1 /*
  2  * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "cds/aotReferenceObjSupport.hpp"
 26 #include "cds/archiveHeapWriter.hpp"
 27 #include "cds/cdsConfig.hpp"
 28 #include "cds/filemap.hpp"
 29 #include "cds/heapShared.hpp"
 30 #include "cds/regeneratedClasses.hpp"
 31 #include "classfile/javaClasses.hpp"
 32 #include "classfile/modules.hpp"
 33 #include "classfile/systemDictionary.hpp"
 34 #include "gc/shared/collectedHeap.hpp"
 35 #include "memory/iterator.inline.hpp"
 36 #include "memory/oopFactory.hpp"
 37 #include "memory/universe.hpp"
 38 #include "oops/compressedOops.hpp"
 39 #include "oops/objArrayOop.inline.hpp"
 40 #include "oops/oop.inline.hpp"
 41 #include "oops/oopHandle.inline.hpp"
 42 #include "oops/typeArrayKlass.hpp"
 43 #include "oops/typeArrayOop.hpp"
 44 #include "runtime/java.hpp"
 45 #include "runtime/mutexLocker.hpp"
 46 #include "utilities/bitMap.inline.hpp"
 47 #if INCLUDE_G1GC
 48 #include "gc/g1/g1CollectedHeap.hpp"
 49 #include "gc/g1/g1HeapRegion.hpp"
 50 #endif
 51 
 52 #if INCLUDE_CDS_JAVA_HEAP
 53 
 54 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr;
 55 
 56 // The following are offsets from buffer_bottom()
 57 size_t ArchiveHeapWriter::_buffer_used;
 58 
 59 // Heap root segments
 60 HeapRootSegments ArchiveHeapWriter::_heap_root_segments;
 61 
 62 address ArchiveHeapWriter::_requested_bottom;
 63 address ArchiveHeapWriter::_requested_top;
 64 
 65 static size_t _num_strings = 0;
 66 static size_t _string_bytes = 0; 
 67 static size_t _num_packages = 0;
 68 static size_t _num_protection_domains = 0;
 69 
 70 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers;
 71 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs;
 72 GrowableArrayCHeap<ArchiveHeapWriter::HeapObjOrder, mtClassShared>* ArchiveHeapWriter::_source_objs_order;
 73 
 74 ArchiveHeapWriter::BufferOffsetToSourceObjectTable*
 75   ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
 76 
 77 
 78 typedef ResourceHashtable<
 79       size_t,    // offset of a filler from ArchiveHeapWriter::buffer_bottom()
 80       size_t,    // size of this filler (in bytes)
 81       127,       // prime number
 82       AnyObj::C_HEAP,
 83       mtClassShared> FillersTable;
 84 static FillersTable* _fillers;
 85 static int _num_native_ptrs = 0;
 86 
 87 void ArchiveHeapWriter::init() {
 88   if (CDSConfig::is_dumping_heap()) {
 89     Universe::heap()->collect(GCCause::_java_lang_system_gc);
 90 
 91     _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M);
 92     _fillers = new FillersTable();
 93     _requested_bottom = nullptr;
 94     _requested_top = nullptr;
 95 
 96     _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
 97     _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
 98 
 99     guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
100   }
101 }
102 
103 void ArchiveHeapWriter::delete_tables_with_raw_oops() {
104   delete _source_objs;
105   _source_objs = nullptr;
106 }
107 
108 void ArchiveHeapWriter::add_source_obj(oop src_obj) {
109   _source_objs->append(src_obj);
110 }
111 
112 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
113                               ArchiveHeapInfo* heap_info) {
114   assert(CDSConfig::is_dumping_heap(), "sanity");
115   allocate_buffer();
116   copy_source_objs_to_buffer(roots);
117   set_requested_address(heap_info);
118   relocate_embedded_oops(roots, heap_info);
119 }
120 
121 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) {
122   return is_too_large_to_archive(o->size());
123 }
124 
125 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) {
126   typeArrayOop value = java_lang_String::value_no_keepalive(string);
127   return is_too_large_to_archive(value);
128 }
129 
130 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) {
131   assert(size > 0, "no zero-size object");
132   assert(size * HeapWordSize > size, "no overflow");
133   static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
134 
135   size_t byte_size = size * HeapWordSize;
136   if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
137     return true;
138   } else {
139     return false;
140   }
141 }
142 
143 // Various lookup functions between source_obj, buffered_obj and requested_obj
144 bool ArchiveHeapWriter::is_in_requested_range(oop o) {
145   assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
146   address a = cast_from_oop<address>(o);
147   return (_requested_bottom <= a && a < _requested_top);
148 }
149 
150 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
151   oop req_obj = cast_to_oop(_requested_bottom + offset);
152   assert(is_in_requested_range(req_obj), "must be");
153   return req_obj;
154 }
155 
156 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) {
157   assert(CDSConfig::is_dumping_heap(), "dump-time only");
158   HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
159   if (p != nullptr) {
160     return requested_obj_from_buffer_offset(p->buffer_offset());
161   } else {
162     return nullptr;
163   }
164 }
165 
166 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
167   OopHandle* oh = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
168   if (oh != nullptr) {
169     return oh->resolve();
170   } else {
171     return nullptr;
172   }
173 }
174 
175 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
176   return _requested_bottom + buffered_address_to_offset(buffered_addr);
177 }
178 
179 address ArchiveHeapWriter::requested_address() {
180   assert(_buffer != nullptr, "must be initialized");
181   return _requested_bottom;
182 }
183 
184 void ArchiveHeapWriter::allocate_buffer() {
185   int initial_buffer_size = 100000;
186   _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
187   _buffer_used = 0;
188   ensure_buffer_space(1); // so that buffer_bottom() works
189 }
190 
191 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) {
192   // We usually have very small heaps. If we get a huge one it's probably caused by a bug.
193   guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
194   _buffer->at_grow(to_array_index(min_bytes));
195 }
196 
197 objArrayOop ArchiveHeapWriter::allocate_root_segment(size_t offset, int element_count) {
198   HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset);
199   memset(mem, 0, objArrayOopDesc::object_size(element_count));
200 
201   // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize.
202   if (UseCompactObjectHeaders) {
203     oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header());
204   } else {
205     oopDesc::set_mark(mem, markWord::prototype());
206     oopDesc::release_set_klass(mem, Universe::objectArrayKlass());
207   }
208   arrayOopDesc::set_length(mem, element_count);
209   return objArrayOop(cast_to_oop(mem));
210 }
211 
212 void ArchiveHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) {
213   // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap!
214   if (UseCompressedOops) {
215     *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root);
216   } else {
217     *segment->obj_at_addr<oop>(index) = root;
218   }
219 }
220 
221 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
222   // Depending on the number of classes we are archiving, a single roots array may be
223   // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which
224   // allows us to chop the large array into a series of "segments". Current layout
225   // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end
226   // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT.
227   // This is simple and efficient. We do not need filler objects anywhere between the segments,
228   // or immediately after the last segment. This allows starting the object dump immediately
229   // after the roots.
230 
231   assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0,
232          "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used);
233 
234   int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize);
235   assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT,
236          "Should match exactly");
237 
238   HeapRootSegments segments(_buffer_used,
239                             roots->length(),
240                             MIN_GC_REGION_ALIGNMENT,
241                             max_elem_count);
242 
243   int root_index = 0;
244   for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) {
245     int size_elems = segments.size_in_elems(seg_idx);
246     size_t size_bytes = segments.size_in_bytes(seg_idx);
247 
248     size_t oop_offset = _buffer_used;
249     _buffer_used = oop_offset + size_bytes;
250     ensure_buffer_space(_buffer_used);
251 
252     assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0,
253            "Roots segment %zu start is not aligned: %zu",
254            segments.count(), oop_offset);
255 
256     objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems);
257     for (int i = 0; i < size_elems; i++) {
258       root_segment_at_put(seg_oop, i, roots->at(root_index++));
259     }
260 
261     log_info(aot, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT,
262                         size_elems, size_bytes, p2i(seg_oop));
263   }
264 
265   assert(root_index == roots->length(), "Post-condition: All roots are handled");
266 
267   _heap_root_segments = segments;
268 }
269 
270 // The goal is to sort the objects in increasing order of:
271 // - objects that have only oop pointers
272 // - objects that have both native and oop pointers
273 // - objects that have only native pointers
274 // - objects that have no pointers
275 static int oop_sorting_rank(oop o) {
276   bool has_oop_ptr, has_native_ptr;
277   HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr);
278 
279   if (has_oop_ptr) {
280     if (!has_native_ptr) {
281       return 0;
282     } else {
283       return 1;
284     }
285   } else {
286     if (has_native_ptr) {
287       return 2;
288     } else {
289       return 3;
290     }
291   }
292 }
293 
294 int ArchiveHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) {
295   int rank_a = a->_rank;
296   int rank_b = b->_rank;
297 
298   if (rank_a != rank_b) {
299     return rank_a - rank_b;
300   } else {
301     // If they are the same rank, sort them by their position in the _source_objs array
302     return a->_index - b->_index;
303   }
304 }
305 
306 void ArchiveHeapWriter::sort_source_objs() {
307   log_info(aot)("sorting heap objects");
308   int len = _source_objs->length();
309   _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len);
310 
311   for (int i = 0; i < len; i++) {
312     oop o = _source_objs->at(i);
313     int rank = oop_sorting_rank(o);
314     HeapObjOrder os = {i, rank};
315     _source_objs_order->append(os);
316   }
317   log_info(aot)("computed ranks");
318   _source_objs_order->sort(compare_objs_by_oop_fields);
319   log_info(aot)("sorting heap objects done");
320 }
321 
322 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
323   // There could be multiple root segments, which we want to be aligned by region.
324   // Putting them ahead of objects makes sure we waste no space.
325   copy_roots_to_buffer(roots);
326 
327   sort_source_objs();
328   for (int i = 0; i < _source_objs_order->length(); i++) {
329     int src_obj_index = _source_objs_order->at(i)._index;
330     oop src_obj = _source_objs->at(src_obj_index);
331     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
332     assert(info != nullptr, "must be");
333     size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
334     info->set_buffer_offset(buffer_offset);
335     assert(buffer_offset <= 0x7fffffff, "sanity");
336     HeapShared::add_to_permanent_oop_table(src_obj, (int)buffer_offset);
337 
338     OopHandle handle(Universe::vm_global(), src_obj);
339     _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, handle);
340     _buffer_offset_to_source_obj_table->maybe_grow();
341 
342     if (java_lang_Module::is_instance(src_obj)) {
343       Modules::check_archived_module_oop(src_obj);
344     }
345   }
346 
347   log_info(aot)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs",
348                 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs);
349   log_info(cds)("   strings            = %8zu (%zu bytes)", _num_strings, _string_bytes);
350   log_info(cds)("   packages           = %8zu", _num_packages);
351   log_info(cds)("   protection domains = %8zu", _num_protection_domains);
352 }
353 
354 size_t ArchiveHeapWriter::filler_array_byte_size(int length) {
355   size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
356   return byte_size;
357 }
358 
359 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) {
360   assert(is_object_aligned(fill_bytes), "must be");
361   size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
362 
363   int initial_length = to_array_length(fill_bytes / elemSize);
364   for (int length = initial_length; length >= 0; length --) {
365     size_t array_byte_size = filler_array_byte_size(length);
366     if (array_byte_size == fill_bytes) {
367       return length;
368     }
369   }
370 
371   ShouldNotReachHere();
372   return -1;
373 }
374 
375 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
376   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
377   Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass
378   HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
379   memset(mem, 0, fill_bytes);
380   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
381   if (UseCompactObjectHeaders) {
382     oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk));
383   } else {
384     oopDesc::set_mark(mem, markWord::prototype());
385     cast_to_oop(mem)->set_narrow_klass(nk);
386   }
387   arrayOopDesc::set_length(mem, array_length);
388   return mem;
389 }
390 
391 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
392   // We fill only with arrays (so we don't need to use a single HeapWord filler if the
393   // leftover space is smaller than a zero-sized array object). Therefore, we need to
394   // make sure there's enough space of min_filler_byte_size in the current region after
395   // required_byte_size has been allocated. If not, fill the remainder of the current
396   // region.
397   size_t min_filler_byte_size = filler_array_byte_size(0);
398   size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
399 
400   const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
401   const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
402 
403   if (cur_min_region_bottom != next_min_region_bottom) {
404     // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
405     // we can map the region in any region-based collector.
406     assert(next_min_region_bottom > cur_min_region_bottom, "must be");
407     assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
408            "no buffered object can be larger than %d bytes",  MIN_GC_REGION_ALIGNMENT);
409 
410     const size_t filler_end = next_min_region_bottom;
411     const size_t fill_bytes = filler_end - _buffer_used;
412     assert(fill_bytes > 0, "must be");
413     ensure_buffer_space(filler_end);
414 
415     int array_length = filler_array_length(fill_bytes);
416     log_info(aot, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu",
417                         array_length, fill_bytes, _buffer_used);
418     HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes);
419     _buffer_used = filler_end;
420     _fillers->put(buffered_address_to_offset((address)filler), fill_bytes);
421   }
422 }
423 
424 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) {
425   size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr));
426   if (p != nullptr) {
427     assert(*p > 0, "filler must be larger than zero bytes");
428     return *p;
429   } else {
430     return 0; // buffered_addr is not a filler
431   }
432 }
433 
434 template <typename T>
435 void update_buffered_object_field(address buffered_obj, int field_offset, T value) {
436   T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset);
437   *field_addr = value;
438 }
439 
440 void ArchiveHeapWriter::update_stats(oop src_obj) {
441   if (java_lang_String::is_instance(src_obj)) {
442     _num_strings ++;
443     _string_bytes += src_obj->size() * HeapWordSize;
444     _string_bytes += java_lang_String::value(src_obj)->size() * HeapWordSize;
445   } else {
446     Klass* k = src_obj->klass();
447     Symbol* name = k->name();
448     if (name->equals("java/lang/NamedPackage") || name->equals("java/lang/Package")) {
449       _num_packages ++;
450     } else if (name->equals("java/security/ProtectionDomain")) {
451       _num_protection_domains ++;
452     }
453   }
454 }
455 
456 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
457   update_stats(src_obj);
458 
459   assert(!is_too_large_to_archive(src_obj), "already checked");
460   size_t byte_size = src_obj->size() * HeapWordSize;
461   assert(byte_size > 0, "no zero-size objects");
462 
463   // For region-based collectors such as G1, the archive heap may be mapped into
464   // multiple regions. We need to make sure that we don't have an object that can possible
465   // span across two regions.
466   maybe_fill_gc_region_gap(byte_size);
467 
468   size_t new_used = _buffer_used + byte_size;
469   assert(new_used > _buffer_used, "no wrap around");
470 
471   size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
472   size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
473   assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
474 
475   ensure_buffer_space(new_used);
476 
477   address from = cast_from_oop<address>(src_obj);
478   address to = offset_to_buffered_address<address>(_buffer_used);
479   assert(is_object_aligned(_buffer_used), "sanity");
480   assert(is_object_aligned(byte_size), "sanity");
481   memcpy(to, from, byte_size);
482 
483   // These native pointers will be restored explicitly at run time.
484   if (java_lang_Module::is_instance(src_obj)) {
485     update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr);
486   } else if (java_lang_ClassLoader::is_instance(src_obj)) {
487 #ifdef ASSERT
488     // We only archive these loaders
489     if (src_obj != SystemDictionary::java_platform_loader() &&
490         src_obj != SystemDictionary::java_system_loader()) {
491       assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be");
492     }
493 #endif
494     update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr);
495   }
496 
497   size_t buffered_obj_offset = _buffer_used;
498   _buffer_used = new_used;
499 
500   return buffered_obj_offset;
501 }
502 
503 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) {
504   assert(!info->is_used(), "only set once");
505 
506   size_t heap_region_byte_size = _buffer_used;
507   assert(heap_region_byte_size > 0, "must archived at least one object!");
508 
509   if (UseCompressedOops) {
510     if (UseG1GC) {
511       address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
512       log_info(aot, heap)("Heap end = %p", heap_end);
513       _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes);
514       _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT);
515       assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity");
516     } else {
517       _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT);
518     }
519   } else {
520     // We always write the objects as if the heap started at this address. This
521     // makes the contents of the archive heap deterministic.
522     //
523     // Note that at runtime, the heap address is selected by the OS, so the archive
524     // heap will not be mapped at 0x10000000, and the contents need to be patched.
525     _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT);
526   }
527 
528   assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity");
529 
530   _requested_top = _requested_bottom + _buffer_used;
531 
532   info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0),
533                                     offset_to_buffered_address<HeapWord*>(_buffer_used)));
534   info->set_heap_root_segments(_heap_root_segments);
535 }
536 
537 // Oop relocation
538 
539 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) {
540   assert(is_in_requested_range(cast_to_oop(p)), "must be");
541 
542   address addr = address(p);
543   assert(addr >= _requested_bottom, "must be");
544   size_t offset = addr - _requested_bottom;
545   return offset_to_buffered_address<T*>(offset);
546 }
547 
548 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
549   oop o = load_oop_from_buffer(buffered_addr);
550   assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
551   return o;
552 }
553 
554 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
555                                                                             oop request_oop) {
556   assert(is_in_requested_range(request_oop), "must be");
557   store_oop_in_buffer(buffered_addr, request_oop);
558 }
559 
560 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
561   *buffered_addr = requested_obj;
562 }
563 
564 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
565   narrowOop val = CompressedOops::encode_not_null(requested_obj);
566   *buffered_addr = val;
567 }
568 
569 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
570   return *buffered_addr;
571 }
572 
573 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
574   return CompressedOops::decode(*buffered_addr);
575 }
576 
577 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) {
578   oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer);
579   if (source_referent != nullptr) {
580     if (java_lang_Class::is_instance(source_referent)) {
581       // When the source object points to a "real" mirror, the buffered object should point
582       // to the "scratch" mirror, which has all unarchivable fields scrubbed (to be reinstated
583       // at run time).
584       source_referent = HeapShared::scratch_java_mirror(source_referent);
585       assert(source_referent != nullptr, "must be");
586     }
587     oop request_referent = source_obj_to_requested_obj(source_referent);
588     store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
589     mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
590   }
591 }
592 
593 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
594   T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
595   address requested_region_bottom;
596 
597   assert(request_p >= (T*)_requested_bottom, "sanity");
598   assert(request_p <  (T*)_requested_top, "sanity");
599   requested_region_bottom = _requested_bottom;
600 
601   // Mark the pointer in the oopmap
602   T* region_bottom = (T*)requested_region_bottom;
603   assert(request_p >= region_bottom, "must be");
604   BitMap::idx_t idx = request_p - region_bottom;
605   assert(idx < oopmap->size(), "overflow");
606   oopmap->set_bit(idx);
607 }
608 
609 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj,  Klass* src_klass) {
610   assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
611   narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
612   address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
613 
614   oop fake_oop = cast_to_oop(buffered_addr);
615   if (UseCompactObjectHeaders) {
616     fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk));
617   } else {
618     fake_oop->set_narrow_klass(nk);
619   }
620 
621   if (src_obj == nullptr) {
622     return;
623   }
624   // We need to retain the identity_hash, because it may have been used by some hashtables
625   // in the shared heap.
626   if (!src_obj->fast_no_hash_check()) {
627     intptr_t src_hash = src_obj->identity_hash();
628     if (UseCompactObjectHeaders) {
629       fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash));
630     } else {
631       fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
632     }
633     assert(fake_oop->mark().is_unlocked(), "sanity");
634 
635     DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash());
636     assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash);
637   }
638   // Strip age bits.
639   fake_oop->set_mark(fake_oop->mark().set_age(0));
640 }
641 
642 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
643   oop _src_obj;
644   address _buffered_obj;
645   CHeapBitMap* _oopmap;
646   bool _is_java_lang_ref;
647 public:
648   EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
649     _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap)
650   {
651     _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj);
652   }
653 
654   void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
655   void do_oop(      oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
656 
657 private:
658   template <class T> void do_oop_work(T *p) {
659     int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj));
660     T* field_addr = (T*)(_buffered_obj + field_offset);
661     if (_is_java_lang_ref && AOTReferenceObjSupport::skip_field(field_offset)) {
662       // Do not copy these fields. Set them to null
663       *field_addr = (T)0x0;
664     } else {
665       ArchiveHeapWriter::relocate_field_in_buffer<T>(field_addr, _oopmap);
666     }
667   }
668 };
669 
670 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) {
671   // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end).
672   size_t start = bitmap->find_first_set_bit(0);
673   size_t end = bitmap->size();
674   log_info(aot)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which,
675                 start, end,
676                 start * 100 / total_bits,
677                 end * 100 / total_bits,
678                 (end - start) * 100 / total_bits);
679 }
680 
681 // Update all oop fields embedded in the buffered objects
682 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
683                                                ArchiveHeapInfo* heap_info) {
684   size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
685   size_t heap_region_byte_size = _buffer_used;
686   heap_info->oopmap()->resize(heap_region_byte_size   / oopmap_unit);
687 
688   for (int i = 0; i < _source_objs_order->length(); i++) {
689     int src_obj_index = _source_objs_order->at(i)._index;
690     oop src_obj = _source_objs->at(src_obj_index);
691     HeapShared::CachedOopInfo* info = HeapShared::get_cached_oop_info(src_obj);
692     assert(info != nullptr, "must be");
693     oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset());
694     update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
695     address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset());
696     EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
697     src_obj->oop_iterate(&relocator);
698   };
699 
700   // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
701   // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
702   for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) {
703     size_t seg_offset = _heap_root_segments.segment_offset(seg_idx);
704 
705     objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset);
706     update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass());
707     address buffered_obj = offset_to_buffered_address<address>(seg_offset);
708     int length = _heap_root_segments.size_in_elems(seg_idx);
709 
710     if (UseCompressedOops) {
711       for (int i = 0; i < length; i++) {
712         narrowOop* addr = (narrowOop*)(buffered_obj + objArrayOopDesc::obj_at_offset<narrowOop>(i));
713         relocate_field_in_buffer<narrowOop>(addr, heap_info->oopmap());
714       }
715     } else {
716       for (int i = 0; i < length; i++) {
717         oop* addr = (oop*)(buffered_obj + objArrayOopDesc::obj_at_offset<oop>(i));
718         relocate_field_in_buffer<oop>(addr, heap_info->oopmap());
719       }
720     }
721   }
722 
723   compute_ptrmap(heap_info);
724 
725   size_t total_bytes = (size_t)_buffer->length();
726   log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)));
727   log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address));
728 }
729 
730 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
731   Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
732   if (ptr != nullptr) {
733     NativePointerInfo info;
734     info._src_obj = src_obj;
735     info._field_offset = field_offset;
736     _native_pointers->append(info);
737     HeapShared::set_has_native_pointers(src_obj);
738     _num_native_ptrs ++;
739   }
740 }
741 
742 // Do we have a jlong/jint field that's actually a pointer to a MetaspaceObj?
743 bool ArchiveHeapWriter::is_marked_as_native_pointer(ArchiveHeapInfo* heap_info, address buffered_obj, int field_offset) {
744   size_t offset = buffered_address_to_offset(buffered_obj) + checked_cast<size_t>(field_offset); // in bytes
745   BitMap::idx_t idx = checked_cast<BitMap::idx_t>(offset) / HeapWordSize;
746   // Leading zeros have been removed so some addresses may not be in the ptrmap
747   size_t start_pos = FileMapInfo::current_info()->heap_ptrmap_start_pos();
748   if (idx < start_pos) {
749     return false;
750   } else {
751     idx -= start_pos;
752   }
753   return (idx < heap_info->ptrmap()->size()) && (heap_info->ptrmap()->at(idx) == true);
754 }
755 
756 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) {
757   int num_non_null_ptrs = 0;
758   Metadata** bottom = (Metadata**) _requested_bottom;
759   Metadata** top = (Metadata**) _requested_top; // exclusive
760   heap_info->ptrmap()->resize(top - bottom);
761 
762   BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
763   for (int i = 0; i < _native_pointers->length(); i++) {
764     NativePointerInfo info = _native_pointers->at(i);
765     oop src_obj = info._src_obj;
766     int field_offset = info._field_offset;
767     HeapShared::CachedOopInfo* p = HeapShared::get_cached_oop_info(src_obj);
768     // requested_field_addr = the address of this field in the requested space
769     oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
770     Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
771     assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
772 
773     // Mark this field in the bitmap
774     BitMap::idx_t idx = requested_field_addr - bottom;
775     heap_info->ptrmap()->set_bit(idx);
776     num_non_null_ptrs ++;
777     max_idx = MAX2(max_idx, idx);
778 
779     // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
780     // this address if the RO/RW regions are mapped at the default location).
781 
782     Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
783     Metadata* native_ptr = *buffered_field_addr;
784     guarantee(native_ptr != nullptr, "sanity");
785     guarantee(ArchiveBuilder::current()->has_been_buffered((address)native_ptr),
786               "Metadata %p should have been archived", native_ptr);
787 
788     if (RegeneratedClasses::has_been_regenerated((address)native_ptr)) {
789       native_ptr = (Metadata*)RegeneratedClasses::get_regenerated_object((address)native_ptr);
790     }
791 
792     address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
793     address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
794     *buffered_field_addr = (Metadata*)requested_native_ptr;
795   }
796 
797   heap_info->ptrmap()->resize(max_idx + 1);
798   log_info(aot, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)",
799                       num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
800 }
801 
802 #endif // INCLUDE_CDS_JAVA_HEAP