1 /* 2 * Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_CDS_ARCHIVEBUILDER_HPP 26 #define SHARE_CDS_ARCHIVEBUILDER_HPP 27 28 #include "cds/archiveUtils.hpp" 29 #include "cds/dumpAllocStats.hpp" 30 #include "memory/metaspace.hpp" 31 #include "memory/metaspaceClosure.hpp" 32 #include "memory/reservedSpace.hpp" 33 #include "memory/virtualspace.hpp" 34 #include "oops/array.hpp" 35 #include "oops/klass.hpp" 36 #include "runtime/os.hpp" 37 #include "utilities/bitMap.hpp" 38 #include "utilities/growableArray.hpp" 39 #include "utilities/hashTable.hpp" 40 #include "utilities/resizableHashTable.hpp" 41 42 class ArchiveHeapInfo; 43 class CHeapBitMap; 44 class FileMapInfo; 45 class Klass; 46 class MemRegion; 47 class Symbol; 48 49 // The minimum alignment for non-Klass objects inside the CDS archive. Klass objects need 50 // to follow CompressedKlassPointers::klass_alignment_in_bytes(). 51 constexpr size_t SharedSpaceObjectAlignment = Metaspace::min_allocation_alignment_bytes; 52 53 // Overview of CDS archive creation (for both static and dynamic dump): 54 // 55 // [1] Load all classes (static dump: from the classlist, dynamic dump: as part of app execution) 56 // [2] Allocate "output buffer" 57 // [3] Copy contents of the 2 "core" regions (rw/ro) into the output buffer. 58 // - allocate the cpp vtables in rw (static dump only) 59 // - memcpy the MetaspaceObjs into rw/ro: 60 // dump_rw_region(); 61 // dump_ro_region(); 62 // - fix all the pointers in the MetaspaceObjs to point to the copies 63 // relocate_metaspaceobj_embedded_pointers() 64 // [4] Copy symbol table, dictionary, etc, into the ro region 65 // [5] Relocate all the pointers in rw/ro, so that the archive can be mapped to 66 // the "requested" location without runtime relocation. See relocate_to_requested() 67 // 68 // "source" vs "buffered" vs "requested" 69 // 70 // The ArchiveBuilder deals with three types of addresses. 71 // 72 // "source": These are the addresses of objects created in step [1] above. They are the actual 73 // InstanceKlass*, Method*, etc, of the Java classes that are loaded for executing 74 // Java bytecodes in the JVM process that's dumping the CDS archive. 75 // 76 // It may be necessary to contiue Java execution after ArchiveBuilder is finished. 77 // Therefore, we don't modify any of the "source" objects. 78 // 79 // "buffered": The "source" objects that are deemed archivable are copied into a temporary buffer. 80 // Objects in the buffer are modified in steps [2, 3, 4] (e.g., unshareable info is 81 // removed, pointers are relocated, etc) to prepare them to be loaded at runtime. 82 // 83 // "requested": These are the addreses where the "buffered" objects should be loaded at runtime. 84 // When the "buffered" objects are written into the archive file, their addresses 85 // are adjusted in step [5] such that the lowest of these objects would be mapped 86 // at SharedBaseAddress. 87 // 88 // Translation between "source" and "buffered" addresses is done with two hashtables: 89 // _src_obj_table : "source" -> "buffered" 90 // _buffered_to_src_table : "buffered" -> "source" 91 // 92 // Translation between "buffered" and "requested" addresses is done with a simple shift: 93 // buffered_address + _buffer_to_requested_delta == requested_address 94 // 95 class ArchiveBuilder : public StackObj { 96 friend class AOTMapLogger; 97 98 protected: 99 DumpRegion* _current_dump_region; 100 address _buffer_bottom; // for writing the contents of rw/ro regions 101 102 // These are the addresses where we will request the static and dynamic archives to be 103 // mapped at run time. If the request fails (due to ASLR), we will map the archives at 104 // os-selected addresses. 105 address _requested_static_archive_bottom; // This is determined solely by the value of 106 // SharedBaseAddress during -Xshare:dump. 107 address _requested_static_archive_top; 108 address _requested_dynamic_archive_bottom; // Used only during dynamic dump. It's placed 109 // immediately above _requested_static_archive_top. 110 address _requested_dynamic_archive_top; 111 112 // (Used only during dynamic dump) where the static archive is actually mapped. This 113 // may be different than _requested_static_archive_{bottom,top} due to ASLR 114 address _mapped_static_archive_bottom; 115 address _mapped_static_archive_top; 116 117 intx _buffer_to_requested_delta; 118 119 DumpRegion* current_dump_region() const { return _current_dump_region; } 120 121 public: 122 enum FollowMode { 123 make_a_copy, point_to_it, set_to_null 124 }; 125 126 private: 127 class SourceObjInfo { 128 uintx _ptrmap_start; // The bit-offset of the start of this object (inclusive) 129 uintx _ptrmap_end; // The bit-offset of the end of this object (exclusive) 130 bool _read_only; 131 bool _has_embedded_pointer; 132 FollowMode _follow_mode; 133 int _size_in_bytes; 134 int _id; // Each object has a unique serial ID, starting from zero. The ID is assigned 135 // when the object is added into _source_objs. 136 MetaspaceObj::Type _msotype; 137 address _source_addr; // The source object to be copied. 138 address _buffered_addr; // The copy of this object insider the buffer. 139 public: 140 SourceObjInfo(MetaspaceClosure::Ref* ref, bool read_only, FollowMode follow_mode) : 141 _ptrmap_start(0), _ptrmap_end(0), _read_only(read_only), _has_embedded_pointer(false), _follow_mode(follow_mode), 142 _size_in_bytes(ref->size() * BytesPerWord), _id(0), _msotype(ref->msotype()), 143 _source_addr(ref->obj()) { 144 if (follow_mode == point_to_it) { 145 _buffered_addr = ref->obj(); 146 } else { 147 _buffered_addr = nullptr; 148 } 149 } 150 151 // This constructor is only used for regenerated objects (created by LambdaFormInvokers, etc). 152 // src = address of a Method or InstanceKlass that has been regenerated. 153 // renegerated_obj_info = info for the regenerated version of src. 154 SourceObjInfo(address src, SourceObjInfo* renegerated_obj_info) : 155 _ptrmap_start(0), _ptrmap_end(0), _read_only(false), 156 _follow_mode(renegerated_obj_info->_follow_mode), 157 _size_in_bytes(0), _msotype(renegerated_obj_info->_msotype), 158 _source_addr(src), _buffered_addr(renegerated_obj_info->_buffered_addr) {} 159 160 bool should_copy() const { return _follow_mode == make_a_copy; } 161 void set_buffered_addr(address addr) { 162 assert(should_copy(), "must be"); 163 assert(_buffered_addr == nullptr, "cannot be copied twice"); 164 assert(addr != nullptr, "must be a valid copy"); 165 _buffered_addr = addr; 166 } 167 void set_ptrmap_start(uintx v) { _ptrmap_start = v; } 168 void set_ptrmap_end(uintx v) { _ptrmap_end = v; } 169 uintx ptrmap_start() const { return _ptrmap_start; } // inclusive 170 uintx ptrmap_end() const { return _ptrmap_end; } // exclusive 171 bool read_only() const { return _read_only; } 172 bool has_embedded_pointer() const { return _has_embedded_pointer; } 173 void set_has_embedded_pointer() { _has_embedded_pointer = true; } 174 int size_in_bytes() const { return _size_in_bytes; } 175 int id() const { return _id; } 176 void set_id(int i) { _id = i; } 177 address source_addr() const { return _source_addr; } 178 address buffered_addr() const { 179 if (_follow_mode != set_to_null) { 180 assert(_buffered_addr != nullptr, "must be initialized"); 181 } 182 return _buffered_addr; 183 } 184 MetaspaceObj::Type msotype() const { return _msotype; } 185 FollowMode follow_mode() const { return _follow_mode; } 186 }; 187 188 class SourceObjList { 189 uintx _total_bytes; 190 GrowableArray<SourceObjInfo*>* _objs; // Source objects to be archived 191 CHeapBitMap _ptrmap; // Marks the addresses of the pointer fields 192 // in the source objects 193 public: 194 SourceObjList(); 195 ~SourceObjList(); 196 197 GrowableArray<SourceObjInfo*>* objs() const { return _objs; } 198 199 void append(SourceObjInfo* src_info); 200 void remember_embedded_pointer(SourceObjInfo* pointing_obj, MetaspaceClosure::Ref* ref); 201 void relocate(int i, ArchiveBuilder* builder); 202 203 // convenience accessor 204 SourceObjInfo* at(int i) const { return objs()->at(i); } 205 }; 206 207 static const int INITIAL_TABLE_SIZE = 15889; 208 static const int MAX_TABLE_SIZE = 1000000; 209 210 ReservedSpace _shared_rs; 211 VirtualSpace _shared_vs; 212 213 // The "pz" region is used only during static dumps to reserve an unused space between SharedBaseAddress and 214 // the bottom of the rw region. During runtime, this space will be filled with a reserved area that disallows 215 // read/write/exec, so we can track for bad CompressedKlassPointers encoding. 216 // Note: this region does NOT exist in the cds archive. 217 DumpRegion _pz_region; 218 219 DumpRegion _rw_region; 220 DumpRegion _ro_region; 221 DumpRegion _ac_region; // AOT code 222 223 // Combined bitmap to track pointers in both RW and RO regions. This is updated 224 // as objects are copied into RW and RO. 225 CHeapBitMap _ptrmap; 226 227 // _ptrmap is split into these two bitmaps which are written into the archive. 228 CHeapBitMap _rw_ptrmap; // marks pointers in the RW region 229 CHeapBitMap _ro_ptrmap; // marks pointers in the RO region 230 231 SourceObjList _rw_src_objs; // objs to put in rw region 232 SourceObjList _ro_src_objs; // objs to put in ro region 233 ResizeableHashTable<address, SourceObjInfo, AnyObj::C_HEAP, mtClassShared> _src_obj_table; 234 ResizeableHashTable<address, address, AnyObj::C_HEAP, mtClassShared> _buffered_to_src_table; 235 GrowableArray<Klass*>* _klasses; 236 GrowableArray<Symbol*>* _symbols; 237 unsigned int _entropy_seed; 238 239 // statistics 240 DumpAllocStats _alloc_stats; 241 size_t _total_heap_region_size; 242 struct { 243 size_t _num_ptrs; 244 size_t _num_tagged_ptrs; 245 size_t _num_nulled_ptrs; 246 } _relocated_ptr_info; 247 248 void print_region_stats(FileMapInfo *map_info, ArchiveHeapInfo* heap_info); 249 void print_bitmap_region_stats(size_t size, size_t total_size); 250 void print_heap_region_stats(ArchiveHeapInfo* heap_info, size_t total_size); 251 252 // For global access. 253 static ArchiveBuilder* _current; 254 255 public: 256 // Use this when you allocate space outside of ArchiveBuilder::dump_{rw,ro}_region. 257 // These are usually for misc tables that are allocated in the RO space. 258 class OtherROAllocMark { 259 char* _oldtop; 260 public: 261 OtherROAllocMark() { 262 _oldtop = _current->_ro_region.top(); 263 } 264 ~OtherROAllocMark(); 265 }; 266 267 void count_relocated_pointer(bool tagged, bool nulled); 268 269 private: 270 FollowMode get_follow_mode(MetaspaceClosure::Ref *ref); 271 272 void iterate_sorted_roots(MetaspaceClosure* it); 273 void sort_klasses(); 274 static int compare_symbols_by_address(Symbol** a, Symbol** b); 275 static int compare_klass_by_name(Klass** a, Klass** b); 276 277 void make_shallow_copies(DumpRegion *dump_region, const SourceObjList* src_objs); 278 void make_shallow_copy(DumpRegion *dump_region, SourceObjInfo* src_info); 279 280 void relocate_embedded_pointers(SourceObjList* src_objs); 281 282 bool is_excluded(Klass* k); 283 void clean_up_src_obj_table(); 284 285 protected: 286 virtual void iterate_roots(MetaspaceClosure* it) = 0; 287 void start_dump_region(DumpRegion* next); 288 289 public: 290 address reserve_buffer(); 291 292 address buffer_bottom() const { return _buffer_bottom; } 293 address buffer_top() const { return (address)current_dump_region()->top(); } 294 address requested_static_archive_bottom() const { return _requested_static_archive_bottom; } 295 address mapped_static_archive_bottom() const { return _mapped_static_archive_bottom; } 296 intx buffer_to_requested_delta() const { return _buffer_to_requested_delta; } 297 298 bool is_in_buffer_space(address p) const { 299 return (buffer_bottom() != nullptr && buffer_bottom() <= p && p < buffer_top()); 300 } 301 302 template <typename T> bool is_in_requested_static_archive(T p) const { 303 return _requested_static_archive_bottom <= (address)p && (address)p < _requested_static_archive_top; 304 } 305 306 template <typename T> bool is_in_mapped_static_archive(T p) const { 307 return _mapped_static_archive_bottom <= (address)p && (address)p < _mapped_static_archive_top; 308 } 309 310 template <typename T> bool is_in_buffer_space(T obj) const { 311 return is_in_buffer_space(address(obj)); 312 } 313 314 template <typename T> T to_requested(T obj) const { 315 assert(is_in_buffer_space(obj), "must be"); 316 return (T)(address(obj) + _buffer_to_requested_delta); 317 } 318 319 template <typename T> T requested_to_buffered(T obj) const { 320 T b = (T)(address(obj) - _buffer_to_requested_delta); 321 assert(is_in_buffer_space(b), "must be"); 322 return b; 323 } 324 325 static intx get_buffer_to_requested_delta() { 326 return current()->buffer_to_requested_delta(); 327 } 328 329 inline static u4 to_offset_u4(uintx offset) { 330 guarantee(offset <= MAX_SHARED_DELTA, "must be 32-bit offset " INTPTR_FORMAT, offset); 331 return (u4)offset; 332 } 333 334 public: 335 static const uintx MAX_SHARED_DELTA = ArchiveUtils::MAX_SHARED_DELTA;; 336 337 // The address p points to an object inside the output buffer. When the archive is mapped 338 // at the requested address, what's the offset of this object from _requested_static_archive_bottom? 339 uintx buffer_to_offset(address p) const; 340 341 // Same as buffer_to_offset, except that the address p points to either (a) an object 342 // inside the output buffer, or (b), an object in the currently mapped static archive. 343 uintx any_to_offset(address p) const; 344 345 // The reverse of buffer_to_offset() 346 address offset_to_buffered_address(u4 offset) const; 347 348 template <typename T> 349 u4 buffer_to_offset_u4(T p) const { 350 uintx offset = buffer_to_offset((address)p); 351 return to_offset_u4(offset); 352 } 353 354 template <typename T> 355 u4 any_to_offset_u4(T p) const { 356 assert(p != nullptr, "must not be null"); 357 uintx offset = any_to_offset((address)p); 358 return to_offset_u4(offset); 359 } 360 361 template <typename T> 362 u4 any_or_null_to_offset_u4(T p) const { 363 if (p == nullptr) { 364 return 0; 365 } else { 366 return any_to_offset_u4<T>(p); 367 } 368 } 369 370 template <typename T> 371 T offset_to_buffered(u4 offset) const { 372 return (T)offset_to_buffered_address(offset); 373 } 374 375 public: 376 ArchiveBuilder(); 377 ~ArchiveBuilder(); 378 379 int entropy(); 380 void gather_klasses_and_symbols(); 381 void gather_source_objs(); 382 bool gather_klass_and_symbol(MetaspaceClosure::Ref* ref, bool read_only); 383 bool gather_one_source_obj(MetaspaceClosure::Ref* ref, bool read_only); 384 void remember_embedded_pointer_in_enclosing_obj(MetaspaceClosure::Ref* ref); 385 static void serialize_dynamic_archivable_items(SerializeClosure* soc); 386 387 DumpRegion* pz_region() { return &_pz_region; } 388 DumpRegion* rw_region() { return &_rw_region; } 389 DumpRegion* ro_region() { return &_ro_region; } 390 DumpRegion* ac_region() { return &_ac_region; } 391 392 static char* rw_region_alloc(size_t num_bytes) { 393 return current()->rw_region()->allocate(num_bytes); 394 } 395 static char* ro_region_alloc(size_t num_bytes) { 396 return current()->ro_region()->allocate(num_bytes); 397 } 398 static char* ac_region_alloc(size_t num_bytes) { 399 return current()->ac_region()->allocate(num_bytes); 400 } 401 402 void start_ac_region(); 403 void end_ac_region(); 404 405 template <typename T> 406 static Array<T>* new_ro_array(int length) { 407 size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T)); 408 Array<T>* array = (Array<T>*)ro_region_alloc(byte_size); 409 array->initialize(length); 410 return array; 411 } 412 413 template <typename T> 414 static Array<T>* new_rw_array(int length) { 415 size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T)); 416 Array<T>* array = (Array<T>*)rw_region_alloc(byte_size); 417 array->initialize(length); 418 return array; 419 } 420 421 template <typename T> 422 static size_t ro_array_bytesize(int length) { 423 size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T)); 424 return align_up(byte_size, SharedSpaceObjectAlignment); 425 } 426 427 char* ro_strdup(const char* s); 428 429 static int compare_src_objs(SourceObjInfo** a, SourceObjInfo** b); 430 void sort_metadata_objs(); 431 void dump_rw_metadata(); 432 void dump_ro_metadata(); 433 void relocate_metaspaceobj_embedded_pointers(); 434 void record_regenerated_object(address orig_src_obj, address regen_src_obj); 435 void make_klasses_shareable(); 436 void make_training_data_shareable(); 437 void relocate_to_requested(); 438 void write_archive(FileMapInfo* mapinfo, ArchiveHeapInfo* heap_info); 439 void write_region(FileMapInfo* mapinfo, int region_idx, DumpRegion* dump_region, 440 bool read_only, bool allow_exec); 441 442 void write_pointer_in_buffer(address* ptr_location, address src_addr); 443 template <typename T> void write_pointer_in_buffer(T* ptr_location, T src_addr) { 444 write_pointer_in_buffer((address*)ptr_location, (address)src_addr); 445 } 446 447 void mark_and_relocate_to_buffered_addr(address* ptr_location); 448 template <typename T> void mark_and_relocate_to_buffered_addr(T ptr_location) { 449 mark_and_relocate_to_buffered_addr((address*)ptr_location); 450 } 451 452 bool has_been_archived(address src_addr) const; 453 template <typename T> bool has_been_archived(T src_addr) const { 454 return has_been_archived((address)src_addr); 455 } 456 457 address get_buffered_addr(address src_addr) const; 458 template <typename T> T get_buffered_addr(T src_addr) const { 459 CDS_ONLY(return (T)get_buffered_addr((address)src_addr);) 460 NOT_CDS(return nullptr;) 461 } 462 463 address get_source_addr(address buffered_addr) const; 464 template <typename T> T get_source_addr(T buffered_addr) const { 465 return (T)get_source_addr((address)buffered_addr); 466 } 467 468 // All klasses and symbols that will be copied into the archive 469 GrowableArray<Klass*>* klasses() const { return _klasses; } 470 GrowableArray<Symbol*>* symbols() const { return _symbols; } 471 472 static bool is_active() { 473 CDS_ONLY(return (_current != nullptr)); 474 NOT_CDS(return false;) 475 } 476 477 static ArchiveBuilder* current() { 478 assert(_current != nullptr, "ArchiveBuilder must be active"); 479 return _current; 480 } 481 482 static DumpAllocStats* alloc_stats() { 483 return &(current()->_alloc_stats); 484 } 485 486 static CompactHashtableStats* symbol_stats() { 487 return alloc_stats()->symbol_stats(); 488 } 489 490 static CompactHashtableStats* string_stats() { 491 return alloc_stats()->string_stats(); 492 } 493 494 narrowKlass get_requested_narrow_klass(Klass* k); 495 496 static Klass* get_buffered_klass(Klass* src_klass) { 497 Klass* klass = (Klass*)current()->get_buffered_addr((address)src_klass); 498 assert(klass != nullptr && klass->is_klass(), "must be"); 499 return klass; 500 } 501 502 static Symbol* get_buffered_symbol(Symbol* src_symbol) { 503 return (Symbol*)current()->get_buffered_addr((address)src_symbol); 504 } 505 506 void print_stats(); 507 void report_out_of_space(const char* name, size_t needed_bytes); 508 509 #ifdef _LP64 510 // The CDS archive contains pre-computed narrow Klass IDs. It carries them in the headers of 511 // archived heap objects. With +UseCompactObjectHeaders, it also carries them in prototypes 512 // in Klass. 513 // When generating the archive, these narrow Klass IDs are computed using the following scheme: 514 // 1) The future encoding base is assumed to point to the first address of the generated mapping. 515 // That means that at runtime, the narrow Klass encoding must be set up with base pointing to 516 // the start address of the mapped CDS metadata archive (wherever that may be). This precludes 517 // zero-based encoding. 518 // 2) The shift must be large enough to result in an encoding range that covers the future assumed 519 // runtime Klass range. That future Klass range will contain both the CDS metadata archive and 520 // the future runtime class space. Since we do not know the size of the future class space, we 521 // need to chose an encoding base/shift combination that will result in a "large enough" size. 522 // The details depend on whether we use compact object headers or legacy object headers. 523 // In Legacy Mode, a narrow Klass ID is 32 bit. This gives us an encoding range size of 4G even 524 // with shift = 0, which is all we need. Therefore, we use a shift=0 for pre-calculating the 525 // narrow Klass IDs. 526 // TinyClassPointer Mode: 527 // We use the highest possible shift value to maximize the encoding range size. 528 static int precomputed_narrow_klass_shift(); 529 #endif // _LP64 530 531 }; 532 533 #endif // SHARE_CDS_ARCHIVEBUILDER_HPP