1 /*
  2  * Copyright (c) 2019, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_CDS_ARCHIVEUTILS_HPP
 26 #define SHARE_CDS_ARCHIVEUTILS_HPP
 27 
 28 #include "cds/cds_globals.hpp"
 29 #include "cds/serializeClosure.hpp"
 30 #include "logging/log.hpp"
 31 #include "memory/metaspace.hpp"
 32 #include "memory/virtualspace.hpp"
 33 #include "utilities/bitMap.hpp"
 34 #include "utilities/exceptions.hpp"
 35 #include "utilities/macros.hpp"
 36 #include "runtime/nonJavaThread.hpp"
 37 #include "runtime/semaphore.hpp"
 38 
 39 class BootstrapInfo;
 40 class ReservedSpace;
 41 class VirtualSpace;
 42 
 43 template<class E> class Array;
 44 template<class E> class GrowableArray;
 45 
 46 // ArchivePtrMarker is used to mark the location of pointers embedded in a CDS archive. E.g., when an
 47 // InstanceKlass k is dumped, we mark the location of the k->_name pointer by effectively calling
 48 // mark_pointer(/*ptr_loc=*/&k->_name). It's required that (_prt_base <= ptr_loc < _ptr_end). _ptr_base is
 49 // fixed, but _ptr_end can be expanded as more objects are dumped.
 50 class ArchivePtrMarker : AllStatic {
 51   static CHeapBitMap*  _ptrmap;
 52   static CHeapBitMap*  _rw_ptrmap;
 53   static CHeapBitMap*  _ro_ptrmap;
 54   static VirtualSpace* _vs;
 55 
 56   // Once _ptrmap is compacted, we don't allow bit marking anymore. This is to
 57   // avoid unintentional copy operations after the bitmap has been finalized and written.
 58   static bool         _compacted;
 59 
 60   static address* ptr_base() { return (address*)_vs->low();  } // committed lower bound (inclusive)
 61   static address* ptr_end()  { return (address*)_vs->high(); } // committed upper bound (exclusive)
 62 
 63 public:
 64   static void initialize(CHeapBitMap* ptrmap, VirtualSpace* vs);
 65   static void initialize_rw_ro_maps(CHeapBitMap* rw_ptrmap, CHeapBitMap* ro_ptrmap);
 66   static void mark_pointer(address* ptr_loc);
 67   static void clear_pointer(address* ptr_loc);
 68   static void compact(address relocatable_base, address relocatable_end);
 69   static void compact(size_t max_non_null_offset);
 70 
 71   template <typename T>
 72   static void mark_pointer(T* ptr_loc) {
 73     mark_pointer((address*)ptr_loc);
 74   }
 75 
 76   template <typename T>
 77   static void set_and_mark_pointer(T* ptr_loc, T ptr_value) {
 78     *ptr_loc = ptr_value;
 79     mark_pointer(ptr_loc);
 80   }
 81 
 82   static CHeapBitMap* ptrmap() {
 83     return _ptrmap;
 84   }
 85 
 86   static CHeapBitMap* rw_ptrmap() {
 87     return _rw_ptrmap;
 88   }
 89 
 90   static CHeapBitMap* ro_ptrmap() {
 91     return _ro_ptrmap;
 92   }
 93 
 94   static void reset_map_and_vs() {
 95     _ptrmap = nullptr;
 96     _rw_ptrmap = nullptr;
 97     _ro_ptrmap = nullptr;
 98     _vs = nullptr;
 99   }
100 };
101 
102 // SharedDataRelocator is used to shift pointers in the CDS archive.
103 //
104 // The CDS archive is basically a contiguous block of memory (divided into several regions)
105 // that contains multiple objects. The objects may contain direct pointers that point to other objects
106 // within the archive (e.g., InstanceKlass::_name points to a Symbol in the archive). During dumping, we
107 // built a bitmap that marks the locations of all these pointers (using ArchivePtrMarker, see comments above).
108 //
109 // The contents of the archive assumes that it's mapped at the default SharedBaseAddress (e.g. 0x800000000).
110 // If the archive ends up being mapped at a different address (e.g. 0x810000000), SharedDataRelocator
111 // is used to shift each marked pointer by a delta (0x10000000 in this example), so that it points to
112 // the actually mapped location of the target object.
113 class SharedDataRelocator: public BitMapClosure {
114   // for all (address** p), where (is_marked(p) && _patch_base <= p && p < _patch_end) { *p += delta; }
115 
116   // Patch all pointers within this region that are marked.
117   address* _patch_base;
118   address* _patch_end;
119 
120   // Before patching, all pointers must point to this region.
121   address _valid_old_base;
122   address _valid_old_end;
123 
124   // After patching, all pointers must point to this region.
125   address _valid_new_base;
126   address _valid_new_end;
127 
128   // How much to relocate for each pointer.
129   intx _delta;
130 
131  public:
132   SharedDataRelocator(address* patch_base, address* patch_end,
133                       address valid_old_base, address valid_old_end,
134                       address valid_new_base, address valid_new_end, intx delta) :
135     _patch_base(patch_base), _patch_end(patch_end),
136     _valid_old_base(valid_old_base), _valid_old_end(valid_old_end),
137     _valid_new_base(valid_new_base), _valid_new_end(valid_new_end),
138     _delta(delta) {
139     log_debug(cds, reloc)("SharedDataRelocator::_patch_base     = " PTR_FORMAT, p2i(_patch_base));
140     log_debug(cds, reloc)("SharedDataRelocator::_patch_end      = " PTR_FORMAT, p2i(_patch_end));
141     log_debug(cds, reloc)("SharedDataRelocator::_valid_old_base = " PTR_FORMAT, p2i(_valid_old_base));
142     log_debug(cds, reloc)("SharedDataRelocator::_valid_old_end  = " PTR_FORMAT, p2i(_valid_old_end));
143     log_debug(cds, reloc)("SharedDataRelocator::_valid_new_base = " PTR_FORMAT, p2i(_valid_new_base));
144     log_debug(cds, reloc)("SharedDataRelocator::_valid_new_end  = " PTR_FORMAT, p2i(_valid_new_end));
145   }
146 
147   bool do_bit(size_t offset);
148 };
149 
150 class DumpRegion {
151 private:
152   const char* _name;
153   char* _base;
154   char* _top;
155   char* _end;
156   uintx _max_delta;
157   bool _is_packed;
158   ReservedSpace* _rs;
159   VirtualSpace* _vs;
160 
161   void commit_to(char* newtop);
162 
163 public:
164   DumpRegion(const char* name, uintx max_delta = 0)
165     : _name(name), _base(nullptr), _top(nullptr), _end(nullptr),
166       _max_delta(max_delta), _is_packed(false),
167       _rs(nullptr), _vs(nullptr) {}
168 
169   char* expand_top_to(char* newtop);
170   char* allocate(size_t num_bytes, size_t alignment = 0);
171 
172   void append_intptr_t(intptr_t n, bool need_to_mark = false) NOT_CDS_RETURN;
173 
174   char* base()      const { return _base;        }
175   char* top()       const { return _top;         }
176   char* end()       const { return _end;         }
177   size_t reserved() const { return _end - _base; }
178   size_t used()     const { return _top - _base; }
179   bool is_packed()  const { return _is_packed;   }
180   bool is_allocatable() const {
181     return !is_packed() && _base != nullptr;
182   }
183   bool is_empty()   const { return _base == _top; }
184 
185   void print(size_t total_bytes) const;
186   void print_out_of_space_msg(const char* failing_region, size_t needed_bytes);
187 
188   void init(ReservedSpace* rs, VirtualSpace* vs);
189 
190   void pack(DumpRegion* next = nullptr);
191 
192   bool contains(char* p) {
193     return base() <= p && p < top();
194   }
195 };
196 
197 // Closure for serializing initialization data out to a data area to be
198 // written to the shared file.
199 
200 class WriteClosure : public SerializeClosure {
201 private:
202   DumpRegion* _dump_region;
203 
204 public:
205   WriteClosure(DumpRegion* r) {
206     _dump_region = r;
207   }
208 
209   void do_ptr(void** p);
210 
211   void do_u4(u4* p) {
212     _dump_region->append_intptr_t((intptr_t)(*p));
213   }
214 
215   void do_int(int* p) {
216     _dump_region->append_intptr_t((intptr_t)(*p));
217   }
218 
219   void do_bool(bool *p) {
220     _dump_region->append_intptr_t((intptr_t)(*p));
221   }
222 
223   void do_tag(int tag) {
224     _dump_region->append_intptr_t((intptr_t)tag);
225   }
226 
227   char* region_top() {
228     return _dump_region->top();
229   }
230 
231   bool reading() const { return false; }
232 };
233 
234 // Closure for serializing initialization data in from a data area
235 // (ptr_array) read from the shared file.
236 
237 class ReadClosure : public SerializeClosure {
238 private:
239   intptr_t** _ptr_array;
240   intptr_t _base_address;
241   inline intptr_t nextPtr() {
242     return *(*_ptr_array)++;
243   }
244 
245 public:
246   ReadClosure(intptr_t** ptr_array, intptr_t base_address) :
247     _ptr_array(ptr_array), _base_address(base_address) {}
248 
249   void do_ptr(void** p);
250   void do_u4(u4* p);
251   void do_int(int* p);
252   void do_bool(bool *p);
253   void do_tag(int tag);
254   bool reading() const { return true; }
255   char* region_top() { return nullptr; }
256 };
257 
258 class ArchiveUtils {
259   template <typename T> static Array<T>* archive_non_ptr_array(GrowableArray<T>* tmp_array);
260   template <typename T> static Array<T>* archive_ptr_array(GrowableArray<T>* tmp_array);
261 
262 public:
263   static const uintx MAX_SHARED_DELTA = 0x7FFFFFFF;
264   static void log_to_classlist(BootstrapInfo* bootstrap_specifier, TRAPS) NOT_CDS_RETURN;
265   static bool has_aot_initialized_mirror(InstanceKlass* src_ik);
266 
267   template <typename T, ENABLE_IF(!std::is_pointer<T>::value)>
268   static Array<T>* archive_array(GrowableArray<T>* tmp_array) {
269     return archive_non_ptr_array(tmp_array);
270   }
271 
272   template <typename T, ENABLE_IF(std::is_pointer<T>::value)>
273   static Array<T>* archive_array(GrowableArray<T>* tmp_array) {
274     return archive_ptr_array(tmp_array);
275   }
276 
277   // The following functions translate between a u4 offset and an address in the
278   // the range of the mapped CDS archive (e.g., Metaspace::is_in_shared_metaspace()).
279   // Since the first 16 bytes in this range are dummy data (see ArchiveBuilder::reserve_buffer()),
280   // we know that offset 0 never represents a valid object. As a result, an offset of 0
281   // is used to encode a nullptr.
282   //
283   // Use the "archived_address_or_null" variants if a nullptr may be encoded.
284 
285   // offset must represent an object of type T in the mapped shared space. Return
286   // a direct pointer to this object.
287   template <typename T> T static offset_to_archived_address(u4 offset) {
288     assert(offset != 0, "sanity");
289     T p = (T)(SharedBaseAddress + offset);
290     assert(Metaspace::is_in_shared_metaspace(p), "must be");
291     return p;
292   }
293 
294   template <typename T> T static offset_to_archived_address_or_null(u4 offset) {
295     if (offset == 0) {
296       return nullptr;
297     } else {
298       return offset_to_archived_address<T>(offset);
299     }
300   }
301 
302   // p must be an archived object. Get its offset from SharedBaseAddress
303   template <typename T> static u4 archived_address_to_offset(T p) {
304     uintx pn = (uintx)p;
305     uintx base = (uintx)SharedBaseAddress;
306     assert(Metaspace::is_in_shared_metaspace(p), "must be");
307     assert(pn > base, "sanity"); // No valid object is stored at 0 offset from SharedBaseAddress
308     uintx offset = pn - base;
309     assert(offset <= MAX_SHARED_DELTA, "range check");
310     return static_cast<u4>(offset);
311   }
312 
313   template <typename T> static u4 archived_address_or_null_to_offset(T p) {
314     if (p == nullptr) {
315       return 0;
316     } else {
317       return archived_address_to_offset<T>(p);
318     }
319   }
320 };
321 
322 class HeapRootSegments {
323 private:
324   size_t _base_offset;
325   size_t _count;
326   int _roots_count;
327   int _max_size_in_bytes;
328   int _max_size_in_elems;
329 
330 public:
331   size_t base_offset() { return _base_offset; }
332   size_t count() { return _count; }
333   int roots_count() { return _roots_count; }
334   int max_size_in_bytes() { return _max_size_in_bytes; }
335   int max_size_in_elems() { return _max_size_in_elems; }
336 
337   size_t size_in_bytes(size_t seg_idx);
338   int size_in_elems(size_t seg_idx);
339   size_t segment_offset(size_t seg_idx);
340 
341   // Trivial copy assignments are allowed to copy the entire object representation.
342   // We also inline this class into archive header. Therefore, it is important to make
343   // sure any gaps in object representation are initialized to zeroes. This is why
344   // constructors memset before doing field assignments.
345   HeapRootSegments() {
346     memset(this, 0, sizeof(*this));
347   }
348   HeapRootSegments(size_t base_offset, int roots_count, int max_size_in_bytes, int max_size_in_elems) {
349     memset(this, 0, sizeof(*this));
350     _base_offset = base_offset;
351     _count = (roots_count + max_size_in_elems - 1) / max_size_in_elems;
352     _roots_count = roots_count;
353     _max_size_in_bytes = max_size_in_bytes;
354     _max_size_in_elems = max_size_in_elems;
355   }
356 
357   // This class is trivially copyable and assignable.
358   HeapRootSegments(const HeapRootSegments&) = default;
359   HeapRootSegments& operator=(const HeapRootSegments&) = default;
360 };
361 
362 class ArchiveWorkers;
363 
364 // A task to be worked on by worker threads
365 class ArchiveWorkerTask : public CHeapObj<mtInternal> {
366   friend class ArchiveWorkers;
367 private:
368   const char* _name;
369   int _max_chunks;
370   volatile int _chunk;
371 
372   void run();
373 
374   void configure_max_chunks(int max_chunks);
375 
376 public:
377   ArchiveWorkerTask(const char* name) :
378       _name(name), _max_chunks(0), _chunk(0) {}
379   const char* name() const { return _name; }
380   virtual void work(int chunk, int max_chunks) = 0;
381 };
382 
383 class ArchiveWorkerThread : public NamedThread {
384   friend class ArchiveWorkers;
385 private:
386   ArchiveWorkers* const _pool;
387 
388   void post_run() override;
389 
390 public:
391   ArchiveWorkerThread(ArchiveWorkers* pool);
392   const char* type_name() const override { return "Archive Worker Thread"; }
393   void run() override;
394 };
395 
396 // Special archive workers. The goal for this implementation is to startup fast,
397 // distribute spiky workloads efficiently, and shutdown immediately after use.
398 // This makes the implementation quite different from the normal GC worker pool.
399 class ArchiveWorkers : public StackObj {
400   friend class ArchiveWorkerThread;
401 private:
402   // Target number of chunks per worker. This should be large enough to even
403   // out work imbalance, and small enough to keep bookkeeping overheads low.
404   static constexpr int CHUNKS_PER_WORKER = 4;
405   static int max_workers();
406 
407   Semaphore _end_semaphore;
408 
409   int _num_workers;
410   int _started_workers;
411   int _finish_tokens;
412 
413   typedef enum { UNUSED, WORKING, SHUTDOWN } State;
414   volatile State _state;
415 
416   ArchiveWorkerTask* _task;
417 
418   void run_as_worker();
419   void start_worker_if_needed();
420 
421   void run_task_single(ArchiveWorkerTask* task);
422   void run_task_multi(ArchiveWorkerTask* task);
423 
424   bool is_parallel();
425 
426 public:
427   ArchiveWorkers();
428   ~ArchiveWorkers();
429   void run_task(ArchiveWorkerTask* task);
430 };
431 
432 #endif // SHARE_CDS_ARCHIVEUTILS_HPP