1 /* 2 * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotReferenceObjSupport.hpp" 26 #include "cds/archiveHeapWriter.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/filemap.hpp" 29 #include "cds/heapShared.hpp" 30 #include "cds/regeneratedClasses.hpp" 31 #include "classfile/javaClasses.hpp" 32 #include "classfile/modules.hpp" 33 #include "classfile/systemDictionary.hpp" 34 #include "gc/shared/collectedHeap.hpp" 35 #include "memory/iterator.inline.hpp" 36 #include "memory/oopFactory.hpp" 37 #include "memory/universe.hpp" 38 #include "oops/compressedOops.hpp" 39 #include "oops/objArrayOop.inline.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/oopHandle.inline.hpp" 42 #include "oops/typeArrayKlass.hpp" 43 #include "oops/typeArrayOop.hpp" 44 #include "runtime/java.hpp" 45 #include "runtime/mutexLocker.hpp" 46 #include "utilities/bitMap.inline.hpp" 47 #if INCLUDE_G1GC 48 #include "gc/g1/g1CollectedHeap.hpp" 49 #include "gc/g1/g1HeapRegion.hpp" 50 #endif 51 52 #if INCLUDE_CDS_JAVA_HEAP 53 54 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr; 55 56 // The following are offsets from buffer_bottom() 57 size_t ArchiveHeapWriter::_buffer_used; 58 59 // Heap root segments 60 HeapRootSegments ArchiveHeapWriter::_heap_root_segments; 61 62 address ArchiveHeapWriter::_requested_bottom; 63 address ArchiveHeapWriter::_requested_top; 64 65 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers; 66 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs; 67 GrowableArrayCHeap<ArchiveHeapWriter::HeapObjOrder, mtClassShared>* ArchiveHeapWriter::_source_objs_order; 68 69 ArchiveHeapWriter::BufferOffsetToSourceObjectTable* 70 ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr; 71 72 73 typedef HashTable< 74 size_t, // offset of a filler from ArchiveHeapWriter::buffer_bottom() 75 size_t, // size of this filler (in bytes) 76 127, // prime number 77 AnyObj::C_HEAP, 78 mtClassShared> FillersTable; 79 static FillersTable* _fillers; 80 static int _num_native_ptrs = 0; 81 82 void ArchiveHeapWriter::init() { 83 if (CDSConfig::is_dumping_heap()) { 84 Universe::heap()->collect(GCCause::_java_lang_system_gc); 85 86 _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M); 87 _fillers = new FillersTable(); 88 _requested_bottom = nullptr; 89 _requested_top = nullptr; 90 91 _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048); 92 _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000); 93 94 guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be"); 95 } 96 } 97 98 void ArchiveHeapWriter::delete_tables_with_raw_oops() { 99 delete _source_objs; 100 _source_objs = nullptr; 101 } 102 103 void ArchiveHeapWriter::add_source_obj(oop src_obj) { 104 _source_objs->append(src_obj); 105 } 106 107 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots, 108 ArchiveHeapInfo* heap_info) { 109 assert(CDSConfig::is_dumping_heap(), "sanity"); 110 allocate_buffer(); 111 copy_source_objs_to_buffer(roots); 112 set_requested_address(heap_info); 113 relocate_embedded_oops(roots, heap_info); 114 } 115 116 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) { 117 return is_too_large_to_archive(o->size()); 118 } 119 120 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) { 121 typeArrayOop value = java_lang_String::value_no_keepalive(string); 122 return is_too_large_to_archive(value); 123 } 124 125 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) { 126 assert(size > 0, "no zero-size object"); 127 assert(size * HeapWordSize > size, "no overflow"); 128 static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive"); 129 130 size_t byte_size = size * HeapWordSize; 131 if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) { 132 return true; 133 } else { 134 return false; 135 } 136 } 137 138 // Various lookup functions between source_obj, buffered_obj and requested_obj 139 bool ArchiveHeapWriter::is_in_requested_range(oop o) { 140 assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized"); 141 address a = cast_from_oop<address>(o); 142 return (_requested_bottom <= a && a < _requested_top); 143 } 144 145 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) { 146 oop req_obj = cast_to_oop(_requested_bottom + offset); 147 assert(is_in_requested_range(req_obj), "must be"); 148 return req_obj; 149 } 150 151 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) { 152 assert(CDSConfig::is_dumping_heap(), "dump-time only"); 153 HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj); 154 if (p != nullptr) { 155 return requested_obj_from_buffer_offset(p->buffer_offset()); 156 } else { 157 return nullptr; 158 } 159 } 160 161 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) { 162 OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr)); 163 if (oh != nullptr) { 164 return oh->resolve(); 165 } else { 166 return nullptr; 167 } 168 } 169 170 Klass* ArchiveHeapWriter::real_klass_of_buffered_oop(address buffered_addr) { 171 oop p = buffered_addr_to_source_obj(buffered_addr); 172 if (p != nullptr) { 173 return p->klass(); 174 } else if (get_filler_size_at(buffered_addr) > 0) { 175 return Universe::fillerArrayKlass(); 176 } else { 177 // This is one of the root segments 178 return Universe::objectArrayKlass(); 179 } 180 } 181 182 size_t ArchiveHeapWriter::size_of_buffered_oop(address buffered_addr) { 183 oop p = buffered_addr_to_source_obj(buffered_addr); 184 if (p != nullptr) { 185 return p->size(); 186 } 187 188 size_t nbytes = get_filler_size_at(buffered_addr); 189 if (nbytes > 0) { 190 assert((nbytes % BytesPerWord) == 0, "should be aligned"); 191 return nbytes / BytesPerWord; 192 } 193 194 address hrs = buffer_bottom(); 195 for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) { 196 nbytes = _heap_root_segments.size_in_bytes(seg_idx); 197 if (hrs == buffered_addr) { 198 assert((nbytes % BytesPerWord) == 0, "should be aligned"); 199 return nbytes / BytesPerWord; 200 } 201 hrs += nbytes; 202 } 203 204 ShouldNotReachHere(); 205 return 0; 206 } 207 208 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) { 209 return _requested_bottom + buffered_address_to_offset(buffered_addr); 210 } 211 212 address ArchiveHeapWriter::requested_address() { 213 assert(_buffer != nullptr, "must be initialized"); 214 return _requested_bottom; 215 } 216 217 void ArchiveHeapWriter::allocate_buffer() { 218 int initial_buffer_size = 100000; 219 _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size); 220 _buffer_used = 0; 221 ensure_buffer_space(1); // so that buffer_bottom() works 222 } 223 224 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) { 225 // We usually have very small heaps. If we get a huge one it's probably caused by a bug. 226 guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects"); 227 _buffer->at_grow(to_array_index(min_bytes)); 228 } 229 230 objArrayOop ArchiveHeapWriter::allocate_root_segment(size_t offset, int element_count) { 231 HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset); 232 memset(mem, 0, objArrayOopDesc::object_size(element_count)); 233 234 // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize. 235 if (UseCompactObjectHeaders) { 236 oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header()); 237 } else { 238 oopDesc::set_mark(mem, markWord::prototype()); 239 oopDesc::release_set_klass(mem, Universe::objectArrayKlass()); 240 } 241 arrayOopDesc::set_length(mem, element_count); 242 return objArrayOop(cast_to_oop(mem)); 243 } 244 245 void ArchiveHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) { 246 // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap! 247 if (UseCompressedOops) { 248 *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root); 249 } else { 250 *segment->obj_at_addr<oop>(index) = root; 251 } 252 } 253 254 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 255 // Depending on the number of classes we are archiving, a single roots array may be 256 // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which 257 // allows us to chop the large array into a series of "segments". Current layout 258 // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end 259 // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT. 260 // This is simple and efficient. We do not need filler objects anywhere between the segments, 261 // or immediately after the last segment. This allows starting the object dump immediately 262 // after the roots. 263 264 assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0, 265 "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used); 266 267 int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize); 268 assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT, 269 "Should match exactly"); 270 271 HeapRootSegments segments(_buffer_used, 272 roots->length(), 273 MIN_GC_REGION_ALIGNMENT, 274 max_elem_count); 275 276 int root_index = 0; 277 for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) { 278 int size_elems = segments.size_in_elems(seg_idx); 279 size_t size_bytes = segments.size_in_bytes(seg_idx); 280 281 size_t oop_offset = _buffer_used; 282 _buffer_used = oop_offset + size_bytes; 283 ensure_buffer_space(_buffer_used); 284 285 assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0, 286 "Roots segment %zu start is not aligned: %zu", 287 segments.count(), oop_offset); 288 289 objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems); 290 for (int i = 0; i < size_elems; i++) { 291 root_segment_at_put(seg_oop, i, roots->at(root_index++)); 292 } 293 294 log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT, 295 size_elems, size_bytes, p2i(seg_oop)); 296 } 297 298 assert(root_index == roots->length(), "Post-condition: All roots are handled"); 299 300 _heap_root_segments = segments; 301 } 302 303 // The goal is to sort the objects in increasing order of: 304 // - objects that have only oop pointers 305 // - objects that have both native and oop pointers 306 // - objects that have only native pointers 307 // - objects that have no pointers 308 static int oop_sorting_rank(oop o) { 309 bool has_oop_ptr, has_native_ptr; 310 HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr); 311 312 if (has_oop_ptr) { 313 if (!has_native_ptr) { 314 return 0; 315 } else { 316 return 1; 317 } 318 } else { 319 if (has_native_ptr) { 320 return 2; 321 } else { 322 return 3; 323 } 324 } 325 } 326 327 int ArchiveHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) { 328 int rank_a = a->_rank; 329 int rank_b = b->_rank; 330 331 if (rank_a != rank_b) { 332 return rank_a - rank_b; 333 } else { 334 // If they are the same rank, sort them by their position in the _source_objs array 335 return a->_index - b->_index; 336 } 337 } 338 339 void ArchiveHeapWriter::sort_source_objs() { 340 log_info(aot)("sorting heap objects"); 341 int len = _source_objs->length(); 342 _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len); 343 344 for (int i = 0; i < len; i++) { 345 oop o = _source_objs->at(i); 346 int rank = oop_sorting_rank(o); 347 HeapObjOrder os = {i, rank}; 348 _source_objs_order->append(os); 349 } 350 log_info(aot)("computed ranks"); 351 _source_objs_order->sort(compare_objs_by_oop_fields); 352 log_info(aot)("sorting heap objects done"); 353 } 354 355 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 356 // There could be multiple root segments, which we want to be aligned by region. 357 // Putting them ahead of objects makes sure we waste no space. 358 copy_roots_to_buffer(roots); 359 360 sort_source_objs(); 361 for (int i = 0; i < _source_objs_order->length(); i++) { 362 int src_obj_index = _source_objs_order->at(i)._index; 363 oop src_obj = _source_objs->at(src_obj_index); 364 HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj); 365 assert(info != nullptr, "must be"); 366 size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj); 367 info->set_buffer_offset(buffer_offset); 368 369 OopHandle handle(Universe::vm_global(), src_obj); 370 _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle); 371 _buffer_offset_to_source_obj_table->maybe_grow(); 372 373 if (java_lang_Module::is_instance(src_obj)) { 374 Modules::check_archived_module_oop(src_obj); 375 } 376 } 377 378 log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs", 379 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs); 380 } 381 382 size_t ArchiveHeapWriter::filler_array_byte_size(int length) { 383 size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize; 384 return byte_size; 385 } 386 387 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) { 388 assert(is_object_aligned(fill_bytes), "must be"); 389 size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 390 391 int initial_length = to_array_length(fill_bytes / elemSize); 392 for (int length = initial_length; length >= 0; length --) { 393 size_t array_byte_size = filler_array_byte_size(length); 394 if (array_byte_size == fill_bytes) { 395 return length; 396 } 397 } 398 399 ShouldNotReachHere(); 400 return -1; 401 } 402 403 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) { 404 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 405 Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass 406 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 407 memset(mem, 0, fill_bytes); 408 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak); 409 if (UseCompactObjectHeaders) { 410 oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk)); 411 } else { 412 oopDesc::set_mark(mem, markWord::prototype()); 413 cast_to_oop(mem)->set_narrow_klass(nk); 414 } 415 arrayOopDesc::set_length(mem, array_length); 416 return mem; 417 } 418 419 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) { 420 // We fill only with arrays (so we don't need to use a single HeapWord filler if the 421 // leftover space is smaller than a zero-sized array object). Therefore, we need to 422 // make sure there's enough space of min_filler_byte_size in the current region after 423 // required_byte_size has been allocated. If not, fill the remainder of the current 424 // region. 425 size_t min_filler_byte_size = filler_array_byte_size(0); 426 size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size; 427 428 const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 429 const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 430 431 if (cur_min_region_bottom != next_min_region_bottom) { 432 // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way 433 // we can map the region in any region-based collector. 434 assert(next_min_region_bottom > cur_min_region_bottom, "must be"); 435 assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT, 436 "no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT); 437 438 const size_t filler_end = next_min_region_bottom; 439 const size_t fill_bytes = filler_end - _buffer_used; 440 assert(fill_bytes > 0, "must be"); 441 ensure_buffer_space(filler_end); 442 443 int array_length = filler_array_length(fill_bytes); 444 log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu", 445 array_length, fill_bytes, _buffer_used); 446 HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes); 447 _buffer_used = filler_end; 448 _fillers->put(buffered_address_to_offset((address)filler), fill_bytes); 449 } 450 } 451 452 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) { 453 size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr)); 454 if (p != nullptr) { 455 assert(*p > 0, "filler must be larger than zero bytes"); 456 return *p; 457 } else { 458 return 0; // buffered_addr is not a filler 459 } 460 } 461 462 template <typename T> 463 void update_buffered_object_field(address buffered_obj, int field_offset, T value) { 464 T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset); 465 *field_addr = value; 466 } 467 468 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) { 469 assert(!is_too_large_to_archive(src_obj), "already checked"); 470 size_t byte_size = src_obj->size() * HeapWordSize; 471 assert(byte_size > 0, "no zero-size objects"); 472 473 // For region-based collectors such as G1, the archive heap may be mapped into 474 // multiple regions. We need to make sure that we don't have an object that can possible 475 // span across two regions. 476 maybe_fill_gc_region_gap(byte_size); 477 478 size_t new_used = _buffer_used + byte_size; 479 assert(new_used > _buffer_used, "no wrap around"); 480 481 size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 482 size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 483 assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries"); 484 485 ensure_buffer_space(new_used); 486 487 address from = cast_from_oop<address>(src_obj); 488 address to = offset_to_buffered_address<address>(_buffer_used); 489 assert(is_object_aligned(_buffer_used), "sanity"); 490 assert(is_object_aligned(byte_size), "sanity"); 491 memcpy(to, from, byte_size); 492 493 // These native pointers will be restored explicitly at run time. 494 if (java_lang_Module::is_instance(src_obj)) { 495 update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr); 496 } else if (java_lang_ClassLoader::is_instance(src_obj)) { 497 #ifdef ASSERT 498 // We only archive these loaders 499 if (src_obj != SystemDictionary::java_platform_loader() && 500 src_obj != SystemDictionary::java_system_loader()) { 501 assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be"); 502 } 503 #endif 504 update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr); 505 } 506 507 size_t buffered_obj_offset = _buffer_used; 508 _buffer_used = new_used; 509 510 return buffered_obj_offset; 511 } 512 513 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) { 514 assert(!info->is_used(), "only set once"); 515 516 size_t heap_region_byte_size = _buffer_used; 517 assert(heap_region_byte_size > 0, "must archived at least one object!"); 518 519 if (UseCompressedOops) { 520 if (UseG1GC) { 521 address heap_end = (address)G1CollectedHeap::heap()->reserved().end(); 522 log_info(aot, heap)("Heap end = %p", heap_end); 523 _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes); 524 _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT); 525 assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity"); 526 } else { 527 _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT); 528 } 529 } else { 530 // We always write the objects as if the heap started at this address. This 531 // makes the contents of the archive heap deterministic. 532 // 533 // Note that at runtime, the heap address is selected by the OS, so the archive 534 // heap will not be mapped at 0x10000000, and the contents need to be patched. 535 _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT); 536 } 537 538 assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity"); 539 540 _requested_top = _requested_bottom + _buffer_used; 541 542 info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0), 543 offset_to_buffered_address<HeapWord*>(_buffer_used))); 544 info->set_heap_root_segments(_heap_root_segments); 545 } 546 547 // Oop relocation 548 549 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) { 550 assert(is_in_requested_range(cast_to_oop(p)), "must be"); 551 552 address addr = address(p); 553 assert(addr >= _requested_bottom, "must be"); 554 size_t offset = addr - _requested_bottom; 555 return offset_to_buffered_address<T*>(offset); 556 } 557 558 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) { 559 oop o = load_oop_from_buffer(buffered_addr); 560 assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop"); 561 return o; 562 } 563 564 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr, 565 oop request_oop) { 566 assert(is_in_requested_range(request_oop), "must be"); 567 store_oop_in_buffer(buffered_addr, request_oop); 568 } 569 570 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) { 571 *buffered_addr = requested_obj; 572 } 573 574 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) { 575 narrowOop val = CompressedOops::encode_not_null(requested_obj); 576 *buffered_addr = val; 577 } 578 579 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) { 580 return *buffered_addr; 581 } 582 583 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) { 584 return CompressedOops::decode(*buffered_addr); 585 } 586 587 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) { 588 oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer); 589 if (source_referent != nullptr) { 590 if (java_lang_Class::is_instance(source_referent)) { 591 Klass* k = java_lang_Class::as_Klass(source_referent); 592 if (RegeneratedClasses::has_been_regenerated(k)) { 593 source_referent = RegeneratedClasses::get_regenerated_object(k)->java_mirror(); 594 } 595 // When the source object points to a "real" mirror, the buffered object should point 596 // to the "scratch" mirror, which has all unarchivable fields scrubbed (to be reinstated 597 // at run time). 598 source_referent = HeapShared::scratch_java_mirror(source_referent); 599 assert(source_referent != nullptr, "must be"); 600 } 601 oop request_referent = source_obj_to_requested_obj(source_referent); 602 store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent); 603 mark_oop_pointer<T>(field_addr_in_buffer, oopmap); 604 } 605 } 606 607 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) { 608 T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr)); 609 address requested_region_bottom; 610 611 assert(request_p >= (T*)_requested_bottom, "sanity"); 612 assert(request_p < (T*)_requested_top, "sanity"); 613 requested_region_bottom = _requested_bottom; 614 615 // Mark the pointer in the oopmap 616 T* region_bottom = (T*)requested_region_bottom; 617 assert(request_p >= region_bottom, "must be"); 618 BitMap::idx_t idx = request_p - region_bottom; 619 assert(idx < oopmap->size(), "overflow"); 620 oopmap->set_bit(idx); 621 } 622 623 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) { 624 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 625 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass); 626 address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj)); 627 628 oop fake_oop = cast_to_oop(buffered_addr); 629 if (UseCompactObjectHeaders) { 630 fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk)); 631 } else { 632 fake_oop->set_narrow_klass(nk); 633 } 634 635 if (src_obj == nullptr) { 636 return; 637 } 638 // We need to retain the identity_hash, because it may have been used by some hashtables 639 // in the shared heap. 640 if (!src_obj->fast_no_hash_check()) { 641 intptr_t src_hash = src_obj->identity_hash(); 642 if (UseCompactObjectHeaders) { 643 fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash)); 644 } else { 645 fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash)); 646 } 647 assert(fake_oop->mark().is_unlocked(), "sanity"); 648 649 DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash()); 650 assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash); 651 } 652 // Strip age bits. 653 fake_oop->set_mark(fake_oop->mark().set_age(0)); 654 } 655 656 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure { 657 oop _src_obj; 658 address _buffered_obj; 659 CHeapBitMap* _oopmap; 660 bool _is_java_lang_ref; 661 public: 662 EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) : 663 _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) 664 { 665 _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj); 666 } 667 668 void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); } 669 void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); } 670 671 private: 672 template <class T> void do_oop_work(T *p) { 673 int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj)); 674 T* field_addr = (T*)(_buffered_obj + field_offset); 675 if (_is_java_lang_ref && AOTReferenceObjSupport::skip_field(field_offset)) { 676 // Do not copy these fields. Set them to null 677 *field_addr = (T)0x0; 678 } else { 679 ArchiveHeapWriter::relocate_field_in_buffer<T>(field_addr, _oopmap); 680 } 681 } 682 }; 683 684 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) { 685 // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end). 686 size_t start = bitmap->find_first_set_bit(0); 687 size_t end = bitmap->size(); 688 log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which, 689 start, end, 690 start * 100 / total_bits, 691 end * 100 / total_bits, 692 (end - start) * 100 / total_bits); 693 } 694 695 // Update all oop fields embedded in the buffered objects 696 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots, 697 ArchiveHeapInfo* heap_info) { 698 size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 699 size_t heap_region_byte_size = _buffer_used; 700 heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit); 701 702 for (int i = 0; i < _source_objs_order->length(); i++) { 703 int src_obj_index = _source_objs_order->at(i)._index; 704 oop src_obj = _source_objs->at(src_obj_index); 705 HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj); 706 assert(info != nullptr, "must be"); 707 oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset()); 708 update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass()); 709 address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset()); 710 EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap()); 711 src_obj->oop_iterate(&relocator); 712 }; 713 714 // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and 715 // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it. 716 for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) { 717 size_t seg_offset = _heap_root_segments.segment_offset(seg_idx); 718 719 objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset); 720 update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass()); 721 address buffered_obj = offset_to_buffered_address<address>(seg_offset); 722 int length = _heap_root_segments.size_in_elems(seg_idx); 723 724 if (UseCompressedOops) { 725 for (int i = 0; i < length; i++) { 726 narrowOop* addr = (narrowOop*)(buffered_obj + objArrayOopDesc::obj_at_offset<narrowOop>(i)); 727 relocate_field_in_buffer<narrowOop>(addr, heap_info->oopmap()); 728 } 729 } else { 730 for (int i = 0; i < length; i++) { 731 oop* addr = (oop*)(buffered_obj + objArrayOopDesc::obj_at_offset<oop>(i)); 732 relocate_field_in_buffer<oop>(addr, heap_info->oopmap()); 733 } 734 } 735 } 736 737 compute_ptrmap(heap_info); 738 739 size_t total_bytes = (size_t)_buffer->length(); 740 log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop))); 741 log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address)); 742 } 743 744 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) { 745 Metadata* ptr = src_obj->metadata_field_acquire(field_offset); 746 if (ptr != nullptr) { 747 NativePointerInfo info; 748 info._src_obj = src_obj; 749 info._field_offset = field_offset; 750 _native_pointers->append(info); 751 HeapShared::set_has_native_pointers(src_obj); 752 _num_native_ptrs ++; 753 } 754 } 755 756 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) { 757 int num_non_null_ptrs = 0; 758 Metadata** bottom = (Metadata**) _requested_bottom; 759 Metadata** top = (Metadata**) _requested_top; // exclusive 760 heap_info->ptrmap()->resize(top - bottom); 761 762 BitMap::idx_t max_idx = 32; // paranoid - don't make it too small 763 for (int i = 0; i < _native_pointers->length(); i++) { 764 NativePointerInfo info = _native_pointers->at(i); 765 oop src_obj = info._src_obj; 766 int field_offset = info._field_offset; 767 HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj); 768 // requested_field_addr = the address of this field in the requested space 769 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 770 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 771 assert(bottom <= requested_field_addr && requested_field_addr < top, "range check"); 772 773 // Mark this field in the bitmap 774 BitMap::idx_t idx = requested_field_addr - bottom; 775 heap_info->ptrmap()->set_bit(idx); 776 num_non_null_ptrs ++; 777 max_idx = MAX2(max_idx, idx); 778 779 // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have 780 // this address if the RO/RW regions are mapped at the default location). 781 782 Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr); 783 Metadata* native_ptr = *buffered_field_addr; 784 guarantee(native_ptr != nullptr, "sanity"); 785 786 if (RegeneratedClasses::has_been_regenerated(native_ptr)) { 787 native_ptr = RegeneratedClasses::get_regenerated_object(native_ptr); 788 } 789 790 guarantee(ArchiveBuilder::current()->has_been_archived((address)native_ptr), 791 "Metadata %p should have been archived", native_ptr); 792 793 address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr); 794 address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr); 795 *buffered_field_addr = (Metadata*)requested_native_ptr; 796 } 797 798 heap_info->ptrmap()->resize(max_idx + 1); 799 log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)", 800 num_non_null_ptrs, size_t(heap_info->ptrmap()->size())); 801 } 802 803 #endif // INCLUDE_CDS_JAVA_HEAP