Now copy code back
1135 
1136   {
1137     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1138     //
1139     // Deoptimization may have happened while we waited for the lock.
1140     // In that case we don't bother to do any patching we just return
1141     // and let the deopt happen
1142     if (!caller_is_deopted(current)) {
1143       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1144       address instr_pc = jump->jump_destination();
1145       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1146       if (ni->is_jump() ) {
1147         // the jump has not been patched yet
1148         // The jump destination is slow case and therefore not part of the stubs
1149         // (stubs are only for StaticCalls)
1150 
1151         // format of buffer
1152         //    ....
1153         //    instr byte 0     <-- copy_buff
1154         //    instr byte 1
1155         //    ..
1156         //    instr byte n-1
1157         //      n
1158         //    ....             <-- call destination
1159 
1160         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1161         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1162         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1163         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1164         address copy_buff = stub_location - *byte_skip - *byte_count;
1165         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1166         if (TracePatching) {
1167           ttyLocker ttyl;
1168           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1169                         p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass");
1170           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1171           assert(caller_code != nullptr, "nmethod not found");
1172 
1173           // NOTE we use pc() not original_pc() because we already know they are
1174           // identical otherwise we'd have never entered this block of code
1175 
1176           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1177           assert(map != nullptr, "null check");
1178           map->print();
1179           tty->cr();
1180 
1181           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1182         }
1183         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1184         bool do_patch = true;
1185         if (stub_id == C1StubId::access_field_patching_id) {
1186           // The offset may not be correct if the class was not loaded at code generation time.
1187           // Set it now.
1188           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1189           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1190           assert(patch_field_offset >= 0, "illegal offset");
1191           n_move->add_offset_in_bytes(patch_field_offset);
1192         } else if (load_klass_or_mirror_patch_id) {
1193           // If a getstatic or putstatic is referencing a klass which
1194           // isn't fully initialized, the patch body isn't copied into
1195           // place until initialization is complete.  In this case the
1196           // patch site is setup so that any threads besides the
1197           // initializing thread are forced to come into the VM and
1198           // block.
1199           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1200                      InstanceKlass::cast(init_klass)->is_initialized();
1201           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1202           if (jump->jump_destination() == being_initialized_entry) {
1203             assert(do_patch == true, "initialization must be complete at this point");
1204           } else {
1205             // patch the instruction <move reg, klass>
1206             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1207 
1208             assert(n_copy->data() == 0 ||
1209                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1210                    "illegal init value");
1211             if (stub_id == C1StubId::load_klass_patching_id) {
1212               assert(load_klass != nullptr, "klass not set");
1213               n_copy->set_data((intx) (load_klass));
1214             } else {
1215               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1216               n_copy->set_data(cast_from_oop<intx>(mirror()));
1217             }
1218 
1219             if (TracePatching) {
1220               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1221             }
1222           }
1223         } else if (stub_id == C1StubId::load_appendix_patching_id) {
1224           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1225           assert(n_copy->data() == 0 ||
1226                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1227                  "illegal init value");
1228           n_copy->set_data(cast_from_oop<intx>(appendix()));
1229 
1230           if (TracePatching) {
1231             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1232           }
1233         } else {
1234           ShouldNotReachHere();
1235         }
1236 
1237         if (do_patch) {
1238           // replace instructions
1239           // first replace the tail, then the call
1240 #ifdef ARM
1241           if((load_klass_or_mirror_patch_id ||
1242               stub_id == C1StubId::load_appendix_patching_id) &&
1243               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1244             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1245             address addr = nullptr;
1246             assert(nm != nullptr, "invalid nmethod_pc");
1247             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1248             while (mds.next()) {
1249               if (mds.type() == relocInfo::oop_type) {
1250                 assert(stub_id == C1StubId::load_mirror_patching_id ||
1251                        stub_id == C1StubId::load_appendix_patching_id, "wrong stub id");
1252                 oop_Relocation* r = mds.oop_reloc();
1253                 addr = (address)r->oop_addr();
1254                 break;
1255               } else if (mds.type() == relocInfo::metadata_type) {
1256                 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id");
1257                 metadata_Relocation* r = mds.metadata_reloc();
1258                 addr = (address)r->metadata_addr();
1259                 break;
1260               }
1261             }
1262             assert(addr != nullptr, "metadata relocation must exist");
1263             copy_buff -= *byte_count;
1264             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1265             n_copy2->set_pc_relative_offset(addr, instr_pc);
1266           }
1267 #endif
1268 
1269           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1270             address ptr = copy_buff + i;
1271             int a_byte = (*ptr) & 0xFF;
1272             address dst = instr_pc + i;
1273             *(unsigned char*)dst = (unsigned char) a_byte;
1274           }
1275           ICache::invalidate_range(instr_pc, *byte_count);
1276           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1277 
1278           if (load_klass_or_mirror_patch_id ||
1279               stub_id == C1StubId::load_appendix_patching_id) {
1280             relocInfo::relocType rtype =
1281               (stub_id == C1StubId::load_klass_patching_id) ?
1282                                    relocInfo::metadata_type :
1283                                    relocInfo::oop_type;
1284             // update relocInfo to metadata
1285             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1286             assert(nm != nullptr, "invalid nmethod_pc");
1287 
1288             // The old patch site is now a move instruction so update
1289             // the reloc info so that it will get updated during
1290             // future GCs.
1291             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1292             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1293                                                      relocInfo::none, rtype);
1294           }
1295 
1296         } else {
1297           ICache::invalidate_range(copy_buff, *byte_count);
1298           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1299         }
1300       }
1301     }
1302     // If we are patching in a non-perm oop, make sure the nmethod
1303     // is on the right list.
1304     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1305     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1306 
1307     // Since we've patched some oops in the nmethod,
1308     // (re)register it with the heap.
1309     Universe::heap()->register_nmethod(nm);
1310   }
1311 JRT_END
1312 
1313 #else // DEOPTIMIZE_WHEN_PATCHING
1314 
1315 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) {
1316   if (stub_id == C1StubId::load_klass_patching_id ||
1317       stub_id == C1StubId::load_mirror_patching_id) {
1318     // last java frame on stack
1319     vframeStream vfst(current, true);
1320     assert(!vfst.at_end(), "Java frame must exist");
1321 
1322     methodHandle caller_method(current, vfst.method());
1323     int bci = vfst.bci();
1324     Bytecodes::Code code = caller_method()->java_code_at(bci);
1325 
1326     switch (code) {
1327       case Bytecodes::_new:
1328       case Bytecodes::_anewarray:
1329       case Bytecodes::_multianewarray:
1330       case Bytecodes::_instanceof:
1331       case Bytecodes::_checkcast: {
1332         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1333         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1334         if (tag.is_unresolved_klass_in_error()) {
1335           return false; // throws resolution error
1336         }
1337         break;
1338       }
1339 
1340       default: break;
1341     }
1342   }
1343   return true;
1344 }
1345 
1346 PROF_ENTRY(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
1347 #ifndef PRODUCT
1348   if (PrintC1Statistics) {
1349     _patch_code_slowcase_cnt++;
1350   }
1351 #endif
1352 
1353   // Enable WXWrite: the function is called by c1 stub as a runtime function
1354   // (see another implementation above).
1355   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1356 
1357   if (TracePatching) {
1358     tty->print_cr("Deoptimizing because patch is needed");
1359   }
1360 
1361   RegisterMap reg_map(current,
1362                       RegisterMap::UpdateMap::skip,
1363                       RegisterMap::ProcessFrames::include,
1364                       RegisterMap::WalkContinuation::skip);
1365 
1366   frame runtime_frame = current->last_frame();
1367   frame caller_frame = runtime_frame.sender(&reg_map);
1368   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1369 
1370   if (is_patching_needed(current, stub_id)) {
1371     // Make sure the nmethod is invalidated, i.e. made not entrant.
1372     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1373     if (nm != nullptr) {
1374       nm->make_not_entrant("C1 deoptimize for patching");
1375     }
1376   }
1377 
1378   Deoptimization::deoptimize_frame(current, caller_frame.id());
1379   // Return to the now deoptimized frame.
1380   postcond(caller_is_deopted(current));
1381 PROF_END
1382 
1383 #endif // DEOPTIMIZE_WHEN_PATCHING
1384 
1385 // Entry point for compiled code. We want to patch a nmethod.
1386 // We don't do a normal VM transition here because we want to
1387 // know after the patching is complete and any safepoint(s) are taken
1388 // if the calling nmethod was deoptimized. We do this by calling a
1389 // helper method which does the normal VM transition and when it
1390 // completes we can check for deoptimization. This simplifies the
1391 // assembly code in the cpu directories.
1392 //
1393 int Runtime1::move_klass_patching(JavaThread* current) {
1394 //
1395 // NOTE: we are still in Java
1396 //
1397   DEBUG_ONLY(NoHandleMark nhm;)
1398   {
1399     // Enter VM mode
1400     ResetNoHandleMark rnhm;
1401     patch_code(current, C1StubId::load_klass_patching_id);
1402   }
1403   // Back in JAVA, use no oops DON'T safepoint
1404 
1405   // Return true if calling code is deoptimized
1406 
1407   return caller_is_deopted(current);
1408 }
1409 
1410 int Runtime1::move_mirror_patching(JavaThread* current) {
1411 //
1412 // NOTE: we are still in Java
1413 //
1414   DEBUG_ONLY(NoHandleMark nhm;)
1415   {
1416     // Enter VM mode
1417     ResetNoHandleMark rnhm;
1418     patch_code(current, C1StubId::load_mirror_patching_id);
1419   }
1420   // Back in JAVA, use no oops DON'T safepoint
1421 
1422   // Return true if calling code is deoptimized
1423 
1424   return caller_is_deopted(current);
1425 }
1426 
1427 int Runtime1::move_appendix_patching(JavaThread* current) {
1428 //
1429 // NOTE: we are still in Java
1430 //
1431   DEBUG_ONLY(NoHandleMark nhm;)
1432   {
1433     // Enter VM mode
1434     ResetNoHandleMark rnhm;
1435     patch_code(current, C1StubId::load_appendix_patching_id);
1436   }
1437   // Back in JAVA, use no oops DON'T safepoint
1438 
1439   // Return true if calling code is deoptimized
1440 
1441   return caller_is_deopted(current);
1442 }
1443 
1444 // Entry point for compiled code. We want to patch a nmethod.
1445 // We don't do a normal VM transition here because we want to
1446 // know after the patching is complete and any safepoint(s) are taken
1447 // if the calling nmethod was deoptimized. We do this by calling a
1448 // helper method which does the normal VM transition and when it
1449 // completes we can check for deoptimization. This simplifies the
1450 // assembly code in the cpu directories.
1451 //
1452 int Runtime1::access_field_patching(JavaThread* current) {
1453   //
1454   // NOTE: we are still in Java
1455   //
1456   // Handles created in this function will be deleted by the
1457   // HandleMarkCleaner in the transition to the VM.
1458   NoHandleMark nhm;
1459   {
1460     // Enter VM mode
1461     ResetNoHandleMark rnhm;
1462     patch_code(current, C1StubId::access_field_patching_id);
1463   }
1464   // Back in JAVA, use no oops DON'T safepoint
1465 
1466   // Return true if calling code is deoptimized
1467 
1468   return caller_is_deopted(current);
1469 }
1470 
1471 
1472 JRT_LEAF_PROF_NO_THREAD(void, Runtime1, trace_block_entry, Runtime1::trace_block_entry(jint block_id))
1473   // for now we just print out the block id
1474   tty->print("%d ", block_id);
1475 JRT_END
1476 
1477 
1478 JRT_LEAF_PROF_NO_THREAD(int, Runtime1, is_instance_of, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1479   // had to return int instead of bool, otherwise there may be a mismatch
1480   // between the C calling convention and the Java one.
1481   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1482   // JVM takes the whole %eax as the return value, which may misinterpret
1483   // the return value as a boolean true.
1484 
1485   assert(mirror != nullptr, "should null-check on mirror before calling");
1486   Klass* k = java_lang_Class::as_Klass(mirror);
1487   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1488 JRT_END
1489 
1490 JRT_ENTRY_PROF(void, Runtime1, predicate_failed_trap, Runtime1::predicate_failed_trap(JavaThread* current))
1491   ResourceMark rm;
1492 
1493   RegisterMap reg_map(current,
1494                       RegisterMap::UpdateMap::skip,
1495                       RegisterMap::ProcessFrames::include,
1496                       RegisterMap::WalkContinuation::skip);
1497   frame runtime_frame = current->last_frame();
1498   frame caller_frame = runtime_frame.sender(&reg_map);
1499 
1500   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1501   assert (nm != nullptr, "no more nmethod?");
1502   nm->make_not_entrant("C1 predicate failed trap");
1503 
1504   methodHandle m(current, nm->method());
1505   MethodData* mdo = m->method_data();
1506 
1507   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1508     // Build an MDO.  Ignore errors like OutOfMemory;
1509     // that simply means we won't have an MDO to update.
1510     Method::build_profiling_method_data(m, THREAD);
1511     if (HAS_PENDING_EXCEPTION) {
1512       // Only metaspace OOM is expected. No Java code executed.
1513       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1514       CLEAR_PENDING_EXCEPTION;
1515     }
1516     mdo = m->method_data();
1517   }
1518 
1519   if (mdo != nullptr) {
1520     mdo->inc_trap_count(Deoptimization::Reason_none);
1521   }
1522 
1523   if (TracePredicateFailedTraps) {
1524     stringStream ss1, ss2;
1525     vframeStream vfst(current);
1526     Method* inlinee = vfst.method();
1527     inlinee->print_short_name(&ss1);
1528     m->print_short_name(&ss2);
1529     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1530   }
1531 
1532 
1533   Deoptimization::deoptimize_frame(current, caller_frame.id());
1534 
1535 JRT_END
1536 
1537 // Check exception if AbortVMOnException flag set
1538 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1539   ResourceMark rm;
1540   const char* message = nullptr;
1541   if (ex->is_a(vmClasses::Throwable_klass())) {
1542     oop msg = java_lang_Throwable::message(ex);
1543     if (msg != nullptr) {
1544       message = java_lang_String::as_utf8_string(msg);
1545     }
1546   }
1547   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1548 JRT_END
1549 
1550 #define DO_COUNTERS(macro) \
1551   macro(Runtime1, new_instance) \
1552   macro(Runtime1, new_type_array) \
1553   macro(Runtime1, new_object_array) \
1554   macro(Runtime1, new_multi_array) \
1555   macro(Runtime1, counter_overflow) \
1556   macro(Runtime1, exception_handler_for_pc_helper) \
1557   macro(Runtime1, monitorenter) \
1558   macro(Runtime1, monitorexit) \
1559   macro(Runtime1, deoptimize) \
1560   macro(Runtime1, is_instance_of) \
1561   macro(Runtime1, predicate_failed_trap) \
1562   macro(Runtime1, patch_code)
1563 
1564 #define INIT_COUNTER(sub, name) \
1565   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
1566   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1567 
1568 void Runtime1::init_counters() {
1569   assert(CompilerConfig::is_c1_enabled(), "");
1570 
1571   if (UsePerfData) {
1572     EXCEPTION_MARK;
1573 
1574     DO_COUNTERS(INIT_COUNTER)
1575 
1576     if (HAS_PENDING_EXCEPTION) {
1577       vm_exit_during_initialization("Runtime1::init_counters() failed unexpectedly");
1578     }
1579   }
1580 }
1581 #undef INIT_COUNTER
1582 
1583 #define PRINT_COUNTER(sub, name) { \
1584   if (_perf_##sub##_##name##_count != nullptr) {  \
1585     jlong count = _perf_##sub##_##name##_count->get_value(); \
1586     if (count > 0) { \
1587       st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
1588                    _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
1589                    _perf_##sub##_##name##_timer->thread_counter_value_us(), \
1590                    count); \
1591     }}}
1592 
1593 
1594 void Runtime1::print_counters_on(outputStream* st) {
1595   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c1_enabled()) {
1596     DO_COUNTERS(PRINT_COUNTER)
1597   } else {
1598     st->print_cr("  Runtime1: no info (%s is disabled)",
1599                  (!CompilerConfig::is_c1_enabled() ? "C1" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
1600   }
1601 }
1602 
1603 #undef PRINT_COUNTER
1604 #undef DO_COUNTERS
1605 
1606 #ifndef PRODUCT
1607 void Runtime1::print_statistics_on(outputStream* st) {
1608   st->print_cr("C1 Runtime statistics:");
1609   st->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1610   st->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1611   st->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1612   st->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1613   st->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1614   st->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1615   st->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1616   st->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1617   st->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1618   st->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1619   st->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1620   st->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1621   st->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1622   st->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1623 
1624   st->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1625   st->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1626   st->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1627   st->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1628   st->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1629   st->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1630   st->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1631 
1632   st->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1633   st->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1634   st->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1635   st->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1636   st->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1637   st->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1638   st->print_cr(" _throw_count:                                  %u:", _throw_count);
1639 
1640   SharedRuntime::print_ic_miss_histogram_on(st);
1641   st->cr();
1642 }
1643 #endif // PRODUCT