< prev index next >

src/hotspot/share/c1/c1_Runtime1.cpp

Print this page

  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"

  42 #include "compiler/disassembler.hpp"
  43 #include "compiler/oopMap.hpp"
  44 #include "gc/shared/barrierSet.hpp"
  45 #include "gc/shared/c1/barrierSetC1.hpp"
  46 #include "gc/shared/collectedHeap.hpp"
  47 #include "interpreter/bytecode.hpp"
  48 #include "interpreter/interpreter.hpp"
  49 #include "jfr/support/jfrIntrinsics.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/klass.inline.hpp"
  57 #include "oops/objArrayOop.inline.hpp"
  58 #include "oops/objArrayKlass.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/fieldDescriptor.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/interfaceSupport.inline.hpp"
  66 #include "runtime/javaCalls.hpp"


  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stackWatermarkSet.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/vframe.inline.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vm_version.hpp"

  74 #include "utilities/copy.hpp"
  75 #include "utilities/events.hpp"
  76 
  77 
  78 // Implementation of StubAssembler
  79 
  80 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  81   _name = name;
  82   _must_gc_arguments = false;
  83   _frame_size = no_frame_size;
  84   _num_rt_args = 0;
  85   _stub_id = stub_id;
  86 }
  87 
  88 
  89 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  90   _name = name;
  91   _must_gc_arguments = must_gc_arguments;
  92 }
  93 

 248   switch (id) {
 249     // These stubs don't need to have an oopmap
 250   case C1StubId::dtrace_object_alloc_id:
 251   case C1StubId::slow_subtype_check_id:
 252   case C1StubId::fpu2long_stub_id:
 253   case C1StubId::unwind_exception_id:
 254   case C1StubId::counter_overflow_id:
 255     expect_oop_map = false;
 256     break;
 257   default:
 258     break;
 259   }
 260 #endif
 261   C1StubIdStubAssemblerCodeGenClosure cl(id);
 262   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 263   // install blob
 264   _blobs[(int)id] = blob;
 265 }
 266 
 267 void Runtime1::initialize(BufferBlob* blob) {

 268   // platform-dependent initialization
 269   initialize_pd();
 270   // generate stubs
 271   int limit = (int)C1StubId::NUM_STUBIDS;
 272   for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id);
 273   // printing
 274 #ifndef PRODUCT
 275   if (PrintSimpleStubs) {
 276     ResourceMark rm;
 277     for (int id = 0; id < limit; id++) {
 278       _blobs[id]->print();
 279       if (_blobs[id]->oop_maps() != nullptr) {
 280         _blobs[id]->oop_maps()->print();
 281       }
 282     }
 283   }
 284 #endif
 285   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 286   bs->generate_c1_runtime_stubs(blob);
 287 }

 334   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 335   FUNCTION_CASE(entry, is_instance_of);
 336   FUNCTION_CASE(entry, trace_block_entry);
 337 #ifdef JFR_HAVE_INTRINSICS
 338   FUNCTION_CASE(entry, JfrTime::time_function());
 339 #endif
 340   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 341   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 342   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 343   FUNCTION_CASE(entry, StubRoutines::dexp());
 344   FUNCTION_CASE(entry, StubRoutines::dlog());
 345   FUNCTION_CASE(entry, StubRoutines::dlog10());
 346   FUNCTION_CASE(entry, StubRoutines::dpow());
 347   FUNCTION_CASE(entry, StubRoutines::dsin());
 348   FUNCTION_CASE(entry, StubRoutines::dcos());
 349   FUNCTION_CASE(entry, StubRoutines::dtan());
 350   FUNCTION_CASE(entry, StubRoutines::dtanh());
 351 
 352 #undef FUNCTION_CASE
 353 






 354   // Soft float adds more runtime names.
 355   return pd_name_for_address(entry);
 356 }
 357 
 358 
 359 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
 360 #ifndef PRODUCT
 361   if (PrintC1Statistics) {
 362     _new_instance_slowcase_cnt++;
 363   }
 364 #endif
 365   assert(klass->is_klass(), "not a class");
 366   Handle holder(current, klass->klass_holder()); // keep the klass alive
 367   InstanceKlass* h = InstanceKlass::cast(klass);
 368   h->check_valid_for_instantiation(true, CHECK);
 369   // make sure klass is initialized
 370   h->initialize(CHECK);
 371   // allocate instance and return via TLS
 372   oop obj = h->allocate_instance(CHECK);
 373   current->set_vm_result(obj);
 374 JRT_END
 375 
 376 
 377 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 378 #ifndef PRODUCT
 379   if (PrintC1Statistics) {
 380     _new_type_array_slowcase_cnt++;
 381   }
 382 #endif
 383   // Note: no handle for klass needed since they are not used
 384   //       anymore after new_typeArray() and no GC can happen before.
 385   //       (This may have to change if this code changes!)
 386   assert(klass->is_klass(), "not a class");
 387   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 388   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 389   current->set_vm_result(obj);
 390   // This is pretty rare but this runtime patch is stressful to deoptimization
 391   // if we deoptimize here so force a deopt to stress the path.
 392   if (DeoptimizeALot) {
 393     deopt_caller(current);
 394   }
 395 
 396 JRT_END
 397 
 398 
 399 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 400 #ifndef PRODUCT
 401   if (PrintC1Statistics) {
 402     _new_object_array_slowcase_cnt++;
 403   }
 404 #endif
 405   // Note: no handle for klass needed since they are not used
 406   //       anymore after new_objArray() and no GC can happen before.
 407   //       (This may have to change if this code changes!)
 408   assert(array_klass->is_klass(), "not a class");
 409   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 410   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 411   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 412   current->set_vm_result(obj);
 413   // This is pretty rare but this runtime patch is stressful to deoptimization
 414   // if we deoptimize here so force a deopt to stress the path.
 415   if (DeoptimizeALot) {
 416     deopt_caller(current);
 417   }
 418 JRT_END
 419 
 420 
 421 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 422 #ifndef PRODUCT
 423   if (PrintC1Statistics) {
 424     _new_multi_array_slowcase_cnt++;
 425   }
 426 #endif
 427   assert(klass->is_klass(), "not a class");
 428   assert(rank >= 1, "rank must be nonzero");
 429   Handle holder(current, klass->klass_holder()); // keep the klass alive
 430   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 431   current->set_vm_result(obj);
 432 JRT_END
 433 
 434 
 435 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 436   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 437 JRT_END
 438 
 439 
 440 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 441   ResourceMark rm(current);

 472       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 473       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 474       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 475       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 476       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 477       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 478       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 479         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 480         break;
 481       case Bytecodes::_goto_w:
 482         offset = Bytes::get_Java_u4(pc + 1);
 483         break;
 484       default: ;
 485     }
 486     bci = branch_bci + offset;
 487   }
 488   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 489   return osr_nm;
 490 }
 491 
 492 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 493   nmethod* osr_nm;
 494   JRT_BLOCK
 495     osr_nm = counter_overflow_helper(current, bci, method);
 496     if (osr_nm != nullptr) {
 497       RegisterMap map(current,
 498                       RegisterMap::UpdateMap::skip,
 499                       RegisterMap::ProcessFrames::include,
 500                       RegisterMap::WalkContinuation::skip);
 501       frame fr =  current->last_frame().sender(&map);
 502       Deoptimization::deoptimize_frame(current, fr.id());
 503     }
 504   JRT_BLOCK_END
 505   return nullptr;
 506 JRT_END
 507 
 508 extern void vm_exit(int code);
 509 
 510 // Enter this method from compiled code handler below. This is where we transition
 511 // to VM mode. This is done as a helper routine so that the method called directly
 512 // from compiled code does not have to transition to VM. This allows the entry
 513 // method to see if the nmethod that we have just looked up a handler for has
 514 // been deoptimized while we were in the vm. This simplifies the assembly code
 515 // cpu directories.
 516 //
 517 // We are entering here from exception stub (via the entry method below)
 518 // If there is a compiled exception handler in this method, we will continue there;
 519 // otherwise we will unwind the stack and continue at the caller of top frame method
 520 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 521 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 522 // check to see if the handler we are going to return is now in a nmethod that has
 523 // been deoptimized. If that is the case we return the deopt blob
 524 // unpack_with_exception entry instead. This makes life for the exception blob easier
 525 // because making that same check and diverting is painful from assembly language.
 526 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 527   // Reset method handle flag.
 528   current->set_is_method_handle_return(false);
 529 
 530   Handle exception(current, ex);
 531 
 532   // This function is called when we are about to throw an exception. Therefore,
 533   // we have to poll the stack watermark barrier to make sure that not yet safe
 534   // stack frames are made safe before returning into them.
 535   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 536     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 537     // frame has been unwound. It instead builds its own stub frame, to call the
 538     // runtime. But the throwing frame has already been unwound here.
 539     StackWatermarkSet::after_unwind(current);
 540   }
 541 
 542   nm = CodeCache::find_nmethod(pc);
 543   assert(nm != nullptr, "this is not an nmethod");
 544   // Adjust the pc as needed/
 545   if (nm->is_deopt_pc(pc)) {
 546     RegisterMap map(current,

 738     _throw_class_cast_exception_count++;
 739   }
 740 #endif
 741   ResourceMark rm(current);
 742   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 743   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 744 JRT_END
 745 
 746 
 747 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 748 #ifndef PRODUCT
 749   if (PrintC1Statistics) {
 750     _throw_incompatible_class_change_error_count++;
 751   }
 752 #endif
 753   ResourceMark rm(current);
 754   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 755 JRT_END
 756 
 757 
 758 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 759 #ifndef PRODUCT
 760   if (PrintC1Statistics) {
 761     _monitorenter_slowcase_cnt++;
 762   }
 763 #endif
 764   if (LockingMode == LM_MONITOR) {
 765     lock->set_obj(obj);
 766   }
 767   assert(obj == lock->obj(), "must match");
 768   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 769 JRT_END
 770 
 771 
 772 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 773   assert(current == JavaThread::current(), "pre-condition");
 774 #ifndef PRODUCT
 775   if (PrintC1Statistics) {
 776     _monitorexit_slowcase_cnt++;
 777   }
 778 #endif
 779   assert(current->last_Java_sp(), "last_Java_sp must be set");
 780   oop obj = lock->obj();
 781   assert(oopDesc::is_oop(obj), "must be null or an object");
 782   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 783 JRT_END
 784 
 785 // Cf. OptoRuntime::deoptimize_caller_frame
 786 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 787   // Called from within the owner thread, so no need for safepoint
 788   RegisterMap reg_map(current,
 789                       RegisterMap::UpdateMap::skip,
 790                       RegisterMap::ProcessFrames::include,
 791                       RegisterMap::WalkContinuation::skip);
 792   frame stub_frame = current->last_frame();
 793   assert(stub_frame.is_runtime_frame(), "Sanity check");
 794   frame caller_frame = stub_frame.sender(&reg_map);
 795   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 796   assert(nm != nullptr, "Sanity check");
 797   methodHandle method(current, nm->method());
 798   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 799   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 800   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 801 
 802   if (action == Deoptimization::Action_make_not_entrant) {
 803     if (nm->make_not_entrant()) {
 804       if (reason == Deoptimization::Reason_tenured) {
 805         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 806         if (trap_mdo != nullptr) {

 809       }
 810     }
 811   }
 812 
 813   // Deoptimize the caller frame.
 814   Deoptimization::deoptimize_frame(current, caller_frame.id());
 815   // Return to the now deoptimized frame.
 816 JRT_END
 817 
 818 
 819 #ifndef DEOPTIMIZE_WHEN_PATCHING
 820 
 821 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 822   Bytecode_field field_access(caller, bci);
 823   // This can be static or non-static field access
 824   Bytecodes::Code code       = field_access.code();
 825 
 826   // We must load class, initialize class and resolve the field
 827   fieldDescriptor result; // initialize class if needed
 828   constantPoolHandle constants(THREAD, caller->constants());
 829   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);

 830   return result.field_holder();
 831 }
 832 
 833 
 834 //
 835 // This routine patches sites where a class wasn't loaded or
 836 // initialized at the time the code was generated.  It handles
 837 // references to classes, fields and forcing of initialization.  Most
 838 // of the cases are straightforward and involving simply forcing
 839 // resolution of a class, rewriting the instruction stream with the
 840 // needed constant and replacing the call in this function with the
 841 // patched code.  The case for static field is more complicated since
 842 // the thread which is in the process of initializing a class can
 843 // access it's static fields but other threads can't so the code
 844 // either has to deoptimize when this case is detected or execute a
 845 // check that the current thread is the initializing thread.  The
 846 // current
 847 //
 848 // Patches basically look like this:
 849 //

 912 // always end up with a correct outcome.  This is easiest if there are
 913 // few or no intermediate states.  (Some inline caches have two
 914 // related instructions that must be patched in tandem.  For those,
 915 // intermediate states seem to be unavoidable, but we will get the
 916 // right answer from all possible observation orders.)
 917 //
 918 // When patching the entry instruction at the head of a method, or a
 919 // linkable call instruction inside of a method, we try very hard to
 920 // use a patch sequence which executes as a single memory transaction.
 921 // This means, in practice, that when thread A patches an instruction,
 922 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 923 // instruction or is contained in it.  We believe that memory hardware
 924 // will never break up such a word write, if it is naturally aligned
 925 // for the word being written.  We also know that some CPUs work very
 926 // hard to create atomic updates even of naturally unaligned words,
 927 // but we don't want to bet the farm on this always working.
 928 //
 929 // Therefore, if there is any chance of a race condition, we try to
 930 // patch only naturally aligned words, as single, full-word writes.
 931 
 932 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id ))
 933 #ifndef PRODUCT
 934   if (PrintC1Statistics) {
 935     _patch_code_slowcase_cnt++;
 936   }
 937 #endif
 938 
 939   ResourceMark rm(current);
 940   RegisterMap reg_map(current,
 941                       RegisterMap::UpdateMap::skip,
 942                       RegisterMap::ProcessFrames::include,
 943                       RegisterMap::WalkContinuation::skip);
 944   frame runtime_frame = current->last_frame();
 945   frame caller_frame = runtime_frame.sender(&reg_map);
 946 
 947   // last java frame on stack
 948   vframeStream vfst(current, true);
 949   assert(!vfst.at_end(), "Java frame must exist");
 950 
 951   methodHandle caller_method(current, vfst.method());
 952   // Note that caller_method->code() may not be same as caller_code because of OSR's

 957   Bytecodes::Code code = caller_method()->java_code_at(bci);
 958 
 959   // this is used by assertions in the access_field_patching_id
 960   BasicType patch_field_type = T_ILLEGAL;
 961   bool deoptimize_for_volatile = false;
 962   bool deoptimize_for_atomic = false;
 963   int patch_field_offset = -1;
 964   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 965   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 966   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 967   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 968   bool load_klass_or_mirror_patch_id =
 969     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
 970 
 971   if (stub_id == C1StubId::access_field_patching_id) {
 972 
 973     Bytecode_field field_access(caller_method, bci);
 974     fieldDescriptor result; // initialize class if needed
 975     Bytecodes::Code code = field_access.code();
 976     constantPoolHandle constants(current, caller_method->constants());
 977     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);

 978     patch_field_offset = result.offset();
 979 
 980     // If we're patching a field which is volatile then at compile it
 981     // must not have been know to be volatile, so the generated code
 982     // isn't correct for a volatile reference.  The nmethod has to be
 983     // deoptimized so that the code can be regenerated correctly.
 984     // This check is only needed for access_field_patching since this
 985     // is the path for patching field offsets.  load_klass is only
 986     // used for patching references to oops which don't need special
 987     // handling in the volatile case.
 988 
 989     deoptimize_for_volatile = result.access_flags().is_volatile();
 990 
 991     // If we are patching a field which should be atomic, then
 992     // the generated code is not correct either, force deoptimizing.
 993     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 994     // break access atomicity only for them.
 995 
 996     // Strictly speaking, the deoptimization on 64-bit platforms
 997     // is unnecessary, and T_LONG stores on 32-bit platforms need

1295     switch (code) {
1296       case Bytecodes::_new:
1297       case Bytecodes::_anewarray:
1298       case Bytecodes::_multianewarray:
1299       case Bytecodes::_instanceof:
1300       case Bytecodes::_checkcast: {
1301         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1302         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1303         if (tag.is_unresolved_klass_in_error()) {
1304           return false; // throws resolution error
1305         }
1306         break;
1307       }
1308 
1309       default: break;
1310     }
1311   }
1312   return true;
1313 }
1314 
1315 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) {
1316 #ifndef PRODUCT
1317   if (PrintC1Statistics) {
1318     _patch_code_slowcase_cnt++;
1319   }
1320 #endif
1321 
1322   // Enable WXWrite: the function is called by c1 stub as a runtime function
1323   // (see another implementation above).
1324   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1325 
1326   if (TracePatching) {
1327     tty->print_cr("Deoptimizing because patch is needed");
1328   }
1329 
1330   RegisterMap reg_map(current,
1331                       RegisterMap::UpdateMap::skip,
1332                       RegisterMap::ProcessFrames::include,
1333                       RegisterMap::WalkContinuation::skip);
1334 
1335   frame runtime_frame = current->last_frame();
1336   frame caller_frame = runtime_frame.sender(&reg_map);
1337   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1338 
1339   if (is_patching_needed(current, stub_id)) {
1340     // Make sure the nmethod is invalidated, i.e. made not entrant.
1341     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1342     if (nm != nullptr) {
1343       nm->make_not_entrant();
1344     }
1345   }
1346 
1347   Deoptimization::deoptimize_frame(current, caller_frame.id());
1348   // Return to the now deoptimized frame.
1349   postcond(caller_is_deopted(current));
1350 }
1351 
1352 #endif // DEOPTIMIZE_WHEN_PATCHING
1353 
1354 // Entry point for compiled code. We want to patch a nmethod.
1355 // We don't do a normal VM transition here because we want to
1356 // know after the patching is complete and any safepoint(s) are taken
1357 // if the calling nmethod was deoptimized. We do this by calling a
1358 // helper method which does the normal VM transition and when it
1359 // completes we can check for deoptimization. This simplifies the
1360 // assembly code in the cpu directories.
1361 //
1362 int Runtime1::move_klass_patching(JavaThread* current) {
1363 //
1364 // NOTE: we are still in Java
1365 //
1366   debug_only(NoHandleMark nhm;)
1367   {
1368     // Enter VM mode
1369     ResetNoHandleMark rnhm;
1370     patch_code(current, C1StubId::load_klass_patching_id);

1421 int Runtime1::access_field_patching(JavaThread* current) {
1422   //
1423   // NOTE: we are still in Java
1424   //
1425   // Handles created in this function will be deleted by the
1426   // HandleMarkCleaner in the transition to the VM.
1427   NoHandleMark nhm;
1428   {
1429     // Enter VM mode
1430     ResetNoHandleMark rnhm;
1431     patch_code(current, C1StubId::access_field_patching_id);
1432   }
1433   // Back in JAVA, use no oops DON'T safepoint
1434 
1435   // Return true if calling code is deoptimized
1436 
1437   return caller_is_deopted(current);
1438 }
1439 
1440 
1441 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1442   // for now we just print out the block id
1443   tty->print("%d ", block_id);
1444 JRT_END
1445 
1446 
1447 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1448   // had to return int instead of bool, otherwise there may be a mismatch
1449   // between the C calling convention and the Java one.
1450   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1451   // JVM takes the whole %eax as the return value, which may misinterpret
1452   // the return value as a boolean true.
1453 
1454   assert(mirror != nullptr, "should null-check on mirror before calling");
1455   Klass* k = java_lang_Class::as_Klass(mirror);
1456   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1457 JRT_END
1458 
1459 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1460   ResourceMark rm;
1461 
1462   RegisterMap reg_map(current,
1463                       RegisterMap::UpdateMap::skip,
1464                       RegisterMap::ProcessFrames::include,
1465                       RegisterMap::WalkContinuation::skip);
1466   frame runtime_frame = current->last_frame();
1467   frame caller_frame = runtime_frame.sender(&reg_map);
1468 
1469   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1470   assert (nm != nullptr, "no more nmethod?");
1471   nm->make_not_entrant();
1472 
1473   methodHandle m(current, nm->method());
1474   MethodData* mdo = m->method_data();
1475 
1476   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1477     // Build an MDO.  Ignore errors like OutOfMemory;
1478     // that simply means we won't have an MDO to update.
1479     Method::build_profiling_method_data(m, THREAD);

1499   }
1500 
1501 
1502   Deoptimization::deoptimize_frame(current, caller_frame.id());
1503 
1504 JRT_END
1505 
1506 // Check exception if AbortVMOnException flag set
1507 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1508   ResourceMark rm;
1509   const char* message = nullptr;
1510   if (ex->is_a(vmClasses::Throwable_klass())) {
1511     oop msg = java_lang_Throwable::message(ex);
1512     if (msg != nullptr) {
1513       message = java_lang_String::as_utf8_string(msg);
1514     }
1515   }
1516   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1517 JRT_END
1518 
























































1519 #ifndef PRODUCT
1520 void Runtime1::print_statistics() {
1521   tty->print_cr("C1 Runtime statistics:");
1522   tty->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1523   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1524   tty->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1525   tty->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1526   tty->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1527   tty->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1528   tty->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1529   tty->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1530   tty->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1531   tty->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1532   tty->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1533   tty->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1534   tty->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1535   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1536 
1537   tty->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1538   tty->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1539   tty->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1540   tty->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1541   tty->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1542   tty->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1543   tty->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1544 
1545   tty->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1546   tty->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1547   tty->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1548   tty->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1549   tty->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1550   tty->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1551   tty->print_cr(" _throw_count:                                  %u:", _throw_count);
1552 
1553   SharedRuntime::print_ic_miss_histogram();
1554   tty->cr();
1555 }
1556 #endif // PRODUCT

  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/javaClasses.inline.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeBlob.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/compilationPolicy.hpp"
  42 #include "compiler/compilerDefinitions.inline.hpp"
  43 #include "compiler/disassembler.hpp"
  44 #include "compiler/oopMap.hpp"
  45 #include "gc/shared/barrierSet.hpp"
  46 #include "gc/shared/c1/barrierSetC1.hpp"
  47 #include "gc/shared/collectedHeap.hpp"
  48 #include "interpreter/bytecode.hpp"
  49 #include "interpreter/interpreter.hpp"
  50 #include "jfr/support/jfrIntrinsics.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.inline.hpp"
  53 #include "memory/oopFactory.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/universe.hpp"
  56 #include "oops/access.inline.hpp"
  57 #include "oops/klass.inline.hpp"
  58 #include "oops/objArrayOop.inline.hpp"
  59 #include "oops/objArrayKlass.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/fieldDescriptor.inline.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/perfData.inline.hpp"
  69 #include "runtime/runtimeUpcalls.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/stackWatermarkSet.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vm_version.hpp"
  77 #include "services/management.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/events.hpp"
  80 
  81 
  82 // Implementation of StubAssembler
  83 
  84 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  85   _name = name;
  86   _must_gc_arguments = false;
  87   _frame_size = no_frame_size;
  88   _num_rt_args = 0;
  89   _stub_id = stub_id;
  90 }
  91 
  92 
  93 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  94   _name = name;
  95   _must_gc_arguments = must_gc_arguments;
  96 }
  97 

 252   switch (id) {
 253     // These stubs don't need to have an oopmap
 254   case C1StubId::dtrace_object_alloc_id:
 255   case C1StubId::slow_subtype_check_id:
 256   case C1StubId::fpu2long_stub_id:
 257   case C1StubId::unwind_exception_id:
 258   case C1StubId::counter_overflow_id:
 259     expect_oop_map = false;
 260     break;
 261   default:
 262     break;
 263   }
 264 #endif
 265   C1StubIdStubAssemblerCodeGenClosure cl(id);
 266   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 267   // install blob
 268   _blobs[(int)id] = blob;
 269 }
 270 
 271 void Runtime1::initialize(BufferBlob* blob) {
 272   init_counters();
 273   // platform-dependent initialization
 274   initialize_pd();
 275   // generate stubs
 276   int limit = (int)C1StubId::NUM_STUBIDS;
 277   for (int id = 0; id < limit; id++) generate_blob_for(blob, (C1StubId)id);
 278   // printing
 279 #ifndef PRODUCT
 280   if (PrintSimpleStubs) {
 281     ResourceMark rm;
 282     for (int id = 0; id < limit; id++) {
 283       _blobs[id]->print();
 284       if (_blobs[id]->oop_maps() != nullptr) {
 285         _blobs[id]->oop_maps()->print();
 286       }
 287     }
 288   }
 289 #endif
 290   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 291   bs->generate_c1_runtime_stubs(blob);
 292 }

 339   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 340   FUNCTION_CASE(entry, is_instance_of);
 341   FUNCTION_CASE(entry, trace_block_entry);
 342 #ifdef JFR_HAVE_INTRINSICS
 343   FUNCTION_CASE(entry, JfrTime::time_function());
 344 #endif
 345   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 346   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 347   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 348   FUNCTION_CASE(entry, StubRoutines::dexp());
 349   FUNCTION_CASE(entry, StubRoutines::dlog());
 350   FUNCTION_CASE(entry, StubRoutines::dlog10());
 351   FUNCTION_CASE(entry, StubRoutines::dpow());
 352   FUNCTION_CASE(entry, StubRoutines::dsin());
 353   FUNCTION_CASE(entry, StubRoutines::dcos());
 354   FUNCTION_CASE(entry, StubRoutines::dtan());
 355   FUNCTION_CASE(entry, StubRoutines::dtanh());
 356 
 357 #undef FUNCTION_CASE
 358 
 359   // Runtime upcalls also has a map of addresses to names
 360   const char* upcall_name = RuntimeUpcalls::get_name_for_upcall_address(entry);
 361   if (upcall_name != nullptr) {
 362     return upcall_name;
 363   }
 364 
 365   // Soft float adds more runtime names.
 366   return pd_name_for_address(entry);
 367 }
 368 
 369 
 370 JRT_ENTRY_PROF(void, Runtime1, new_instance, Runtime1::new_instance(JavaThread* current, Klass* klass))
 371 #ifndef PRODUCT
 372   if (PrintC1Statistics) {
 373     _new_instance_slowcase_cnt++;
 374   }
 375 #endif
 376   assert(klass->is_klass(), "not a class");
 377   Handle holder(current, klass->klass_holder()); // keep the klass alive
 378   InstanceKlass* h = InstanceKlass::cast(klass);
 379   h->check_valid_for_instantiation(true, CHECK);
 380   // make sure klass is initialized
 381   h->initialize(CHECK);
 382   // allocate instance and return via TLS
 383   oop obj = h->allocate_instance(CHECK);
 384   current->set_vm_result(obj);
 385 JRT_END
 386 
 387 
 388 JRT_ENTRY_PROF(void, Runtime1, new_type_array, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
 389 #ifndef PRODUCT
 390   if (PrintC1Statistics) {
 391     _new_type_array_slowcase_cnt++;
 392   }
 393 #endif
 394   // Note: no handle for klass needed since they are not used
 395   //       anymore after new_typeArray() and no GC can happen before.
 396   //       (This may have to change if this code changes!)
 397   assert(klass->is_klass(), "not a class");
 398   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 399   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 400   current->set_vm_result(obj);
 401   // This is pretty rare but this runtime patch is stressful to deoptimization
 402   // if we deoptimize here so force a deopt to stress the path.
 403   if (DeoptimizeALot) {
 404     deopt_caller(current);
 405   }
 406 
 407 JRT_END
 408 
 409 
 410 JRT_ENTRY_PROF(void, Runtime1, new_object_array, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
 411 #ifndef PRODUCT
 412   if (PrintC1Statistics) {
 413     _new_object_array_slowcase_cnt++;
 414   }
 415 #endif
 416   // Note: no handle for klass needed since they are not used
 417   //       anymore after new_objArray() and no GC can happen before.
 418   //       (This may have to change if this code changes!)
 419   assert(array_klass->is_klass(), "not a class");
 420   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 421   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 422   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 423   current->set_vm_result(obj);
 424   // This is pretty rare but this runtime patch is stressful to deoptimization
 425   // if we deoptimize here so force a deopt to stress the path.
 426   if (DeoptimizeALot) {
 427     deopt_caller(current);
 428   }
 429 JRT_END
 430 
 431 
 432 JRT_ENTRY_PROF(void, Runtime1, new_multi_array, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
 433 #ifndef PRODUCT
 434   if (PrintC1Statistics) {
 435     _new_multi_array_slowcase_cnt++;
 436   }
 437 #endif
 438   assert(klass->is_klass(), "not a class");
 439   assert(rank >= 1, "rank must be nonzero");
 440   Handle holder(current, klass->klass_holder()); // keep the klass alive
 441   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 442   current->set_vm_result(obj);
 443 JRT_END
 444 
 445 
 446 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id))
 447   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id);
 448 JRT_END
 449 
 450 
 451 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
 452   ResourceMark rm(current);

 483       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 484       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 485       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 486       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 487       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 488       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 489       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 490         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 491         break;
 492       case Bytecodes::_goto_w:
 493         offset = Bytes::get_Java_u4(pc + 1);
 494         break;
 495       default: ;
 496     }
 497     bci = branch_bci + offset;
 498   }
 499   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
 500   return osr_nm;
 501 }
 502 
 503 JRT_BLOCK_ENTRY_PROF(address, Runtime1, counter_overflow, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
 504   nmethod* osr_nm;
 505   JRT_BLOCK
 506     osr_nm = counter_overflow_helper(current, bci, method);
 507     if (osr_nm != nullptr) {
 508       RegisterMap map(current,
 509                       RegisterMap::UpdateMap::skip,
 510                       RegisterMap::ProcessFrames::include,
 511                       RegisterMap::WalkContinuation::skip);
 512       frame fr =  current->last_frame().sender(&map);
 513       Deoptimization::deoptimize_frame(current, fr.id());
 514     }
 515   JRT_BLOCK_END
 516   return nullptr;
 517 JRT_END
 518 
 519 extern void vm_exit(int code);
 520 
 521 // Enter this method from compiled code handler below. This is where we transition
 522 // to VM mode. This is done as a helper routine so that the method called directly
 523 // from compiled code does not have to transition to VM. This allows the entry
 524 // method to see if the nmethod that we have just looked up a handler for has
 525 // been deoptimized while we were in the vm. This simplifies the assembly code
 526 // cpu directories.
 527 //
 528 // We are entering here from exception stub (via the entry method below)
 529 // If there is a compiled exception handler in this method, we will continue there;
 530 // otherwise we will unwind the stack and continue at the caller of top frame method
 531 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 532 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 533 // check to see if the handler we are going to return is now in a nmethod that has
 534 // been deoptimized. If that is the case we return the deopt blob
 535 // unpack_with_exception entry instead. This makes life for the exception blob easier
 536 // because making that same check and diverting is painful from assembly language.
 537 JRT_ENTRY_NO_ASYNC_PROF(static address, Runtime1, exception_handler_for_pc_helper, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 538   // Reset method handle flag.
 539   current->set_is_method_handle_return(false);
 540 
 541   Handle exception(current, ex);
 542 
 543   // This function is called when we are about to throw an exception. Therefore,
 544   // we have to poll the stack watermark barrier to make sure that not yet safe
 545   // stack frames are made safe before returning into them.
 546   if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) {
 547     // The C1StubId::handle_exception_from_callee_id handler is invoked after the
 548     // frame has been unwound. It instead builds its own stub frame, to call the
 549     // runtime. But the throwing frame has already been unwound here.
 550     StackWatermarkSet::after_unwind(current);
 551   }
 552 
 553   nm = CodeCache::find_nmethod(pc);
 554   assert(nm != nullptr, "this is not an nmethod");
 555   // Adjust the pc as needed/
 556   if (nm->is_deopt_pc(pc)) {
 557     RegisterMap map(current,

 749     _throw_class_cast_exception_count++;
 750   }
 751 #endif
 752   ResourceMark rm(current);
 753   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
 754   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
 755 JRT_END
 756 
 757 
 758 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
 759 #ifndef PRODUCT
 760   if (PrintC1Statistics) {
 761     _throw_incompatible_class_change_error_count++;
 762   }
 763 #endif
 764   ResourceMark rm(current);
 765   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
 766 JRT_END
 767 
 768 
 769 JRT_BLOCK_ENTRY_PROF(void, Runtime1, monitorenter, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
 770 #ifndef PRODUCT
 771   if (PrintC1Statistics) {
 772     _monitorenter_slowcase_cnt++;
 773   }
 774 #endif
 775   if (LockingMode == LM_MONITOR) {
 776     lock->set_obj(obj);
 777   }
 778   assert(obj == lock->obj(), "must match");
 779   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
 780 JRT_END
 781 
 782 
 783 JRT_LEAF_PROF(void, Runtime1, monitorexit, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
 784   assert(current == JavaThread::current(), "pre-condition");
 785 #ifndef PRODUCT
 786   if (PrintC1Statistics) {
 787     _monitorexit_slowcase_cnt++;
 788   }
 789 #endif
 790   assert(current->last_Java_sp(), "last_Java_sp must be set");
 791   oop obj = lock->obj();
 792   assert(oopDesc::is_oop(obj), "must be null or an object");
 793   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
 794 JRT_END
 795 
 796 // Cf. OptoRuntime::deoptimize_caller_frame
 797 JRT_ENTRY_PROF(void, Runtime1, deoptimize, Runtime1::deoptimize(JavaThread* current, jint trap_request))
 798   // Called from within the owner thread, so no need for safepoint
 799   RegisterMap reg_map(current,
 800                       RegisterMap::UpdateMap::skip,
 801                       RegisterMap::ProcessFrames::include,
 802                       RegisterMap::WalkContinuation::skip);
 803   frame stub_frame = current->last_frame();
 804   assert(stub_frame.is_runtime_frame(), "Sanity check");
 805   frame caller_frame = stub_frame.sender(&reg_map);
 806   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 807   assert(nm != nullptr, "Sanity check");
 808   methodHandle method(current, nm->method());
 809   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 810   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 811   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 812 
 813   if (action == Deoptimization::Action_make_not_entrant) {
 814     if (nm->make_not_entrant()) {
 815       if (reason == Deoptimization::Reason_tenured) {
 816         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
 817         if (trap_mdo != nullptr) {

 820       }
 821     }
 822   }
 823 
 824   // Deoptimize the caller frame.
 825   Deoptimization::deoptimize_frame(current, caller_frame.id());
 826   // Return to the now deoptimized frame.
 827 JRT_END
 828 
 829 
 830 #ifndef DEOPTIMIZE_WHEN_PATCHING
 831 
 832 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 833   Bytecode_field field_access(caller, bci);
 834   // This can be static or non-static field access
 835   Bytecodes::Code code       = field_access.code();
 836 
 837   // We must load class, initialize class and resolve the field
 838   fieldDescriptor result; // initialize class if needed
 839   constantPoolHandle constants(THREAD, caller->constants());
 840   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller,
 841                                      Bytecodes::java_code(code), true /*initialize_class*/, CHECK_NULL);
 842   return result.field_holder();
 843 }
 844 
 845 
 846 //
 847 // This routine patches sites where a class wasn't loaded or
 848 // initialized at the time the code was generated.  It handles
 849 // references to classes, fields and forcing of initialization.  Most
 850 // of the cases are straightforward and involving simply forcing
 851 // resolution of a class, rewriting the instruction stream with the
 852 // needed constant and replacing the call in this function with the
 853 // patched code.  The case for static field is more complicated since
 854 // the thread which is in the process of initializing a class can
 855 // access it's static fields but other threads can't so the code
 856 // either has to deoptimize when this case is detected or execute a
 857 // check that the current thread is the initializing thread.  The
 858 // current
 859 //
 860 // Patches basically look like this:
 861 //

 924 // always end up with a correct outcome.  This is easiest if there are
 925 // few or no intermediate states.  (Some inline caches have two
 926 // related instructions that must be patched in tandem.  For those,
 927 // intermediate states seem to be unavoidable, but we will get the
 928 // right answer from all possible observation orders.)
 929 //
 930 // When patching the entry instruction at the head of a method, or a
 931 // linkable call instruction inside of a method, we try very hard to
 932 // use a patch sequence which executes as a single memory transaction.
 933 // This means, in practice, that when thread A patches an instruction,
 934 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 935 // instruction or is contained in it.  We believe that memory hardware
 936 // will never break up such a word write, if it is naturally aligned
 937 // for the word being written.  We also know that some CPUs work very
 938 // hard to create atomic updates even of naturally unaligned words,
 939 // but we don't want to bet the farm on this always working.
 940 //
 941 // Therefore, if there is any chance of a race condition, we try to
 942 // patch only naturally aligned words, as single, full-word writes.
 943 
 944 JRT_ENTRY_PROF(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
 945 #ifndef PRODUCT
 946   if (PrintC1Statistics) {
 947     _patch_code_slowcase_cnt++;
 948   }
 949 #endif
 950 
 951   ResourceMark rm(current);
 952   RegisterMap reg_map(current,
 953                       RegisterMap::UpdateMap::skip,
 954                       RegisterMap::ProcessFrames::include,
 955                       RegisterMap::WalkContinuation::skip);
 956   frame runtime_frame = current->last_frame();
 957   frame caller_frame = runtime_frame.sender(&reg_map);
 958 
 959   // last java frame on stack
 960   vframeStream vfst(current, true);
 961   assert(!vfst.at_end(), "Java frame must exist");
 962 
 963   methodHandle caller_method(current, vfst.method());
 964   // Note that caller_method->code() may not be same as caller_code because of OSR's

 969   Bytecodes::Code code = caller_method()->java_code_at(bci);
 970 
 971   // this is used by assertions in the access_field_patching_id
 972   BasicType patch_field_type = T_ILLEGAL;
 973   bool deoptimize_for_volatile = false;
 974   bool deoptimize_for_atomic = false;
 975   int patch_field_offset = -1;
 976   Klass* init_klass = nullptr; // klass needed by load_klass_patching code
 977   Klass* load_klass = nullptr; // klass needed by load_klass_patching code
 978   Handle mirror(current, nullptr); // oop needed by load_mirror_patching code
 979   Handle appendix(current, nullptr); // oop needed by appendix_patching code
 980   bool load_klass_or_mirror_patch_id =
 981     (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id);
 982 
 983   if (stub_id == C1StubId::access_field_patching_id) {
 984 
 985     Bytecode_field field_access(caller_method, bci);
 986     fieldDescriptor result; // initialize class if needed
 987     Bytecodes::Code code = field_access.code();
 988     constantPoolHandle constants(current, caller_method->constants());
 989     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method,
 990                                        Bytecodes::java_code(code), true /*initialize_class*/, CHECK);
 991     patch_field_offset = result.offset();
 992 
 993     // If we're patching a field which is volatile then at compile it
 994     // must not have been know to be volatile, so the generated code
 995     // isn't correct for a volatile reference.  The nmethod has to be
 996     // deoptimized so that the code can be regenerated correctly.
 997     // This check is only needed for access_field_patching since this
 998     // is the path for patching field offsets.  load_klass is only
 999     // used for patching references to oops which don't need special
1000     // handling in the volatile case.
1001 
1002     deoptimize_for_volatile = result.access_flags().is_volatile();
1003 
1004     // If we are patching a field which should be atomic, then
1005     // the generated code is not correct either, force deoptimizing.
1006     // We need to only cover T_LONG and T_DOUBLE fields, as we can
1007     // break access atomicity only for them.
1008 
1009     // Strictly speaking, the deoptimization on 64-bit platforms
1010     // is unnecessary, and T_LONG stores on 32-bit platforms need

1308     switch (code) {
1309       case Bytecodes::_new:
1310       case Bytecodes::_anewarray:
1311       case Bytecodes::_multianewarray:
1312       case Bytecodes::_instanceof:
1313       case Bytecodes::_checkcast: {
1314         Bytecode bc(caller_method(), caller_method->bcp_from(bci));
1315         constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code));
1316         if (tag.is_unresolved_klass_in_error()) {
1317           return false; // throws resolution error
1318         }
1319         break;
1320       }
1321 
1322       default: break;
1323     }
1324   }
1325   return true;
1326 }
1327 
1328 PROF_ENTRY(void, Runtime1, patch_code, Runtime1::patch_code(JavaThread* current, C1StubId stub_id))
1329 #ifndef PRODUCT
1330   if (PrintC1Statistics) {
1331     _patch_code_slowcase_cnt++;
1332   }
1333 #endif
1334 
1335   // Enable WXWrite: the function is called by c1 stub as a runtime function
1336   // (see another implementation above).
1337   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1338 
1339   if (TracePatching) {
1340     tty->print_cr("Deoptimizing because patch is needed");
1341   }
1342 
1343   RegisterMap reg_map(current,
1344                       RegisterMap::UpdateMap::skip,
1345                       RegisterMap::ProcessFrames::include,
1346                       RegisterMap::WalkContinuation::skip);
1347 
1348   frame runtime_frame = current->last_frame();
1349   frame caller_frame = runtime_frame.sender(&reg_map);
1350   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1351 
1352   if (is_patching_needed(current, stub_id)) {
1353     // Make sure the nmethod is invalidated, i.e. made not entrant.
1354     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1355     if (nm != nullptr) {
1356       nm->make_not_entrant();
1357     }
1358   }
1359 
1360   Deoptimization::deoptimize_frame(current, caller_frame.id());
1361   // Return to the now deoptimized frame.
1362   postcond(caller_is_deopted(current));
1363 PROF_END
1364 
1365 #endif // DEOPTIMIZE_WHEN_PATCHING
1366 
1367 // Entry point for compiled code. We want to patch a nmethod.
1368 // We don't do a normal VM transition here because we want to
1369 // know after the patching is complete and any safepoint(s) are taken
1370 // if the calling nmethod was deoptimized. We do this by calling a
1371 // helper method which does the normal VM transition and when it
1372 // completes we can check for deoptimization. This simplifies the
1373 // assembly code in the cpu directories.
1374 //
1375 int Runtime1::move_klass_patching(JavaThread* current) {
1376 //
1377 // NOTE: we are still in Java
1378 //
1379   debug_only(NoHandleMark nhm;)
1380   {
1381     // Enter VM mode
1382     ResetNoHandleMark rnhm;
1383     patch_code(current, C1StubId::load_klass_patching_id);

1434 int Runtime1::access_field_patching(JavaThread* current) {
1435   //
1436   // NOTE: we are still in Java
1437   //
1438   // Handles created in this function will be deleted by the
1439   // HandleMarkCleaner in the transition to the VM.
1440   NoHandleMark nhm;
1441   {
1442     // Enter VM mode
1443     ResetNoHandleMark rnhm;
1444     patch_code(current, C1StubId::access_field_patching_id);
1445   }
1446   // Back in JAVA, use no oops DON'T safepoint
1447 
1448   // Return true if calling code is deoptimized
1449 
1450   return caller_is_deopted(current);
1451 }
1452 
1453 
1454 JRT_LEAF_PROF_NO_THREAD(void, Runtime1, trace_block_entry, Runtime1::trace_block_entry(jint block_id))
1455   // for now we just print out the block id
1456   tty->print("%d ", block_id);
1457 JRT_END
1458 
1459 
1460 JRT_LEAF_PROF_NO_THREAD(int, Runtime1, is_instance_of, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1461   // had to return int instead of bool, otherwise there may be a mismatch
1462   // between the C calling convention and the Java one.
1463   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1464   // JVM takes the whole %eax as the return value, which may misinterpret
1465   // the return value as a boolean true.
1466 
1467   assert(mirror != nullptr, "should null-check on mirror before calling");
1468   Klass* k = java_lang_Class::as_Klass(mirror);
1469   return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0;
1470 JRT_END
1471 
1472 JRT_ENTRY_PROF(void, Runtime1, predicate_failed_trap, Runtime1::predicate_failed_trap(JavaThread* current))
1473   ResourceMark rm;
1474 
1475   RegisterMap reg_map(current,
1476                       RegisterMap::UpdateMap::skip,
1477                       RegisterMap::ProcessFrames::include,
1478                       RegisterMap::WalkContinuation::skip);
1479   frame runtime_frame = current->last_frame();
1480   frame caller_frame = runtime_frame.sender(&reg_map);
1481 
1482   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1483   assert (nm != nullptr, "no more nmethod?");
1484   nm->make_not_entrant();
1485 
1486   methodHandle m(current, nm->method());
1487   MethodData* mdo = m->method_data();
1488 
1489   if (mdo == nullptr && !HAS_PENDING_EXCEPTION) {
1490     // Build an MDO.  Ignore errors like OutOfMemory;
1491     // that simply means we won't have an MDO to update.
1492     Method::build_profiling_method_data(m, THREAD);

1512   }
1513 
1514 
1515   Deoptimization::deoptimize_frame(current, caller_frame.id());
1516 
1517 JRT_END
1518 
1519 // Check exception if AbortVMOnException flag set
1520 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex))
1521   ResourceMark rm;
1522   const char* message = nullptr;
1523   if (ex->is_a(vmClasses::Throwable_klass())) {
1524     oop msg = java_lang_Throwable::message(ex);
1525     if (msg != nullptr) {
1526       message = java_lang_String::as_utf8_string(msg);
1527     }
1528   }
1529   Exceptions::debug_check_abort(ex->klass()->external_name(), message);
1530 JRT_END
1531 
1532 #define DO_COUNTERS(macro) \
1533   macro(Runtime1, new_instance) \
1534   macro(Runtime1, new_type_array) \
1535   macro(Runtime1, new_object_array) \
1536   macro(Runtime1, new_multi_array) \
1537   macro(Runtime1, counter_overflow) \
1538   macro(Runtime1, exception_handler_for_pc_helper) \
1539   macro(Runtime1, monitorenter) \
1540   macro(Runtime1, monitorexit) \
1541   macro(Runtime1, deoptimize) \
1542   macro(Runtime1, is_instance_of) \
1543   macro(Runtime1, predicate_failed_trap) \
1544   macro(Runtime1, patch_code)
1545 
1546 #define INIT_COUNTER(sub, name) \
1547   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
1548   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1549 
1550 void Runtime1::init_counters() {
1551   assert(CompilerConfig::is_c1_enabled(), "");
1552 
1553   if (UsePerfData) {
1554     EXCEPTION_MARK;
1555 
1556     DO_COUNTERS(INIT_COUNTER)
1557 
1558     if (HAS_PENDING_EXCEPTION) {
1559       vm_exit_during_initialization("Runtime1::init_counters() failed unexpectedly");
1560     }
1561   }
1562 }
1563 #undef INIT_COUNTER
1564 
1565 #define PRINT_COUNTER(sub, name) { \
1566   if (_perf_##sub##_##name##_count != nullptr) {  \
1567     jlong count = _perf_##sub##_##name##_count->get_value(); \
1568     if (count > 0) { \
1569       st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
1570                    _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
1571                    _perf_##sub##_##name##_timer->thread_counter_value_us(), \
1572                    count); \
1573     }}}
1574 
1575 
1576 void Runtime1::print_counters_on(outputStream* st) {
1577   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c1_enabled()) {
1578     DO_COUNTERS(PRINT_COUNTER)
1579   } else {
1580     st->print_cr("  Runtime1: no info (%s is disabled)",
1581                  (!CompilerConfig::is_c1_enabled() ? "C1" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
1582   }
1583 }
1584 
1585 #undef PRINT_COUNTER
1586 #undef DO_COUNTERS
1587 
1588 #ifndef PRODUCT
1589 void Runtime1::print_statistics_on(outputStream* st) {
1590   st->print_cr("C1 Runtime statistics:");
1591   st->print_cr(" _resolve_invoke_virtual_cnt:     %u", SharedRuntime::_resolve_virtual_ctr);
1592   st->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr);
1593   st->print_cr(" _resolve_invoke_static_cnt:      %u", SharedRuntime::_resolve_static_ctr);
1594   st->print_cr(" _handle_wrong_method_cnt:        %u", SharedRuntime::_wrong_method_ctr);
1595   st->print_cr(" _ic_miss_cnt:                    %u", SharedRuntime::_ic_miss_ctr);
1596   st->print_cr(" _generic_arraycopystub_cnt:      %u", _generic_arraycopystub_cnt);
1597   st->print_cr(" _byte_arraycopy_cnt:             %u", _byte_arraycopy_stub_cnt);
1598   st->print_cr(" _short_arraycopy_cnt:            %u", _short_arraycopy_stub_cnt);
1599   st->print_cr(" _int_arraycopy_cnt:              %u", _int_arraycopy_stub_cnt);
1600   st->print_cr(" _long_arraycopy_cnt:             %u", _long_arraycopy_stub_cnt);
1601   st->print_cr(" _oop_arraycopy_cnt:              %u", _oop_arraycopy_stub_cnt);
1602   st->print_cr(" _arraycopy_slowcase_cnt:         %u", _arraycopy_slowcase_cnt);
1603   st->print_cr(" _arraycopy_checkcast_cnt:        %u", _arraycopy_checkcast_cnt);
1604   st->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt);
1605 
1606   st->print_cr(" _new_type_array_slowcase_cnt:    %u", _new_type_array_slowcase_cnt);
1607   st->print_cr(" _new_object_array_slowcase_cnt:  %u", _new_object_array_slowcase_cnt);
1608   st->print_cr(" _new_instance_slowcase_cnt:      %u", _new_instance_slowcase_cnt);
1609   st->print_cr(" _new_multi_array_slowcase_cnt:   %u", _new_multi_array_slowcase_cnt);
1610   st->print_cr(" _monitorenter_slowcase_cnt:      %u", _monitorenter_slowcase_cnt);
1611   st->print_cr(" _monitorexit_slowcase_cnt:       %u", _monitorexit_slowcase_cnt);
1612   st->print_cr(" _patch_code_slowcase_cnt:        %u", _patch_code_slowcase_cnt);
1613 
1614   st->print_cr(" _throw_range_check_exception_count:            %u:", _throw_range_check_exception_count);
1615   st->print_cr(" _throw_index_exception_count:                  %u:", _throw_index_exception_count);
1616   st->print_cr(" _throw_div0_exception_count:                   %u:", _throw_div0_exception_count);
1617   st->print_cr(" _throw_null_pointer_exception_count:           %u:", _throw_null_pointer_exception_count);
1618   st->print_cr(" _throw_class_cast_exception_count:             %u:", _throw_class_cast_exception_count);
1619   st->print_cr(" _throw_incompatible_class_change_error_count:  %u:", _throw_incompatible_class_change_error_count);
1620   st->print_cr(" _throw_count:                                  %u:", _throw_count);
1621 
1622   SharedRuntime::print_ic_miss_histogram_on(st);
1623   st->cr();
1624 }
1625 #endif // PRODUCT
< prev index next >