1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/archiveHeapWriter.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/filemap.hpp" 29 #include "cds/heapShared.hpp" 30 #include "cds/regeneratedClasses.hpp" 31 #include "classfile/javaClasses.hpp" 32 #include "classfile/systemDictionary.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "memory/iterator.inline.hpp" 35 #include "memory/oopFactory.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/compressedOops.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/objArrayOop.inline.hpp" 40 #include "oops/oopHandle.inline.hpp" 41 #include "oops/typeArrayKlass.hpp" 42 #include "oops/typeArrayOop.hpp" 43 #include "runtime/java.hpp" 44 #include "runtime/mutexLocker.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #if INCLUDE_G1GC 47 #include "gc/g1/g1CollectedHeap.hpp" 48 #include "gc/g1/g1HeapRegion.hpp" 49 #endif 50 51 #if INCLUDE_CDS_JAVA_HEAP 52 53 GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer = nullptr; 54 55 // The following are offsets from buffer_bottom() 56 size_t ArchiveHeapWriter::_buffer_used; 57 58 // Heap root segments 59 HeapRootSegments ArchiveHeapWriter::_heap_root_segments; 60 61 address ArchiveHeapWriter::_requested_bottom; 62 address ArchiveHeapWriter::_requested_top; 63 64 static size_t _num_strings = 0; 65 static size_t _string_bytes = 0; 66 static size_t _num_packages = 0; 67 static size_t _num_protection_domains = 0; 68 69 GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers; 70 GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs; 71 GrowableArrayCHeap<ArchiveHeapWriter::HeapObjOrder, mtClassShared>* ArchiveHeapWriter::_source_objs_order; 72 73 ArchiveHeapWriter::BufferOffsetToSourceObjectTable* 74 ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr; 75 76 77 typedef ResourceHashtable< 78 size_t, // offset of a filler from ArchiveHeapWriter::buffer_bottom() 79 size_t, // size of this filler (in bytes) 80 127, // prime number 81 AnyObj::C_HEAP, 82 mtClassShared> FillersTable; 83 static FillersTable* _fillers; 84 static int _num_native_ptrs = 0; 85 86 void ArchiveHeapWriter::init() { 87 if (HeapShared::can_write()) { 88 Universe::heap()->collect(GCCause::_java_lang_system_gc); 89 90 _buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable(/*size (prime)*/36137, /*max size*/1 * M); 91 _fillers = new FillersTable(); 92 _requested_bottom = nullptr; 93 _requested_top = nullptr; 94 95 _native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048); 96 _source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000); 97 98 guarantee(MIN_GC_REGION_ALIGNMENT <= G1HeapRegion::min_region_size_in_words() * HeapWordSize, "must be"); 99 } 100 } 101 102 void ArchiveHeapWriter::add_source_obj(oop src_obj) { 103 _source_objs->append(src_obj); 104 } 105 106 void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots, 107 ArchiveHeapInfo* heap_info) { 108 assert(HeapShared::can_write(), "sanity"); 109 allocate_buffer(); 110 copy_source_objs_to_buffer(roots); 111 set_requested_address(heap_info); 112 relocate_embedded_oops(roots, heap_info); 113 } 114 115 bool ArchiveHeapWriter::is_too_large_to_archive(oop o) { 116 return is_too_large_to_archive(o->size()); 117 } 118 119 bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) { 120 typeArrayOop value = java_lang_String::value_no_keepalive(string); 121 return is_too_large_to_archive(value); 122 } 123 124 bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) { 125 assert(size > 0, "no zero-size object"); 126 assert(size * HeapWordSize > size, "no overflow"); 127 static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive"); 128 129 size_t byte_size = size * HeapWordSize; 130 if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) { 131 return true; 132 } else { 133 return false; 134 } 135 } 136 137 // Various lookup functions between source_obj, buffered_obj and requested_obj 138 bool ArchiveHeapWriter::is_in_requested_range(oop o) { 139 assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized"); 140 address a = cast_from_oop<address>(o); 141 return (_requested_bottom <= a && a < _requested_top); 142 } 143 144 oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) { 145 oop req_obj = cast_to_oop(_requested_bottom + offset); 146 assert(is_in_requested_range(req_obj), "must be"); 147 return req_obj; 148 } 149 150 oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) { 151 assert(CDSConfig::is_dumping_heap(), "dump-time only"); 152 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 153 if (p != nullptr) { 154 return requested_obj_from_buffer_offset(p->buffer_offset()); 155 } else { 156 return nullptr; 157 } 158 } 159 160 oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) { 161 oop* p = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr)); 162 if (p != nullptr) { 163 return *p; 164 } else { 165 return nullptr; 166 } 167 } 168 169 address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) { 170 return _requested_bottom + buffered_address_to_offset(buffered_addr); 171 } 172 173 address ArchiveHeapWriter::requested_address() { 174 assert(_buffer != nullptr, "must be initialized"); 175 return _requested_bottom; 176 } 177 178 void ArchiveHeapWriter::allocate_buffer() { 179 int initial_buffer_size = 100000; 180 _buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size); 181 _buffer_used = 0; 182 ensure_buffer_space(1); // so that buffer_bottom() works 183 } 184 185 void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) { 186 // We usually have very small heaps. If we get a huge one it's probably caused by a bug. 187 guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects"); 188 _buffer->at_grow(to_array_index(min_bytes)); 189 } 190 191 objArrayOop ArchiveHeapWriter::allocate_root_segment(size_t offset, int element_count) { 192 HeapWord* mem = offset_to_buffered_address<HeapWord *>(offset); 193 memset(mem, 0, objArrayOopDesc::object_size(element_count)); 194 195 // The initialization code is copied from MemAllocator::finish and ObjArrayAllocator::initialize. 196 oopDesc::set_mark(mem, markWord::prototype()); 197 oopDesc::release_set_klass(mem, Universe::objectArrayKlass()); 198 arrayOopDesc::set_length(mem, element_count); 199 return objArrayOop(cast_to_oop(mem)); 200 } 201 202 void ArchiveHeapWriter::root_segment_at_put(objArrayOop segment, int index, oop root) { 203 // Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside the real heap! 204 if (UseCompressedOops) { 205 *segment->obj_at_addr<narrowOop>(index) = CompressedOops::encode(root); 206 } else { 207 *segment->obj_at_addr<oop>(index) = root; 208 } 209 } 210 211 void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 212 // Depending on the number of classes we are archiving, a single roots array may be 213 // larger than MIN_GC_REGION_ALIGNMENT. Roots are allocated first in the buffer, which 214 // allows us to chop the large array into a series of "segments". Current layout 215 // starts with zero or more segments exactly fitting MIN_GC_REGION_ALIGNMENT, and end 216 // with a single segment that may be smaller than MIN_GC_REGION_ALIGNMENT. 217 // This is simple and efficient. We do not need filler objects anywhere between the segments, 218 // or immediately after the last segment. This allows starting the object dump immediately 219 // after the roots. 220 221 assert((_buffer_used % MIN_GC_REGION_ALIGNMENT) == 0, 222 "Pre-condition: Roots start at aligned boundary: " SIZE_FORMAT, _buffer_used); 223 224 int max_elem_count = ((MIN_GC_REGION_ALIGNMENT - arrayOopDesc::header_size_in_bytes()) / heapOopSize); 225 assert(objArrayOopDesc::object_size(max_elem_count)*HeapWordSize == MIN_GC_REGION_ALIGNMENT, 226 "Should match exactly"); 227 228 HeapRootSegments segments(_buffer_used, 229 roots->length(), 230 MIN_GC_REGION_ALIGNMENT, 231 max_elem_count); 232 233 int root_index = 0; 234 for (size_t seg_idx = 0; seg_idx < segments.count(); seg_idx++) { 235 int size_elems = segments.size_in_elems(seg_idx); 236 size_t size_bytes = segments.size_in_bytes(seg_idx); 237 238 size_t oop_offset = _buffer_used; 239 _buffer_used = oop_offset + size_bytes; 240 ensure_buffer_space(_buffer_used); 241 242 assert((oop_offset % MIN_GC_REGION_ALIGNMENT) == 0, 243 "Roots segment " SIZE_FORMAT " start is not aligned: " SIZE_FORMAT, 244 segments.count(), oop_offset); 245 246 objArrayOop seg_oop = allocate_root_segment(oop_offset, size_elems); 247 for (int i = 0; i < size_elems; i++) { 248 root_segment_at_put(seg_oop, i, roots->at(root_index++)); 249 } 250 251 log_info(cds, heap)("archived obj root segment [%d] = " SIZE_FORMAT " bytes, obj = " PTR_FORMAT, 252 size_elems, size_bytes, p2i(seg_oop)); 253 } 254 255 assert(root_index == roots->length(), "Post-condition: All roots are handled"); 256 257 _heap_root_segments = segments; 258 } 259 260 // The goal is to sort the objects in increasing order of: 261 // - objects that have only oop pointers 262 // - objects that have both native and oop pointers 263 // - objects that have only native pointers 264 // - objects that have no pointers 265 static int oop_sorting_rank(oop o) { 266 bool has_oop_ptr, has_native_ptr; 267 HeapShared::get_pointer_info(o, has_oop_ptr, has_native_ptr); 268 269 if (has_oop_ptr) { 270 if (!has_native_ptr) { 271 return 0; 272 } else { 273 return 1; 274 } 275 } else { 276 if (has_native_ptr) { 277 return 2; 278 } else { 279 return 3; 280 } 281 } 282 } 283 284 int ArchiveHeapWriter::compare_objs_by_oop_fields(HeapObjOrder* a, HeapObjOrder* b) { 285 int rank_a = a->_rank; 286 int rank_b = b->_rank; 287 288 if (rank_a != rank_b) { 289 return rank_a - rank_b; 290 } else { 291 // If they are the same rank, sort them by their position in the _source_objs array 292 return a->_index - b->_index; 293 } 294 } 295 296 void ArchiveHeapWriter::sort_source_objs() { 297 log_info(cds)("sorting heap objects"); 298 int len = _source_objs->length(); 299 _source_objs_order = new GrowableArrayCHeap<HeapObjOrder, mtClassShared>(len); 300 301 for (int i = 0; i < len; i++) { 302 oop o = _source_objs->at(i); 303 int rank = oop_sorting_rank(o); 304 HeapObjOrder os = {i, rank}; 305 _source_objs_order->append(os); 306 } 307 log_info(cds)("computed ranks"); 308 _source_objs_order->sort(compare_objs_by_oop_fields); 309 log_info(cds)("sorting heap objects done"); 310 } 311 312 void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) { 313 // There could be multiple root segments, which we want to be aligned by region. 314 // Putting them ahead of objects makes sure we waste no space. 315 copy_roots_to_buffer(roots); 316 317 sort_source_objs(); 318 for (int i = 0; i < _source_objs_order->length(); i++) { 319 int src_obj_index = _source_objs_order->at(i)._index; 320 oop src_obj = _source_objs->at(src_obj_index); 321 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 322 assert(info != nullptr, "must be"); 323 size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj); 324 info->set_buffer_offset(buffer_offset); 325 assert(buffer_offset <= 0x7fffffff, "sanity"); 326 HeapShared::add_to_permanent_oop_table(src_obj, (int)buffer_offset); 327 328 _buffer_offset_to_source_obj_table->put_when_absent(buffer_offset, src_obj); 329 _buffer_offset_to_source_obj_table->maybe_grow(); 330 } 331 332 log_info(cds)("Size of heap region = " SIZE_FORMAT " bytes, %d objects, %d roots, %d native ptrs", 333 _buffer_used, _source_objs->length() + 1, roots->length(), _num_native_ptrs); 334 log_info(cds)(" strings = " SIZE_FORMAT_W(8) " (" SIZE_FORMAT " bytes)", _num_strings, _string_bytes); 335 log_info(cds)(" packages = " SIZE_FORMAT_W(8), _num_packages); 336 log_info(cds)(" protection domains = " SIZE_FORMAT_W(8),_num_protection_domains); 337 } 338 339 size_t ArchiveHeapWriter::filler_array_byte_size(int length) { 340 size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize; 341 return byte_size; 342 } 343 344 int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) { 345 assert(is_object_aligned(fill_bytes), "must be"); 346 size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 347 348 int initial_length = to_array_length(fill_bytes / elemSize); 349 for (int length = initial_length; length >= 0; length --) { 350 size_t array_byte_size = filler_array_byte_size(length); 351 if (array_byte_size == fill_bytes) { 352 return length; 353 } 354 } 355 356 ShouldNotReachHere(); 357 return -1; 358 } 359 360 HeapWord* ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) { 361 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 362 Klass* oak = Universe::objectArrayKlass(); // already relocated to point to archived klass 363 HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used); 364 memset(mem, 0, fill_bytes); 365 oopDesc::set_mark(mem, markWord::prototype()); 366 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak); 367 cast_to_oop(mem)->set_narrow_klass(nk); 368 arrayOopDesc::set_length(mem, array_length); 369 return mem; 370 } 371 372 void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) { 373 // We fill only with arrays (so we don't need to use a single HeapWord filler if the 374 // leftover space is smaller than a zero-sized array object). Therefore, we need to 375 // make sure there's enough space of min_filler_byte_size in the current region after 376 // required_byte_size has been allocated. If not, fill the remainder of the current 377 // region. 378 size_t min_filler_byte_size = filler_array_byte_size(0); 379 size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size; 380 381 const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 382 const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 383 384 if (cur_min_region_bottom != next_min_region_bottom) { 385 // Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way 386 // we can map the region in any region-based collector. 387 assert(next_min_region_bottom > cur_min_region_bottom, "must be"); 388 assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT, 389 "no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT); 390 391 const size_t filler_end = next_min_region_bottom; 392 const size_t fill_bytes = filler_end - _buffer_used; 393 assert(fill_bytes > 0, "must be"); 394 ensure_buffer_space(filler_end); 395 396 int array_length = filler_array_length(fill_bytes); 397 log_info(cds, heap)("Inserting filler obj array of %d elements (" SIZE_FORMAT " bytes total) @ buffer offset " SIZE_FORMAT, 398 array_length, fill_bytes, _buffer_used); 399 HeapWord* filler = init_filler_array_at_buffer_top(array_length, fill_bytes); 400 _buffer_used = filler_end; 401 _fillers->put(buffered_address_to_offset((address)filler), fill_bytes); 402 } 403 } 404 405 size_t ArchiveHeapWriter::get_filler_size_at(address buffered_addr) { 406 size_t* p = _fillers->get(buffered_address_to_offset(buffered_addr)); 407 if (p != nullptr) { 408 assert(*p > 0, "filler must be larger than zero bytes"); 409 return *p; 410 } else { 411 return 0; // buffered_addr is not a filler 412 } 413 } 414 415 template <typename T> 416 void update_buffered_object_field(address buffered_obj, int field_offset, T value) { 417 T* field_addr = cast_to_oop(buffered_obj)->field_addr<T>(field_offset); 418 *field_addr = value; 419 } 420 421 void ArchiveHeapWriter::update_stats(oop src_obj) { 422 if (java_lang_String::is_instance(src_obj)) { 423 _num_strings ++; 424 _string_bytes += src_obj->size() * HeapWordSize; 425 _string_bytes += java_lang_String::value(src_obj)->size() * HeapWordSize; 426 } else { 427 Klass* k = src_obj->klass(); 428 Symbol* name = k->name(); 429 if (name->equals("java/lang/NamedPackage") || name->equals("java/lang/Package")) { 430 _num_packages ++; 431 } else if (name->equals("java/security/ProtectionDomain")) { 432 _num_protection_domains ++; 433 } 434 } 435 } 436 437 size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) { 438 update_stats(src_obj); 439 440 assert(!is_too_large_to_archive(src_obj), "already checked"); 441 size_t byte_size = src_obj->size() * HeapWordSize; 442 assert(byte_size > 0, "no zero-size objects"); 443 444 // For region-based collectors such as G1, the archive heap may be mapped into 445 // multiple regions. We need to make sure that we don't have an object that can possible 446 // span across two regions. 447 maybe_fill_gc_region_gap(byte_size); 448 449 size_t new_used = _buffer_used + byte_size; 450 assert(new_used > _buffer_used, "no wrap around"); 451 452 size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT); 453 size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT); 454 assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries"); 455 456 ensure_buffer_space(new_used); 457 458 address from = cast_from_oop<address>(src_obj); 459 address to = offset_to_buffered_address<address>(_buffer_used); 460 assert(is_object_aligned(_buffer_used), "sanity"); 461 assert(is_object_aligned(byte_size), "sanity"); 462 memcpy(to, from, byte_size); 463 464 // These native pointers will be restored explicitly at run time. 465 if (java_lang_Module::is_instance(src_obj)) { 466 update_buffered_object_field<ModuleEntry*>(to, java_lang_Module::module_entry_offset(), nullptr); 467 } else if (java_lang_ClassLoader::is_instance(src_obj)) { 468 #ifdef ASSERT 469 // We only archive these loaders 470 if (src_obj != SystemDictionary::java_platform_loader() && 471 src_obj != SystemDictionary::java_system_loader()) { 472 assert(src_obj->klass()->name()->equals("jdk/internal/loader/ClassLoaders$BootClassLoader"), "must be"); 473 } 474 #endif 475 update_buffered_object_field<ClassLoaderData*>(to, java_lang_ClassLoader::loader_data_offset(), nullptr); 476 } 477 478 size_t buffered_obj_offset = _buffer_used; 479 _buffer_used = new_used; 480 481 return buffered_obj_offset; 482 } 483 484 void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) { 485 assert(!info->is_used(), "only set once"); 486 487 size_t heap_region_byte_size = _buffer_used; 488 assert(heap_region_byte_size > 0, "must archived at least one object!"); 489 490 if (UseCompressedOops) { 491 if (UseG1GC) { 492 address heap_end = (address)G1CollectedHeap::heap()->reserved().end(); 493 log_info(cds, heap)("Heap end = %p", heap_end); 494 _requested_bottom = align_down(heap_end - heap_region_byte_size, G1HeapRegion::GrainBytes); 495 _requested_bottom = align_down(_requested_bottom, MIN_GC_REGION_ALIGNMENT); 496 assert(is_aligned(_requested_bottom, G1HeapRegion::GrainBytes), "sanity"); 497 } else { 498 _requested_bottom = align_up(CompressedOops::begin(), MIN_GC_REGION_ALIGNMENT); 499 } 500 } else { 501 // We always write the objects as if the heap started at this address. This 502 // makes the contents of the archive heap deterministic. 503 // 504 // Note that at runtime, the heap address is selected by the OS, so the archive 505 // heap will not be mapped at 0x10000000, and the contents need to be patched. 506 _requested_bottom = align_up((address)NOCOOPS_REQUESTED_BASE, MIN_GC_REGION_ALIGNMENT); 507 } 508 509 assert(is_aligned(_requested_bottom, MIN_GC_REGION_ALIGNMENT), "sanity"); 510 511 _requested_top = _requested_bottom + _buffer_used; 512 513 info->set_buffer_region(MemRegion(offset_to_buffered_address<HeapWord*>(0), 514 offset_to_buffered_address<HeapWord*>(_buffer_used))); 515 info->set_heap_root_segments(_heap_root_segments); 516 } 517 518 // Oop relocation 519 520 template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) { 521 assert(is_in_requested_range(cast_to_oop(p)), "must be"); 522 523 address addr = address(p); 524 assert(addr >= _requested_bottom, "must be"); 525 size_t offset = addr - _requested_bottom; 526 return offset_to_buffered_address<T*>(offset); 527 } 528 529 template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) { 530 oop o = load_oop_from_buffer(buffered_addr); 531 assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop"); 532 return o; 533 } 534 535 template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr, 536 oop request_oop) { 537 assert(is_in_requested_range(request_oop), "must be"); 538 store_oop_in_buffer(buffered_addr, request_oop); 539 } 540 541 inline void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) { 542 *buffered_addr = requested_obj; 543 } 544 545 inline void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) { 546 narrowOop val = CompressedOops::encode_not_null(requested_obj); 547 *buffered_addr = val; 548 } 549 550 oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) { 551 return *buffered_addr; 552 } 553 554 oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) { 555 return CompressedOops::decode(*buffered_addr); 556 } 557 558 template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) { 559 oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer); 560 if (source_referent != nullptr) { 561 if (java_lang_Class::is_instance(source_referent)) { 562 source_referent = HeapShared::scratch_java_mirror(source_referent); 563 assert(source_referent != nullptr, "must be"); 564 } 565 oop request_referent = source_obj_to_requested_obj(source_referent); 566 store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent); 567 mark_oop_pointer<T>(field_addr_in_buffer, oopmap); 568 } 569 } 570 571 template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) { 572 T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr)); 573 address requested_region_bottom; 574 575 assert(request_p >= (T*)_requested_bottom, "sanity"); 576 assert(request_p < (T*)_requested_top, "sanity"); 577 requested_region_bottom = _requested_bottom; 578 579 // Mark the pointer in the oopmap 580 T* region_bottom = (T*)requested_region_bottom; 581 assert(request_p >= region_bottom, "must be"); 582 BitMap::idx_t idx = request_p - region_bottom; 583 assert(idx < oopmap->size(), "overflow"); 584 oopmap->set_bit(idx); 585 } 586 587 void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) { 588 assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses"); 589 narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass); 590 address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj)); 591 592 oop fake_oop = cast_to_oop(buffered_addr); 593 fake_oop->set_narrow_klass(nk); 594 595 // We need to retain the identity_hash, because it may have been used by some hashtables 596 // in the shared heap. 597 if (src_obj != nullptr && !src_obj->fast_no_hash_check()) { 598 intptr_t src_hash = src_obj->identity_hash(); 599 fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash)); 600 assert(fake_oop->mark().is_unlocked(), "sanity"); 601 602 DEBUG_ONLY(intptr_t archived_hash = fake_oop->identity_hash()); 603 assert(src_hash == archived_hash, "Different hash codes: original " INTPTR_FORMAT ", archived " INTPTR_FORMAT, src_hash, archived_hash); 604 } 605 } 606 607 class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure { 608 oop _src_obj; 609 address _buffered_obj; 610 CHeapBitMap* _oopmap; 611 612 public: 613 EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) : 614 _src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) {} 615 616 void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); } 617 void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); } 618 619 private: 620 template <class T> void do_oop_work(T *p) { 621 size_t field_offset = pointer_delta(p, _src_obj, sizeof(char)); 622 ArchiveHeapWriter::relocate_field_in_buffer<T>((T*)(_buffered_obj + field_offset), _oopmap); 623 } 624 }; 625 626 static void log_bitmap_usage(const char* which, BitMap* bitmap, size_t total_bits) { 627 // The whole heap is covered by total_bits, but there are only non-zero bits within [start ... end). 628 size_t start = bitmap->find_first_set_bit(0); 629 size_t end = bitmap->size(); 630 log_info(cds)("%s = " SIZE_FORMAT_W(7) " ... " SIZE_FORMAT_W(7) " (%3zu%% ... %3zu%% = %3zu%%)", which, 631 start, end, 632 start * 100 / total_bits, 633 end * 100 / total_bits, 634 (end - start) * 100 / total_bits); 635 } 636 637 // Update all oop fields embedded in the buffered objects 638 void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots, 639 ArchiveHeapInfo* heap_info) { 640 size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop)); 641 size_t heap_region_byte_size = _buffer_used; 642 heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit); 643 644 for (int i = 0; i < _source_objs_order->length(); i++) { 645 int src_obj_index = _source_objs_order->at(i)._index; 646 oop src_obj = _source_objs->at(src_obj_index); 647 HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj); 648 assert(info != nullptr, "must be"); 649 oop requested_obj = requested_obj_from_buffer_offset(info->buffer_offset()); 650 update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass()); 651 address buffered_obj = offset_to_buffered_address<address>(info->buffer_offset()); 652 EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap()); 653 src_obj->oop_iterate(&relocator); 654 }; 655 656 // Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and 657 // doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it. 658 for (size_t seg_idx = 0; seg_idx < _heap_root_segments.count(); seg_idx++) { 659 size_t seg_offset = _heap_root_segments.segment_offset(seg_idx); 660 661 objArrayOop requested_obj = (objArrayOop)requested_obj_from_buffer_offset(seg_offset); 662 update_header_for_requested_obj(requested_obj, nullptr, Universe::objectArrayKlass()); 663 address buffered_obj = offset_to_buffered_address<address>(seg_offset); 664 int length = _heap_root_segments.size_in_elems(seg_idx); 665 666 if (UseCompressedOops) { 667 for (int i = 0; i < length; i++) { 668 narrowOop* addr = (narrowOop*)(buffered_obj + objArrayOopDesc::obj_at_offset<narrowOop>(i)); 669 relocate_field_in_buffer<narrowOop>(addr, heap_info->oopmap()); 670 } 671 } else { 672 for (int i = 0; i < length; i++) { 673 oop* addr = (oop*)(buffered_obj + objArrayOopDesc::obj_at_offset<oop>(i)); 674 relocate_field_in_buffer<oop>(addr, heap_info->oopmap()); 675 } 676 } 677 } 678 679 compute_ptrmap(heap_info); 680 681 size_t total_bytes = (size_t)_buffer->length(); 682 log_bitmap_usage("oopmap", heap_info->oopmap(), total_bytes / (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop))); 683 log_bitmap_usage("ptrmap", heap_info->ptrmap(), total_bytes / sizeof(address)); 684 } 685 686 void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) { 687 Metadata* ptr = src_obj->metadata_field_acquire(field_offset); 688 if (ptr != nullptr) { 689 NativePointerInfo info; 690 info._src_obj = src_obj; 691 info._field_offset = field_offset; 692 _native_pointers->append(info); 693 if (!ArchiveBuilder::current()->has_been_archived((address)ptr)) { 694 // Currently we supporting marking of only Method and Klass, both of which are 695 // subtypes of MetaData. 696 ResourceMark rm; 697 log_error(cds, heap)("Native pointer %p is not archived", ptr); 698 if (((Metadata*)ptr)->is_method()) { 699 log_error(cds, heap)("Method: %s", ((Method*)ptr)->external_name()); 700 } else { 701 assert(((Metadata*)ptr)->is_klass(), "must be"); 702 log_error(cds, heap)("Klass: %s", ((Klass*)ptr)->external_name()); 703 } 704 HeapShared::exit_on_error(); 705 } 706 HeapShared::set_has_native_pointers(src_obj); 707 _num_native_ptrs ++; 708 } 709 } 710 711 // Do we have a jlong/jint field that's actually a pointer to a MetaspaceObj? 712 bool ArchiveHeapWriter::is_marked_as_native_pointer(ArchiveHeapInfo* heap_info, oop src_obj, int field_offset) { 713 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 714 assert(p != nullptr, "must be"); 715 716 // requested_field_addr = the address of this field in the requested space 717 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 718 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 719 assert((Metadata**)_requested_bottom <= requested_field_addr && requested_field_addr < (Metadata**) _requested_top, "range check"); 720 721 BitMap::idx_t idx = requested_field_addr - (Metadata**) _requested_bottom; 722 // Leading zeros have been removed so some addresses may not be in the ptrmap 723 size_t start_pos = FileMapInfo::current_info()->heap_ptrmap_start_pos(); 724 if (idx < start_pos) { 725 return false; 726 } else { 727 idx -= start_pos; 728 } 729 return (idx < heap_info->ptrmap()->size()) && (heap_info->ptrmap()->at(idx) == true); 730 } 731 732 void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) { 733 int num_non_null_ptrs = 0; 734 Metadata** bottom = (Metadata**) _requested_bottom; 735 Metadata** top = (Metadata**) _requested_top; // exclusive 736 heap_info->ptrmap()->resize(top - bottom); 737 738 BitMap::idx_t max_idx = 32; // paranoid - don't make it too small 739 for (int i = 0; i < _native_pointers->length(); i++) { 740 NativePointerInfo info = _native_pointers->at(i); 741 oop src_obj = info._src_obj; 742 int field_offset = info._field_offset; 743 HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj); 744 // requested_field_addr = the address of this field in the requested space 745 oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset()); 746 Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset); 747 assert(bottom <= requested_field_addr && requested_field_addr < top, "range check"); 748 749 // Mark this field in the bitmap 750 BitMap::idx_t idx = requested_field_addr - bottom; 751 heap_info->ptrmap()->set_bit(idx); 752 num_non_null_ptrs ++; 753 max_idx = MAX2(max_idx, idx); 754 755 // Set the native pointer to the requested address of the metadata (at runtime, the metadata will have 756 // this address if the RO/RW regions are mapped at the default location). 757 758 Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr); 759 Metadata* native_ptr = *buffered_field_addr; 760 assert(native_ptr != nullptr, "sanity"); 761 762 if (RegeneratedClasses::has_been_regenerated((address)native_ptr)) { 763 native_ptr = (Metadata*)RegeneratedClasses::get_regenerated_object((address)native_ptr); 764 } 765 766 address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr); 767 address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr); 768 *buffered_field_addr = (Metadata*)requested_native_ptr; 769 } 770 771 heap_info->ptrmap()->resize(max_idx + 1); 772 log_info(cds, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (" SIZE_FORMAT " bits)", 773 num_non_null_ptrs, size_t(heap_info->ptrmap()->size())); 774 } 775 776 #endif // INCLUDE_CDS_JAVA_HEAP