1 /*
  2  * Copyright (c) 2019, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "cds/archiveBuilder.hpp"
 27 #include "cds/archiveHeapLoader.inline.hpp"
 28 #include "cds/archiveUtils.hpp"
 29 #include "cds/cdsConfig.hpp"
 30 #include "cds/classListParser.hpp"
 31 #include "cds/classListWriter.hpp"
 32 #include "cds/dynamicArchive.hpp"
 33 #include "cds/filemap.hpp"
 34 #include "cds/heapShared.hpp"
 35 #include "cds/metaspaceShared.hpp"
 36 #include "classfile/systemDictionaryShared.hpp"
 37 #include "classfile/vmClasses.hpp"
 38 #include "interpreter/bootstrapInfo.hpp"
 39 #include "memory/metaspaceUtils.hpp"
 40 #include "memory/resourceArea.hpp"
 41 #include "oops/compressedOops.inline.hpp"
 42 #include "oops/klass.inline.hpp"
 43 #include "runtime/arguments.hpp"
 44 #include "utilities/bitMap.inline.hpp"
 45 #include "utilities/debug.hpp"
 46 #include "utilities/formatBuffer.hpp"
 47 #include "utilities/globalDefinitions.hpp"
 48 #include "utilities/spinYield.hpp"
 49 
 50 CHeapBitMap* ArchivePtrMarker::_ptrmap = nullptr;
 51 CHeapBitMap* ArchivePtrMarker::_rw_ptrmap = nullptr;
 52 CHeapBitMap* ArchivePtrMarker::_ro_ptrmap = nullptr;
 53 VirtualSpace* ArchivePtrMarker::_vs;
 54 
 55 bool ArchivePtrMarker::_compacted;
 56 
 57 void ArchivePtrMarker::initialize(CHeapBitMap* ptrmap, VirtualSpace* vs) {
 58   assert(_ptrmap == nullptr, "initialize only once");
 59   assert(_rw_ptrmap == nullptr, "initialize only once");
 60   assert(_ro_ptrmap == nullptr, "initialize only once");
 61   _vs = vs;
 62   _compacted = false;
 63   _ptrmap = ptrmap;
 64 
 65   // Use this as initial guesstimate. We should need less space in the
 66   // archive, but if we're wrong the bitmap will be expanded automatically.
 67   size_t estimated_archive_size = MetaspaceGC::capacity_until_GC();
 68   // But set it smaller in debug builds so we always test the expansion code.
 69   // (Default archive is about 12MB).
 70   DEBUG_ONLY(estimated_archive_size = 6 * M);
 71 
 72   // We need one bit per pointer in the archive.
 73   _ptrmap->initialize(estimated_archive_size / sizeof(intptr_t));
 74 }
 75 
 76 void ArchivePtrMarker::initialize_rw_ro_maps(CHeapBitMap* rw_ptrmap, CHeapBitMap* ro_ptrmap) {
 77   address* rw_bottom = (address*)ArchiveBuilder::current()->rw_region()->base();
 78   address* ro_bottom = (address*)ArchiveBuilder::current()->ro_region()->base();
 79 
 80   _rw_ptrmap = rw_ptrmap;
 81   _ro_ptrmap = ro_ptrmap;
 82 
 83   size_t rw_size = ArchiveBuilder::current()->rw_region()->used() / sizeof(address);
 84   size_t ro_size = ArchiveBuilder::current()->ro_region()->used() / sizeof(address);
 85   // ro_start is the first bit in _ptrmap that covers the pointer that would sit at ro_bottom.
 86   // E.g., if rw_bottom = (address*)100
 87   //          ro_bottom = (address*)116
 88   //       then for 64-bit platform:
 89   //          ro_start = ro_bottom - rw_bottom = (116 - 100) / sizeof(address) = 2;
 90   size_t ro_start = ro_bottom - rw_bottom;
 91 
 92   // Note: ptrmap is big enough only to cover the last pointer in ro_region.
 93   // See ArchivePtrMarker::compact()
 94   _rw_ptrmap->initialize(rw_size);
 95   _ro_ptrmap->initialize(_ptrmap->size() - ro_start);
 96 
 97   for (size_t rw_bit = 0; rw_bit < _rw_ptrmap->size(); rw_bit++) {
 98     _rw_ptrmap->at_put(rw_bit, _ptrmap->at(rw_bit));
 99   }
100 
101   for(size_t ro_bit = ro_start; ro_bit < _ptrmap->size(); ro_bit++) {
102     _ro_ptrmap->at_put(ro_bit-ro_start, _ptrmap->at(ro_bit));
103   }
104   assert(_ptrmap->size() - ro_start == _ro_ptrmap->size(), "must be");
105 }
106 
107 void ArchivePtrMarker::mark_pointer(address* ptr_loc) {
108   assert(_ptrmap != nullptr, "not initialized");
109   assert(!_compacted, "cannot mark anymore");
110 
111   if (ptr_base() <= ptr_loc && ptr_loc < ptr_end()) {
112     address value = *ptr_loc;
113     // We don't want any pointer that points to very bottom of the archive, otherwise when
114     // MetaspaceShared::default_base_address()==0, we can't distinguish between a pointer
115     // to nothing (null) vs a pointer to an objects that happens to be at the very bottom
116     // of the archive.
117     assert(value != (address)ptr_base(), "don't point to the bottom of the archive");
118 
119     if (value != nullptr) {
120       assert(uintx(ptr_loc) % sizeof(intptr_t) == 0, "pointers must be stored in aligned addresses");
121       size_t idx = ptr_loc - ptr_base();
122       if (_ptrmap->size() <= idx) {
123         _ptrmap->resize((idx + 1) * 2);
124       }
125       assert(idx < _ptrmap->size(), "must be");
126       _ptrmap->set_bit(idx);
127       //tty->print_cr("Marking pointer [" PTR_FORMAT "] -> " PTR_FORMAT " @ " SIZE_FORMAT_W(5), p2i(ptr_loc), p2i(*ptr_loc), idx);
128     }
129   }
130 }
131 
132 void ArchivePtrMarker::clear_pointer(address* ptr_loc) {
133   assert(_ptrmap != nullptr, "not initialized");
134   assert(!_compacted, "cannot clear anymore");
135 
136   assert(ptr_base() <= ptr_loc && ptr_loc < ptr_end(), "must be");
137   assert(uintx(ptr_loc) % sizeof(intptr_t) == 0, "pointers must be stored in aligned addresses");
138   size_t idx = ptr_loc - ptr_base();
139   assert(idx < _ptrmap->size(), "cannot clear pointers that have not been marked");
140   _ptrmap->clear_bit(idx);
141   //tty->print_cr("Clearing pointer [" PTR_FORMAT "] -> " PTR_FORMAT " @ " SIZE_FORMAT_W(5), p2i(ptr_loc), p2i(*ptr_loc), idx);
142 }
143 
144 class ArchivePtrBitmapCleaner: public BitMapClosure {
145   CHeapBitMap* _ptrmap;
146   address* _ptr_base;
147   address  _relocatable_base;
148   address  _relocatable_end;
149   size_t   _max_non_null_offset;
150 
151 public:
152   ArchivePtrBitmapCleaner(CHeapBitMap* ptrmap, address* ptr_base, address relocatable_base, address relocatable_end) :
153     _ptrmap(ptrmap), _ptr_base(ptr_base),
154     _relocatable_base(relocatable_base), _relocatable_end(relocatable_end), _max_non_null_offset(0) {}
155 
156   bool do_bit(size_t offset) {
157     address* ptr_loc = _ptr_base + offset;
158     address  ptr_value = *ptr_loc;
159     if (ptr_value != nullptr) {
160       assert(_relocatable_base <= ptr_value && ptr_value < _relocatable_end, "do not point to arbitrary locations!");
161       if (_max_non_null_offset < offset) {
162         _max_non_null_offset = offset;
163       }
164     } else {
165       _ptrmap->clear_bit(offset);
166       DEBUG_ONLY(log_trace(cds, reloc)("Clearing pointer [" PTR_FORMAT  "] -> null @ " SIZE_FORMAT_W(9), p2i(ptr_loc), offset));
167     }
168 
169     return true;
170   }
171 
172   size_t max_non_null_offset() const { return _max_non_null_offset; }
173 };
174 
175 void ArchivePtrMarker::compact(address relocatable_base, address relocatable_end) {
176   assert(!_compacted, "cannot compact again");
177   ArchivePtrBitmapCleaner cleaner(_ptrmap, ptr_base(), relocatable_base, relocatable_end);
178   _ptrmap->iterate(&cleaner);
179   compact(cleaner.max_non_null_offset());
180 }
181 
182 void ArchivePtrMarker::compact(size_t max_non_null_offset) {
183   assert(!_compacted, "cannot compact again");
184   _ptrmap->resize(max_non_null_offset + 1);
185   _compacted = true;
186 }
187 
188 char* DumpRegion::expand_top_to(char* newtop) {
189   assert(is_allocatable(), "must be initialized and not packed");
190   assert(newtop >= _top, "must not grow backwards");
191   if (newtop > _end) {
192     ArchiveBuilder::current()->report_out_of_space(_name, newtop - _top);
193     ShouldNotReachHere();
194   }
195 
196   commit_to(newtop);
197   _top = newtop;
198 
199   if (_max_delta > 0) {
200     uintx delta = ArchiveBuilder::current()->buffer_to_offset((address)(newtop-1));
201     if (delta > _max_delta) {
202       // This is just a sanity check and should not appear in any real world usage. This
203       // happens only if you allocate more than 2GB of shared objects and would require
204       // millions of shared classes.
205       log_error(cds)("Out of memory in the CDS archive: Please reduce the number of shared classes.");
206       MetaspaceShared::unrecoverable_writing_error();
207     }
208   }
209 
210   return _top;
211 }
212 
213 void DumpRegion::commit_to(char* newtop) {
214   assert(CDSConfig::is_dumping_archive(), "sanity");
215   char* base = _rs->base();
216   size_t need_committed_size = newtop - base;
217   size_t has_committed_size = _vs->committed_size();
218   if (need_committed_size < has_committed_size) {
219     return;
220   }
221 
222   size_t min_bytes = need_committed_size - has_committed_size;
223   size_t preferred_bytes = 1 * M;
224   size_t uncommitted = _vs->reserved_size() - has_committed_size;
225 
226   size_t commit = MAX2(min_bytes, preferred_bytes);
227   commit = MIN2(commit, uncommitted);
228   assert(commit <= uncommitted, "sanity");
229 
230   if (!_vs->expand_by(commit, false)) {
231     log_error(cds)("Failed to expand shared space to " SIZE_FORMAT " bytes",
232                     need_committed_size);
233     MetaspaceShared::unrecoverable_writing_error();
234   }
235 
236   const char* which;
237   if (_rs->base() == (char*)MetaspaceShared::symbol_rs_base()) {
238     which = "symbol";
239   } else {
240     which = "shared";
241   }
242   log_debug(cds)("Expanding %s spaces by " SIZE_FORMAT_W(7) " bytes [total " SIZE_FORMAT_W(9)  " bytes ending at %p]",
243                  which, commit, _vs->actual_committed_size(), _vs->high());
244 }
245 
246 char* DumpRegion::allocate(size_t num_bytes, size_t alignment) {
247   // Always align to at least minimum alignment
248   alignment = MAX2(SharedSpaceObjectAlignment, alignment);
249   char* p = (char*)align_up(_top, alignment);
250   char* newtop = p + align_up(num_bytes, (size_t)SharedSpaceObjectAlignment);
251   expand_top_to(newtop);
252   memset(p, 0, newtop - p);
253   return p;
254 }
255 
256 void DumpRegion::append_intptr_t(intptr_t n, bool need_to_mark) {
257   assert(is_aligned(_top, sizeof(intptr_t)), "bad alignment");
258   intptr_t *p = (intptr_t*)_top;
259   char* newtop = _top + sizeof(intptr_t);
260   expand_top_to(newtop);
261   *p = n;
262   if (need_to_mark) {
263     ArchivePtrMarker::mark_pointer(p);
264   }
265 }
266 
267 void DumpRegion::print(size_t total_bytes) const {
268   log_debug(cds)("%s space: " SIZE_FORMAT_W(9) " [ %4.1f%% of total] out of " SIZE_FORMAT_W(9) " bytes [%5.1f%% used] at " INTPTR_FORMAT,
269                  _name, used(), percent_of(used(), total_bytes), reserved(), percent_of(used(), reserved()),
270                  p2i(ArchiveBuilder::current()->to_requested(_base)));
271 }
272 
273 void DumpRegion::print_out_of_space_msg(const char* failing_region, size_t needed_bytes) {
274   log_error(cds)("[%-8s] " PTR_FORMAT " - " PTR_FORMAT " capacity =%9d, allocated =%9d",
275                  _name, p2i(_base), p2i(_top), int(_end - _base), int(_top - _base));
276   if (strcmp(_name, failing_region) == 0) {
277     log_error(cds)(" required = %d", int(needed_bytes));
278   }
279 }
280 
281 void DumpRegion::init(ReservedSpace* rs, VirtualSpace* vs) {
282   _rs = rs;
283   _vs = vs;
284   // Start with 0 committed bytes. The memory will be committed as needed.
285   if (!_vs->initialize(*_rs, 0)) {
286     fatal("Unable to allocate memory for shared space");
287   }
288   _base = _top = _rs->base();
289   _end = _rs->end();
290 }
291 
292 void DumpRegion::pack(DumpRegion* next) {
293   assert(!is_packed(), "sanity");
294   _end = (char*)align_up(_top, MetaspaceShared::core_region_alignment());
295   _is_packed = true;
296   if (next != nullptr) {
297     next->_rs = _rs;
298     next->_vs = _vs;
299     next->_base = next->_top = this->_end;
300     next->_end = _rs->end();
301   }
302 }
303 
304 void WriteClosure::do_ptr(void** p) {
305   // Write ptr into the archive; ptr can be:
306   //   (a) null                 -> written as 0
307   //   (b) a "buffered" address -> written as is
308   //   (c) a "source"   address -> convert to "buffered" and write
309   // The common case is (c). E.g., when writing the vmClasses into the archive.
310   // We have (b) only when we don't have a corresponding source object. E.g.,
311   // the archived c++ vtable entries.
312   address ptr = *(address*)p;
313   if (ptr != nullptr && !ArchiveBuilder::current()->is_in_buffer_space(ptr)) {
314     ptr = ArchiveBuilder::current()->get_buffered_addr(ptr);
315   }
316   // null pointers do not need to be converted to offsets
317   if (ptr != nullptr) {
318     ptr = (address)ArchiveBuilder::current()->buffer_to_offset(ptr);
319   }
320   _dump_region->append_intptr_t((intptr_t)ptr, false);
321 }
322 
323 void ReadClosure::do_ptr(void** p) {
324   assert(*p == nullptr, "initializing previous initialized pointer.");
325   intptr_t obj = nextPtr();
326   assert(obj >= 0, "sanity.");
327   *p = (obj != 0) ? (void*)(_base_address + obj) : (void*)obj;
328 }
329 
330 void ReadClosure::do_u4(u4* p) {
331   intptr_t obj = nextPtr();
332   *p = (u4)(uintx(obj));
333 }
334 
335 void ReadClosure::do_int(int* p) {
336   intptr_t obj = nextPtr();
337   *p = (int)(intx(obj));
338 }
339 
340 void ReadClosure::do_bool(bool* p) {
341   intptr_t obj = nextPtr();
342   *p = (bool)(uintx(obj));
343 }
344 
345 void ReadClosure::do_tag(int tag) {
346   int old_tag;
347   old_tag = (int)(intptr_t)nextPtr();
348   // do_int(&old_tag);
349   assert(tag == old_tag, "tag doesn't match (%d, expected %d)", old_tag, tag);
350   FileMapInfo::assert_mark(tag == old_tag);
351 }
352 
353 void ArchiveUtils::log_to_classlist(BootstrapInfo* bootstrap_specifier, TRAPS) {
354   if (ClassListWriter::is_enabled()) {
355     if (SystemDictionaryShared::is_supported_invokedynamic(bootstrap_specifier)) {
356       const constantPoolHandle& pool = bootstrap_specifier->pool();
357       if (SystemDictionaryShared::is_builtin_loader(pool->pool_holder()->class_loader_data())) {
358         // Currently lambda proxy classes are supported only for the built-in loaders.
359         ResourceMark rm(THREAD);
360         int pool_index = bootstrap_specifier->bss_index();
361         ClassListWriter w;
362         w.stream()->print("%s %s", ClassListParser::lambda_proxy_tag(), pool->pool_holder()->name()->as_C_string());
363         CDSIndyInfo cii;
364         ClassListParser::populate_cds_indy_info(pool, pool_index, &cii, CHECK);
365         GrowableArray<const char*>* indy_items = cii.items();
366         for (int i = 0; i < indy_items->length(); i++) {
367           w.stream()->print(" %s", indy_items->at(i));
368         }
369         w.stream()->cr();
370       }
371     }
372   }
373 }
374 
375 bool ArchiveUtils::has_aot_initialized_mirror(InstanceKlass* src_ik) {
376   if (SystemDictionaryShared::is_excluded_class(src_ik)) {
377     assert(!ArchiveBuilder::current()->has_been_buffered(src_ik), "sanity");
378     return false;
379   }
380   return ArchiveBuilder::current()->get_buffered_addr(src_ik)->has_aot_initialized_mirror();
381 }
382 
383 size_t HeapRootSegments::size_in_bytes(size_t seg_idx) {
384   assert(seg_idx < _count, "In range");
385   return objArrayOopDesc::object_size(size_in_elems(seg_idx)) * HeapWordSize;
386 }
387 
388 int HeapRootSegments::size_in_elems(size_t seg_idx) {
389   assert(seg_idx < _count, "In range");
390   if (seg_idx != _count - 1) {
391     return _max_size_in_elems;
392   } else {
393     // Last slice, leftover
394     return _roots_count % _max_size_in_elems;
395   }
396 }
397 
398 size_t HeapRootSegments::segment_offset(size_t seg_idx) {
399   assert(seg_idx < _count, "In range");
400   return _base_offset + seg_idx * _max_size_in_bytes;
401 }
402 
403 ArchiveWorkers::ArchiveWorkers() :
404         _end_semaphore(0),
405         _num_workers(max_workers()),
406         _started_workers(0),
407         _finish_tokens(0),
408         _state(UNUSED),
409         _task(nullptr) {}
410 
411 ArchiveWorkers::~ArchiveWorkers() {
412   assert(Atomic::load(&_state) != WORKING, "Should not be working");
413 }
414 
415 int ArchiveWorkers::max_workers() {
416   // The pool is used for short-lived bursty tasks. We do not want to spend
417   // too much time creating and waking up threads unnecessarily. Plus, we do
418   // not want to overwhelm large machines. This is why we want to be very
419   // conservative about the number of workers actually needed.
420   return MAX2(0, log2i_graceful(os::active_processor_count()));
421 }
422 
423 bool ArchiveWorkers::is_parallel() {
424   return _num_workers > 0;
425 }
426 
427 void ArchiveWorkers::start_worker_if_needed() {
428   while (true) {
429     int cur = Atomic::load(&_started_workers);
430     if (cur >= _num_workers) {
431       return;
432     }
433     if (Atomic::cmpxchg(&_started_workers, cur, cur + 1, memory_order_relaxed) == cur) {
434       new ArchiveWorkerThread(this);
435       return;
436     }
437   }
438 }
439 
440 void ArchiveWorkers::run_task(ArchiveWorkerTask* task) {
441   assert(Atomic::load(&_state) == UNUSED, "Should be unused yet");
442   assert(Atomic::load(&_task) == nullptr, "Should not have running tasks");
443   Atomic::store(&_state, WORKING);
444 
445   if (is_parallel()) {
446     run_task_multi(task);
447   } else {
448     run_task_single(task);
449   }
450 
451   assert(Atomic::load(&_state) == WORKING, "Should be working");
452   Atomic::store(&_state, SHUTDOWN);
453 }
454 
455 void ArchiveWorkers::run_task_single(ArchiveWorkerTask* task) {
456   // Single thread needs no chunking.
457   task->configure_max_chunks(1);
458 
459   // Execute the task ourselves, as there are no workers.
460   task->work(0, 1);
461 }
462 
463 void ArchiveWorkers::run_task_multi(ArchiveWorkerTask* task) {
464   // Multiple threads can work with multiple chunks.
465   task->configure_max_chunks(_num_workers * CHUNKS_PER_WORKER);
466 
467   // Set up the run and publish the task. Issue one additional finish token
468   // to cover the semaphore shutdown path, see below.
469   Atomic::store(&_finish_tokens, _num_workers + 1);
470   Atomic::release_store(&_task, task);
471 
472   // Kick off pool startup by starting a single worker, and proceed
473   // immediately to executing the task locally.
474   start_worker_if_needed();
475 
476   // Execute the task ourselves, while workers are catching up.
477   // This allows us to hide parts of task handoff latency.
478   task->run();
479 
480   // Done executing task locally, wait for any remaining workers to complete.
481   // Once all workers report, we can proceed to termination. To do this safely,
482   // we need to make sure every worker has left. A spin-wait alone would suffice,
483   // but we do not want to burn cycles on it. A semaphore alone would not be safe,
484   // since workers can still be inside it as we proceed from wait here. So we block
485   // on semaphore first, and then spin-wait for all workers to terminate.
486   _end_semaphore.wait();
487   SpinYield spin;
488   while (Atomic::load(&_finish_tokens) != 0) {
489     spin.wait();
490   }
491 
492   OrderAccess::fence();
493 
494   assert(Atomic::load(&_finish_tokens) == 0, "All tokens are consumed");
495 }
496 
497 void ArchiveWorkers::run_as_worker() {
498   assert(is_parallel(), "Should be in parallel mode");
499 
500   ArchiveWorkerTask* task = Atomic::load_acquire(&_task);
501   task->run();
502 
503   // All work done in threads should be visible to caller.
504   OrderAccess::fence();
505 
506   // Signal the pool the work is complete, and we are exiting.
507   // Worker cannot do anything else with the pool after this.
508   if (Atomic::sub(&_finish_tokens, 1, memory_order_relaxed) == 1) {
509     // Last worker leaving. Notify the pool it can unblock to spin-wait.
510     // Then consume the last token and leave.
511     _end_semaphore.signal();
512     int last = Atomic::sub(&_finish_tokens, 1, memory_order_relaxed);
513     assert(last == 0, "Should be");
514   }
515 }
516 
517 void ArchiveWorkerTask::run() {
518   while (true) {
519     int chunk = Atomic::load(&_chunk);
520     if (chunk >= _max_chunks) {
521       return;
522     }
523     if (Atomic::cmpxchg(&_chunk, chunk, chunk + 1, memory_order_relaxed) == chunk) {
524       assert(0 <= chunk && chunk < _max_chunks, "Sanity");
525       work(chunk, _max_chunks);
526     }
527   }
528 }
529 
530 void ArchiveWorkerTask::configure_max_chunks(int max_chunks) {
531   if (_max_chunks == 0) {
532     _max_chunks = max_chunks;
533   }
534 }
535 
536 ArchiveWorkerThread::ArchiveWorkerThread(ArchiveWorkers* pool) : NamedThread(), _pool(pool) {
537   set_name("ArchiveWorkerThread");
538   if (os::create_thread(this, os::os_thread)) {
539     os::start_thread(this);
540   } else {
541     vm_exit_during_initialization("Unable to create archive worker",
542                                   os::native_thread_creation_failed_msg());
543   }
544 }
545 
546 void ArchiveWorkerThread::run() {
547   // Avalanche startup: each worker starts two others.
548   _pool->start_worker_if_needed();
549   _pool->start_worker_if_needed();
550 
551   // Set ourselves up.
552   os::set_priority(this, NearMaxPriority);
553 
554   // Work.
555   _pool->run_as_worker();
556 }
557 
558 void ArchiveWorkerThread::post_run() {
559   this->NamedThread::post_run();
560   delete this;
561 }