1 /*
  2  * Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_CDS_ARCHIVEBUILDER_HPP
 26 #define SHARE_CDS_ARCHIVEBUILDER_HPP
 27 
 28 #include "cds/archiveUtils.hpp"
 29 #include "cds/dumpAllocStats.hpp"
 30 #include "memory/metaspace.hpp"
 31 #include "memory/metaspaceClosure.hpp"
 32 #include "memory/reservedSpace.hpp"
 33 #include "memory/virtualspace.hpp"
 34 #include "oops/array.hpp"
 35 #include "oops/klass.hpp"
 36 #include "runtime/os.hpp"
 37 #include "utilities/bitMap.hpp"
 38 #include "utilities/growableArray.hpp"
 39 #include "utilities/resizeableResourceHash.hpp"
 40 #include "utilities/resourceHash.hpp"
 41 
 42 class ArchiveHeapInfo;
 43 class CHeapBitMap;
 44 class FileMapInfo;
 45 class Klass;
 46 class MemRegion;
 47 class Symbol;
 48 
 49 // The minimum alignment for non-Klass objects inside the CDS archive. Klass objects need
 50 // to follow CompressedKlassPointers::klass_alignment_in_bytes().
 51 constexpr size_t SharedSpaceObjectAlignment = Metaspace::min_allocation_alignment_bytes;
 52 
 53 // Overview of CDS archive creation (for both static and dynamic dump):
 54 //
 55 // [1] Load all classes (static dump: from the classlist, dynamic dump: as part of app execution)
 56 // [2] Allocate "output buffer"
 57 // [3] Copy contents of the 2 "core" regions (rw/ro) into the output buffer.
 58 //       - allocate the cpp vtables in rw (static dump only)
 59 //       - memcpy the MetaspaceObjs into rw/ro:
 60 //         dump_rw_region();
 61 //         dump_ro_region();
 62 //       - fix all the pointers in the MetaspaceObjs to point to the copies
 63 //         relocate_metaspaceobj_embedded_pointers()
 64 // [4] Copy symbol table, dictionary, etc, into the ro region
 65 // [5] Relocate all the pointers in rw/ro, so that the archive can be mapped to
 66 //     the "requested" location without runtime relocation. See relocate_to_requested()
 67 //
 68 // "source" vs "buffered" vs "requested"
 69 //
 70 // The ArchiveBuilder deals with three types of addresses.
 71 //
 72 // "source":    These are the addresses of objects created in step [1] above. They are the actual
 73 //              InstanceKlass*, Method*, etc, of the Java classes that are loaded for executing
 74 //              Java bytecodes in the JVM process that's dumping the CDS archive.
 75 //
 76 //              It may be necessary to contiue Java execution after ArchiveBuilder is finished.
 77 //              Therefore, we don't modify any of the "source" objects.
 78 //
 79 // "buffered":  The "source" objects that are deemed archivable are copied into a temporary buffer.
 80 //              Objects in the buffer are modified in steps [2, 3, 4] (e.g., unshareable info is
 81 //              removed, pointers are relocated, etc) to prepare them to be loaded at runtime.
 82 //
 83 // "requested": These are the addreses where the "buffered" objects should be loaded at runtime.
 84 //              When the "buffered" objects are written into the archive file, their addresses
 85 //              are adjusted in step [5] such that the lowest of these objects would be mapped
 86 //              at SharedBaseAddress.
 87 //
 88 // Translation between "source" and "buffered" addresses is done with two hashtables:
 89 //     _src_obj_table          : "source"   -> "buffered"
 90 //     _buffered_to_src_table  : "buffered" -> "source"
 91 //
 92 // Translation between "buffered" and "requested" addresses is done with a simple shift:
 93 //    buffered_address + _buffer_to_requested_delta == requested_address
 94 //
 95 class ArchiveBuilder : public StackObj {
 96 protected:
 97   DumpRegion* _current_dump_region;
 98   address _buffer_bottom;                      // for writing the contents of rw/ro regions
 99 
100   // These are the addresses where we will request the static and dynamic archives to be
101   // mapped at run time. If the request fails (due to ASLR), we will map the archives at
102   // os-selected addresses.
103   address _requested_static_archive_bottom;     // This is determined solely by the value of
104                                                 // SharedBaseAddress during -Xshare:dump.
105   address _requested_static_archive_top;
106   address _requested_dynamic_archive_bottom;    // Used only during dynamic dump. It's placed
107                                                 // immediately above _requested_static_archive_top.
108   address _requested_dynamic_archive_top;
109 
110   // (Used only during dynamic dump) where the static archive is actually mapped. This
111   // may be different than _requested_static_archive_{bottom,top} due to ASLR
112   address _mapped_static_archive_bottom;
113   address _mapped_static_archive_top;
114 
115   intx _buffer_to_requested_delta;
116 
117   DumpRegion* current_dump_region() const {  return _current_dump_region;  }
118 
119 public:
120   enum FollowMode {
121     make_a_copy, point_to_it, set_to_null
122   };
123 
124 private:
125   class SourceObjInfo {
126     uintx _ptrmap_start;     // The bit-offset of the start of this object (inclusive)
127     uintx _ptrmap_end;       // The bit-offset of the end   of this object (exclusive)
128     bool _read_only;
129     bool _has_embedded_pointer;
130     FollowMode _follow_mode;
131     int _size_in_bytes;
132     int _id; // Each object has a unique serial ID, starting from zero. The ID is assigned
133              // when the object is added into _source_objs.
134     MetaspaceObj::Type _msotype;
135     address _source_addr;    // The source object to be copied.
136     address _buffered_addr;  // The copy of this object insider the buffer.
137   public:
138     SourceObjInfo(MetaspaceClosure::Ref* ref, bool read_only, FollowMode follow_mode) :
139       _ptrmap_start(0), _ptrmap_end(0), _read_only(read_only), _has_embedded_pointer(false), _follow_mode(follow_mode),
140       _size_in_bytes(ref->size() * BytesPerWord), _id(0), _msotype(ref->msotype()),
141       _source_addr(ref->obj()) {
142       if (follow_mode == point_to_it) {
143         _buffered_addr = ref->obj();
144       } else {
145         _buffered_addr = nullptr;
146       }
147     }
148 
149     // This constructor is only used for regenerated objects (created by LambdaFormInvokers, etc).
150     //   src = address of a Method or InstanceKlass that has been regenerated.
151     //   renegerated_obj_info = info for the regenerated version of src.
152     SourceObjInfo(address src, SourceObjInfo* renegerated_obj_info) :
153       _ptrmap_start(0), _ptrmap_end(0), _read_only(false),
154       _follow_mode(renegerated_obj_info->_follow_mode),
155       _size_in_bytes(0), _msotype(renegerated_obj_info->_msotype),
156       _source_addr(src),  _buffered_addr(renegerated_obj_info->_buffered_addr) {}
157 
158     bool should_copy() const { return _follow_mode == make_a_copy; }
159     void set_buffered_addr(address addr)  {
160       assert(should_copy(), "must be");
161       assert(_buffered_addr == nullptr, "cannot be copied twice");
162       assert(addr != nullptr, "must be a valid copy");
163       _buffered_addr = addr;
164     }
165     void set_ptrmap_start(uintx v) { _ptrmap_start = v;    }
166     void set_ptrmap_end(uintx v)   { _ptrmap_end = v;      }
167     uintx ptrmap_start()  const    { return _ptrmap_start; } // inclusive
168     uintx ptrmap_end()    const    { return _ptrmap_end;   } // exclusive
169     bool read_only()      const    { return _read_only;    }
170     bool has_embedded_pointer() const { return _has_embedded_pointer; }
171     void set_has_embedded_pointer()   { _has_embedded_pointer = true; }
172     int size_in_bytes()   const    { return _size_in_bytes; }
173     int id()              const    { return _id; }
174     void set_id(int i)             { _id = i; }
175     address source_addr() const    { return _source_addr; }
176     address buffered_addr() const  {
177       if (_follow_mode != set_to_null) {
178         assert(_buffered_addr != nullptr, "must be initialized");
179       }
180       return _buffered_addr;
181     }
182     MetaspaceObj::Type msotype() const { return _msotype; }
183   };
184 
185   class SourceObjList {
186     uintx _total_bytes;
187     GrowableArray<SourceObjInfo*>* _objs;     // Source objects to be archived
188     CHeapBitMap _ptrmap;                      // Marks the addresses of the pointer fields
189                                               // in the source objects
190   public:
191     SourceObjList();
192     ~SourceObjList();
193 
194     GrowableArray<SourceObjInfo*>* objs() const { return _objs; }
195 
196     void append(SourceObjInfo* src_info);
197     void remember_embedded_pointer(SourceObjInfo* pointing_obj, MetaspaceClosure::Ref* ref);
198     void relocate(int i, ArchiveBuilder* builder);
199 
200     // convenience accessor
201     SourceObjInfo* at(int i) const { return objs()->at(i); }
202   };
203 
204   class CDSMapLogger;
205 
206   static const int INITIAL_TABLE_SIZE = 15889;
207   static const int MAX_TABLE_SIZE     = 1000000;
208 
209   ReservedSpace _shared_rs;
210   VirtualSpace _shared_vs;
211 
212   // The "pz" region is used only during static dumps to reserve an unused space between SharedBaseAddress and
213   // the bottom of the rw region. During runtime, this space will be filled with a reserved area that disallows
214   // read/write/exec, so we can track for bad CompressedKlassPointers encoding.
215   // Note: this region does NOT exist in the cds archive.
216   DumpRegion _pz_region;
217 
218   DumpRegion _rw_region;
219   DumpRegion _ro_region;
220   DumpRegion _ac_region; // AOT code
221 
222   // Combined bitmap to track pointers in both RW and RO regions. This is updated
223   // as objects are copied into RW and RO.
224   CHeapBitMap _ptrmap;
225 
226   // _ptrmap is split into these two bitmaps which are written into the archive.
227   CHeapBitMap _rw_ptrmap;   // marks pointers in the RW region
228   CHeapBitMap _ro_ptrmap;   // marks pointers in the RO region
229 
230   SourceObjList _rw_src_objs;                 // objs to put in rw region
231   SourceObjList _ro_src_objs;                 // objs to put in ro region
232   ResizeableResourceHashtable<address, SourceObjInfo, AnyObj::C_HEAP, mtClassShared> _src_obj_table;
233   ResizeableResourceHashtable<address, address, AnyObj::C_HEAP, mtClassShared> _buffered_to_src_table;
234   GrowableArray<Klass*>* _klasses;
235   GrowableArray<Symbol*>* _symbols;
236   unsigned int _entropy_seed;
237 
238   // statistics
239   DumpAllocStats _alloc_stats;
240   size_t _total_heap_region_size;
241   struct {
242     size_t _num_ptrs;
243     size_t _num_tagged_ptrs;
244     size_t _num_nulled_ptrs;
245   } _relocated_ptr_info;
246 
247   void print_region_stats(FileMapInfo *map_info, ArchiveHeapInfo* heap_info);
248   void print_bitmap_region_stats(size_t size, size_t total_size);
249   void print_heap_region_stats(ArchiveHeapInfo* heap_info, size_t total_size);
250 
251   // For global access.
252   static ArchiveBuilder* _current;
253 
254 public:
255   // Use this when you allocate space outside of ArchiveBuilder::dump_{rw,ro}_region.
256   // These are usually for misc tables that are allocated in the RO space.
257   class OtherROAllocMark {
258     char* _oldtop;
259   public:
260     OtherROAllocMark() {
261       _oldtop = _current->_ro_region.top();
262     }
263     ~OtherROAllocMark();
264   };
265 
266   void count_relocated_pointer(bool tagged, bool nulled);
267 
268 private:
269   FollowMode get_follow_mode(MetaspaceClosure::Ref *ref);
270 
271   void iterate_sorted_roots(MetaspaceClosure* it);
272   void sort_klasses();
273   static int compare_symbols_by_address(Symbol** a, Symbol** b);
274   static int compare_klass_by_name(Klass** a, Klass** b);
275 
276   void make_shallow_copies(DumpRegion *dump_region, const SourceObjList* src_objs);
277   void make_shallow_copy(DumpRegion *dump_region, SourceObjInfo* src_info);
278 
279   void relocate_embedded_pointers(SourceObjList* src_objs);
280 
281   bool is_excluded(Klass* k);
282   void clean_up_src_obj_table();
283 
284 protected:
285   virtual void iterate_roots(MetaspaceClosure* it) = 0;
286   void start_dump_region(DumpRegion* next);
287 
288 public:
289   address reserve_buffer();
290 
291   address buffer_bottom()                    const { return _buffer_bottom;                        }
292   address buffer_top()                       const { return (address)current_dump_region()->top(); }
293   address requested_static_archive_bottom()  const { return  _requested_static_archive_bottom;     }
294   address mapped_static_archive_bottom()     const { return  _mapped_static_archive_bottom;        }
295   intx buffer_to_requested_delta()           const { return _buffer_to_requested_delta;            }
296 
297   bool is_in_buffer_space(address p) const {
298     return (buffer_bottom() != nullptr && buffer_bottom() <= p && p < buffer_top());
299   }
300 
301   template <typename T> bool is_in_requested_static_archive(T p) const {
302     return _requested_static_archive_bottom <= (address)p && (address)p < _requested_static_archive_top;
303   }
304 
305   template <typename T> bool is_in_mapped_static_archive(T p) const {
306     return _mapped_static_archive_bottom <= (address)p && (address)p < _mapped_static_archive_top;
307   }
308 
309   template <typename T> bool is_in_buffer_space(T obj) const {
310     return is_in_buffer_space(address(obj));
311   }
312 
313   template <typename T> T to_requested(T obj) const {
314     assert(is_in_buffer_space(obj), "must be");
315     return (T)(address(obj) + _buffer_to_requested_delta);
316   }
317 
318   static intx get_buffer_to_requested_delta() {
319     return current()->buffer_to_requested_delta();
320   }
321 
322   inline static u4 to_offset_u4(uintx offset) {
323     guarantee(offset <= MAX_SHARED_DELTA, "must be 32-bit offset " INTPTR_FORMAT, offset);
324     return (u4)offset;
325   }
326 
327 public:
328   static const uintx MAX_SHARED_DELTA = ArchiveUtils::MAX_SHARED_DELTA;;
329 
330   // The address p points to an object inside the output buffer. When the archive is mapped
331   // at the requested address, what's the offset of this object from _requested_static_archive_bottom?
332   uintx buffer_to_offset(address p) const;
333 
334   // Same as buffer_to_offset, except that the address p points to either (a) an object
335   // inside the output buffer, or (b), an object in the currently mapped static archive.
336   uintx any_to_offset(address p) const;
337 
338   // The reverse of buffer_to_offset()
339   address offset_to_buffered_address(u4 offset) const;
340 
341   template <typename T>
342   u4 buffer_to_offset_u4(T p) const {
343     uintx offset = buffer_to_offset((address)p);
344     return to_offset_u4(offset);
345   }
346 
347   template <typename T>
348   u4 any_to_offset_u4(T p) const {
349     assert(p != nullptr, "must not be null");
350     uintx offset = any_to_offset((address)p);
351     return to_offset_u4(offset);
352   }
353 
354   template <typename T>
355   u4 any_or_null_to_offset_u4(T p) const {
356     if (p == nullptr) {
357       return 0;
358     } else {
359       return any_to_offset_u4<T>(p);
360     }
361   }
362 
363   template <typename T>
364   T offset_to_buffered(u4 offset) const {
365     return (T)offset_to_buffered_address(offset);
366   }
367 
368 public:
369   ArchiveBuilder();
370   ~ArchiveBuilder();
371 
372   int entropy();
373   void gather_klasses_and_symbols();
374   void gather_source_objs();
375   bool gather_klass_and_symbol(MetaspaceClosure::Ref* ref, bool read_only);
376   bool gather_one_source_obj(MetaspaceClosure::Ref* ref, bool read_only);
377   void remember_embedded_pointer_in_enclosing_obj(MetaspaceClosure::Ref* ref);
378   static void serialize_dynamic_archivable_items(SerializeClosure* soc);
379 
380   DumpRegion* pz_region() { return &_pz_region; }
381   DumpRegion* rw_region() { return &_rw_region; }
382   DumpRegion* ro_region() { return &_ro_region; }
383   DumpRegion* ac_region() { return &_ac_region; }
384 
385   static char* rw_region_alloc(size_t num_bytes) {
386     return current()->rw_region()->allocate(num_bytes);
387   }
388   static char* ro_region_alloc(size_t num_bytes) {
389     return current()->ro_region()->allocate(num_bytes);
390   }
391   static char* ac_region_alloc(size_t num_bytes) {
392     return current()->ac_region()->allocate(num_bytes);
393   }
394 
395   void start_ac_region();
396   void end_ac_region();
397 
398   template <typename T>
399   static Array<T>* new_ro_array(int length) {
400     size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T));
401     Array<T>* array = (Array<T>*)ro_region_alloc(byte_size);
402     array->initialize(length);
403     return array;
404   }
405 
406   template <typename T>
407   static Array<T>* new_rw_array(int length) {
408     size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T));
409     Array<T>* array = (Array<T>*)rw_region_alloc(byte_size);
410     array->initialize(length);
411     return array;
412   }
413 
414   template <typename T>
415   static size_t ro_array_bytesize(int length) {
416     size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T));
417     return align_up(byte_size, SharedSpaceObjectAlignment);
418   }
419 
420   char* ro_strdup(const char* s);
421 
422   static int compare_src_objs(SourceObjInfo** a, SourceObjInfo** b);
423   void sort_metadata_objs();
424   void dump_rw_metadata();
425   void dump_ro_metadata();
426   void relocate_metaspaceobj_embedded_pointers();
427   void record_regenerated_object(address orig_src_obj, address regen_src_obj);
428   void make_klasses_shareable();
429   void make_training_data_shareable();
430   void relocate_to_requested();
431   void write_archive(FileMapInfo* mapinfo, ArchiveHeapInfo* heap_info);
432   void write_region(FileMapInfo* mapinfo, int region_idx, DumpRegion* dump_region,
433                     bool read_only,  bool allow_exec);
434 
435   void write_pointer_in_buffer(address* ptr_location, address src_addr);
436   template <typename T> void write_pointer_in_buffer(T* ptr_location, T src_addr) {
437     write_pointer_in_buffer((address*)ptr_location, (address)src_addr);
438   }
439 
440   void mark_and_relocate_to_buffered_addr(address* ptr_location);
441   template <typename T> void mark_and_relocate_to_buffered_addr(T ptr_location) {
442     mark_and_relocate_to_buffered_addr((address*)ptr_location);
443   }
444 
445   bool has_been_archived(address src_addr) const;
446 
447   bool has_been_buffered(address src_addr) const;
448   template <typename T> bool has_been_buffered(T src_addr) const {
449     return has_been_buffered((address)src_addr);
450   }
451 
452   address get_buffered_addr(address src_addr) const;
453   template <typename T> T get_buffered_addr(T src_addr) const {
454     CDS_ONLY(return (T)get_buffered_addr((address)src_addr);)
455     NOT_CDS(return nullptr;)
456   }
457 
458   address get_source_addr(address buffered_addr) const;
459   template <typename T> T get_source_addr(T buffered_addr) const {
460     return (T)get_source_addr((address)buffered_addr);
461   }
462 
463   // All klasses and symbols that will be copied into the archive
464   GrowableArray<Klass*>*  klasses() const { return _klasses; }
465   GrowableArray<Symbol*>* symbols() const { return _symbols; }
466 
467   static bool is_active() {
468     CDS_ONLY(return (_current != nullptr));
469     NOT_CDS(return false;)
470   }
471 
472   static ArchiveBuilder* current() {
473     assert(_current != nullptr, "ArchiveBuilder must be active");
474     return _current;
475   }
476 
477   static DumpAllocStats* alloc_stats() {
478     return &(current()->_alloc_stats);
479   }
480 
481   static CompactHashtableStats* symbol_stats() {
482     return alloc_stats()->symbol_stats();
483   }
484 
485   static CompactHashtableStats* string_stats() {
486     return alloc_stats()->string_stats();
487   }
488 
489   narrowKlass get_requested_narrow_klass(Klass* k);
490 
491   static Klass* get_buffered_klass(Klass* src_klass) {
492     Klass* klass = (Klass*)current()->get_buffered_addr((address)src_klass);
493     assert(klass != nullptr && klass->is_klass(), "must be");
494     return klass;
495   }
496 
497   static Symbol* get_buffered_symbol(Symbol* src_symbol) {
498     return (Symbol*)current()->get_buffered_addr((address)src_symbol);
499   }
500 
501   void print_stats();
502   void report_out_of_space(const char* name, size_t needed_bytes);
503 
504 #ifdef _LP64
505   // The CDS archive contains pre-computed narrow Klass IDs. It carries them in the headers of
506   // archived heap objects. With +UseCompactObjectHeaders, it also carries them in prototypes
507   // in Klass.
508   // When generating the archive, these narrow Klass IDs are computed using the following scheme:
509   // 1) The future encoding base is assumed to point to the first address of the generated mapping.
510   //    That means that at runtime, the narrow Klass encoding must be set up with base pointing to
511   //    the start address of the mapped CDS metadata archive (wherever that may be). This precludes
512   //    zero-based encoding.
513   // 2) The shift must be large enough to result in an encoding range that covers the future assumed
514   //    runtime Klass range. That future Klass range will contain both the CDS metadata archive and
515   //    the future runtime class space. Since we do not know the size of the future class space, we
516   //    need to chose an encoding base/shift combination that will result in a "large enough" size.
517   //    The details depend on whether we use compact object headers or legacy object headers.
518   //  In Legacy Mode, a narrow Klass ID is 32 bit. This gives us an encoding range size of 4G even
519   //    with shift = 0, which is all we need. Therefore, we use a shift=0 for pre-calculating the
520   //    narrow Klass IDs.
521   // TinyClassPointer Mode:
522   //    We use the highest possible shift value to maximize the encoding range size.
523   static int precomputed_narrow_klass_shift();
524 #endif // _LP64
525 
526 };
527 
528 #endif // SHARE_CDS_ARCHIVEBUILDER_HPP