1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"
  42 #include "compiler/compilerDefinitions.inline.hpp"
  43 #include "compiler/disassembler.hpp"
  44 #include "compiler/oopMap.hpp"
  45 #include "gc/shared/barrierSet.hpp"
  46 #include "gc/shared/c1/barrierSetC1.hpp"
  47 #include "gc/shared/collectedHeap.hpp"
  48 #include "interpreter/bytecode.hpp"
  49 #include "interpreter/interpreter.hpp"
  50 #include "jfr/support/jfrIntrinsics.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.inline.hpp"
  53 #include "memory/oopFactory.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/universe.hpp"
  56 #include "oops/access.inline.hpp"
  57 #include "oops/klass.inline.hpp"
  58 #include "oops/objArrayOop.inline.hpp"
  59 #include "oops/objArrayKlass.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/fieldDescriptor.inline.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/perfData.inline.hpp"
  69 #include "runtime/runtimeUpcalls.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/stackWatermarkSet.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vm_version.hpp"
  77 #include "services/management.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/events.hpp"
  80 
  81 
  82 // Implementation of StubAssembler
  83 
  84 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  85   _name = name;
  86   _must_gc_arguments = false;
  87   _frame_size = no_frame_size;
  88   _num_rt_args = 0;
  89   _stub_id = stub_id;
  90 }
  91 
  92 
  93 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  94   _name = name;
  95   _must_gc_arguments = must_gc_arguments;
  96 }
  97 
  98 
  99 void StubAssembler::set_frame_size(int size) {
 100   if (_frame_size == no_frame_size) {
 101     _frame_size = size;
 102   }
 103   assert(_frame_size == size, "can't change the frame size");
 104 }
 105 
 106 
 107 void StubAssembler::set_num_rt_args(int args) {
 108   if (_num_rt_args == 0) {
 109     _num_rt_args = args;
 110   }
 111   assert(_num_rt_args == args, "can't change the number of args");
 112 }
 113 
 114 // Implementation of Runtime1
 115 
 116 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS];
 117 
 118 #define C1_BLOB_NAME_DEFINE(name)  "C1 Runtime " # name "_blob",
 119 const char *Runtime1::_blob_names[] = {
 120   C1_STUBS_DO(C1_BLOB_NAME_DEFINE)
 121 };
 122 #undef C1_STUB_NAME_DEFINE
 123 
 124 #ifndef PRODUCT
 125 // statistics
 126 uint Runtime1::_generic_arraycopystub_cnt = 0;
 127 uint Runtime1::_arraycopy_slowcase_cnt = 0;
 128 uint Runtime1::_arraycopy_checkcast_cnt = 0;
 129 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 130 uint Runtime1::_new_type_array_slowcase_cnt = 0;
 131 uint Runtime1::_new_object_array_slowcase_cnt = 0;
 132 uint Runtime1::_new_instance_slowcase_cnt = 0;
 133 uint Runtime1::_new_multi_array_slowcase_cnt = 0;
 134 uint Runtime1::_monitorenter_slowcase_cnt = 0;
 135 uint Runtime1::_monitorexit_slowcase_cnt = 0;
 136 uint Runtime1::_patch_code_slowcase_cnt = 0;
 137 uint Runtime1::_throw_range_check_exception_count = 0;
 138 uint Runtime1::_throw_index_exception_count = 0;
 139 uint Runtime1::_throw_div0_exception_count = 0;
 140 uint Runtime1::_throw_null_pointer_exception_count = 0;
 141 uint Runtime1::_throw_class_cast_exception_count = 0;
 142 uint Runtime1::_throw_incompatible_class_change_error_count = 0;
 143 uint Runtime1::_throw_count = 0;
 144 
 145 static uint _byte_arraycopy_stub_cnt = 0;
 146 static uint _short_arraycopy_stub_cnt = 0;
 147 static uint _int_arraycopy_stub_cnt = 0;
 148 static uint _long_arraycopy_stub_cnt = 0;
 149 static uint _oop_arraycopy_stub_cnt = 0;
 150 
 151 address Runtime1::arraycopy_count_address(BasicType type) {
 152   switch (type) {
 153   case T_BOOLEAN:
 154   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 155   case T_CHAR:
 156   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 157   case T_FLOAT:
 158   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 159   case T_DOUBLE:
 160   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 161   case T_ARRAY:
 162   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 163   default:
 164     ShouldNotReachHere();
 165     return nullptr;
 166   }
 167 }
 168 
 169 
 170 #endif
 171 
 172 // Simple helper to see if the caller of a runtime stub which
 173 // entered the VM has been deoptimized
 174 
 175 static bool caller_is_deopted(JavaThread* current) {
 176   RegisterMap reg_map(current,
 177                       RegisterMap::UpdateMap::skip,
 178                       RegisterMap::ProcessFrames::include,
 179                       RegisterMap::WalkContinuation::skip);
 180   frame runtime_frame = current->last_frame();
 181   frame caller_frame = runtime_frame.sender(&reg_map);
 182   assert(caller_frame.is_compiled_frame(), "must be compiled");
 183   return caller_frame.is_deoptimized_frame();
 184 }
 185 
 186 // Stress deoptimization
 187 static void deopt_caller(JavaThread* current) {
 188   if (!caller_is_deopted(current)) {
 189     RegisterMap reg_map(current,
 190                         RegisterMap::UpdateMap::skip,
 191                         RegisterMap::ProcessFrames::include,
 192                         RegisterMap::WalkContinuation::skip);
 193     frame runtime_frame = current->last_frame();
 194     frame caller_frame = runtime_frame.sender(&reg_map);
 195     Deoptimization::deoptimize_frame(current, caller_frame.id());
 196     assert(caller_is_deopted(current), "Must be deoptimized");
 197   }
 198 }
 199 
 200 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 201  private:
 202   C1StubId _id;
 203  public:
 204   C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {}
 205   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 206     return Runtime1::generate_code_for(_id, sasm);
 207   }
 208 };
 209 
 210 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 211   ResourceMark rm;
 212   // create code buffer for code storage
 213   CodeBuffer code(buffer_blob);
 214 
 215   OopMapSet* oop_maps;
 216   int frame_size;
 217   bool must_gc_arguments;
 218 
 219   Compilation::setup_code_buffer(&code, 0);
 220 
 221   // create assembler for code generation
 222   StubAssembler* sasm = new StubAssembler(&code, name, (int)id);
 223   // generate code for runtime stub
 224   oop_maps = cl->generate_code(sasm);
 225   assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size,
 226          "if stub has an oop map it must have a valid frame size");
 227   assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap");
 228 
 229   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 230   sasm->align(BytesPerWord);
 231   // make sure all code is in code buffer
 232   sasm->flush();
 233 
 234   frame_size = sasm->frame_size();
 235   must_gc_arguments = sasm->must_gc_arguments();
 236   // create blob - distinguish a few special cases
 237   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 238                                                  &code,
 239                                                  CodeOffsets::frame_never_safe,
 240                                                  frame_size,
 241                                                  oop_maps,
 242                                                  must_gc_arguments);
 243   assert(blob != nullptr, "blob must exist");
 244   return blob;
 245 }
 246 
 247 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) {
 248   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 249   bool expect_oop_map = true;
 250 #ifdef ASSERT
 251   // Make sure that stubs that need oopmaps have them
 252   switch (id) {
 253     // These stubs don't need to have an oopmap
 254   case C1StubId::dtrace_object_alloc_id:
 255   case C1StubId::slow_subtype_check_id:
 256   case C1StubId::fpu2long_stub_id:
 257   case C1StubId::unwind_exception_id:
 258   case C1StubId::counter_overflow_id:
 259     expect_oop_map = false;
 260     break;
 261   default:
 262     break;
 263   }
 264 #endif
 265   C1StubIdStubAssemblerCodeGenClosure cl(id);
 266   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 267   // install blob
 268   _blobs[(int)id] = blob;
 269 }
 270 
 271 void Runtime1::initialize(BufferBlob* blob) {
 272   init_counters();
 273   // platform-dependent initialization
 274   initialize_pd();
 275   // generate stubs
 276   int limit = (int)C1StubId::NUM_STUBIDS;
 277   for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id);
 278   // printing
 279 #ifndef PRODUCT
 280   if (PrintSimpleStubs) {
 281     ResourceMark rm;
 282     for (int id = 0; id < limit; id++) {
 283       _blobs[id]->print();
 284       if (_blobs[id]->oop_maps() != nullptr) {
 285         _blobs[id]->oop_maps()->print();
 286       }
 287     }
 288   }
 289 #endif
 290   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 291   bs->generate_c1_runtime_stubs(blob);
 292 }
 293 
 294 CodeBlob* Runtime1::blob_for(C1StubId id) {
 295   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 296   return _blobs[(int)id];
 297 }
 298 
 299 
 300 const char* Runtime1::name_for(C1StubId id) {
 301   assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id");
 302   return _blob_names[(int)id];
 303 }
 304 
 305 const char* Runtime1::name_for_address(address entry) {
 306   int limit = (int)C1StubId::NUM_STUBIDS;
 307   for (int i = 0; i < limit; i++) {
 308     C1StubId id = (C1StubId)i;
 309     if (entry == entry_for(id)) return name_for(id);
 310   }
 311 
 312 #define FUNCTION_CASE(a, f) \
 313   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 314 
 315   FUNCTION_CASE(entry, os::javaTimeMillis);
 316   FUNCTION_CASE(entry, os::javaTimeNanos);
 317   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 318   FUNCTION_CASE(entry, SharedRuntime::d2f);
 319   FUNCTION_CASE(entry, SharedRuntime::d2i);
 320   FUNCTION_CASE(entry, SharedRuntime::d2l);
 321   FUNCTION_CASE(entry, SharedRuntime::dcos);
 322   FUNCTION_CASE(entry, SharedRuntime::dexp);
 323   FUNCTION_CASE(entry, SharedRuntime::dlog);
 324   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 325   FUNCTION_CASE(entry, SharedRuntime::dpow);
 326   FUNCTION_CASE(entry, SharedRuntime::drem);
 327   FUNCTION_CASE(entry, SharedRuntime::dsin);
 328   FUNCTION_CASE(entry, SharedRuntime::dtan);
 329   FUNCTION_CASE(entry, SharedRuntime::f2i);
 330   FUNCTION_CASE(entry, SharedRuntime::f2l);
 331   FUNCTION_CASE(entry, SharedRuntime::frem);
 332   FUNCTION_CASE(entry, SharedRuntime::l2d);
 333   FUNCTION_CASE(entry, SharedRuntime::l2f);
 334   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 335   FUNCTION_CASE(entry, SharedRuntime::lmul);
 336   FUNCTION_CASE(entry, SharedRuntime::lrem);
 337   FUNCTION_CASE(entry, SharedRuntime::lrem);
 338   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 339   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 340   FUNCTION_CASE(entry, is_instance_of);
 341   FUNCTION_CASE(entry, trace_block_entry);
 342 #ifdef JFR_HAVE_INTRINSICS
 343   FUNCTION_CASE(entry, JfrTime::time_function());
 344 #endif
 345   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 346   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 347   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 348   FUNCTION_CASE(entry, StubRoutines::dexp());
 349   FUNCTION_CASE(entry, StubRoutines::dlog());
 350   FUNCTION_CASE(entry, StubRoutines::dlog10());
 351   FUNCTION_CASE(entry, StubRoutines::dpow());
 352   FUNCTION_CASE(entry, StubRoutines::dsin());
 353   FUNCTION_CASE(entry, StubRoutines::dcos());
 354   FUNCTION_CASE(entry, StubRoutines::dtan());
 355   FUNCTION_CASE(entry, StubRoutines::dtanh());
 356 
 357 #undef FUNCTION_CASE
 358 
 359   // Runtime upcalls also has a map of addresses to names
 360   const char* upcall_name = RuntimeUpcalls::get_name_for_upcall_address(entry);
 361   if (upcall_name != nullptr) {
 362     return upcall_name;
 363   }
 364 
 365   // Soft float adds more runtime names.
 366   return pd_name_for_address(entry);
 367 }
 368 
 369 
 370 JRT_ENTRY_PROF(void, Runtime1, new_instance, Runtime1::new_instance(JavaThread* current, Klass* klass))
 371 #ifndef PRODUCT
 372   if (PrintC1Statistics) {
 373     _new_instance_slowcase_cnt++;
 374   }
 375 #endif
 376   assert(klass->is_klass(), "not a class");
 377   Handle holder(current, klass->klass_holder()); // keep the klass alive
 378   InstanceKlass* h = InstanceKlass::cast(klass);
 379   h->check_valid_for_instantiation(true, CHECK);
 380   // make sure klass is initialized
 381   h->initialize(CHECK);
 382   // allocate instance and return via TLS
 383   oop obj = h->allocate_instance(CHECK);
 384   current->set_vm_result(obj);
 385 JRT_END
 386 
 387 
 388 JRT_ENTRY_PROF(void, Runtime1, new_type_array, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 389 #ifndef PRODUCT
 390   if (PrintC1Statistics) {
 391     _new_type_array_slowcase_cnt++;
 392   }
 393 #endif
 394   // Note: no handle for klass needed since they are not used
 395   //       anymore after new_typeArray() and no GC can happen before.
 396   //       (This may have to change if this code changes!)
 397   assert(klass->is_klass(), "not a class");
 398   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 399   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 400   current->set_vm_result(obj);
 401   // This is pretty rare but this runtime patch is stressful to deoptimization
 402   // if we deoptimize here so force a deopt to stress the path.
 403   if (DeoptimizeALot) {
 404     deopt_caller(current);
 405   }
 406 
 407 JRT_END
 408 
 409 
 410 JRT_ENTRY_PROF(void, Runtime1, new_object_array, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 411 #ifndef PRODUCT
 412   if (PrintC1Statistics) {
 413     _new_object_array_slowcase_cnt++;
 414   }
 415 #endif
 416   // Note: no handle for klass needed since they are not used
 417   //       anymore after new_objArray() and no GC can happen before.
 418   //       (This may have to change if this code changes!)
 419   assert(array_klass->is_klass(), "not a class");
 420   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 421   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 422   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 423   current->set_vm_result(obj);
 424   // This is pretty rare but this runtime patch is stressful to deoptimization
 425   // if we deoptimize here so force a deopt to stress the path.
 426   if (DeoptimizeALot) {
 427     deopt_caller(current);
 428   }
 429 JRT_END
 430 
 431 
 432 JRT_ENTRY_PROF(void, Runtime1, new_multi_array, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 433 #ifndef PRODUCT
 434   if (PrintC1Statistics) {
 435     _new_multi_array_slowcase_cnt++;
 436   }
 437 #endif
 438   assert(klass->is_klass(), "not a class");
 439   assert(rank >= 1, "rank must be nonzero");
 440   Handle holder(current, klass->klass_holder()); // keep the klass alive
 441   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 442   current->set_vm_result(obj);
 443 JRT_END
 444 
 445 
 446 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 447   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 448 JRT_END
 449 
 450 
 451 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 452   ResourceMark rm(current);
 453   const char* klass_name = obj->klass()->external_name();
 454   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 455 JRT_END
 456 
 457 
 458 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 459 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 460 // method) method is passed as an argument. In order to do that it is embedded in the code as
 461 // a constant.
 462 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
 463   nmethod* osr_nm = nullptr;
 464   methodHandle method(current, m);
 465 
 466   RegisterMap map(current,
 467                   RegisterMap::UpdateMap::skip,
 468                   RegisterMap::ProcessFrames::include,
 469                   RegisterMap::WalkContinuation::skip);
 470   frame fr =  current->last_frame().sender(&map);
 471   nmethod* nm = (nmethod*) fr.cb();
 472   assert(nm!= nullptr && nm->is_nmethod(), "Sanity check");
 473   methodHandle enclosing_method(current, nm->method());
 474 
 475   CompLevel level = (CompLevel)nm->comp_level();
 476   int bci = InvocationEntryBci;
 477   if (branch_bci != InvocationEntryBci) {
 478     // Compute destination bci
 479     address pc = method()->code_base() + branch_bci;
 480     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 481     int offset = 0;
 482     switch (branch) {
 483       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 484       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 485       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 486       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 487       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 488       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 489       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 490         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 491         break;
 492       case Bytecodes::_goto_w:
 493         offset = Bytes::get_Java_u4(pc + 1);
 494         break;
 495       default: ;
 496     }
 497     bci = branch_bci + offset;
 498   }
 499   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 500   return osr_nm;
 501 }
 502 
 503 JRT_BLOCK_ENTRY_PROF(address, Runtime1, counter_overflow, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 504   nmethod* osr_nm;
 505   JRT_BLOCK
 506     osr_nm = counter_overflow_helper(current, bci, method);
 507     if (osr_nm != nullptr) {
 508       RegisterMap map(current,
 509                       RegisterMap::UpdateMap::skip,
 510                       RegisterMap::ProcessFrames::include,
 511                       RegisterMap::WalkContinuation::skip);
 512       frame fr =  current->last_frame().sender(&map);
 513       Deoptimization::deoptimize_frame(current, fr.id());
 514     }
 515   JRT_BLOCK_END
 516   return nullptr;
 517 JRT_END
 518 
 519 extern void vm_exit(int code);
 520 
 521 // Enter this method from compiled code handler below. This is where we transition
 522 // to VM mode. This is done as a helper routine so that the method called directly
 523 // from compiled code does not have to transition to VM. This allows the entry
 524 // method to see if the nmethod that we have just looked up a handler for has
 525 // been deoptimized while we were in the vm. This simplifies the assembly code
 526 // cpu directories.
 527 //
 528 // We are entering here from exception stub (via the entry method below)
 529 // If there is a compiled exception handler in this method, we will continue there;
 530 // otherwise we will unwind the stack and continue at the caller of top frame method
 531 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 532 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 533 // check to see if the handler we are going to return is now in a nmethod that has
 534 // been deoptimized. If that is the case we return the deopt blob
 535 // unpack_with_exception entry instead. This makes life for the exception blob easier
 536 // because making that same check and diverting is painful from assembly language.
 537 JRT_ENTRY_NO_ASYNC_PROF(static address, Runtime1, exception_handler_for_pc_helper, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 538   // Reset method handle flag.
 539   current->set_is_method_handle_return(false);
 540 
 541   Handle exception(current, ex);
 542 
 543   // This function is called when we are about to throw an exception. Therefore,
 544   // we have to poll the stack watermark barrier to make sure that not yet safe
 545   // stack frames are made safe before returning into them.
 546   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 547     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 548     // frame has been unwound. It instead builds its own stub frame, to call the
 549     // runtime. But the throwing frame has already been unwound here.
 550     StackWatermarkSet::after_unwind(current);
 551   }
 552 
 553   nm = CodeCache::find_nmethod(pc);
 554   assert(nm != nullptr, "this is not an nmethod");
 555   // Adjust the pc as needed/
 556   if (nm->is_deopt_pc(pc)) {
 557     RegisterMap map(current,
 558                     RegisterMap::UpdateMap::skip,
 559                     RegisterMap::ProcessFrames::include,
 560                     RegisterMap::WalkContinuation::skip);
 561     frame exception_frame = current->last_frame().sender(&map);
 562     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 563     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 564     pc = exception_frame.pc();
 565   }
 566   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 567   // Check that exception is a subclass of Throwable
 568   assert(exception->is_a(vmClasses::Throwable_klass()),
 569          "Exception not subclass of Throwable");
 570 
 571   // debugging support
 572   // tracing
 573   if (log_is_enabled(Info, exceptions)) {
 574     ResourceMark rm; // print_value_string
 575     stringStream tempst;
 576     assert(nm->method() != nullptr, "Unexpected null method()");
 577     tempst.print("C1 compiled method <%s>\n"
 578                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 579                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 580     Exceptions::log_exception(exception, tempst.freeze());
 581   }
 582   // for AbortVMOnException flag
 583   Exceptions::debug_check_abort(exception);
 584 
 585   // Check the stack guard pages and re-enable them if necessary and there is
 586   // enough space on the stack to do so.  Use fast exceptions only if the guard
 587   // pages are enabled.
 588   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 589 
 590   if (JvmtiExport::can_post_on_exceptions()) {
 591     // To ensure correct notification of exception catches and throws
 592     // we have to deoptimize here.  If we attempted to notify the
 593     // catches and throws during this exception lookup it's possible
 594     // we could deoptimize on the way out of the VM and end back in
 595     // the interpreter at the throw site.  This would result in double
 596     // notifications since the interpreter would also notify about
 597     // these same catches and throws as it unwound the frame.
 598 
 599     RegisterMap reg_map(current,
 600                         RegisterMap::UpdateMap::include,
 601                         RegisterMap::ProcessFrames::include,
 602                         RegisterMap::WalkContinuation::skip);
 603     frame stub_frame = current->last_frame();
 604     frame caller_frame = stub_frame.sender(&reg_map);
 605 
 606     // We don't really want to deoptimize the nmethod itself since we
 607     // can actually continue in the exception handler ourselves but I
 608     // don't see an easy way to have the desired effect.
 609     Deoptimization::deoptimize_frame(current, caller_frame.id());
 610     assert(caller_is_deopted(current), "Must be deoptimized");
 611 
 612     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 613   }
 614 
 615   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 616   if (guard_pages_enabled) {
 617     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 618     if (fast_continuation != nullptr) {
 619       // Set flag if return address is a method handle call site.
 620       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 621       return fast_continuation;
 622     }
 623   }
 624 
 625   // If the stack guard pages are enabled, check whether there is a handler in
 626   // the current method.  Otherwise (guard pages disabled), force an unwind and
 627   // skip the exception cache update (i.e., just leave continuation as null).
 628   address continuation = nullptr;
 629   if (guard_pages_enabled) {
 630 
 631     // New exception handling mechanism can support inlined methods
 632     // with exception handlers since the mappings are from PC to PC
 633 
 634     // Clear out the exception oop and pc since looking up an
 635     // exception handler can cause class loading, which might throw an
 636     // exception and those fields are expected to be clear during
 637     // normal bytecode execution.
 638     current->clear_exception_oop_and_pc();
 639 
 640     bool recursive_exception = false;
 641     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 642     // If an exception was thrown during exception dispatch, the exception oop may have changed
 643     current->set_exception_oop(exception());
 644     current->set_exception_pc(pc);
 645 
 646     // the exception cache is used only by non-implicit exceptions
 647     // Update the exception cache only when there didn't happen
 648     // another exception during the computation of the compiled
 649     // exception handler. Checking for exception oop equality is not
 650     // sufficient because some exceptions are pre-allocated and reused.
 651     if (continuation != nullptr && !recursive_exception) {
 652       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 653     }
 654   }
 655 
 656   current->set_vm_result(exception());
 657   // Set flag if return address is a method handle call site.
 658   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 659 
 660   if (log_is_enabled(Info, exceptions)) {
 661     ResourceMark rm;
 662     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 663                          " for exception thrown at PC " PTR_FORMAT,
 664                          p2i(current), p2i(continuation), p2i(pc));
 665   }
 666 
 667   return continuation;
 668 JRT_END
 669 
 670 // Enter this method from compiled code only if there is a Java exception handler
 671 // in the method handling the exception.
 672 // We are entering here from exception stub. We don't do a normal VM transition here.
 673 // We do it in a helper. This is so we can check to see if the nmethod we have just
 674 // searched for an exception handler has been deoptimized in the meantime.
 675 address Runtime1::exception_handler_for_pc(JavaThread* current) {
 676   oop exception = current->exception_oop();
 677   address pc = current->exception_pc();
 678   // Still in Java mode
 679   DEBUG_ONLY(NoHandleMark nhm);
 680   nmethod* nm = nullptr;
 681   address continuation = nullptr;
 682   {
 683     // Enter VM mode by calling the helper
 684     ResetNoHandleMark rnhm;
 685     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 686   }
 687   // Back in JAVA, use no oops DON'T safepoint
 688 
 689   // Now check to see if the nmethod we were called from is now deoptimized.
 690   // If so we must return to the deopt blob and deoptimize the nmethod
 691   if (nm != nullptr && caller_is_deopted(current)) {
 692     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 693   }
 694 
 695   assert(continuation != nullptr, "no handler found");
 696   return continuation;
 697 }
 698 
 699 
 700 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
 701 #ifndef PRODUCT
 702   if (PrintC1Statistics) {
 703     _throw_range_check_exception_count++;
 704   }
 705 #endif
 706   const int len = 35;
 707   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 708   char message[2 * jintAsStringSize + len];
 709   os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length());
 710   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 711 JRT_END
 712 
 713 
 714 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
 715 #ifndef PRODUCT
 716   if (PrintC1Statistics) {
 717     _throw_index_exception_count++;
 718   }
 719 #endif
 720   char message[16];
 721   os::snprintf_checked(message, sizeof(message), "%d", index);
 722   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 723 JRT_END
 724 
 725 
 726 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
 727 #ifndef PRODUCT
 728   if (PrintC1Statistics) {
 729     _throw_div0_exception_count++;
 730   }
 731 #endif
 732   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 733 JRT_END
 734 
 735 
 736 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
 737 #ifndef PRODUCT
 738   if (PrintC1Statistics) {
 739     _throw_null_pointer_exception_count++;
 740   }
 741 #endif
 742   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
 743 JRT_END
 744 
 745 
 746 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
 747 #ifndef PRODUCT
 748   if (PrintC1Statistics) {
 749     _throw_class_cast_exception_count++;
 750   }
 751 #endif
 752   ResourceMark rm(current);
 753   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 754   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 755 JRT_END
 756 
 757 
 758 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 759 #ifndef PRODUCT
 760   if (PrintC1Statistics) {
 761     _throw_incompatible_class_change_error_count++;
 762   }
 763 #endif
 764   ResourceMark rm(current);
 765   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 766 JRT_END
 767 
 768 
 769 JRT_BLOCK_ENTRY_PROF(void, Runtime1, monitorenter, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 770 #ifndef PRODUCT
 771   if (PrintC1Statistics) {
 772     _monitorenter_slowcase_cnt++;
 773   }
 774 #endif
 775   if (LockingMode == LM_MONITOR) {
 776     lock->set_obj(obj);
 777   }
 778   assert(obj == lock->obj(), "must match");
 779   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 780 JRT_END
 781 
 782 
 783 JRT_LEAF_PROF(void, Runtime1, monitorexit, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 784   assert(current == JavaThread::current(), "pre-condition");
 785 #ifndef PRODUCT
 786   if (PrintC1Statistics) {
 787     _monitorexit_slowcase_cnt++;
 788   }
 789 #endif
 790   assert(current->last_Java_sp(), "last_Java_sp must be set");
 791   oop obj = lock->obj();
 792   assert(oopDesc::is_oop(obj), "must be null or an object");
 793   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 794 JRT_END
 795 
 796 // Cf. OptoRuntime::deoptimize_caller_frame
 797 JRT_ENTRY_PROF(void, Runtime1, deoptimize, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 798   // Called from within the owner thread, so no need for safepoint
 799   RegisterMap reg_map(current,
 800                       RegisterMap::UpdateMap::skip,
 801                       RegisterMap::ProcessFrames::include,
 802                       RegisterMap::WalkContinuation::skip);
 803   frame stub_frame = current->last_frame();
 804   assert(stub_frame.is_runtime_frame(), "Sanity check");
 805   frame caller_frame = stub_frame.sender(&reg_map);
 806   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 807   assert(nm != nullptr, "Sanity check");
 808   methodHandle method(current, nm->method());
 809   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 810   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 811   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 812 
 813   if (action == Deoptimization::Action_make_not_entrant) {
 814     if (nm->make_not_entrant()) {
 815       if (reason == Deoptimization::Reason_tenured) {
 816         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 817         if (trap_mdo != nullptr) {
 818           trap_mdo->inc_tenure_traps();
 819         }
 820       }
 821     }
 822   }
 823 
 824   // Deoptimize the caller frame.
 825   Deoptimization::deoptimize_frame(current, caller_frame.id());
 826   // Return to the now deoptimized frame.
 827 JRT_END
 828 
 829 
 830 #ifndef DEOPTIMIZE_WHEN_PATCHING
 831 
 832 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 833   Bytecode_field field_access(caller, bci);
 834   // This can be static or non-static field access
 835   Bytecodes::Code code       = field_access.code();
 836 
 837   // We must load class, initialize class and resolve the field
 838   fieldDescriptor result; // initialize class if needed
 839   constantPoolHandle constants(THREAD, caller->constants());
 840   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller,
 841                                      Bytecodes::java_code(code), true /*initialize_class*/, CHECK_NULL);
 842   return result.field_holder();
 843 }
 844 
 845 
 846 //
 847 // This routine patches sites where a class wasn't loaded or
 848 // initialized at the time the code was generated.  It handles
 849 // references to classes, fields and forcing of initialization.  Most
 850 // of the cases are straightforward and involving simply forcing
 851 // resolution of a class, rewriting the instruction stream with the
 852 // needed constant and replacing the call in this function with the
 853 // patched code.  The case for static field is more complicated since
 854 // the thread which is in the process of initializing a class can
 855 // access it's static fields but other threads can't so the code
 856 // either has to deoptimize when this case is detected or execute a
 857 // check that the current thread is the initializing thread.  The
 858 // current
 859 //
 860 // Patches basically look like this:
 861 //
 862 //
 863 // patch_site: jmp patch stub     ;; will be patched
 864 // continue:   ...
 865 //             ...
 866 //             ...
 867 //             ...
 868 //
 869 // They have a stub which looks like this:
 870 //
 871 //             ;; patch body
 872 //             movl <const>, reg           (for class constants)
 873 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 874 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 875 //             <being_init offset> <bytes to copy> <bytes to skip>
 876 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 877 //             jmp patch_site
 878 //
 879 //
 880 // A normal patch is done by rewriting the patch body, usually a move,
 881 // and then copying it into place over top of the jmp instruction
 882 // being careful to flush caches and doing it in an MP-safe way.  The
 883 // constants following the patch body are used to find various pieces
 884 // of the patch relative to the call site for Runtime1::patch_code.
 885 // The case for getstatic and putstatic is more complicated because
 886 // getstatic and putstatic have special semantics when executing while
 887 // the class is being initialized.  getstatic/putstatic on a class
 888 // which is being_initialized may be executed by the initializing
 889 // thread but other threads have to block when they execute it.  This
 890 // is accomplished in compiled code by executing a test of the current
 891 // thread against the initializing thread of the class.  It's emitted
 892 // as boilerplate in their stub which allows the patched code to be
 893 // executed before it's copied back into the main body of the nmethod.
 894 //
 895 // being_init: get_thread(<tmp reg>
 896 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 897 //             jne patch_stub
 898 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 899 //             movl reg, [reg1 + <const>]  (for field offsets)
 900 //             jmp continue
 901 //             <being_init offset> <bytes to copy> <bytes to skip>
 902 // patch_stub: jmp Runtime1::patch_code (through a runtime stub)
 903 //             jmp patch_site
 904 //
 905 // If the class is being initialized the patch body is rewritten and
 906 // the patch site is rewritten to jump to being_init, instead of
 907 // patch_stub.  Whenever this code is executed it checks the current
 908 // thread against the initializing thread so other threads will enter
 909 // the runtime and end up blocked waiting the class to finish
 910 // initializing inside the calls to resolve_field below.  The
 911 // initializing class will continue on it's way.  Once the class is
 912 // fully_initialized, the intializing_thread of the class becomes
 913 // null, so the next thread to execute this code will fail the test,
 914 // call into patch_code and complete the patching process by copying
 915 // the patch body back into the main part of the nmethod and resume
 916 // executing.
 917 
 918 // NB:
 919 //
 920 // Patchable instruction sequences inherently exhibit race conditions,
 921 // where thread A is patching an instruction at the same time thread B
 922 // is executing it.  The algorithms we use ensure that any observation
 923 // that B can make on any intermediate states during A's patching will
 924 // always end up with a correct outcome.  This is easiest if there are
 925 // few or no intermediate states.  (Some inline caches have two
 926 // related instructions that must be patched in tandem.  For those,
 927 // intermediate states seem to be unavoidable, but we will get the
 928 // right answer from all possible observation orders.)
 929 //
 930 // When patching the entry instruction at the head of a method, or a
 931 // linkable call instruction inside of a method, we try very hard to
 932 // use a patch sequence which executes as a single memory transaction.
 933 // This means, in practice, that when thread A patches an instruction,
 934 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 935 // instruction or is contained in it.  We believe that memory hardware
 936 // will never break up such a word write, if it is naturally aligned
 937 // for the word being written.  We also know that some CPUs work very
 938 // hard to create atomic updates even of naturally unaligned words,
 939 // but we don't want to bet the farm on this always working.
 940 //
 941 // Therefore, if there is any chance of a race condition, we try to
 942 // patch only naturally aligned words, as single, full-word writes.
 943 
 944 JRT_ENTRY_PROF(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
 945 #ifndef PRODUCT
 946   if (PrintC1Statistics) {
 947     _patch_code_slowcase_cnt++;
 948   }
 949 #endif
 950 
 951   ResourceMark rm(current);
 952   RegisterMap reg_map(current,
 953                       RegisterMap::UpdateMap::skip,
 954                       RegisterMap::ProcessFrames::include,
 955                       RegisterMap::WalkContinuation::skip);
 956   frame runtime_frame = current->last_frame();
 957   frame caller_frame = runtime_frame.sender(&reg_map);
 958 
 959   // last java frame on stack
 960   vframeStream vfst(current, true);
 961   assert(!vfst.at_end(), "Java frame must exist");
 962 
 963   methodHandle caller_method(current, vfst.method());
 964   // Note that caller_method->code() may not be same as caller_code because of OSR's
 965   // Note also that in the presence of inlining it is not guaranteed
 966   // that caller_method() == caller_code->method()
 967 
 968   int bci = vfst.bci();
 969   Bytecodes::Code code = caller_method()->java_code_at(bci);
 970 
 971   // this is used by assertions in the access_field_patching_id
 972   BasicType patch_field_type = T_ILLEGAL;
 973   bool deoptimize_for_volatile = false;
 974   bool deoptimize_for_atomic = false;
 975   int patch_field_offset = -1;
 976   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 977   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 978   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 979   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 980   bool load_klass_or_mirror_patch_id =
 981     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
 982 
 983   if (stub_id == C1StubId::access_field_patching_id) {
 984 
 985     Bytecode_field field_access(caller_method, bci);
 986     fieldDescriptor result; // initialize class if needed
 987     Bytecodes::Code code = field_access.code();
 988     constantPoolHandle constants(current, caller_method->constants());
 989     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method,
 990                                        Bytecodes::java_code(code), true /*initialize_class*/, CHECK);
 991     patch_field_offset = result.offset();
 992 
 993     // If we're patching a field which is volatile then at compile it
 994     // must not have been know to be volatile, so the generated code
 995     // isn't correct for a volatile reference.  The nmethod has to be
 996     // deoptimized so that the code can be regenerated correctly.
 997     // This check is only needed for access_field_patching since this
 998     // is the path for patching field offsets.  load_klass is only
 999     // used for patching references to oops which don't need special
1000     // handling in the volatile case.
1001 
1002     deoptimize_for_volatile = result.access_flags().is_volatile();
1003 
1004     // If we are patching a field which should be atomic, then
1005     // the generated code is not correct either, force deoptimizing.
1006     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1007     // break access atomicity only for them.
1008 
1009     // Strictly speaking, the deoptimization on 64-bit platforms
1010     // is unnecessary, and T_LONG stores on 32-bit platforms need
1011     // to be handled by special patching code when AlwaysAtomicAccesses
1012     // becomes product feature. At this point, we are still going
1013     // for the deoptimization for consistency against volatile
1014     // accesses.
1015 
1016     patch_field_type = result.field_type();
1017     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1018 
1019   } else if (load_klass_or_mirror_patch_id) {
1020     Klass* k = nullptr;
1021     switch (code) {
1022       case Bytecodes::_putstatic:
1023       case Bytecodes::_getstatic:
1024         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1025           init_klass = klass;
1026           mirror = Handle(current, klass->java_mirror());
1027         }
1028         break;
1029       case Bytecodes::_new:
1030         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1031           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1032         }
1033         break;
1034       case Bytecodes::_multianewarray:
1035         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1036           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1037         }
1038         break;
1039       case Bytecodes::_instanceof:
1040         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1041           k = caller_method->constants()->klass_at(io.index(), CHECK);
1042         }
1043         break;
1044       case Bytecodes::_checkcast:
1045         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1046           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1047         }
1048         break;
1049       case Bytecodes::_anewarray:
1050         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1051           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1052           k = ek->array_klass(CHECK);
1053         }
1054         break;
1055       case Bytecodes::_ldc:
1056       case Bytecodes::_ldc_w:
1057       case Bytecodes::_ldc2_w:
1058         {
1059           Bytecode_loadconstant cc(caller_method, bci);
1060           oop m = cc.resolve_constant(CHECK);
1061           mirror = Handle(current, m);
1062         }
1063         break;
1064       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1065     }
1066     load_klass = k;
1067   } else if (stub_id == C1StubId::load_appendix_patching_id) {
1068     Bytecode_invoke bytecode(caller_method, bci);
1069     Bytecodes::Code bc = bytecode.invoke_code();
1070 
1071     CallInfo info;
1072     constantPoolHandle pool(current, caller_method->constants());
1073     int index = bytecode.index();
1074     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1075     switch (bc) {
1076       case Bytecodes::_invokehandle: {
1077         ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info);
1078         appendix = Handle(current, pool->cache()->appendix_if_resolved(entry));
1079         break;
1080       }
1081       case Bytecodes::_invokedynamic: {
1082         appendix = Handle(current, pool->cache()->set_dynamic_call(info, index));
1083         break;
1084       }
1085       default: fatal("unexpected bytecode for load_appendix_patching_id");
1086     }
1087   } else {
1088     ShouldNotReachHere();
1089   }
1090 
1091   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1092     // At compile time we assumed the field wasn't volatile/atomic but after
1093     // loading it turns out it was volatile/atomic so we have to throw the
1094     // compiled code out and let it be regenerated.
1095     if (TracePatching) {
1096       if (deoptimize_for_volatile) {
1097         tty->print_cr("Deoptimizing for patching volatile field reference");
1098       }
1099       if (deoptimize_for_atomic) {
1100         tty->print_cr("Deoptimizing for patching atomic field reference");
1101       }
1102     }
1103 
1104     // It's possible the nmethod was invalidated in the last
1105     // safepoint, but if it's still alive then make it not_entrant.
1106     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1107     if (nm != nullptr) {
1108       nm->make_not_entrant();
1109     }
1110 
1111     Deoptimization::deoptimize_frame(current, caller_frame.id());
1112 
1113     // Return to the now deoptimized frame.
1114   }
1115 
1116   // Now copy code back
1117 
1118   {
1119     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1120     //
1121     // Deoptimization may have happened while we waited for the lock.
1122     // In that case we don't bother to do any patching we just return
1123     // and let the deopt happen
1124     if (!caller_is_deopted(current)) {
1125       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1126       address instr_pc = jump->jump_destination();
1127       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1128       if (ni->is_jump() ) {
1129         // the jump has not been patched yet
1130         // The jump destination is slow case and therefore not part of the stubs
1131         // (stubs are only for StaticCalls)
1132 
1133         // format of buffer
1134         //    ....
1135         //    instr byte 0     <-- copy_buff
1136         //    instr byte 1
1137         //    ..
1138         //    instr byte n-1
1139         //      n
1140         //    ....             <-- call destination
1141 
1142         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1143         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1144         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1145         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1146         address copy_buff = stub_location - *byte_skip - *byte_count;
1147         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1148         if (TracePatching) {
1149           ttyLocker ttyl;
1150           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1151                         p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass");
1152           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1153           assert(caller_code != nullptr, "nmethod not found");
1154 
1155           // NOTE we use pc() not original_pc() because we already know they are
1156           // identical otherwise we'd have never entered this block of code
1157 
1158           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1159           assert(map != nullptr, "null check");
1160           map->print();
1161           tty->cr();
1162 
1163           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1164         }
1165         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1166         bool do_patch = true;
1167         if (stub_id == C1StubId::access_field_patching_id) {
1168           // The offset may not be correct if the class was not loaded at code generation time.
1169           // Set it now.
1170           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1171           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1172           assert(patch_field_offset >= 0, "illegal offset");
1173           n_move->add_offset_in_bytes(patch_field_offset);
1174         } else if (load_klass_or_mirror_patch_id) {
1175           // If a getstatic or putstatic is referencing a klass which
1176           // isn't fully initialized, the patch body isn't copied into
1177           // place until initialization is complete.  In this case the
1178           // patch site is setup so that any threads besides the
1179           // initializing thread are forced to come into the VM and
1180           // block.
1181           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1182                      InstanceKlass::cast(init_klass)->is_initialized();
1183           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1184           if (jump->jump_destination() == being_initialized_entry) {
1185             assert(do_patch == true, "initialization must be complete at this point");
1186           } else {
1187             // patch the instruction <move reg, klass>
1188             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1189 
1190             assert(n_copy->data() == 0 ||
1191                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1192                    "illegal init value");
1193             if (stub_id == C1StubId::load_klass_patching_id) {
1194               assert(load_klass != nullptr, "klass not set");
1195               n_copy->set_data((intx) (load_klass));
1196             } else {
1197               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1198               n_copy->set_data(cast_from_oop<intx>(mirror()));
1199             }
1200 
1201             if (TracePatching) {
1202               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1203             }
1204           }
1205         } else if (stub_id == C1StubId::load_appendix_patching_id) {
1206           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1207           assert(n_copy->data() == 0 ||
1208                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1209                  "illegal init value");
1210           n_copy->set_data(cast_from_oop<intx>(appendix()));
1211 
1212           if (TracePatching) {
1213             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1214           }
1215         } else {
1216           ShouldNotReachHere();
1217         }
1218 
1219         if (do_patch) {
1220           // replace instructions
1221           // first replace the tail, then the call
1222 #ifdef ARM
1223           if((load_klass_or_mirror_patch_id ||
1224               stub_id == C1StubId::load_appendix_patching_id) &&
1225               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1226             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1227             address addr = nullptr;
1228             assert(nm != nullptr, "invalid nmethod_pc");
1229             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1230             while (mds.next()) {
1231               if (mds.type() == relocInfo::oop_type) {
1232                 assert(stub_id == C1StubId::load_mirror_patching_id ||
1233                        stub_id == C1StubId::load_appendix_patching_id, "wrong stub id");
1234                 oop_Relocation* r = mds.oop_reloc();
1235                 addr = (address)r->oop_addr();
1236                 break;
1237               } else if (mds.type() == relocInfo::metadata_type) {
1238                 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id");
1239                 metadata_Relocation* r = mds.metadata_reloc();
1240                 addr = (address)r->metadata_addr();
1241                 break;
1242               }
1243             }
1244             assert(addr != nullptr, "metadata relocation must exist");
1245             copy_buff -= *byte_count;
1246             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1247             n_copy2->set_pc_relative_offset(addr, instr_pc);
1248           }
1249 #endif
1250 
1251           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1252             address ptr = copy_buff + i;
1253             int a_byte = (*ptr) & 0xFF;
1254             address dst = instr_pc + i;
1255             *(unsigned char*)dst = (unsigned char) a_byte;
1256           }
1257           ICache::invalidate_range(instr_pc, *byte_count);
1258           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1259 
1260           if (load_klass_or_mirror_patch_id ||
1261               stub_id == C1StubId::load_appendix_patching_id) {
1262             relocInfo::relocType rtype =
1263               (stub_id == C1StubId::load_klass_patching_id) ?
1264                                    relocInfo::metadata_type :
1265                                    relocInfo::oop_type;
1266             // update relocInfo to metadata
1267             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1268             assert(nm != nullptr, "invalid nmethod_pc");
1269 
1270             // The old patch site is now a move instruction so update
1271             // the reloc info so that it will get updated during
1272             // future GCs.
1273             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1274             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1275                                                      relocInfo::none, rtype);
1276           }
1277 
1278         } else {
1279           ICache::invalidate_range(copy_buff, *byte_count);
1280           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1281         }
1282       }
1283     }
1284     // If we are patching in a non-perm oop, make sure the nmethod
1285     // is on the right list.
1286     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1287     guarantee(nm != nullptr, "only nmethods can contain non-perm oops");
1288 
1289     // Since we've patched some oops in the nmethod,
1290     // (re)register it with the heap.
1291     Universe::heap()->register_nmethod(nm);
1292   }
1293 JRT_END
1294 
1295 #else // DEOPTIMIZE_WHEN_PATCHING
1296 
1297 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) {
1298   if (stub_id == C1StubId::load_klass_patching_id ||
1299       stub_id == C1StubId::load_mirror_patching_id) {
1300     // last java frame on stack
1301     vframeStream vfst(current, true);
1302     assert(!vfst.at_end(), "Java frame must exist");
1303 
1304     methodHandle caller_method(current, vfst.method());
1305     int bci = vfst.bci();
1306     Bytecodes::Code code = caller_method()->java_code_at(bci);
1307 
1308     switch (code) {
1309       case Bytecodes::_new:
1310       case Bytecodes::_anewarray:
1311       case Bytecodes::_multianewarray:
1312       case Bytecodes::_instanceof:
1313       case Bytecodes::_checkcast: {
1314         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1315         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1316         if (tag.is_unresolved_klass_in_error()) {
1317           return false; // throws resolution error
1318         }
1319         break;
1320       }
1321 
1322       default: break;
1323     }
1324   }
1325   return true;
1326 }
1327 
1328 PROF_ENTRY(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
1329 #ifndef PRODUCT
1330   if (PrintC1Statistics) {
1331     _patch_code_slowcase_cnt++;
1332   }
1333 #endif
1334 
1335   // Enable WXWrite: the function is called by c1 stub as a runtime function
1336   // (see another implementation above).
1337   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1338 
1339   if (TracePatching) {
1340     tty->print_cr("Deoptimizing because patch is needed");
1341   }
1342 
1343   RegisterMap reg_map(current,
1344                       RegisterMap::UpdateMap::skip,
1345                       RegisterMap::ProcessFrames::include,
1346                       RegisterMap::WalkContinuation::skip);
1347 
1348   frame runtime_frame = current->last_frame();
1349   frame caller_frame = runtime_frame.sender(&reg_map);
1350   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1351 
1352   if (is_patching_needed(current, stub_id)) {
1353     // Make sure the nmethod is invalidated, i.e. made not entrant.
1354     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1355     if (nm != nullptr) {
1356       nm->make_not_entrant();
1357     }
1358   }
1359 
1360   Deoptimization::deoptimize_frame(current, caller_frame.id());
1361   // Return to the now deoptimized frame.
1362   postcond(caller_is_deopted(current));
1363 PROF_END
1364 
1365 #endif // DEOPTIMIZE_WHEN_PATCHING
1366 
1367 // Entry point for compiled code. We want to patch a nmethod.
1368 // We don't do a normal VM transition here because we want to
1369 // know after the patching is complete and any safepoint(s) are taken
1370 // if the calling nmethod was deoptimized. We do this by calling a
1371 // helper method which does the normal VM transition and when it
1372 // completes we can check for deoptimization. This simplifies the
1373 // assembly code in the cpu directories.
1374 //
1375 int Runtime1::move_klass_patching(JavaThread* current) {
1376 //
1377 // NOTE: we are still in Java
1378 //
1379   debug_only(NoHandleMark nhm;)
1380   {
1381     // Enter VM mode
1382     ResetNoHandleMark rnhm;
1383     patch_code(current, C1StubId::load_klass_patching_id);
1384   }
1385   // Back in JAVA, use no oops DON'T safepoint
1386 
1387   // Return true if calling code is deoptimized
1388 
1389   return caller_is_deopted(current);
1390 }
1391 
1392 int Runtime1::move_mirror_patching(JavaThread* current) {
1393 //
1394 // NOTE: we are still in Java
1395 //
1396   debug_only(NoHandleMark nhm;)
1397   {
1398     // Enter VM mode
1399     ResetNoHandleMark rnhm;
1400     patch_code(current, C1StubId::load_mirror_patching_id);
1401   }
1402   // Back in JAVA, use no oops DON'T safepoint
1403 
1404   // Return true if calling code is deoptimized
1405 
1406   return caller_is_deopted(current);
1407 }
1408 
1409 int Runtime1::move_appendix_patching(JavaThread* current) {
1410 //
1411 // NOTE: we are still in Java
1412 //
1413   debug_only(NoHandleMark nhm;)
1414   {
1415     // Enter VM mode
1416     ResetNoHandleMark rnhm;
1417     patch_code(current, C1StubId::load_appendix_patching_id);
1418   }
1419   // Back in JAVA, use no oops DON'T safepoint
1420 
1421   // Return true if calling code is deoptimized
1422 
1423   return caller_is_deopted(current);
1424 }
1425 
1426 // Entry point for compiled code. We want to patch a nmethod.
1427 // We don't do a normal VM transition here because we want to
1428 // know after the patching is complete and any safepoint(s) are taken
1429 // if the calling nmethod was deoptimized. We do this by calling a
1430 // helper method which does the normal VM transition and when it
1431 // completes we can check for deoptimization. This simplifies the
1432 // assembly code in the cpu directories.
1433 //
1434 int Runtime1::access_field_patching(JavaThread* current) {
1435   //
1436   // NOTE: we are still in Java
1437   //
1438   // Handles created in this function will be deleted by the
1439   // HandleMarkCleaner in the transition to the VM.
1440   NoHandleMark nhm;
1441   {
1442     // Enter VM mode
1443     ResetNoHandleMark rnhm;
1444     patch_code(current, C1StubId::access_field_patching_id);
1445   }
1446   // Back in JAVA, use no oops DON'T safepoint
1447 
1448   // Return true if calling code is deoptimized
1449 
1450   return caller_is_deopted(current);
1451 }
1452 
1453 
1454 JRT_LEAF_PROF_NO_THREAD(void, Runtime1, trace_block_entry, Runtime1::trace_block_entry(jint block_id))
1455   // for now we just print out the block id
1456   tty->print("%d ", block_id);
1457 JRT_END
1458 
1459 
1460 JRT_LEAF_PROF_NO_THREAD(int, Runtime1, is_instance_of, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1461   // had to return int instead of bool, otherwise there may be a mismatch
1462   // between the C calling convention and the Java one.
1463   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1464   // JVM takes the whole %eax as the return value, which may misinterpret
1465   // the return value as a boolean true.
1466 
1467   assert(mirror != nullptr, "should null-check on mirror before calling");
1468   Klass* k = java_lang_Class::as_Klass(mirror);
1469   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1470 JRT_END
1471 
1472 JRT_ENTRY_PROF(void, Runtime1, predicate_failed_trap, Runtime1::predicate_failed_trap(JavaThread* current))
1473   ResourceMark rm;
1474 
1475   RegisterMap reg_map(current,
1476                       RegisterMap::UpdateMap::skip,
1477                       RegisterMap::ProcessFrames::include,
1478                       RegisterMap::WalkContinuation::skip);
1479   frame runtime_frame = current->last_frame();
1480   frame caller_frame = runtime_frame.sender(&reg_map);
1481 
1482   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1483   assert (nm != nullptr, "no more nmethod?");
1484   nm->make_not_entrant();
1485 
1486   methodHandle m(current, nm->method());
1487   MethodData* mdo = m->method_data();
1488 
1489   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1490     // Build an MDO.  Ignore errors like OutOfMemory;
1491     // that simply means we won't have an MDO to update.
1492     Method::build_profiling_method_data(m, THREAD);
1493     if (HAS_PENDING_EXCEPTION) {
1494       // Only metaspace OOM is expected. No Java code executed.
1495       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1496       CLEAR_PENDING_EXCEPTION;
1497     }
1498     mdo = m->method_data();
1499   }
1500 
1501   if (mdo != nullptr) {
1502     mdo->inc_trap_count(Deoptimization::Reason_none);
1503   }
1504 
1505   if (TracePredicateFailedTraps) {
1506     stringStream ss1, ss2;
1507     vframeStream vfst(current);
1508     Method* inlinee = vfst.method();
1509     inlinee->print_short_name(&ss1);
1510     m->print_short_name(&ss2);
1511     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc()));
1512   }
1513 
1514 
1515   Deoptimization::deoptimize_frame(current, caller_frame.id());
1516 
1517 JRT_END
1518 
1519 // Check exception if AbortVMOnException flag set
1520 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1521   ResourceMark rm;
1522   const char* message = nullptr;
1523   if (ex->is_a(vmClasses::Throwable_klass())) {
1524     oop msg = java_lang_Throwable::message(ex);
1525     if (msg != nullptr) {
1526       message = java_lang_String::as_utf8_string(msg);
1527     }
1528   }
1529   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1530 JRT_END
1531 
1532 #define DO_COUNTERS(macro) \
1533   macro(Runtime1, new_instance) \
1534   macro(Runtime1, new_type_array) \
1535   macro(Runtime1, new_object_array) \
1536   macro(Runtime1, new_multi_array) \
1537   macro(Runtime1, counter_overflow) \
1538   macro(Runtime1, exception_handler_for_pc_helper) \
1539   macro(Runtime1, monitorenter) \
1540   macro(Runtime1, monitorexit) \
1541   macro(Runtime1, deoptimize) \
1542   macro(Runtime1, is_instance_of) \
1543   macro(Runtime1, predicate_failed_trap) \
1544   macro(Runtime1, patch_code)
1545 
1546 #define INIT_COUNTER(sub, name) \
1547   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
1548   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1549 
1550 void Runtime1::init_counters() {
1551   assert(CompilerConfig::is_c1_enabled(), "");
1552 
1553   if (UsePerfData) {
1554     EXCEPTION_MARK;
1555 
1556     DO_COUNTERS(INIT_COUNTER)
1557 
1558     if (HAS_PENDING_EXCEPTION) {
1559       vm_exit_during_initialization("Runtime1::init_counters() failed unexpectedly");
1560     }
1561   }
1562 }
1563 #undef INIT_COUNTER
1564 
1565 #define PRINT_COUNTER(sub, name) { \
1566   if (_perf_##sub##_##name##_count != nullptr) {  \
1567     jlong count = _perf_##sub##_##name##_count->get_value(); \
1568     if (count > 0) { \
1569       st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
1570                    _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
1571                    _perf_##sub##_##name##_timer->thread_counter_value_us(), \
1572                    count); \
1573     }}}
1574 
1575 
1576 void Runtime1::print_counters_on(outputStream* st) {
1577   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c1_enabled()) {
1578     DO_COUNTERS(PRINT_COUNTER)
1579   } else {
1580     st->print_cr("  Runtime1: no info (%s is disabled)",
1581                  (!CompilerConfig::is_c1_enabled() ? "C1" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
1582   }
1583 }
1584 
1585 #undef PRINT_COUNTER
1586 #undef DO_COUNTERS
1587 
1588 #ifndef PRODUCT
1589 void Runtime1::print_statistics_on(outputStream* st) {
1590   st->print_cr("C1 Runtime statistics:");
1591   st->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1592   st->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1593   st->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1594   st->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1595   st->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1596   st->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1597   st->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1598   st->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1599   st->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1600   st->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1601   st->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1602   st->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1603   st->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1604   st->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1605 
1606   st->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1607   st->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1608   st->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1609   st->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1610   st->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1611   st->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1612   st->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1613 
1614   st->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1615   st->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1616   st->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1617   st->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1618   st->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1619   st->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1620   st->print_cr(" _throw_count:                                  %u:", _throw_count);
1621 
1622   SharedRuntime::print_ic_miss_histogram_on(st);
1623   st->cr();
1624 }
1625 #endif // PRODUCT