1 /* 2 * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotReferenceObjSupport.hpp" 26 #include "cds/archiveHeapWriter.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/filemap.hpp" 29 #include "cds/heapShared.hpp" 30 #include "cds/regeneratedClasses.hpp" 31 #include "classfile/javaClasses.hpp" 32 #include "classfile/modules.hpp" 33 #include "classfile/systemDictionary.hpp" 34 #include "gc/shared/collectedHeap.hpp" 35 #include "memory/iterator.inline.hpp" 36 #include "memory/oopFactory.hpp" 37 #include "memory/universe.hpp" 38 #include "oops/compressedOops.hpp" 39 #include "oops/objArrayOop.inline.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/oopHandle.inline.hpp" 42 #include "oops/typeArrayKlass.hpp" 43 #include "oops/typeArrayOop.hpp" 44 #include "runtime/java.hpp" 45 #include "runtime/mutexLocker.hpp" 46 #include "utilities/bitMap.inline.hpp" 47 #if INCLUDE_G1GC 48 #include "gc/g1/g1CollectedHeap.hpp" 49 #include "gc/g1/g1HeapRegion.hpp" 50 #endif 51 52 #if INCLUDE_CDS_JAVA_HEAP 53 54 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr; 55 56 // The following are offsets from buffer_bottom() 57 size_t ArchiveHeapWriter::_buffer_used; 58 59 // Heap root segments 60 HeapRootSegments ArchiveHeapWriter::_heap_root_segments; 61 62 address ArchiveHeapWriter::_requested_bottom; 63 address ArchiveHeapWriter::_requested_top; 64 65 static size_t _num_strings = 0; 66 static size_t _string_bytes = 0; 67 static size_t _num_packages = 0; 68 static size_t _num_protection_domains = 0; 69 70 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers; 71 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs; 72 GrowableArrayCHeap<ArchiveHeapWriter::HeapObjOrder, mtClassShared>* ArchiveHeapWriter::_source_objs_order; 73 74 ArchiveHeapWriter::BufferOffsetToSourceObjectTable* 75 ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr; 76 77 78 typedef ResourceHashtable< 79 size_t, // offset of a filler from ArchiveHeapWriter::buffer_bottom() 80 size_t, // size of this filler (in bytes) 81 127, // prime number 82 AnyObj::C_HEAP, 83 mtClassShared> FillersTable; 84 static FillersTable* _fillers; 85 static int _num_native_ptrs = 0; 86 87 void ArchiveHeapWriter::init() { 88 if (CDSConfig::is_dumping_heap()) { 89 Universe::heap()->collect(GCCause::_java_lang_system_gc); 90 91 _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M); 92 _fillers = new FillersTable(); 93 _requested_bottom = nullptr; 94 _requested_top = nullptr; 95 96 _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048); 97 _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000); 98 99 guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be"); 100 } 101 } 102 103 void ArchiveHeapWriter::add_source_obj(oop src_obj) { 104 _source_objs->append(src_obj); 105 } 106 107 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots, 108 ArchiveHeapInfo* heap_info) { 109 assert(CDSConfig::is_dumping_heap(), "sanity"); 110 allocate_buffer(); 111 copy_source_objs_to_buffer(roots); 112 set_requested_address(heap_info); 113 relocate_embedded_oops(roots, heap_info); 114 } 115 116 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) { 117 return is_too_large_to_archive(o->size()); 118 } 119 120 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) { 121 typeArrayOop value = java_lang_String::value_no_keepalive(string); 122 return is_too_large_to_archive(value); 123 } 124 125 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) { 126 assert(size > 0, "no zero-size object"); 127 assert(size * HeapWordSize > size, "no overflow"); 128 static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive"); 129 130 size_t byte_size = size * HeapWordSize; 131 if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) { 132 return true; 133 } else { 134 return false; 135 } 136 } 137 138 // Various lookup functions between source_obj, buffered_obj and requested_obj 139 bool ArchiveHeapWriter::is_in_requested_range(oop o) { 140 assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized"); 141 address a = cast_from_oop<address>(o); 142 return (_requested_bottom <= a && a < _requested_top); 143 } 144 145 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) { 146 oop req_obj = cast_to_oop(_requested_bottom + offset); 147 assert(is_in_requested_range(req_obj), "must be"); 148 return req_obj; 149 } 150 151 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) { 152 assert(CDSConfig::is_dumping_heap(), "dump-time only"); 153 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 154 if (p != nullptr) { 155 return requested_obj_from_buffer_offset(p->buffer_offset()); 156 } else { 157 return nullptr; 158 } 159 } 160 161 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) { 162 oop* p = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr)); 163 if (p != nullptr) { 164 return *p; 165 } else { 166 return nullptr; 167 } 168 } 169 170 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) { 171 return _requested_bottom + buffered_address_to_offset(buffered_addr); 172 } 173 174 address ArchiveHeapWriter::requested_address() { 175 assert(_buffer != nullptr, "must be initialized"); 176 return _requested_bottom; 177 } 178 179 void ArchiveHeapWriter::allocate_buffer() { 180 int initial_buffer_size = 100000; 181 _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size); 182 _buffer_used = 0; 183 ensure_buffer_space(1); // so that buffer_bottom() works 184 } 185 186 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) { 187 // We usually have very small heaps. If we get a huge one it's probably caused by a bug. 188 guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects"); 189 _buffer->at_grow(to_array_index(min_bytes)); 190 } 191 192 objArrayOop ArchiveHeapWriter::allocate_root_segment(size_t offset, int element_count) { 193 HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset); 194 memset(mem, 0, objArrayOopDesc::object_size(element_count)); 195 196 // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize. 197 if (UseCompactObjectHeaders) { 198 oopDesc::release_set_mark(mem, Universe::objectArrayKlass()->prototype_header()); 199 } else { 200 oopDesc::set_mark(mem, markWord::prototype()); 201 oopDesc::release_set_klass(mem, Universe::objectArrayKlass()); 202 } 203 arrayOopDesc::set_length(mem, element_count); 204 return objArrayOop(cast_to_oop(mem)); 205 } 206 207 void ArchiveHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) { 208 // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap! 209 if (UseCompressedOops) { 210 *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root); 211 } else { 212 *segment->obj_at_addr<oop>(index) = root; 213 } 214 } 215 216 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 217 // Depending on the number of classes we are archiving, a single roots array may be 218 // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which 219 // allows us to chop the large array into a series of "segments". Current layout 220 // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end 221 // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT. 222 // This is simple and efficient. We do not need filler objects anywhere between the segments, 223 // or immediately after the last segment. This allows starting the object dump immediately 224 // after the roots. 225 226 assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0, 227 "Pre-condition: Roots start at aligned boundary: %zu", _buffer_used); 228 229 int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize); 230 assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT, 231 "Should match exactly"); 232 233 HeapRootSegments segments(_buffer_used, 234 roots->length(), 235 MIN_GC_REGION_ALIGNMENT, 236 max_elem_count); 237 238 int root_index = 0; 239 for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) { 240 int size_elems = segments.size_in_elems(seg_idx); 241 size_t size_bytes = segments.size_in_bytes(seg_idx); 242 243 size_t oop_offset = _buffer_used; 244 _buffer_used = oop_offset + size_bytes; 245 ensure_buffer_space(_buffer_used); 246 247 assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0, 248 "Roots segment %zu start is not aligned: %zu", 249 segments.count(), oop_offset); 250 251 objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems); 252 for (int i = 0; i < size_elems; i++) { 253 root_segment_at_put(seg_oop, i, roots->at(root_index++)); 254 } 255 256 log_info(cds, heap)("archived obj root segment [%d] = %zu bytes, obj = " PTR_FORMAT, 257 size_elems, size_bytes, p2i(seg_oop)); 258 } 259 260 assert(root_index == roots->length(), "Post-condition: All roots are handled"); 261 262 _heap_root_segments = segments; 263 } 264 265 // The goal is to sort the objects in increasing order of: 266 // - objects that have only oop pointers 267 // - objects that have both native and oop pointers 268 // - objects that have only native pointers 269 // - objects that have no pointers 270 static int oop_sorting_rank(oop o) { 271 bool has_oop_ptr, has_native_ptr; 272 HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr); 273 274 if (has_oop_ptr) { 275 if (!has_native_ptr) { 276 return 0; 277 } else { 278 return 1; 279 } 280 } else { 281 if (has_native_ptr) { 282 return 2; 283 } else { 284 return 3; 285 } 286 } 287 } 288 289 int ArchiveHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) { 290 int rank_a = a->_rank; 291 int rank_b = b->_rank; 292 293 if (rank_a != rank_b) { 294 return rank_a - rank_b; 295 } else { 296 // If they are the same rank, sort them by their position in the _source_objs array 297 return a->_index - b->_index; 298 } 299 } 300 301 void ArchiveHeapWriter::sort_source_objs() { 302 log_info(cds)("sorting heap objects"); 303 int len = _source_objs->length(); 304 _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len); 305 306 for (int i = 0; i < len; i++) { 307 oop o = _source_objs->at(i); 308 int rank = oop_sorting_rank(o); 309 HeapObjOrder os = {i, rank}; 310 _source_objs_order->append(os); 311 } 312 log_info(cds)("computed ranks"); 313 _source_objs_order->sort(compare_objs_by_oop_fields); 314 log_info(cds)("sorting heap objects done"); 315 } 316 317 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 318 // There could be multiple root segments, which we want to be aligned by region. 319 // Putting them ahead of objects makes sure we waste no space. 320 copy_roots_to_buffer(roots); 321 322 sort_source_objs(); 323 for (int i = 0; i < _source_objs_order->length(); i++) { 324 int src_obj_index = _source_objs_order->at(i)._index; 325 oop src_obj = _source_objs->at(src_obj_index); 326 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 327 assert(info != nullptr, "must be"); 328 size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj); 329 info->set_buffer_offset(buffer_offset); 330 assert(buffer_offset <= 0x7fffffff, "sanity"); 331 HeapShared::add_to_permanent_oop_table(src_obj, (int)buffer_offset); 332 333 _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, src_obj); 334 _buffer_offset_to_source_obj_table->maybe_grow(); 335 336 if (java_lang_Module::is_instance(src_obj)) { 337 Modules::check_archived_module_oop(src_obj); 338 } 339 } 340 341 log_info(cds)("Size of heap region = %zu bytes, %d objects, %d roots, %d native ptrs", 342 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs); 343 log_info(cds)(" strings = %8zu (%zu bytes)", _num_strings, _string_bytes); 344 log_info(cds)(" packages = %8zu", _num_packages); 345 log_info(cds)(" protection domains = %8zu", _num_protection_domains); 346 } 347 348 size_t ArchiveHeapWriter::filler_array_byte_size(int length) { 349 size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize; 350 return byte_size; 351 } 352 353 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) { 354 assert(is_object_aligned(fill_bytes), "must be"); 355 size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 356 357 int initial_length = to_array_length(fill_bytes / elemSize); 358 for (int length = initial_length; length >= 0; length --) { 359 size_t array_byte_size = filler_array_byte_size(length); 360 if (array_byte_size == fill_bytes) { 361 return length; 362 } 363 } 364 365 ShouldNotReachHere(); 366 return -1; 367 } 368 369 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) { 370 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 371 Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass 372 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 373 memset(mem, 0, fill_bytes); 374 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak); 375 if (UseCompactObjectHeaders) { 376 oopDesc::release_set_mark(mem, markWord::prototype().set_narrow_klass(nk)); 377 } else { 378 oopDesc::set_mark(mem, markWord::prototype()); 379 cast_to_oop(mem)->set_narrow_klass(nk); 380 } 381 arrayOopDesc::set_length(mem, array_length); 382 return mem; 383 } 384 385 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) { 386 // We fill only with arrays (so we don't need to use a single HeapWord filler if the 387 // leftover space is smaller than a zero-sized array object). Therefore, we need to 388 // make sure there's enough space of min_filler_byte_size in the current region after 389 // required_byte_size has been allocated. If not, fill the remainder of the current 390 // region. 391 size_t min_filler_byte_size = filler_array_byte_size(0); 392 size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size; 393 394 const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 395 const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 396 397 if (cur_min_region_bottom != next_min_region_bottom) { 398 // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way 399 // we can map the region in any region-based collector. 400 assert(next_min_region_bottom > cur_min_region_bottom, "must be"); 401 assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT, 402 "no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT); 403 404 const size_t filler_end = next_min_region_bottom; 405 const size_t fill_bytes = filler_end - _buffer_used; 406 assert(fill_bytes > 0, "must be"); 407 ensure_buffer_space(filler_end); 408 409 int array_length = filler_array_length(fill_bytes); 410 log_info(cds, heap)("Inserting filler obj array of %d elements (%zu bytes total) @ buffer offset %zu", 411 array_length, fill_bytes, _buffer_used); 412 HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes); 413 _buffer_used = filler_end; 414 _fillers->put(buffered_address_to_offset((address)filler), fill_bytes); 415 } 416 } 417 418 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) { 419 size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr)); 420 if (p != nullptr) { 421 assert(*p > 0, "filler must be larger than zero bytes"); 422 return *p; 423 } else { 424 return 0; // buffered_addr is not a filler 425 } 426 } 427 428 template <typename T> 429 void update_buffered_object_field(address buffered_obj, int field_offset, T value) { 430 T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset); 431 *field_addr = value; 432 } 433 434 void ArchiveHeapWriter::update_stats(oop src_obj) { 435 if (java_lang_String::is_instance(src_obj)) { 436 _num_strings ++; 437 _string_bytes += src_obj->size() * HeapWordSize; 438 _string_bytes += java_lang_String::value(src_obj)->size() * HeapWordSize; 439 } else { 440 Klass* k = src_obj->klass(); 441 Symbol* name = k->name(); 442 if (name->equals("java/lang/NamedPackage") || name->equals("java/lang/Package")) { 443 _num_packages ++; 444 } else if (name->equals("java/security/ProtectionDomain")) { 445 _num_protection_domains ++; 446 } 447 } 448 } 449 450 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) { 451 update_stats(src_obj); 452 453 assert(!is_too_large_to_archive(src_obj), "already checked"); 454 size_t byte_size = src_obj->size() * HeapWordSize; 455 assert(byte_size > 0, "no zero-size objects"); 456 457 // For region-based collectors such as G1, the archive heap may be mapped into 458 // multiple regions. We need to make sure that we don't have an object that can possible 459 // span across two regions. 460 maybe_fill_gc_region_gap(byte_size); 461 462 size_t new_used = _buffer_used + byte_size; 463 assert(new_used > _buffer_used, "no wrap around"); 464 465 size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 466 size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 467 assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries"); 468 469 ensure_buffer_space(new_used); 470 471 address from = cast_from_oop<address>(src_obj); 472 address to = offset_to_buffered_address<address>(_buffer_used); 473 assert(is_object_aligned(_buffer_used), "sanity"); 474 assert(is_object_aligned(byte_size), "sanity"); 475 memcpy(to, from, byte_size); 476 477 // These native pointers will be restored explicitly at run time. 478 if (java_lang_Module::is_instance(src_obj)) { 479 update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr); 480 } else if (java_lang_ClassLoader::is_instance(src_obj)) { 481 #ifdef ASSERT 482 // We only archive these loaders 483 if (src_obj != SystemDictionary::java_platform_loader() && 484 src_obj != SystemDictionary::java_system_loader()) { 485 assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be"); 486 } 487 #endif 488 update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr); 489 } 490 491 size_t buffered_obj_offset = _buffer_used; 492 _buffer_used = new_used; 493 494 return buffered_obj_offset; 495 } 496 497 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) { 498 assert(!info->is_used(), "only set once"); 499 500 size_t heap_region_byte_size = _buffer_used; 501 assert(heap_region_byte_size > 0, "must archived at least one object!"); 502 503 if (UseCompressedOops) { 504 if (UseG1GC) { 505 address heap_end = (address)G1CollectedHeap::heap()->reserved().end(); 506 log_info(cds, heap)("Heap end = %p", heap_end); 507 _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes); 508 _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT); 509 assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity"); 510 } else { 511 _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT); 512 } 513 } else { 514 // We always write the objects as if the heap started at this address. This 515 // makes the contents of the archive heap deterministic. 516 // 517 // Note that at runtime, the heap address is selected by the OS, so the archive 518 // heap will not be mapped at 0x10000000, and the contents need to be patched. 519 _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT); 520 } 521 522 assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity"); 523 524 _requested_top = _requested_bottom + _buffer_used; 525 526 info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0), 527 offset_to_buffered_address<HeapWord*>(_buffer_used))); 528 info->set_heap_root_segments(_heap_root_segments); 529 } 530 531 // Oop relocation 532 533 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) { 534 assert(is_in_requested_range(cast_to_oop(p)), "must be"); 535 536 address addr = address(p); 537 assert(addr >= _requested_bottom, "must be"); 538 size_t offset = addr - _requested_bottom; 539 return offset_to_buffered_address<T*>(offset); 540 } 541 542 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) { 543 oop o = load_oop_from_buffer(buffered_addr); 544 assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop"); 545 return o; 546 } 547 548 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr, 549 oop request_oop) { 550 assert(is_in_requested_range(request_oop), "must be"); 551 store_oop_in_buffer(buffered_addr, request_oop); 552 } 553 554 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) { 555 *buffered_addr = requested_obj; 556 } 557 558 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) { 559 narrowOop val = CompressedOops::encode_not_null(requested_obj); 560 *buffered_addr = val; 561 } 562 563 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) { 564 return *buffered_addr; 565 } 566 567 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) { 568 return CompressedOops::decode(*buffered_addr); 569 } 570 571 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) { 572 oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer); 573 if (source_referent != nullptr) { 574 if (java_lang_Class::is_instance(source_referent)) { 575 // When the source object points to a "real" mirror, the buffered object should point 576 // to the "scratch" mirror, which has all unarchivable fields scrubbed (to be reinstated 577 // at run time). 578 source_referent = HeapShared::scratch_java_mirror(source_referent); 579 assert(source_referent != nullptr, "must be"); 580 } 581 oop request_referent = source_obj_to_requested_obj(source_referent); 582 store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent); 583 mark_oop_pointer<T>(field_addr_in_buffer, oopmap); 584 } 585 } 586 587 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) { 588 T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr)); 589 address requested_region_bottom; 590 591 assert(request_p >= (T*)_requested_bottom, "sanity"); 592 assert(request_p < (T*)_requested_top, "sanity"); 593 requested_region_bottom = _requested_bottom; 594 595 // Mark the pointer in the oopmap 596 T* region_bottom = (T*)requested_region_bottom; 597 assert(request_p >= region_bottom, "must be"); 598 BitMap::idx_t idx = request_p - region_bottom; 599 assert(idx < oopmap->size(), "overflow"); 600 oopmap->set_bit(idx); 601 } 602 603 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) { 604 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 605 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass); 606 address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj)); 607 608 oop fake_oop = cast_to_oop(buffered_addr); 609 if (UseCompactObjectHeaders) { 610 fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk)); 611 } else { 612 fake_oop->set_narrow_klass(nk); 613 } 614 615 if (src_obj == nullptr) { 616 return; 617 } 618 // We need to retain the identity_hash, because it may have been used by some hashtables 619 // in the shared heap. 620 if (!src_obj->fast_no_hash_check()) { 621 intptr_t src_hash = src_obj->identity_hash(); 622 if (UseCompactObjectHeaders) { 623 fake_oop->set_mark(markWord::prototype().set_narrow_klass(nk).copy_set_hash(src_hash)); 624 } else { 625 fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash)); 626 } 627 assert(fake_oop->mark().is_unlocked(), "sanity"); 628 629 DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash()); 630 assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash); 631 } 632 // Strip age bits. 633 fake_oop->set_mark(fake_oop->mark().set_age(0)); 634 } 635 636 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure { 637 oop _src_obj; 638 address _buffered_obj; 639 CHeapBitMap* _oopmap; 640 bool _is_java_lang_ref; 641 public: 642 EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) : 643 _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) 644 { 645 _is_java_lang_ref = AOTReferenceObjSupport::check_if_ref_obj(src_obj); 646 } 647 648 void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); } 649 void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); } 650 651 private: 652 template <class T> void do_oop_work(T *p) { 653 int field_offset = pointer_delta_as_int((char*)p, cast_from_oop<char*>(_src_obj)); 654 T* field_addr = (T*)(_buffered_obj + field_offset); 655 if (_is_java_lang_ref && AOTReferenceObjSupport::skip_field(field_offset)) { 656 // Do not copy these fields. Set them to null 657 *field_addr = (T)0x0; 658 } else { 659 ArchiveHeapWriter::relocate_field_in_buffer<T>(field_addr, _oopmap); 660 } 661 } 662 }; 663 664 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) { 665 // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end). 666 size_t start = bitmap->find_first_set_bit(0); 667 size_t end = bitmap->size(); 668 log_info(cds)("%s = %7zu ... %7zu (%3zu%% ... %3zu%% = %3zu%%)", which, 669 start, end, 670 start * 100 / total_bits, 671 end * 100 / total_bits, 672 (end - start) * 100 / total_bits); 673 } 674 675 // Update all oop fields embedded in the buffered objects 676 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots, 677 ArchiveHeapInfo* heap_info) { 678 size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 679 size_t heap_region_byte_size = _buffer_used; 680 heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit); 681 682 for (int i = 0; i < _source_objs_order->length(); i++) { 683 int src_obj_index = _source_objs_order->at(i)._index; 684 oop src_obj = _source_objs->at(src_obj_index); 685 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 686 assert(info != nullptr, "must be"); 687 oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset()); 688 update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass()); 689 address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset()); 690 EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap()); 691 src_obj->oop_iterate(&relocator); 692 }; 693 694 // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and 695 // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it. 696 for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) { 697 size_t seg_offset = _heap_root_segments.segment_offset(seg_idx); 698 699 objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset); 700 update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass()); 701 address buffered_obj = offset_to_buffered_address<address>(seg_offset); 702 int length = _heap_root_segments.size_in_elems(seg_idx); 703 704 if (UseCompressedOops) { 705 for (int i = 0; i < length; i++) { 706 narrowOop* addr = (narrowOop*)(buffered_obj + objArrayOopDesc::obj_at_offset<narrowOop>(i)); 707 relocate_field_in_buffer<narrowOop>(addr, heap_info->oopmap()); 708 } 709 } else { 710 for (int i = 0; i < length; i++) { 711 oop* addr = (oop*)(buffered_obj + objArrayOopDesc::obj_at_offset<oop>(i)); 712 relocate_field_in_buffer<oop>(addr, heap_info->oopmap()); 713 } 714 } 715 } 716 717 compute_ptrmap(heap_info); 718 719 size_t total_bytes = (size_t)_buffer->length(); 720 log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop))); 721 log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address)); 722 } 723 724 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) { 725 Metadata* ptr = src_obj->metadata_field_acquire(field_offset); 726 if (ptr != nullptr) { 727 NativePointerInfo info; 728 info._src_obj = src_obj; 729 info._field_offset = field_offset; 730 _native_pointers->append(info); 731 HeapShared::set_has_native_pointers(src_obj); 732 _num_native_ptrs ++; 733 } 734 } 735 736 // Do we have a jlong/jint field that's actually a pointer to a MetaspaceObj? 737 bool ArchiveHeapWriter::is_marked_as_native_pointer(ArchiveHeapInfo* heap_info, oop src_obj, int field_offset) { 738 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 739 assert(p != nullptr, "must be"); 740 741 // requested_field_addr = the address of this field in the requested space 742 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 743 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 744 assert((Metadata**)_requested_bottom <= requested_field_addr && requested_field_addr < (Metadata**) _requested_top, "range check"); 745 746 BitMap::idx_t idx = requested_field_addr - (Metadata**) _requested_bottom; 747 // Leading zeros have been removed so some addresses may not be in the ptrmap 748 size_t start_pos = FileMapInfo::current_info()->heap_ptrmap_start_pos(); 749 if (idx < start_pos) { 750 return false; 751 } else { 752 idx -= start_pos; 753 } 754 return (idx < heap_info->ptrmap()->size()) && (heap_info->ptrmap()->at(idx) == true); 755 } 756 757 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) { 758 int num_non_null_ptrs = 0; 759 Metadata** bottom = (Metadata**) _requested_bottom; 760 Metadata** top = (Metadata**) _requested_top; // exclusive 761 heap_info->ptrmap()->resize(top - bottom); 762 763 BitMap::idx_t max_idx = 32; // paranoid - don't make it too small 764 for (int i = 0; i < _native_pointers->length(); i++) { 765 NativePointerInfo info = _native_pointers->at(i); 766 oop src_obj = info._src_obj; 767 int field_offset = info._field_offset; 768 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 769 // requested_field_addr = the address of this field in the requested space 770 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 771 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 772 assert(bottom <= requested_field_addr && requested_field_addr < top, "range check"); 773 774 // Mark this field in the bitmap 775 BitMap::idx_t idx = requested_field_addr - bottom; 776 heap_info->ptrmap()->set_bit(idx); 777 num_non_null_ptrs ++; 778 max_idx = MAX2(max_idx, idx); 779 780 // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have 781 // this address if the RO/RW regions are mapped at the default location). 782 783 Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr); 784 Metadata* native_ptr = *buffered_field_addr; 785 guarantee(native_ptr != nullptr, "sanity"); 786 guarantee(ArchiveBuilder::current()->has_been_buffered((address)native_ptr), 787 "Metadata %p should have been archived", native_ptr); 788 789 if (RegeneratedClasses::has_been_regenerated((address)native_ptr)) { 790 native_ptr = (Metadata*)RegeneratedClasses::get_regenerated_object((address)native_ptr); 791 } 792 793 address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr); 794 address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr); 795 *buffered_field_addr = (Metadata*)requested_native_ptr; 796 } 797 798 heap_info->ptrmap()->resize(max_idx + 1); 799 log_info(cds, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (%zu bits)", 800 num_non_null_ptrs, size_t(heap_info->ptrmap()->size())); 801 } 802 803 #endif // INCLUDE_CDS_JAVA_HEAP