1 /*
2 * Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/aotMetaspace.hpp"
26 #include "cds/aotStreamedHeapLoader.hpp"
27 #include "cds/aotThread.hpp"
28 #include "cds/cdsConfig.hpp"
29 #include "cds/filemap.hpp"
30 #include "cds/heapShared.inline.hpp"
31 #include "classfile/classLoaderDataShared.hpp"
32 #include "classfile/javaClasses.inline.hpp"
33 #include "classfile/stringTable.hpp"
34 #include "classfile/vmClasses.hpp"
35 #include "gc/shared/collectedHeap.inline.hpp"
36 #include "gc/shared/oopStorage.inline.hpp"
37 #include "gc/shared/oopStorageSet.inline.hpp"
38 #include "logging/log.hpp"
39 #include "memory/iterator.inline.hpp"
40 #include "memory/oopFactory.hpp"
41 #include "oops/access.inline.hpp"
42 #include "oops/objArrayOop.inline.hpp"
43 #include "oops/oop.inline.hpp"
44 #include "runtime/globals.hpp"
45 #include "runtime/globals_extension.hpp"
46 #include "runtime/handles.inline.hpp"
47 #include "runtime/java.hpp"
48 #include "runtime/mutex.hpp"
49 #include "runtime/thread.hpp"
50 #include "utilities/bitMap.inline.hpp"
51 #include "utilities/exceptions.hpp"
52 #include "utilities/globalDefinitions.hpp"
53 #include "utilities/stack.inline.hpp"
54 #include "utilities/ticks.hpp"
55
56 #include <type_traits>
57
58 #if INCLUDE_CDS_JAVA_HEAP
59
60 FileMapRegion* AOTStreamedHeapLoader::_heap_region;
61 FileMapRegion* AOTStreamedHeapLoader::_bitmap_region;
62 int* AOTStreamedHeapLoader::_roots_archive;
63 OopHandle AOTStreamedHeapLoader::_roots;
64 BitMapView AOTStreamedHeapLoader::_oopmap;
65 bool AOTStreamedHeapLoader::_is_in_use;
66 int AOTStreamedHeapLoader::_previous_batch_last_object_index;
67 int AOTStreamedHeapLoader::_current_batch_last_object_index;
68 int AOTStreamedHeapLoader::_current_root_index;
69 size_t AOTStreamedHeapLoader::_allocated_words;
70 bool AOTStreamedHeapLoader::_allow_gc;
71 bool AOTStreamedHeapLoader::_objects_are_handles;
72 size_t AOTStreamedHeapLoader::_num_archived_objects;
73 int AOTStreamedHeapLoader::_num_roots;
74 size_t AOTStreamedHeapLoader::_heap_region_used;
75 bool AOTStreamedHeapLoader::_loading_all_objects;
76
77 size_t* AOTStreamedHeapLoader::_object_index_to_buffer_offset_table;
78 void** AOTStreamedHeapLoader::_object_index_to_heap_object_table;
79 int* AOTStreamedHeapLoader::_root_highest_object_index_table;
80
81 bool AOTStreamedHeapLoader::_waiting_for_iterator;
82 bool AOTStreamedHeapLoader::_swapping_root_format;
83
84 static uint64_t _early_materialization_time_ns = 0;
85 static uint64_t _late_materialization_time_ns = 0;
86 static uint64_t _final_materialization_time_ns = 0;
87 static uint64_t _cleanup_materialization_time_ns = 0;
88 static volatile uint64_t _accumulated_lazy_materialization_time_ns = 0;
89 static Ticks _materialization_start_ticks;
90
91 int AOTStreamedHeapLoader::object_index_for_root_index(int root_index) {
92 return _roots_archive[root_index];
93 }
94
95 int AOTStreamedHeapLoader::highest_object_index_for_root_index(int root_index) {
96 return _root_highest_object_index_table[root_index];
97 }
98
99 size_t AOTStreamedHeapLoader::buffer_offset_for_object_index(int object_index) {
100 return _object_index_to_buffer_offset_table[object_index];
101 }
102
103 oopDesc* AOTStreamedHeapLoader::archive_object_for_object_index(int object_index) {
104 size_t buffer_offset = buffer_offset_for_object_index(object_index);
105 address bottom = (address)_heap_region->mapped_base();
106 return (oopDesc*)(bottom + buffer_offset);
107 }
108
109 size_t AOTStreamedHeapLoader::buffer_offset_for_archive_object(oopDesc* archive_object) {
110 address bottom = (address)_heap_region->mapped_base();
111 return size_t(archive_object) - size_t(bottom);
112 }
113
114 template <bool use_coops>
115 BitMap::idx_t AOTStreamedHeapLoader::obj_bit_idx_for_buffer_offset(size_t buffer_offset) {
116 if constexpr (use_coops) {
117 return BitMap::idx_t(buffer_offset / sizeof(narrowOop));
118 } else {
119 return BitMap::idx_t(buffer_offset / sizeof(HeapWord));
120 }
121 }
122
123 oop AOTStreamedHeapLoader::heap_object_for_object_index(int object_index) {
124 assert(object_index >= 0 && object_index <= (int)_num_archived_objects,
125 "Heap object reference out of index: %d", object_index);
126
127 if (_objects_are_handles) {
128 oop* handle = (oop*)_object_index_to_heap_object_table[object_index];
129 if (handle == nullptr) {
130 return nullptr;
131 }
132 return NativeAccess<>::oop_load(handle);
133 } else {
134 return cast_to_oop(_object_index_to_heap_object_table[object_index]);
135 }
136 }
137
138 void AOTStreamedHeapLoader::set_heap_object_for_object_index(int object_index, oop heap_object) {
139 assert(heap_object_for_object_index(object_index) == nullptr, "Should only set once with this API");
140 if (_objects_are_handles) {
141 oop* handle = Universe::vm_global()->allocate();
142 NativeAccess<>::oop_store(handle, heap_object);
143 _object_index_to_heap_object_table[object_index] = (void*)handle;
144 } else {
145 _object_index_to_heap_object_table[object_index] = cast_from_oop<void*>(heap_object);
146 }
147 }
148
149 int AOTStreamedHeapLoader::archived_string_value_object_index(oopDesc* archive_object) {
150 assert(archive_object->klass() == vmClasses::String_klass(), "Must be an archived string");
151 address archive_string_value_addr = (address)archive_object + java_lang_String::value_offset();
152 return UseCompressedOops ? *(int*)archive_string_value_addr : (int)*(int64_t*)archive_string_value_addr;
153 }
154
155 static int archive_array_length(oopDesc* archive_array) {
156 return *(int*)(address(archive_array) + arrayOopDesc::length_offset_in_bytes());
157 }
158
159 static size_t archive_object_size(oopDesc* archive_object) {
160 Klass* klass = archive_object->klass();
161 int lh = klass->layout_helper();
162
163 if (Klass::layout_helper_is_instance(lh)) {
164 // Instance
165 if (Klass::layout_helper_needs_slow_path(lh)) {
166 return ((size_t*)(archive_object))[-1];
167 } else {
168 return (size_t)Klass::layout_helper_size_in_bytes(lh) >> LogHeapWordSize;
169 }
170 } else if (Klass::layout_helper_is_array(lh)) {
171 // Array
172 size_t size_in_bytes;
173 size_t array_length = (size_t)archive_array_length(archive_object);
174 size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
175 size_in_bytes += (size_t)Klass::layout_helper_header_size(lh);
176
177 return align_up(size_in_bytes, (size_t)MinObjAlignmentInBytes) / HeapWordSize;
178 } else {
179 // Other
180 return ((size_t*)(archive_object))[-1];
181 }
182 }
183
184 oop AOTStreamedHeapLoader::allocate_object(oopDesc* archive_object, markWord mark, size_t size, TRAPS) {
185 assert(!archive_object->is_stackChunk(), "no such objects are archived");
186
187 oop heap_object;
188
189 Klass* klass = archive_object->klass();
190 if (klass->is_mirror_instance_klass()) {
191 heap_object = Universe::heap()->class_allocate(klass, size, CHECK_NULL);
192 } else if (klass->is_instance_klass()) {
193 heap_object = Universe::heap()->obj_allocate(klass, size, CHECK_NULL);
194 } else {
195 assert(klass->is_array_klass(), "must be");
196 int length = archive_array_length(archive_object);
197 bool do_zero = klass->is_objArray_klass();
198 heap_object = Universe::heap()->array_allocate(klass, size, length, do_zero, CHECK_NULL);
199 }
200
201 heap_object->set_mark(mark);
202
203 return heap_object;
204 }
205
206 void AOTStreamedHeapLoader::install_root(int root_index, oop heap_object) {
207 objArrayOop roots = objArrayOop(_roots.resolve());
208 OrderAccess::release(); // Once the store below publishes an object, it can be concurrently picked up by another thread without using the lock
209 roots->obj_at_put(root_index, heap_object);
210 }
211
212 void AOTStreamedHeapLoader::TracingObjectLoader::wait_for_iterator() {
213 if (JavaThread::current()->is_active_Java_thread()) {
214 // When the main thread has bootstrapped past the point of allowing safepoints,
215 // we can and indeed have to use safepoint checking waiting.
216 AOTHeapLoading_lock->wait();
217 } else {
218 // If we have no bootstrapped the main thread far enough, then we cannot and
219 // indeed also don't need to perform safepoint checking waiting.
220 AOTHeapLoading_lock->wait_without_safepoint_check();
221 }
222 }
223
224 // Link object after copying in-place
225 template <typename LinkerT>
226 class AOTStreamedHeapLoader::InPlaceLinkingOopClosure : public BasicOopIterateClosure {
227 private:
228 oop _obj;
229 LinkerT _linker;
230
231 public:
232 InPlaceLinkingOopClosure(oop obj, LinkerT linker)
233 : _obj(obj),
234 _linker(linker) {
235 }
236
237 virtual void do_oop(oop* p) { do_oop_work(p, (int)*(intptr_t*)p); }
238 virtual void do_oop(narrowOop* p) { do_oop_work(p, *(int*)p); }
239
240 template <typename T>
241 void do_oop_work(T* p, int object_index) {
242 int p_offset = pointer_delta_as_int((address)p, cast_from_oop<address>(_obj));
243 oop pointee = _linker(p_offset, object_index);
244 if (pointee != nullptr) {
245 _obj->obj_field_put_access<IS_DEST_UNINITIALIZED>((int)p_offset, pointee);
246 }
247 }
248 };
249
250 template <bool use_coops, typename LinkerT>
251 void AOTStreamedHeapLoader::copy_payload_carefully(oopDesc* archive_object,
252 oop heap_object,
253 BitMap::idx_t header_bit,
254 BitMap::idx_t start_bit,
255 BitMap::idx_t end_bit,
256 LinkerT linker) {
257 using RawElementT = std::conditional_t<use_coops, int32_t, int64_t>;
258 using OopElementT = std::conditional_t<use_coops, narrowOop, oop>;
259
260 BitMap::idx_t unfinished_bit = start_bit;
261 BitMap::idx_t next_reference_bit = _oopmap.find_first_set_bit(unfinished_bit, end_bit);
262
263 // Fill in heap object bytes
264 while (unfinished_bit < end_bit) {
265 assert(unfinished_bit >= start_bit && unfinished_bit < end_bit, "out of bounds copying");
266
267 // This is the address of the pointee inside the input stream
268 size_t payload_offset = unfinished_bit - header_bit;
269 RawElementT* archive_payload_addr = ((RawElementT*)archive_object) + payload_offset;
270 RawElementT* heap_payload_addr = cast_from_oop<RawElementT*>(heap_object) + payload_offset;
271
272 assert(heap_payload_addr >= cast_from_oop<RawElementT*>(heap_object) &&
273 (HeapWord*)heap_payload_addr < cast_from_oop<HeapWord*>(heap_object) + heap_object->size(),
274 "Out of bounds copying");
275
276 if (next_reference_bit > unfinished_bit) {
277 // Primitive bytes available
278 size_t primitive_elements = next_reference_bit - unfinished_bit;
279 size_t primitive_bytes = primitive_elements * sizeof(RawElementT);
280 ::memcpy(heap_payload_addr, archive_payload_addr, primitive_bytes);
281
282 unfinished_bit = next_reference_bit;
283 } else {
284 // Encountered reference
285 RawElementT* archive_p = (RawElementT*)archive_payload_addr;
286 OopElementT* heap_p = (OopElementT*)heap_payload_addr;
287 int pointee_object_index = (int)*archive_p;
288 int heap_p_offset = pointer_delta_as_int((address)heap_p, cast_from_oop<address>(heap_object));
289
290 // The object index is retrieved from the archive, not the heap object. This is
291 // important after GC is enabled. Concurrent GC threads may scan references in the
292 // heap for various reasons after this point. Therefore, it is not okay to first copy
293 // the object index from a reference location in the archived object payload to a
294 // corresponding location in the heap object payload, and then fix it up afterwards to
295 // refer to a heap object. This is why this code iterates carefully over object references
296 // in the archived object, linking them one by one, without clobbering the reference
297 // locations in the heap objects with anything other than transitions from null to the
298 // intended linked object.
299 oop obj = linker(heap_p_offset, pointee_object_index);
300 if (obj != nullptr) {
301 heap_object->obj_field_put(heap_p_offset, obj);
302 }
303
304 unfinished_bit++;
305 next_reference_bit = _oopmap.find_first_set_bit(unfinished_bit, end_bit);
306 }
307 }
308 }
309
310 template <bool use_coops, typename LinkerT>
311 void AOTStreamedHeapLoader::copy_object_impl(oopDesc* archive_object,
312 oop heap_object,
313 size_t size,
314 LinkerT linker) {
315 if (!_allow_gc) {
316 // Without concurrent GC running, we can copy incorrect object references
317 // and metadata references into the heap object and then fix them up in-place.
318 size_t payload_size = size - 1;
319 HeapWord* archive_start = ((HeapWord*)archive_object) + 1;
320 HeapWord* heap_start = cast_from_oop<HeapWord*>(heap_object) + 1;
321
322 Copy::disjoint_words(archive_start, heap_start, payload_size);
323
324 // In-place linking fixes up object indices from references of the heap object,
325 // and patches them up to refer to objects. This can be done because we just copied
326 // the payload of the object from the archive to the heap object, including the
327 // reference object indices. However, this is only okay to do before the GC can run.
328 // A concurrent GC thread might racingly read the object payload after GC is enabled.
329 InPlaceLinkingOopClosure cl(heap_object, linker);
330 heap_object->oop_iterate(&cl);
331 HeapShared::remap_loaded_metadata(heap_object);
332 return;
333 }
334
335 // When a concurrent GC may be running, we take care not to copy incorrect oops,
336 // narrowOops or Metadata* into the heap objects. Transitions go from 0 to the
337 // intended runtime linked values only.
338 size_t word_scale = use_coops ? 2 : 1;
339 using RawElementT = std::conditional_t<use_coops, int32_t, int64_t>;
340
341 // Skip the markWord; it is set at allocation time
342 size_t header_size = word_scale;
343
344 size_t buffer_offset = buffer_offset_for_archive_object(archive_object);
345 const BitMap::idx_t header_bit = obj_bit_idx_for_buffer_offset<use_coops>(buffer_offset);
346 const BitMap::idx_t start_bit = header_bit + header_size;
347 const BitMap::idx_t end_bit = header_bit + size * word_scale;
348
349 BitMap::idx_t curr_bit = start_bit;
350
351 // We are a bit paranoid about GC or other safepointing operations observing
352 // shady metadata fields from the archive that do not point at real metadata.
353 // We deal with this by explicitly reading the requested address from the
354 // archive and fixing it to real Metadata before writing it into the heap object.
355 HeapShared::do_metadata_offsets(heap_object, [&](int metadata_offset) {
356 BitMap::idx_t metadata_field_idx = header_bit + (size_t)metadata_offset / sizeof(RawElementT);
357 BitMap::idx_t skip = word_scale;
358 assert(metadata_field_idx >= start_bit && metadata_field_idx + skip <= end_bit,
359 "Metadata field out of bounds");
360
361 // Copy payload before metadata field
362 copy_payload_carefully<use_coops>(archive_object,
363 heap_object,
364 header_bit,
365 curr_bit,
366 metadata_field_idx,
367 linker);
368
369 // Copy metadata field
370 Metadata* const archive_metadata = *(Metadata**)(uintptr_t(archive_object) + (size_t)metadata_offset);
371 Metadata* const runtime_metadata = archive_metadata != nullptr
372 ? (Metadata*)(address(archive_metadata) + AOTMetaspace::relocation_delta())
373 : nullptr;
374 assert(runtime_metadata == nullptr || AOTMetaspace::in_aot_cache(runtime_metadata), "Invalid metadata pointer");
375 DEBUG_ONLY(Metadata* const previous_metadata = heap_object->metadata_field(metadata_offset);)
376 assert(previous_metadata == nullptr || previous_metadata == runtime_metadata, "Should not observe transient values");
377 heap_object->metadata_field_put(metadata_offset, runtime_metadata);
378 curr_bit = metadata_field_idx + skip;
379 });
380
381 // Copy trailing metadata after the last metadata word. This is usually doing
382 // all the copying.
383 copy_payload_carefully<use_coops>(archive_object,
384 heap_object,
385 header_bit,
386 curr_bit,
387 end_bit,
388 linker);
389 }
390
391 void AOTStreamedHeapLoader::copy_object_eager_linking(oopDesc* archive_object, oop heap_object, size_t size) {
392 auto linker = [&](int p_offset, int pointee_object_index) {
393 oop obj = AOTStreamedHeapLoader::heap_object_for_object_index(pointee_object_index);
394 assert(pointee_object_index == 0 || obj != nullptr, "Eager object loading should only encounter already allocated links");
395 return obj;
396 };
397 if (UseCompressedOops) {
398 copy_object_impl<true>(archive_object, heap_object, size, linker);
399 } else {
400 copy_object_impl<false>(archive_object, heap_object, size, linker);
401 }
402 }
403
404 void AOTStreamedHeapLoader::TracingObjectLoader::copy_object_lazy_linking(int object_index,
405 oopDesc* archive_object,
406 oop heap_object,
407 size_t size,
408 Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack) {
409 auto linker = [&](int p_offset, int pointee_object_index) {
410 dfs_stack.push({pointee_object_index, object_index, p_offset});
411
412 // The tracing linker is a bit lazy and mutates the reference fields in its traversal.
413 // Returning null means don't link now.
414 return oop(nullptr);
415 };
416 if (UseCompressedOops) {
417 copy_object_impl<true>(archive_object, heap_object, size, linker);
418 } else {
419 copy_object_impl<false>(archive_object, heap_object, size, linker);
420 }
421 }
422
423 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_object_inner(int object_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
424 // Allocate object
425 oopDesc* archive_object = archive_object_for_object_index(object_index);
426 size_t size = archive_object_size(archive_object);
427 markWord mark = archive_object->mark();
428
429 // The markWord is marked if the object is a String and it should be interned,
430 // make sure to unmark it before allocating memory for the object.
431 bool string_intern = mark.is_marked();
432 mark = mark.set_unmarked();
433
434 oop heap_object;
435
436 if (string_intern) {
437 int value_object_index = archived_string_value_object_index(archive_object);
438
439 // Materialize the value object.
440 (void)materialize_object(value_object_index, dfs_stack, CHECK_NULL);
441
442 // Allocate and link the string.
443 heap_object = allocate_object(archive_object, mark, size, CHECK_NULL);
444 copy_object_eager_linking(archive_object, heap_object, size);
445
446 assert(java_lang_String::value(heap_object) == heap_object_for_object_index(value_object_index), "Linker should have linked this correctly");
447
448 // Replace the string with interned string
449 heap_object = StringTable::intern(heap_object, CHECK_NULL);
450 } else {
451 heap_object = allocate_object(archive_object, mark, size, CHECK_NULL);
452
453 // Fill in object contents
454 copy_object_lazy_linking(object_index, archive_object, heap_object, size, dfs_stack);
455 }
456
457 // Install forwarding
458 set_heap_object_for_object_index(object_index, heap_object);
459
460 return heap_object;
461 }
462
463 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_object(int object_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
464 if (object_index <= _previous_batch_last_object_index) {
465 // The transitive closure of this object has been materialized; no need to do anything
466 return heap_object_for_object_index(object_index);
467 }
468
469 if (object_index <= _current_batch_last_object_index) {
470 // The AOTThread is currently materializing this object and its transitive closure; only need to wait for it to complete
471 _waiting_for_iterator = true;
472 while (object_index > _previous_batch_last_object_index) {
473 wait_for_iterator();
474 }
475 _waiting_for_iterator = false;
476
477 // Notify the AOT thread if it is waiting for tracing to finish
478 AOTHeapLoading_lock->notify_all();
479 return heap_object_for_object_index(object_index);;
480 }
481
482 oop heap_object = heap_object_for_object_index(object_index);
483 if (heap_object != nullptr) {
484 // Already materialized by mutator
485 return heap_object;
486 }
487
488 return materialize_object_inner(object_index, dfs_stack, THREAD);
489 }
490
491 void AOTStreamedHeapLoader::TracingObjectLoader::drain_stack(Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
492 while (!dfs_stack.is_empty()) {
493 AOTHeapTraversalEntry entry = dfs_stack.pop();
494 int pointee_object_index = entry._pointee_object_index;
495 oop pointee_heap_object = materialize_object(pointee_object_index, dfs_stack, CHECK);
496 oop heap_object = heap_object_for_object_index(entry._base_object_index);
497 if (_allow_gc) {
498 heap_object->obj_field_put(entry._heap_field_offset_bytes, pointee_heap_object);
499 } else {
500 heap_object->obj_field_put_access<IS_DEST_UNINITIALIZED>(entry._heap_field_offset_bytes, pointee_heap_object);
501 }
502 }
503 }
504
505 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_object_transitive(int object_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
506 assert_locked_or_safepoint(AOTHeapLoading_lock);
507 while (_waiting_for_iterator) {
508 wait_for_iterator();
509 }
510
511 auto handlized_materialize_object = [&](TRAPS) {
512 oop obj = materialize_object(object_index, dfs_stack, CHECK_(Handle()));
513 return Handle(THREAD, obj);
514 };
515
516 Handle result = handlized_materialize_object(CHECK_NULL);
517 drain_stack(dfs_stack, CHECK_NULL);
518
519 return result();
520 }
521
522 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_root(int root_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
523 int root_object_index = object_index_for_root_index(root_index);
524 oop root = materialize_object_transitive(root_object_index, dfs_stack, CHECK_NULL);
525 install_root(root_index, root);
526
527 return root;
528 }
529
530 int oop_handle_cmp(const void* left, const void* right) {
531 oop* left_handle = *(oop**)left;
532 oop* right_handle = *(oop**)right;
533
534 if (right_handle > left_handle) {
535 return -1;
536 } else if (left_handle > right_handle) {
537 return 1;
538 }
539
540 return 0;
541 }
542
543 // The range is inclusive
544 void AOTStreamedHeapLoader::IterativeObjectLoader::initialize_range(int first_object_index, int last_object_index, TRAPS) {
545 for (int i = first_object_index; i <= last_object_index; ++i) {
546 oopDesc* archive_object = archive_object_for_object_index(i);
547 markWord mark = archive_object->mark();
548 bool string_intern = mark.is_marked();
549 if (string_intern) {
550 int value_object_index = archived_string_value_object_index(archive_object);
551 if (value_object_index == i + 1) {
552 // Interned strings are eagerly materialized in the allocation phase, so there is
553 // nothing else to do for interned strings here for the string nor its value array.
554 i++;
555 }
556 continue;
557 }
558 size_t size = archive_object_size(archive_object);
559 oop heap_object = heap_object_for_object_index(i);
560 copy_object_eager_linking(archive_object, heap_object, size);
561 }
562 }
563
564 // The range is inclusive
565 size_t AOTStreamedHeapLoader::IterativeObjectLoader::materialize_range(int first_object_index, int last_object_index, TRAPS) {
566 GrowableArrayCHeap<int, mtClassShared> lazy_object_indices(0);
567 size_t materialized_words = 0;
568
569 for (int i = first_object_index; i <= last_object_index; ++i) {
570 oopDesc* archive_object = archive_object_for_object_index(i);
571 markWord mark = archive_object->mark();
572
573 // The markWord is marked if the object is a String and it should be interned,
574 // make sure to unmark it before allocating memory for the object.
575 bool string_intern = mark.is_marked();
576 mark = mark.set_unmarked();
577
578 size_t size = archive_object_size(archive_object);
579 materialized_words += size;
580
581 oop heap_object = heap_object_for_object_index(i);
582 if (heap_object != nullptr) {
583 // Lazy loading has already initialized the object; we must not mutate it
584 lazy_object_indices.append(i);
585 continue;
586 }
587
588 if (!string_intern) {
589 // The normal case; no lazy loading have loaded the object yet
590 heap_object = allocate_object(archive_object, mark, size, CHECK_0);
591 set_heap_object_for_object_index(i, heap_object);
592 continue;
593 }
594
595 // Eagerly materialize interned strings to ensure that objects earlier than the string
596 // in a batch get linked to the intended interned string, and not a copy.
597 int value_object_index = archived_string_value_object_index(archive_object);
598
599 bool is_normal_interned_string = value_object_index == i + 1;
600
601 if (value_object_index < first_object_index) {
602 // If materialized in a previous batch, the value should already be allocated and initialized.
603 assert(heap_object_for_object_index(value_object_index) != nullptr, "should be materialized");
604 } else {
605 // Materialize the value object.
606 oopDesc* archive_value_object = archive_object_for_object_index(value_object_index);
607 markWord value_mark = archive_value_object->mark();
608 size_t value_size = archive_object_size(archive_value_object);
609 oop value_heap_object;
610
611 if (is_normal_interned_string) {
612 // The common case: the value is next to the string. This happens when only the interned
613 // string points to its value character array.
614 assert(value_object_index <= last_object_index, "Must be within this batch: %d <= %d", value_object_index, last_object_index);
615 value_heap_object = allocate_object(archive_value_object, value_mark, value_size, CHECK_0);
616 set_heap_object_for_object_index(value_object_index, value_heap_object);
617 materialized_words += value_size;
618 } else {
619 // In the uncommon case, multiple strings point to the value of an interned string.
620 // The string can then be earlier in the batch.
621 assert(value_object_index < i, "surprising index");
622 value_heap_object = heap_object_for_object_index(value_object_index);
623 }
624
625 copy_object_eager_linking(archive_value_object, value_heap_object, value_size);
626 }
627 // Allocate and link the string.
628 heap_object = allocate_object(archive_object, mark, size, CHECK_0);
629 copy_object_eager_linking(archive_object, heap_object, size);
630
631 assert(java_lang_String::value(heap_object) == heap_object_for_object_index(value_object_index), "Linker should have linked this correctly");
632
633 // Replace the string with interned string
634 heap_object = StringTable::intern(heap_object, CHECK_0);
635 set_heap_object_for_object_index(i, heap_object);
636
637 if (is_normal_interned_string) {
638 // Skip over the string value, already materialized
639 i++;
640 }
641 }
642
643 if (lazy_object_indices.is_empty()) {
644 // Normal case; no sprinkled lazy objects in the root subgraph
645 initialize_range(first_object_index, last_object_index, CHECK_0);
646 } else {
647 // The user lazy initialized some objects that are already initialized; we have to initialize around them
648 // to make sure they are not mutated.
649 int previous_object_index = first_object_index - 1; // Exclusive start of initialization slice
650 for (int i = 0; i < lazy_object_indices.length(); ++i) {
651 int lazy_object_index = lazy_object_indices.at(i);
652 int slice_start_object_index = previous_object_index;
653 int slice_end_object_index = lazy_object_index;
654
655 if (slice_end_object_index - slice_start_object_index > 1) { // Both markers are exclusive
656 initialize_range(slice_start_object_index + 1, slice_end_object_index - 1, CHECK_0);
657 }
658 previous_object_index = lazy_object_index;
659 }
660 // Process tail range
661 if (last_object_index - previous_object_index > 0) {
662 initialize_range(previous_object_index + 1, last_object_index, CHECK_0);
663 }
664 }
665
666 return materialized_words;
667 }
668
669 bool AOTStreamedHeapLoader::IterativeObjectLoader::has_more() {
670 return _current_root_index < _num_roots;
671 }
672
673 void AOTStreamedHeapLoader::IterativeObjectLoader::materialize_next_batch(TRAPS) {
674 assert(has_more(), "only materialize if there is something to materialize");
675
676 int min_batch_objects = 128;
677 int from_root_index = _current_root_index;
678 int max_to_root_index = _num_roots - 1;
679 int until_root_index = from_root_index;
680 int highest_object_index;
681
682 // Expand the batch size from one root, to N roots until we cross 128 objects in total
683 for (;;) {
684 highest_object_index = highest_object_index_for_root_index(until_root_index);
685 if (highest_object_index - _previous_batch_last_object_index >= min_batch_objects) {
686 break;
687 }
688 if (until_root_index == max_to_root_index) {
689 break;
690 }
691 until_root_index++;
692 }
693
694 oop root = nullptr;
695
696 // Materialize objects of necessary, representing the transitive closure of the root
697 if (highest_object_index > _previous_batch_last_object_index) {
698 while (_swapping_root_format) {
699 // When the roots are being upgraded to use handles, it is not safe to racingly
700 // iterate over the object; we must wait. Setting the current batch last object index
701 // to something other than the previous batch last object index indicates to the
702 // root swapping that there is current iteration ongoing.
703 AOTHeapLoading_lock->wait();
704 }
705 int first_object_index = _previous_batch_last_object_index + 1;
706 _current_batch_last_object_index = highest_object_index;
707 size_t allocated_words;
708 {
709 MutexUnlocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
710 allocated_words = materialize_range(first_object_index, highest_object_index, CHECK);
711 }
712 _allocated_words += allocated_words;
713 _previous_batch_last_object_index = _current_batch_last_object_index;
714 if (_waiting_for_iterator) {
715 // If tracer is waiting, let it know at the next point of unlocking that the root
716 // set it waited for has been processed now.
717 AOTHeapLoading_lock->notify_all();
718 }
719 }
720
721 // Install the root
722 for (int i = from_root_index; i <= until_root_index; ++i) {
723 int root_object_index = object_index_for_root_index(i);
724 root = heap_object_for_object_index(root_object_index);
725 install_root(i, root);
726 ++_current_root_index;
727 }
728 }
729
730 bool AOTStreamedHeapLoader::materialize_early(TRAPS) {
731 Ticks start = Ticks::now();
732
733 // Only help with early materialization from the AOT thread if the heap archive can be allocated
734 // without the need for a GC. Otherwise, do lazy loading until GC is enabled later in the bootstrapping.
735 size_t bootstrap_max_memory = Universe::heap()->bootstrap_max_memory();
736 size_t bootstrap_min_memory = MAX2(_heap_region_used, 2 * M);
737
738 size_t before_gc_materialize_budget_bytes = (bootstrap_max_memory > bootstrap_min_memory) ? bootstrap_max_memory - bootstrap_min_memory : 0;
739 size_t before_gc_materialize_budget_words = before_gc_materialize_budget_bytes / HeapWordSize;
740
741 log_info(aot, heap)("Max bootstrapping memory: %zuM, min bootstrapping memory: %zuM, selected budget: %zuM",
742 bootstrap_max_memory / M, bootstrap_min_memory / M, before_gc_materialize_budget_bytes / M);
743
744 while (IterativeObjectLoader::has_more()) {
745 if (_allow_gc || _allocated_words > before_gc_materialize_budget_words) {
746 log_info(aot, heap)("Early object materialization interrupted at root %d", _current_root_index);
747 break;
748 }
749
750 IterativeObjectLoader::materialize_next_batch(CHECK_false);
751 }
752
753 _early_materialization_time_ns = (Ticks::now() - start).nanoseconds();
754
755 bool finished_before_gc_allowed = !_allow_gc && !IterativeObjectLoader::has_more();
756
757 return finished_before_gc_allowed;
758 }
759
760 void AOTStreamedHeapLoader::materialize_late(TRAPS) {
761 Ticks start = Ticks::now();
762
763 // Continue materializing with GC allowed
764
765 while (IterativeObjectLoader::has_more()) {
766 IterativeObjectLoader::materialize_next_batch(CHECK);
767 }
768
769 _late_materialization_time_ns = (Ticks::now() - start).nanoseconds();
770 }
771
772 void AOTStreamedHeapLoader::cleanup() {
773 // First ensure there is no concurrent tracing going on
774 while (_waiting_for_iterator) {
775 AOTHeapLoading_lock->wait();
776 }
777
778 Ticks start = Ticks::now();
779
780 // Remove OopStorage roots
781 if (_objects_are_handles) {
782 size_t num_handles = _num_archived_objects;
783 // Skip the null entry
784 oop** handles = ((oop**)_object_index_to_heap_object_table) + 1;
785 // Sort the handles so that oop storage can release them faster
786 qsort(handles, num_handles, sizeof(oop*), (int (*)(const void*, const void*))oop_handle_cmp);
787 size_t num_null_handles = 0;
788 for (size_t handles_remaining = num_handles; handles_remaining != 0; --handles_remaining) {
789 oop* handle = handles[handles_remaining - 1];
790 if (handle == nullptr) {
791 num_null_handles = handles_remaining;
792 break;
793 }
794 NativeAccess<>::oop_store(handle, nullptr);
795 }
796 Universe::vm_global()->release(&handles[num_null_handles], num_handles - num_null_handles);
797 }
798
799 FREE_C_HEAP_ARRAY(void*, _object_index_to_heap_object_table);
800
801 // Unmap regions
802 FileMapInfo::current_info()->unmap_region(AOTMetaspace::hp);
803 FileMapInfo::current_info()->unmap_region(AOTMetaspace::bm);
804
805 _cleanup_materialization_time_ns = (Ticks::now() - start).nanoseconds();
806
807 log_statistics();
808 }
809
810 void AOTStreamedHeapLoader::log_statistics() {
811 uint64_t total_duration_us = (Ticks::now() - _materialization_start_ticks).microseconds();
812 const bool is_async = _loading_all_objects && !AOTEagerlyLoadObjects;
813 const char* const async_or_sync = is_async ? "async" : "sync";
814 log_info(aot, heap)("start to finish materialization time: " UINT64_FORMAT "us",
815 total_duration_us);
816 log_info(aot, heap)("early object materialization time (%s): " UINT64_FORMAT "us",
817 async_or_sync, _early_materialization_time_ns / 1000);
818 log_info(aot, heap)("late object materialization time (%s): " UINT64_FORMAT "us",
819 async_or_sync, _late_materialization_time_ns / 1000);
820 log_info(aot, heap)("object materialization cleanup time (%s): " UINT64_FORMAT "us",
821 async_or_sync, _cleanup_materialization_time_ns / 1000);
822 log_info(aot, heap)("final object materialization time stall (sync): " UINT64_FORMAT "us",
823 _final_materialization_time_ns / 1000);
824 log_info(aot, heap)("bootstrapping lazy materialization time (sync): " UINT64_FORMAT "us",
825 _accumulated_lazy_materialization_time_ns / 1000);
826
827 uint64_t sync_time = _final_materialization_time_ns + _accumulated_lazy_materialization_time_ns;
828 uint64_t async_time = _early_materialization_time_ns + _late_materialization_time_ns + _cleanup_materialization_time_ns;
829
830 if (!is_async) {
831 sync_time += async_time;
832 async_time = 0;
833 }
834
835 log_info(aot, heap)("sync materialization time: " UINT64_FORMAT "us",
836 sync_time / 1000);
837
838 log_info(aot, heap)("async materialization time: " UINT64_FORMAT "us",
839 async_time / 1000);
840
841 uint64_t iterative_time = (uint64_t)(is_async ? async_time : sync_time);
842 uint64_t materialized_bytes = _allocated_words * HeapWordSize;
843 log_info(aot, heap)("%s materialized " UINT64_FORMAT "K (" UINT64_FORMAT "M/s)", async_or_sync,
844 materialized_bytes / 1024, uint64_t(materialized_bytes * UCONST64(1'000'000'000) / M / iterative_time));
845 }
846
847 void AOTStreamedHeapLoader::materialize_objects() {
848 // We cannot handle any exception when materializing roots. Exits the VM.
849 EXCEPTION_MARK
850
851 // Objects are laid out in DFS order; DFS traverse the roots by linearly walking all objects
852 HandleMark hm(THREAD);
853
854 // Early materialization with a budget before GC is allowed
855 MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
856
857 materialize_early(CHECK);
858 await_gc_enabled();
859 materialize_late(CHECK);
860 // Notify materialization is done
861 AOTHeapLoading_lock->notify_all();
862 cleanup();
863 }
864
865 void AOTStreamedHeapLoader::switch_object_index_to_handle(int object_index) {
866 oop heap_object = cast_to_oop(_object_index_to_heap_object_table[object_index]);
867 if (heap_object == nullptr) {
868 return;
869 }
870
871 oop* handle = Universe::vm_global()->allocate();
872 NativeAccess<>::oop_store(handle, heap_object);
873 _object_index_to_heap_object_table[object_index] = handle;
874 }
875
876 void AOTStreamedHeapLoader::enable_gc() {
877 if (AOTEagerlyLoadObjects && !IterativeObjectLoader::has_more()) {
878 // Everything was loaded eagerly at early startup
879 return;
880 }
881
882 // We cannot handle any exception when materializing roots. Exits the VM.
883 EXCEPTION_MARK
884
885 MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
886
887 // First wait until no tracing is active
888 while (_waiting_for_iterator) {
889 AOTHeapLoading_lock->wait();
890 }
891
892 // Lock further tracing from starting
893 _waiting_for_iterator = true;
894
895 // Record iterator progress
896 int num_handles = (int)_num_archived_objects;
897
898 // Lock further iteration from starting
899 _swapping_root_format = true;
900
901 // Then wait for the iterator to stop
902 while (_previous_batch_last_object_index != _current_batch_last_object_index) {
903 AOTHeapLoading_lock->wait();
904 }
905
906 if (IterativeObjectLoader::has_more()) {
907 // If there is more to be materialized, we have to upgrade the object index
908 // to object mapping to use handles. If there isn't more to materialize, the
909 // handle will no longer e used; they are only used to materialize objects.
910
911 for (int i = 1; i <= num_handles; ++i) {
912 // Upgrade the roots to use handles
913 switch_object_index_to_handle(i);
914 }
915
916 // From now on, accessing the object table must be done through a handle.
917 _objects_are_handles = true;
918 }
919
920 // Unlock tracing
921 _waiting_for_iterator = false;
922
923 // Unlock iteration
924 _swapping_root_format = false;
925
926 _allow_gc = true;
927
928 AOTHeapLoading_lock->notify_all();
929
930 if (AOTEagerlyLoadObjects && IterativeObjectLoader::has_more()) {
931 materialize_late(CHECK);
932 cleanup();
933 }
934 }
935
936 void AOTStreamedHeapLoader::materialize_thread_object() {
937 AOTThread::materialize_thread_object();
938 }
939
940 void AOTStreamedHeapLoader::finish_materialize_objects() {
941 Ticks start = Ticks::now();
942
943 if (_loading_all_objects) {
944 MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
945 // Wait for the AOT thread to finish
946 while (IterativeObjectLoader::has_more()) {
947 AOTHeapLoading_lock->wait();
948 }
949 } else {
950 assert(!AOTEagerlyLoadObjects, "sanity");
951 assert(_current_root_index == 0, "sanity");
952 // Without the full module graph we have done only lazy tracing materialization.
953 // Ensure all roots are processed here by triggering root loading on every root.
954 for (int i = 0; i < _num_roots; ++i) {
955 get_root(i);
956 }
957 cleanup();
958 }
959
960 _final_materialization_time_ns = (Ticks::now() - start).nanoseconds();
961 }
962
963 void account_lazy_materialization_time_ns(uint64_t time, const char* description, int index) {
964 AtomicAccess::add(&_accumulated_lazy_materialization_time_ns, time);
965 log_debug(aot, heap)("Lazy materialization of %s: %d end (" UINT64_FORMAT " us of " UINT64_FORMAT " us)", description, index, time / 1000, _accumulated_lazy_materialization_time_ns / 1000);
966 }
967
968 // Initialize an empty array of AOT heap roots; materialize them lazily
969 void AOTStreamedHeapLoader::initialize() {
970 EXCEPTION_MARK
971
972 _materialization_start_ticks = Ticks::now();
973
974 FileMapInfo::current_info()->map_bitmap_region();
975
976 _heap_region = FileMapInfo::current_info()->region_at(AOTMetaspace::hp);
977 _bitmap_region = FileMapInfo::current_info()->region_at(AOTMetaspace::bm);
978
979 assert(_heap_region->used() > 0, "empty heap archive?");
980
981 _is_in_use = true;
982
983 // archived roots are at this offset in the stream.
984 size_t roots_offset = FileMapInfo::current_info()->streamed_heap()->roots_offset();
985 size_t forwarding_offset = FileMapInfo::current_info()->streamed_heap()->forwarding_offset();
986 size_t root_highest_object_index_table_offset = FileMapInfo::current_info()->streamed_heap()->root_highest_object_index_table_offset();
987 _num_archived_objects = FileMapInfo::current_info()->streamed_heap()->num_archived_objects();
988
989 // The first int is the length of the array
990 _roots_archive = ((int*)(((address)_heap_region->mapped_base()) + roots_offset)) + 1;
991 _num_roots = _roots_archive[-1];
992 _heap_region_used = _heap_region->used();
993
994 // We can't retire a TLAB until the filler klass is set; set it to the archived object klass.
995 CollectedHeap::set_filler_object_klass(vmClasses::Object_klass());
996
997 objArrayOop roots = oopFactory::new_objectArray(_num_roots, CHECK);
998 _roots = OopHandle(Universe::vm_global(), roots);
999
1000 _object_index_to_buffer_offset_table = (size_t*)(((address)_heap_region->mapped_base()) + forwarding_offset);
1001 // We allocate the first entry for "null"
1002 _object_index_to_heap_object_table = NEW_C_HEAP_ARRAY(void*, _num_archived_objects + 1, mtClassShared);
1003 Copy::zero_to_bytes(_object_index_to_heap_object_table, (_num_archived_objects + 1) * sizeof(void*));
1004
1005 _root_highest_object_index_table = (int*)(((address)_heap_region->mapped_base()) + root_highest_object_index_table_offset);
1006
1007 address start = (address)(_bitmap_region->mapped_base()) + _heap_region->oopmap_offset();
1008 _oopmap = BitMapView((BitMap::bm_word_t*)start, _heap_region->oopmap_size_in_bits());
1009
1010
1011 if (FLAG_IS_DEFAULT(AOTEagerlyLoadObjects)) {
1012 // Concurrency will not help much if there are no extra cores available.
1013 FLAG_SET_ERGO(AOTEagerlyLoadObjects, os::initial_active_processor_count() <= 1);
1014 }
1015
1016 // If the full module graph is not available or the JVMTI class file load hook is on, we
1017 // will prune the object graph to not include cached objects in subgraphs that are not intended
1018 // to be loaded.
1019 _loading_all_objects = CDSConfig::is_using_full_module_graph() && !JvmtiExport::should_post_class_file_load_hook();
1020 if (!_loading_all_objects) {
1021 // When not using FMG, fall back to tracing materialization
1022 FLAG_SET_ERGO(AOTEagerlyLoadObjects, false);
1023 return;
1024 }
1025
1026 if (AOTEagerlyLoadObjects) {
1027 // Objects are laid out in DFS order; DFS traverse the roots by linearly walking all objects
1028 HandleMark hm(THREAD);
1029
1030 // Early materialization with a budget before GC is allowed
1031 MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
1032
1033 bool finished_before_gc_allowed = materialize_early(CHECK);
1034 if (finished_before_gc_allowed) {
1035 cleanup();
1036 }
1037 } else {
1038 AOTThread::initialize();
1039 }
1040 }
1041
1042 oop AOTStreamedHeapLoader::materialize_root(int root_index) {
1043 Ticks start = Ticks::now();
1044 // We cannot handle any exception when materializing a root. Exits the VM.
1045 EXCEPTION_MARK
1046 Stack<AOTHeapTraversalEntry, mtClassShared> dfs_stack;
1047 HandleMark hm(THREAD);
1048
1049 oop result;
1050 {
1051 MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
1052
1053 oop root = objArrayOop(_roots.resolve())->obj_at(root_index);
1054
1055 if (root != nullptr) {
1056 // The root has already been materialized
1057 result = root;
1058 } else {
1059 // The root has not been materialized, start tracing materialization
1060 result = TracingObjectLoader::materialize_root(root_index, dfs_stack, CHECK_NULL);
1061 }
1062 }
1063
1064 uint64_t duration = (Ticks::now() - start).nanoseconds();
1065
1066 account_lazy_materialization_time_ns(duration, "root", root_index);
1067
1068 return result;
1069 }
1070
1071 oop AOTStreamedHeapLoader::get_root(int index) {
1072 oop result = objArrayOop(_roots.resolve())->obj_at(index);
1073 if (result == nullptr) {
1074 // Materialize root
1075 result = materialize_root(index);
1076 }
1077 if (result == _roots.resolve()) {
1078 // A self-reference to the roots array acts as a sentinel object for null,
1079 // indicating that the root has been cleared.
1080 result = nullptr;
1081 }
1082 // Acquire the root transitive object payload
1083 OrderAccess::acquire();
1084 return result;
1085 }
1086
1087 void AOTStreamedHeapLoader::clear_root(int index) {
1088 // Self-reference to the roots array acts as a sentinel object for null,
1089 // indicating that the root has been cleared.
1090 objArrayOop(_roots.resolve())->obj_at_put(index, _roots.resolve());
1091 }
1092
1093 void AOTStreamedHeapLoader::await_gc_enabled() {
1094 while (!_allow_gc) {
1095 AOTHeapLoading_lock->wait();
1096 }
1097 }
1098
1099 void AOTStreamedHeapLoader::finish_initialization(FileMapInfo* static_mapinfo) {
1100 static_mapinfo->stream_heap_region();
1101 }
1102
1103 AOTMapLogger::OopDataIterator* AOTStreamedHeapLoader::oop_iterator(FileMapInfo* info, address buffer_start, address buffer_end) {
1104 class StreamedLoaderOopIterator : public AOTMapLogger::OopDataIterator {
1105 private:
1106 int _current;
1107 int _next;
1108
1109 address _buffer_start;
1110
1111 int _num_archived_objects;
1112
1113 public:
1114 StreamedLoaderOopIterator(address buffer_start,
1115 int num_archived_objects)
1116 : _current(0),
1117 _next(1),
1118 _buffer_start(buffer_start),
1119 _num_archived_objects(num_archived_objects) {
1120 }
1121
1122 AOTMapLogger::OopData capture(int dfs_index) {
1123 size_t buffered_offset = buffer_offset_for_object_index(dfs_index);
1124 address buffered_addr = _buffer_start + buffered_offset;
1125 oopDesc* raw_oop = (oopDesc*)buffered_addr;
1126 size_t size = archive_object_size(raw_oop);
1127
1128 intptr_t target_location = (intptr_t)buffered_offset;
1129 uint32_t narrow_location = checked_cast<uint32_t>(dfs_index);
1130 Klass* klass = raw_oop->klass();
1131
1132 address requested_addr = (address)buffered_offset;
1133
1134 return { buffered_addr,
1135 requested_addr,
1136 target_location,
1137 narrow_location,
1138 raw_oop,
1139 klass,
1140 size,
1141 false };
1142 }
1143
1144 bool has_next() override {
1145 return _next <= _num_archived_objects;
1146 }
1147
1148 AOTMapLogger::OopData next() override {
1149 _current = _next;
1150 AOTMapLogger::OopData result = capture(_current);
1151 _next = _current + 1;
1152 return result;
1153 }
1154
1155 AOTMapLogger::OopData obj_at(narrowOop* addr) override {
1156 int dfs_index = (int)(*addr);
1157 if (dfs_index == 0) {
1158 return null_data();
1159 } else {
1160 return capture(dfs_index);
1161 }
1162 }
1163
1164 AOTMapLogger::OopData obj_at(oop* addr) override {
1165 int dfs_index = (int)cast_from_oop<uintptr_t>(*addr);
1166 if (dfs_index == 0) {
1167 return null_data();
1168 } else {
1169 return capture(dfs_index);
1170 }
1171 }
1172
1173 GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
1174 GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* result = new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
1175
1176 for (int i = 0; i < _num_roots; ++i) {
1177 int object_index = object_index_for_root_index(i);
1178 result->append(capture(object_index));
1179 }
1180
1181 return result;
1182 }
1183 };
1184
1185 assert(_is_in_use, "printing before initializing?");
1186
1187 return new StreamedLoaderOopIterator(buffer_start, (int)info->streamed_heap()->num_archived_objects());
1188 }
1189
1190 #endif // INCLUDE_CDS_JAVA_HEAP