1 /*
   2  * Copyright (c) 2023, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotMappedHeapLoader.hpp"
  26 #include "cds/aotMappedHeapWriter.hpp"
  27 #include "cds/aotReferenceObjSupport.hpp"
  28 #include "cds/cdsConfig.hpp"
  29 #include "cds/filemap.hpp"
  30 #include "cds/heapShared.inline.hpp"
  31 #include "cds/regeneratedClasses.hpp"
  32 #include "classfile/javaClasses.hpp"
  33 #include "classfile/modules.hpp"
  34 #include "classfile/systemDictionary.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.inline.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/compressedOops.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/oopHandle.inline.hpp"
  44 #include "oops/typeArrayKlass.hpp"
  45 #include "oops/typeArrayOop.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "utilities/bitMap.inline.hpp"
  49 #if INCLUDE_G1GC
  50 #include "gc/g1/g1CollectedHeap.hpp"
  51 #include "gc/g1/g1HeapRegion.hpp"
  52 #endif
  53 
  54 #if INCLUDE_CDS_JAVA_HEAP
  55 
  56 GrowableArrayCHeap<u1, mtClassShared>* AOTMappedHeapWriter::_buffer = nullptr;
  57 
  58 bool AOTMappedHeapWriter::_is_writing_deterministic_heap = false;
  59 size_t AOTMappedHeapWriter::_buffer_used;
  60 
  61 // Heap root segments
  62 HeapRootSegments AOTMappedHeapWriter::_heap_root_segments;
  63 
  64 address AOTMappedHeapWriter::_requested_bottom;
  65 address AOTMappedHeapWriter::_requested_top;
  66 
  67 static size_t _num_strings = 0;
  68 static size_t _string_bytes = 0; 
  69 static size_t _num_packages = 0;
  70 static size_t _num_protection_domains = 0;
  71 
  72 GrowableArrayCHeap<AOTMappedHeapWriter::NativePointerInfo, mtClassShared>* AOTMappedHeapWriter::_native_pointers;
  73 GrowableArrayCHeap<oop, mtClassShared>* AOTMappedHeapWriter::_source_objs;
  74 GrowableArrayCHeap<AOTMappedHeapWriter::HeapObjOrder, mtClassShared>* AOTMappedHeapWriter::_source_objs_order;
  75 
  76 AOTMappedHeapWriter::BufferOffsetToSourceObjectTable*
  77 AOTMappedHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
  78 
  79 typedef HashTable<
  80       size_t,    // offset of a filler from AOTMappedHeapWriter::buffer_bottom()
  81       size_t,    // size of this filler (in bytes)
  82       127,       // prime number
  83       AnyObj::C_HEAP,
  84       mtClassShared> FillersTable;
  85 static FillersTable* _fillers;
  86 static int _num_native_ptrs = 0;
  87 
  88 void AOTMappedHeapWriter::init() {
  89   if (CDSConfig::is_dumping_heap()) {
  90     Universe::heap()->collect(GCCause::_java_lang_system_gc);
  91 
  92     _buffer_offset_to_source_obj_table = new (mtClassShared) BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
  93     _fillers = new (mtClassShared) FillersTable();
  94     _requested_bottom = nullptr;
  95     _requested_top = nullptr;
  96 
  97     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
  98     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
  99 
 100     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
 101 
 102     if (CDSConfig::old_cds_flags_used()) {
 103       // With the old CDS workflow, we can guatantee determninistic output: given
 104       // the same classlist file, we can generate the same static CDS archive.
 105       // To ensure determinism, we always use the same compressed oop encoding
 106       // (zero-based, no shift). See set_requested_address_range().
 107       _is_writing_deterministic_heap = true;
 108     } else {
 109       // Determninistic output is not supported by the new AOT workflow, so
 110       // we don't force the (zero-based, no shift) encoding. This way, it is more
 111       // likely that we can avoid oop relocation in the production run.
 112       _is_writing_deterministic_heap = false;
 113     }
 114   }
 115 }
 116 
 117 // For AOTMappedHeapWriter::narrow_oop_{mode, base, shift}(), see comments
 118 // in AOTMappedHeapWriter::set_requested_address_range(),
 119 CompressedOops::Mode AOTMappedHeapWriter::narrow_oop_mode() {
 120   if (is_writing_deterministic_heap()) {
 121     return CompressedOops::UnscaledNarrowOop;
 122   } else {
 123     return CompressedOops::mode();
 124   }
 125 }
 126 
 127 address AOTMappedHeapWriter::narrow_oop_base() {
 128   if (is_writing_deterministic_heap()) {
 129     return nullptr;
 130   } else {
 131     return CompressedOops::base();
 132   }
 133 }
 134 
 135 int AOTMappedHeapWriter::narrow_oop_shift() {
 136   if (is_writing_deterministic_heap()) {
 137     return 0;
 138   } else {
 139     return CompressedOops::shift();
 140   }
 141 }
 142 
 143 void AOTMappedHeapWriter::delete_tables_with_raw_oops() {
 144   delete _source_objs;
 145   _source_objs = nullptr;
 146 }
 147 
 148 void AOTMappedHeapWriter::add_source_obj(oop src_obj) {
 149   _source_objs->append(src_obj);
 150 }
 151 
 152 void AOTMappedHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
 153                                 ArchiveMappedHeapInfo* heap_info) {
 154   assert(CDSConfig::is_dumping_heap(), "sanity");
 155   allocate_buffer();
 156   copy_source_objs_to_buffer(roots);
 157   set_requested_address_range(heap_info);
 158   relocate_embedded_oops(roots, heap_info);
 159 }
 160 
 161 bool AOTMappedHeapWriter::is_too_large_to_archive(oop o) {
 162   return is_too_large_to_archive(o->size());
 163 }
 164 
 165 bool AOTMappedHeapWriter::is_string_too_large_to_archive(oop string) {
 166   typeArrayOop value = java_lang_String::value_no_keepalive(string);
 167   return is_too_large_to_archive(value);
 168 }
 169 
 170 bool AOTMappedHeapWriter::is_too_large_to_archive(size_t size) {
 171   assert(size > 0, "no zero-size object");
 172   assert(size * HeapWordSize > size, "no overflow");
 173   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
 174 
 175   size_t byte_size = size * HeapWordSize;
 176   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
 177     return true;
 178   } else {
 179     return false;
 180   }
 181 }
 182 
 183 // Various lookup functions between source_obj, buffered_obj and requested_obj
 184 bool AOTMappedHeapWriter::is_in_requested_range(oop o) {
 185   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
 186   address a = cast_from_oop<address>(o);
 187   return (_requested_bottom <= a && a < _requested_top);
 188 }
 189 
 190 oop AOTMappedHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
 191   oop req_obj = cast_to_oop(_requested_bottom + offset);
 192   assert(is_in_requested_range(req_obj), "must be");
 193   return req_obj;
 194 }
 195 
 196 oop AOTMappedHeapWriter::source_obj_to_requested_obj(oop src_obj) {
 197   assert(CDSConfig::is_dumping_heap(), "dump-time only");
 198   HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 199   if (p != nullptr) {
 200     return requested_obj_from_buffer_offset(p->buffer_offset());
 201   } else {
 202     return nullptr;
 203   }
 204 }
 205 
 206 oop AOTMappedHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
 207   OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
 208   if (oh != nullptr) {
 209     return oh->resolve();
 210   } else {
 211     return nullptr;
 212   }
 213 }
 214 
 215 Klass* AOTMappedHeapWriter::real_klass_of_buffered_oop(address buffered_addr) {
 216   oop p = buffered_addr_to_source_obj(buffered_addr);
 217   if (p != nullptr) {
 218     return p->klass();
 219   } else if (get_filler_size_at(buffered_addr) > 0) {
 220     return Universe::fillerArrayKlass();
 221   } else {
 222     // This is one of the root segments
 223     return Universe::objectArrayKlass();
 224   }
 225 }
 226 
 227 size_t AOTMappedHeapWriter::size_of_buffered_oop(address buffered_addr) {
 228   oop p = buffered_addr_to_source_obj(buffered_addr);
 229   if (p != nullptr) {
 230     return p->size();
 231   }
 232 
 233   size_t nbytes = get_filler_size_at(buffered_addr);
 234   if (nbytes > 0) {
 235     assert((nbytes % BytesPerWord) == 0, "should be aligned");
 236     return nbytes / BytesPerWord;
 237   }
 238 
 239   address hrs = buffer_bottom();
 240   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 241     nbytes = _heap_root_segments.size_in_bytes(seg_idx);
 242     if (hrs == buffered_addr) {
 243       assert((nbytes % BytesPerWord) == 0, "should be aligned");
 244       return nbytes / BytesPerWord;
 245     }
 246     hrs += nbytes;
 247   }
 248 
 249   ShouldNotReachHere();
 250   return 0;
 251 }
 252 
 253 address AOTMappedHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
 254   return _requested_bottom + buffered_address_to_offset(buffered_addr);
 255 }
 256 
 257 address AOTMappedHeapWriter::requested_address() {
 258   assert(_buffer != nullptr, "must be initialized");
 259   return _requested_bottom;
 260 }
 261 
 262 void AOTMappedHeapWriter::allocate_buffer() {
 263   int initial_buffer_size = 100000;
 264   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
 265   _buffer_used = 0;
 266   ensure_buffer_space(1); // so that buffer_bottom() works
 267 }
 268 
 269 void AOTMappedHeapWriter::ensure_buffer_space(size_t min_bytes) {
 270   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
 271   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
 272   _buffer->at_grow(to_array_index(min_bytes));
 273 }
 274 
 275 objArrayOop AOTMappedHeapWriter::allocate_root_segment(size_t offset, int element_count) {
 276   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
 277   memset(mem, 0, objArrayOopDesc::object_size(element_count));
 278 
 279   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
 280   if (UseCompactObjectHeaders) {
 281     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
 282   } else {
 283     oopDesc::set_mark(mem, markWord::prototype());
 284     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
 285   }
 286   arrayOopDesc::set_length(mem, element_count);
 287   return objArrayOop(cast_to_oop(mem));
 288 }
 289 
 290 void AOTMappedHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
 291   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
 292   if (UseCompressedOops) {
 293     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
 294   } else {
 295     *segment->obj_at_addr<oop>(index) = root;
 296   }
 297 }
 298 
 299 void AOTMappedHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 300   // Depending on the number of classes we are archiving, a single roots array may be
 301   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
 302   // allows us to chop the large array into a series of "segments". Current layout
 303   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
 304   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
 305   // This is simple and efficient. We do not need filler objects anywhere between the segments,
 306   // or immediately after the last segment. This allows starting the object dump immediately
 307   // after the roots.
 308 
 309   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
 310          "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
 311 
 312   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
 313   assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
 314          "Should match exactly");
 315 
 316   HeapRootSegments segments(_buffer_used,
 317                             roots->length(),
 318                             MIN_GC_REGION_ALIGNMENT,
 319                             max_elem_count);
 320 
 321   int root_index = 0;
 322   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
 323     int size_elems = segments.size_in_elems(seg_idx);
 324     size_t size_bytes = segments.size_in_bytes(seg_idx);
 325 
 326     size_t oop_offset = _buffer_used;
 327     _buffer_used = oop_offset + size_bytes;
 328     ensure_buffer_space(_buffer_used);
 329 
 330     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
 331            "Roots segment %zu start is not aligned: %zu",
 332            segments.count(), oop_offset);
 333 
 334     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
 335     for (int i = 0; i < size_elems; i++) {
 336       root_segment_at_put(seg_oop, i, roots->at(root_index++));
 337     }
 338 
 339     log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
 340                         size_elems, size_bytes, p2i(seg_oop));
 341   }
 342 
 343   assert(root_index == roots->length(), "Post-condition: All roots are handled");
 344 
 345   _heap_root_segments = segments;
 346 }
 347 
 348 // The goal is to sort the objects in increasing order of:
 349 // - objects that have only oop pointers
 350 // - objects that have both native and oop pointers
 351 // - objects that have only native pointers
 352 // - objects that have no pointers
 353 static int oop_sorting_rank(oop o) {
 354   bool has_oop_ptr, has_native_ptr;
 355   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
 356 
 357   if (has_oop_ptr) {
 358     if (!has_native_ptr) {
 359       return 0;
 360     } else {
 361       return 1;
 362     }
 363   } else {
 364     if (has_native_ptr) {
 365       return 2;
 366     } else {
 367       return 3;
 368     }
 369   }
 370 }
 371 
 372 int AOTMappedHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
 373   int rank_a = a->_rank;
 374   int rank_b = b->_rank;
 375 
 376   if (rank_a != rank_b) {
 377     return rank_a - rank_b;
 378   } else {
 379     // If they are the same rank, sort them by their position in the _source_objs array
 380     return a->_index - b->_index;
 381   }
 382 }
 383 
 384 void AOTMappedHeapWriter::sort_source_objs() {
 385   log_info(aot)("sorting heap objects");
 386   int len = _source_objs->length();
 387   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
 388 
 389   for (int i = 0; i < len; i++) {
 390     oop o = _source_objs->at(i);
 391     int rank = oop_sorting_rank(o);
 392     HeapObjOrder os = {i, rank};
 393     _source_objs_order->append(os);
 394   }
 395   log_info(aot)("computed ranks");
 396   _source_objs_order->sort(compare_objs_by_oop_fields);
 397   log_info(aot)("sorting heap objects done");
 398 }
 399 
 400 void AOTMappedHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
 401   // There could be multiple root segments, which we want to be aligned by region.
 402   // Putting them ahead of objects makes sure we waste no space.
 403   copy_roots_to_buffer(roots);
 404 
 405   sort_source_objs();
 406   for (int i = 0; i < _source_objs_order->length(); i++) {
 407     int src_obj_index = _source_objs_order->at(i)._index;
 408     oop src_obj = _source_objs->at(src_obj_index);
 409     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 410     assert(info != nullptr, "must be");
 411     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
 412     info->set_buffer_offset(buffer_offset);
 413     assert(buffer_offset <= 0x7fffffff, "sanity");
 414 
 415     OopHandle handle(Universe::vm_global(), src_obj);
 416     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
 417     _buffer_offset_to_source_obj_table->maybe_grow();
 418 
 419     if (java_lang_Module::is_instance(src_obj)) {
 420       Modules::check_archived_module_oop(src_obj);
 421     }
 422   }
 423 
 424   log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
 425                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
 426   log_info(cds)("   strings            = %8zu (%zu bytes)", _num_strings, _string_bytes);
 427   log_info(cds)("   packages           = %8zu", _num_packages);
 428   log_info(cds)("   protection domains = %8zu", _num_protection_domains);
 429 }
 430 
 431 size_t AOTMappedHeapWriter::filler_array_byte_size(int length) {
 432   size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
 433   return byte_size;
 434 }
 435 
 436 int AOTMappedHeapWriter::filler_array_length(size_t fill_bytes) {
 437   assert(is_object_aligned(fill_bytes), "must be");
 438   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 439 
 440   int initial_length = to_array_length(fill_bytes / elemSize);
 441   for (int length = initial_length; length >= 0; length --) {
 442     size_t array_byte_size = filler_array_byte_size(length);
 443     if (array_byte_size == fill_bytes) {
 444       return length;
 445     }
 446   }
 447 
 448   ShouldNotReachHere();
 449   return -1;
 450 }
 451 
 452 HeapWord* AOTMappedHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
 453   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 454   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
 455   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
 456   memset(mem, 0, fill_bytes);
 457   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
 458   if (UseCompactObjectHeaders) {
 459     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
 460   } else {
 461     oopDesc::set_mark(mem, markWord::prototype());
 462     cast_to_oop(mem)->set_narrow_klass(nk);
 463   }
 464   arrayOopDesc::set_length(mem, array_length);
 465   return mem;
 466 }
 467 
 468 void AOTMappedHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
 469   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
 470   // leftover space is smaller than a zero-sized array object). Therefore, we need to
 471   // make sure there's enough space of min_filler_byte_size in the current region after
 472   // required_byte_size has been allocated. If not, fill the remainder of the current
 473   // region.
 474   size_t min_filler_byte_size = filler_array_byte_size(0);
 475   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
 476 
 477   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 478   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 479 
 480   if (cur_min_region_bottom != next_min_region_bottom) {
 481     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
 482     // we can map the region in any region-based collector.
 483     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
 484     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
 485            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
 486 
 487     const size_t filler_end = next_min_region_bottom;
 488     const size_t fill_bytes = filler_end - _buffer_used;
 489     assert(fill_bytes > 0, "must be");
 490     ensure_buffer_space(filler_end);
 491 
 492     int array_length = filler_array_length(fill_bytes);
 493     log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
 494                         array_length, fill_bytes, _buffer_used);
 495     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
 496     _buffer_used = filler_end;
 497     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
 498   }
 499 }
 500 
 501 size_t AOTMappedHeapWriter::get_filler_size_at(address buffered_addr) {
 502   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
 503   if (p != nullptr) {
 504     assert(*p > 0, "filler must be larger than zero bytes");
 505     return *p;
 506   } else {
 507     return 0; // buffered_addr is not a filler
 508   }
 509 }
 510 
 511 template <typename T>
 512 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
 513   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
 514   *field_addr = value;
 515 }
 516 
 517 void AOTMappedHeapWriter::update_stats(oop src_obj) {
 518   if (java_lang_String::is_instance(src_obj)) {
 519     _num_strings ++;
 520     _string_bytes += src_obj->size() * HeapWordSize;
 521     _string_bytes += java_lang_String::value(src_obj)->size() * HeapWordSize;
 522   } else {
 523     Klass* k = src_obj->klass();
 524     Symbol* name = k->name();
 525     if (name->equals("java/lang/NamedPackage") || name->equals("java/lang/Package")) {
 526       _num_packages ++;
 527     } else if (name->equals("java/security/ProtectionDomain")) {
 528       _num_protection_domains ++;
 529     }
 530   }
 531 }
 532 
 533 size_t AOTMappedHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
 534   update_stats(src_obj);
 535 
 536   assert(!is_too_large_to_archive(src_obj), "already checked");
 537   size_t byte_size = src_obj->size() * HeapWordSize;
 538   assert(byte_size > 0, "no zero-size objects");
 539 
 540   // For region-based collectors such as G1, the archive heap may be mapped into
 541   // multiple regions. We need to make sure that we don't have an object that can possible
 542   // span across two regions.
 543   maybe_fill_gc_region_gap(byte_size);
 544 
 545   size_t new_used = _buffer_used + byte_size;
 546   assert(new_used > _buffer_used, "no wrap around");
 547 
 548   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
 549   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
 550   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
 551 
 552   ensure_buffer_space(new_used);
 553 
 554   address from = cast_from_oop<address>(src_obj);
 555   address to = offset_to_buffered_address<address>(_buffer_used);
 556   assert(is_object_aligned(_buffer_used), "sanity");
 557   assert(is_object_aligned(byte_size), "sanity");
 558   memcpy(to, from, byte_size);
 559 
 560   // These native pointers will be restored explicitly at run time.
 561   if (java_lang_Module::is_instance(src_obj)) {
 562     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
 563   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
 564 #ifdef ASSERT
 565     // We only archive these loaders
 566     if (src_obj != SystemDictionary::java_platform_loader() &&
 567         src_obj != SystemDictionary::java_system_loader()) {
 568       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
 569     }
 570 #endif
 571     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
 572   }
 573 
 574   size_t buffered_obj_offset = _buffer_used;
 575   _buffer_used = new_used;
 576 
 577   return buffered_obj_offset;
 578 }
 579 
 580 // Set the range [_requested_bottom, _requested_top), the requested address range of all
 581 // the archived heap objects in the production run.
 582 //
 583 // (1) UseCompressedOops == true && !is_writing_deterministic_heap()
 584 //
 585 //     The archived objects are stored using the COOPS encoding of the assembly phase.
 586 //     We pick a range within the heap used by the assembly phase.
 587 //
 588 //     In the production run, if different COOPS encodings are used:
 589 //         - The heap contents needs to be relocated.
 590 //
 591 // (2) UseCompressedOops == true && is_writing_deterministic_heap()
 592 //
 593 //     We always use zero-based, zero-shift encoding. _requested_top is aligned to 0x10000000.
 594 //
 595 // (3) UseCompressedOops == false:
 596 //
 597 //     In the production run, the heap range is usually picked (randomly) by the OS, so we
 598 //     will almost always need to perform relocation, regardless of how we pick the requested
 599 //     address range.
 600 //
 601 //     So we just hard code it to NOCOOPS_REQUESTED_BASE.
 602 //
 603 void AOTMappedHeapWriter::set_requested_address_range(ArchiveMappedHeapInfo* info) {
 604   assert(!info->is_used(), "only set once");
 605 
 606   size_t heap_region_byte_size = _buffer_used;
 607   assert(heap_region_byte_size > 0, "must archived at least one object!");
 608 
 609   if (UseCompressedOops) {
 610     if (is_writing_deterministic_heap()) {
 611       // Pick a heap range so that requested addresses can be encoded with zero-base/no shift.
 612       // We align the requested bottom to at least 1 MB: if the production run uses G1 with a small
 613       // heap (e.g., -Xmx256m), it's likely that we can map the archived objects at the
 614       // requested location to avoid relocation.
 615       //
 616       // For other collectors or larger heaps, relocation is unavoidable, but is usually
 617       // quite cheap. If you really want to avoid relocation, use the AOT workflow instead.
 618       address heap_end = (address)0x100000000;
 619       size_t alignment = MAX2(MIN_GC_REGION_ALIGNMENT, 1024 * 1024);
 620       if (align_up(heap_region_byte_size, alignment) >= (size_t)heap_end) {
 621         log_error(aot, heap)("cached heap space is too large: %zu bytes", heap_region_byte_size);
 622         AOTMetaspace::unrecoverable_writing_error();
 623       }
 624       _requested_bottom = align_down(heap_end - heap_region_byte_size, alignment);
 625     } else if (UseG1GC) {
 626       // For G1, pick the range at the top of the current heap. If the exact same heap sizes
 627       // are used in the production run, it's likely that we can map the archived objects
 628       // at the requested location to avoid relocation.
 629       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
 630       log_info(aot, heap)("Heap end = %p", heap_end);
 631       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
 632       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
 633       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
 634     } else {
 635       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
 636     }
 637   } else {
 638     // We always write the objects as if the heap started at this address. This
 639     // makes the contents of the archive heap deterministic.
 640     //
 641     // Note that at runtime, the heap address is selected by the OS, so the archive
 642     // heap will not be mapped at 0x10000000, and the contents need to be patched.
 643     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
 644   }
 645 
 646   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
 647 
 648   _requested_top = _requested_bottom + _buffer_used;
 649 
 650   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
 651                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
 652   info->set_root_segments(_heap_root_segments);
 653 }
 654 
 655 // Oop relocation
 656 
 657 template <typename T> T* AOTMappedHeapWriter::requested_addr_to_buffered_addr(T* p) {
 658   assert(is_in_requested_range(cast_to_oop(p)), "must be");
 659 
 660   address addr = address(p);
 661   assert(addr >= _requested_bottom, "must be");
 662   size_t offset = addr - _requested_bottom;
 663   return offset_to_buffered_address<T*>(offset);
 664 }
 665 
 666 template <typename T> oop AOTMappedHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
 667   oop o = load_oop_from_buffer(buffered_addr);
 668   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
 669   return o;
 670 }
 671 
 672 template <typename T> void AOTMappedHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
 673                                                                                    oop request_oop) {
 674   assert(request_oop == nullptr || is_in_requested_range(request_oop), "must be");
 675   store_oop_in_buffer(buffered_addr, request_oop);
 676 }
 677 
 678 inline void AOTMappedHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
 679   *buffered_addr = requested_obj;
 680 }
 681 
 682 inline void AOTMappedHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
 683   narrowOop val = CompressedOops::encode(requested_obj);
 684   *buffered_addr = val;
 685 }
 686 
 687 oop AOTMappedHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
 688   return *buffered_addr;
 689 }
 690 
 691 oop AOTMappedHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
 692   return CompressedOops::decode(*buffered_addr);
 693 }
 694 
 695 template <typename T> void AOTMappedHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, oop source_referent, CHeapBitMap* oopmap) {
 696   oop request_referent = source_obj_to_requested_obj(source_referent);
 697   if (UseCompressedOops && is_writing_deterministic_heap()) {
 698     // We use zero-based, 0-shift encoding, so the narrowOop is just the lower
 699     // 32 bits of request_referent
 700     intptr_t addr = cast_from_oop<intptr_t>(request_referent);
 701     *((narrowOop*)field_addr_in_buffer) = CompressedOops::narrow_oop_cast(addr);
 702   } else {
 703     store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
 704   }
 705   if (request_referent != nullptr) {
 706     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
 707   }
 708 }
 709 
 710 template <typename T> void AOTMappedHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
 711   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
 712   address requested_region_bottom;
 713 
 714   assert(request_p >= (T*)_requested_bottom, "sanity");
 715   assert(request_p <  (T*)_requested_top, "sanity");
 716   requested_region_bottom = _requested_bottom;
 717 
 718   // Mark the pointer in the oopmap
 719   T* region_bottom = (T*)requested_region_bottom;
 720   assert(request_p >= region_bottom, "must be");
 721   BitMap::idx_t idx = request_p - region_bottom;
 722   assert(idx < oopmap->size(), "overflow");
 723   oopmap->set_bit(idx);
 724 }
 725 
 726 void AOTMappedHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
 727   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
 728   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
 729   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
 730 
 731   oop fake_oop = cast_to_oop(buffered_addr);
 732   if (UseCompactObjectHeaders) {
 733     fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
 734   } else {
 735     fake_oop->set_narrow_klass(nk);
 736   }
 737 
 738   if (src_obj == nullptr) {
 739     return;
 740   }
 741   // We need to retain the identity_hash, because it may have been used by some hashtables
 742   // in the shared heap.
 743   if (!src_obj->fast_no_hash_check()) {
 744     intptr_t src_hash = src_obj->identity_hash();
 745     if (UseCompactObjectHeaders) {
 746       fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
 747     } else {
 748       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
 749     }
 750     assert(fake_oop->mark().is_unlocked(), "sanity");
 751 
 752     DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
 753     assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
 754   }
 755   // Strip age bits.
 756   fake_oop->set_mark(fake_oop->mark().set_age(0));
 757 }
 758 
 759 class AOTMappedHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
 760   oop _src_obj;
 761   address _buffered_obj;
 762   CHeapBitMap* _oopmap;
 763   bool _is_java_lang_ref;
 764 public:
 765   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
 766     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
 767   {
 768     _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
 769   }
 770 
 771   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 772   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
 773 
 774 private:
 775   template <class T> void do_oop_work(T *p) {
 776     int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
 777     T* field_addr = (T*)(_buffered_obj + field_offset);
 778     oop referent = load_source_oop_from_buffer<T>(field_addr);
 779     referent = HeapShared::maybe_remap_referent(_is_java_lang_ref, field_offset, referent);
 780     AOTMappedHeapWriter::relocate_field_in_buffer<T>(field_addr, referent, _oopmap);
 781   }
 782 };
 783 
 784 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
 785   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
 786   size_t start = bitmap->find_first_set_bit(0);
 787   size_t end = bitmap->size();
 788   log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
 789                 start, end,
 790                 start * 100 / total_bits,
 791                 end * 100 / total_bits,
 792                 (end - start) * 100 / total_bits);
 793 }
 794 
 795 // Update all oop fields embedded in the buffered objects
 796 void AOTMappedHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
 797                                                       ArchiveMappedHeapInfo* heap_info) {
 798   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
 799   size_t heap_region_byte_size = _buffer_used;
 800   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
 801 
 802   for (int i = 0; i < _source_objs_order->length(); i++) {
 803     int src_obj_index = _source_objs_order->at(i)._index;
 804     oop src_obj = _source_objs->at(src_obj_index);
 805     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
 806     assert(info != nullptr, "must be");
 807     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
 808     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
 809     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
 810     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
 811     src_obj->oop_iterate(&relocator);
 812     mark_native_pointers(src_obj);
 813   };
 814 
 815   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
 816   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
 817   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
 818     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
 819 
 820     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
 821     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
 822     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
 823     int length = _heap_root_segments.size_in_elems(seg_idx);
 824 
 825     size_t elem_size = UseCompressedOops ? sizeof(narrowOop) : sizeof(oop);
 826 
 827     for (int i = 0; i < length; i++) {
 828       // There is no source object; these are native oops - load, translate and
 829       // write back
 830       size_t elem_offset = objArrayOopDesc::base_offset_in_bytes() + elem_size * i;
 831       HeapWord* elem_addr = (HeapWord*)(buffered_obj + elem_offset);
 832       oop obj = NativeAccess<>::oop_load(elem_addr);
 833       obj = HeapShared::maybe_remap_referent(false /* is_reference_field */, elem_offset, obj);
 834       if (UseCompressedOops) {
 835         relocate_field_in_buffer<narrowOop>((narrowOop*)elem_addr, obj, heap_info->oopmap());
 836       } else {
 837         relocate_field_in_buffer<oop>((oop*)elem_addr, obj, heap_info->oopmap());
 838       }
 839     }
 840   }
 841 
 842   compute_ptrmap(heap_info);
 843 
 844   size_t total_bytes = (size_t)_buffer->length();
 845   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
 846   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
 847 }
 848 
 849 void AOTMappedHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
 850   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
 851   if (ptr != nullptr) {
 852     NativePointerInfo info;
 853     info._src_obj = src_obj;
 854     info._field_offset = field_offset;
 855     _native_pointers->append(info);
 856     HeapShared::set_has_native_pointers(src_obj);
 857     _num_native_ptrs ++;
 858   }
 859 }
 860 
 861 void AOTMappedHeapWriter::mark_native_pointers(oop orig_obj) {
 862   HeapShared::do_metadata_offsets(orig_obj, [&](int offset) {
 863     mark_native_pointer(orig_obj, offset);
 864   });
 865 }
 866 
 867 void AOTMappedHeapWriter::compute_ptrmap(ArchiveMappedHeapInfo* heap_info) {
 868   int num_non_null_ptrs = 0;
 869   Metadata** bottom = (Metadata**) _requested_bottom;
 870   Metadata** top = (Metadata**) _requested_top; // exclusive
 871   heap_info->ptrmap()->resize(top - bottom);
 872 
 873   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
 874   for (int i = 0; i < _native_pointers->length(); i++) {
 875     NativePointerInfo info = _native_pointers->at(i);
 876     oop src_obj = info._src_obj;
 877     int field_offset = info._field_offset;
 878     HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
 879     // requested_field_addr = the address of this field in the requested space
 880     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
 881     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
 882     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
 883 
 884     // Mark this field in the bitmap
 885     BitMap::idx_t idx = requested_field_addr - bottom;
 886     heap_info->ptrmap()->set_bit(idx);
 887     num_non_null_ptrs ++;
 888     max_idx = MAX2(max_idx, idx);
 889 
 890     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
 891     // this address if the RO/RW regions are mapped at the default location).
 892 
 893     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
 894     Metadata* native_ptr = *buffered_field_addr;
 895     guarantee(native_ptr != nullptr, "sanity");
 896 
 897     if (RegeneratedClasses::has_been_regenerated(native_ptr)) {
 898       native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr);
 899     }
 900 
 901     guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr),
 902               "Metadata %p should have been archived", native_ptr);
 903 
 904     if (RegeneratedClasses::has_been_regenerated((address)native_ptr)) {
 905       native_ptr = (Metadata*)RegeneratedClasses::get_regenerated_object((address)native_ptr);
 906     }
 907 
 908     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
 909     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
 910     *buffered_field_addr = (Metadata*)requested_native_ptr;
 911   }
 912 
 913   heap_info->ptrmap()->resize(max_idx + 1);
 914   log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
 915                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
 916 }
 917 
 918 AOTMapLogger::OopDataIterator* AOTMappedHeapWriter::oop_iterator(ArchiveMappedHeapInfo* heap_info) {
 919   class MappedWriterOopIterator : public AOTMapLogger::OopDataIterator {
 920   private:
 921     address _current;
 922     address _next;
 923 
 924     address _buffer_start;
 925     address _buffer_end;
 926     uint64_t _buffer_start_narrow_oop;
 927     intptr_t _buffer_to_requested_delta;
 928     int _requested_shift;
 929 
 930     size_t _num_root_segments;
 931     size_t _num_obj_arrays_logged;
 932 
 933   public:
 934     MappedWriterOopIterator(address buffer_start,
 935                             address buffer_end,
 936                             uint64_t buffer_start_narrow_oop,
 937                             intptr_t buffer_to_requested_delta,
 938                             int requested_shift,
 939                             size_t num_root_segments)
 940       : _current(nullptr),
 941         _next(buffer_start),
 942         _buffer_start(buffer_start),
 943         _buffer_end(buffer_end),
 944         _buffer_start_narrow_oop(buffer_start_narrow_oop),
 945         _buffer_to_requested_delta(buffer_to_requested_delta),
 946         _requested_shift(requested_shift),
 947         _num_root_segments(num_root_segments),
 948         _num_obj_arrays_logged(0) {
 949     }
 950 
 951     AOTMapLogger::OopData capture(address buffered_addr) {
 952       oopDesc* raw_oop = (oopDesc*)buffered_addr;
 953       size_t size = size_of_buffered_oop(buffered_addr);
 954       address requested_addr = buffered_addr_to_requested_addr(buffered_addr);
 955       intptr_t target_location = (intptr_t)requested_addr;
 956       uint64_t pd = (uint64_t)(pointer_delta(buffered_addr, _buffer_start, 1));
 957       uint32_t narrow_location = checked_cast<uint32_t>(_buffer_start_narrow_oop + (pd >> _requested_shift));
 958       Klass* klass = real_klass_of_buffered_oop(buffered_addr);
 959 
 960       return { buffered_addr,
 961                requested_addr,
 962                target_location,
 963                narrow_location,
 964                raw_oop,
 965                klass,
 966                size,
 967                false };
 968     }
 969 
 970     bool has_next() override {
 971       return _next < _buffer_end;
 972     }
 973 
 974     AOTMapLogger::OopData next() override {
 975       _current = _next;
 976       AOTMapLogger::OopData result = capture(_current);
 977       if (result._klass->is_objArray_klass()) {
 978         result._is_root_segment = _num_obj_arrays_logged++ < _num_root_segments;
 979       }
 980       _next = _current + result._size * BytesPerWord;
 981       return result;
 982     }
 983 
 984     AOTMapLogger::OopData obj_at(narrowOop* addr) override {
 985       uint64_t n = (uint64_t)(*addr);
 986       if (n == 0) {
 987         return null_data();
 988       } else {
 989         precond(n >= _buffer_start_narrow_oop);
 990         address buffer_addr = _buffer_start + ((n - _buffer_start_narrow_oop) << _requested_shift);
 991         return capture(buffer_addr);
 992       }
 993     }
 994 
 995     AOTMapLogger::OopData obj_at(oop* addr) override {
 996       address requested_value = cast_from_oop<address>(*addr);
 997       if (requested_value == nullptr) {
 998         return null_data();
 999       } else {
1000         address buffer_addr = requested_value - _buffer_to_requested_delta;
1001         return capture(buffer_addr);
1002       }
1003     }
1004 
1005     GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
1006       return new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
1007     }
1008   };
1009 
1010   MemRegion r = heap_info->buffer_region();
1011   address buffer_start = address(r.start());
1012   address buffer_end = address(r.end());
1013 
1014   address requested_base = UseCompressedOops ? AOTMappedHeapWriter::narrow_oop_base() : (address)AOTMappedHeapWriter::NOCOOPS_REQUESTED_BASE;
1015   address requested_start = UseCompressedOops ? AOTMappedHeapWriter::buffered_addr_to_requested_addr(buffer_start) : requested_base;
1016   int requested_shift = AOTMappedHeapWriter::narrow_oop_shift();
1017   intptr_t buffer_to_requested_delta = requested_start - buffer_start;
1018   uint64_t buffer_start_narrow_oop = 0xdeadbeed;
1019   if (UseCompressedOops) {
1020     buffer_start_narrow_oop = (uint64_t)(pointer_delta(requested_start, requested_base, 1)) >> requested_shift;
1021     assert(buffer_start_narrow_oop < 0xffffffff, "sanity");
1022   }
1023 
1024   return new MappedWriterOopIterator(buffer_start,
1025                                      buffer_end,
1026                                      buffer_start_narrow_oop,
1027                                      buffer_to_requested_delta,
1028                                      requested_shift,
1029                                      heap_info->root_segments().count());
1030 }
1031 
1032 #endif // INCLUDE_CDS_JAVA_HEAP