1 /*
  2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "cds/archiveHeapWriter.hpp"
 27 #include "cds/cdsConfig.hpp"
 28 #include "cds/filemap.hpp"
 29 #include "cds/heapShared.hpp"
 30 #include "classfile/javaClasses.hpp"
 31 #include "classfile/systemDictionary.hpp"
 32 #include "gc/shared/collectedHeap.hpp"
 33 #include "memory/iterator.inline.hpp"
 34 #include "memory/oopFactory.hpp"
 35 #include "memory/universe.hpp"
 36 #include "oops/compressedOops.hpp"
 37 #include "oops/objArrayOop.inline.hpp"
 38 #include "oops/oop.inline.hpp"
 39 #include "oops/oopHandle.inline.hpp"
 40 #include "oops/typeArrayKlass.hpp"
 41 #include "oops/typeArrayOop.hpp"
 42 #include "runtime/java.hpp"
 43 #include "runtime/mutexLocker.hpp"
 44 #include "utilities/bitMap.inline.hpp"
 45 #if INCLUDE_G1GC
 46 #include "gc/g1/g1CollectedHeap.hpp"
 47 #include "gc/g1/g1HeapRegion.hpp"
 48 #endif
 49 
 50 #if INCLUDE_CDS_JAVA_HEAP
 51 
 52 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr;
 53 
 54 // The following are offsets from buffer_bottom()
 55 size_t ArchiveHeapWriter::_buffer_used;
 56 
 57 // Heap root segments
 58 HeapRootSegments ArchiveHeapWriter::_heap_root_segments;
 59 
 60 address ArchiveHeapWriter::_requested_bottom;
 61 address ArchiveHeapWriter::_requested_top;
 62 
 63 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers;
 64 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs;
 65 GrowableArrayCHeap<ArchiveHeapWriter::HeapObjOrder, mtClassShared>* ArchiveHeapWriter::_source_objs_order;
 66 
 67 ArchiveHeapWriter::BufferOffsetToSourceObjectTable*
 68   ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
 69 
 70 
 71 typedef ResourceHashtable<
 72       size_t,    // offset of a filler from ArchiveHeapWriter::buffer_bottom()
 73       size_t,    // size of this filler (in bytes)
 74       127,       // prime number
 75       AnyObj::C_HEAP,
 76       mtClassShared> FillersTable;
 77 static FillersTable* _fillers;
 78 static int _num_native_ptrs = 0;
 79 
 80 void ArchiveHeapWriter::init() {
 81   if (HeapShared::can_write()) {
 82     Universe::heap()->collect(GCCause::_java_lang_system_gc);
 83 
 84     _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
 85     _fillers = new FillersTable();
 86     _requested_bottom = nullptr;
 87     _requested_top = nullptr;
 88 
 89     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
 90     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
 91 
 92     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
 93   }
 94 }
 95 
 96 void ArchiveHeapWriter::add_source_obj(oop src_obj) {
 97   _source_objs->append(src_obj);
 98 }
 99 
100 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
101                               ArchiveHeapInfo* heap_info) {
102   assert(HeapShared::can_write(), "sanity");
103   allocate_buffer();
104   copy_source_objs_to_buffer(roots);
105   set_requested_address(heap_info);
106   relocate_embedded_oops(roots, heap_info);
107 }
108 
109 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) {
110   return is_too_large_to_archive(o->size());
111 }
112 
113 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) {
114   typeArrayOop value = java_lang_String::value_no_keepalive(string);
115   return is_too_large_to_archive(value);
116 }
117 
118 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) {
119   assert(size > 0, "no zero-size object");
120   assert(size * HeapWordSize > size, "no overflow");
121   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
122 
123   size_t byte_size = size * HeapWordSize;
124   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
125     return true;
126   } else {
127     return false;
128   }
129 }
130 
131 // Various lookup functions between source_obj, buffered_obj and requested_obj
132 bool ArchiveHeapWriter::is_in_requested_range(oop o) {
133   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
134   address a = cast_from_oop<address>(o);
135   return (_requested_bottom <= a && a < _requested_top);
136 }
137 
138 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
139   oop req_obj = cast_to_oop(_requested_bottom + offset);
140   assert(is_in_requested_range(req_obj), "must be");
141   return req_obj;
142 }
143 
144 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) {
145   assert(CDSConfig::is_dumping_heap(), "dump-time only");
146   HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj);
147   if (p != nullptr) {
148     return requested_obj_from_buffer_offset(p->buffer_offset());
149   } else {
150     return nullptr;
151   }
152 }
153 
154 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
155   oop* p = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
156   if (p != nullptr) {
157     return *p;
158   } else {
159     return nullptr;
160   }
161 }
162 
163 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
164   return _requested_bottom + buffered_address_to_offset(buffered_addr);
165 }
166 
167 address ArchiveHeapWriter::requested_address() {
168   assert(_buffer != nullptr, "must be initialized");
169   return _requested_bottom;
170 }
171 
172 void ArchiveHeapWriter::allocate_buffer() {
173   int initial_buffer_size = 100000;
174   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
175   _buffer_used = 0;
176   ensure_buffer_space(1); // so that buffer_bottom() works
177 }
178 
179 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) {
180   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
181   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
182   _buffer->at_grow(to_array_index(min_bytes));
183 }
184 
185 objArrayOop ArchiveHeapWriter::allocate_root_segment(size_t offset, int element_count) {
186   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
187   memset(mem, 0, objArrayOopDesc::object_size(element_count));
188 
189   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
190   if (UseCompactObjectHeaders) {
191     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
192   } else {
193     oopDesc::set_mark(mem, markWord::prototype());
194     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
195   }
196   arrayOopDesc::set_length(mem, element_count);
197   return objArrayOop(cast_to_oop(mem));
198 }
199 
200 void ArchiveHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
201   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
202   if (UseCompressedOops) {
203     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
204   } else {
205     *segment->obj_at_addr<oop>(index) = root;
206   }
207 }
208 
209 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
210   // Depending on the number of classes we are archiving, a single roots array may be
211   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
212   // allows us to chop the large array into a series of "segments". Current layout
213   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
214   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
215   // This is simple and efficient. We do not need filler objects anywhere between the segments,
216   // or immediately after the last segment. This allows starting the object dump immediately
217   // after the roots.
218 
219   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
220          "Pre-condition: Roots start at aligned boundary: " SIZE_FORMAT, _buffer_used);
221 
222   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
223   assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
224          "Should match exactly");
225 
226   HeapRootSegments segments(_buffer_used,
227                             roots->length(),
228                             MIN_GC_REGION_ALIGNMENT,
229                             max_elem_count);
230 
231   int root_index = 0;
232   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
233     int size_elems = segments.size_in_elems(seg_idx);
234     size_t size_bytes = segments.size_in_bytes(seg_idx);
235 
236     size_t oop_offset = _buffer_used;
237     _buffer_used = oop_offset + size_bytes;
238     ensure_buffer_space(_buffer_used);
239 
240     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
241            "Roots segment " SIZE_FORMAT " start is not aligned: " SIZE_FORMAT,
242            segments.count(), oop_offset);
243 
244     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
245     for (int i = 0; i < size_elems; i++) {
246       root_segment_at_put(seg_oop, i, roots->at(root_index++));
247     }
248 
249     log_info(cds, heap)("archived obj root segment [%d] = " SIZE_FORMAT " bytes, obj = " PTR_FORMAT,
250                         size_elems, size_bytes, p2i(seg_oop));
251   }
252 
253   assert(root_index == roots->length(), "Post-condition: All roots are handled");
254 
255   _heap_root_segments = segments;
256 }
257 
258 // The goal is to sort the objects in increasing order of:
259 // - objects that have only oop pointers
260 // - objects that have both native and oop pointers
261 // - objects that have only native pointers
262 // - objects that have no pointers
263 static int oop_sorting_rank(oop o) {
264   bool has_oop_ptr, has_native_ptr;
265   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
266 
267   if (has_oop_ptr) {
268     if (!has_native_ptr) {
269       return 0;
270     } else {
271       return 1;
272     }
273   } else {
274     if (has_native_ptr) {
275       return 2;
276     } else {
277       return 3;
278     }
279   }
280 }
281 
282 int ArchiveHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
283   int rank_a = a->_rank;
284   int rank_b = b->_rank;
285 
286   if (rank_a != rank_b) {
287     return rank_a - rank_b;
288   } else {
289     // If they are the same rank, sort them by their position in the _source_objs array
290     return a->_index - b->_index;
291   }
292 }
293 
294 void ArchiveHeapWriter::sort_source_objs() {
295   log_info(cds)("sorting heap objects");
296   int len = _source_objs->length();
297   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
298 
299   for (int i = 0; i < len; i++) {
300     oop o = _source_objs->at(i);
301     int rank = oop_sorting_rank(o);
302     HeapObjOrder os = {i, rank};
303     _source_objs_order->append(os);
304   }
305   log_info(cds)("computed ranks");
306   _source_objs_order->sort(compare_objs_by_oop_fields);
307   log_info(cds)("sorting heap objects done");
308 }
309 
310 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
311   // There could be multiple root segments, which we want to be aligned by region.
312   // Putting them ahead of objects makes sure we waste no space.
313   copy_roots_to_buffer(roots);
314 
315   sort_source_objs();
316   for (int i = 0; i < _source_objs_order->length(); i++) {
317     int src_obj_index = _source_objs_order->at(i)._index;
318     oop src_obj = _source_objs->at(src_obj_index);
319     HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj);
320     assert(info != nullptr, "must be");
321     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
322     info->set_buffer_offset(buffer_offset);
323 
324     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, src_obj);
325     _buffer_offset_to_source_obj_table->maybe_grow();
326   }
327 
328   log_info(cds)("Size of heap region = " SIZE_FORMAT " bytes, %d objects, %d roots, %d native ptrs",
329                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
330 }
331 
332 size_t ArchiveHeapWriter::filler_array_byte_size(int length) {
333   size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
334   return byte_size;
335 }
336 
337 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) {
338   assert(is_object_aligned(fill_bytes), "must be");
339   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
340 
341   int initial_length = to_array_length(fill_bytes / elemSize);
342   for (int length = initial_length; length >= 0; length --) {
343     size_t array_byte_size = filler_array_byte_size(length);
344     if (array_byte_size == fill_bytes) {
345       return length;
346     }
347   }
348 
349   ShouldNotReachHere();
350   return -1;
351 }
352 
353 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
354   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
355   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
356   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
357   memset(mem, 0, fill_bytes);
358   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
359   if (UseCompactObjectHeaders) {
360     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
361   } else {
362     oopDesc::set_mark(mem, markWord::prototype());
363     cast_to_oop(mem)->set_narrow_klass(nk);
364   }
365   arrayOopDesc::set_length(mem, array_length);
366   return mem;
367 }
368 
369 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
370   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
371   // leftover space is smaller than a zero-sized array object). Therefore, we need to
372   // make sure there's enough space of min_filler_byte_size in the current region after
373   // required_byte_size has been allocated. If not, fill the remainder of the current
374   // region.
375   size_t min_filler_byte_size = filler_array_byte_size(0);
376   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
377 
378   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
379   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
380 
381   if (cur_min_region_bottom != next_min_region_bottom) {
382     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
383     // we can map the region in any region-based collector.
384     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
385     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
386            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
387 
388     const size_t filler_end = next_min_region_bottom;
389     const size_t fill_bytes = filler_end - _buffer_used;
390     assert(fill_bytes > 0, "must be");
391     ensure_buffer_space(filler_end);
392 
393     int array_length = filler_array_length(fill_bytes);
394     log_info(cds, heap)("Inserting filler obj array of %d elements (" SIZE_FORMAT " bytes total) @ buffer offset " SIZE_FORMAT,
395                         array_length, fill_bytes, _buffer_used);
396     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
397     _buffer_used = filler_end;
398     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
399   }
400 }
401 
402 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) {
403   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
404   if (p != nullptr) {
405     assert(*p > 0, "filler must be larger than zero bytes");
406     return *p;
407   } else {
408     return 0; // buffered_addr is not a filler
409   }
410 }
411 
412 template <typename T>
413 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
414   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
415   *field_addr = value;
416 }
417 
418 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
419   assert(!is_too_large_to_archive(src_obj), "already checked");
420   size_t byte_size = src_obj->size() * HeapWordSize;
421   assert(byte_size > 0, "no zero-size objects");
422 
423   // For region-based collectors such as G1, the archive heap may be mapped into
424   // multiple regions. We need to make sure that we don't have an object that can possible
425   // span across two regions.
426   maybe_fill_gc_region_gap(byte_size);
427 
428   size_t new_used = _buffer_used + byte_size;
429   assert(new_used > _buffer_used, "no wrap around");
430 
431   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
432   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
433   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
434 
435   ensure_buffer_space(new_used);
436 
437   address from = cast_from_oop<address>(src_obj);
438   address to = offset_to_buffered_address<address>(_buffer_used);
439   assert(is_object_aligned(_buffer_used), "sanity");
440   assert(is_object_aligned(byte_size), "sanity");
441   memcpy(to, from, byte_size);
442 
443   // These native pointers will be restored explicitly at run time.
444   if (java_lang_Module::is_instance(src_obj)) {
445     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
446   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
447 #ifdef ASSERT
448     // We only archive these loaders
449     if (src_obj != SystemDictionary::java_platform_loader() &&
450         src_obj != SystemDictionary::java_system_loader()) {
451       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
452     }
453 #endif
454     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
455   }
456 
457   size_t buffered_obj_offset = _buffer_used;
458   _buffer_used = new_used;
459 
460   return buffered_obj_offset;
461 }
462 
463 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) {
464   assert(!info->is_used(), "only set once");
465 
466   size_t heap_region_byte_size = _buffer_used;
467   assert(heap_region_byte_size > 0, "must archived at least one object!");
468 
469   if (UseCompressedOops) {
470     if (UseG1GC) {
471       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
472       log_info(cds, heap)("Heap end = %p", heap_end);
473       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
474       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
475       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
476     } else {
477       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
478     }
479   } else {
480     // We always write the objects as if the heap started at this address. This
481     // makes the contents of the archive heap deterministic.
482     //
483     // Note that at runtime, the heap address is selected by the OS, so the archive
484     // heap will not be mapped at 0x10000000, and the contents need to be patched.
485     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
486   }
487 
488   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
489 
490   _requested_top = _requested_bottom + _buffer_used;
491 
492   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
493                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
494   info->set_heap_root_segments(_heap_root_segments);
495 }
496 
497 // Oop relocation
498 
499 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) {
500   assert(is_in_requested_range(cast_to_oop(p)), "must be");
501 
502   address addr = address(p);
503   assert(addr >= _requested_bottom, "must be");
504   size_t offset = addr - _requested_bottom;
505   return offset_to_buffered_address<T*>(offset);
506 }
507 
508 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
509   oop o = load_oop_from_buffer(buffered_addr);
510   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
511   return o;
512 }
513 
514 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
515                                                                             oop request_oop) {
516   assert(is_in_requested_range(request_oop), "must be");
517   store_oop_in_buffer(buffered_addr, request_oop);
518 }
519 
520 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
521   *buffered_addr = requested_obj;
522 }
523 
524 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
525   narrowOop val = CompressedOops::encode_not_null(requested_obj);
526   *buffered_addr = val;
527 }
528 
529 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
530   return *buffered_addr;
531 }
532 
533 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
534   return CompressedOops::decode(*buffered_addr);
535 }
536 
537 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) {
538   oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer);
539   if (source_referent != nullptr) {
540     if (java_lang_Class::is_instance(source_referent)) {
541       // When the source object points to a "real" mirror, the buffered object should point
542       // to the "scratch" mirror, which has all unarchivable fields scrubbed (to be reinstated
543       // at run time).
544       source_referent = HeapShared::scratch_java_mirror(source_referent);
545       assert(source_referent != nullptr, "must be");
546     }
547     oop request_referent = source_obj_to_requested_obj(source_referent);
548     store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
549     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
550   }
551 }
552 
553 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
554   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
555   address requested_region_bottom;
556 
557   assert(request_p >= (T*)_requested_bottom, "sanity");
558   assert(request_p <  (T*)_requested_top, "sanity");
559   requested_region_bottom = _requested_bottom;
560 
561   // Mark the pointer in the oopmap
562   T* region_bottom = (T*)requested_region_bottom;
563   assert(request_p >= region_bottom, "must be");
564   BitMap::idx_t idx = request_p - region_bottom;
565   assert(idx < oopmap->size(), "overflow");
566   oopmap->set_bit(idx);
567 }
568 
569 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
570   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
571   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
572   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
573 
574   oop fake_oop = cast_to_oop(buffered_addr);
575   if (UseCompactObjectHeaders) {
576     fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
577   } else {
578     fake_oop->set_narrow_klass(nk);
579   }
580 
581   if (src_obj == nullptr) {
582     return;
583   }
584   // We need to retain the identity_hash, because it may have been used by some hashtables
585   // in the shared heap.
586   if (!src_obj->fast_no_hash_check()) {
587     intptr_t src_hash = src_obj->identity_hash();
588     if (UseCompactObjectHeaders) {
589       fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
590     } else {
591       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
592     }
593     assert(fake_oop->mark().is_unlocked(), "sanity");
594 
595     DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
596     assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
597   }
598   // Strip age bits.
599   fake_oop->set_mark(fake_oop->mark().set_age(0));
600 }
601 
602 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
603   oop _src_obj;
604   address _buffered_obj;
605   CHeapBitMap* _oopmap;
606 
607 public:
608   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
609     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) {}
610 
611   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
612   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
613 
614 private:
615   template <class T> void do_oop_work(T *p) {
616     size_t field_offset = pointer_delta(p, _src_obj, sizeof(char));
617     ArchiveHeapWriter::relocate_field_in_buffer<T>((T*)(_buffered_obj + field_offset), _oopmap);
618   }
619 };
620 
621 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
622   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
623   size_t start = bitmap->find_first_set_bit(0);
624   size_t end = bitmap->size();
625   log_info(cds)("%s = " SIZE_FORMAT_W(7) " ... " SIZE_FORMAT_W(7) " (%3zu%% ... %3zu%% = %3zu%%)", which,
626                 start, end,
627                 start * 100 / total_bits,
628                 end * 100 / total_bits,
629                 (end - start) * 100 / total_bits);
630 }
631 
632 // Update all oop fields embedded in the buffered objects
633 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
634                                                ArchiveHeapInfo* heap_info) {
635   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
636   size_t heap_region_byte_size = _buffer_used;
637   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
638 
639   for (int i = 0; i < _source_objs_order->length(); i++) {
640     int src_obj_index = _source_objs_order->at(i)._index;
641     oop src_obj = _source_objs->at(src_obj_index);
642     HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj);
643     assert(info != nullptr, "must be");
644     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
645     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
646     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
647     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
648     src_obj->oop_iterate(&relocator);
649   };
650 
651   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
652   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
653   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
654     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
655 
656     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
657     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
658     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
659     int length = _heap_root_segments.size_in_elems(seg_idx);
660 
661     if (UseCompressedOops) {
662       for (int i = 0; i < length; i++) {
663         narrowOop* addr = (narrowOop*)(buffered_obj + objArrayOopDesc::obj_at_offset<narrowOop>(i));
664         relocate_field_in_buffer<narrowOop>(addr, heap_info->oopmap());
665       }
666     } else {
667       for (int i = 0; i < length; i++) {
668         oop* addr = (oop*)(buffered_obj + objArrayOopDesc::obj_at_offset<oop>(i));
669         relocate_field_in_buffer<oop>(addr, heap_info->oopmap());
670       }
671     }
672   }
673 
674   compute_ptrmap(heap_info);
675 
676   size_t total_bytes = (size_t)_buffer->length();
677   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
678   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
679 }
680 
681 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
682   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
683   if (ptr != nullptr) {
684     NativePointerInfo info;
685     info._src_obj = src_obj;
686     info._field_offset = field_offset;
687     _native_pointers->append(info);
688     HeapShared::set_has_native_pointers(src_obj);
689     _num_native_ptrs ++;
690   }
691 }
692 
693 // Do we have a jlong/jint field that's actually a pointer to a MetaspaceObj?
694 bool ArchiveHeapWriter::is_marked_as_native_pointer(ArchiveHeapInfo* heap_info, oop src_obj, int field_offset) {
695   HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj);
696   assert(p != nullptr, "must be");
697 
698   // requested_field_addr = the address of this field in the requested space
699   oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
700   Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
701   assert((Metadata**)_requested_bottom <= requested_field_addr && requested_field_addr < (Metadata**) _requested_top, "range check");
702 
703   BitMap::idx_t idx = requested_field_addr - (Metadata**) _requested_bottom;
704   // Leading zeros have been removed so some addresses may not be in the ptrmap
705   size_t start_pos = FileMapInfo::current_info()->heap_ptrmap_start_pos();
706   if (idx < start_pos) {
707     return false;
708   } else {
709     idx -= start_pos;
710   }
711   return (idx < heap_info->ptrmap()->size()) && (heap_info->ptrmap()->at(idx) == true);
712 }
713 
714 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) {
715   int num_non_null_ptrs = 0;
716   Metadata** bottom = (Metadata**) _requested_bottom;
717   Metadata** top = (Metadata**) _requested_top; // exclusive
718   heap_info->ptrmap()->resize(top - bottom);
719 
720   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
721   for (int i = 0; i < _native_pointers->length(); i++) {
722     NativePointerInfo info = _native_pointers->at(i);
723     oop src_obj = info._src_obj;
724     int field_offset = info._field_offset;
725     HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj);
726     // requested_field_addr = the address of this field in the requested space
727     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
728     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
729     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
730 
731     // Mark this field in the bitmap
732     BitMap::idx_t idx = requested_field_addr - bottom;
733     heap_info->ptrmap()->set_bit(idx);
734     num_non_null_ptrs ++;
735     max_idx = MAX2(max_idx, idx);
736 
737     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
738     // this address if the RO/RW regions are mapped at the default location).
739 
740     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
741     Metadata* native_ptr = *buffered_field_addr;
742     guarantee(native_ptr != nullptr, "sanity");
743     guarantee(ArchiveBuilder::current()->has_been_buffered((address)native_ptr),
744               "Metadata %p should have been archived", native_ptr);
745 
746     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
747     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
748     *buffered_field_addr = (Metadata*)requested_native_ptr;
749   }
750 
751   heap_info->ptrmap()->resize(max_idx + 1);
752   log_info(cds, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (" SIZE_FORMAT " bits)",
753                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
754 }
755 
756 #endif // INCLUDE_CDS_JAVA_HEAP