1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "code/codeBlob.hpp"
26 #include "code/codeCache.hpp"
27 #include "code/codeHeapState.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/dependencies.hpp"
30 #include "code/dependencyContext.hpp"
31 #include "code/nmethod.hpp"
32 #include "code/pcDesc.hpp"
33 #include "compiler/compilationPolicy.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/compilerDefinitions.inline.hpp"
36 #include "compiler/oopMap.hpp"
37 #include "gc/shared/barrierSetNMethod.hpp"
38 #include "gc/shared/classUnloadingContext.hpp"
39 #include "gc/shared/collectedHeap.hpp"
40 #include "jfr/jfrEvents.hpp"
41 #include "jvm_io.h"
42 #include "logging/log.hpp"
43 #include "logging/logStream.hpp"
44 #include "memory/allocation.inline.hpp"
45 #include "memory/iterator.hpp"
46 #include "memory/memoryReserver.hpp"
47 #include "memory/resourceArea.hpp"
48 #include "memory/universe.hpp"
49 #include "oops/method.inline.hpp"
50 #include "oops/objArrayOop.hpp"
51 #include "oops/oop.inline.hpp"
52 #include "oops/verifyOopClosure.hpp"
53 #include "runtime/arguments.hpp"
54 #include "runtime/atomicAccess.hpp"
55 #include "runtime/deoptimization.hpp"
56 #include "runtime/globals_extension.hpp"
57 #include "runtime/handles.inline.hpp"
58 #include "runtime/icache.hpp"
59 #include "runtime/init.hpp"
60 #include "runtime/java.hpp"
61 #include "runtime/mutexLocker.hpp"
62 #include "runtime/os.inline.hpp"
63 #include "runtime/safepointVerifiers.hpp"
64 #include "runtime/vmThread.hpp"
65 #include "sanitizers/leak.hpp"
66 #include "services/memoryService.hpp"
67 #include "utilities/align.hpp"
68 #include "utilities/vmError.hpp"
69 #include "utilities/xmlstream.hpp"
70 #ifdef COMPILER1
71 #include "c1/c1_Compilation.hpp"
72 #include "c1/c1_Compiler.hpp"
73 #endif
74 #ifdef COMPILER2
75 #include "opto/c2compiler.hpp"
76 #include "opto/compile.hpp"
77 #include "opto/node.hpp"
78 #endif
79
80 // Helper class for printing in CodeCache
81 class CodeBlob_sizes {
82 private:
83 int count;
84 int total_size;
85 int header_size;
86 int code_size;
87 int stub_size;
88 int relocation_size;
89 int scopes_oop_size;
90 int scopes_metadata_size;
91 int scopes_data_size;
92 int scopes_pcs_size;
93
94 public:
95 CodeBlob_sizes() {
96 count = 0;
97 total_size = 0;
98 header_size = 0;
99 code_size = 0;
100 stub_size = 0;
101 relocation_size = 0;
102 scopes_oop_size = 0;
103 scopes_metadata_size = 0;
104 scopes_data_size = 0;
105 scopes_pcs_size = 0;
106 }
107
108 int total() const { return total_size; }
109 bool is_empty() const { return count == 0; }
110
111 void print(const char* title) const {
112 if (is_empty()) {
113 tty->print_cr(" #%d %s = %dK",
114 count,
115 title,
116 total() / (int)K);
117 } else {
118 tty->print_cr(" #%d %s = %dK (hdr %dK %d%%, loc %dK %d%%, code %dK %d%%, stub %dK %d%%, [oops %dK %d%%, metadata %dK %d%%, data %dK %d%%, pcs %dK %d%%])",
119 count,
120 title,
121 total() / (int)K,
122 header_size / (int)K,
123 header_size * 100 / total_size,
124 relocation_size / (int)K,
125 relocation_size * 100 / total_size,
126 code_size / (int)K,
127 code_size * 100 / total_size,
128 stub_size / (int)K,
129 stub_size * 100 / total_size,
130 scopes_oop_size / (int)K,
131 scopes_oop_size * 100 / total_size,
132 scopes_metadata_size / (int)K,
133 scopes_metadata_size * 100 / total_size,
134 scopes_data_size / (int)K,
135 scopes_data_size * 100 / total_size,
136 scopes_pcs_size / (int)K,
137 scopes_pcs_size * 100 / total_size);
138 }
139 }
140
141 void add(CodeBlob* cb) {
142 count++;
143 total_size += cb->size();
144 header_size += cb->header_size();
145 relocation_size += cb->relocation_size();
146 if (cb->is_nmethod()) {
147 nmethod* nm = cb->as_nmethod_or_null();
148 code_size += nm->insts_size();
149 stub_size += nm->stub_size();
150
151 scopes_oop_size += nm->oops_size();
152 scopes_metadata_size += nm->metadata_size();
153 scopes_data_size += nm->scopes_data_size();
154 scopes_pcs_size += nm->scopes_pcs_size();
155 } else {
156 code_size += cb->code_size();
157 }
158 }
159 };
160
161 // Iterate over all CodeHeaps
162 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
163 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
164
165 // Iterate over all CodeBlobs (cb) on the given CodeHeap
166 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != nullptr; cb = next_blob(heap, cb))
167
168 address CodeCache::_low_bound = nullptr;
169 address CodeCache::_high_bound = nullptr;
170 volatile int CodeCache::_number_of_nmethods_with_dependencies = 0;
171 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = nullptr;
172
173 // Initialize arrays of CodeHeap subsets
174 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
175 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
176 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
177
178 static void check_min_size(const char* codeheap, size_t size, size_t required_size) {
179 if (size < required_size) {
180 log_debug(codecache)("Code heap (%s) size %zuK below required minimal size %zuK",
181 codeheap, size/K, required_size/K);
182 err_msg title("Not enough space in %s to run VM", codeheap);
183 err_msg message("%zuK < %zuK", size/K, required_size/K);
184 vm_exit_during_initialization(title, message);
185 }
186 }
187
188 struct CodeHeapInfo {
189 size_t size;
190 bool set;
191 bool enabled;
192 };
193
194 static void set_size_of_unset_code_heap(CodeHeapInfo* heap, size_t available_size, size_t used_size, size_t min_size) {
195 assert(!heap->set, "sanity");
196 heap->size = (available_size > (used_size + min_size)) ? (available_size - used_size) : min_size;
197 }
198
199 void CodeCache::initialize_heaps() {
200
201 CodeHeapInfo non_nmethod = {NonNMethodCodeHeapSize, FLAG_IS_CMDLINE(NonNMethodCodeHeapSize), true};
202 CodeHeapInfo profiled = {ProfiledCodeHeapSize, FLAG_IS_CMDLINE(ProfiledCodeHeapSize), true};
203 CodeHeapInfo non_profiled = {NonProfiledCodeHeapSize, FLAG_IS_CMDLINE(NonProfiledCodeHeapSize), true};
204
205 const bool cache_size_set = FLAG_IS_CMDLINE(ReservedCodeCacheSize);
206 const size_t ps = page_size(false, 8);
207 const size_t min_size = MAX2(os::vm_allocation_granularity(), ps);
208 const size_t min_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3); // Make sure we have enough space for VM internal code
209 size_t cache_size = align_up(ReservedCodeCacheSize, min_size);
210
211 // Prerequisites
212 if (!heap_available(CodeBlobType::MethodProfiled)) {
213 // For compatibility reasons, disabled tiered compilation overrides
214 // segment size even if it is set explicitly.
215 non_profiled.size += profiled.size;
216 // Profiled code heap is not available, forcibly set size to 0
217 profiled.size = 0;
218 profiled.set = true;
219 profiled.enabled = false;
220 }
221
222 assert(heap_available(CodeBlobType::MethodNonProfiled), "MethodNonProfiled heap is always available for segmented code heap");
223
224 size_t compiler_buffer_size = 0;
225 COMPILER1_PRESENT(compiler_buffer_size += CompilationPolicy::c1_count() * Compiler::code_buffer_size());
226 COMPILER2_PRESENT(compiler_buffer_size += CompilationPolicy::c2_count() * C2Compiler::initial_code_buffer_size());
227
228 if (!non_nmethod.set) {
229 non_nmethod.size += compiler_buffer_size;
230 }
231
232 if (!profiled.set && !non_profiled.set) {
233 non_profiled.size = profiled.size = (cache_size > non_nmethod.size + 2 * min_size) ?
234 (cache_size - non_nmethod.size) / 2 : min_size;
235 }
236
237 if (profiled.set && !non_profiled.set) {
238 set_size_of_unset_code_heap(&non_profiled, cache_size, non_nmethod.size + profiled.size, min_size);
239 }
240
241 if (!profiled.set && non_profiled.set) {
242 set_size_of_unset_code_heap(&profiled, cache_size, non_nmethod.size + non_profiled.size, min_size);
243 }
244
245 // Compatibility.
246 size_t non_nmethod_min_size = min_cache_size + compiler_buffer_size;
247 if (!non_nmethod.set && profiled.set && non_profiled.set) {
248 set_size_of_unset_code_heap(&non_nmethod, cache_size, profiled.size + non_profiled.size, non_nmethod_min_size);
249 }
250
251 size_t total = non_nmethod.size + profiled.size + non_profiled.size;
252 if (total != cache_size && !cache_size_set) {
253 log_info(codecache)("ReservedCodeCache size %zuK changed to total segments size NonNMethod "
254 "%zuK NonProfiled %zuK Profiled %zuK = %zuK",
255 cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K, total/K);
256 // Adjust ReservedCodeCacheSize as necessary because it was not set explicitly
257 cache_size = total;
258 }
259
260 log_debug(codecache)("Initializing code heaps ReservedCodeCache %zuK NonNMethod %zuK"
261 " NonProfiled %zuK Profiled %zuK",
262 cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K);
263
264 // Validation
265 // Check minimal required sizes
266 check_min_size("non-nmethod code heap", non_nmethod.size, non_nmethod_min_size);
267 if (profiled.enabled) {
268 check_min_size("profiled code heap", profiled.size, min_size);
269 }
270 if (non_profiled.enabled) { // non_profiled.enabled is always ON for segmented code heap, leave it checked for clarity
271 check_min_size("non-profiled code heap", non_profiled.size, min_size);
272 }
273 if (cache_size_set) {
274 check_min_size("reserved code cache", cache_size, min_cache_size);
275 }
276
277 // ReservedCodeCacheSize was set explicitly, so report an error and abort if it doesn't match the segment sizes
278 if (total != cache_size && cache_size_set) {
279 err_msg message("NonNMethodCodeHeapSize (%zuK)", non_nmethod.size/K);
280 if (profiled.enabled) {
281 message.append(" + ProfiledCodeHeapSize (%zuK)", profiled.size/K);
282 }
283 if (non_profiled.enabled) {
284 message.append(" + NonProfiledCodeHeapSize (%zuK)", non_profiled.size/K);
285 }
286 message.append(" = %zuK", total/K);
287 message.append((total > cache_size) ? " is greater than " : " is less than ");
288 message.append("ReservedCodeCacheSize (%zuK).", cache_size/K);
289
290 vm_exit_during_initialization("Invalid code heap sizes", message);
291 }
292
293 // Compatibility. Print warning if using large pages but not able to use the size given
294 if (UseLargePages) {
295 const size_t lg_ps = page_size(false, 1);
296 if (ps < lg_ps) {
297 log_warning(codecache)("Code cache size too small for " PROPERFMT " pages. "
298 "Reverting to smaller page size (" PROPERFMT ").",
299 PROPERFMTARGS(lg_ps), PROPERFMTARGS(ps));
300 }
301 }
302
303 // Note: if large page support is enabled, min_size is at least the large
304 // page size. This ensures that the code cache is covered by large pages.
305 non_nmethod.size = align_up(non_nmethod.size, min_size);
306 profiled.size = align_up(profiled.size, min_size);
307 non_profiled.size = align_up(non_profiled.size, min_size);
308 cache_size = non_nmethod.size + profiled.size + non_profiled.size;
309
310 FLAG_SET_ERGO(NonNMethodCodeHeapSize, non_nmethod.size);
311 FLAG_SET_ERGO(ProfiledCodeHeapSize, profiled.size);
312 FLAG_SET_ERGO(NonProfiledCodeHeapSize, non_profiled.size);
313 FLAG_SET_ERGO(ReservedCodeCacheSize, cache_size);
314
315 ReservedSpace rs = reserve_heap_memory(cache_size, ps);
316
317 // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory.
318 LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size());
319
320 size_t offset = 0;
321 if (profiled.enabled) {
322 ReservedSpace profiled_space = rs.partition(offset, profiled.size);
323 offset += profiled.size;
324 // Tier 2 and tier 3 (profiled) methods
325 add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
326 }
327
328 ReservedSpace non_method_space = rs.partition(offset, non_nmethod.size);
329 offset += non_nmethod.size;
330 // Non-nmethods (stubs, adapters, ...)
331 add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
332
333 if (non_profiled.enabled) {
334 ReservedSpace non_profiled_space = rs.partition(offset, non_profiled.size);
335 // Tier 1 and tier 4 (non-profiled) methods and native methods
336 add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
337 }
338 }
339
340 size_t CodeCache::page_size(bool aligned, size_t min_pages) {
341 return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) :
342 os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages);
343 }
344
345 ReservedSpace CodeCache::reserve_heap_memory(size_t size, size_t rs_ps) {
346 // Align and reserve space for code cache
347 const size_t rs_align = MAX2(rs_ps, os::vm_allocation_granularity());
348 const size_t rs_size = align_up(size, rs_align);
349
350 ReservedSpace rs = CodeMemoryReserver::reserve(rs_size, rs_align, rs_ps);
351 if (!rs.is_reserved()) {
352 vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (%zuK)",
353 rs_size/K));
354 }
355
356 // Initialize bounds
357 _low_bound = (address)rs.base();
358 _high_bound = _low_bound + rs.size();
359 return rs;
360 }
361
362 // Heaps available for allocation
363 bool CodeCache::heap_available(CodeBlobType code_blob_type) {
364 if (!SegmentedCodeCache) {
365 // No segmentation: use a single code heap
366 return (code_blob_type == CodeBlobType::All);
367 } else if (CompilerConfig::is_interpreter_only()) {
368 // Interpreter only: we don't need any method code heaps
369 return (code_blob_type == CodeBlobType::NonNMethod);
370 } else if (CompilerConfig::is_c1_profiling()) {
371 // Tiered compilation: use all code heaps
372 return (code_blob_type < CodeBlobType::All);
373 } else {
374 // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
375 return (code_blob_type == CodeBlobType::NonNMethod) ||
376 (code_blob_type == CodeBlobType::MethodNonProfiled);
377 }
378 }
379
380 const char* CodeCache::get_code_heap_flag_name(CodeBlobType code_blob_type) {
381 switch(code_blob_type) {
382 case CodeBlobType::NonNMethod:
383 return "NonNMethodCodeHeapSize";
384 break;
385 case CodeBlobType::MethodNonProfiled:
386 return "NonProfiledCodeHeapSize";
387 break;
388 case CodeBlobType::MethodProfiled:
389 return "ProfiledCodeHeapSize";
390 break;
391 default:
392 ShouldNotReachHere();
393 return nullptr;
394 }
395 }
396
397 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
398 if (lhs->code_blob_type() == rhs->code_blob_type()) {
399 return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
400 } else {
401 return static_cast<int>(lhs->code_blob_type()) - static_cast<int>(rhs->code_blob_type());
402 }
403 }
404
405 void CodeCache::add_heap(CodeHeap* heap) {
406 assert(!Universe::is_fully_initialized(), "late heap addition?");
407
408 _heaps->insert_sorted<code_heap_compare>(heap);
409
410 CodeBlobType type = heap->code_blob_type();
411 if (code_blob_type_accepts_nmethod(type)) {
412 _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
413 }
414 if (code_blob_type_accepts_allocable(type)) {
415 _allocable_heaps->insert_sorted<code_heap_compare>(heap);
416 }
417 }
418
419 void CodeCache::add_heap(ReservedSpace rs, const char* name, CodeBlobType code_blob_type) {
420 // Check if heap is needed
421 if (!heap_available(code_blob_type)) {
422 return;
423 }
424
425 // Create CodeHeap
426 CodeHeap* heap = new CodeHeap(name, code_blob_type);
427 add_heap(heap);
428
429 // Reserve Space
430 size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
431 size_initial = align_up(size_initial, rs.page_size());
432 if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
433 vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (%zuK)",
434 heap->name(), size_initial/K));
435 }
436
437 // Register the CodeHeap
438 MemoryService::add_code_heap_memory_pool(heap, name);
439 }
440
441 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
442 FOR_ALL_HEAPS(heap) {
443 if ((*heap)->contains(start)) {
444 return *heap;
445 }
446 }
447 return nullptr;
448 }
449
450 CodeHeap* CodeCache::get_code_heap(const void* cb) {
451 assert(cb != nullptr, "CodeBlob is null");
452 FOR_ALL_HEAPS(heap) {
453 if ((*heap)->contains(cb)) {
454 return *heap;
455 }
456 }
457 ShouldNotReachHere();
458 return nullptr;
459 }
460
461 CodeHeap* CodeCache::get_code_heap(CodeBlobType code_blob_type) {
462 FOR_ALL_HEAPS(heap) {
463 if ((*heap)->accepts(code_blob_type)) {
464 return *heap;
465 }
466 }
467 return nullptr;
468 }
469
470 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
471 assert_locked_or_safepoint(CodeCache_lock);
472 assert(heap != nullptr, "heap is null");
473 return (CodeBlob*)heap->first();
474 }
475
476 CodeBlob* CodeCache::first_blob(CodeBlobType code_blob_type) {
477 if (heap_available(code_blob_type)) {
478 return first_blob(get_code_heap(code_blob_type));
479 } else {
480 return nullptr;
481 }
482 }
483
484 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
485 assert_locked_or_safepoint(CodeCache_lock);
486 assert(heap != nullptr, "heap is null");
487 return (CodeBlob*)heap->next(cb);
488 }
489
490 /**
491 * Do not seize the CodeCache lock here--if the caller has not
492 * already done so, we are going to lose bigtime, since the code
493 * cache will contain a garbage CodeBlob until the caller can
494 * run the constructor for the CodeBlob subclass he is busy
495 * instantiating.
496 */
497 CodeBlob* CodeCache::allocate(uint size, CodeBlobType code_blob_type, bool handle_alloc_failure, CodeBlobType orig_code_blob_type) {
498 assert_locked_or_safepoint(CodeCache_lock);
499 assert(size > 0, "Code cache allocation request must be > 0");
500 if (size == 0) {
501 return nullptr;
502 }
503 CodeBlob* cb = nullptr;
504
505 // Get CodeHeap for the given CodeBlobType
506 CodeHeap* heap = get_code_heap(code_blob_type);
507 assert(heap != nullptr, "heap is null");
508
509 while (true) {
510 cb = (CodeBlob*)heap->allocate(size);
511 if (cb != nullptr) break;
512 if (!heap->expand_by(CodeCacheExpansionSize)) {
513 // Save original type for error reporting
514 if (orig_code_blob_type == CodeBlobType::All) {
515 orig_code_blob_type = code_blob_type;
516 }
517 // Expansion failed
518 if (SegmentedCodeCache) {
519 // Fallback solution: Try to store code in another code heap.
520 // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
521 CodeBlobType type = code_blob_type;
522 switch (type) {
523 case CodeBlobType::NonNMethod:
524 type = CodeBlobType::MethodNonProfiled;
525 break;
526 case CodeBlobType::MethodNonProfiled:
527 type = CodeBlobType::MethodProfiled;
528 break;
529 case CodeBlobType::MethodProfiled:
530 // Avoid loop if we already tried that code heap
531 if (type == orig_code_blob_type) {
532 type = CodeBlobType::MethodNonProfiled;
533 }
534 break;
535 default:
536 break;
537 }
538 if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
539 if (PrintCodeCacheExtension) {
540 tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
541 heap->name(), get_code_heap(type)->name());
542 }
543 return allocate(size, type, handle_alloc_failure, orig_code_blob_type);
544 }
545 }
546 if (handle_alloc_failure) {
547 MutexUnlocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
548 CompileBroker::handle_full_code_cache(orig_code_blob_type);
549 }
550 return nullptr;
551 } else {
552 OrderAccess::release(); // ensure heap expansion is visible to an asynchronous observer (e.g. CodeHeapPool::get_memory_usage())
553 }
554 if (PrintCodeCacheExtension) {
555 ResourceMark rm;
556 if (_nmethod_heaps->length() >= 1) {
557 tty->print("%s", heap->name());
558 } else {
559 tty->print("CodeCache");
560 }
561 tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (%zd bytes)",
562 (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
563 (address)heap->high() - (address)heap->low_boundary());
564 }
565 }
566 print_trace("allocation", cb, size);
567 return cb;
568 }
569
570 void CodeCache::free(CodeBlob* cb) {
571 assert_locked_or_safepoint(CodeCache_lock);
572 CodeHeap* heap = get_code_heap(cb);
573 print_trace("free", cb);
574 if (cb->is_nmethod()) {
575 heap->set_nmethod_count(heap->nmethod_count() - 1);
576 if (((nmethod *)cb)->has_dependencies()) {
577 AtomicAccess::dec(&_number_of_nmethods_with_dependencies);
578 }
579 }
580 if (cb->is_adapter_blob()) {
581 heap->set_adapter_count(heap->adapter_count() - 1);
582 }
583
584 cb->~CodeBlob();
585 // Get heap for given CodeBlob and deallocate
586 heap->deallocate(cb);
587
588 assert(heap->blob_count() >= 0, "sanity check");
589 }
590
591 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
592 assert_locked_or_safepoint(CodeCache_lock);
593 guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
594 print_trace("free_unused_tail", cb);
595
596 // We also have to account for the extra space (i.e. header) used by the CodeBlob
597 // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
598 used += CodeBlob::align_code_offset(cb->header_size());
599
600 // Get heap for given CodeBlob and deallocate its unused tail
601 get_code_heap(cb)->deallocate_tail(cb, used);
602 // Adjust the sizes of the CodeBlob
603 cb->adjust_size(used);
604 }
605
606 void CodeCache::commit(CodeBlob* cb) {
607 // this is called by nmethod::nmethod, which must already own CodeCache_lock
608 assert_locked_or_safepoint(CodeCache_lock);
609 CodeHeap* heap = get_code_heap(cb);
610 if (cb->is_nmethod()) {
611 heap->set_nmethod_count(heap->nmethod_count() + 1);
612 if (((nmethod *)cb)->has_dependencies()) {
613 AtomicAccess::inc(&_number_of_nmethods_with_dependencies);
614 }
615 }
616 if (cb->is_adapter_blob()) {
617 heap->set_adapter_count(heap->adapter_count() + 1);
618 }
619 }
620
621 bool CodeCache::contains(void *p) {
622 // S390 uses contains() in current_frame(), which is used before
623 // code cache initialization if NativeMemoryTracking=detail is set.
624 S390_ONLY(if (_heaps == nullptr) return false;)
625 // It should be ok to call contains without holding a lock.
626 FOR_ALL_HEAPS(heap) {
627 if ((*heap)->contains(p)) {
628 return true;
629 }
630 }
631 return false;
632 }
633
634 bool CodeCache::contains(nmethod *nm) {
635 return contains((void *)nm);
636 }
637
638 // This method is safe to call without holding the CodeCache_lock. It only depends on the _segmap to contain
639 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
640 CodeBlob* CodeCache::find_blob(void* start) {
641 // NMT can walk the stack before code cache is created
642 if (_heaps != nullptr) {
643 CodeHeap* heap = get_code_heap_containing(start);
644 if (heap != nullptr) {
645 return heap->find_blob(start);
646 }
647 }
648 return nullptr;
649 }
650
651 nmethod* CodeCache::find_nmethod(void* start) {
652 CodeBlob* cb = find_blob(start);
653 assert(cb == nullptr || cb->is_nmethod(), "did not find an nmethod");
654 return (nmethod*)cb;
655 }
656
657 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
658 assert_locked_or_safepoint(CodeCache_lock);
659 FOR_ALL_HEAPS(heap) {
660 FOR_ALL_BLOBS(cb, *heap) {
661 f(cb);
662 }
663 }
664 }
665
666 void CodeCache::nmethods_do(void f(nmethod* nm)) {
667 assert_locked_or_safepoint(CodeCache_lock);
668 NMethodIterator iter(NMethodIterator::all);
669 while(iter.next()) {
670 f(iter.method());
671 }
672 }
673
674 void CodeCache::nmethods_do(NMethodClosure* cl) {
675 assert_locked_or_safepoint(CodeCache_lock);
676 NMethodIterator iter(NMethodIterator::all);
677 while(iter.next()) {
678 cl->do_nmethod(iter.method());
679 }
680 }
681
682 void CodeCache::metadata_do(MetadataClosure* f) {
683 assert_locked_or_safepoint(CodeCache_lock);
684 NMethodIterator iter(NMethodIterator::all);
685 while(iter.next()) {
686 iter.method()->metadata_do(f);
687 }
688 }
689
690 // Calculate the number of GCs after which an nmethod is expected to have been
691 // used in order to not be classed as cold.
692 void CodeCache::update_cold_gc_count() {
693 if (!MethodFlushing || !UseCodeCacheFlushing || NmethodSweepActivity == 0) {
694 // No aging
695 return;
696 }
697
698 size_t last_used = _last_unloading_used;
699 double last_time = _last_unloading_time;
700
701 double time = os::elapsedTime();
702
703 size_t free = unallocated_capacity();
704 size_t max = max_capacity();
705 size_t used = max - free;
706 double gc_interval = time - last_time;
707
708 _unloading_threshold_gc_requested = false;
709 _last_unloading_time = time;
710 _last_unloading_used = used;
711
712 if (last_time == 0.0) {
713 // The first GC doesn't have enough information to make good
714 // decisions, so just keep everything afloat
715 log_info(codecache)("Unknown code cache pressure; don't age code");
716 return;
717 }
718
719 if (gc_interval <= 0.0 || last_used >= used) {
720 // Dodge corner cases where there is no pressure or negative pressure
721 // on the code cache. Just don't unload when this happens.
722 _cold_gc_count = INT_MAX;
723 log_info(codecache)("No code cache pressure; don't age code");
724 return;
725 }
726
727 double allocation_rate = (used - last_used) / gc_interval;
728
729 _unloading_allocation_rates.add(allocation_rate);
730 _unloading_gc_intervals.add(gc_interval);
731
732 size_t aggressive_sweeping_free_threshold = StartAggressiveSweepingAt / 100.0 * max;
733 if (free < aggressive_sweeping_free_threshold) {
734 // We are already in the red zone; be very aggressive to avoid disaster
735 // But not more aggressive than 2. This ensures that an nmethod must
736 // have been unused at least between two GCs to be considered cold still.
737 _cold_gc_count = 2;
738 log_info(codecache)("Code cache critically low; use aggressive aging");
739 return;
740 }
741
742 // The code cache has an expected time for cold nmethods to "time out"
743 // when they have not been used. The time for nmethods to time out
744 // depends on how long we expect we can keep allocating code until
745 // aggressive sweeping starts, based on sampled allocation rates.
746 double average_gc_interval = _unloading_gc_intervals.avg();
747 double average_allocation_rate = _unloading_allocation_rates.avg();
748 double time_to_aggressive = ((double)(free - aggressive_sweeping_free_threshold)) / average_allocation_rate;
749 double cold_timeout = time_to_aggressive / NmethodSweepActivity;
750
751 // Convert time to GC cycles, and crop at INT_MAX. The reason for
752 // that is that the _cold_gc_count will be added to an epoch number
753 // and that addition must not overflow, or we can crash the VM.
754 // But not more aggressive than 2. This ensures that an nmethod must
755 // have been unused at least between two GCs to be considered cold still.
756 _cold_gc_count = MAX2(MIN2((uint64_t)(cold_timeout / average_gc_interval), (uint64_t)INT_MAX), (uint64_t)2);
757
758 double used_ratio = double(used) / double(max);
759 double last_used_ratio = double(last_used) / double(max);
760 log_info(codecache)("Allocation rate: %.3f KB/s, time to aggressive unloading: %.3f s, cold timeout: %.3f s, cold gc count: " UINT64_FORMAT
761 ", used: %.3f MB (%.3f%%), last used: %.3f MB (%.3f%%), gc interval: %.3f s",
762 average_allocation_rate / K, time_to_aggressive, cold_timeout, _cold_gc_count,
763 double(used) / M, used_ratio * 100.0, double(last_used) / M, last_used_ratio * 100.0, average_gc_interval);
764
765 }
766
767 uint64_t CodeCache::cold_gc_count() {
768 return _cold_gc_count;
769 }
770
771 void CodeCache::gc_on_allocation() {
772 if (!is_init_completed()) {
773 // Let's not heuristically trigger GCs before the JVM is ready for GCs, no matter what
774 return;
775 }
776
777 size_t free = unallocated_capacity();
778 size_t max = max_capacity();
779 size_t used = max - free;
780 double free_ratio = double(free) / double(max);
781 if (free_ratio <= StartAggressiveSweepingAt / 100.0) {
782 // In case the GC is concurrent, we make sure only one thread requests the GC.
783 if (AtomicAccess::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) {
784 log_info(codecache)("Triggering aggressive GC due to having only %.3f%% free memory", free_ratio * 100.0);
785 Universe::heap()->collect(GCCause::_codecache_GC_aggressive);
786 }
787 return;
788 }
789
790 size_t last_used = _last_unloading_used;
791 if (last_used >= used) {
792 // No increase since last GC; no need to sweep yet
793 return;
794 }
795 size_t allocated_since_last = used - last_used;
796 double allocated_since_last_ratio = double(allocated_since_last) / double(max);
797 double threshold = SweeperThreshold / 100.0;
798 double used_ratio = double(used) / double(max);
799 double last_used_ratio = double(last_used) / double(max);
800 if (used_ratio > threshold) {
801 // After threshold is reached, scale it by free_ratio so that more aggressive
802 // GC is triggered as we approach code cache exhaustion
803 threshold *= free_ratio;
804 }
805 // If code cache has been allocated without any GC at all, let's make sure
806 // it is eventually invoked to avoid trouble.
807 if (allocated_since_last_ratio > threshold) {
808 // In case the GC is concurrent, we make sure only one thread requests the GC.
809 if (AtomicAccess::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) {
810 log_info(codecache)("Triggering threshold (%.3f%%) GC due to allocating %.3f%% since last unloading (%.3f%% used -> %.3f%% used)",
811 threshold * 100.0, allocated_since_last_ratio * 100.0, last_used_ratio * 100.0, used_ratio * 100.0);
812 Universe::heap()->collect(GCCause::_codecache_GC_threshold);
813 }
814 }
815 }
816
817 // We initialize the _gc_epoch to 2, because previous_completed_gc_marking_cycle
818 // subtracts the value by 2, and the type is unsigned. We don't want underflow.
819 //
820 // Odd values mean that marking is in progress, and even values mean that no
821 // marking is currently active.
822 uint64_t CodeCache::_gc_epoch = 2;
823
824 // How many GCs after an nmethod has not been used, do we consider it cold?
825 uint64_t CodeCache::_cold_gc_count = INT_MAX;
826
827 double CodeCache::_last_unloading_time = 0.0;
828 size_t CodeCache::_last_unloading_used = 0;
829 volatile bool CodeCache::_unloading_threshold_gc_requested = false;
830 TruncatedSeq CodeCache::_unloading_gc_intervals(10 /* samples */);
831 TruncatedSeq CodeCache::_unloading_allocation_rates(10 /* samples */);
832
833 uint64_t CodeCache::gc_epoch() {
834 return _gc_epoch;
835 }
836
837 bool CodeCache::is_gc_marking_cycle_active() {
838 // Odd means that marking is active
839 return (_gc_epoch % 2) == 1;
840 }
841
842 uint64_t CodeCache::previous_completed_gc_marking_cycle() {
843 if (is_gc_marking_cycle_active()) {
844 return _gc_epoch - 2;
845 } else {
846 return _gc_epoch - 1;
847 }
848 }
849
850 void CodeCache::on_gc_marking_cycle_start() {
851 assert(!is_gc_marking_cycle_active(), "Previous marking cycle never ended");
852 ++_gc_epoch;
853 }
854
855 // Once started the code cache marking cycle must only be finished after marking of
856 // the java heap is complete. Otherwise nmethods could appear to be not on stack even
857 // if they have frames in continuation StackChunks that were not yet visited.
858 void CodeCache::on_gc_marking_cycle_finish() {
859 assert(is_gc_marking_cycle_active(), "Marking cycle started before last one finished");
860 ++_gc_epoch;
861 update_cold_gc_count();
862 }
863
864 void CodeCache::arm_all_nmethods() {
865 BarrierSet::barrier_set()->barrier_set_nmethod()->arm_all_nmethods();
866 }
867
868 // Mark nmethods for unloading if they contain otherwise unreachable oops.
869 void CodeCache::do_unloading(bool unloading_occurred) {
870 assert_locked_or_safepoint(CodeCache_lock);
871 NMethodIterator iter(NMethodIterator::all);
872 while(iter.next()) {
873 iter.method()->do_unloading(unloading_occurred);
874 }
875 }
876
877 void CodeCache::verify_clean_inline_caches() {
878 #ifdef ASSERT
879 if (!VerifyInlineCaches) return;
880 NMethodIterator iter(NMethodIterator::not_unloading);
881 while(iter.next()) {
882 nmethod* nm = iter.method();
883 nm->verify_clean_inline_caches();
884 nm->verify();
885 }
886 #endif
887 }
888
889 // Defer freeing of concurrently cleaned ExceptionCache entries until
890 // after a global handshake operation.
891 void CodeCache::release_exception_cache(ExceptionCache* entry) {
892 if (SafepointSynchronize::is_at_safepoint()) {
893 delete entry;
894 } else {
895 for (;;) {
896 ExceptionCache* purge_list_head = AtomicAccess::load(&_exception_cache_purge_list);
897 entry->set_purge_list_next(purge_list_head);
898 if (AtomicAccess::cmpxchg(&_exception_cache_purge_list, purge_list_head, entry) == purge_list_head) {
899 break;
900 }
901 }
902 }
903 }
904
905 // Delete exception caches that have been concurrently unlinked,
906 // followed by a global handshake operation.
907 void CodeCache::purge_exception_caches() {
908 ExceptionCache* curr = _exception_cache_purge_list;
909 while (curr != nullptr) {
910 ExceptionCache* next = curr->purge_list_next();
911 delete curr;
912 curr = next;
913 }
914 _exception_cache_purge_list = nullptr;
915 }
916
917 // Restart compiler if possible and required..
918 void CodeCache::maybe_restart_compiler(size_t freed_memory) {
919
920 // Try to start the compiler again if we freed any memory
921 if (!CompileBroker::should_compile_new_jobs() && freed_memory != 0) {
922 CompileBroker::set_should_compile_new_jobs(CompileBroker::run_compilation);
923 log_info(codecache)("Restarting compiler");
924 EventJITRestart event;
925 event.set_freedMemory(freed_memory);
926 event.set_codeCacheMaxCapacity(CodeCache::max_capacity());
927 event.commit();
928 }
929 }
930
931 uint8_t CodeCache::_unloading_cycle = 1;
932
933 void CodeCache::increment_unloading_cycle() {
934 // 2-bit value (see IsUnloadingState in nmethod.cpp for details)
935 // 0 is reserved for new methods.
936 _unloading_cycle = (_unloading_cycle + 1) % 4;
937 if (_unloading_cycle == 0) {
938 _unloading_cycle = 1;
939 }
940 }
941
942 CodeCache::UnlinkingScope::UnlinkingScope(BoolObjectClosure* is_alive)
943 : _is_unloading_behaviour(is_alive)
944 {
945 _saved_behaviour = IsUnloadingBehaviour::current();
946 IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
947 increment_unloading_cycle();
948 DependencyContext::cleaning_start();
949 }
950
951 CodeCache::UnlinkingScope::~UnlinkingScope() {
952 IsUnloadingBehaviour::set_current(_saved_behaviour);
953 DependencyContext::cleaning_end();
954 }
955
956 void CodeCache::verify_oops() {
957 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
958 VerifyOopClosure voc;
959 NMethodIterator iter(NMethodIterator::not_unloading);
960 while(iter.next()) {
961 nmethod* nm = iter.method();
962 nm->oops_do(&voc);
963 nm->verify_oop_relocations();
964 }
965 }
966
967 int CodeCache::blob_count(CodeBlobType code_blob_type) {
968 CodeHeap* heap = get_code_heap(code_blob_type);
969 return (heap != nullptr) ? heap->blob_count() : 0;
970 }
971
972 int CodeCache::blob_count() {
973 int count = 0;
974 FOR_ALL_HEAPS(heap) {
975 count += (*heap)->blob_count();
976 }
977 return count;
978 }
979
980 int CodeCache::nmethod_count(CodeBlobType code_blob_type) {
981 CodeHeap* heap = get_code_heap(code_blob_type);
982 return (heap != nullptr) ? heap->nmethod_count() : 0;
983 }
984
985 int CodeCache::nmethod_count() {
986 int count = 0;
987 for (CodeHeap* heap : *_nmethod_heaps) {
988 count += heap->nmethod_count();
989 }
990 return count;
991 }
992
993 int CodeCache::adapter_count(CodeBlobType code_blob_type) {
994 CodeHeap* heap = get_code_heap(code_blob_type);
995 return (heap != nullptr) ? heap->adapter_count() : 0;
996 }
997
998 int CodeCache::adapter_count() {
999 int count = 0;
1000 FOR_ALL_HEAPS(heap) {
1001 count += (*heap)->adapter_count();
1002 }
1003 return count;
1004 }
1005
1006 address CodeCache::low_bound(CodeBlobType code_blob_type) {
1007 CodeHeap* heap = get_code_heap(code_blob_type);
1008 return (heap != nullptr) ? (address)heap->low_boundary() : nullptr;
1009 }
1010
1011 address CodeCache::high_bound(CodeBlobType code_blob_type) {
1012 CodeHeap* heap = get_code_heap(code_blob_type);
1013 return (heap != nullptr) ? (address)heap->high_boundary() : nullptr;
1014 }
1015
1016 size_t CodeCache::capacity() {
1017 size_t cap = 0;
1018 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1019 cap += (*heap)->capacity();
1020 }
1021 return cap;
1022 }
1023
1024 size_t CodeCache::unallocated_capacity(CodeBlobType code_blob_type) {
1025 CodeHeap* heap = get_code_heap(code_blob_type);
1026 return (heap != nullptr) ? heap->unallocated_capacity() : 0;
1027 }
1028
1029 size_t CodeCache::unallocated_capacity() {
1030 size_t unallocated_cap = 0;
1031 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1032 unallocated_cap += (*heap)->unallocated_capacity();
1033 }
1034 return unallocated_cap;
1035 }
1036
1037 size_t CodeCache::max_capacity() {
1038 size_t max_cap = 0;
1039 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1040 max_cap += (*heap)->max_capacity();
1041 }
1042 return max_cap;
1043 }
1044
1045 bool CodeCache::is_non_nmethod(address addr) {
1046 CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod);
1047 return blob->contains(addr);
1048 }
1049
1050 size_t CodeCache::max_distance_to_non_nmethod() {
1051 if (!SegmentedCodeCache) {
1052 return ReservedCodeCacheSize;
1053 } else {
1054 CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod);
1055 // the max distance is minimized by placing the NonNMethod segment
1056 // in between MethodProfiled and MethodNonProfiled segments
1057 size_t dist1 = (size_t)blob->high() - (size_t)_low_bound;
1058 size_t dist2 = (size_t)_high_bound - (size_t)blob->low();
1059 return dist1 > dist2 ? dist1 : dist2;
1060 }
1061 }
1062
1063 // Returns the reverse free ratio. E.g., if 25% (1/4) of the code cache
1064 // is free, reverse_free_ratio() returns 4.
1065 // Since code heap for each type of code blobs falls forward to the next
1066 // type of code heap, return the reverse free ratio for the entire
1067 // code cache.
1068 double CodeCache::reverse_free_ratio() {
1069 double unallocated = MAX2((double)unallocated_capacity(), 1.0); // Avoid division by 0;
1070 double max = (double)max_capacity();
1071 double result = max / unallocated;
1072 assert (max >= unallocated, "Must be");
1073 assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1074 return result;
1075 }
1076
1077 size_t CodeCache::bytes_allocated_in_freelists() {
1078 size_t allocated_bytes = 0;
1079 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1080 allocated_bytes += (*heap)->allocated_in_freelist();
1081 }
1082 return allocated_bytes;
1083 }
1084
1085 int CodeCache::allocated_segments() {
1086 int number_of_segments = 0;
1087 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1088 number_of_segments += (*heap)->allocated_segments();
1089 }
1090 return number_of_segments;
1091 }
1092
1093 size_t CodeCache::freelists_length() {
1094 size_t length = 0;
1095 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1096 length += (*heap)->freelist_length();
1097 }
1098 return length;
1099 }
1100
1101 void icache_init();
1102
1103 void CodeCache::initialize() {
1104 assert(CodeCacheSegmentSize >= (size_t)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1105 #ifdef COMPILER2
1106 assert(CodeCacheSegmentSize >= (size_t)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops");
1107 #endif
1108 assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants");
1109 // This was originally just a check of the alignment, causing failure, instead, round
1110 // the code cache to the page size. In particular, Solaris is moving to a larger
1111 // default page size.
1112 CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1113
1114 if (SegmentedCodeCache) {
1115 // Use multiple code heaps
1116 initialize_heaps();
1117 } else {
1118 // Use a single code heap
1119 FLAG_SET_ERGO(NonNMethodCodeHeapSize, (uintx)os::vm_page_size());
1120 FLAG_SET_ERGO(ProfiledCodeHeapSize, 0);
1121 FLAG_SET_ERGO(NonProfiledCodeHeapSize, 0);
1122
1123 // If InitialCodeCacheSize is equal to ReservedCodeCacheSize, then it's more likely
1124 // users want to use the largest available page.
1125 const size_t min_pages = (InitialCodeCacheSize == ReservedCodeCacheSize) ? 1 : 8;
1126 ReservedSpace rs = reserve_heap_memory(ReservedCodeCacheSize, page_size(false, min_pages));
1127 // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory.
1128 LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size());
1129 add_heap(rs, "CodeCache", CodeBlobType::All);
1130 }
1131
1132 // Initialize ICache flush mechanism
1133 // This service is needed for os::register_code_area
1134 icache_init();
1135
1136 // Give OS a chance to register generated code area.
1137 // This is used on Windows 64 bit platforms to register
1138 // Structured Exception Handlers for our generated code.
1139 os::register_code_area((char*)low_bound(), (char*)high_bound());
1140 }
1141
1142 void codeCache_init() {
1143 CodeCache::initialize();
1144 }
1145
1146 //------------------------------------------------------------------------------------------------
1147
1148 bool CodeCache::has_nmethods_with_dependencies() {
1149 return AtomicAccess::load_acquire(&_number_of_nmethods_with_dependencies) != 0;
1150 }
1151
1152 void CodeCache::clear_inline_caches() {
1153 assert_locked_or_safepoint(CodeCache_lock);
1154 NMethodIterator iter(NMethodIterator::not_unloading);
1155 while(iter.next()) {
1156 iter.method()->clear_inline_caches();
1157 }
1158 }
1159
1160 // Only used by whitebox API
1161 void CodeCache::cleanup_inline_caches_whitebox() {
1162 assert_locked_or_safepoint(CodeCache_lock);
1163 NMethodIterator iter(NMethodIterator::not_unloading);
1164 while(iter.next()) {
1165 iter.method()->cleanup_inline_caches_whitebox();
1166 }
1167 }
1168
1169 // Keeps track of time spent for checking dependencies
1170 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1171
1172 #ifndef PRODUCT
1173 // Check if any of live methods dependencies have been invalidated.
1174 // (this is expensive!)
1175 static void check_live_nmethods_dependencies(DepChange& changes) {
1176 // Checked dependencies are allocated into this ResourceMark
1177 ResourceMark rm;
1178
1179 // Turn off dependency tracing while actually testing dependencies.
1180 FlagSetting fs(Dependencies::_verify_in_progress, true);
1181
1182 typedef HashTable<DependencySignature, int, 11027,
1183 AnyObj::RESOURCE_AREA, mtInternal,
1184 &DependencySignature::hash,
1185 &DependencySignature::equals> DepTable;
1186
1187 DepTable* table = new DepTable();
1188
1189 // Iterate over live nmethods and check dependencies of all nmethods that are not
1190 // marked for deoptimization. A particular dependency is only checked once.
1191 NMethodIterator iter(NMethodIterator::not_unloading);
1192 while(iter.next()) {
1193 nmethod* nm = iter.method();
1194 // Only notify for live nmethods
1195 if (!nm->is_marked_for_deoptimization()) {
1196 for (Dependencies::DepStream deps(nm); deps.next(); ) {
1197 // Construct abstraction of a dependency.
1198 DependencySignature* current_sig = new DependencySignature(deps);
1199
1200 // Determine if dependency is already checked. table->put(...) returns
1201 // 'true' if the dependency is added (i.e., was not in the hashtable).
1202 if (table->put(*current_sig, 1)) {
1203 if (deps.check_dependency() != nullptr) {
1204 // Dependency checking failed. Print out information about the failed
1205 // dependency and finally fail with an assert. We can fail here, since
1206 // dependency checking is never done in a product build.
1207 tty->print_cr("Failed dependency:");
1208 changes.print();
1209 nm->print();
1210 nm->print_dependencies_on(tty);
1211 assert(false, "Should have been marked for deoptimization");
1212 }
1213 }
1214 }
1215 }
1216 }
1217 }
1218 #endif
1219
1220 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, KlassDepChange& changes) {
1221 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1222
1223 // search the hierarchy looking for nmethods which are affected by the loading of this class
1224
1225 // then search the interfaces this class implements looking for nmethods
1226 // which might be dependent of the fact that an interface only had one
1227 // implementor.
1228 // nmethod::check_all_dependencies works only correctly, if no safepoint
1229 // can happen
1230 NoSafepointVerifier nsv;
1231 for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1232 InstanceKlass* d = str.klass();
1233 d->mark_dependent_nmethods(deopt_scope, changes);
1234 }
1235
1236 #ifndef PRODUCT
1237 if (VerifyDependencies) {
1238 // Object pointers are used as unique identifiers for dependency arguments. This
1239 // is only possible if no safepoint, i.e., GC occurs during the verification code.
1240 dependentCheckTime.start();
1241 check_live_nmethods_dependencies(changes);
1242 dependentCheckTime.stop();
1243 }
1244 #endif
1245 }
1246
1247 #if INCLUDE_JVMTI
1248 // RedefineClasses support for saving nmethods that are dependent on "old" methods.
1249 // We don't really expect this table to grow very large. If it does, it can become a hashtable.
1250 static GrowableArray<nmethod*>* old_nmethod_table = nullptr;
1251
1252 static void add_to_old_table(nmethod* c) {
1253 if (old_nmethod_table == nullptr) {
1254 old_nmethod_table = new (mtCode) GrowableArray<nmethod*>(100, mtCode);
1255 }
1256 old_nmethod_table->push(c);
1257 }
1258
1259 static void reset_old_method_table() {
1260 if (old_nmethod_table != nullptr) {
1261 delete old_nmethod_table;
1262 old_nmethod_table = nullptr;
1263 }
1264 }
1265
1266 // Remove this method when flushed.
1267 void CodeCache::unregister_old_nmethod(nmethod* c) {
1268 assert_lock_strong(CodeCache_lock);
1269 if (old_nmethod_table != nullptr) {
1270 int index = old_nmethod_table->find(c);
1271 if (index != -1) {
1272 old_nmethod_table->delete_at(index);
1273 }
1274 }
1275 }
1276
1277 void CodeCache::old_nmethods_do(MetadataClosure* f) {
1278 // Walk old method table and mark those on stack.
1279 int length = 0;
1280 if (old_nmethod_table != nullptr) {
1281 length = old_nmethod_table->length();
1282 for (int i = 0; i < length; i++) {
1283 // Walk all methods saved on the last pass. Concurrent class unloading may
1284 // also be looking at this method's metadata, so don't delete it yet if
1285 // it is marked as unloaded.
1286 old_nmethod_table->at(i)->metadata_do(f);
1287 }
1288 }
1289 log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length);
1290 }
1291
1292 // Walk compiled methods and mark dependent methods for deoptimization.
1293 void CodeCache::mark_dependents_for_evol_deoptimization(DeoptimizationScope* deopt_scope) {
1294 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1295 // Each redefinition creates a new set of nmethods that have references to "old" Methods
1296 // So delete old method table and create a new one.
1297 reset_old_method_table();
1298
1299 NMethodIterator iter(NMethodIterator::all);
1300 while(iter.next()) {
1301 nmethod* nm = iter.method();
1302 // Walk all alive nmethods to check for old Methods.
1303 // This includes methods whose inline caches point to old methods, so
1304 // inline cache clearing is unnecessary.
1305 if (nm->has_evol_metadata()) {
1306 deopt_scope->mark(nm);
1307 add_to_old_table(nm);
1308 }
1309 }
1310 }
1311
1312 void CodeCache::mark_all_nmethods_for_evol_deoptimization(DeoptimizationScope* deopt_scope) {
1313 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1314 NMethodIterator iter(NMethodIterator::all);
1315 while(iter.next()) {
1316 nmethod* nm = iter.method();
1317 if (!nm->method()->is_method_handle_intrinsic()) {
1318 if (nm->can_be_deoptimized()) {
1319 deopt_scope->mark(nm);
1320 }
1321 if (nm->has_evol_metadata()) {
1322 add_to_old_table(nm);
1323 }
1324 }
1325 }
1326 }
1327
1328 #endif // INCLUDE_JVMTI
1329
1330 // Mark methods for deopt (if safe or possible).
1331 void CodeCache::mark_all_nmethods_for_deoptimization(DeoptimizationScope* deopt_scope) {
1332 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1333 NMethodIterator iter(NMethodIterator::not_unloading);
1334 while(iter.next()) {
1335 nmethod* nm = iter.method();
1336 if (!nm->is_native_method()) {
1337 deopt_scope->mark(nm);
1338 }
1339 }
1340 }
1341
1342 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, Method* dependee) {
1343 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1344
1345 NMethodIterator iter(NMethodIterator::not_unloading);
1346 while(iter.next()) {
1347 nmethod* nm = iter.method();
1348 if (nm->is_dependent_on_method(dependee)) {
1349 deopt_scope->mark(nm);
1350 }
1351 }
1352 }
1353
1354 void CodeCache::make_marked_nmethods_deoptimized() {
1355 RelaxedNMethodIterator iter(RelaxedNMethodIterator::not_unloading);
1356 while(iter.next()) {
1357 nmethod* nm = iter.method();
1358 if (nm->is_marked_for_deoptimization() && !nm->has_been_deoptimized() && nm->can_be_deoptimized()) {
1359 nm->make_not_entrant(nmethod::InvalidationReason::MARKED_FOR_DEOPTIMIZATION);
1360 nm->make_deoptimized();
1361 }
1362 }
1363 }
1364
1365 // Marks compiled methods dependent on dependee.
1366 void CodeCache::mark_dependents_on(DeoptimizationScope* deopt_scope, InstanceKlass* dependee) {
1367 assert_lock_strong(Compile_lock);
1368
1369 if (!has_nmethods_with_dependencies()) {
1370 return;
1371 }
1372
1373 if (dependee->is_linked()) {
1374 // Class initialization state change.
1375 KlassInitDepChange changes(dependee);
1376 mark_for_deoptimization(deopt_scope, changes);
1377 } else {
1378 // New class is loaded.
1379 NewKlassDepChange changes(dependee);
1380 mark_for_deoptimization(deopt_scope, changes);
1381 }
1382 }
1383
1384 // Marks compiled methods dependent on dependee
1385 void CodeCache::mark_dependents_on_method_for_breakpoint(const methodHandle& m_h) {
1386 assert(SafepointSynchronize::is_at_safepoint(), "invariant");
1387
1388 DeoptimizationScope deopt_scope;
1389 // Compute the dependent nmethods
1390 mark_for_deoptimization(&deopt_scope, m_h());
1391 deopt_scope.deoptimize_marked();
1392 }
1393
1394 void CodeCache::verify() {
1395 assert_locked_or_safepoint(CodeCache_lock);
1396 FOR_ALL_HEAPS(heap) {
1397 (*heap)->verify();
1398 FOR_ALL_BLOBS(cb, *heap) {
1399 cb->verify();
1400 }
1401 }
1402 }
1403
1404 // A CodeHeap is full. Print out warning and report event.
1405 PRAGMA_DIAG_PUSH
1406 PRAGMA_FORMAT_NONLITERAL_IGNORED
1407 void CodeCache::report_codemem_full(CodeBlobType code_blob_type, bool print) {
1408 // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1409 CodeHeap* heap = get_code_heap(code_blob_type);
1410 assert(heap != nullptr, "heap is null");
1411
1412 int full_count = heap->report_full();
1413
1414 if ((full_count == 1) || print) {
1415 // Not yet reported for this heap, report
1416 if (SegmentedCodeCache) {
1417 ResourceMark rm;
1418 stringStream msg1_stream, msg2_stream;
1419 msg1_stream.print("%s is full. Compiler has been disabled.",
1420 get_code_heap_name(code_blob_type));
1421 msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1422 get_code_heap_flag_name(code_blob_type));
1423 const char *msg1 = msg1_stream.as_string();
1424 const char *msg2 = msg2_stream.as_string();
1425
1426 log_warning(codecache)("%s", msg1);
1427 log_warning(codecache)("%s", msg2);
1428 warning("%s", msg1);
1429 warning("%s", msg2);
1430 } else {
1431 const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1432 const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1433
1434 log_warning(codecache)("%s", msg1);
1435 log_warning(codecache)("%s", msg2);
1436 warning("%s", msg1);
1437 warning("%s", msg2);
1438 }
1439 stringStream s;
1440 // Dump code cache into a buffer before locking the tty.
1441 {
1442 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1443 print_summary(&s);
1444 }
1445 {
1446 ttyLocker ttyl;
1447 tty->print("%s", s.freeze());
1448 }
1449
1450 if (full_count == 1) {
1451 if (PrintCodeHeapAnalytics) {
1452 CompileBroker::print_heapinfo(tty, "all", 4096); // details, may be a lot!
1453 }
1454 }
1455 }
1456
1457 EventCodeCacheFull event;
1458 if (event.should_commit()) {
1459 event.set_codeBlobType((u1)code_blob_type);
1460 event.set_startAddress((u8)heap->low_boundary());
1461 event.set_commitedTopAddress((u8)heap->high());
1462 event.set_reservedTopAddress((u8)heap->high_boundary());
1463 event.set_entryCount(heap->blob_count());
1464 event.set_methodCount(heap->nmethod_count());
1465 event.set_adaptorCount(heap->adapter_count());
1466 event.set_unallocatedCapacity(heap->unallocated_capacity());
1467 event.set_fullCount(heap->full_count());
1468 event.set_codeCacheMaxCapacity(CodeCache::max_capacity());
1469 event.commit();
1470 }
1471 }
1472 PRAGMA_DIAG_POP
1473
1474 void CodeCache::print_memory_overhead() {
1475 size_t wasted_bytes = 0;
1476 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1477 CodeHeap* curr_heap = *heap;
1478 for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != nullptr; cb = (CodeBlob*)curr_heap->next(cb)) {
1479 HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1480 wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1481 }
1482 }
1483 // Print bytes that are allocated in the freelist
1484 ttyLocker ttl;
1485 tty->print_cr("Number of elements in freelist: %zd", freelists_length());
1486 tty->print_cr("Allocated in freelist: %zdkB", bytes_allocated_in_freelists()/K);
1487 tty->print_cr("Unused bytes in CodeBlobs: %zdkB", (wasted_bytes/K));
1488 tty->print_cr("Segment map size: %zdkB", allocated_segments()/K); // 1 byte per segment
1489 }
1490
1491 //------------------------------------------------------------------------------------------------
1492 // Non-product version
1493
1494 #ifndef PRODUCT
1495
1496 void CodeCache::print_trace(const char* event, CodeBlob* cb, uint size) {
1497 if (PrintCodeCache2) { // Need to add a new flag
1498 ResourceMark rm;
1499 if (size == 0) {
1500 int s = cb->size();
1501 assert(s >= 0, "CodeBlob size is negative: %d", s);
1502 size = (uint) s;
1503 }
1504 tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1505 }
1506 }
1507
1508 void CodeCache::print_internals() {
1509 int nmethodCount = 0;
1510 int runtimeStubCount = 0;
1511 int upcallStubCount = 0;
1512 int adapterCount = 0;
1513 int mhAdapterCount = 0;
1514 int vtableBlobCount = 0;
1515 int deoptimizationStubCount = 0;
1516 int uncommonTrapStubCount = 0;
1517 int exceptionStubCount = 0;
1518 int safepointStubCount = 0;
1519 int bufferBlobCount = 0;
1520 int total = 0;
1521 int nmethodNotEntrant = 0;
1522 int nmethodJava = 0;
1523 int nmethodNative = 0;
1524 int max_nm_size = 0;
1525 ResourceMark rm;
1526
1527 int i = 0;
1528 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1529 if ((_nmethod_heaps->length() >= 1) && Verbose) {
1530 tty->print_cr("-- %s --", (*heap)->name());
1531 }
1532 FOR_ALL_BLOBS(cb, *heap) {
1533 total++;
1534 if (cb->is_nmethod()) {
1535 nmethod* nm = (nmethod*)cb;
1536
1537 if (Verbose && nm->method() != nullptr) {
1538 ResourceMark rm;
1539 char *method_name = nm->method()->name_and_sig_as_C_string();
1540 tty->print("%s", method_name);
1541 if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1542 }
1543
1544 nmethodCount++;
1545
1546 if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1547 if(nm->method() != nullptr && nm->is_native_method()) { nmethodNative++; }
1548
1549 if(nm->method() != nullptr && nm->is_java_method()) {
1550 nmethodJava++;
1551 max_nm_size = MAX2(max_nm_size, nm->size());
1552 }
1553 } else if (cb->is_runtime_stub()) {
1554 runtimeStubCount++;
1555 } else if (cb->is_upcall_stub()) {
1556 upcallStubCount++;
1557 } else if (cb->is_deoptimization_stub()) {
1558 deoptimizationStubCount++;
1559 } else if (cb->is_uncommon_trap_stub()) {
1560 uncommonTrapStubCount++;
1561 } else if (cb->is_exception_stub()) {
1562 exceptionStubCount++;
1563 } else if (cb->is_safepoint_stub()) {
1564 safepointStubCount++;
1565 } else if (cb->is_adapter_blob()) {
1566 adapterCount++;
1567 } else if (cb->is_method_handles_adapter_blob()) {
1568 mhAdapterCount++;
1569 } else if (cb->is_vtable_blob()) {
1570 vtableBlobCount++;
1571 } else if (cb->is_buffer_blob()) {
1572 bufferBlobCount++;
1573 }
1574 }
1575 }
1576
1577 int bucketSize = 512;
1578 int bucketLimit = max_nm_size / bucketSize + 1;
1579 int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1580 memset(buckets, 0, sizeof(int) * bucketLimit);
1581
1582 NMethodIterator iter(NMethodIterator::all);
1583 while(iter.next()) {
1584 nmethod* nm = iter.method();
1585 if(nm->method() != nullptr && nm->is_java_method()) {
1586 buckets[nm->size() / bucketSize]++;
1587 }
1588 }
1589
1590 tty->print_cr("Code Cache Entries (total of %d)",total);
1591 tty->print_cr("-------------------------------------------------");
1592 tty->print_cr("nmethods: %d",nmethodCount);
1593 tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1594 tty->print_cr("\tjava: %d",nmethodJava);
1595 tty->print_cr("\tnative: %d",nmethodNative);
1596 tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1597 tty->print_cr("upcall_stubs: %d",upcallStubCount);
1598 tty->print_cr("adapters: %d",adapterCount);
1599 tty->print_cr("MH adapters: %d",mhAdapterCount);
1600 tty->print_cr("VTables: %d",vtableBlobCount);
1601 tty->print_cr("buffer blobs: %d",bufferBlobCount);
1602 tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1603 tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1604 tty->print_cr("exception_stubs: %d",exceptionStubCount);
1605 tty->print_cr("safepoint_stubs: %d",safepointStubCount);
1606 tty->print_cr("\nnmethod size distribution");
1607 tty->print_cr("-------------------------------------------------");
1608
1609 for(int i=0; i<bucketLimit; i++) {
1610 if(buckets[i] != 0) {
1611 tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1612 tty->fill_to(40);
1613 tty->print_cr("%d",buckets[i]);
1614 }
1615 }
1616
1617 FREE_C_HEAP_ARRAY(int, buckets);
1618 print_memory_overhead();
1619 }
1620
1621 #endif // !PRODUCT
1622
1623 void CodeCache::print() {
1624 print_summary(tty);
1625
1626 #ifndef PRODUCT
1627 if (!Verbose) return;
1628
1629 CodeBlob_sizes live[CompLevel_full_optimization + 1];
1630 CodeBlob_sizes runtimeStub;
1631 CodeBlob_sizes upcallStub;
1632 CodeBlob_sizes uncommonTrapStub;
1633 CodeBlob_sizes deoptimizationStub;
1634 CodeBlob_sizes exceptionStub;
1635 CodeBlob_sizes safepointStub;
1636 CodeBlob_sizes adapter;
1637 CodeBlob_sizes mhAdapter;
1638 CodeBlob_sizes vtableBlob;
1639 CodeBlob_sizes bufferBlob;
1640 CodeBlob_sizes other;
1641
1642 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1643 FOR_ALL_BLOBS(cb, *heap) {
1644 if (cb->is_nmethod()) {
1645 const int level = cb->as_nmethod()->comp_level();
1646 assert(0 <= level && level <= CompLevel_full_optimization, "Invalid compilation level");
1647 live[level].add(cb);
1648 } else if (cb->is_runtime_stub()) {
1649 runtimeStub.add(cb);
1650 } else if (cb->is_upcall_stub()) {
1651 upcallStub.add(cb);
1652 } else if (cb->is_deoptimization_stub()) {
1653 deoptimizationStub.add(cb);
1654 } else if (cb->is_uncommon_trap_stub()) {
1655 uncommonTrapStub.add(cb);
1656 } else if (cb->is_exception_stub()) {
1657 exceptionStub.add(cb);
1658 } else if (cb->is_safepoint_stub()) {
1659 safepointStub.add(cb);
1660 } else if (cb->is_adapter_blob()) {
1661 adapter.add(cb);
1662 } else if (cb->is_method_handles_adapter_blob()) {
1663 mhAdapter.add(cb);
1664 } else if (cb->is_vtable_blob()) {
1665 vtableBlob.add(cb);
1666 } else if (cb->is_buffer_blob()) {
1667 bufferBlob.add(cb);
1668 } else {
1669 other.add(cb);
1670 }
1671 }
1672 }
1673
1674 tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1675
1676 tty->print_cr("nmethod blobs per compilation level:");
1677 for (int i = 0; i <= CompLevel_full_optimization; i++) {
1678 const char *level_name;
1679 switch (i) {
1680 case CompLevel_none: level_name = "none"; break;
1681 case CompLevel_simple: level_name = "simple"; break;
1682 case CompLevel_limited_profile: level_name = "limited profile"; break;
1683 case CompLevel_full_profile: level_name = "full profile"; break;
1684 case CompLevel_full_optimization: level_name = "full optimization"; break;
1685 default: assert(false, "invalid compilation level");
1686 }
1687 tty->print_cr("%s:", level_name);
1688 live[i].print("live");
1689 }
1690
1691 struct {
1692 const char* name;
1693 const CodeBlob_sizes* sizes;
1694 } non_nmethod_blobs[] = {
1695 { "runtime", &runtimeStub },
1696 { "upcall", &upcallStub },
1697 { "uncommon trap", &uncommonTrapStub },
1698 { "deoptimization", &deoptimizationStub },
1699 { "exception", &exceptionStub },
1700 { "safepoint", &safepointStub },
1701 { "adapter", &adapter },
1702 { "mh_adapter", &mhAdapter },
1703 { "vtable", &vtableBlob },
1704 { "buffer blob", &bufferBlob },
1705 { "other", &other },
1706 };
1707 tty->print_cr("Non-nmethod blobs:");
1708 for (auto& blob: non_nmethod_blobs) {
1709 blob.sizes->print(blob.name);
1710 }
1711
1712 if (WizardMode) {
1713 // print the oop_map usage
1714 int code_size = 0;
1715 int number_of_blobs = 0;
1716 int number_of_oop_maps = 0;
1717 int map_size = 0;
1718 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1719 FOR_ALL_BLOBS(cb, *heap) {
1720 number_of_blobs++;
1721 code_size += cb->code_size();
1722 ImmutableOopMapSet* set = cb->oop_maps();
1723 if (set != nullptr) {
1724 number_of_oop_maps += set->count();
1725 map_size += set->nr_of_bytes();
1726 }
1727 }
1728 }
1729 tty->print_cr("OopMaps");
1730 tty->print_cr(" #blobs = %d", number_of_blobs);
1731 tty->print_cr(" code size = %d", code_size);
1732 tty->print_cr(" #oop_maps = %d", number_of_oop_maps);
1733 tty->print_cr(" map size = %d", map_size);
1734 }
1735
1736 #endif // !PRODUCT
1737 }
1738
1739 void CodeCache::print_summary(outputStream* st, bool detailed) {
1740 int full_count = 0;
1741 julong total_used = 0;
1742 julong total_max_used = 0;
1743 julong total_free = 0;
1744 julong total_size = 0;
1745 FOR_ALL_HEAPS(heap_iterator) {
1746 CodeHeap* heap = (*heap_iterator);
1747 size_t total = (heap->high_boundary() - heap->low_boundary());
1748 if (_heaps->length() >= 1) {
1749 st->print("%s:", heap->name());
1750 } else {
1751 st->print("CodeCache:");
1752 }
1753 size_t size = total/K;
1754 size_t used = (total - heap->unallocated_capacity())/K;
1755 size_t max_used = heap->max_allocated_capacity()/K;
1756 size_t free = heap->unallocated_capacity()/K;
1757 total_size += size;
1758 total_used += used;
1759 total_max_used += max_used;
1760 total_free += free;
1761 st->print_cr(" size=%zuKb used=%zu"
1762 "Kb max_used=%zuKb free=%zuKb",
1763 size, used, max_used, free);
1764
1765 if (detailed) {
1766 st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1767 p2i(heap->low_boundary()),
1768 p2i(heap->high()),
1769 p2i(heap->high_boundary()));
1770
1771 full_count += get_codemem_full_count(heap->code_blob_type());
1772 }
1773 }
1774
1775 if (detailed) {
1776 if (SegmentedCodeCache) {
1777 st->print("CodeCache:");
1778 st->print_cr(" size=" JULONG_FORMAT "Kb, used=" JULONG_FORMAT
1779 "Kb, max_used=" JULONG_FORMAT "Kb, free=" JULONG_FORMAT "Kb",
1780 total_size, total_used, total_max_used, total_free);
1781 }
1782 st->print_cr(" total_blobs=" UINT32_FORMAT ", nmethods=" UINT32_FORMAT
1783 ", adapters=" UINT32_FORMAT ", full_count=" UINT32_FORMAT,
1784 blob_count(), nmethod_count(), adapter_count(), full_count);
1785 st->print_cr("Compilation: %s, stopped_count=%d, restarted_count=%d",
1786 CompileBroker::should_compile_new_jobs() ?
1787 "enabled" : Arguments::mode() == Arguments::_int ?
1788 "disabled (interpreter mode)" :
1789 "disabled (not enough contiguous free space left)",
1790 CompileBroker::get_total_compiler_stopped_count(),
1791 CompileBroker::get_total_compiler_restarted_count());
1792 }
1793 }
1794
1795 void CodeCache::print_codelist(outputStream* st) {
1796 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1797
1798 NMethodIterator iter(NMethodIterator::not_unloading);
1799 while (iter.next()) {
1800 nmethod* nm = iter.method();
1801 ResourceMark rm;
1802 char* method_name = nm->method()->name_and_sig_as_C_string();
1803 const char* jvmci_name = nullptr;
1804 #if INCLUDE_JVMCI
1805 jvmci_name = nm->jvmci_name();
1806 #endif
1807 st->print_cr("%d %d %d %s%s%s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1808 nm->compile_id(), nm->comp_level(), nm->get_state(),
1809 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "",
1810 (intptr_t)nm->header_begin(), (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1811 }
1812 }
1813
1814 void CodeCache::print_layout(outputStream* st) {
1815 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1816 ResourceMark rm;
1817 print_summary(st, true);
1818 }
1819
1820 void CodeCache::log_state(outputStream* st) {
1821 st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1822 " adapters='" UINT32_FORMAT "' free_code_cache='%zu'",
1823 blob_count(), nmethod_count(), adapter_count(),
1824 unallocated_capacity());
1825 }
1826
1827 #ifdef LINUX
1828 void CodeCache::write_perf_map(const char* filename, outputStream* st) {
1829 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1830 char fname[JVM_MAXPATHLEN];
1831 if (filename == nullptr) {
1832 // Invocation outside of jcmd requires pid substitution.
1833 if (!Arguments::copy_expand_pid(DEFAULT_PERFMAP_FILENAME,
1834 strlen(DEFAULT_PERFMAP_FILENAME),
1835 fname, JVM_MAXPATHLEN)) {
1836 st->print_cr("Warning: Not writing perf map as pid substitution failed.");
1837 return;
1838 }
1839 filename = fname;
1840 }
1841 fileStream fs(filename, "w");
1842 if (!fs.is_open()) {
1843 st->print_cr("Warning: Failed to create %s for perf map", filename);
1844 return;
1845 }
1846
1847 AllCodeBlobsIterator iter(AllCodeBlobsIterator::not_unloading);
1848 while (iter.next()) {
1849 CodeBlob *cb = iter.method();
1850 ResourceMark rm;
1851 const char* method_name = nullptr;
1852 const char* jvmci_name = nullptr;
1853 if (cb->is_nmethod()) {
1854 nmethod* nm = cb->as_nmethod();
1855 method_name = nm->method()->external_name();
1856 #if INCLUDE_JVMCI
1857 jvmci_name = nm->jvmci_name();
1858 #endif
1859 } else {
1860 method_name = cb->name();
1861 }
1862 fs.print_cr(INTPTR_FORMAT " " INTPTR_FORMAT " %s%s%s",
1863 (intptr_t)cb->code_begin(), (intptr_t)cb->code_size(),
1864 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "");
1865 }
1866 }
1867 #endif // LINUX
1868
1869 //---< BEGIN >--- CodeHeap State Analytics.
1870
1871 void CodeCache::aggregate(outputStream *out, size_t granularity) {
1872 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1873 CodeHeapState::aggregate(out, (*heap), granularity);
1874 }
1875 }
1876
1877 void CodeCache::discard(outputStream *out) {
1878 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1879 CodeHeapState::discard(out, (*heap));
1880 }
1881 }
1882
1883 void CodeCache::print_usedSpace(outputStream *out) {
1884 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1885 CodeHeapState::print_usedSpace(out, (*heap));
1886 }
1887 }
1888
1889 void CodeCache::print_freeSpace(outputStream *out) {
1890 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1891 CodeHeapState::print_freeSpace(out, (*heap));
1892 }
1893 }
1894
1895 void CodeCache::print_count(outputStream *out) {
1896 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1897 CodeHeapState::print_count(out, (*heap));
1898 }
1899 }
1900
1901 void CodeCache::print_space(outputStream *out) {
1902 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1903 CodeHeapState::print_space(out, (*heap));
1904 }
1905 }
1906
1907 void CodeCache::print_age(outputStream *out) {
1908 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1909 CodeHeapState::print_age(out, (*heap));
1910 }
1911 }
1912
1913 void CodeCache::print_names(outputStream *out) {
1914 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1915 CodeHeapState::print_names(out, (*heap));
1916 }
1917 }
1918 //---< END >--- CodeHeap State Analytics.