1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/codeBlob.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/codeHeapState.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/dependencies.hpp" 31 #include "code/dependencyContext.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "compiler/compilationPolicy.hpp" 35 #include "compiler/compileBroker.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/barrierSetNMethod.hpp" 39 #include "gc/shared/classUnloadingContext.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/allocation.inline.hpp" 46 #include "memory/iterator.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "oops/method.inline.hpp" 50 #include "oops/objArrayOop.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/verifyOopClosure.hpp" 53 #include "runtime/arguments.hpp" 54 #include "runtime/atomic.hpp" 55 #include "runtime/deoptimization.hpp" 56 #include "runtime/globals_extension.hpp" 57 #include "runtime/handles.inline.hpp" 58 #include "runtime/icache.hpp" 59 #include "runtime/init.hpp" 60 #include "runtime/java.hpp" 61 #include "runtime/mutexLocker.hpp" 62 #include "runtime/os.inline.hpp" 63 #include "runtime/safepointVerifiers.hpp" 64 #include "runtime/vmThread.hpp" 65 #include "sanitizers/leak.hpp" 66 #include "services/memoryService.hpp" 67 #include "utilities/align.hpp" 68 #include "utilities/vmError.hpp" 69 #include "utilities/xmlstream.hpp" 70 #ifdef COMPILER1 71 #include "c1/c1_Compilation.hpp" 72 #include "c1/c1_Compiler.hpp" 73 #endif 74 #ifdef COMPILER2 75 #include "opto/c2compiler.hpp" 76 #include "opto/compile.hpp" 77 #include "opto/node.hpp" 78 #endif 79 80 // Helper class for printing in CodeCache 81 class CodeBlob_sizes { 82 private: 83 int count; 84 int total_size; 85 int header_size; 86 int code_size; 87 int stub_size; 88 int relocation_size; 89 int scopes_oop_size; 90 int scopes_metadata_size; 91 int scopes_data_size; 92 int scopes_pcs_size; 93 94 public: 95 CodeBlob_sizes() { 96 count = 0; 97 total_size = 0; 98 header_size = 0; 99 code_size = 0; 100 stub_size = 0; 101 relocation_size = 0; 102 scopes_oop_size = 0; 103 scopes_metadata_size = 0; 104 scopes_data_size = 0; 105 scopes_pcs_size = 0; 106 } 107 108 int total() const { return total_size; } 109 bool is_empty() const { return count == 0; } 110 111 void print(const char* title) const { 112 if (is_empty()) { 113 tty->print_cr(" #%d %s = %dK", 114 count, 115 title, 116 total() / (int)K); 117 } else { 118 tty->print_cr(" #%d %s = %dK (hdr %dK %d%%, loc %dK %d%%, code %dK %d%%, stub %dK %d%%, [oops %dK %d%%, metadata %dK %d%%, data %dK %d%%, pcs %dK %d%%])", 119 count, 120 title, 121 total() / (int)K, 122 header_size / (int)K, 123 header_size * 100 / total_size, 124 relocation_size / (int)K, 125 relocation_size * 100 / total_size, 126 code_size / (int)K, 127 code_size * 100 / total_size, 128 stub_size / (int)K, 129 stub_size * 100 / total_size, 130 scopes_oop_size / (int)K, 131 scopes_oop_size * 100 / total_size, 132 scopes_metadata_size / (int)K, 133 scopes_metadata_size * 100 / total_size, 134 scopes_data_size / (int)K, 135 scopes_data_size * 100 / total_size, 136 scopes_pcs_size / (int)K, 137 scopes_pcs_size * 100 / total_size); 138 } 139 } 140 141 void add(CodeBlob* cb) { 142 count++; 143 total_size += cb->size(); 144 header_size += cb->header_size(); 145 relocation_size += cb->relocation_size(); 146 if (cb->is_nmethod()) { 147 nmethod* nm = cb->as_nmethod_or_null(); 148 code_size += nm->insts_size(); 149 stub_size += nm->stub_size(); 150 151 scopes_oop_size += nm->oops_size(); 152 scopes_metadata_size += nm->metadata_size(); 153 scopes_data_size += nm->scopes_data_size(); 154 scopes_pcs_size += nm->scopes_pcs_size(); 155 } else { 156 code_size += cb->code_size(); 157 } 158 } 159 }; 160 161 // Iterate over all CodeHeaps 162 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap) 163 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap) 164 165 // Iterate over all CodeBlobs (cb) on the given CodeHeap 166 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != nullptr; cb = next_blob(heap, cb)) 167 168 address CodeCache::_low_bound = nullptr; 169 address CodeCache::_high_bound = nullptr; 170 volatile int CodeCache::_number_of_nmethods_with_dependencies = 0; 171 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = nullptr; 172 173 // Initialize arrays of CodeHeap subsets 174 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode); 175 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode); 176 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode); 177 178 static void check_min_size(const char* codeheap, size_t size, size_t required_size) { 179 if (size < required_size) { 180 log_debug(codecache)("Code heap (%s) size " SIZE_FORMAT "K below required minimal size " SIZE_FORMAT "K", 181 codeheap, size/K, required_size/K); 182 err_msg title("Not enough space in %s to run VM", codeheap); 183 err_msg message(SIZE_FORMAT "K < " SIZE_FORMAT "K", size/K, required_size/K); 184 vm_exit_during_initialization(title, message); 185 } 186 } 187 188 struct CodeHeapInfo { 189 size_t size; 190 bool set; 191 bool enabled; 192 }; 193 194 static void set_size_of_unset_code_heap(CodeHeapInfo* heap, size_t available_size, size_t used_size, size_t min_size) { 195 assert(!heap->set, "sanity"); 196 heap->size = (available_size > (used_size + min_size)) ? (available_size - used_size) : min_size; 197 } 198 199 void CodeCache::initialize_heaps() { 200 201 CodeHeapInfo non_nmethod = {NonNMethodCodeHeapSize, FLAG_IS_CMDLINE(NonNMethodCodeHeapSize), true}; 202 CodeHeapInfo profiled = {ProfiledCodeHeapSize, FLAG_IS_CMDLINE(ProfiledCodeHeapSize), true}; 203 CodeHeapInfo non_profiled = {NonProfiledCodeHeapSize, FLAG_IS_CMDLINE(NonProfiledCodeHeapSize), true}; 204 205 const bool cache_size_set = FLAG_IS_CMDLINE(ReservedCodeCacheSize); 206 const size_t ps = page_size(false, 8); 207 const size_t min_size = MAX2(os::vm_allocation_granularity(), ps); 208 const size_t min_cache_size = CompilerConfig::min_code_cache_size(); // Make sure we have enough space for VM internal code 209 size_t cache_size = align_up(ReservedCodeCacheSize, min_size); 210 211 // Prerequisites 212 if (!heap_available(CodeBlobType::MethodProfiled)) { 213 // For compatibility reasons, disabled tiered compilation overrides 214 // segment size even if it is set explicitly. 215 non_profiled.size += profiled.size; 216 // Profiled code heap is not available, forcibly set size to 0 217 profiled.size = 0; 218 profiled.set = true; 219 profiled.enabled = false; 220 } 221 222 assert(heap_available(CodeBlobType::MethodNonProfiled), "MethodNonProfiled heap is always available for segmented code heap"); 223 224 size_t compiler_buffer_size = 0; 225 COMPILER1_PRESENT(compiler_buffer_size += CompilationPolicy::c1_count() * Compiler::code_buffer_size()); 226 COMPILER2_PRESENT(compiler_buffer_size += CompilationPolicy::c2_count() * C2Compiler::initial_code_buffer_size()); 227 228 if (!non_nmethod.set) { 229 non_nmethod.size += compiler_buffer_size; 230 // Further down, just before FLAG_SET_ERGO(), all segment sizes are 231 // aligned down to the next lower multiple of min_size. For large page 232 // sizes, this may result in (non_nmethod.size == 0) which is not acceptable. 233 // Therefore, force non_nmethod.size to at least min_size. 234 non_nmethod.size = MAX2(non_nmethod.size, min_size); 235 } 236 237 if (!profiled.set && !non_profiled.set) { 238 non_profiled.size = profiled.size = (cache_size > non_nmethod.size + 2 * min_size) ? 239 (cache_size - non_nmethod.size) / 2 : min_size; 240 } 241 242 if (profiled.set && !non_profiled.set) { 243 set_size_of_unset_code_heap(&non_profiled, cache_size, non_nmethod.size + profiled.size, min_size); 244 } 245 246 if (!profiled.set && non_profiled.set) { 247 set_size_of_unset_code_heap(&profiled, cache_size, non_nmethod.size + non_profiled.size, min_size); 248 } 249 250 // Compatibility. 251 size_t non_nmethod_min_size = min_cache_size + compiler_buffer_size; 252 if (!non_nmethod.set && profiled.set && non_profiled.set) { 253 set_size_of_unset_code_heap(&non_nmethod, cache_size, profiled.size + non_profiled.size, non_nmethod_min_size); 254 } 255 256 size_t total = non_nmethod.size + profiled.size + non_profiled.size; 257 if (total != cache_size && !cache_size_set) { 258 log_info(codecache)("ReservedCodeCache size " SIZE_FORMAT "K changed to total segments size NonNMethod " 259 SIZE_FORMAT "K NonProfiled " SIZE_FORMAT "K Profiled " SIZE_FORMAT "K = " SIZE_FORMAT "K", 260 cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K, total/K); 261 // Adjust ReservedCodeCacheSize as necessary because it was not set explicitly 262 cache_size = total; 263 } 264 265 log_debug(codecache)("Initializing code heaps ReservedCodeCache " SIZE_FORMAT "K NonNMethod " SIZE_FORMAT "K" 266 " NonProfiled " SIZE_FORMAT "K Profiled " SIZE_FORMAT "K", 267 cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K); 268 269 // Validation 270 // Check minimal required sizes 271 check_min_size("non-nmethod code heap", non_nmethod.size, non_nmethod_min_size); 272 if (profiled.enabled) { 273 check_min_size("profiled code heap", profiled.size, min_size); 274 } 275 if (non_profiled.enabled) { // non_profiled.enabled is always ON for segmented code heap, leave it checked for clarity 276 check_min_size("non-profiled code heap", non_profiled.size, min_size); 277 } 278 if (cache_size_set) { 279 check_min_size("reserved code cache", cache_size, min_cache_size); 280 } 281 282 // ReservedCodeCacheSize was set explicitly, so report an error and abort if it doesn't match the segment sizes 283 if (total != cache_size && cache_size_set) { 284 err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K)", non_nmethod.size/K); 285 if (profiled.enabled) { 286 message.append(" + ProfiledCodeHeapSize (" SIZE_FORMAT "K)", profiled.size/K); 287 } 288 if (non_profiled.enabled) { 289 message.append(" + NonProfiledCodeHeapSize (" SIZE_FORMAT "K)", non_profiled.size/K); 290 } 291 message.append(" = " SIZE_FORMAT "K", total/K); 292 message.append((total > cache_size) ? " is greater than " : " is less than "); 293 message.append("ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K); 294 295 vm_exit_during_initialization("Invalid code heap sizes", message); 296 } 297 298 // Compatibility. Print warning if using large pages but not able to use the size given 299 if (UseLargePages) { 300 const size_t lg_ps = page_size(false, 1); 301 if (ps < lg_ps) { 302 log_warning(codecache)("Code cache size too small for " PROPERFMT " pages. " 303 "Reverting to smaller page size (" PROPERFMT ").", 304 PROPERFMTARGS(lg_ps), PROPERFMTARGS(ps)); 305 } 306 } 307 308 // Note: if large page support is enabled, min_size is at least the large 309 // page size. This ensures that the code cache is covered by large pages. 310 non_profiled.size += non_nmethod.size & alignment_mask(min_size); 311 non_profiled.size += profiled.size & alignment_mask(min_size); 312 non_nmethod.size = align_down(non_nmethod.size, min_size); 313 profiled.size = align_down(profiled.size, min_size); 314 non_profiled.size = align_down(non_profiled.size, min_size); 315 316 FLAG_SET_ERGO(NonNMethodCodeHeapSize, non_nmethod.size); 317 FLAG_SET_ERGO(ProfiledCodeHeapSize, profiled.size); 318 FLAG_SET_ERGO(NonProfiledCodeHeapSize, non_profiled.size); 319 FLAG_SET_ERGO(ReservedCodeCacheSize, cache_size); 320 321 ReservedCodeSpace rs = reserve_heap_memory(cache_size, ps); 322 323 // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory. 324 LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size()); 325 326 size_t offset = 0; 327 if (profiled.enabled) { 328 ReservedSpace profiled_space = rs.partition(offset, profiled.size); 329 offset += profiled.size; 330 // Tier 2 and tier 3 (profiled) methods 331 add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled); 332 } 333 334 ReservedSpace non_method_space = rs.partition(offset, non_nmethod.size); 335 offset += non_nmethod.size; 336 // Non-nmethods (stubs, adapters, ...) 337 add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod); 338 339 if (non_profiled.enabled) { 340 ReservedSpace non_profiled_space = rs.partition(offset, non_profiled.size); 341 // Tier 1 and tier 4 (non-profiled) methods and native methods 342 add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled); 343 } 344 } 345 346 size_t CodeCache::page_size(bool aligned, size_t min_pages) { 347 return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) : 348 os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages); 349 } 350 351 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size, size_t rs_ps) { 352 // Align and reserve space for code cache 353 const size_t rs_align = MAX2(rs_ps, os::vm_allocation_granularity()); 354 const size_t rs_size = align_up(size, rs_align); 355 ReservedCodeSpace rs(rs_size, rs_align, rs_ps); 356 if (!rs.is_reserved()) { 357 vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)", 358 rs_size/K)); 359 } 360 361 // Initialize bounds 362 _low_bound = (address)rs.base(); 363 _high_bound = _low_bound + rs.size(); 364 return rs; 365 } 366 367 // Heaps available for allocation 368 bool CodeCache::heap_available(CodeBlobType code_blob_type) { 369 if (!SegmentedCodeCache) { 370 // No segmentation: use a single code heap 371 return (code_blob_type == CodeBlobType::All); 372 } else if (CompilerConfig::is_interpreter_only()) { 373 // Interpreter only: we don't need any method code heaps 374 return (code_blob_type == CodeBlobType::NonNMethod); 375 } else if (CompilerConfig::is_c1_profiling()) { 376 // Tiered compilation: use all code heaps 377 return (code_blob_type < CodeBlobType::All); 378 } else { 379 // No TieredCompilation: we only need the non-nmethod and non-profiled code heap 380 return (code_blob_type == CodeBlobType::NonNMethod) || 381 (code_blob_type == CodeBlobType::MethodNonProfiled); 382 } 383 } 384 385 const char* CodeCache::get_code_heap_flag_name(CodeBlobType code_blob_type) { 386 switch(code_blob_type) { 387 case CodeBlobType::NonNMethod: 388 return "NonNMethodCodeHeapSize"; 389 break; 390 case CodeBlobType::MethodNonProfiled: 391 return "NonProfiledCodeHeapSize"; 392 break; 393 case CodeBlobType::MethodProfiled: 394 return "ProfiledCodeHeapSize"; 395 break; 396 default: 397 ShouldNotReachHere(); 398 return nullptr; 399 } 400 } 401 402 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) { 403 if (lhs->code_blob_type() == rhs->code_blob_type()) { 404 return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0); 405 } else { 406 return static_cast<int>(lhs->code_blob_type()) - static_cast<int>(rhs->code_blob_type()); 407 } 408 } 409 410 void CodeCache::add_heap(CodeHeap* heap) { 411 assert(!Universe::is_fully_initialized(), "late heap addition?"); 412 413 _heaps->insert_sorted<code_heap_compare>(heap); 414 415 CodeBlobType type = heap->code_blob_type(); 416 if (code_blob_type_accepts_nmethod(type)) { 417 _nmethod_heaps->insert_sorted<code_heap_compare>(heap); 418 } 419 if (code_blob_type_accepts_allocable(type)) { 420 _allocable_heaps->insert_sorted<code_heap_compare>(heap); 421 } 422 } 423 424 void CodeCache::add_heap(ReservedSpace rs, const char* name, CodeBlobType code_blob_type) { 425 // Check if heap is needed 426 if (!heap_available(code_blob_type)) { 427 return; 428 } 429 430 // Create CodeHeap 431 CodeHeap* heap = new CodeHeap(name, code_blob_type); 432 add_heap(heap); 433 434 // Reserve Space 435 size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size()); 436 size_initial = align_up(size_initial, os::vm_page_size()); 437 if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) { 438 vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)", 439 heap->name(), size_initial/K)); 440 } 441 442 // Register the CodeHeap 443 MemoryService::add_code_heap_memory_pool(heap, name); 444 } 445 446 CodeHeap* CodeCache::get_code_heap_containing(void* start) { 447 FOR_ALL_HEAPS(heap) { 448 if ((*heap)->contains(start)) { 449 return *heap; 450 } 451 } 452 return nullptr; 453 } 454 455 CodeHeap* CodeCache::get_code_heap(const void* cb) { 456 assert(cb != nullptr, "CodeBlob is null"); 457 FOR_ALL_HEAPS(heap) { 458 if ((*heap)->contains(cb)) { 459 return *heap; 460 } 461 } 462 ShouldNotReachHere(); 463 return nullptr; 464 } 465 466 CodeHeap* CodeCache::get_code_heap(CodeBlobType code_blob_type) { 467 FOR_ALL_HEAPS(heap) { 468 if ((*heap)->accepts(code_blob_type)) { 469 return *heap; 470 } 471 } 472 return nullptr; 473 } 474 475 CodeBlob* CodeCache::first_blob(CodeHeap* heap) { 476 assert_locked_or_safepoint(CodeCache_lock); 477 assert(heap != nullptr, "heap is null"); 478 return (CodeBlob*)heap->first(); 479 } 480 481 CodeBlob* CodeCache::first_blob(CodeBlobType code_blob_type) { 482 if (heap_available(code_blob_type)) { 483 return first_blob(get_code_heap(code_blob_type)); 484 } else { 485 return nullptr; 486 } 487 } 488 489 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) { 490 assert_locked_or_safepoint(CodeCache_lock); 491 assert(heap != nullptr, "heap is null"); 492 return (CodeBlob*)heap->next(cb); 493 } 494 495 /** 496 * Do not seize the CodeCache lock here--if the caller has not 497 * already done so, we are going to lose bigtime, since the code 498 * cache will contain a garbage CodeBlob until the caller can 499 * run the constructor for the CodeBlob subclass he is busy 500 * instantiating. 501 */ 502 CodeBlob* CodeCache::allocate(uint size, CodeBlobType code_blob_type, bool handle_alloc_failure, CodeBlobType orig_code_blob_type) { 503 assert_locked_or_safepoint(CodeCache_lock); 504 assert(size > 0, "Code cache allocation request must be > 0"); 505 if (size == 0) { 506 return nullptr; 507 } 508 CodeBlob* cb = nullptr; 509 510 // Get CodeHeap for the given CodeBlobType 511 CodeHeap* heap = get_code_heap(code_blob_type); 512 assert(heap != nullptr, "heap is null"); 513 514 while (true) { 515 cb = (CodeBlob*)heap->allocate(size); 516 if (cb != nullptr) break; 517 if (!heap->expand_by(CodeCacheExpansionSize)) { 518 // Save original type for error reporting 519 if (orig_code_blob_type == CodeBlobType::All) { 520 orig_code_blob_type = code_blob_type; 521 } 522 // Expansion failed 523 if (SegmentedCodeCache) { 524 // Fallback solution: Try to store code in another code heap. 525 // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled) 526 CodeBlobType type = code_blob_type; 527 switch (type) { 528 case CodeBlobType::NonNMethod: 529 type = CodeBlobType::MethodNonProfiled; 530 break; 531 case CodeBlobType::MethodNonProfiled: 532 type = CodeBlobType::MethodProfiled; 533 break; 534 case CodeBlobType::MethodProfiled: 535 // Avoid loop if we already tried that code heap 536 if (type == orig_code_blob_type) { 537 type = CodeBlobType::MethodNonProfiled; 538 } 539 break; 540 default: 541 break; 542 } 543 if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) { 544 if (PrintCodeCacheExtension) { 545 tty->print_cr("Extension of %s failed. Trying to allocate in %s.", 546 heap->name(), get_code_heap(type)->name()); 547 } 548 return allocate(size, type, handle_alloc_failure, orig_code_blob_type); 549 } 550 } 551 if (handle_alloc_failure) { 552 MutexUnlocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 553 CompileBroker::handle_full_code_cache(orig_code_blob_type); 554 } 555 return nullptr; 556 } else { 557 OrderAccess::release(); // ensure heap expansion is visible to an asynchronous observer (e.g. CodeHeapPool::get_memory_usage()) 558 } 559 if (PrintCodeCacheExtension) { 560 ResourceMark rm; 561 if (_nmethod_heaps->length() >= 1) { 562 tty->print("%s", heap->name()); 563 } else { 564 tty->print("CodeCache"); 565 } 566 tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)", 567 (intptr_t)heap->low_boundary(), (intptr_t)heap->high(), 568 (address)heap->high() - (address)heap->low_boundary()); 569 } 570 } 571 print_trace("allocation", cb, size); 572 return cb; 573 } 574 575 void CodeCache::free(CodeBlob* cb) { 576 assert_locked_or_safepoint(CodeCache_lock); 577 CodeHeap* heap = get_code_heap(cb); 578 print_trace("free", cb); 579 if (cb->is_nmethod()) { 580 heap->set_nmethod_count(heap->nmethod_count() - 1); 581 if (((nmethod *)cb)->has_dependencies()) { 582 Atomic::dec(&_number_of_nmethods_with_dependencies); 583 } 584 } 585 if (cb->is_adapter_blob()) { 586 heap->set_adapter_count(heap->adapter_count() - 1); 587 } 588 589 cb->~CodeBlob(); 590 // Get heap for given CodeBlob and deallocate 591 heap->deallocate(cb); 592 593 assert(heap->blob_count() >= 0, "sanity check"); 594 } 595 596 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) { 597 assert_locked_or_safepoint(CodeCache_lock); 598 guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!"); 599 print_trace("free_unused_tail", cb); 600 601 // We also have to account for the extra space (i.e. header) used by the CodeBlob 602 // which provides the memory (see BufferBlob::create() in codeBlob.cpp). 603 used += CodeBlob::align_code_offset(cb->header_size()); 604 605 // Get heap for given CodeBlob and deallocate its unused tail 606 get_code_heap(cb)->deallocate_tail(cb, used); 607 // Adjust the sizes of the CodeBlob 608 cb->adjust_size(used); 609 } 610 611 void CodeCache::commit(CodeBlob* cb) { 612 // this is called by nmethod::nmethod, which must already own CodeCache_lock 613 assert_locked_or_safepoint(CodeCache_lock); 614 CodeHeap* heap = get_code_heap(cb); 615 if (cb->is_nmethod()) { 616 heap->set_nmethod_count(heap->nmethod_count() + 1); 617 if (((nmethod *)cb)->has_dependencies()) { 618 Atomic::inc(&_number_of_nmethods_with_dependencies); 619 } 620 } 621 if (cb->is_adapter_blob()) { 622 heap->set_adapter_count(heap->adapter_count() + 1); 623 } 624 } 625 626 bool CodeCache::contains(void *p) { 627 // S390 uses contains() in current_frame(), which is used before 628 // code cache initialization if NativeMemoryTracking=detail is set. 629 S390_ONLY(if (_heaps == nullptr) return false;) 630 // It should be ok to call contains without holding a lock. 631 FOR_ALL_HEAPS(heap) { 632 if ((*heap)->contains(p)) { 633 return true; 634 } 635 } 636 return false; 637 } 638 639 bool CodeCache::contains(nmethod *nm) { 640 return contains((void *)nm); 641 } 642 643 // This method is safe to call without holding the CodeCache_lock. It only depends on the _segmap to contain 644 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled. 645 CodeBlob* CodeCache::find_blob(void* start) { 646 // NMT can walk the stack before code cache is created 647 if (_heaps != nullptr) { 648 CodeHeap* heap = get_code_heap_containing(start); 649 if (heap != nullptr) { 650 return heap->find_blob(start); 651 } 652 } 653 return nullptr; 654 } 655 656 nmethod* CodeCache::find_nmethod(void* start) { 657 CodeBlob* cb = find_blob(start); 658 assert(cb == nullptr || cb->is_nmethod(), "did not find an nmethod"); 659 return (nmethod*)cb; 660 } 661 662 void CodeCache::blobs_do(void f(CodeBlob* nm)) { 663 assert_locked_or_safepoint(CodeCache_lock); 664 FOR_ALL_HEAPS(heap) { 665 FOR_ALL_BLOBS(cb, *heap) { 666 f(cb); 667 } 668 } 669 } 670 671 void CodeCache::nmethods_do(void f(nmethod* nm)) { 672 assert_locked_or_safepoint(CodeCache_lock); 673 NMethodIterator iter(NMethodIterator::all); 674 while(iter.next()) { 675 f(iter.method()); 676 } 677 } 678 679 void CodeCache::nmethods_do(NMethodClosure* cl) { 680 assert_locked_or_safepoint(CodeCache_lock); 681 NMethodIterator iter(NMethodIterator::all); 682 while(iter.next()) { 683 cl->do_nmethod(iter.method()); 684 } 685 } 686 687 void CodeCache::metadata_do(MetadataClosure* f) { 688 assert_locked_or_safepoint(CodeCache_lock); 689 NMethodIterator iter(NMethodIterator::all); 690 while(iter.next()) { 691 iter.method()->metadata_do(f); 692 } 693 } 694 695 // Calculate the number of GCs after which an nmethod is expected to have been 696 // used in order to not be classed as cold. 697 void CodeCache::update_cold_gc_count() { 698 if (!MethodFlushing || !UseCodeCacheFlushing || NmethodSweepActivity == 0) { 699 // No aging 700 return; 701 } 702 703 size_t last_used = _last_unloading_used; 704 double last_time = _last_unloading_time; 705 706 double time = os::elapsedTime(); 707 708 size_t free = unallocated_capacity(); 709 size_t max = max_capacity(); 710 size_t used = max - free; 711 double gc_interval = time - last_time; 712 713 _unloading_threshold_gc_requested = false; 714 _last_unloading_time = time; 715 _last_unloading_used = used; 716 717 if (last_time == 0.0) { 718 // The first GC doesn't have enough information to make good 719 // decisions, so just keep everything afloat 720 log_info(codecache)("Unknown code cache pressure; don't age code"); 721 return; 722 } 723 724 if (gc_interval <= 0.0 || last_used >= used) { 725 // Dodge corner cases where there is no pressure or negative pressure 726 // on the code cache. Just don't unload when this happens. 727 _cold_gc_count = INT_MAX; 728 log_info(codecache)("No code cache pressure; don't age code"); 729 return; 730 } 731 732 double allocation_rate = (used - last_used) / gc_interval; 733 734 _unloading_allocation_rates.add(allocation_rate); 735 _unloading_gc_intervals.add(gc_interval); 736 737 size_t aggressive_sweeping_free_threshold = StartAggressiveSweepingAt / 100.0 * max; 738 if (free < aggressive_sweeping_free_threshold) { 739 // We are already in the red zone; be very aggressive to avoid disaster 740 // But not more aggressive than 2. This ensures that an nmethod must 741 // have been unused at least between two GCs to be considered cold still. 742 _cold_gc_count = 2; 743 log_info(codecache)("Code cache critically low; use aggressive aging"); 744 return; 745 } 746 747 // The code cache has an expected time for cold nmethods to "time out" 748 // when they have not been used. The time for nmethods to time out 749 // depends on how long we expect we can keep allocating code until 750 // aggressive sweeping starts, based on sampled allocation rates. 751 double average_gc_interval = _unloading_gc_intervals.avg(); 752 double average_allocation_rate = _unloading_allocation_rates.avg(); 753 double time_to_aggressive = ((double)(free - aggressive_sweeping_free_threshold)) / average_allocation_rate; 754 double cold_timeout = time_to_aggressive / NmethodSweepActivity; 755 756 // Convert time to GC cycles, and crop at INT_MAX. The reason for 757 // that is that the _cold_gc_count will be added to an epoch number 758 // and that addition must not overflow, or we can crash the VM. 759 // But not more aggressive than 2. This ensures that an nmethod must 760 // have been unused at least between two GCs to be considered cold still. 761 _cold_gc_count = MAX2(MIN2((uint64_t)(cold_timeout / average_gc_interval), (uint64_t)INT_MAX), (uint64_t)2); 762 763 double used_ratio = double(used) / double(max); 764 double last_used_ratio = double(last_used) / double(max); 765 log_info(codecache)("Allocation rate: %.3f KB/s, time to aggressive unloading: %.3f s, cold timeout: %.3f s, cold gc count: " UINT64_FORMAT 766 ", used: %.3f MB (%.3f%%), last used: %.3f MB (%.3f%%), gc interval: %.3f s", 767 average_allocation_rate / K, time_to_aggressive, cold_timeout, _cold_gc_count, 768 double(used) / M, used_ratio * 100.0, double(last_used) / M, last_used_ratio * 100.0, average_gc_interval); 769 770 } 771 772 uint64_t CodeCache::cold_gc_count() { 773 return _cold_gc_count; 774 } 775 776 void CodeCache::gc_on_allocation() { 777 if (!is_init_completed()) { 778 // Let's not heuristically trigger GCs before the JVM is ready for GCs, no matter what 779 return; 780 } 781 782 size_t free = unallocated_capacity(); 783 size_t max = max_capacity(); 784 size_t used = max - free; 785 double free_ratio = double(free) / double(max); 786 if (free_ratio <= StartAggressiveSweepingAt / 100.0) { 787 // In case the GC is concurrent, we make sure only one thread requests the GC. 788 if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) { 789 log_info(codecache)("Triggering aggressive GC due to having only %.3f%% free memory", free_ratio * 100.0); 790 Universe::heap()->collect(GCCause::_codecache_GC_aggressive); 791 } 792 return; 793 } 794 795 size_t last_used = _last_unloading_used; 796 if (last_used >= used) { 797 // No increase since last GC; no need to sweep yet 798 return; 799 } 800 size_t allocated_since_last = used - last_used; 801 double allocated_since_last_ratio = double(allocated_since_last) / double(max); 802 double threshold = SweeperThreshold / 100.0; 803 double used_ratio = double(used) / double(max); 804 double last_used_ratio = double(last_used) / double(max); 805 if (used_ratio > threshold) { 806 // After threshold is reached, scale it by free_ratio so that more aggressive 807 // GC is triggered as we approach code cache exhaustion 808 threshold *= free_ratio; 809 } 810 // If code cache has been allocated without any GC at all, let's make sure 811 // it is eventually invoked to avoid trouble. 812 if (allocated_since_last_ratio > threshold) { 813 // In case the GC is concurrent, we make sure only one thread requests the GC. 814 if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) { 815 log_info(codecache)("Triggering threshold (%.3f%%) GC due to allocating %.3f%% since last unloading (%.3f%% used -> %.3f%% used)", 816 threshold * 100.0, allocated_since_last_ratio * 100.0, last_used_ratio * 100.0, used_ratio * 100.0); 817 Universe::heap()->collect(GCCause::_codecache_GC_threshold); 818 } 819 } 820 } 821 822 // We initialize the _gc_epoch to 2, because previous_completed_gc_marking_cycle 823 // subtracts the value by 2, and the type is unsigned. We don't want underflow. 824 // 825 // Odd values mean that marking is in progress, and even values mean that no 826 // marking is currently active. 827 uint64_t CodeCache::_gc_epoch = 2; 828 829 // How many GCs after an nmethod has not been used, do we consider it cold? 830 uint64_t CodeCache::_cold_gc_count = INT_MAX; 831 832 double CodeCache::_last_unloading_time = 0.0; 833 size_t CodeCache::_last_unloading_used = 0; 834 volatile bool CodeCache::_unloading_threshold_gc_requested = false; 835 TruncatedSeq CodeCache::_unloading_gc_intervals(10 /* samples */); 836 TruncatedSeq CodeCache::_unloading_allocation_rates(10 /* samples */); 837 838 uint64_t CodeCache::gc_epoch() { 839 return _gc_epoch; 840 } 841 842 bool CodeCache::is_gc_marking_cycle_active() { 843 // Odd means that marking is active 844 return (_gc_epoch % 2) == 1; 845 } 846 847 uint64_t CodeCache::previous_completed_gc_marking_cycle() { 848 if (is_gc_marking_cycle_active()) { 849 return _gc_epoch - 2; 850 } else { 851 return _gc_epoch - 1; 852 } 853 } 854 855 void CodeCache::on_gc_marking_cycle_start() { 856 assert(!is_gc_marking_cycle_active(), "Previous marking cycle never ended"); 857 ++_gc_epoch; 858 } 859 860 // Once started the code cache marking cycle must only be finished after marking of 861 // the java heap is complete. Otherwise nmethods could appear to be not on stack even 862 // if they have frames in continuation StackChunks that were not yet visited. 863 void CodeCache::on_gc_marking_cycle_finish() { 864 assert(is_gc_marking_cycle_active(), "Marking cycle started before last one finished"); 865 ++_gc_epoch; 866 update_cold_gc_count(); 867 } 868 869 void CodeCache::arm_all_nmethods() { 870 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 871 if (bs_nm != nullptr) { 872 bs_nm->arm_all_nmethods(); 873 } 874 } 875 876 // Mark nmethods for unloading if they contain otherwise unreachable oops. 877 void CodeCache::do_unloading(bool unloading_occurred) { 878 assert_locked_or_safepoint(CodeCache_lock); 879 NMethodIterator iter(NMethodIterator::all); 880 while(iter.next()) { 881 iter.method()->do_unloading(unloading_occurred); 882 } 883 } 884 885 void CodeCache::verify_clean_inline_caches() { 886 #ifdef ASSERT 887 NMethodIterator iter(NMethodIterator::not_unloading); 888 while(iter.next()) { 889 nmethod* nm = iter.method(); 890 nm->verify_clean_inline_caches(); 891 nm->verify(); 892 } 893 #endif 894 } 895 896 // Defer freeing of concurrently cleaned ExceptionCache entries until 897 // after a global handshake operation. 898 void CodeCache::release_exception_cache(ExceptionCache* entry) { 899 if (SafepointSynchronize::is_at_safepoint()) { 900 delete entry; 901 } else { 902 for (;;) { 903 ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list); 904 entry->set_purge_list_next(purge_list_head); 905 if (Atomic::cmpxchg(&_exception_cache_purge_list, purge_list_head, entry) == purge_list_head) { 906 break; 907 } 908 } 909 } 910 } 911 912 // Delete exception caches that have been concurrently unlinked, 913 // followed by a global handshake operation. 914 void CodeCache::purge_exception_caches() { 915 ExceptionCache* curr = _exception_cache_purge_list; 916 while (curr != nullptr) { 917 ExceptionCache* next = curr->purge_list_next(); 918 delete curr; 919 curr = next; 920 } 921 _exception_cache_purge_list = nullptr; 922 } 923 924 // Restart compiler if possible and required.. 925 void CodeCache::maybe_restart_compiler(size_t freed_memory) { 926 927 // Try to start the compiler again if we freed any memory 928 if (!CompileBroker::should_compile_new_jobs() && freed_memory != 0) { 929 CompileBroker::set_should_compile_new_jobs(CompileBroker::run_compilation); 930 log_info(codecache)("Restarting compiler"); 931 EventJITRestart event; 932 event.set_freedMemory(freed_memory); 933 event.set_codeCacheMaxCapacity(CodeCache::max_capacity()); 934 event.commit(); 935 } 936 } 937 938 uint8_t CodeCache::_unloading_cycle = 1; 939 940 void CodeCache::increment_unloading_cycle() { 941 // 2-bit value (see IsUnloadingState in nmethod.cpp for details) 942 // 0 is reserved for new methods. 943 _unloading_cycle = (_unloading_cycle + 1) % 4; 944 if (_unloading_cycle == 0) { 945 _unloading_cycle = 1; 946 } 947 } 948 949 CodeCache::UnlinkingScope::UnlinkingScope(BoolObjectClosure* is_alive) 950 : _is_unloading_behaviour(is_alive) 951 { 952 _saved_behaviour = IsUnloadingBehaviour::current(); 953 IsUnloadingBehaviour::set_current(&_is_unloading_behaviour); 954 increment_unloading_cycle(); 955 DependencyContext::cleaning_start(); 956 } 957 958 CodeCache::UnlinkingScope::~UnlinkingScope() { 959 IsUnloadingBehaviour::set_current(_saved_behaviour); 960 DependencyContext::cleaning_end(); 961 } 962 963 void CodeCache::verify_oops() { 964 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 965 VerifyOopClosure voc; 966 NMethodIterator iter(NMethodIterator::not_unloading); 967 while(iter.next()) { 968 nmethod* nm = iter.method(); 969 nm->oops_do(&voc); 970 nm->verify_oop_relocations(); 971 } 972 } 973 974 int CodeCache::blob_count(CodeBlobType code_blob_type) { 975 CodeHeap* heap = get_code_heap(code_blob_type); 976 return (heap != nullptr) ? heap->blob_count() : 0; 977 } 978 979 int CodeCache::blob_count() { 980 int count = 0; 981 FOR_ALL_HEAPS(heap) { 982 count += (*heap)->blob_count(); 983 } 984 return count; 985 } 986 987 int CodeCache::nmethod_count(CodeBlobType code_blob_type) { 988 CodeHeap* heap = get_code_heap(code_blob_type); 989 return (heap != nullptr) ? heap->nmethod_count() : 0; 990 } 991 992 int CodeCache::nmethod_count() { 993 int count = 0; 994 for (CodeHeap* heap : *_nmethod_heaps) { 995 count += heap->nmethod_count(); 996 } 997 return count; 998 } 999 1000 int CodeCache::adapter_count(CodeBlobType code_blob_type) { 1001 CodeHeap* heap = get_code_heap(code_blob_type); 1002 return (heap != nullptr) ? heap->adapter_count() : 0; 1003 } 1004 1005 int CodeCache::adapter_count() { 1006 int count = 0; 1007 FOR_ALL_HEAPS(heap) { 1008 count += (*heap)->adapter_count(); 1009 } 1010 return count; 1011 } 1012 1013 address CodeCache::low_bound(CodeBlobType code_blob_type) { 1014 CodeHeap* heap = get_code_heap(code_blob_type); 1015 return (heap != nullptr) ? (address)heap->low_boundary() : nullptr; 1016 } 1017 1018 address CodeCache::high_bound(CodeBlobType code_blob_type) { 1019 CodeHeap* heap = get_code_heap(code_blob_type); 1020 return (heap != nullptr) ? (address)heap->high_boundary() : nullptr; 1021 } 1022 1023 size_t CodeCache::capacity() { 1024 size_t cap = 0; 1025 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1026 cap += (*heap)->capacity(); 1027 } 1028 return cap; 1029 } 1030 1031 size_t CodeCache::unallocated_capacity(CodeBlobType code_blob_type) { 1032 CodeHeap* heap = get_code_heap(code_blob_type); 1033 return (heap != nullptr) ? heap->unallocated_capacity() : 0; 1034 } 1035 1036 size_t CodeCache::unallocated_capacity() { 1037 size_t unallocated_cap = 0; 1038 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1039 unallocated_cap += (*heap)->unallocated_capacity(); 1040 } 1041 return unallocated_cap; 1042 } 1043 1044 size_t CodeCache::max_capacity() { 1045 size_t max_cap = 0; 1046 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1047 max_cap += (*heap)->max_capacity(); 1048 } 1049 return max_cap; 1050 } 1051 1052 bool CodeCache::is_non_nmethod(address addr) { 1053 CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod); 1054 return blob->contains(addr); 1055 } 1056 1057 size_t CodeCache::max_distance_to_non_nmethod() { 1058 if (!SegmentedCodeCache) { 1059 return ReservedCodeCacheSize; 1060 } else { 1061 CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod); 1062 // the max distance is minimized by placing the NonNMethod segment 1063 // in between MethodProfiled and MethodNonProfiled segments 1064 size_t dist1 = (size_t)blob->high() - (size_t)_low_bound; 1065 size_t dist2 = (size_t)_high_bound - (size_t)blob->low(); 1066 return dist1 > dist2 ? dist1 : dist2; 1067 } 1068 } 1069 1070 // Returns the reverse free ratio. E.g., if 25% (1/4) of the code cache 1071 // is free, reverse_free_ratio() returns 4. 1072 // Since code heap for each type of code blobs falls forward to the next 1073 // type of code heap, return the reverse free ratio for the entire 1074 // code cache. 1075 double CodeCache::reverse_free_ratio() { 1076 double unallocated = MAX2((double)unallocated_capacity(), 1.0); // Avoid division by 0; 1077 double max = (double)max_capacity(); 1078 double result = max / unallocated; 1079 assert (max >= unallocated, "Must be"); 1080 assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result); 1081 return result; 1082 } 1083 1084 size_t CodeCache::bytes_allocated_in_freelists() { 1085 size_t allocated_bytes = 0; 1086 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1087 allocated_bytes += (*heap)->allocated_in_freelist(); 1088 } 1089 return allocated_bytes; 1090 } 1091 1092 int CodeCache::allocated_segments() { 1093 int number_of_segments = 0; 1094 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1095 number_of_segments += (*heap)->allocated_segments(); 1096 } 1097 return number_of_segments; 1098 } 1099 1100 size_t CodeCache::freelists_length() { 1101 size_t length = 0; 1102 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1103 length += (*heap)->freelist_length(); 1104 } 1105 return length; 1106 } 1107 1108 void icache_init(); 1109 1110 void CodeCache::initialize() { 1111 assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points"); 1112 #ifdef COMPILER2 1113 assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops"); 1114 #endif 1115 assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants"); 1116 // This was originally just a check of the alignment, causing failure, instead, round 1117 // the code cache to the page size. In particular, Solaris is moving to a larger 1118 // default page size. 1119 CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size()); 1120 1121 if (SegmentedCodeCache) { 1122 // Use multiple code heaps 1123 initialize_heaps(); 1124 } else { 1125 // Use a single code heap 1126 FLAG_SET_ERGO(NonNMethodCodeHeapSize, (uintx)os::vm_page_size()); 1127 FLAG_SET_ERGO(ProfiledCodeHeapSize, 0); 1128 FLAG_SET_ERGO(NonProfiledCodeHeapSize, 0); 1129 1130 // If InitialCodeCacheSize is equal to ReservedCodeCacheSize, then it's more likely 1131 // users want to use the largest available page. 1132 const size_t min_pages = (InitialCodeCacheSize == ReservedCodeCacheSize) ? 1 : 8; 1133 ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize, page_size(false, min_pages)); 1134 // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory. 1135 LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size()); 1136 add_heap(rs, "CodeCache", CodeBlobType::All); 1137 } 1138 1139 // Initialize ICache flush mechanism 1140 // This service is needed for os::register_code_area 1141 icache_init(); 1142 1143 // Give OS a chance to register generated code area. 1144 // This is used on Windows 64 bit platforms to register 1145 // Structured Exception Handlers for our generated code. 1146 os::register_code_area((char*)low_bound(), (char*)high_bound()); 1147 } 1148 1149 void codeCache_init() { 1150 CodeCache::initialize(); 1151 } 1152 1153 //------------------------------------------------------------------------------------------------ 1154 1155 bool CodeCache::has_nmethods_with_dependencies() { 1156 return Atomic::load_acquire(&_number_of_nmethods_with_dependencies) != 0; 1157 } 1158 1159 void CodeCache::clear_inline_caches() { 1160 assert_locked_or_safepoint(CodeCache_lock); 1161 NMethodIterator iter(NMethodIterator::not_unloading); 1162 while(iter.next()) { 1163 iter.method()->clear_inline_caches(); 1164 } 1165 } 1166 1167 // Only used by whitebox API 1168 void CodeCache::cleanup_inline_caches_whitebox() { 1169 assert_locked_or_safepoint(CodeCache_lock); 1170 NMethodIterator iter(NMethodIterator::not_unloading); 1171 while(iter.next()) { 1172 iter.method()->cleanup_inline_caches_whitebox(); 1173 } 1174 } 1175 1176 // Keeps track of time spent for checking dependencies 1177 NOT_PRODUCT(static elapsedTimer dependentCheckTime;) 1178 1179 #ifndef PRODUCT 1180 // Check if any of live methods dependencies have been invalidated. 1181 // (this is expensive!) 1182 static void check_live_nmethods_dependencies(DepChange& changes) { 1183 // Checked dependencies are allocated into this ResourceMark 1184 ResourceMark rm; 1185 1186 // Turn off dependency tracing while actually testing dependencies. 1187 FlagSetting fs(Dependencies::_verify_in_progress, true); 1188 1189 typedef ResourceHashtable<DependencySignature, int, 11027, 1190 AnyObj::RESOURCE_AREA, mtInternal, 1191 &DependencySignature::hash, 1192 &DependencySignature::equals> DepTable; 1193 1194 DepTable* table = new DepTable(); 1195 1196 // Iterate over live nmethods and check dependencies of all nmethods that are not 1197 // marked for deoptimization. A particular dependency is only checked once. 1198 NMethodIterator iter(NMethodIterator::not_unloading); 1199 while(iter.next()) { 1200 nmethod* nm = iter.method(); 1201 // Only notify for live nmethods 1202 if (!nm->is_marked_for_deoptimization()) { 1203 for (Dependencies::DepStream deps(nm); deps.next(); ) { 1204 // Construct abstraction of a dependency. 1205 DependencySignature* current_sig = new DependencySignature(deps); 1206 1207 // Determine if dependency is already checked. table->put(...) returns 1208 // 'true' if the dependency is added (i.e., was not in the hashtable). 1209 if (table->put(*current_sig, 1)) { 1210 if (deps.check_dependency() != nullptr) { 1211 // Dependency checking failed. Print out information about the failed 1212 // dependency and finally fail with an assert. We can fail here, since 1213 // dependency checking is never done in a product build. 1214 tty->print_cr("Failed dependency:"); 1215 changes.print(); 1216 nm->print(); 1217 nm->print_dependencies_on(tty); 1218 assert(false, "Should have been marked for deoptimization"); 1219 } 1220 } 1221 } 1222 } 1223 } 1224 } 1225 #endif 1226 1227 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, KlassDepChange& changes) { 1228 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1229 1230 // search the hierarchy looking for nmethods which are affected by the loading of this class 1231 1232 // then search the interfaces this class implements looking for nmethods 1233 // which might be dependent of the fact that an interface only had one 1234 // implementor. 1235 // nmethod::check_all_dependencies works only correctly, if no safepoint 1236 // can happen 1237 NoSafepointVerifier nsv; 1238 for (DepChange::ContextStream str(changes, nsv); str.next(); ) { 1239 InstanceKlass* d = str.klass(); 1240 d->mark_dependent_nmethods(deopt_scope, changes); 1241 } 1242 1243 #ifndef PRODUCT 1244 if (VerifyDependencies) { 1245 // Object pointers are used as unique identifiers for dependency arguments. This 1246 // is only possible if no safepoint, i.e., GC occurs during the verification code. 1247 dependentCheckTime.start(); 1248 check_live_nmethods_dependencies(changes); 1249 dependentCheckTime.stop(); 1250 } 1251 #endif 1252 } 1253 1254 #if INCLUDE_JVMTI 1255 // RedefineClasses support for saving nmethods that are dependent on "old" methods. 1256 // We don't really expect this table to grow very large. If it does, it can become a hashtable. 1257 static GrowableArray<nmethod*>* old_nmethod_table = nullptr; 1258 1259 static void add_to_old_table(nmethod* c) { 1260 if (old_nmethod_table == nullptr) { 1261 old_nmethod_table = new (mtCode) GrowableArray<nmethod*>(100, mtCode); 1262 } 1263 old_nmethod_table->push(c); 1264 } 1265 1266 static void reset_old_method_table() { 1267 if (old_nmethod_table != nullptr) { 1268 delete old_nmethod_table; 1269 old_nmethod_table = nullptr; 1270 } 1271 } 1272 1273 // Remove this method when flushed. 1274 void CodeCache::unregister_old_nmethod(nmethod* c) { 1275 assert_lock_strong(CodeCache_lock); 1276 if (old_nmethod_table != nullptr) { 1277 int index = old_nmethod_table->find(c); 1278 if (index != -1) { 1279 old_nmethod_table->delete_at(index); 1280 } 1281 } 1282 } 1283 1284 void CodeCache::old_nmethods_do(MetadataClosure* f) { 1285 // Walk old method table and mark those on stack. 1286 int length = 0; 1287 if (old_nmethod_table != nullptr) { 1288 length = old_nmethod_table->length(); 1289 for (int i = 0; i < length; i++) { 1290 // Walk all methods saved on the last pass. Concurrent class unloading may 1291 // also be looking at this method's metadata, so don't delete it yet if 1292 // it is marked as unloaded. 1293 old_nmethod_table->at(i)->metadata_do(f); 1294 } 1295 } 1296 log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length); 1297 } 1298 1299 // Walk compiled methods and mark dependent methods for deoptimization. 1300 void CodeCache::mark_dependents_for_evol_deoptimization(DeoptimizationScope* deopt_scope) { 1301 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!"); 1302 // Each redefinition creates a new set of nmethods that have references to "old" Methods 1303 // So delete old method table and create a new one. 1304 reset_old_method_table(); 1305 1306 NMethodIterator iter(NMethodIterator::all); 1307 while(iter.next()) { 1308 nmethod* nm = iter.method(); 1309 // Walk all alive nmethods to check for old Methods. 1310 // This includes methods whose inline caches point to old methods, so 1311 // inline cache clearing is unnecessary. 1312 if (nm->has_evol_metadata()) { 1313 deopt_scope->mark(nm); 1314 add_to_old_table(nm); 1315 } 1316 } 1317 } 1318 1319 void CodeCache::mark_all_nmethods_for_evol_deoptimization(DeoptimizationScope* deopt_scope) { 1320 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!"); 1321 NMethodIterator iter(NMethodIterator::all); 1322 while(iter.next()) { 1323 nmethod* nm = iter.method(); 1324 if (!nm->method()->is_method_handle_intrinsic()) { 1325 if (nm->can_be_deoptimized()) { 1326 deopt_scope->mark(nm); 1327 } 1328 if (nm->has_evol_metadata()) { 1329 add_to_old_table(nm); 1330 } 1331 } 1332 } 1333 } 1334 1335 #endif // INCLUDE_JVMTI 1336 1337 // Mark methods for deopt (if safe or possible). 1338 void CodeCache::mark_all_nmethods_for_deoptimization(DeoptimizationScope* deopt_scope) { 1339 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1340 NMethodIterator iter(NMethodIterator::not_unloading); 1341 while(iter.next()) { 1342 nmethod* nm = iter.method(); 1343 if (!nm->is_native_method()) { 1344 deopt_scope->mark(nm); 1345 } 1346 } 1347 } 1348 1349 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, Method* dependee) { 1350 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1351 1352 NMethodIterator iter(NMethodIterator::not_unloading); 1353 while(iter.next()) { 1354 nmethod* nm = iter.method(); 1355 if (nm->is_dependent_on_method(dependee)) { 1356 deopt_scope->mark(nm); 1357 } 1358 } 1359 } 1360 1361 void CodeCache::make_marked_nmethods_deoptimized() { 1362 RelaxedNMethodIterator iter(RelaxedNMethodIterator::not_unloading); 1363 while(iter.next()) { 1364 nmethod* nm = iter.method(); 1365 if (nm->is_marked_for_deoptimization() && !nm->has_been_deoptimized() && nm->can_be_deoptimized()) { 1366 nm->make_not_entrant(); 1367 nm->make_deoptimized(); 1368 } 1369 } 1370 } 1371 1372 // Marks compiled methods dependent on dependee. 1373 void CodeCache::mark_dependents_on(DeoptimizationScope* deopt_scope, InstanceKlass* dependee) { 1374 assert_lock_strong(Compile_lock); 1375 1376 if (!has_nmethods_with_dependencies()) { 1377 return; 1378 } 1379 1380 if (dependee->is_linked()) { 1381 // Class initialization state change. 1382 KlassInitDepChange changes(dependee); 1383 mark_for_deoptimization(deopt_scope, changes); 1384 } else { 1385 // New class is loaded. 1386 NewKlassDepChange changes(dependee); 1387 mark_for_deoptimization(deopt_scope, changes); 1388 } 1389 } 1390 1391 // Marks compiled methods dependent on dependee 1392 void CodeCache::mark_dependents_on_method_for_breakpoint(const methodHandle& m_h) { 1393 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 1394 1395 DeoptimizationScope deopt_scope; 1396 // Compute the dependent nmethods 1397 mark_for_deoptimization(&deopt_scope, m_h()); 1398 deopt_scope.deoptimize_marked(); 1399 } 1400 1401 void CodeCache::verify() { 1402 assert_locked_or_safepoint(CodeCache_lock); 1403 FOR_ALL_HEAPS(heap) { 1404 (*heap)->verify(); 1405 FOR_ALL_BLOBS(cb, *heap) { 1406 cb->verify(); 1407 } 1408 } 1409 } 1410 1411 // A CodeHeap is full. Print out warning and report event. 1412 PRAGMA_DIAG_PUSH 1413 PRAGMA_FORMAT_NONLITERAL_IGNORED 1414 void CodeCache::report_codemem_full(CodeBlobType code_blob_type, bool print) { 1415 // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event 1416 CodeHeap* heap = get_code_heap(code_blob_type); 1417 assert(heap != nullptr, "heap is null"); 1418 1419 int full_count = heap->report_full(); 1420 1421 if ((full_count == 1) || print) { 1422 // Not yet reported for this heap, report 1423 if (SegmentedCodeCache) { 1424 ResourceMark rm; 1425 stringStream msg1_stream, msg2_stream; 1426 msg1_stream.print("%s is full. Compiler has been disabled.", 1427 get_code_heap_name(code_blob_type)); 1428 msg2_stream.print("Try increasing the code heap size using -XX:%s=", 1429 get_code_heap_flag_name(code_blob_type)); 1430 const char *msg1 = msg1_stream.as_string(); 1431 const char *msg2 = msg2_stream.as_string(); 1432 1433 log_warning(codecache)("%s", msg1); 1434 log_warning(codecache)("%s", msg2); 1435 warning("%s", msg1); 1436 warning("%s", msg2); 1437 } else { 1438 const char *msg1 = "CodeCache is full. Compiler has been disabled."; 1439 const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize="; 1440 1441 log_warning(codecache)("%s", msg1); 1442 log_warning(codecache)("%s", msg2); 1443 warning("%s", msg1); 1444 warning("%s", msg2); 1445 } 1446 stringStream s; 1447 // Dump code cache into a buffer before locking the tty. 1448 { 1449 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1450 print_summary(&s); 1451 } 1452 { 1453 ttyLocker ttyl; 1454 tty->print("%s", s.freeze()); 1455 } 1456 1457 if (full_count == 1) { 1458 if (PrintCodeHeapAnalytics) { 1459 CompileBroker::print_heapinfo(tty, "all", 4096); // details, may be a lot! 1460 } 1461 } 1462 } 1463 1464 EventCodeCacheFull event; 1465 if (event.should_commit()) { 1466 event.set_codeBlobType((u1)code_blob_type); 1467 event.set_startAddress((u8)heap->low_boundary()); 1468 event.set_commitedTopAddress((u8)heap->high()); 1469 event.set_reservedTopAddress((u8)heap->high_boundary()); 1470 event.set_entryCount(heap->blob_count()); 1471 event.set_methodCount(heap->nmethod_count()); 1472 event.set_adaptorCount(heap->adapter_count()); 1473 event.set_unallocatedCapacity(heap->unallocated_capacity()); 1474 event.set_fullCount(heap->full_count()); 1475 event.set_codeCacheMaxCapacity(CodeCache::max_capacity()); 1476 event.commit(); 1477 } 1478 } 1479 PRAGMA_DIAG_POP 1480 1481 void CodeCache::print_memory_overhead() { 1482 size_t wasted_bytes = 0; 1483 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1484 CodeHeap* curr_heap = *heap; 1485 for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != nullptr; cb = (CodeBlob*)curr_heap->next(cb)) { 1486 HeapBlock* heap_block = ((HeapBlock*)cb) - 1; 1487 wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size(); 1488 } 1489 } 1490 // Print bytes that are allocated in the freelist 1491 ttyLocker ttl; 1492 tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT, freelists_length()); 1493 tty->print_cr("Allocated in freelist: " SSIZE_FORMAT "kB", bytes_allocated_in_freelists()/K); 1494 tty->print_cr("Unused bytes in CodeBlobs: " SSIZE_FORMAT "kB", (wasted_bytes/K)); 1495 tty->print_cr("Segment map size: " SSIZE_FORMAT "kB", allocated_segments()/K); // 1 byte per segment 1496 } 1497 1498 //------------------------------------------------------------------------------------------------ 1499 // Non-product version 1500 1501 #ifndef PRODUCT 1502 1503 void CodeCache::print_trace(const char* event, CodeBlob* cb, uint size) { 1504 if (PrintCodeCache2) { // Need to add a new flag 1505 ResourceMark rm; 1506 if (size == 0) { 1507 int s = cb->size(); 1508 assert(s >= 0, "CodeBlob size is negative: %d", s); 1509 size = (uint) s; 1510 } 1511 tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size); 1512 } 1513 } 1514 1515 void CodeCache::print_internals() { 1516 int nmethodCount = 0; 1517 int runtimeStubCount = 0; 1518 int adapterCount = 0; 1519 int deoptimizationStubCount = 0; 1520 int uncommonTrapStubCount = 0; 1521 int bufferBlobCount = 0; 1522 int total = 0; 1523 int nmethodNotEntrant = 0; 1524 int nmethodJava = 0; 1525 int nmethodNative = 0; 1526 int max_nm_size = 0; 1527 ResourceMark rm; 1528 1529 int i = 0; 1530 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1531 if ((_nmethod_heaps->length() >= 1) && Verbose) { 1532 tty->print_cr("-- %s --", (*heap)->name()); 1533 } 1534 FOR_ALL_BLOBS(cb, *heap) { 1535 total++; 1536 if (cb->is_nmethod()) { 1537 nmethod* nm = (nmethod*)cb; 1538 1539 if (Verbose && nm->method() != nullptr) { 1540 ResourceMark rm; 1541 char *method_name = nm->method()->name_and_sig_as_C_string(); 1542 tty->print("%s", method_name); 1543 if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); } 1544 } 1545 1546 nmethodCount++; 1547 1548 if(nm->is_not_entrant()) { nmethodNotEntrant++; } 1549 if(nm->method() != nullptr && nm->is_native_method()) { nmethodNative++; } 1550 1551 if(nm->method() != nullptr && nm->is_java_method()) { 1552 nmethodJava++; 1553 max_nm_size = MAX2(max_nm_size, nm->size()); 1554 } 1555 } else if (cb->is_runtime_stub()) { 1556 runtimeStubCount++; 1557 } else if (cb->is_deoptimization_stub()) { 1558 deoptimizationStubCount++; 1559 } else if (cb->is_uncommon_trap_stub()) { 1560 uncommonTrapStubCount++; 1561 } else if (cb->is_adapter_blob()) { 1562 adapterCount++; 1563 } else if (cb->is_buffer_blob()) { 1564 bufferBlobCount++; 1565 } 1566 } 1567 } 1568 1569 int bucketSize = 512; 1570 int bucketLimit = max_nm_size / bucketSize + 1; 1571 int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode); 1572 memset(buckets, 0, sizeof(int) * bucketLimit); 1573 1574 NMethodIterator iter(NMethodIterator::all); 1575 while(iter.next()) { 1576 nmethod* nm = iter.method(); 1577 if(nm->method() != nullptr && nm->is_java_method()) { 1578 buckets[nm->size() / bucketSize]++; 1579 } 1580 } 1581 1582 tty->print_cr("Code Cache Entries (total of %d)",total); 1583 tty->print_cr("-------------------------------------------------"); 1584 tty->print_cr("nmethods: %d",nmethodCount); 1585 tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant); 1586 tty->print_cr("\tjava: %d",nmethodJava); 1587 tty->print_cr("\tnative: %d",nmethodNative); 1588 tty->print_cr("runtime_stubs: %d",runtimeStubCount); 1589 tty->print_cr("adapters: %d",adapterCount); 1590 tty->print_cr("buffer blobs: %d",bufferBlobCount); 1591 tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount); 1592 tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount); 1593 tty->print_cr("\nnmethod size distribution"); 1594 tty->print_cr("-------------------------------------------------"); 1595 1596 for(int i=0; i<bucketLimit; i++) { 1597 if(buckets[i] != 0) { 1598 tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize); 1599 tty->fill_to(40); 1600 tty->print_cr("%d",buckets[i]); 1601 } 1602 } 1603 1604 FREE_C_HEAP_ARRAY(int, buckets); 1605 print_memory_overhead(); 1606 } 1607 1608 #endif // !PRODUCT 1609 1610 void CodeCache::print() { 1611 print_summary(tty); 1612 1613 #ifndef PRODUCT 1614 if (!Verbose) return; 1615 1616 CodeBlob_sizes live[CompLevel_full_optimization + 1]; 1617 CodeBlob_sizes runtimeStub; 1618 CodeBlob_sizes uncommonTrapStub; 1619 CodeBlob_sizes deoptimizationStub; 1620 CodeBlob_sizes adapter; 1621 CodeBlob_sizes bufferBlob; 1622 CodeBlob_sizes other; 1623 1624 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1625 FOR_ALL_BLOBS(cb, *heap) { 1626 if (cb->is_nmethod()) { 1627 const int level = cb->as_nmethod()->comp_level(); 1628 assert(0 <= level && level <= CompLevel_full_optimization, "Invalid compilation level"); 1629 live[level].add(cb); 1630 } else if (cb->is_runtime_stub()) { 1631 runtimeStub.add(cb); 1632 } else if (cb->is_deoptimization_stub()) { 1633 deoptimizationStub.add(cb); 1634 } else if (cb->is_uncommon_trap_stub()) { 1635 uncommonTrapStub.add(cb); 1636 } else if (cb->is_adapter_blob()) { 1637 adapter.add(cb); 1638 } else if (cb->is_buffer_blob()) { 1639 bufferBlob.add(cb); 1640 } else { 1641 other.add(cb); 1642 } 1643 } 1644 } 1645 1646 tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds()); 1647 1648 tty->print_cr("nmethod blobs per compilation level:"); 1649 for (int i = 0; i <= CompLevel_full_optimization; i++) { 1650 const char *level_name; 1651 switch (i) { 1652 case CompLevel_none: level_name = "none"; break; 1653 case CompLevel_simple: level_name = "simple"; break; 1654 case CompLevel_limited_profile: level_name = "limited profile"; break; 1655 case CompLevel_full_profile: level_name = "full profile"; break; 1656 case CompLevel_full_optimization: level_name = "full optimization"; break; 1657 default: assert(false, "invalid compilation level"); 1658 } 1659 tty->print_cr("%s:", level_name); 1660 live[i].print("live"); 1661 } 1662 1663 struct { 1664 const char* name; 1665 const CodeBlob_sizes* sizes; 1666 } non_nmethod_blobs[] = { 1667 { "runtime", &runtimeStub }, 1668 { "uncommon trap", &uncommonTrapStub }, 1669 { "deoptimization", &deoptimizationStub }, 1670 { "adapter", &adapter }, 1671 { "buffer blob", &bufferBlob }, 1672 { "other", &other }, 1673 }; 1674 tty->print_cr("Non-nmethod blobs:"); 1675 for (auto& blob: non_nmethod_blobs) { 1676 blob.sizes->print(blob.name); 1677 } 1678 1679 if (WizardMode) { 1680 // print the oop_map usage 1681 int code_size = 0; 1682 int number_of_blobs = 0; 1683 int number_of_oop_maps = 0; 1684 int map_size = 0; 1685 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1686 FOR_ALL_BLOBS(cb, *heap) { 1687 number_of_blobs++; 1688 code_size += cb->code_size(); 1689 ImmutableOopMapSet* set = cb->oop_maps(); 1690 if (set != nullptr) { 1691 number_of_oop_maps += set->count(); 1692 map_size += set->nr_of_bytes(); 1693 } 1694 } 1695 } 1696 tty->print_cr("OopMaps"); 1697 tty->print_cr(" #blobs = %d", number_of_blobs); 1698 tty->print_cr(" code size = %d", code_size); 1699 tty->print_cr(" #oop_maps = %d", number_of_oop_maps); 1700 tty->print_cr(" map size = %d", map_size); 1701 } 1702 1703 #endif // !PRODUCT 1704 } 1705 1706 void CodeCache::print_summary(outputStream* st, bool detailed) { 1707 int full_count = 0; 1708 julong total_used = 0; 1709 julong total_max_used = 0; 1710 julong total_free = 0; 1711 julong total_size = 0; 1712 FOR_ALL_HEAPS(heap_iterator) { 1713 CodeHeap* heap = (*heap_iterator); 1714 size_t total = (heap->high_boundary() - heap->low_boundary()); 1715 if (_heaps->length() >= 1) { 1716 st->print("%s:", heap->name()); 1717 } else { 1718 st->print("CodeCache:"); 1719 } 1720 size_t size = total/K; 1721 size_t used = (total - heap->unallocated_capacity())/K; 1722 size_t max_used = heap->max_allocated_capacity()/K; 1723 size_t free = heap->unallocated_capacity()/K; 1724 total_size += size; 1725 total_used += used; 1726 total_max_used += max_used; 1727 total_free += free; 1728 st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT 1729 "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb", 1730 size, used, max_used, free); 1731 1732 if (detailed) { 1733 st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]", 1734 p2i(heap->low_boundary()), 1735 p2i(heap->high()), 1736 p2i(heap->high_boundary())); 1737 1738 full_count += get_codemem_full_count(heap->code_blob_type()); 1739 } 1740 } 1741 1742 if (detailed) { 1743 if (SegmentedCodeCache) { 1744 st->print("CodeCache:"); 1745 st->print_cr(" size=" JULONG_FORMAT "Kb, used=" JULONG_FORMAT 1746 "Kb, max_used=" JULONG_FORMAT "Kb, free=" JULONG_FORMAT "Kb", 1747 total_size, total_used, total_max_used, total_free); 1748 } 1749 st->print_cr(" total_blobs=" UINT32_FORMAT ", nmethods=" UINT32_FORMAT 1750 ", adapters=" UINT32_FORMAT ", full_count=" UINT32_FORMAT, 1751 blob_count(), nmethod_count(), adapter_count(), full_count); 1752 st->print_cr("Compilation: %s, stopped_count=%d, restarted_count=%d", 1753 CompileBroker::should_compile_new_jobs() ? 1754 "enabled" : Arguments::mode() == Arguments::_int ? 1755 "disabled (interpreter mode)" : 1756 "disabled (not enough contiguous free space left)", 1757 CompileBroker::get_total_compiler_stopped_count(), 1758 CompileBroker::get_total_compiler_restarted_count()); 1759 } 1760 } 1761 1762 void CodeCache::print_codelist(outputStream* st) { 1763 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1764 1765 NMethodIterator iter(NMethodIterator::not_unloading); 1766 while (iter.next()) { 1767 nmethod* nm = iter.method(); 1768 ResourceMark rm; 1769 char* method_name = nm->method()->name_and_sig_as_C_string(); 1770 const char* jvmci_name = nullptr; 1771 #if INCLUDE_JVMCI 1772 jvmci_name = nm->jvmci_name(); 1773 #endif 1774 st->print_cr("%d %d %d %s%s%s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]", 1775 nm->compile_id(), nm->comp_level(), nm->get_state(), 1776 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "", 1777 (intptr_t)nm->header_begin(), (intptr_t)nm->code_begin(), (intptr_t)nm->code_end()); 1778 } 1779 } 1780 1781 void CodeCache::print_layout(outputStream* st) { 1782 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1783 ResourceMark rm; 1784 print_summary(st, true); 1785 } 1786 1787 void CodeCache::log_state(outputStream* st) { 1788 st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'" 1789 " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'", 1790 blob_count(), nmethod_count(), adapter_count(), 1791 unallocated_capacity()); 1792 } 1793 1794 #ifdef LINUX 1795 void CodeCache::write_perf_map(const char* filename, outputStream* st) { 1796 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1797 char fname[JVM_MAXPATHLEN]; 1798 if (filename == nullptr) { 1799 // Invocation outside of jcmd requires pid substitution. 1800 if (!Arguments::copy_expand_pid(DEFAULT_PERFMAP_FILENAME, 1801 strlen(DEFAULT_PERFMAP_FILENAME), 1802 fname, JVM_MAXPATHLEN)) { 1803 st->print_cr("Warning: Not writing perf map as pid substitution failed."); 1804 return; 1805 } 1806 filename = fname; 1807 } 1808 fileStream fs(filename, "w"); 1809 if (!fs.is_open()) { 1810 st->print_cr("Warning: Failed to create %s for perf map", filename); 1811 return; 1812 } 1813 1814 AllCodeBlobsIterator iter(AllCodeBlobsIterator::not_unloading); 1815 while (iter.next()) { 1816 CodeBlob *cb = iter.method(); 1817 ResourceMark rm; 1818 const char* method_name = nullptr; 1819 const char* jvmci_name = nullptr; 1820 if (cb->is_nmethod()) { 1821 nmethod* nm = cb->as_nmethod(); 1822 method_name = nm->method()->external_name(); 1823 #if INCLUDE_JVMCI 1824 jvmci_name = nm->jvmci_name(); 1825 #endif 1826 } else { 1827 method_name = cb->name(); 1828 } 1829 fs.print_cr(INTPTR_FORMAT " " INTPTR_FORMAT " %s%s%s", 1830 (intptr_t)cb->code_begin(), (intptr_t)cb->code_size(), 1831 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : ""); 1832 } 1833 } 1834 #endif // LINUX 1835 1836 //---< BEGIN >--- CodeHeap State Analytics. 1837 1838 void CodeCache::aggregate(outputStream *out, size_t granularity) { 1839 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1840 CodeHeapState::aggregate(out, (*heap), granularity); 1841 } 1842 } 1843 1844 void CodeCache::discard(outputStream *out) { 1845 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1846 CodeHeapState::discard(out, (*heap)); 1847 } 1848 } 1849 1850 void CodeCache::print_usedSpace(outputStream *out) { 1851 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1852 CodeHeapState::print_usedSpace(out, (*heap)); 1853 } 1854 } 1855 1856 void CodeCache::print_freeSpace(outputStream *out) { 1857 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1858 CodeHeapState::print_freeSpace(out, (*heap)); 1859 } 1860 } 1861 1862 void CodeCache::print_count(outputStream *out) { 1863 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1864 CodeHeapState::print_count(out, (*heap)); 1865 } 1866 } 1867 1868 void CodeCache::print_space(outputStream *out) { 1869 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1870 CodeHeapState::print_space(out, (*heap)); 1871 } 1872 } 1873 1874 void CodeCache::print_age(outputStream *out) { 1875 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1876 CodeHeapState::print_age(out, (*heap)); 1877 } 1878 } 1879 1880 void CodeCache::print_names(outputStream *out) { 1881 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1882 CodeHeapState::print_names(out, (*heap)); 1883 } 1884 } 1885 //---< END >--- CodeHeap State Analytics.