1 /*
  2  * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "cds/aotMappedHeapLoader.hpp"
 26 #include "cds/aotMappedHeapWriter.hpp"
 27 #include "cds/aotReferenceObjSupport.hpp"
 28 #include "cds/cdsConfig.hpp"
 29 #include "cds/filemap.hpp"
 30 #include "cds/heapShared.inline.hpp"
 31 #include "cds/regeneratedClasses.hpp"
 32 #include "classfile/javaClasses.hpp"
 33 #include "classfile/modules.hpp"
 34 #include "classfile/systemDictionary.hpp"
 35 #include "gc/shared/collectedHeap.hpp"
 36 #include "memory/allocation.inline.hpp"
 37 #include "memory/iterator.inline.hpp"
 38 #include "memory/oopFactory.hpp"
 39 #include "memory/universe.hpp"
 40 #include "oops/compressedOops.hpp"
 41 #include "oops/objArrayOop.inline.hpp"
 42 #include "oops/oop.inline.hpp"
 43 #include "oops/oopHandle.inline.hpp"
 44 #include "oops/typeArrayKlass.hpp"
 45 #include "oops/typeArrayOop.hpp"
 46 #include "runtime/java.hpp"
 47 #include "runtime/mutexLocker.hpp"
 48 #include "utilities/bitMap.inline.hpp"
 49 #if INCLUDE_G1GC
 50 #include "gc/g1/g1CollectedHeap.hpp"
 51 #include "gc/g1/g1HeapRegion.hpp"
 52 #endif
 53 
 54 #if INCLUDE_CDS_JAVA_HEAP
 55 
 56 GrowableArrayCHeap<u1, mtClassShared>* AOTMappedHeapWriter::_buffer = nullptr;
 57 
 58 // The following are offsets from buffer_bottom()
 59 size_t AOTMappedHeapWriter::_buffer_used;
 60 
 61 // Heap root segments
 62 HeapRootSegments AOTMappedHeapWriter::_heap_root_segments;
 63 
 64 address AOTMappedHeapWriter::_requested_bottom;
 65 address AOTMappedHeapWriter::_requested_top;
 66 
 67 static size_t _num_strings = 0;
 68 static size_t _string_bytes = 0; 
 69 static size_t _num_packages = 0;
 70 static size_t _num_protection_domains = 0;
 71 
 72 GrowableArrayCHeap<AOTMappedHeapWriter::NativePointerInfo, mtClassShared>* AOTMappedHeapWriter::_native_pointers;
 73 GrowableArrayCHeap<oop, mtClassShared>* AOTMappedHeapWriter::_source_objs;
 74 GrowableArrayCHeap<AOTMappedHeapWriter::HeapObjOrder, mtClassShared>* AOTMappedHeapWriter::_source_objs_order;
 75 
 76 AOTMappedHeapWriter::BufferOffsetToSourceObjectTable*
 77 AOTMappedHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
 78 
 79 DumpedInternedStrings *AOTMappedHeapWriter::_dumped_interned_strings = nullptr;
 80 
 81 typedef HashTable<
 82       size_t,    // offset of a filler from AOTMappedHeapWriter::buffer_bottom()
 83       size_t,    // size of this filler (in bytes)
 84       127,       // prime number
 85       AnyObj::C_HEAP,
 86       mtClassShared> FillersTable;
 87 static FillersTable* _fillers;
 88 static int _num_native_ptrs = 0;
 89 
 90 void AOTMappedHeapWriter::init() {
 91   if (CDSConfig::is_dumping_heap()) {
 92     Universe::heap()->collect(GCCause::_java_lang_system_gc);
 93 
 94     _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
 95     _dumped_interned_strings = new (mtClass)DumpedInternedStrings(INITIAL_TABLE_SIZE, MAX_TABLE_SIZE);
 96     _fillers = new FillersTable();
 97     _requested_bottom = nullptr;
 98     _requested_top = nullptr;
 99 
100     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
101     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
102 
103     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
104   }
105 }
106 
107 void AOTMappedHeapWriter::delete_tables_with_raw_oops() {
108   delete _source_objs;
109   _source_objs = nullptr;
110 
111   delete _dumped_interned_strings;
112   _dumped_interned_strings = nullptr;
113 }
114 
115 void AOTMappedHeapWriter::add_source_obj(oop src_obj) {
116   _source_objs->append(src_obj);
117 }
118 
119 void AOTMappedHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
120                                 ArchiveMappedHeapInfo* heap_info) {
121   assert(CDSConfig::is_dumping_heap(), "sanity");
122   allocate_buffer();
123   copy_source_objs_to_buffer(roots);
124   set_requested_address(heap_info);
125   relocate_embedded_oops(roots, heap_info);
126 }
127 
128 bool AOTMappedHeapWriter::is_too_large_to_archive(oop o) {
129   return is_too_large_to_archive(o->size());
130 }
131 
132 bool AOTMappedHeapWriter::is_string_too_large_to_archive(oop string) {
133   typeArrayOop value = java_lang_String::value_no_keepalive(string);
134   return is_too_large_to_archive(value);
135 }
136 
137 bool AOTMappedHeapWriter::is_too_large_to_archive(size_t size) {
138   assert(size > 0, "no zero-size object");
139   assert(size * HeapWordSize > size, "no overflow");
140   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
141 
142   size_t byte_size = size * HeapWordSize;
143   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
144     return true;
145   } else {
146     return false;
147   }
148 }
149 
150 // Keep track of the contents of the archived interned string table. This table
151 // is used only by CDSHeapVerifier.
152 void AOTMappedHeapWriter::add_to_dumped_interned_strings(oop string) {
153   assert_at_safepoint(); // DumpedInternedStrings uses raw oops
154   assert(!is_string_too_large_to_archive(string), "must be");
155   bool created;
156   _dumped_interned_strings->put_if_absent(string, true, &created);
157   if (created) {
158     // Prevent string deduplication from changing the value field to
159     // something not in the archive.
160     java_lang_String::set_deduplication_forbidden(string);
161     _dumped_interned_strings->maybe_grow();
162   }
163 }
164 
165 bool AOTMappedHeapWriter::is_dumped_interned_string(oop o) {
166   return _dumped_interned_strings->get(o) != nullptr;
167 }
168 
169 // Various lookup functions between source_obj, buffered_obj and requested_obj
170 bool AOTMappedHeapWriter::is_in_requested_range(oop o) {
171   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
172   address a = cast_from_oop<address>(o);
173   return (_requested_bottom <= a && a < _requested_top);
174 }
175 
176 oop AOTMappedHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
177   oop req_obj = cast_to_oop(_requested_bottom + offset);
178   assert(is_in_requested_range(req_obj), "must be");
179   return req_obj;
180 }
181 
182 oop AOTMappedHeapWriter::source_obj_to_requested_obj(oop src_obj) {
183   assert(CDSConfig::is_dumping_heap(), "dump-time only");
184   HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
185   if (p != nullptr) {
186     return requested_obj_from_buffer_offset(p->buffer_offset());
187   } else {
188     return nullptr;
189   }
190 }
191 
192 oop AOTMappedHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
193   OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
194   if (oh != nullptr) {
195     return oh->resolve();
196   } else {
197     return nullptr;
198   }
199 }
200 
201 Klass* AOTMappedHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
202   oop p = buffered_addr_to_source_obj(buffered_addr);
203   if (p != nullptr) {
204     return p->klass();
205   } else if (get_filler_size_at(buffered_addr) > 0) {
206     return Universe::fillerArrayKlass();
207   } else {
208     // This is one of the root segments
209     return Universe::objectArrayKlass();
210   }
211 }
212 
213 size_t AOTMappedHeapWriter::size_of_buffered_oop(address buffered_addr) {
214   oop p = buffered_addr_to_source_obj(buffered_addr);
215   if (p != nullptr) {
216     return p->size();
217   }
218 
219   size_t nbytes = get_filler_size_at(buffered_addr);
220   if (nbytes > 0) {
221     assert((nbytes % BytesPerWord) == 0, "should be aligned");
222     return nbytes / BytesPerWord;
223   }
224 
225   address hrs = buffer_bottom();
226   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
227     nbytes = _heap_root_segments.size_in_bytes(seg_idx);
228     if (hrs == buffered_addr) {
229       assert((nbytes % BytesPerWord) == 0, "should be aligned");
230       return nbytes / BytesPerWord;
231     }
232     hrs += nbytes;
233   }
234 
235   ShouldNotReachHere();
236   return 0;
237 }
238 
239 address AOTMappedHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
240   return _requested_bottom + buffered_address_to_offset(buffered_addr);
241 }
242 
243 address AOTMappedHeapWriter::requested_address() {
244   assert(_buffer != nullptr, "must be initialized");
245   return _requested_bottom;
246 }
247 
248 void AOTMappedHeapWriter::allocate_buffer() {
249   int initial_buffer_size = 100000;
250   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
251   _buffer_used = 0;
252   ensure_buffer_space(1); // so that buffer_bottom() works
253 }
254 
255 void AOTMappedHeapWriter::ensure_buffer_space(size_t min_bytes) {
256   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
257   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
258   _buffer->at_grow(to_array_index(min_bytes));
259 }
260 
261 objArrayOop AOTMappedHeapWriter::allocate_root_segment(size_t offset, int element_count) {
262   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
263   memset(mem, 0, objArrayOopDesc::object_size(element_count));
264 
265   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
266   if (UseCompactObjectHeaders) {
267     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
268   } else {
269     oopDesc::set_mark(mem, markWord::prototype());
270     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
271   }
272   arrayOopDesc::set_length(mem, element_count);
273   return objArrayOop(cast_to_oop(mem));
274 }
275 
276 void AOTMappedHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
277   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
278   if (UseCompressedOops) {
279     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
280   } else {
281     *segment->obj_at_addr<oop>(index) = root;
282   }
283 }
284 
285 void AOTMappedHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
286   // Depending on the number of classes we are archiving, a single roots array may be
287   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
288   // allows us to chop the large array into a series of "segments". Current layout
289   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
290   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
291   // This is simple and efficient. We do not need filler objects anywhere between the segments,
292   // or immediately after the last segment. This allows starting the object dump immediately
293   // after the roots.
294 
295   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
296          "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
297 
298   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
299   assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
300          "Should match exactly");
301 
302   HeapRootSegments segments(_buffer_used,
303                             roots->length(),
304                             MIN_GC_REGION_ALIGNMENT,
305                             max_elem_count);
306 
307   int root_index = 0;
308   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
309     int size_elems = segments.size_in_elems(seg_idx);
310     size_t size_bytes = segments.size_in_bytes(seg_idx);
311 
312     size_t oop_offset = _buffer_used;
313     _buffer_used = oop_offset + size_bytes;
314     ensure_buffer_space(_buffer_used);
315 
316     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
317            "Roots segment %zu start is not aligned: %zu",
318            segments.count(), oop_offset);
319 
320     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
321     for (int i = 0; i < size_elems; i++) {
322       root_segment_at_put(seg_oop, i, roots->at(root_index++));
323     }
324 
325     log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
326                         size_elems, size_bytes, p2i(seg_oop));
327   }
328 
329   assert(root_index == roots->length(), "Post-condition: All roots are handled");
330 
331   _heap_root_segments = segments;
332 }
333 
334 // The goal is to sort the objects in increasing order of:
335 // - objects that have only oop pointers
336 // - objects that have both native and oop pointers
337 // - objects that have only native pointers
338 // - objects that have no pointers
339 static int oop_sorting_rank(oop o) {
340   bool has_oop_ptr, has_native_ptr;
341   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
342 
343   if (has_oop_ptr) {
344     if (!has_native_ptr) {
345       return 0;
346     } else {
347       return 1;
348     }
349   } else {
350     if (has_native_ptr) {
351       return 2;
352     } else {
353       return 3;
354     }
355   }
356 }
357 
358 int AOTMappedHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
359   int rank_a = a->_rank;
360   int rank_b = b->_rank;
361 
362   if (rank_a != rank_b) {
363     return rank_a - rank_b;
364   } else {
365     // If they are the same rank, sort them by their position in the _source_objs array
366     return a->_index - b->_index;
367   }
368 }
369 
370 void AOTMappedHeapWriter::sort_source_objs() {
371   log_info(aot)("sorting heap objects");
372   int len = _source_objs->length();
373   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
374 
375   for (int i = 0; i < len; i++) {
376     oop o = _source_objs->at(i);
377     int rank = oop_sorting_rank(o);
378     HeapObjOrder os = {i, rank};
379     _source_objs_order->append(os);
380   }
381   log_info(aot)("computed ranks");
382   _source_objs_order->sort(compare_objs_by_oop_fields);
383   log_info(aot)("sorting heap objects done");
384 }
385 
386 void AOTMappedHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
387   // There could be multiple root segments, which we want to be aligned by region.
388   // Putting them ahead of objects makes sure we waste no space.
389   copy_roots_to_buffer(roots);
390 
391   sort_source_objs();
392   for (int i = 0; i < _source_objs_order->length(); i++) {
393     int src_obj_index = _source_objs_order->at(i)._index;
394     oop src_obj = _source_objs->at(src_obj_index);
395     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
396     assert(info != nullptr, "must be");
397     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
398     info->set_buffer_offset(buffer_offset);
399     assert(buffer_offset <= 0x7fffffff, "sanity");
400     HeapShared::add_to_permanent_oop_table(src_obj, (int)buffer_offset);
401 
402     OopHandle handle(Universe::vm_global(), src_obj);
403     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
404     _buffer_offset_to_source_obj_table->maybe_grow();
405 
406     if (java_lang_Module::is_instance(src_obj)) {
407       Modules::check_archived_module_oop(src_obj);
408     }
409   }
410 
411   log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
412                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
413   log_info(cds)("   strings            = %8zu (%zu bytes)", _num_strings, _string_bytes);
414   log_info(cds)("   packages           = %8zu", _num_packages);
415   log_info(cds)("   protection domains = %8zu", _num_protection_domains);
416 }
417 
418 size_t AOTMappedHeapWriter::filler_array_byte_size(int length) {
419   size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
420   return byte_size;
421 }
422 
423 int AOTMappedHeapWriter::filler_array_length(size_t fill_bytes) {
424   assert(is_object_aligned(fill_bytes), "must be");
425   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
426 
427   int initial_length = to_array_length(fill_bytes / elemSize);
428   for (int length = initial_length; length >= 0; length --) {
429     size_t array_byte_size = filler_array_byte_size(length);
430     if (array_byte_size == fill_bytes) {
431       return length;
432     }
433   }
434 
435   ShouldNotReachHere();
436   return -1;
437 }
438 
439 HeapWord* AOTMappedHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
440   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
441   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
442   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
443   memset(mem, 0, fill_bytes);
444   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
445   if (UseCompactObjectHeaders) {
446     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
447   } else {
448     oopDesc::set_mark(mem, markWord::prototype());
449     cast_to_oop(mem)->set_narrow_klass(nk);
450   }
451   arrayOopDesc::set_length(mem, array_length);
452   return mem;
453 }
454 
455 void AOTMappedHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
456   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
457   // leftover space is smaller than a zero-sized array object). Therefore, we need to
458   // make sure there's enough space of min_filler_byte_size in the current region after
459   // required_byte_size has been allocated. If not, fill the remainder of the current
460   // region.
461   size_t min_filler_byte_size = filler_array_byte_size(0);
462   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
463 
464   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
465   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
466 
467   if (cur_min_region_bottom != next_min_region_bottom) {
468     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
469     // we can map the region in any region-based collector.
470     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
471     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
472            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
473 
474     const size_t filler_end = next_min_region_bottom;
475     const size_t fill_bytes = filler_end - _buffer_used;
476     assert(fill_bytes > 0, "must be");
477     ensure_buffer_space(filler_end);
478 
479     int array_length = filler_array_length(fill_bytes);
480     log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
481                         array_length, fill_bytes, _buffer_used);
482     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
483     _buffer_used = filler_end;
484     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
485   }
486 }
487 
488 size_t AOTMappedHeapWriter::get_filler_size_at(address buffered_addr) {
489   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
490   if (p != nullptr) {
491     assert(*p > 0, "filler must be larger than zero bytes");
492     return *p;
493   } else {
494     return 0; // buffered_addr is not a filler
495   }
496 }
497 
498 template <typename T>
499 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
500   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
501   *field_addr = value;
502 }
503 
504 void AOTMappedHeapWriter::update_stats(oop src_obj) {
505   if (java_lang_String::is_instance(src_obj)) {
506     _num_strings ++;
507     _string_bytes += src_obj->size() * HeapWordSize;
508     _string_bytes += java_lang_String::value(src_obj)->size() * HeapWordSize;
509   } else {
510     Klass* k = src_obj->klass();
511     Symbol* name = k->name();
512     if (name->equals("java/lang/NamedPackage") || name->equals("java/lang/Package")) {
513       _num_packages ++;
514     } else if (name->equals("java/security/ProtectionDomain")) {
515       _num_protection_domains ++;
516     }
517   }
518 }
519 
520 size_t AOTMappedHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
521   update_stats(src_obj);
522 
523   assert(!is_too_large_to_archive(src_obj), "already checked");
524   size_t byte_size = src_obj->size() * HeapWordSize;
525   assert(byte_size > 0, "no zero-size objects");
526 
527   // For region-based collectors such as G1, the archive heap may be mapped into
528   // multiple regions. We need to make sure that we don't have an object that can possible
529   // span across two regions.
530   maybe_fill_gc_region_gap(byte_size);
531 
532   size_t new_used = _buffer_used + byte_size;
533   assert(new_used > _buffer_used, "no wrap around");
534 
535   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
536   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
537   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
538 
539   ensure_buffer_space(new_used);
540 
541   address from = cast_from_oop<address>(src_obj);
542   address to = offset_to_buffered_address<address>(_buffer_used);
543   assert(is_object_aligned(_buffer_used), "sanity");
544   assert(is_object_aligned(byte_size), "sanity");
545   memcpy(to, from, byte_size);
546 
547   // These native pointers will be restored explicitly at run time.
548   if (java_lang_Module::is_instance(src_obj)) {
549     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
550   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
551 #ifdef ASSERT
552     // We only archive these loaders
553     if (src_obj != SystemDictionary::java_platform_loader() &&
554         src_obj != SystemDictionary::java_system_loader()) {
555       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
556     }
557 #endif
558     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
559   }
560 
561   size_t buffered_obj_offset = _buffer_used;
562   _buffer_used = new_used;
563 
564   return buffered_obj_offset;
565 }
566 
567 void AOTMappedHeapWriter::set_requested_address(ArchiveMappedHeapInfo* info) {
568   assert(!info->is_used(), "only set once");
569 
570   size_t heap_region_byte_size = _buffer_used;
571   assert(heap_region_byte_size > 0, "must archived at least one object!");
572 
573   if (UseCompressedOops) {
574     if (UseG1GC) {
575       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
576       log_info(aot, heap)("Heap end = %p", heap_end);
577       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
578       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
579       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
580     } else {
581       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
582     }
583   } else {
584     // We always write the objects as if the heap started at this address. This
585     // makes the contents of the archive heap deterministic.
586     //
587     // Note that at runtime, the heap address is selected by the OS, so the archive
588     // heap will not be mapped at 0x10000000, and the contents need to be patched.
589     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
590   }
591 
592   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
593 
594   _requested_top = _requested_bottom + _buffer_used;
595 
596   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
597                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
598   info->set_root_segments(_heap_root_segments);
599 }
600 
601 // Oop relocation
602 
603 template <typename T> T* AOTMappedHeapWriter::requested_addr_to_buffered_addr(T* p) {
604   assert(is_in_requested_range(cast_to_oop(p)), "must be");
605 
606   address addr = address(p);
607   assert(addr >= _requested_bottom, "must be");
608   size_t offset = addr - _requested_bottom;
609   return offset_to_buffered_address<T*>(offset);
610 }
611 
612 template <typename T> oop AOTMappedHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
613   oop o = load_oop_from_buffer(buffered_addr);
614   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
615   return o;
616 }
617 
618 template <typename T> void AOTMappedHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
619                                                                                    oop request_oop) {
620   assert(request_oop == nullptr || is_in_requested_range(request_oop), "must be");
621   store_oop_in_buffer(buffered_addr, request_oop);
622 }
623 
624 inline void AOTMappedHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
625   *buffered_addr = requested_obj;
626 }
627 
628 inline void AOTMappedHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
629   narrowOop val = CompressedOops::encode(requested_obj);
630   *buffered_addr = val;
631 }
632 
633 oop AOTMappedHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
634   return *buffered_addr;
635 }
636 
637 oop AOTMappedHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
638   return CompressedOops::decode(*buffered_addr);
639 }
640 
641 template <typename T> void AOTMappedHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, oop source_referent, CHeapBitMap* oopmap) {
642   oop request_referent = source_obj_to_requested_obj(source_referent);
643   store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
644   if (request_referent != nullptr) {
645     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
646   }
647 }
648 
649 template <typename T> void AOTMappedHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
650   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
651   address requested_region_bottom;
652 
653   assert(request_p >= (T*)_requested_bottom, "sanity");
654   assert(request_p <  (T*)_requested_top, "sanity");
655   requested_region_bottom = _requested_bottom;
656 
657   // Mark the pointer in the oopmap
658   T* region_bottom = (T*)requested_region_bottom;
659   assert(request_p >= region_bottom, "must be");
660   BitMap::idx_t idx = request_p - region_bottom;
661   assert(idx < oopmap->size(), "overflow");
662   oopmap->set_bit(idx);
663 }
664 
665 void AOTMappedHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
666   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
667   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
668   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
669 
670   oop fake_oop = cast_to_oop(buffered_addr);
671   if (UseCompactObjectHeaders) {
672     fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
673   } else {
674     fake_oop->set_narrow_klass(nk);
675   }
676 
677   if (src_obj == nullptr) {
678     return;
679   }
680   // We need to retain the identity_hash, because it may have been used by some hashtables
681   // in the shared heap.
682   if (!src_obj->fast_no_hash_check()) {
683     intptr_t src_hash = src_obj->identity_hash();
684     if (UseCompactObjectHeaders) {
685       fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
686     } else {
687       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
688     }
689     assert(fake_oop->mark().is_unlocked(), "sanity");
690 
691     DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
692     assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
693   }
694   // Strip age bits.
695   fake_oop->set_mark(fake_oop->mark().set_age(0));
696 }
697 
698 class AOTMappedHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
699   oop _src_obj;
700   address _buffered_obj;
701   CHeapBitMap* _oopmap;
702   bool _is_java_lang_ref;
703 public:
704   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
705     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
706   {
707     _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
708   }
709 
710   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
711   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
712 
713 private:
714   template <class T> void do_oop_work(T *p) {
715     int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
716     T* field_addr = (T*)(_buffered_obj + field_offset);
717     oop referent = load_source_oop_from_buffer<T>(field_addr);
718     referent = HeapShared::maybe_remap_referent(_is_java_lang_ref, field_offset, referent);
719     AOTMappedHeapWriter::relocate_field_in_buffer<T>(field_addr, referent, _oopmap);
720   }
721 };
722 
723 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
724   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
725   size_t start = bitmap->find_first_set_bit(0);
726   size_t end = bitmap->size();
727   log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
728                 start, end,
729                 start * 100 / total_bits,
730                 end * 100 / total_bits,
731                 (end - start) * 100 / total_bits);
732 }
733 
734 // Update all oop fields embedded in the buffered objects
735 void AOTMappedHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
736                                                       ArchiveMappedHeapInfo* heap_info) {
737   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
738   size_t heap_region_byte_size = _buffer_used;
739   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
740 
741   for (int i = 0; i < _source_objs_order->length(); i++) {
742     int src_obj_index = _source_objs_order->at(i)._index;
743     oop src_obj = _source_objs->at(src_obj_index);
744     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
745     assert(info != nullptr, "must be");
746     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
747     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
748     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
749     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
750     src_obj->oop_iterate(&relocator);
751     mark_native_pointers(src_obj);
752   };
753 
754   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
755   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
756   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
757     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
758 
759     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
760     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
761     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
762     int length = _heap_root_segments.size_in_elems(seg_idx);
763 
764     size_t elem_size = UseCompressedOops ? sizeof(narrowOop) : sizeof(oop);
765 
766     for (int i = 0; i < length; i++) {
767       // There is no source object; these are native oops - load, translate and
768       // write back
769       size_t elem_offset = objArrayOopDesc::base_offset_in_bytes() + elem_size * i;
770       HeapWord* elem_addr = (HeapWord*)(buffered_obj + elem_offset);
771       oop obj = NativeAccess<>::oop_load(elem_addr);
772       obj = HeapShared::maybe_remap_referent(false /* is_reference_field */, elem_offset, obj);
773       if (UseCompressedOops) {
774         relocate_field_in_buffer<narrowOop>((narrowOop*)elem_addr, obj, heap_info->oopmap());
775       } else {
776         relocate_field_in_buffer<oop>((oop*)elem_addr, obj, heap_info->oopmap());
777       }
778     }
779   }
780 
781   compute_ptrmap(heap_info);
782 
783   size_t total_bytes = (size_t)_buffer->length();
784   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
785   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
786 }
787 
788 void AOTMappedHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
789   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
790   if (ptr != nullptr) {
791     NativePointerInfo info;
792     info._src_obj = src_obj;
793     info._field_offset = field_offset;
794     _native_pointers->append(info);
795     HeapShared::set_has_native_pointers(src_obj);
796     _num_native_ptrs ++;
797   }
798 }
799 
800 void AOTMappedHeapWriter::mark_native_pointers(oop orig_obj) {
801   HeapShared::do_metadata_offsets(orig_obj, [&](int offset) {
802     mark_native_pointer(orig_obj, offset);
803   });
804 }
805 
806 void AOTMappedHeapWriter::compute_ptrmap(ArchiveMappedHeapInfo* heap_info) {
807   int num_non_null_ptrs = 0;
808   Metadata** bottom = (Metadata**) _requested_bottom;
809   Metadata** top = (Metadata**) _requested_top; // exclusive
810   heap_info->ptrmap()->resize(top - bottom);
811 
812   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
813   for (int i = 0; i < _native_pointers->length(); i++) {
814     NativePointerInfo info = _native_pointers->at(i);
815     oop src_obj = info._src_obj;
816     int field_offset = info._field_offset;
817     HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
818     // requested_field_addr = the address of this field in the requested space
819     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
820     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
821     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
822 
823     // Mark this field in the bitmap
824     BitMap::idx_t idx = requested_field_addr - bottom;
825     heap_info->ptrmap()->set_bit(idx);
826     num_non_null_ptrs ++;
827     max_idx = MAX2(max_idx, idx);
828 
829     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
830     // this address if the RO/RW regions are mapped at the default location).
831 
832     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
833     Metadata* native_ptr = *buffered_field_addr;
834     guarantee(native_ptr != nullptr, "sanity");
835 
836     if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
837       native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
838     }
839 
840     guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
841               "Metadata %p should have been archived", native_ptr);
842 
843     if (RegeneratedClasses::has_been_regenerated((address)native_ptr)) {
844       native_ptr = (Metadata*)RegeneratedClasses::get_regenerated_object((address)native_ptr);
845     }
846 
847     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
848     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
849     *buffered_field_addr = (Metadata*)requested_native_ptr;
850   }
851 
852   heap_info->ptrmap()->resize(max_idx + 1);
853   log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
854                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
855 }
856 
857 AOTMapLogger::OopDataIterator* AOTMappedHeapWriter::oop_iterator(ArchiveMappedHeapInfo* heap_info) {
858   class MappedWriterOopIterator : public AOTMapLogger::OopDataIterator {
859   private:
860     address _current;
861     address _next;
862 
863     address _buffer_start;
864     address _buffer_end;
865     uint64_t _buffer_start_narrow_oop;
866     intptr_t _buffer_to_requested_delta;
867     int _requested_shift;
868 
869     size_t _num_root_segments;
870     size_t _num_obj_arrays_logged;
871 
872   public:
873     MappedWriterOopIterator(address buffer_start,
874                             address buffer_end,
875                             uint64_t buffer_start_narrow_oop,
876                             intptr_t buffer_to_requested_delta,
877                             int requested_shift,
878                             size_t num_root_segments)
879       : _current(nullptr),
880         _next(buffer_start),
881         _buffer_start(buffer_start),
882         _buffer_end(buffer_end),
883         _buffer_start_narrow_oop(buffer_start_narrow_oop),
884         _buffer_to_requested_delta(buffer_to_requested_delta),
885         _requested_shift(requested_shift),
886         _num_root_segments(num_root_segments),
887         _num_obj_arrays_logged(0) {
888     }
889 
890     AOTMapLogger::OopData capture(address buffered_addr) {
891       oopDesc* raw_oop = (oopDesc*)buffered_addr;
892       size_t size = size_of_buffered_oop(buffered_addr);
893       address requested_addr = buffered_addr_to_requested_addr(buffered_addr);
894       intptr_t target_location = (intptr_t)requested_addr;
895       uint64_t pd = (uint64_t)(pointer_delta(buffered_addr, _buffer_start, 1));
896       uint32_t narrow_location = checked_cast<uint32_t>(_buffer_start_narrow_oop + (pd >> _requested_shift));
897       Klass* klass = real_klass_of_buffered_oop(buffered_addr);
898 
899       return { buffered_addr,
900                requested_addr,
901                target_location,
902                narrow_location,
903                raw_oop,
904                klass,
905                size,
906                false };
907     }
908 
909     bool has_next() override {
910       return _next < _buffer_end;
911     }
912 
913     AOTMapLogger::OopData next() override {
914       _current = _next;
915       AOTMapLogger::OopData result = capture(_current);
916       if (result._klass->is_objArray_klass()) {
917         result._is_root_segment = _num_obj_arrays_logged++ < _num_root_segments;
918       }
919       _next = _current + result._size * BytesPerWord;
920       return result;
921     }
922 
923     AOTMapLogger::OopData obj_at(narrowOop* addr) override {
924       uint64_t n = (uint64_t)(*addr);
925       if (n == 0) {
926         return null_data();
927       } else {
928         precond(n >= _buffer_start_narrow_oop);
929         address buffer_addr = _buffer_start + ((n - _buffer_start_narrow_oop) << _requested_shift);
930         return capture(buffer_addr);
931       }
932     }
933 
934     AOTMapLogger::OopData obj_at(oop* addr) override {
935       address requested_value = cast_from_oop<address>(*addr);
936       if (requested_value == nullptr) {
937         return null_data();
938       } else {
939         address buffer_addr = requested_value - _buffer_to_requested_delta;
940         return capture(buffer_addr);
941       }
942     }
943 
944     GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
945       return new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
946     }
947   };
948 
949   MemRegion r = heap_info->buffer_region();
950   address buffer_start = address(r.start());
951   address buffer_end = address(r.end());
952 
953   address requested_base = UseCompressedOops ? (address)CompressedOops::base() : (address)AOTMappedHeapWriter::NOCOOPS_REQUESTED_BASE;
954   address requested_start = UseCompressedOops ? buffered_addr_to_requested_addr(buffer_start) : requested_base;
955   int requested_shift =  CompressedOops::shift();
956   intptr_t buffer_to_requested_delta = requested_start - buffer_start;
957   uint64_t buffer_start_narrow_oop = 0xdeadbeed;
958   if (UseCompressedOops) {
959     buffer_start_narrow_oop = (uint64_t)(pointer_delta(requested_start, requested_base, 1)) >> requested_shift;
960     assert(buffer_start_narrow_oop < 0xffffffff, "sanity");
961   }
962 
963   return new MappedWriterOopIterator(buffer_start,
964                                      buffer_end,
965                                      buffer_start_narrow_oop,
966                                      buffer_to_requested_delta,
967                                      requested_shift,
968                                      heap_info->root_segments().count());
969 }
970 
971 #endif // INCLUDE_CDS_JAVA_HEAP