1 /*
   2  * Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotMetaspace.hpp"
  26 #include "cds/aotStreamedHeapLoader.hpp"
  27 #include "cds/aotThread.hpp"
  28 #include "cds/cdsConfig.hpp"
  29 #include "cds/filemap.hpp"
  30 #include "cds/heapShared.inline.hpp"
  31 #include "classfile/classLoaderDataShared.hpp"
  32 #include "classfile/javaClasses.inline.hpp"
  33 #include "classfile/stringTable.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "gc/shared/collectedHeap.inline.hpp"
  36 #include "gc/shared/oopStorage.inline.hpp"
  37 #include "gc/shared/oopStorageSet.inline.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/iterator.inline.hpp"
  40 #include "memory/oopFactory.hpp"
  41 #include "oops/access.inline.hpp"
  42 #include "oops/objArrayOop.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/globals.hpp"
  45 #include "runtime/globals_extension.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/mutex.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/bitMap.inline.hpp"
  51 #include "utilities/exceptions.hpp"
  52 #include "utilities/globalDefinitions.hpp"
  53 #include "utilities/stack.inline.hpp"
  54 #include "utilities/ticks.hpp"
  55 
  56 #include <type_traits>
  57 
  58 #if INCLUDE_CDS_JAVA_HEAP
  59 
  60 FileMapRegion* AOTStreamedHeapLoader::_heap_region;
  61 FileMapRegion* AOTStreamedHeapLoader::_bitmap_region;
  62 int* AOTStreamedHeapLoader::_roots_archive;
  63 OopHandle AOTStreamedHeapLoader::_roots;
  64 BitMapView AOTStreamedHeapLoader::_oopmap;
  65 bool AOTStreamedHeapLoader::_is_in_use;
  66 int AOTStreamedHeapLoader::_previous_batch_last_object_index;
  67 int AOTStreamedHeapLoader::_current_batch_last_object_index;
  68 int AOTStreamedHeapLoader::_current_root_index;
  69 size_t AOTStreamedHeapLoader::_allocated_words;
  70 bool AOTStreamedHeapLoader::_allow_gc;
  71 bool AOTStreamedHeapLoader::_objects_are_handles;
  72 size_t AOTStreamedHeapLoader::_num_archived_objects;
  73 int AOTStreamedHeapLoader::_num_roots;
  74 size_t AOTStreamedHeapLoader::_heap_region_used;
  75 bool AOTStreamedHeapLoader::_loading_all_objects;
  76 
  77 size_t* AOTStreamedHeapLoader::_object_index_to_buffer_offset_table;
  78 void** AOTStreamedHeapLoader::_object_index_to_heap_object_table;
  79 int* AOTStreamedHeapLoader::_root_highest_object_index_table;
  80 
  81 bool AOTStreamedHeapLoader::_waiting_for_iterator;
  82 bool AOTStreamedHeapLoader::_swapping_root_format;
  83 
  84 static uint64_t _early_materialization_time_ns = 0;
  85 static uint64_t _late_materialization_time_ns = 0;
  86 static uint64_t _final_materialization_time_ns = 0;
  87 static uint64_t _cleanup_materialization_time_ns = 0;
  88 static volatile uint64_t _accumulated_lazy_materialization_time_ns = 0;
  89 static Ticks _materialization_start_ticks;
  90 
  91 int AOTStreamedHeapLoader::object_index_for_root_index(int root_index) {
  92   return _roots_archive[root_index];
  93 }
  94 
  95 int AOTStreamedHeapLoader::highest_object_index_for_root_index(int root_index) {
  96   return _root_highest_object_index_table[root_index];
  97 }
  98 
  99 size_t AOTStreamedHeapLoader::buffer_offset_for_object_index(int object_index) {
 100   return _object_index_to_buffer_offset_table[object_index];
 101 }
 102 
 103 oopDesc* AOTStreamedHeapLoader::archive_object_for_object_index(int object_index) {
 104   size_t buffer_offset = buffer_offset_for_object_index(object_index);
 105   address bottom = (address)_heap_region->mapped_base();
 106   return (oopDesc*)(bottom + buffer_offset);
 107 }
 108 
 109 size_t AOTStreamedHeapLoader::buffer_offset_for_archive_object(oopDesc* archive_object) {
 110   address bottom = (address)_heap_region->mapped_base();
 111   return size_t(archive_object) - size_t(bottom);
 112 }
 113 
 114 template <bool use_coops>
 115 BitMap::idx_t AOTStreamedHeapLoader::obj_bit_idx_for_buffer_offset(size_t buffer_offset) {
 116   if constexpr (use_coops) {
 117     return BitMap::idx_t(buffer_offset / sizeof(narrowOop));
 118   } else {
 119     return BitMap::idx_t(buffer_offset / sizeof(HeapWord));
 120   }
 121 }
 122 
 123 oop AOTStreamedHeapLoader::heap_object_for_object_index(int object_index) {
 124   assert(object_index >= 0 && object_index <= (int)_num_archived_objects,
 125          "Heap object reference out of index: %d", object_index);
 126 
 127   if (_objects_are_handles) {
 128     oop* handle = (oop*)_object_index_to_heap_object_table[object_index];
 129     if (handle == nullptr) {
 130       return nullptr;
 131     }
 132     return NativeAccess<>::oop_load(handle);
 133   } else {
 134     return cast_to_oop(_object_index_to_heap_object_table[object_index]);
 135   }
 136 }
 137 
 138 void AOTStreamedHeapLoader::set_heap_object_for_object_index(int object_index, oop heap_object) {
 139   assert(heap_object_for_object_index(object_index) == nullptr, "Should only set once with this API");
 140   if (_objects_are_handles) {
 141     oop* handle = Universe::vm_global()->allocate();
 142     NativeAccess<>::oop_store(handle, heap_object);
 143     _object_index_to_heap_object_table[object_index] = (void*)handle;
 144   } else {
 145     _object_index_to_heap_object_table[object_index] = cast_from_oop<void*>(heap_object);
 146   }
 147 }
 148 
 149 int AOTStreamedHeapLoader::archived_string_value_object_index(oopDesc* archive_object) {
 150     assert(archive_object->klass() == vmClasses::String_klass(), "Must be an archived string");
 151     address archive_string_value_addr = (address)archive_object + java_lang_String::value_offset();
 152     return UseCompressedOops ? *(int*)archive_string_value_addr : (int)*(int64_t*)archive_string_value_addr;
 153 }
 154 
 155 static int archive_array_length(oopDesc* archive_array) {
 156   return *(int*)(address(archive_array) + arrayOopDesc::length_offset_in_bytes());
 157 }
 158 
 159 static size_t archive_object_size(oopDesc* archive_object) {
 160   Klass* klass = archive_object->klass();
 161   int lh = klass->layout_helper();
 162 
 163   if (Klass::layout_helper_is_instance(lh)) {
 164     // Instance
 165     if (Klass::layout_helper_needs_slow_path(lh)) {
 166       return ((size_t*)(archive_object))[-1];
 167     } else {
 168       return (size_t)Klass::layout_helper_size_in_bytes(lh) >> LogHeapWordSize;
 169     }
 170   } else if (Klass::layout_helper_is_array(lh)) {
 171     // Array
 172     size_t size_in_bytes;
 173     size_t array_length = (size_t)archive_array_length(archive_object);
 174     size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 175     size_in_bytes += (size_t)Klass::layout_helper_header_size(lh);
 176 
 177     return align_up(size_in_bytes, (size_t)MinObjAlignmentInBytes) / HeapWordSize;
 178   } else {
 179     // Other
 180     return ((size_t*)(archive_object))[-1];
 181   }
 182 }
 183 
 184 oop AOTStreamedHeapLoader::allocate_object(oopDesc* archive_object, markWord mark, size_t size, TRAPS) {
 185   assert(!archive_object->is_stackChunk(), "no such objects are archived");
 186 
 187   NoJvmtiEventsMark njem;
 188   oop heap_object;
 189 
 190   Klass* klass = archive_object->klass();
 191   if (klass->is_mirror_instance_klass()) {
 192     heap_object = Universe::heap()->class_allocate(klass, size, CHECK_NULL);
 193   } else if (klass->is_instance_klass()) {
 194     heap_object = Universe::heap()->obj_allocate(klass, size, CHECK_NULL);
 195   } else {
 196     assert(klass->is_array_klass(), "must be");
 197     int length = archive_array_length(archive_object);
 198     bool do_zero = klass->is_objArray_klass();
 199     heap_object = Universe::heap()->array_allocate(klass, size, length, do_zero, CHECK_NULL);
 200   }
 201 
 202   heap_object->set_mark(mark);
 203 
 204   return heap_object;
 205 }
 206 
 207 void AOTStreamedHeapLoader::install_root(int root_index, oop heap_object) {
 208   objArrayOop roots = objArrayOop(_roots.resolve());
 209   OrderAccess::release(); // Once the store below publishes an object, it can be concurrently picked up by another thread without using the lock
 210   roots->obj_at_put(root_index, heap_object);
 211 }
 212 
 213 void AOTStreamedHeapLoader::TracingObjectLoader::wait_for_iterator() {
 214   if (JavaThread::current()->is_active_Java_thread()) {
 215     // When the main thread has bootstrapped past the point of allowing safepoints,
 216     // we can and indeed have to use safepoint checking waiting.
 217     AOTHeapLoading_lock->wait();
 218   } else {
 219     // If we have no bootstrapped the main thread far enough, then we cannot and
 220     // indeed also don't need to perform safepoint checking waiting.
 221     AOTHeapLoading_lock->wait_without_safepoint_check();
 222   }
 223 }
 224 
 225 // Link object after copying in-place
 226 template <typename LinkerT>
 227 class AOTStreamedHeapLoader::InPlaceLinkingOopClosure : public BasicOopIterateClosure {
 228 private:
 229   oop _obj;
 230   LinkerT _linker;
 231 
 232 public:
 233   InPlaceLinkingOopClosure(oop obj, LinkerT linker)
 234     : _obj(obj),
 235       _linker(linker) {
 236   }
 237 
 238   virtual void do_oop(oop* p) { do_oop_work(p, (int)*(intptr_t*)p); }
 239   virtual void do_oop(narrowOop* p) { do_oop_work(p, *(int*)p); }
 240 
 241   template <typename T>
 242   void do_oop_work(T* p, int object_index) {
 243     int p_offset = pointer_delta_as_int((address)p, cast_from_oop<address>(_obj));
 244     oop pointee = _linker(p_offset, object_index);
 245     if (pointee != nullptr) {
 246       _obj->obj_field_put_access<IS_DEST_UNINITIALIZED>((int)p_offset, pointee);
 247     }
 248   }
 249 };
 250 
 251 template <bool use_coops, typename LinkerT>
 252 void AOTStreamedHeapLoader::copy_payload_carefully(oopDesc* archive_object,
 253                                                    oop heap_object,
 254                                                    BitMap::idx_t header_bit,
 255                                                    BitMap::idx_t start_bit,
 256                                                    BitMap::idx_t end_bit,
 257                                                    LinkerT linker) {
 258   using RawElementT = std::conditional_t<use_coops, int32_t, int64_t>;
 259   using OopElementT = std::conditional_t<use_coops, narrowOop, oop>;
 260 
 261   BitMap::idx_t unfinished_bit = start_bit;
 262   BitMap::idx_t next_reference_bit = _oopmap.find_first_set_bit(unfinished_bit, end_bit);
 263 
 264   // Fill in heap object bytes
 265   while (unfinished_bit < end_bit) {
 266     assert(unfinished_bit >= start_bit && unfinished_bit < end_bit, "out of bounds copying");
 267 
 268     // This is the address of the pointee inside the input stream
 269     size_t payload_offset = unfinished_bit - header_bit;
 270     RawElementT* archive_payload_addr = ((RawElementT*)archive_object) + payload_offset;
 271     RawElementT* heap_payload_addr = cast_from_oop<RawElementT*>(heap_object) + payload_offset;
 272 
 273     assert(heap_payload_addr >= cast_from_oop<RawElementT*>(heap_object) &&
 274            (HeapWord*)heap_payload_addr < cast_from_oop<HeapWord*>(heap_object) + heap_object->size(),
 275            "Out of bounds copying");
 276 
 277     if (next_reference_bit > unfinished_bit) {
 278       // Primitive bytes available
 279       size_t primitive_elements = next_reference_bit - unfinished_bit;
 280       size_t primitive_bytes = primitive_elements * sizeof(RawElementT);
 281       ::memcpy(heap_payload_addr, archive_payload_addr, primitive_bytes);
 282 
 283       unfinished_bit = next_reference_bit;
 284     } else {
 285       // Encountered reference
 286       RawElementT* archive_p = (RawElementT*)archive_payload_addr;
 287       OopElementT* heap_p = (OopElementT*)heap_payload_addr;
 288       int pointee_object_index = (int)*archive_p;
 289       int heap_p_offset = pointer_delta_as_int((address)heap_p, cast_from_oop<address>(heap_object));
 290 
 291       // The object index is retrieved from the archive, not the heap object. This is
 292       // important after GC is enabled. Concurrent GC threads may scan references in the
 293       // heap for various reasons after this point. Therefore, it is not okay to first copy
 294       // the object index from a reference location in the archived object payload to a
 295       // corresponding location in the heap object payload, and then fix it up afterwards to
 296       // refer to a heap object. This is why this code iterates carefully over object references
 297       // in the archived object, linking them one by one, without clobbering the reference
 298       // locations in the heap objects with anything other than transitions from null to the
 299       // intended linked object.
 300       oop obj = linker(heap_p_offset, pointee_object_index);
 301       if (obj != nullptr) {
 302         heap_object->obj_field_put(heap_p_offset, obj);
 303       }
 304 
 305       unfinished_bit++;
 306       next_reference_bit = _oopmap.find_first_set_bit(unfinished_bit, end_bit);
 307     }
 308   }
 309 }
 310 
 311 template <bool use_coops, typename LinkerT>
 312 void AOTStreamedHeapLoader::copy_object_impl(oopDesc* archive_object,
 313                                              oop heap_object,
 314                                              size_t size,
 315                                              LinkerT linker) {
 316   if (!_allow_gc) {
 317     // Without concurrent GC running, we can copy incorrect object references
 318     // and metadata references into the heap object and then fix them up in-place.
 319     size_t payload_size = size - 1;
 320     HeapWord* archive_start = ((HeapWord*)archive_object) + 1;
 321     HeapWord* heap_start = cast_from_oop<HeapWord*>(heap_object) + 1;
 322 
 323     Copy::disjoint_words(archive_start, heap_start, payload_size);
 324 
 325     // In-place linking fixes up object indices from references of the heap object,
 326     // and patches them up to refer to objects. This can be done because we just copied
 327     // the payload of the object from the archive to the heap object, including the
 328     // reference object indices. However, this is only okay to do before the GC can run.
 329     // A concurrent GC thread might racingly read the object payload after GC is enabled.
 330     InPlaceLinkingOopClosure cl(heap_object, linker);
 331     heap_object->oop_iterate(&cl);
 332     HeapShared::remap_loaded_metadata(heap_object);
 333     return;
 334   }
 335 
 336   // When a concurrent GC may be running, we take care not to copy incorrect oops,
 337   // narrowOops or Metadata* into the heap objects. Transitions go from 0 to the
 338   // intended runtime linked values only.
 339   size_t word_scale = use_coops ? 2 : 1;
 340   using RawElementT = std::conditional_t<use_coops, int32_t, int64_t>;
 341 
 342   // Skip the markWord; it is set at allocation time
 343   size_t header_size = word_scale;
 344 
 345   size_t buffer_offset = buffer_offset_for_archive_object(archive_object);
 346   const BitMap::idx_t header_bit = obj_bit_idx_for_buffer_offset<use_coops>(buffer_offset);
 347   const BitMap::idx_t start_bit = header_bit + header_size;
 348   const BitMap::idx_t end_bit = header_bit + size * word_scale;
 349 
 350   BitMap::idx_t curr_bit = start_bit;
 351 
 352   // We are a bit paranoid about GC or other safepointing operations observing
 353   // shady metadata fields from the archive that do not point at real metadata.
 354   // We deal with this by explicitly reading the requested address from the
 355   // archive and fixing it to real Metadata before writing it into the heap object.
 356   HeapShared::do_metadata_offsets(heap_object, [&](int metadata_offset) {
 357     BitMap::idx_t metadata_field_idx = header_bit + (size_t)metadata_offset / sizeof(RawElementT);
 358     BitMap::idx_t skip = word_scale;
 359     assert(metadata_field_idx >= start_bit && metadata_field_idx + skip <= end_bit,
 360            "Metadata field out of bounds");
 361 
 362     // Copy payload before metadata field
 363     copy_payload_carefully<use_coops>(archive_object,
 364                                       heap_object,
 365                                       header_bit,
 366                                       curr_bit,
 367                                       metadata_field_idx,
 368                                       linker);
 369 
 370     // Copy metadata field
 371     Metadata* const archive_metadata = *(Metadata**)(uintptr_t(archive_object) + (size_t)metadata_offset);
 372     Metadata* const runtime_metadata = archive_metadata != nullptr
 373         ? (Metadata*)(address(archive_metadata) + AOTMetaspace::relocation_delta())
 374         : nullptr;
 375     assert(runtime_metadata == nullptr || AOTMetaspace::in_aot_cache(runtime_metadata), "Invalid metadata pointer");
 376     DEBUG_ONLY(Metadata* const previous_metadata = heap_object->metadata_field(metadata_offset);)
 377     assert(previous_metadata == nullptr || previous_metadata == runtime_metadata, "Should not observe transient values");
 378     heap_object->metadata_field_put(metadata_offset, runtime_metadata);
 379     curr_bit = metadata_field_idx + skip;
 380   });
 381 
 382   // Copy trailing metadata after the last metadata word. This is usually doing
 383   // all the copying.
 384   copy_payload_carefully<use_coops>(archive_object,
 385                                     heap_object,
 386                                     header_bit,
 387                                     curr_bit,
 388                                     end_bit,
 389                                     linker);
 390 }
 391 
 392 void AOTStreamedHeapLoader::copy_object_eager_linking(oopDesc* archive_object, oop heap_object, size_t size) {
 393   auto linker = [&](int p_offset, int pointee_object_index) {
 394     oop obj = AOTStreamedHeapLoader::heap_object_for_object_index(pointee_object_index);
 395     assert(pointee_object_index == 0 || obj != nullptr, "Eager object loading should only encounter already allocated links");
 396     return obj;
 397   };
 398   if (UseCompressedOops) {
 399     copy_object_impl<true>(archive_object, heap_object, size, linker);
 400   } else {
 401     copy_object_impl<false>(archive_object, heap_object, size, linker);
 402   }
 403 }
 404 
 405 void AOTStreamedHeapLoader::TracingObjectLoader::copy_object_lazy_linking(int object_index,
 406                                                                           oopDesc* archive_object,
 407                                                                           oop heap_object,
 408                                                                           size_t size,
 409                                                                           Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack) {
 410   auto linker = [&](int p_offset, int pointee_object_index) {
 411     dfs_stack.push({pointee_object_index, object_index, p_offset});
 412 
 413     // The tracing linker is a bit lazy and mutates the reference fields in its traversal.
 414     // Returning null means don't link now.
 415     return oop(nullptr);
 416   };
 417   if (UseCompressedOops) {
 418     copy_object_impl<true>(archive_object, heap_object, size, linker);
 419   } else {
 420     copy_object_impl<false>(archive_object, heap_object, size, linker);
 421   }
 422 }
 423 
 424 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_object_inner(int object_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
 425   // Allocate object
 426   oopDesc* archive_object = archive_object_for_object_index(object_index);
 427   size_t size = archive_object_size(archive_object);
 428   markWord mark = archive_object->mark();
 429 
 430   // The markWord is marked if the object is a String and it should be interned,
 431   // make sure to unmark it before allocating memory for the object.
 432   bool string_intern = mark.is_marked();
 433   mark = mark.set_unmarked();
 434 
 435   oop heap_object;
 436 
 437   if (string_intern) {
 438     int value_object_index = archived_string_value_object_index(archive_object);
 439 
 440     // Materialize the value object.
 441     (void)materialize_object(value_object_index, dfs_stack, CHECK_NULL);
 442 
 443     // Allocate and link the string.
 444     heap_object = allocate_object(archive_object, mark, size, CHECK_NULL);
 445     copy_object_eager_linking(archive_object, heap_object, size);
 446 
 447     assert(java_lang_String::value(heap_object) == heap_object_for_object_index(value_object_index), "Linker should have linked this correctly");
 448 
 449     // Replace the string with interned string
 450     heap_object = StringTable::intern(heap_object, CHECK_NULL);
 451   } else {
 452     heap_object = allocate_object(archive_object, mark, size, CHECK_NULL);
 453 
 454     // Fill in object contents
 455     copy_object_lazy_linking(object_index, archive_object, heap_object, size, dfs_stack);
 456   }
 457 
 458   // Install forwarding
 459   set_heap_object_for_object_index(object_index, heap_object);
 460 
 461   return heap_object;
 462 }
 463 
 464 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_object(int object_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
 465   if (object_index <= _previous_batch_last_object_index) {
 466     // The transitive closure of this object has been materialized; no need to do anything
 467     return heap_object_for_object_index(object_index);
 468   }
 469 
 470   if (object_index <= _current_batch_last_object_index) {
 471     // The AOTThread is currently materializing this object and its transitive closure; only need to wait for it to complete
 472     _waiting_for_iterator = true;
 473     while (object_index > _previous_batch_last_object_index) {
 474       wait_for_iterator();
 475     }
 476     _waiting_for_iterator = false;
 477 
 478     // Notify the AOT thread if it is waiting for tracing to finish
 479     AOTHeapLoading_lock->notify_all();
 480     return heap_object_for_object_index(object_index);;
 481   }
 482 
 483   oop heap_object = heap_object_for_object_index(object_index);
 484   if (heap_object != nullptr) {
 485     // Already materialized by mutator
 486     return heap_object;
 487   }
 488 
 489   return materialize_object_inner(object_index, dfs_stack, THREAD);
 490 }
 491 
 492 void AOTStreamedHeapLoader::TracingObjectLoader::drain_stack(Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
 493   while (!dfs_stack.is_empty()) {
 494     AOTHeapTraversalEntry entry = dfs_stack.pop();
 495     int pointee_object_index = entry._pointee_object_index;
 496     oop pointee_heap_object = materialize_object(pointee_object_index, dfs_stack, CHECK);
 497     oop heap_object = heap_object_for_object_index(entry._base_object_index);
 498     if (_allow_gc) {
 499       heap_object->obj_field_put(entry._heap_field_offset_bytes, pointee_heap_object);
 500     } else {
 501       heap_object->obj_field_put_access<IS_DEST_UNINITIALIZED>(entry._heap_field_offset_bytes, pointee_heap_object);
 502     }
 503   }
 504 }
 505 
 506 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_object_transitive(int object_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
 507   assert_locked_or_safepoint(AOTHeapLoading_lock);
 508   while (_waiting_for_iterator) {
 509     wait_for_iterator();
 510   }
 511 
 512   auto handlized_materialize_object = [&](TRAPS) {
 513     oop obj = materialize_object(object_index, dfs_stack, CHECK_(Handle()));
 514     return Handle(THREAD, obj);
 515   };
 516 
 517   Handle result = handlized_materialize_object(CHECK_NULL);
 518   drain_stack(dfs_stack, CHECK_NULL);
 519 
 520   return result();
 521 }
 522 
 523 oop AOTStreamedHeapLoader::TracingObjectLoader::materialize_root(int root_index, Stack<AOTHeapTraversalEntry, mtClassShared>& dfs_stack, TRAPS) {
 524   int root_object_index = object_index_for_root_index(root_index);
 525   oop root = materialize_object_transitive(root_object_index, dfs_stack, CHECK_NULL);
 526   install_root(root_index, root);
 527 
 528   return root;
 529 }
 530 
 531 int oop_handle_cmp(const void* left, const void* right) {
 532   oop* left_handle = *(oop**)left;
 533   oop* right_handle = *(oop**)right;
 534 
 535   if (right_handle > left_handle) {
 536     return -1;
 537   } else if (left_handle > right_handle) {
 538     return 1;
 539   }
 540 
 541   return 0;
 542 }
 543 
 544 // The range is inclusive
 545 void AOTStreamedHeapLoader::IterativeObjectLoader::initialize_range(int first_object_index, int last_object_index, TRAPS) {
 546   for (int i = first_object_index; i <= last_object_index; ++i) {
 547     oopDesc* archive_object = archive_object_for_object_index(i);
 548     markWord mark = archive_object->mark();
 549     bool string_intern = mark.is_marked();
 550     if (string_intern) {
 551       int value_object_index = archived_string_value_object_index(archive_object);
 552       if (value_object_index == i + 1) {
 553         // Interned strings are eagerly materialized in the allocation phase, so there is
 554         // nothing else to do for interned strings here for the string nor its value array.
 555         i++;
 556       }
 557       continue;
 558     }
 559     size_t size = archive_object_size(archive_object);
 560     oop heap_object = heap_object_for_object_index(i);
 561     copy_object_eager_linking(archive_object, heap_object, size);
 562   }
 563 }
 564 
 565 // The range is inclusive
 566 size_t AOTStreamedHeapLoader::IterativeObjectLoader::materialize_range(int first_object_index, int last_object_index, TRAPS) {
 567   GrowableArrayCHeap<int, mtClassShared> lazy_object_indices(0);
 568   size_t materialized_words = 0;
 569 
 570   for (int i = first_object_index; i <= last_object_index; ++i) {
 571     oopDesc* archive_object = archive_object_for_object_index(i);
 572     markWord mark = archive_object->mark();
 573 
 574     // The markWord is marked if the object is a String and it should be interned,
 575     // make sure to unmark it before allocating memory for the object.
 576     bool string_intern = mark.is_marked();
 577     mark = mark.set_unmarked();
 578 
 579     size_t size = archive_object_size(archive_object);
 580     materialized_words += size;
 581 
 582     oop heap_object = heap_object_for_object_index(i);
 583     if (heap_object != nullptr) {
 584       // Lazy loading has already initialized the object; we must not mutate it
 585       lazy_object_indices.append(i);
 586       continue;
 587     }
 588 
 589     if (!string_intern) {
 590      // The normal case; no lazy loading have loaded the object yet
 591       heap_object = allocate_object(archive_object, mark, size, CHECK_0);
 592       set_heap_object_for_object_index(i, heap_object);
 593       continue;
 594     }
 595 
 596     // Eagerly materialize interned strings to ensure that objects earlier than the string
 597     // in a batch get linked to the intended interned string, and not a copy.
 598     int value_object_index = archived_string_value_object_index(archive_object);
 599 
 600     bool is_normal_interned_string = value_object_index == i + 1;
 601 
 602     if (value_object_index < first_object_index) {
 603       // If materialized in a previous batch, the value should already be allocated and initialized.
 604       assert(heap_object_for_object_index(value_object_index) != nullptr, "should be materialized");
 605     } else {
 606       // Materialize the value object.
 607       oopDesc* archive_value_object = archive_object_for_object_index(value_object_index);
 608       markWord value_mark = archive_value_object->mark();
 609       size_t value_size = archive_object_size(archive_value_object);
 610       oop value_heap_object;
 611 
 612       if (is_normal_interned_string) {
 613         // The common case: the value is next to the string. This happens when only the interned
 614         // string points to its value character array.
 615         assert(value_object_index <= last_object_index, "Must be within this batch: %d <= %d", value_object_index, last_object_index);
 616         value_heap_object = allocate_object(archive_value_object, value_mark, value_size, CHECK_0);
 617         set_heap_object_for_object_index(value_object_index, value_heap_object);
 618         materialized_words += value_size;
 619       } else {
 620         // In the uncommon case, multiple strings point to the value of an interned string.
 621         // The string can then be earlier in the batch.
 622         assert(value_object_index < i, "surprising index");
 623         value_heap_object = heap_object_for_object_index(value_object_index);
 624       }
 625 
 626       copy_object_eager_linking(archive_value_object, value_heap_object, value_size);
 627     }
 628     // Allocate and link the string.
 629     heap_object = allocate_object(archive_object, mark, size, CHECK_0);
 630     copy_object_eager_linking(archive_object, heap_object, size);
 631 
 632     assert(java_lang_String::value(heap_object) == heap_object_for_object_index(value_object_index), "Linker should have linked this correctly");
 633 
 634     // Replace the string with interned string
 635     heap_object = StringTable::intern(heap_object, CHECK_0);
 636     set_heap_object_for_object_index(i, heap_object);
 637 
 638     if (is_normal_interned_string) {
 639       // Skip over the string value, already materialized
 640       i++;
 641     }
 642   }
 643 
 644   if (lazy_object_indices.is_empty()) {
 645     // Normal case; no sprinkled lazy objects in the root subgraph
 646     initialize_range(first_object_index, last_object_index, CHECK_0);
 647   } else {
 648     // The user lazy initialized some objects that are already initialized; we have to initialize around them
 649     // to make sure they are not mutated.
 650     int previous_object_index = first_object_index - 1; // Exclusive start of initialization slice
 651     for (int i = 0; i < lazy_object_indices.length(); ++i) {
 652       int lazy_object_index = lazy_object_indices.at(i);
 653       int slice_start_object_index = previous_object_index;
 654       int slice_end_object_index = lazy_object_index;
 655 
 656       if (slice_end_object_index - slice_start_object_index > 1) { // Both markers are exclusive
 657         initialize_range(slice_start_object_index + 1, slice_end_object_index - 1, CHECK_0);
 658       }
 659       previous_object_index = lazy_object_index;
 660     }
 661     // Process tail range
 662     if (last_object_index - previous_object_index > 0) {
 663       initialize_range(previous_object_index + 1, last_object_index, CHECK_0);
 664     }
 665   }
 666 
 667   return materialized_words;
 668 }
 669 
 670 bool AOTStreamedHeapLoader::IterativeObjectLoader::has_more() {
 671   return _current_root_index < _num_roots;
 672 }
 673 
 674 void AOTStreamedHeapLoader::IterativeObjectLoader::materialize_next_batch(TRAPS) {
 675   assert(has_more(), "only materialize if there is something to materialize");
 676 
 677   int min_batch_objects = 128;
 678   int from_root_index = _current_root_index;
 679   int max_to_root_index = _num_roots - 1;
 680   int until_root_index = from_root_index;
 681   int highest_object_index;
 682 
 683   // Expand the batch size from one root, to N roots until we cross 128 objects in total
 684   for (;;) {
 685     highest_object_index = highest_object_index_for_root_index(until_root_index);
 686     if (highest_object_index - _previous_batch_last_object_index >= min_batch_objects) {
 687       break;
 688     }
 689     if (until_root_index == max_to_root_index) {
 690       break;
 691     }
 692     until_root_index++;
 693   }
 694 
 695   oop root = nullptr;
 696 
 697   // Materialize objects of necessary, representing the transitive closure of the root
 698   if (highest_object_index > _previous_batch_last_object_index) {
 699     while (_swapping_root_format) {
 700       // When the roots are being upgraded to use handles, it is not safe to racingly
 701       // iterate over the object; we must wait. Setting the current batch last object index
 702       // to something other than the previous batch last object index indicates to the
 703       // root swapping that there is current iteration ongoing.
 704       AOTHeapLoading_lock->wait();
 705     }
 706     int first_object_index = _previous_batch_last_object_index + 1;
 707     _current_batch_last_object_index = highest_object_index;
 708     size_t allocated_words;
 709     {
 710       MutexUnlocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
 711       allocated_words = materialize_range(first_object_index, highest_object_index, CHECK);
 712     }
 713     _allocated_words += allocated_words;
 714     _previous_batch_last_object_index = _current_batch_last_object_index;
 715     if (_waiting_for_iterator) {
 716       // If tracer is waiting, let it know at the next point of unlocking that the root
 717       // set it waited for has been processed now.
 718       AOTHeapLoading_lock->notify_all();
 719     }
 720   }
 721 
 722   // Install the root
 723   for (int i = from_root_index; i <= until_root_index; ++i) {
 724     int root_object_index = object_index_for_root_index(i);
 725     root = heap_object_for_object_index(root_object_index);
 726     install_root(i, root);
 727     ++_current_root_index;
 728   }
 729 }
 730 
 731 bool AOTStreamedHeapLoader::materialize_early(TRAPS) {
 732   Ticks start = Ticks::now();
 733 
 734   // Only help with early materialization from the AOT thread if the heap archive can be allocated
 735   // without the need for a GC. Otherwise, do lazy loading until GC is enabled later in the bootstrapping.
 736   size_t bootstrap_max_memory = Universe::heap()->bootstrap_max_memory();
 737   size_t bootstrap_min_memory = MAX2(_heap_region_used, 2 * M);
 738 
 739   size_t before_gc_materialize_budget_bytes = (bootstrap_max_memory > bootstrap_min_memory) ? bootstrap_max_memory - bootstrap_min_memory : 0;
 740   size_t before_gc_materialize_budget_words = before_gc_materialize_budget_bytes / HeapWordSize;
 741 
 742   log_info(aot, heap)("Max bootstrapping memory: %zuM, min bootstrapping memory: %zuM, selected budget: %zuM",
 743                       bootstrap_max_memory / M, bootstrap_min_memory / M, before_gc_materialize_budget_bytes / M);
 744 
 745   while (IterativeObjectLoader::has_more()) {
 746     if (_allow_gc || _allocated_words > before_gc_materialize_budget_words) {
 747       log_info(aot, heap)("Early object materialization interrupted at root %d", _current_root_index);
 748       break;
 749     }
 750 
 751     IterativeObjectLoader::materialize_next_batch(CHECK_false);
 752   }
 753 
 754   _early_materialization_time_ns = (Ticks::now() - start).nanoseconds();
 755 
 756   bool finished_before_gc_allowed = !_allow_gc && !IterativeObjectLoader::has_more();
 757 
 758   return finished_before_gc_allowed;
 759 }
 760 
 761 void AOTStreamedHeapLoader::materialize_late(TRAPS) {
 762   Ticks start = Ticks::now();
 763 
 764   // Continue materializing with GC allowed
 765 
 766   while (IterativeObjectLoader::has_more()) {
 767     IterativeObjectLoader::materialize_next_batch(CHECK);
 768   }
 769 
 770   _late_materialization_time_ns = (Ticks::now() - start).nanoseconds();
 771 }
 772 
 773 void AOTStreamedHeapLoader::cleanup() {
 774   // First ensure there is no concurrent tracing going on
 775   while (_waiting_for_iterator) {
 776     AOTHeapLoading_lock->wait();
 777   }
 778 
 779   Ticks start = Ticks::now();
 780 
 781   // Remove OopStorage roots
 782   if (_objects_are_handles) {
 783     size_t num_handles = _num_archived_objects;
 784     // Skip the null entry
 785     oop** handles = ((oop**)_object_index_to_heap_object_table) + 1;
 786     // Sort the handles so that oop storage can release them faster
 787     qsort(handles, num_handles, sizeof(oop*), (int (*)(const void*, const void*))oop_handle_cmp);
 788     size_t num_null_handles = 0;
 789     for (size_t handles_remaining = num_handles; handles_remaining != 0; --handles_remaining) {
 790       oop* handle = handles[handles_remaining - 1];
 791       if (handle == nullptr) {
 792         num_null_handles = handles_remaining;
 793         break;
 794       }
 795       NativeAccess<>::oop_store(handle, nullptr);
 796     }
 797     Universe::vm_global()->release(&handles[num_null_handles], num_handles - num_null_handles);
 798   }
 799 
 800   FREE_C_HEAP_ARRAY(void*, _object_index_to_heap_object_table);
 801   _object_index_to_heap_object_table = nullptr;
 802   _roots_archive = nullptr;
 803 
 804   // Unmap regions
 805   FileMapInfo::current_info()->unmap_region(AOTMetaspace::hp);
 806   FileMapInfo::current_info()->unmap_region(AOTMetaspace::bm);
 807 
 808   _cleanup_materialization_time_ns = (Ticks::now() - start).nanoseconds();
 809 
 810   log_statistics();
 811 }
 812 
 813 void AOTStreamedHeapLoader::log_statistics() {
 814   uint64_t total_duration_us = (Ticks::now() - _materialization_start_ticks).microseconds();
 815   const bool is_async = _loading_all_objects && !AOTEagerlyLoadObjects;
 816   const char* const async_or_sync = is_async ? "async" : "sync";
 817   log_info(aot, heap)("start to finish materialization time: " UINT64_FORMAT "us",
 818                       total_duration_us);
 819   log_info(aot, heap)("early object materialization time (%s): " UINT64_FORMAT "us",
 820                       async_or_sync, _early_materialization_time_ns / 1000);
 821   log_info(aot, heap)("late object materialization time (%s): " UINT64_FORMAT "us",
 822                       async_or_sync, _late_materialization_time_ns / 1000);
 823   log_info(aot, heap)("object materialization cleanup time (%s): " UINT64_FORMAT "us",
 824                       async_or_sync, _cleanup_materialization_time_ns / 1000);
 825   log_info(aot, heap)("final object materialization time stall (sync): " UINT64_FORMAT "us",
 826                       _final_materialization_time_ns / 1000);
 827   log_info(aot, heap)("bootstrapping lazy materialization time (sync): " UINT64_FORMAT "us",
 828                       _accumulated_lazy_materialization_time_ns / 1000);
 829 
 830   uint64_t sync_time = _final_materialization_time_ns + _accumulated_lazy_materialization_time_ns;
 831   uint64_t async_time = _early_materialization_time_ns + _late_materialization_time_ns + _cleanup_materialization_time_ns;
 832 
 833   if (!is_async) {
 834     sync_time += async_time;
 835     async_time = 0;
 836   }
 837 
 838   log_info(aot, heap)("sync materialization time: " UINT64_FORMAT "us",
 839                       sync_time / 1000);
 840 
 841   log_info(aot, heap)("async materialization time: " UINT64_FORMAT "us",
 842                       async_time / 1000);
 843 
 844   uint64_t iterative_time = (uint64_t)(is_async ? async_time : sync_time);
 845   uint64_t materialized_bytes = _allocated_words * HeapWordSize;
 846   log_info(aot, heap)("%s materialized " UINT64_FORMAT "K (" UINT64_FORMAT "M/s)", async_or_sync,
 847                       materialized_bytes / 1024, uint64_t(materialized_bytes * UCONST64(1'000'000'000) / M / iterative_time));
 848 }
 849 
 850 void AOTStreamedHeapLoader::materialize_objects() {
 851   // We cannot handle any exception when materializing roots. Exits the VM.
 852   EXCEPTION_MARK
 853 
 854   // Objects are laid out in DFS order; DFS traverse the roots by linearly walking all objects
 855   HandleMark hm(THREAD);
 856 
 857   // Early materialization with a budget before GC is allowed
 858   MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
 859 
 860   materialize_early(CHECK);
 861   await_gc_enabled();
 862   materialize_late(CHECK);
 863   // Notify materialization is done
 864   AOTHeapLoading_lock->notify_all();
 865   cleanup();
 866 }
 867 
 868 void AOTStreamedHeapLoader::switch_object_index_to_handle(int object_index) {
 869   oop heap_object = cast_to_oop(_object_index_to_heap_object_table[object_index]);
 870   if (heap_object == nullptr) {
 871     return;
 872   }
 873 
 874   oop* handle = Universe::vm_global()->allocate();
 875   NativeAccess<>::oop_store(handle, heap_object);
 876   _object_index_to_heap_object_table[object_index] = handle;
 877 }
 878 
 879 void AOTStreamedHeapLoader::enable_gc() {
 880   if (AOTEagerlyLoadObjects && !IterativeObjectLoader::has_more()) {
 881     // Everything was loaded eagerly at early startup
 882     return;
 883   }
 884 
 885   // We cannot handle any exception when materializing roots. Exits the VM.
 886   EXCEPTION_MARK
 887 
 888   MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
 889 
 890   // First wait until no tracing is active
 891   while (_waiting_for_iterator) {
 892     AOTHeapLoading_lock->wait();
 893   }
 894 
 895   // Lock further tracing from starting
 896   _waiting_for_iterator = true;
 897 
 898   // Record iterator progress
 899   int num_handles = (int)_num_archived_objects;
 900 
 901   // Lock further iteration from starting
 902   _swapping_root_format = true;
 903 
 904   // Then wait for the iterator to stop
 905   while (_previous_batch_last_object_index != _current_batch_last_object_index) {
 906     AOTHeapLoading_lock->wait();
 907   }
 908 
 909   if (IterativeObjectLoader::has_more()) {
 910     // If there is more to be materialized, we have to upgrade the object index
 911     // to object mapping to use handles. If there isn't more to materialize, the
 912     // handle will no longer e used; they are only used to materialize objects.
 913 
 914     for (int i = 1; i <= num_handles; ++i) {
 915       // Upgrade the roots to use handles
 916       switch_object_index_to_handle(i);
 917     }
 918 
 919     // From now on, accessing the object table must be done through a handle.
 920     _objects_are_handles = true;
 921   }
 922 
 923   // Unlock tracing
 924   _waiting_for_iterator = false;
 925 
 926   // Unlock iteration
 927   _swapping_root_format = false;
 928 
 929   _allow_gc = true;
 930 
 931   AOTHeapLoading_lock->notify_all();
 932 
 933   if (AOTEagerlyLoadObjects && IterativeObjectLoader::has_more()) {
 934     materialize_late(CHECK);
 935     cleanup();
 936   }
 937 }
 938 
 939 void AOTStreamedHeapLoader::materialize_thread_object() {
 940   AOTThread::materialize_thread_object();
 941 }
 942 
 943 void AOTStreamedHeapLoader::finish_materialize_objects() {
 944   Ticks start = Ticks::now();
 945 
 946   if (_loading_all_objects) {
 947     MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
 948     // Wait for the AOT thread to finish
 949     while (IterativeObjectLoader::has_more()) {
 950       AOTHeapLoading_lock->wait();
 951     }
 952   } else {
 953     assert(!AOTEagerlyLoadObjects, "sanity");
 954     assert(_current_root_index == 0, "sanity");
 955     // Without the full module graph we have done only lazy tracing materialization.
 956     // Ensure all roots are processed here by triggering root loading on every root.
 957     for (int i = 0; i < _num_roots; ++i) {
 958       get_root(i);
 959     }
 960     cleanup();
 961   }
 962 
 963   _final_materialization_time_ns = (Ticks::now() - start).nanoseconds();
 964 }
 965 
 966 void account_lazy_materialization_time_ns(uint64_t time, const char* description, int index) {
 967   AtomicAccess::add(&_accumulated_lazy_materialization_time_ns, time);
 968   log_debug(aot, heap)("Lazy materialization of %s: %d end (" UINT64_FORMAT " us of " UINT64_FORMAT " us)", description, index, time / 1000, _accumulated_lazy_materialization_time_ns / 1000);
 969 }
 970 
 971 // Initialize an empty array of AOT heap roots; materialize them lazily
 972 void AOTStreamedHeapLoader::initialize() {
 973   EXCEPTION_MARK
 974 
 975   _materialization_start_ticks = Ticks::now();
 976 
 977   FileMapInfo::current_info()->map_bitmap_region();
 978 
 979   _heap_region = FileMapInfo::current_info()->region_at(AOTMetaspace::hp);
 980   _bitmap_region = FileMapInfo::current_info()->region_at(AOTMetaspace::bm);
 981 
 982   assert(_heap_region->used() > 0, "empty heap archive?");
 983 
 984   _is_in_use = true;
 985 
 986   // archived roots are at this offset in the stream.
 987   size_t roots_offset = FileMapInfo::current_info()->streamed_heap()->roots_offset();
 988   size_t forwarding_offset = FileMapInfo::current_info()->streamed_heap()->forwarding_offset();
 989   size_t root_highest_object_index_table_offset = FileMapInfo::current_info()->streamed_heap()->root_highest_object_index_table_offset();
 990   _num_archived_objects = FileMapInfo::current_info()->streamed_heap()->num_archived_objects();
 991 
 992   // The first int is the length of the array
 993   _roots_archive = ((int*)(((address)_heap_region->mapped_base()) + roots_offset)) + 1;
 994   _num_roots = _roots_archive[-1];
 995   _heap_region_used = _heap_region->used();
 996 
 997   // We can't retire a TLAB until the filler klass is set; set it to the archived object klass.
 998   CollectedHeap::set_filler_object_klass(vmClasses::Object_klass());
 999 
1000   objArrayOop roots = oopFactory::new_objectArray(_num_roots, CHECK);
1001   _roots = OopHandle(Universe::vm_global(), roots);
1002 
1003   _object_index_to_buffer_offset_table = (size_t*)(((address)_heap_region->mapped_base()) + forwarding_offset);
1004   // We allocate the first entry for "null"
1005   _object_index_to_heap_object_table = NEW_C_HEAP_ARRAY(void*, _num_archived_objects + 1, mtClassShared);
1006   Copy::zero_to_bytes(_object_index_to_heap_object_table, (_num_archived_objects + 1) * sizeof(void*));
1007 
1008   _root_highest_object_index_table = (int*)(((address)_heap_region->mapped_base()) + root_highest_object_index_table_offset);
1009 
1010   address start = (address)(_bitmap_region->mapped_base()) + _heap_region->oopmap_offset();
1011   _oopmap = BitMapView((BitMap::bm_word_t*)start, _heap_region->oopmap_size_in_bits());
1012 
1013 
1014   if (FLAG_IS_DEFAULT(AOTEagerlyLoadObjects)) {
1015     // Concurrency will not help much if there are no extra cores available.
1016     FLAG_SET_ERGO(AOTEagerlyLoadObjects, os::initial_active_processor_count() <= 1);
1017   }
1018 
1019   // If the full module graph is not available or the JVMTI class file load hook is on, we
1020   // will prune the object graph to not include cached objects in subgraphs that are not intended
1021   // to be loaded.
1022   _loading_all_objects = CDSConfig::is_using_full_module_graph() && !JvmtiExport::should_post_class_file_load_hook();
1023   if (!_loading_all_objects) {
1024     // When not using FMG, fall back to tracing materialization
1025     FLAG_SET_ERGO(AOTEagerlyLoadObjects, false);
1026     return;
1027   }
1028 
1029   if (AOTEagerlyLoadObjects) {
1030     // Objects are laid out in DFS order; DFS traverse the roots by linearly walking all objects
1031     HandleMark hm(THREAD);
1032 
1033     // Early materialization with a budget before GC is allowed
1034     MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
1035 
1036     bool finished_before_gc_allowed = materialize_early(CHECK);
1037     if (finished_before_gc_allowed) {
1038       cleanup();
1039     }
1040   } else {
1041     AOTThread::initialize();
1042   }
1043 }
1044 
1045 oop AOTStreamedHeapLoader::materialize_root(int root_index) {
1046   Ticks start = Ticks::now();
1047   // We cannot handle any exception when materializing a root. Exits the VM.
1048   EXCEPTION_MARK
1049   Stack<AOTHeapTraversalEntry, mtClassShared> dfs_stack;
1050   HandleMark hm(THREAD);
1051 
1052   oop result;
1053   {
1054     MutexLocker ml(AOTHeapLoading_lock, Mutex::_safepoint_check_flag);
1055 
1056     oop root = objArrayOop(_roots.resolve())->obj_at(root_index);
1057 
1058     if (root != nullptr) {
1059       // The root has already been materialized
1060       result = root;
1061     } else {
1062       // The root has not been materialized, start tracing materialization
1063       result = TracingObjectLoader::materialize_root(root_index, dfs_stack, CHECK_NULL);
1064     }
1065   }
1066 
1067   uint64_t duration = (Ticks::now() - start).nanoseconds();
1068 
1069   account_lazy_materialization_time_ns(duration, "root", root_index);
1070 
1071   return result;
1072 }
1073 
1074 oop AOTStreamedHeapLoader::get_root(int index) {
1075   oop result = objArrayOop(_roots.resolve())->obj_at(index);
1076   if (result == nullptr) {
1077     // Materialize root
1078     result = materialize_root(index);
1079   }
1080   if (result == _roots.resolve()) {
1081     // A self-reference to the roots array acts as a sentinel object for null,
1082     // indicating that the root has been cleared.
1083     result = nullptr;
1084   }
1085   // Acquire the root transitive object payload
1086   OrderAccess::acquire();
1087   return result;
1088 }
1089 
1090 void AOTStreamedHeapLoader::clear_root(int index) {
1091   // Self-reference to the roots array acts as a sentinel object for null,
1092   // indicating that the root has been cleared.
1093   objArrayOop(_roots.resolve())->obj_at_put(index, _roots.resolve());
1094 }
1095 
1096 void AOTStreamedHeapLoader::await_gc_enabled() {
1097   while (!_allow_gc) {
1098     AOTHeapLoading_lock->wait();
1099   }
1100 }
1101 
1102 void AOTStreamedHeapLoader::finish_initialization(FileMapInfo* static_mapinfo) {
1103   static_mapinfo->stream_heap_region();
1104 }
1105 
1106 AOTMapLogger::OopDataIterator* AOTStreamedHeapLoader::oop_iterator(FileMapInfo* info, address buffer_start, address buffer_end) {
1107   class StreamedLoaderOopIterator : public AOTMapLogger::OopDataIterator {
1108   private:
1109     int _current;
1110     int _next;
1111 
1112     address _buffer_start;
1113 
1114     int _num_archived_objects;
1115 
1116   public:
1117     StreamedLoaderOopIterator(address buffer_start,
1118                               int num_archived_objects)
1119       : _current(0),
1120         _next(1),
1121         _buffer_start(buffer_start),
1122         _num_archived_objects(num_archived_objects) {
1123     }
1124 
1125     AOTMapLogger::OopData capture(int dfs_index) {
1126       size_t buffered_offset = buffer_offset_for_object_index(dfs_index);
1127       address buffered_addr = _buffer_start + buffered_offset;
1128       oopDesc* raw_oop = (oopDesc*)buffered_addr;
1129       size_t size = archive_object_size(raw_oop);
1130 
1131       intptr_t target_location = (intptr_t)buffered_offset;
1132       uint32_t narrow_location = checked_cast<uint32_t>(dfs_index);
1133       Klass* klass = raw_oop->klass();
1134 
1135       address requested_addr = (address)buffered_offset;
1136 
1137       return { buffered_addr,
1138                requested_addr,
1139                target_location,
1140                narrow_location,
1141                raw_oop,
1142                klass,
1143                size,
1144                false };
1145     }
1146 
1147     bool has_next() override {
1148       return _next <= _num_archived_objects;
1149     }
1150 
1151     AOTMapLogger::OopData next() override {
1152       _current = _next;
1153       AOTMapLogger::OopData result = capture(_current);
1154       _next = _current + 1;
1155       return result;
1156     }
1157 
1158     AOTMapLogger::OopData obj_at(narrowOop* addr) override {
1159       int dfs_index = (int)(*addr);
1160       if (dfs_index == 0) {
1161         return null_data();
1162       } else {
1163         return capture(dfs_index);
1164       }
1165     }
1166 
1167     AOTMapLogger::OopData obj_at(oop* addr) override {
1168       int dfs_index = (int)cast_from_oop<uintptr_t>(*addr);
1169       if (dfs_index == 0) {
1170         return null_data();
1171       } else {
1172         return capture(dfs_index);
1173       }
1174     }
1175 
1176     GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* roots() override {
1177       GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>* result = new GrowableArrayCHeap<AOTMapLogger::OopData, mtClass>();
1178 
1179       for (int i = 0; i < _num_roots; ++i) {
1180         int object_index = object_index_for_root_index(i);
1181         result->append(capture(object_index));
1182       }
1183 
1184       return result;
1185     }
1186   };
1187 
1188   assert(_is_in_use, "printing before initializing?");
1189 
1190   return new StreamedLoaderOopIterator(buffer_start, (int)info->streamed_heap()->num_archived_objects());
1191 }
1192 
1193 #endif // INCLUDE_CDS_JAVA_HEAP