1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/cdsAccess.hpp" 27 #include "code/codeBlob.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/codeHeapState.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/dependencies.hpp" 32 #include "code/dependencyContext.hpp" 33 #include "code/nmethod.hpp" 34 #include "code/pcDesc.hpp" 35 #include "code/SCCache.hpp" 36 #include "compiler/compilationPolicy.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/compilerDefinitions.inline.hpp" 39 #include "compiler/oopMap.hpp" 40 #include "gc/shared/barrierSetNMethod.hpp" 41 #include "gc/shared/classUnloadingContext.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm_io.h" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/allocation.inline.hpp" 48 #include "memory/iterator.hpp" 49 #include "memory/memoryReserver.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayOop.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "oops/verifyOopClosure.hpp" 56 #include "runtime/arguments.hpp" 57 #include "runtime/atomic.hpp" 58 #include "runtime/deoptimization.hpp" 59 #include "runtime/globals_extension.hpp" 60 #include "runtime/handles.inline.hpp" 61 #include "runtime/icache.hpp" 62 #include "runtime/init.hpp" 63 #include "runtime/java.hpp" 64 #include "runtime/mutexLocker.hpp" 65 #include "runtime/os.inline.hpp" 66 #include "runtime/safepointVerifiers.hpp" 67 #include "runtime/vmThread.hpp" 68 #include "sanitizers/leak.hpp" 69 #include "services/memoryService.hpp" 70 #include "utilities/align.hpp" 71 #include "utilities/vmError.hpp" 72 #include "utilities/xmlstream.hpp" 73 #ifdef COMPILER1 74 #include "c1/c1_Compilation.hpp" 75 #include "c1/c1_Compiler.hpp" 76 #endif 77 #ifdef COMPILER2 78 #include "opto/c2compiler.hpp" 79 #include "opto/compile.hpp" 80 #include "opto/node.hpp" 81 #endif 82 83 // Helper class for printing in CodeCache 84 class CodeBlob_sizes { 85 private: 86 int count; 87 int total_size; 88 int header_size; 89 int code_size; 90 int stub_size; 91 int relocation_size; 92 int scopes_oop_size; 93 int scopes_metadata_size; 94 int scopes_data_size; 95 int scopes_pcs_size; 96 97 public: 98 CodeBlob_sizes() { 99 count = 0; 100 total_size = 0; 101 header_size = 0; 102 code_size = 0; 103 stub_size = 0; 104 relocation_size = 0; 105 scopes_oop_size = 0; 106 scopes_metadata_size = 0; 107 scopes_data_size = 0; 108 scopes_pcs_size = 0; 109 } 110 111 int total() const { return total_size; } 112 bool is_empty() const { return count == 0; } 113 114 void print(const char* title) const { 115 if (is_empty()) { 116 tty->print_cr(" #%d %s = %dK", 117 count, 118 title, 119 total() / (int)K); 120 } else { 121 tty->print_cr(" #%d %s = %dK (hdr %dK %d%%, loc %dK %d%%, code %dK %d%%, stub %dK %d%%, [oops %dK %d%%, metadata %dK %d%%, data %dK %d%%, pcs %dK %d%%])", 122 count, 123 title, 124 total() / (int)K, 125 header_size / (int)K, 126 header_size * 100 / total_size, 127 relocation_size / (int)K, 128 relocation_size * 100 / total_size, 129 code_size / (int)K, 130 code_size * 100 / total_size, 131 stub_size / (int)K, 132 stub_size * 100 / total_size, 133 scopes_oop_size / (int)K, 134 scopes_oop_size * 100 / total_size, 135 scopes_metadata_size / (int)K, 136 scopes_metadata_size * 100 / total_size, 137 scopes_data_size / (int)K, 138 scopes_data_size * 100 / total_size, 139 scopes_pcs_size / (int)K, 140 scopes_pcs_size * 100 / total_size); 141 } 142 } 143 144 void add(CodeBlob* cb) { 145 count++; 146 total_size += cb->size(); 147 header_size += cb->header_size(); 148 relocation_size += cb->relocation_size(); 149 if (cb->is_nmethod()) { 150 nmethod* nm = cb->as_nmethod_or_null(); 151 code_size += nm->insts_size(); 152 stub_size += nm->stub_size(); 153 154 scopes_oop_size += nm->oops_size(); 155 scopes_metadata_size += nm->metadata_size(); 156 scopes_data_size += nm->scopes_data_size(); 157 scopes_pcs_size += nm->scopes_pcs_size(); 158 } else { 159 code_size += cb->code_size(); 160 } 161 } 162 }; 163 164 // Iterate over all CodeHeaps 165 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap) 166 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap) 167 168 // Iterate over all CodeBlobs (cb) on the given CodeHeap 169 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != nullptr; cb = next_blob(heap, cb)) 170 171 address CodeCache::_low_bound = nullptr; 172 address CodeCache::_high_bound = nullptr; 173 volatile int CodeCache::_number_of_nmethods_with_dependencies = 0; 174 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = nullptr; 175 176 static ReservedSpace _cds_code_space; 177 178 // Initialize arrays of CodeHeap subsets 179 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode); 180 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode); 181 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode); 182 183 static void check_min_size(const char* codeheap, size_t size, size_t required_size) { 184 if (size < required_size) { 185 log_debug(codecache)("Code heap (%s) size " SIZE_FORMAT "K below required minimal size " SIZE_FORMAT "K", 186 codeheap, size/K, required_size/K); 187 err_msg title("Not enough space in %s to run VM", codeheap); 188 err_msg message(SIZE_FORMAT "K < " SIZE_FORMAT "K", size/K, required_size/K); 189 vm_exit_during_initialization(title, message); 190 } 191 } 192 193 struct CodeHeapInfo { 194 size_t size; 195 bool set; 196 bool enabled; 197 }; 198 199 static void set_size_of_unset_code_heap(CodeHeapInfo* heap, size_t available_size, size_t used_size, size_t min_size) { 200 assert(!heap->set, "sanity"); 201 heap->size = (available_size > (used_size + min_size)) ? (available_size - used_size) : min_size; 202 } 203 204 void CodeCache::initialize_heaps() { 205 CodeHeapInfo non_nmethod = {NonNMethodCodeHeapSize, FLAG_IS_CMDLINE(NonNMethodCodeHeapSize), true}; 206 CodeHeapInfo profiled = {ProfiledCodeHeapSize, FLAG_IS_CMDLINE(ProfiledCodeHeapSize), true}; 207 CodeHeapInfo non_profiled = {NonProfiledCodeHeapSize, FLAG_IS_CMDLINE(NonProfiledCodeHeapSize), true}; 208 209 const bool cache_size_set = FLAG_IS_CMDLINE(ReservedCodeCacheSize); 210 const size_t ps = page_size(false, 8); 211 const size_t min_size = MAX2(os::vm_allocation_granularity(), ps); 212 const size_t min_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3); // Make sure we have enough space for VM internal code 213 size_t cache_size = align_up(ReservedCodeCacheSize, min_size); 214 215 // Prerequisites 216 if (!heap_available(CodeBlobType::MethodProfiled)) { 217 // For compatibility reasons, disabled tiered compilation overrides 218 // segment size even if it is set explicitly. 219 non_profiled.size += profiled.size; 220 // Profiled code heap is not available, forcibly set size to 0 221 profiled.size = 0; 222 profiled.set = true; 223 profiled.enabled = false; 224 } 225 226 assert(heap_available(CodeBlobType::MethodNonProfiled), "MethodNonProfiled heap is always available for segmented code heap"); 227 228 size_t compiler_buffer_size = 0; 229 COMPILER1_PRESENT(compiler_buffer_size += CompilationPolicy::c1_count() * Compiler::code_buffer_size()); 230 COMPILER2_PRESENT(compiler_buffer_size += CompilationPolicy::c2_count() * C2Compiler::initial_code_buffer_size()); 231 COMPILER2_PRESENT(compiler_buffer_size += (CompilationPolicy::c2_count() + CompilationPolicy::c3_count()) * C2Compiler::initial_code_buffer_size()); 232 233 if (!non_nmethod.set) { 234 non_nmethod.size += compiler_buffer_size; 235 // Further down, just before FLAG_SET_ERGO(), all segment sizes are 236 // aligned down to the next lower multiple of min_size. For large page 237 // sizes, this may result in (non_nmethod.size == 0) which is not acceptable. 238 // Therefore, force non_nmethod.size to at least min_size. 239 non_nmethod.size = MAX2(non_nmethod.size, min_size); 240 } 241 242 if (!profiled.set && !non_profiled.set) { 243 non_profiled.size = profiled.size = (cache_size > non_nmethod.size + 2 * min_size) ? 244 (cache_size - non_nmethod.size) / 2 : min_size; 245 } 246 247 if (profiled.set && !non_profiled.set) { 248 set_size_of_unset_code_heap(&non_profiled, cache_size, non_nmethod.size + profiled.size, min_size); 249 } 250 251 if (!profiled.set && non_profiled.set) { 252 set_size_of_unset_code_heap(&profiled, cache_size, non_nmethod.size + non_profiled.size, min_size); 253 } 254 255 // Compatibility. 256 size_t non_nmethod_min_size = min_cache_size + compiler_buffer_size; 257 if (!non_nmethod.set && profiled.set && non_profiled.set) { 258 set_size_of_unset_code_heap(&non_nmethod, cache_size, profiled.size + non_profiled.size, non_nmethod_min_size); 259 } 260 261 size_t total = non_nmethod.size + profiled.size + non_profiled.size; 262 if (total != cache_size && !cache_size_set) { 263 log_info(codecache)("ReservedCodeCache size " SIZE_FORMAT "K changed to total segments size NonNMethod " 264 SIZE_FORMAT "K NonProfiled " SIZE_FORMAT "K Profiled " SIZE_FORMAT "K = " SIZE_FORMAT "K", 265 cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K, total/K); 266 // Adjust ReservedCodeCacheSize as necessary because it was not set explicitly 267 cache_size = total; 268 } 269 270 log_debug(codecache)("Initializing code heaps ReservedCodeCache " SIZE_FORMAT "K NonNMethod " SIZE_FORMAT "K" 271 " NonProfiled " SIZE_FORMAT "K Profiled " SIZE_FORMAT "K", 272 cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K); 273 274 // Validation 275 // Check minimal required sizes 276 check_min_size("non-nmethod code heap", non_nmethod.size, non_nmethod_min_size); 277 if (profiled.enabled) { 278 check_min_size("profiled code heap", profiled.size, min_size); 279 } 280 if (non_profiled.enabled) { // non_profiled.enabled is always ON for segmented code heap, leave it checked for clarity 281 check_min_size("non-profiled code heap", non_profiled.size, min_size); 282 } 283 if (cache_size_set) { 284 check_min_size("reserved code cache", cache_size, min_cache_size); 285 } 286 287 // ReservedCodeCacheSize was set explicitly, so report an error and abort if it doesn't match the segment sizes 288 if (total != cache_size && cache_size_set) { 289 err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K)", non_nmethod.size/K); 290 if (profiled.enabled) { 291 message.append(" + ProfiledCodeHeapSize (" SIZE_FORMAT "K)", profiled.size/K); 292 } 293 if (non_profiled.enabled) { 294 message.append(" + NonProfiledCodeHeapSize (" SIZE_FORMAT "K)", non_profiled.size/K); 295 } 296 message.append(" = " SIZE_FORMAT "K", total/K); 297 message.append((total > cache_size) ? " is greater than " : " is less than "); 298 message.append("ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K); 299 300 vm_exit_during_initialization("Invalid code heap sizes", message); 301 } 302 303 // Compatibility. Print warning if using large pages but not able to use the size given 304 if (UseLargePages) { 305 const size_t lg_ps = page_size(false, 1); 306 if (ps < lg_ps) { 307 log_warning(codecache)("Code cache size too small for " PROPERFMT " pages. " 308 "Reverting to smaller page size (" PROPERFMT ").", 309 PROPERFMTARGS(lg_ps), PROPERFMTARGS(ps)); 310 } 311 } 312 313 // Note: if large page support is enabled, min_size is at least the large 314 // page size. This ensures that the code cache is covered by large pages. 315 non_profiled.size += non_nmethod.size & alignment_mask(min_size); 316 non_profiled.size += profiled.size & alignment_mask(min_size); 317 non_nmethod.size = align_down(non_nmethod.size, min_size); 318 profiled.size = align_down(profiled.size, min_size); 319 non_profiled.size = align_down(non_profiled.size, min_size); 320 321 FLAG_SET_ERGO(NonNMethodCodeHeapSize, non_nmethod.size); 322 FLAG_SET_ERGO(ProfiledCodeHeapSize, profiled.size); 323 FLAG_SET_ERGO(NonProfiledCodeHeapSize, non_profiled.size); 324 FLAG_SET_ERGO(ReservedCodeCacheSize, cache_size); 325 326 const size_t cds_code_size = align_up(CDSAccess::get_cached_code_size(), min_size); 327 cache_size += cds_code_size; 328 329 ReservedSpace rs = reserve_heap_memory(cache_size, ps); 330 331 // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory. 332 LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size()); 333 334 size_t offset = 0; 335 if (cds_code_size > 0) { 336 // FIXME: use CodeHeapInfo for this hack ... 337 _cds_code_space = rs.partition(offset, cds_code_size); 338 offset += cds_code_size; 339 } 340 341 if (profiled.enabled) { 342 ReservedSpace profiled_space = rs.partition(offset, profiled.size); 343 offset += profiled.size; 344 // Tier 2 and tier 3 (profiled) methods 345 add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled); 346 } 347 348 ReservedSpace non_method_space = rs.partition(offset, non_nmethod.size); 349 offset += non_nmethod.size; 350 // Non-nmethods (stubs, adapters, ...) 351 add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod); 352 353 if (non_profiled.enabled) { 354 ReservedSpace non_profiled_space = rs.partition(offset, non_profiled.size); 355 // Tier 1 and tier 4 (non-profiled) methods and native methods 356 add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled); 357 } 358 } 359 360 void* CodeCache::map_cached_code() { 361 if (_cds_code_space.size() > 0 && CDSAccess::map_cached_code(_cds_code_space)) { 362 return _cds_code_space.base(); 363 } else { 364 return nullptr; 365 } 366 } 367 368 size_t CodeCache::page_size(bool aligned, size_t min_pages) { 369 return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) : 370 os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages); 371 } 372 373 ReservedSpace CodeCache::reserve_heap_memory(size_t size, size_t rs_ps) { 374 // Align and reserve space for code cache 375 const size_t rs_align = MAX2(rs_ps, os::vm_allocation_granularity()); 376 const size_t rs_size = align_up(size, rs_align); 377 378 ReservedSpace rs = CodeMemoryReserver::reserve(rs_size, rs_align, rs_ps); 379 if (!rs.is_reserved()) { 380 vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)", 381 rs_size/K)); 382 } 383 384 // Initialize bounds 385 _low_bound = (address)rs.base(); 386 _high_bound = _low_bound + rs.size(); 387 return rs; 388 } 389 390 // Heaps available for allocation 391 bool CodeCache::heap_available(CodeBlobType code_blob_type) { 392 if (!SegmentedCodeCache) { 393 // No segmentation: use a single code heap 394 return (code_blob_type == CodeBlobType::All); 395 } else if (CompilerConfig::is_interpreter_only()) { 396 // Interpreter only: we don't need any method code heaps 397 return (code_blob_type == CodeBlobType::NonNMethod); 398 } else if (CompilerConfig::is_c1_profiling()) { 399 // Tiered compilation: use all code heaps 400 return (code_blob_type < CodeBlobType::All); 401 } else { 402 // No TieredCompilation: we only need the non-nmethod and non-profiled code heap 403 return (code_blob_type == CodeBlobType::NonNMethod) || 404 (code_blob_type == CodeBlobType::MethodNonProfiled); 405 } 406 } 407 408 const char* CodeCache::get_code_heap_flag_name(CodeBlobType code_blob_type) { 409 switch(code_blob_type) { 410 case CodeBlobType::NonNMethod: 411 return "NonNMethodCodeHeapSize"; 412 break; 413 case CodeBlobType::MethodNonProfiled: 414 return "NonProfiledCodeHeapSize"; 415 break; 416 case CodeBlobType::MethodProfiled: 417 return "ProfiledCodeHeapSize"; 418 break; 419 default: 420 ShouldNotReachHere(); 421 return nullptr; 422 } 423 } 424 425 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) { 426 if (lhs->code_blob_type() == rhs->code_blob_type()) { 427 return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0); 428 } else { 429 return static_cast<int>(lhs->code_blob_type()) - static_cast<int>(rhs->code_blob_type()); 430 } 431 } 432 433 void CodeCache::add_heap(CodeHeap* heap) { 434 assert(!Universe::is_fully_initialized(), "late heap addition?"); 435 436 _heaps->insert_sorted<code_heap_compare>(heap); 437 438 CodeBlobType type = heap->code_blob_type(); 439 if (code_blob_type_accepts_nmethod(type)) { 440 _nmethod_heaps->insert_sorted<code_heap_compare>(heap); 441 } 442 if (code_blob_type_accepts_allocable(type)) { 443 _allocable_heaps->insert_sorted<code_heap_compare>(heap); 444 } 445 } 446 447 void CodeCache::add_heap(ReservedSpace rs, const char* name, CodeBlobType code_blob_type) { 448 // Check if heap is needed 449 if (!heap_available(code_blob_type)) { 450 return; 451 } 452 453 // Create CodeHeap 454 CodeHeap* heap = new CodeHeap(name, code_blob_type); 455 add_heap(heap); 456 457 // Reserve Space 458 size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size()); 459 size_initial = align_up(size_initial, rs.page_size()); 460 if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) { 461 vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)", 462 heap->name(), size_initial/K)); 463 } 464 465 // Register the CodeHeap 466 MemoryService::add_code_heap_memory_pool(heap, name); 467 } 468 469 CodeHeap* CodeCache::get_code_heap_containing(void* start) { 470 FOR_ALL_HEAPS(heap) { 471 if ((*heap)->contains(start)) { 472 return *heap; 473 } 474 } 475 return nullptr; 476 } 477 478 CodeHeap* CodeCache::get_code_heap(const void* cb) { 479 assert(cb != nullptr, "CodeBlob is null"); 480 FOR_ALL_HEAPS(heap) { 481 if ((*heap)->contains(cb)) { 482 return *heap; 483 } 484 } 485 ShouldNotReachHere(); 486 return nullptr; 487 } 488 489 CodeHeap* CodeCache::get_code_heap(CodeBlobType code_blob_type) { 490 FOR_ALL_HEAPS(heap) { 491 if ((*heap)->accepts(code_blob_type)) { 492 return *heap; 493 } 494 } 495 return nullptr; 496 } 497 498 CodeBlob* CodeCache::first_blob(CodeHeap* heap) { 499 assert_locked_or_safepoint(CodeCache_lock); 500 assert(heap != nullptr, "heap is null"); 501 return (CodeBlob*)heap->first(); 502 } 503 504 CodeBlob* CodeCache::first_blob(CodeBlobType code_blob_type) { 505 if (heap_available(code_blob_type)) { 506 return first_blob(get_code_heap(code_blob_type)); 507 } else { 508 return nullptr; 509 } 510 } 511 512 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) { 513 assert_locked_or_safepoint(CodeCache_lock); 514 assert(heap != nullptr, "heap is null"); 515 return (CodeBlob*)heap->next(cb); 516 } 517 518 /** 519 * Do not seize the CodeCache lock here--if the caller has not 520 * already done so, we are going to lose bigtime, since the code 521 * cache will contain a garbage CodeBlob until the caller can 522 * run the constructor for the CodeBlob subclass he is busy 523 * instantiating. 524 */ 525 CodeBlob* CodeCache::allocate(uint size, CodeBlobType code_blob_type, bool handle_alloc_failure, CodeBlobType orig_code_blob_type) { 526 assert_locked_or_safepoint(CodeCache_lock); 527 assert(size > 0, "Code cache allocation request must be > 0"); 528 if (size == 0) { 529 return nullptr; 530 } 531 CodeBlob* cb = nullptr; 532 533 // Get CodeHeap for the given CodeBlobType 534 CodeHeap* heap = get_code_heap(code_blob_type); 535 assert(heap != nullptr, "heap is null"); 536 537 while (true) { 538 cb = (CodeBlob*)heap->allocate(size); 539 if (cb != nullptr) break; 540 if (!heap->expand_by(CodeCacheExpansionSize)) { 541 // Save original type for error reporting 542 if (orig_code_blob_type == CodeBlobType::All) { 543 orig_code_blob_type = code_blob_type; 544 } 545 // Expansion failed 546 if (SegmentedCodeCache) { 547 // Fallback solution: Try to store code in another code heap. 548 // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled) 549 CodeBlobType type = code_blob_type; 550 switch (type) { 551 case CodeBlobType::NonNMethod: 552 type = CodeBlobType::MethodNonProfiled; 553 break; 554 case CodeBlobType::MethodNonProfiled: 555 type = CodeBlobType::MethodProfiled; 556 break; 557 case CodeBlobType::MethodProfiled: 558 // Avoid loop if we already tried that code heap 559 if (type == orig_code_blob_type) { 560 type = CodeBlobType::MethodNonProfiled; 561 } 562 break; 563 default: 564 break; 565 } 566 if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) { 567 if (PrintCodeCacheExtension) { 568 tty->print_cr("Extension of %s failed. Trying to allocate in %s.", 569 heap->name(), get_code_heap(type)->name()); 570 } 571 return allocate(size, type, handle_alloc_failure, orig_code_blob_type); 572 } 573 } 574 if (handle_alloc_failure) { 575 MutexUnlocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 576 CompileBroker::handle_full_code_cache(orig_code_blob_type); 577 } 578 return nullptr; 579 } else { 580 OrderAccess::release(); // ensure heap expansion is visible to an asynchronous observer (e.g. CodeHeapPool::get_memory_usage()) 581 } 582 if (PrintCodeCacheExtension) { 583 ResourceMark rm; 584 if (_nmethod_heaps->length() >= 1) { 585 tty->print("%s", heap->name()); 586 } else { 587 tty->print("CodeCache"); 588 } 589 tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (%zd bytes)", 590 (intptr_t)heap->low_boundary(), (intptr_t)heap->high(), 591 (address)heap->high() - (address)heap->low_boundary()); 592 } 593 } 594 print_trace("allocation", cb, size); 595 return cb; 596 } 597 598 void CodeCache::free(CodeBlob* cb) { 599 assert_locked_or_safepoint(CodeCache_lock); 600 CodeHeap* heap = get_code_heap(cb); 601 print_trace("free", cb); 602 if (cb->is_nmethod()) { 603 heap->set_nmethod_count(heap->nmethod_count() - 1); 604 if (((nmethod *)cb)->has_dependencies()) { 605 Atomic::dec(&_number_of_nmethods_with_dependencies); 606 } 607 } 608 if (cb->is_adapter_blob()) { 609 heap->set_adapter_count(heap->adapter_count() - 1); 610 } 611 612 cb->~CodeBlob(); 613 // Get heap for given CodeBlob and deallocate 614 heap->deallocate(cb); 615 616 assert(heap->blob_count() >= 0, "sanity check"); 617 } 618 619 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) { 620 assert_locked_or_safepoint(CodeCache_lock); 621 guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!"); 622 print_trace("free_unused_tail", cb); 623 624 // We also have to account for the extra space (i.e. header) used by the CodeBlob 625 // which provides the memory (see BufferBlob::create() in codeBlob.cpp). 626 used += CodeBlob::align_code_offset(cb->header_size()); 627 628 // Get heap for given CodeBlob and deallocate its unused tail 629 get_code_heap(cb)->deallocate_tail(cb, used); 630 // Adjust the sizes of the CodeBlob 631 cb->adjust_size(used); 632 } 633 634 void CodeCache::commit(CodeBlob* cb) { 635 // this is called by nmethod::nmethod, which must already own CodeCache_lock 636 assert_locked_or_safepoint(CodeCache_lock); 637 CodeHeap* heap = get_code_heap(cb); 638 if (cb->is_nmethod()) { 639 heap->set_nmethod_count(heap->nmethod_count() + 1); 640 if (((nmethod *)cb)->has_dependencies()) { 641 Atomic::inc(&_number_of_nmethods_with_dependencies); 642 } 643 } 644 if (cb->is_adapter_blob()) { 645 heap->set_adapter_count(heap->adapter_count() + 1); 646 } 647 } 648 649 bool CodeCache::contains(void *p) { 650 // S390 uses contains() in current_frame(), which is used before 651 // code cache initialization if NativeMemoryTracking=detail is set. 652 S390_ONLY(if (_heaps == nullptr) return false;) 653 // It should be ok to call contains without holding a lock. 654 FOR_ALL_HEAPS(heap) { 655 if ((*heap)->contains(p)) { 656 return true; 657 } 658 } 659 return false; 660 } 661 662 bool CodeCache::contains(nmethod *nm) { 663 return contains((void *)nm); 664 } 665 666 // This method is safe to call without holding the CodeCache_lock. It only depends on the _segmap to contain 667 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled. 668 CodeBlob* CodeCache::find_blob(void* start) { 669 // NMT can walk the stack before code cache is created 670 if (_heaps != nullptr) { 671 CodeHeap* heap = get_code_heap_containing(start); 672 if (heap != nullptr) { 673 return heap->find_blob(start); 674 } 675 } 676 return nullptr; 677 } 678 679 nmethod* CodeCache::find_nmethod(void* start) { 680 CodeBlob* cb = find_blob(start); 681 assert(cb == nullptr || cb->is_nmethod(), "did not find an nmethod"); 682 return (nmethod*)cb; 683 } 684 685 void CodeCache::blobs_do(void f(CodeBlob* nm)) { 686 assert_locked_or_safepoint(CodeCache_lock); 687 FOR_ALL_HEAPS(heap) { 688 FOR_ALL_BLOBS(cb, *heap) { 689 f(cb); 690 } 691 } 692 } 693 694 void CodeCache::nmethods_do(void f(nmethod* nm)) { 695 assert_locked_or_safepoint(CodeCache_lock); 696 NMethodIterator iter(NMethodIterator::all); 697 while(iter.next()) { 698 f(iter.method()); 699 } 700 } 701 702 void CodeCache::nmethods_do(NMethodClosure* cl) { 703 assert_locked_or_safepoint(CodeCache_lock); 704 NMethodIterator iter(NMethodIterator::all); 705 while(iter.next()) { 706 cl->do_nmethod(iter.method()); 707 } 708 } 709 710 void CodeCache::metadata_do(MetadataClosure* f) { 711 assert_locked_or_safepoint(CodeCache_lock); 712 NMethodIterator iter(NMethodIterator::all); 713 while(iter.next()) { 714 iter.method()->metadata_do(f); 715 } 716 } 717 718 // Calculate the number of GCs after which an nmethod is expected to have been 719 // used in order to not be classed as cold. 720 void CodeCache::update_cold_gc_count() { 721 if (!MethodFlushing || !UseCodeCacheFlushing || NmethodSweepActivity == 0) { 722 // No aging 723 return; 724 } 725 726 size_t last_used = _last_unloading_used; 727 double last_time = _last_unloading_time; 728 729 double time = os::elapsedTime(); 730 731 size_t free = unallocated_capacity(); 732 size_t max = max_capacity(); 733 size_t used = max - free; 734 double gc_interval = time - last_time; 735 736 _unloading_threshold_gc_requested = false; 737 _last_unloading_time = time; 738 _last_unloading_used = used; 739 740 if (last_time == 0.0) { 741 // The first GC doesn't have enough information to make good 742 // decisions, so just keep everything afloat 743 log_info(codecache)("Unknown code cache pressure; don't age code"); 744 return; 745 } 746 747 if (gc_interval <= 0.0 || last_used >= used) { 748 // Dodge corner cases where there is no pressure or negative pressure 749 // on the code cache. Just don't unload when this happens. 750 _cold_gc_count = INT_MAX; 751 log_info(codecache)("No code cache pressure; don't age code"); 752 return; 753 } 754 755 double allocation_rate = (used - last_used) / gc_interval; 756 757 _unloading_allocation_rates.add(allocation_rate); 758 _unloading_gc_intervals.add(gc_interval); 759 760 size_t aggressive_sweeping_free_threshold = StartAggressiveSweepingAt / 100.0 * max; 761 if (free < aggressive_sweeping_free_threshold) { 762 // We are already in the red zone; be very aggressive to avoid disaster 763 // But not more aggressive than 2. This ensures that an nmethod must 764 // have been unused at least between two GCs to be considered cold still. 765 _cold_gc_count = 2; 766 log_info(codecache)("Code cache critically low; use aggressive aging"); 767 return; 768 } 769 770 // The code cache has an expected time for cold nmethods to "time out" 771 // when they have not been used. The time for nmethods to time out 772 // depends on how long we expect we can keep allocating code until 773 // aggressive sweeping starts, based on sampled allocation rates. 774 double average_gc_interval = _unloading_gc_intervals.avg(); 775 double average_allocation_rate = _unloading_allocation_rates.avg(); 776 double time_to_aggressive = ((double)(free - aggressive_sweeping_free_threshold)) / average_allocation_rate; 777 double cold_timeout = time_to_aggressive / NmethodSweepActivity; 778 779 // Convert time to GC cycles, and crop at INT_MAX. The reason for 780 // that is that the _cold_gc_count will be added to an epoch number 781 // and that addition must not overflow, or we can crash the VM. 782 // But not more aggressive than 2. This ensures that an nmethod must 783 // have been unused at least between two GCs to be considered cold still. 784 _cold_gc_count = MAX2(MIN2((uint64_t)(cold_timeout / average_gc_interval), (uint64_t)INT_MAX), (uint64_t)2); 785 786 double used_ratio = double(used) / double(max); 787 double last_used_ratio = double(last_used) / double(max); 788 log_info(codecache)("Allocation rate: %.3f KB/s, time to aggressive unloading: %.3f s, cold timeout: %.3f s, cold gc count: " UINT64_FORMAT 789 ", used: %.3f MB (%.3f%%), last used: %.3f MB (%.3f%%), gc interval: %.3f s", 790 average_allocation_rate / K, time_to_aggressive, cold_timeout, _cold_gc_count, 791 double(used) / M, used_ratio * 100.0, double(last_used) / M, last_used_ratio * 100.0, average_gc_interval); 792 793 } 794 795 uint64_t CodeCache::cold_gc_count() { 796 return _cold_gc_count; 797 } 798 799 void CodeCache::gc_on_allocation() { 800 if (!is_init_completed()) { 801 // Let's not heuristically trigger GCs before the JVM is ready for GCs, no matter what 802 return; 803 } 804 805 size_t free = unallocated_capacity(); 806 size_t max = max_capacity(); 807 size_t used = max - free; 808 double free_ratio = double(free) / double(max); 809 if (free_ratio <= StartAggressiveSweepingAt / 100.0) { 810 // In case the GC is concurrent, we make sure only one thread requests the GC. 811 if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) { 812 log_info(codecache)("Triggering aggressive GC due to having only %.3f%% free memory", free_ratio * 100.0); 813 Universe::heap()->collect(GCCause::_codecache_GC_aggressive); 814 } 815 return; 816 } 817 818 size_t last_used = _last_unloading_used; 819 if (last_used >= used) { 820 // No increase since last GC; no need to sweep yet 821 return; 822 } 823 size_t allocated_since_last = used - last_used; 824 double allocated_since_last_ratio = double(allocated_since_last) / double(max); 825 double threshold = SweeperThreshold / 100.0; 826 double used_ratio = double(used) / double(max); 827 double last_used_ratio = double(last_used) / double(max); 828 if (used_ratio > threshold) { 829 // After threshold is reached, scale it by free_ratio so that more aggressive 830 // GC is triggered as we approach code cache exhaustion 831 threshold *= free_ratio; 832 } 833 // If code cache has been allocated without any GC at all, let's make sure 834 // it is eventually invoked to avoid trouble. 835 if (allocated_since_last_ratio > threshold) { 836 // In case the GC is concurrent, we make sure only one thread requests the GC. 837 if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) { 838 log_info(codecache)("Triggering threshold (%.3f%%) GC due to allocating %.3f%% since last unloading (%.3f%% used -> %.3f%% used)", 839 threshold * 100.0, allocated_since_last_ratio * 100.0, last_used_ratio * 100.0, used_ratio * 100.0); 840 Universe::heap()->collect(GCCause::_codecache_GC_threshold); 841 } 842 } 843 } 844 845 // We initialize the _gc_epoch to 2, because previous_completed_gc_marking_cycle 846 // subtracts the value by 2, and the type is unsigned. We don't want underflow. 847 // 848 // Odd values mean that marking is in progress, and even values mean that no 849 // marking is currently active. 850 uint64_t CodeCache::_gc_epoch = 2; 851 852 // How many GCs after an nmethod has not been used, do we consider it cold? 853 uint64_t CodeCache::_cold_gc_count = INT_MAX; 854 855 double CodeCache::_last_unloading_time = 0.0; 856 size_t CodeCache::_last_unloading_used = 0; 857 volatile bool CodeCache::_unloading_threshold_gc_requested = false; 858 TruncatedSeq CodeCache::_unloading_gc_intervals(10 /* samples */); 859 TruncatedSeq CodeCache::_unloading_allocation_rates(10 /* samples */); 860 861 uint64_t CodeCache::gc_epoch() { 862 return _gc_epoch; 863 } 864 865 bool CodeCache::is_gc_marking_cycle_active() { 866 // Odd means that marking is active 867 return (_gc_epoch % 2) == 1; 868 } 869 870 uint64_t CodeCache::previous_completed_gc_marking_cycle() { 871 if (is_gc_marking_cycle_active()) { 872 return _gc_epoch - 2; 873 } else { 874 return _gc_epoch - 1; 875 } 876 } 877 878 void CodeCache::on_gc_marking_cycle_start() { 879 assert(!is_gc_marking_cycle_active(), "Previous marking cycle never ended"); 880 ++_gc_epoch; 881 } 882 883 // Once started the code cache marking cycle must only be finished after marking of 884 // the java heap is complete. Otherwise nmethods could appear to be not on stack even 885 // if they have frames in continuation StackChunks that were not yet visited. 886 void CodeCache::on_gc_marking_cycle_finish() { 887 assert(is_gc_marking_cycle_active(), "Marking cycle started before last one finished"); 888 ++_gc_epoch; 889 update_cold_gc_count(); 890 } 891 892 void CodeCache::arm_all_nmethods() { 893 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 894 if (bs_nm != nullptr) { 895 bs_nm->arm_all_nmethods(); 896 } 897 } 898 899 // Mark nmethods for unloading if they contain otherwise unreachable oops. 900 void CodeCache::do_unloading(bool unloading_occurred) { 901 assert_locked_or_safepoint(CodeCache_lock); 902 NMethodIterator iter(NMethodIterator::all); 903 while(iter.next()) { 904 iter.method()->do_unloading(unloading_occurred); 905 } 906 } 907 908 void CodeCache::verify_clean_inline_caches() { 909 #ifdef ASSERT 910 NMethodIterator iter(NMethodIterator::not_unloading); 911 while(iter.next()) { 912 nmethod* nm = iter.method(); 913 nm->verify_clean_inline_caches(); 914 nm->verify(); 915 } 916 #endif 917 } 918 919 // Defer freeing of concurrently cleaned ExceptionCache entries until 920 // after a global handshake operation. 921 void CodeCache::release_exception_cache(ExceptionCache* entry) { 922 if (SafepointSynchronize::is_at_safepoint()) { 923 delete entry; 924 } else { 925 for (;;) { 926 ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list); 927 entry->set_purge_list_next(purge_list_head); 928 if (Atomic::cmpxchg(&_exception_cache_purge_list, purge_list_head, entry) == purge_list_head) { 929 break; 930 } 931 } 932 } 933 } 934 935 // Delete exception caches that have been concurrently unlinked, 936 // followed by a global handshake operation. 937 void CodeCache::purge_exception_caches() { 938 ExceptionCache* curr = _exception_cache_purge_list; 939 while (curr != nullptr) { 940 ExceptionCache* next = curr->purge_list_next(); 941 delete curr; 942 curr = next; 943 } 944 _exception_cache_purge_list = nullptr; 945 } 946 947 // Restart compiler if possible and required.. 948 void CodeCache::maybe_restart_compiler(size_t freed_memory) { 949 950 // Try to start the compiler again if we freed any memory 951 if (!CompileBroker::should_compile_new_jobs() && freed_memory != 0) { 952 CompileBroker::set_should_compile_new_jobs(CompileBroker::run_compilation); 953 log_info(codecache)("Restarting compiler"); 954 EventJITRestart event; 955 event.set_freedMemory(freed_memory); 956 event.set_codeCacheMaxCapacity(CodeCache::max_capacity()); 957 event.commit(); 958 } 959 } 960 961 uint8_t CodeCache::_unloading_cycle = 1; 962 963 void CodeCache::increment_unloading_cycle() { 964 // 2-bit value (see IsUnloadingState in nmethod.cpp for details) 965 // 0 is reserved for new methods. 966 _unloading_cycle = (_unloading_cycle + 1) % 4; 967 if (_unloading_cycle == 0) { 968 _unloading_cycle = 1; 969 } 970 } 971 972 CodeCache::UnlinkingScope::UnlinkingScope(BoolObjectClosure* is_alive) 973 : _is_unloading_behaviour(is_alive) 974 { 975 _saved_behaviour = IsUnloadingBehaviour::current(); 976 IsUnloadingBehaviour::set_current(&_is_unloading_behaviour); 977 increment_unloading_cycle(); 978 DependencyContext::cleaning_start(); 979 } 980 981 CodeCache::UnlinkingScope::~UnlinkingScope() { 982 IsUnloadingBehaviour::set_current(_saved_behaviour); 983 DependencyContext::cleaning_end(); 984 } 985 986 void CodeCache::verify_oops() { 987 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 988 VerifyOopClosure voc; 989 NMethodIterator iter(NMethodIterator::not_unloading); 990 while(iter.next()) { 991 nmethod* nm = iter.method(); 992 nm->oops_do(&voc); 993 nm->verify_oop_relocations(); 994 } 995 } 996 997 int CodeCache::blob_count(CodeBlobType code_blob_type) { 998 CodeHeap* heap = get_code_heap(code_blob_type); 999 return (heap != nullptr) ? heap->blob_count() : 0; 1000 } 1001 1002 int CodeCache::blob_count() { 1003 int count = 0; 1004 FOR_ALL_HEAPS(heap) { 1005 count += (*heap)->blob_count(); 1006 } 1007 return count; 1008 } 1009 1010 int CodeCache::nmethod_count(CodeBlobType code_blob_type) { 1011 CodeHeap* heap = get_code_heap(code_blob_type); 1012 return (heap != nullptr) ? heap->nmethod_count() : 0; 1013 } 1014 1015 int CodeCache::nmethod_count() { 1016 int count = 0; 1017 for (CodeHeap* heap : *_nmethod_heaps) { 1018 count += heap->nmethod_count(); 1019 } 1020 return count; 1021 } 1022 1023 int CodeCache::adapter_count(CodeBlobType code_blob_type) { 1024 CodeHeap* heap = get_code_heap(code_blob_type); 1025 return (heap != nullptr) ? heap->adapter_count() : 0; 1026 } 1027 1028 int CodeCache::adapter_count() { 1029 int count = 0; 1030 FOR_ALL_HEAPS(heap) { 1031 count += (*heap)->adapter_count(); 1032 } 1033 return count; 1034 } 1035 1036 address CodeCache::low_bound(CodeBlobType code_blob_type) { 1037 CodeHeap* heap = get_code_heap(code_blob_type); 1038 return (heap != nullptr) ? (address)heap->low_boundary() : nullptr; 1039 } 1040 1041 address CodeCache::high_bound(CodeBlobType code_blob_type) { 1042 CodeHeap* heap = get_code_heap(code_blob_type); 1043 return (heap != nullptr) ? (address)heap->high_boundary() : nullptr; 1044 } 1045 1046 size_t CodeCache::capacity() { 1047 size_t cap = 0; 1048 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1049 cap += (*heap)->capacity(); 1050 } 1051 return cap; 1052 } 1053 1054 size_t CodeCache::unallocated_capacity(CodeBlobType code_blob_type) { 1055 CodeHeap* heap = get_code_heap(code_blob_type); 1056 return (heap != nullptr) ? heap->unallocated_capacity() : 0; 1057 } 1058 1059 size_t CodeCache::unallocated_capacity() { 1060 size_t unallocated_cap = 0; 1061 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1062 unallocated_cap += (*heap)->unallocated_capacity(); 1063 } 1064 return unallocated_cap; 1065 } 1066 1067 size_t CodeCache::max_capacity() { 1068 size_t max_cap = 0; 1069 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1070 max_cap += (*heap)->max_capacity(); 1071 } 1072 return max_cap; 1073 } 1074 1075 bool CodeCache::is_non_nmethod(address addr) { 1076 CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod); 1077 return blob->contains(addr); 1078 } 1079 1080 size_t CodeCache::max_distance_to_non_nmethod() { 1081 if (!SegmentedCodeCache) { 1082 return ReservedCodeCacheSize; 1083 } else { 1084 CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod); 1085 // the max distance is minimized by placing the NonNMethod segment 1086 // in between MethodProfiled and MethodNonProfiled segments 1087 size_t dist1 = (size_t)blob->high() - (size_t)_low_bound; 1088 size_t dist2 = (size_t)_high_bound - (size_t)blob->low(); 1089 return dist1 > dist2 ? dist1 : dist2; 1090 } 1091 } 1092 1093 // Returns the reverse free ratio. E.g., if 25% (1/4) of the code cache 1094 // is free, reverse_free_ratio() returns 4. 1095 // Since code heap for each type of code blobs falls forward to the next 1096 // type of code heap, return the reverse free ratio for the entire 1097 // code cache. 1098 double CodeCache::reverse_free_ratio() { 1099 double unallocated = MAX2((double)unallocated_capacity(), 1.0); // Avoid division by 0; 1100 double max = (double)max_capacity(); 1101 double result = max / unallocated; 1102 assert (max >= unallocated, "Must be"); 1103 assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result); 1104 return result; 1105 } 1106 1107 size_t CodeCache::bytes_allocated_in_freelists() { 1108 size_t allocated_bytes = 0; 1109 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1110 allocated_bytes += (*heap)->allocated_in_freelist(); 1111 } 1112 return allocated_bytes; 1113 } 1114 1115 int CodeCache::allocated_segments() { 1116 int number_of_segments = 0; 1117 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1118 number_of_segments += (*heap)->allocated_segments(); 1119 } 1120 return number_of_segments; 1121 } 1122 1123 size_t CodeCache::freelists_length() { 1124 size_t length = 0; 1125 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1126 length += (*heap)->freelist_length(); 1127 } 1128 return length; 1129 } 1130 1131 void icache_init(); 1132 1133 void CodeCache::initialize() { 1134 assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points"); 1135 #ifdef COMPILER2 1136 assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops"); 1137 #endif 1138 assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants"); 1139 // This was originally just a check of the alignment, causing failure, instead, round 1140 // the code cache to the page size. In particular, Solaris is moving to a larger 1141 // default page size. 1142 CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size()); 1143 1144 if (SegmentedCodeCache) { 1145 // Use multiple code heaps 1146 initialize_heaps(); 1147 } else { 1148 // Use a single code heap 1149 FLAG_SET_ERGO(NonNMethodCodeHeapSize, (uintx)os::vm_page_size()); 1150 FLAG_SET_ERGO(ProfiledCodeHeapSize, 0); 1151 FLAG_SET_ERGO(NonProfiledCodeHeapSize, 0); 1152 1153 // If InitialCodeCacheSize is equal to ReservedCodeCacheSize, then it's more likely 1154 // users want to use the largest available page. 1155 const size_t min_pages = (InitialCodeCacheSize == ReservedCodeCacheSize) ? 1 : 8; 1156 ReservedSpace rs = reserve_heap_memory(ReservedCodeCacheSize, page_size(false, min_pages)); 1157 // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory. 1158 LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size()); 1159 add_heap(rs, "CodeCache", CodeBlobType::All); 1160 } 1161 1162 // Initialize ICache flush mechanism 1163 // This service is needed for os::register_code_area 1164 icache_init(); 1165 1166 // Give OS a chance to register generated code area. 1167 // This is used on Windows 64 bit platforms to register 1168 // Structured Exception Handlers for our generated code. 1169 os::register_code_area((char*)low_bound(), (char*)high_bound()); 1170 } 1171 1172 void codeCache_init() { 1173 CodeCache::initialize(); 1174 } 1175 1176 //------------------------------------------------------------------------------------------------ 1177 1178 bool CodeCache::has_nmethods_with_dependencies() { 1179 return Atomic::load_acquire(&_number_of_nmethods_with_dependencies) != 0; 1180 } 1181 1182 void CodeCache::clear_inline_caches() { 1183 assert_locked_or_safepoint(CodeCache_lock); 1184 NMethodIterator iter(NMethodIterator::not_unloading); 1185 while(iter.next()) { 1186 iter.method()->clear_inline_caches(); 1187 } 1188 } 1189 1190 // Only used by whitebox API 1191 void CodeCache::cleanup_inline_caches_whitebox() { 1192 assert_locked_or_safepoint(CodeCache_lock); 1193 NMethodIterator iter(NMethodIterator::not_unloading); 1194 while(iter.next()) { 1195 iter.method()->cleanup_inline_caches_whitebox(); 1196 } 1197 } 1198 1199 // Keeps track of time spent for checking dependencies 1200 NOT_PRODUCT(static elapsedTimer dependentCheckTime;) 1201 1202 #ifndef PRODUCT 1203 // Check if any of live methods dependencies have been invalidated. 1204 // (this is expensive!) 1205 static void check_live_nmethods_dependencies(DepChange& changes) { 1206 // Checked dependencies are allocated into this ResourceMark 1207 ResourceMark rm; 1208 1209 // Turn off dependency tracing while actually testing dependencies. 1210 FlagSetting fs(Dependencies::_verify_in_progress, true); 1211 1212 typedef ResourceHashtable<DependencySignature, int, 11027, 1213 AnyObj::RESOURCE_AREA, mtInternal, 1214 &DependencySignature::hash, 1215 &DependencySignature::equals> DepTable; 1216 1217 DepTable* table = new DepTable(); 1218 1219 // Iterate over live nmethods and check dependencies of all nmethods that are not 1220 // marked for deoptimization. A particular dependency is only checked once. 1221 NMethodIterator iter(NMethodIterator::not_unloading); 1222 while(iter.next()) { 1223 nmethod* nm = iter.method(); 1224 // Only notify for live nmethods 1225 if (!nm->is_marked_for_deoptimization()) { 1226 for (Dependencies::DepStream deps(nm); deps.next(); ) { 1227 // Construct abstraction of a dependency. 1228 DependencySignature* current_sig = new DependencySignature(deps); 1229 1230 // Determine if dependency is already checked. table->put(...) returns 1231 // 'true' if the dependency is added (i.e., was not in the hashtable). 1232 if (table->put(*current_sig, 1)) { 1233 Klass* witness = deps.check_dependency(); 1234 if (witness != nullptr) { 1235 // Dependency checking failed. Print out information about the failed 1236 // dependency and finally fail with an assert. We can fail here, since 1237 // dependency checking is never done in a product build. 1238 deps.print_dependency(tty, witness, true); 1239 changes.print(); 1240 nm->print(); 1241 nm->print_dependencies_on(tty); 1242 assert(false, "Should have been marked for deoptimization"); 1243 } 1244 } 1245 } 1246 } 1247 } 1248 } 1249 #endif 1250 1251 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, KlassDepChange& changes) { 1252 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1253 1254 // search the hierarchy looking for nmethods which are affected by the loading of this class 1255 1256 // then search the interfaces this class implements looking for nmethods 1257 // which might be dependent of the fact that an interface only had one 1258 // implementor. 1259 // nmethod::check_all_dependencies works only correctly, if no safepoint 1260 // can happen 1261 NoSafepointVerifier nsv; 1262 for (DepChange::ContextStream str(changes, nsv); str.next(); ) { 1263 InstanceKlass* d = str.klass(); 1264 { 1265 LogStreamHandle(Trace, dependencies) log; 1266 if (log.is_enabled()) { 1267 log.print("Processing context "); 1268 d->name()->print_value_on(&log); 1269 } 1270 } 1271 d->mark_dependent_nmethods(deopt_scope, changes); 1272 } 1273 1274 #ifndef PRODUCT 1275 if (VerifyDependencies) { 1276 // Object pointers are used as unique identifiers for dependency arguments. This 1277 // is only possible if no safepoint, i.e., GC occurs during the verification code. 1278 dependentCheckTime.start(); 1279 check_live_nmethods_dependencies(changes); 1280 dependentCheckTime.stop(); 1281 } 1282 #endif 1283 } 1284 1285 #if INCLUDE_JVMTI 1286 // RedefineClasses support for saving nmethods that are dependent on "old" methods. 1287 // We don't really expect this table to grow very large. If it does, it can become a hashtable. 1288 static GrowableArray<nmethod*>* old_nmethod_table = nullptr; 1289 1290 static void add_to_old_table(nmethod* c) { 1291 if (old_nmethod_table == nullptr) { 1292 old_nmethod_table = new (mtCode) GrowableArray<nmethod*>(100, mtCode); 1293 } 1294 old_nmethod_table->push(c); 1295 } 1296 1297 static void reset_old_method_table() { 1298 if (old_nmethod_table != nullptr) { 1299 delete old_nmethod_table; 1300 old_nmethod_table = nullptr; 1301 } 1302 } 1303 1304 // Remove this method when flushed. 1305 void CodeCache::unregister_old_nmethod(nmethod* c) { 1306 assert_lock_strong(CodeCache_lock); 1307 if (old_nmethod_table != nullptr) { 1308 int index = old_nmethod_table->find(c); 1309 if (index != -1) { 1310 old_nmethod_table->delete_at(index); 1311 } 1312 } 1313 } 1314 1315 void CodeCache::old_nmethods_do(MetadataClosure* f) { 1316 // Walk old method table and mark those on stack. 1317 int length = 0; 1318 if (old_nmethod_table != nullptr) { 1319 length = old_nmethod_table->length(); 1320 for (int i = 0; i < length; i++) { 1321 // Walk all methods saved on the last pass. Concurrent class unloading may 1322 // also be looking at this method's metadata, so don't delete it yet if 1323 // it is marked as unloaded. 1324 old_nmethod_table->at(i)->metadata_do(f); 1325 } 1326 } 1327 log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length); 1328 } 1329 1330 // Walk compiled methods and mark dependent methods for deoptimization. 1331 void CodeCache::mark_dependents_for_evol_deoptimization(DeoptimizationScope* deopt_scope) { 1332 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!"); 1333 // Each redefinition creates a new set of nmethods that have references to "old" Methods 1334 // So delete old method table and create a new one. 1335 reset_old_method_table(); 1336 1337 NMethodIterator iter(NMethodIterator::all); 1338 while(iter.next()) { 1339 nmethod* nm = iter.method(); 1340 // Walk all alive nmethods to check for old Methods. 1341 // This includes methods whose inline caches point to old methods, so 1342 // inline cache clearing is unnecessary. 1343 if (nm->has_evol_metadata()) { 1344 deopt_scope->mark(nm); 1345 add_to_old_table(nm); 1346 } 1347 } 1348 } 1349 1350 void CodeCache::mark_all_nmethods_for_evol_deoptimization(DeoptimizationScope* deopt_scope) { 1351 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!"); 1352 NMethodIterator iter(NMethodIterator::all); 1353 while(iter.next()) { 1354 nmethod* nm = iter.method(); 1355 if (!nm->method()->is_method_handle_intrinsic()) { 1356 if (nm->can_be_deoptimized()) { 1357 deopt_scope->mark(nm); 1358 } 1359 if (nm->has_evol_metadata()) { 1360 add_to_old_table(nm); 1361 } 1362 } 1363 } 1364 } 1365 1366 #endif // INCLUDE_JVMTI 1367 1368 // Mark methods for deopt (if safe or possible). 1369 void CodeCache::mark_all_nmethods_for_deoptimization(DeoptimizationScope* deopt_scope) { 1370 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1371 NMethodIterator iter(NMethodIterator::not_unloading); 1372 while(iter.next()) { 1373 nmethod* nm = iter.method(); 1374 if (!nm->is_native_method()) { 1375 deopt_scope->mark(nm); 1376 } 1377 } 1378 } 1379 1380 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, Method* dependee) { 1381 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1382 1383 NMethodIterator iter(NMethodIterator::not_unloading); 1384 while(iter.next()) { 1385 nmethod* nm = iter.method(); 1386 if (nm->is_dependent_on_method(dependee)) { 1387 deopt_scope->mark(nm); 1388 } 1389 } 1390 } 1391 1392 void CodeCache::make_marked_nmethods_deoptimized() { 1393 RelaxedNMethodIterator iter(RelaxedNMethodIterator::not_unloading); 1394 while(iter.next()) { 1395 nmethod* nm = iter.method(); 1396 if (nm->is_marked_for_deoptimization() && !nm->has_been_deoptimized() && nm->can_be_deoptimized()) { 1397 nm->make_not_entrant(); 1398 nm->make_deoptimized(); 1399 } 1400 } 1401 } 1402 1403 // Marks compiled methods dependent on dependee. 1404 void CodeCache::mark_dependents_on(DeoptimizationScope* deopt_scope, InstanceKlass* dependee) { 1405 assert_lock_strong(Compile_lock); 1406 1407 if (!has_nmethods_with_dependencies()) { 1408 return; 1409 } 1410 1411 if (dependee->is_linked()) { 1412 // Class initialization state change. 1413 KlassInitDepChange changes(dependee); 1414 mark_for_deoptimization(deopt_scope, changes); 1415 } else { 1416 // New class is loaded. 1417 NewKlassDepChange changes(dependee); 1418 mark_for_deoptimization(deopt_scope, changes); 1419 } 1420 } 1421 1422 // Marks compiled methods dependent on dependee 1423 void CodeCache::mark_dependents_on_method_for_breakpoint(const methodHandle& m_h) { 1424 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 1425 1426 DeoptimizationScope deopt_scope; 1427 // Compute the dependent nmethods 1428 mark_for_deoptimization(&deopt_scope, m_h()); 1429 deopt_scope.deoptimize_marked(); 1430 } 1431 1432 void CodeCache::verify() { 1433 assert_locked_or_safepoint(CodeCache_lock); 1434 FOR_ALL_HEAPS(heap) { 1435 (*heap)->verify(); 1436 FOR_ALL_BLOBS(cb, *heap) { 1437 cb->verify(); 1438 } 1439 } 1440 } 1441 1442 // A CodeHeap is full. Print out warning and report event. 1443 PRAGMA_DIAG_PUSH 1444 PRAGMA_FORMAT_NONLITERAL_IGNORED 1445 void CodeCache::report_codemem_full(CodeBlobType code_blob_type, bool print) { 1446 // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event 1447 CodeHeap* heap = get_code_heap(code_blob_type); 1448 assert(heap != nullptr, "heap is null"); 1449 1450 int full_count = heap->report_full(); 1451 1452 if ((full_count == 1) || print) { 1453 // Not yet reported for this heap, report 1454 if (SegmentedCodeCache) { 1455 ResourceMark rm; 1456 stringStream msg1_stream, msg2_stream; 1457 msg1_stream.print("%s is full. Compiler has been disabled.", 1458 get_code_heap_name(code_blob_type)); 1459 msg2_stream.print("Try increasing the code heap size using -XX:%s=", 1460 get_code_heap_flag_name(code_blob_type)); 1461 const char *msg1 = msg1_stream.as_string(); 1462 const char *msg2 = msg2_stream.as_string(); 1463 1464 log_warning(codecache)("%s", msg1); 1465 log_warning(codecache)("%s", msg2); 1466 warning("%s", msg1); 1467 warning("%s", msg2); 1468 } else { 1469 const char *msg1 = "CodeCache is full. Compiler has been disabled."; 1470 const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize="; 1471 1472 log_warning(codecache)("%s", msg1); 1473 log_warning(codecache)("%s", msg2); 1474 warning("%s", msg1); 1475 warning("%s", msg2); 1476 } 1477 stringStream s; 1478 // Dump code cache into a buffer before locking the tty. 1479 { 1480 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1481 print_summary(&s); 1482 } 1483 { 1484 ttyLocker ttyl; 1485 tty->print("%s", s.freeze()); 1486 } 1487 1488 if (full_count == 1) { 1489 if (PrintCodeHeapAnalytics) { 1490 CompileBroker::print_heapinfo(tty, "all", 4096); // details, may be a lot! 1491 } 1492 } 1493 } 1494 1495 EventCodeCacheFull event; 1496 if (event.should_commit()) { 1497 event.set_codeBlobType((u1)code_blob_type); 1498 event.set_startAddress((u8)heap->low_boundary()); 1499 event.set_commitedTopAddress((u8)heap->high()); 1500 event.set_reservedTopAddress((u8)heap->high_boundary()); 1501 event.set_entryCount(heap->blob_count()); 1502 event.set_methodCount(heap->nmethod_count()); 1503 event.set_adaptorCount(heap->adapter_count()); 1504 event.set_unallocatedCapacity(heap->unallocated_capacity()); 1505 event.set_fullCount(heap->full_count()); 1506 event.set_codeCacheMaxCapacity(CodeCache::max_capacity()); 1507 event.commit(); 1508 } 1509 } 1510 PRAGMA_DIAG_POP 1511 1512 void CodeCache::print_memory_overhead() { 1513 size_t wasted_bytes = 0; 1514 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1515 CodeHeap* curr_heap = *heap; 1516 for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != nullptr; cb = (CodeBlob*)curr_heap->next(cb)) { 1517 HeapBlock* heap_block = ((HeapBlock*)cb) - 1; 1518 wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size(); 1519 } 1520 } 1521 // Print bytes that are allocated in the freelist 1522 ttyLocker ttl; 1523 tty->print_cr("Number of elements in freelist: %zd", freelists_length()); 1524 tty->print_cr("Allocated in freelist: %zdkB", bytes_allocated_in_freelists()/K); 1525 tty->print_cr("Unused bytes in CodeBlobs: %zdkB", (wasted_bytes/K)); 1526 tty->print_cr("Segment map size: %zdkB", allocated_segments()/K); // 1 byte per segment 1527 } 1528 1529 static void print_helper1(outputStream* st, const char* prefix, int total, int not_entrant, int used) { 1530 if (total > 0) { 1531 double ratio = (100.0 * used) / total; 1532 st->print("%s %3d nmethods: %3d not_entrant, %d used (%2.1f%%)", prefix, total, not_entrant, used, ratio); 1533 } 1534 } 1535 1536 void CodeCache::print_nmethod_statistics_on(outputStream* st) { 1537 int stats [2][6][3][2] = {0}; 1538 int stats_used[2][6][3][2] = {0}; 1539 1540 int total_osr = 0; 1541 int total_entrant = 0; 1542 int total_non_entrant = 0; 1543 int total_other = 0; 1544 int total_used = 0; 1545 1546 NMethodIterator iter(NMethodIterator::all); 1547 while (iter.next()) { 1548 nmethod* nm = iter.method(); 1549 if (nm->is_in_use()) { 1550 ++total_entrant; 1551 } else if (nm->is_not_entrant()) { 1552 ++total_non_entrant; 1553 } else { 1554 ++total_other; 1555 } 1556 if (nm->is_osr_method()) { 1557 ++total_osr; 1558 } 1559 if (nm->used()) { 1560 ++total_used; 1561 } 1562 assert(!nm->preloaded() || nm->comp_level() == CompLevel_full_optimization, ""); 1563 1564 int idx1 = nm->is_scc() ? 1 : 0; 1565 int idx2 = nm->comp_level() + (nm->preloaded() ? 1 : 0); 1566 int idx3 = (nm->is_in_use() ? 0 : 1567 (nm->is_not_entrant() ? 1 : 1568 2)); 1569 int idx4 = (nm->is_osr_method() ? 1 : 0); 1570 stats[idx1][idx2][idx3][idx4] += 1; 1571 if (nm->used()) { 1572 stats_used[idx1][idx2][idx3][idx4] += 1; 1573 } 1574 } 1575 1576 st->print("Total: %d methods (%d entrant / %d not_entrant; osr: %d ", 1577 total_entrant + total_non_entrant + total_other, 1578 total_entrant, total_non_entrant, total_osr); 1579 if (total_other > 0) { 1580 st->print("; %d other", total_other); 1581 } 1582 st->print_cr(")"); 1583 1584 for (int i = CompLevel_simple; i <= CompLevel_full_optimization; i++) { 1585 int total_normal = stats[0][i][0][0] + stats[0][i][1][0] + stats[0][i][2][0]; 1586 int total_osr = stats[0][i][0][1] + stats[0][i][1][1] + stats[0][i][2][1]; 1587 if (total_normal + total_osr > 0) { 1588 st->print(" Tier%d:", i); 1589 print_helper1(st, "", total_normal, stats[0][i][1][0], stats_used[0][i][0][0] + stats_used[0][i][1][0]); 1590 print_helper1(st, "; osr:", total_osr, stats[0][i][1][1], stats_used[0][i][0][1] + stats_used[0][i][1][1]); 1591 st->cr(); 1592 } 1593 } 1594 st->cr(); 1595 for (int i = CompLevel_simple; i <= CompLevel_full_optimization + 1; i++) { 1596 int total_normal = stats[1][i][0][0] + stats[1][i][1][0] + stats[1][i][2][0]; 1597 int total_osr = stats[1][i][0][1] + stats[1][i][1][1] + stats[1][i][2][1]; 1598 assert(total_osr == 0, "sanity"); 1599 if (total_normal + total_osr > 0) { 1600 st->print(" SC T%d:", i); 1601 print_helper1(st, "", total_normal, stats[1][i][1][0], stats_used[1][i][0][0] + stats_used[1][i][1][0]); 1602 print_helper1(st, "; osr:", total_osr, stats[1][i][1][1], stats_used[1][i][0][1] + stats_used[1][i][1][1]); 1603 st->cr(); 1604 } 1605 } 1606 } 1607 1608 //------------------------------------------------------------------------------------------------ 1609 // Non-product version 1610 1611 #ifndef PRODUCT 1612 1613 void CodeCache::print_trace(const char* event, CodeBlob* cb, uint size) { 1614 if (PrintCodeCache2) { // Need to add a new flag 1615 ResourceMark rm; 1616 if (size == 0) { 1617 int s = cb->size(); 1618 assert(s >= 0, "CodeBlob size is negative: %d", s); 1619 size = (uint) s; 1620 } 1621 tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size); 1622 } 1623 } 1624 1625 void CodeCache::print_internals() { 1626 int nmethodCount = 0; 1627 int runtimeStubCount = 0; 1628 int adapterCount = 0; 1629 int deoptimizationStubCount = 0; 1630 int uncommonTrapStubCount = 0; 1631 int bufferBlobCount = 0; 1632 int total = 0; 1633 int nmethodNotEntrant = 0; 1634 int nmethodJava = 0; 1635 int nmethodNative = 0; 1636 int max_nm_size = 0; 1637 ResourceMark rm; 1638 1639 int i = 0; 1640 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1641 int heap_total = 0; 1642 tty->print_cr("-- %s --", (*heap)->name()); 1643 FOR_ALL_BLOBS(cb, *heap) { 1644 total++; 1645 heap_total++; 1646 if (cb->is_nmethod()) { 1647 nmethod* nm = (nmethod*)cb; 1648 1649 tty->print("%4d: ", heap_total); 1650 CompileTask::print(tty, nm, (nm->is_not_entrant() ? "non-entrant" : ""), true, true); 1651 1652 nmethodCount++; 1653 1654 if(nm->is_not_entrant()) { nmethodNotEntrant++; } 1655 if(nm->method() != nullptr && nm->is_native_method()) { nmethodNative++; } 1656 1657 if(nm->method() != nullptr && nm->is_java_method()) { 1658 nmethodJava++; 1659 max_nm_size = MAX2(max_nm_size, nm->size()); 1660 } 1661 } else if (cb->is_runtime_stub()) { 1662 runtimeStubCount++; 1663 } else if (cb->is_deoptimization_stub()) { 1664 deoptimizationStubCount++; 1665 } else if (cb->is_uncommon_trap_stub()) { 1666 uncommonTrapStubCount++; 1667 } else if (cb->is_adapter_blob()) { 1668 adapterCount++; 1669 } else if (cb->is_buffer_blob()) { 1670 bufferBlobCount++; 1671 } 1672 } 1673 } 1674 1675 int bucketSize = 512; 1676 int bucketLimit = max_nm_size / bucketSize + 1; 1677 int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode); 1678 memset(buckets, 0, sizeof(int) * bucketLimit); 1679 1680 NMethodIterator iter(NMethodIterator::all); 1681 while(iter.next()) { 1682 nmethod* nm = iter.method(); 1683 if(nm->method() != nullptr && nm->is_java_method()) { 1684 buckets[nm->size() / bucketSize]++; 1685 } 1686 } 1687 1688 tty->print_cr("Code Cache Entries (total of %d)",total); 1689 tty->print_cr("-------------------------------------------------"); 1690 tty->print_cr("nmethods: %d",nmethodCount); 1691 tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant); 1692 tty->print_cr("\tjava: %d",nmethodJava); 1693 tty->print_cr("\tnative: %d",nmethodNative); 1694 tty->print_cr("runtime_stubs: %d",runtimeStubCount); 1695 tty->print_cr("adapters: %d",adapterCount); 1696 tty->print_cr("buffer blobs: %d",bufferBlobCount); 1697 tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount); 1698 tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount); 1699 tty->print_cr("\nnmethod size distribution"); 1700 tty->print_cr("-------------------------------------------------"); 1701 1702 for(int i=0; i<bucketLimit; i++) { 1703 if(buckets[i] != 0) { 1704 tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize); 1705 tty->fill_to(40); 1706 tty->print_cr("%d",buckets[i]); 1707 } 1708 } 1709 1710 FREE_C_HEAP_ARRAY(int, buckets); 1711 print_memory_overhead(); 1712 } 1713 1714 #endif // !PRODUCT 1715 1716 void CodeCache::print() { 1717 print_summary(tty); 1718 1719 #ifndef PRODUCT 1720 if (!Verbose) return; 1721 1722 CodeBlob_sizes live[CompLevel_full_optimization + 1]; 1723 CodeBlob_sizes runtimeStub; 1724 CodeBlob_sizes uncommonTrapStub; 1725 CodeBlob_sizes deoptimizationStub; 1726 CodeBlob_sizes adapter; 1727 CodeBlob_sizes bufferBlob; 1728 CodeBlob_sizes other; 1729 1730 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1731 FOR_ALL_BLOBS(cb, *heap) { 1732 if (cb->is_nmethod()) { 1733 const int level = cb->as_nmethod()->comp_level(); 1734 assert(0 <= level && level <= CompLevel_full_optimization, "Invalid compilation level"); 1735 live[level].add(cb); 1736 } else if (cb->is_runtime_stub()) { 1737 runtimeStub.add(cb); 1738 } else if (cb->is_deoptimization_stub()) { 1739 deoptimizationStub.add(cb); 1740 } else if (cb->is_uncommon_trap_stub()) { 1741 uncommonTrapStub.add(cb); 1742 } else if (cb->is_adapter_blob()) { 1743 adapter.add(cb); 1744 } else if (cb->is_buffer_blob()) { 1745 bufferBlob.add(cb); 1746 } else { 1747 other.add(cb); 1748 } 1749 } 1750 } 1751 1752 tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds()); 1753 1754 tty->print_cr("nmethod blobs per compilation level:"); 1755 for (int i = 0; i <= CompLevel_full_optimization; i++) { 1756 const char *level_name; 1757 switch (i) { 1758 case CompLevel_none: level_name = "none"; break; 1759 case CompLevel_simple: level_name = "simple"; break; 1760 case CompLevel_limited_profile: level_name = "limited profile"; break; 1761 case CompLevel_full_profile: level_name = "full profile"; break; 1762 case CompLevel_full_optimization: level_name = "full optimization"; break; 1763 default: assert(false, "invalid compilation level"); 1764 } 1765 tty->print_cr("%s:", level_name); 1766 live[i].print("live"); 1767 } 1768 1769 struct { 1770 const char* name; 1771 const CodeBlob_sizes* sizes; 1772 } non_nmethod_blobs[] = { 1773 { "runtime", &runtimeStub }, 1774 { "uncommon trap", &uncommonTrapStub }, 1775 { "deoptimization", &deoptimizationStub }, 1776 { "adapter", &adapter }, 1777 { "buffer blob", &bufferBlob }, 1778 { "other", &other }, 1779 }; 1780 tty->print_cr("Non-nmethod blobs:"); 1781 for (auto& blob: non_nmethod_blobs) { 1782 blob.sizes->print(blob.name); 1783 } 1784 1785 if (WizardMode) { 1786 // print the oop_map usage 1787 int code_size = 0; 1788 int number_of_blobs = 0; 1789 int number_of_oop_maps = 0; 1790 int map_size = 0; 1791 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1792 FOR_ALL_BLOBS(cb, *heap) { 1793 number_of_blobs++; 1794 code_size += cb->code_size(); 1795 ImmutableOopMapSet* set = cb->oop_maps(); 1796 if (set != nullptr) { 1797 number_of_oop_maps += set->count(); 1798 map_size += set->nr_of_bytes(); 1799 } 1800 } 1801 } 1802 tty->print_cr("OopMaps"); 1803 tty->print_cr(" #blobs = %d", number_of_blobs); 1804 tty->print_cr(" code size = %d", code_size); 1805 tty->print_cr(" #oop_maps = %d", number_of_oop_maps); 1806 tty->print_cr(" map size = %d", map_size); 1807 } 1808 1809 #endif // !PRODUCT 1810 } 1811 1812 void CodeCache::print_nmethods_on(outputStream* st) { 1813 ResourceMark rm; 1814 int i = 0; 1815 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1816 st->print_cr("-- %s --", (*heap)->name()); 1817 FOR_ALL_BLOBS(cb, *heap) { 1818 i++; 1819 if (cb->is_nmethod()) { 1820 nmethod* nm = (nmethod*)cb; 1821 st->print("%4d: ", i); 1822 CompileTask::print(st, nm, nullptr, true, false); 1823 1824 const char non_entrant_char = (nm->is_not_entrant() ? 'N' : ' '); 1825 st->print_cr(" %c", non_entrant_char); 1826 } 1827 } 1828 } 1829 } 1830 1831 void CodeCache::print_summary(outputStream* st, bool detailed) { 1832 int full_count = 0; 1833 julong total_used = 0; 1834 julong total_max_used = 0; 1835 julong total_free = 0; 1836 julong total_size = 0; 1837 FOR_ALL_HEAPS(heap_iterator) { 1838 CodeHeap* heap = (*heap_iterator); 1839 size_t total = (heap->high_boundary() - heap->low_boundary()); 1840 if (_heaps->length() >= 1) { 1841 st->print("%s:", heap->name()); 1842 } else { 1843 st->print("CodeCache:"); 1844 } 1845 size_t size = total/K; 1846 size_t used = (total - heap->unallocated_capacity())/K; 1847 size_t max_used = heap->max_allocated_capacity()/K; 1848 size_t free = heap->unallocated_capacity()/K; 1849 total_size += size; 1850 total_used += used; 1851 total_max_used += max_used; 1852 total_free += free; 1853 st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT 1854 "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb", 1855 size, used, max_used, free); 1856 1857 if (detailed) { 1858 st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]", 1859 p2i(heap->low_boundary()), 1860 p2i(heap->high()), 1861 p2i(heap->high_boundary())); 1862 1863 full_count += get_codemem_full_count(heap->code_blob_type()); 1864 } 1865 } 1866 1867 if (detailed) { 1868 if (SegmentedCodeCache) { 1869 st->print("CodeCache:"); 1870 st->print_cr(" size=" JULONG_FORMAT "Kb, used=" JULONG_FORMAT 1871 "Kb, max_used=" JULONG_FORMAT "Kb, free=" JULONG_FORMAT "Kb", 1872 total_size, total_used, total_max_used, total_free); 1873 } 1874 st->print_cr(" total_blobs=" UINT32_FORMAT ", nmethods=" UINT32_FORMAT 1875 ", adapters=" UINT32_FORMAT ", full_count=" UINT32_FORMAT, 1876 blob_count(), nmethod_count(), adapter_count(), full_count); 1877 st->print_cr("Compilation: %s, stopped_count=%d, restarted_count=%d", 1878 CompileBroker::should_compile_new_jobs() ? 1879 "enabled" : Arguments::mode() == Arguments::_int ? 1880 "disabled (interpreter mode)" : 1881 "disabled (not enough contiguous free space left)", 1882 CompileBroker::get_total_compiler_stopped_count(), 1883 CompileBroker::get_total_compiler_restarted_count()); 1884 } 1885 } 1886 1887 void CodeCache::print_codelist(outputStream* st) { 1888 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1889 1890 NMethodIterator iter(NMethodIterator::not_unloading); 1891 while (iter.next()) { 1892 nmethod* nm = iter.method(); 1893 ResourceMark rm; 1894 char* method_name = nm->method()->name_and_sig_as_C_string(); 1895 const char* jvmci_name = nullptr; 1896 #if INCLUDE_JVMCI 1897 jvmci_name = nm->jvmci_name(); 1898 #endif 1899 st->print_cr("%d %d %d %s%s%s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]", 1900 nm->compile_id(), nm->comp_level(), nm->get_state(), 1901 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "", 1902 (intptr_t)nm->header_begin(), (intptr_t)nm->code_begin(), (intptr_t)nm->code_end()); 1903 } 1904 } 1905 1906 void CodeCache::print_layout(outputStream* st) { 1907 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1908 ResourceMark rm; 1909 print_summary(st, true); 1910 } 1911 1912 void CodeCache::log_state(outputStream* st) { 1913 st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'" 1914 " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'", 1915 blob_count(), nmethod_count(), adapter_count(), 1916 unallocated_capacity()); 1917 } 1918 1919 #ifdef LINUX 1920 void CodeCache::write_perf_map(const char* filename, outputStream* st) { 1921 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1922 char fname[JVM_MAXPATHLEN]; 1923 if (filename == nullptr) { 1924 // Invocation outside of jcmd requires pid substitution. 1925 if (!Arguments::copy_expand_pid(DEFAULT_PERFMAP_FILENAME, 1926 strlen(DEFAULT_PERFMAP_FILENAME), 1927 fname, JVM_MAXPATHLEN)) { 1928 st->print_cr("Warning: Not writing perf map as pid substitution failed."); 1929 return; 1930 } 1931 filename = fname; 1932 } 1933 fileStream fs(filename, "w"); 1934 if (!fs.is_open()) { 1935 st->print_cr("Warning: Failed to create %s for perf map", filename); 1936 return; 1937 } 1938 1939 AllCodeBlobsIterator iter(AllCodeBlobsIterator::not_unloading); 1940 while (iter.next()) { 1941 CodeBlob *cb = iter.method(); 1942 ResourceMark rm; 1943 const char* method_name = nullptr; 1944 const char* jvmci_name = nullptr; 1945 if (cb->is_nmethod()) { 1946 nmethod* nm = cb->as_nmethod(); 1947 method_name = nm->method()->external_name(); 1948 #if INCLUDE_JVMCI 1949 jvmci_name = nm->jvmci_name(); 1950 #endif 1951 } else { 1952 method_name = cb->name(); 1953 } 1954 fs.print_cr(INTPTR_FORMAT " " INTPTR_FORMAT " %s%s%s", 1955 (intptr_t)cb->code_begin(), (intptr_t)cb->code_size(), 1956 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : ""); 1957 } 1958 } 1959 #endif // LINUX 1960 1961 //---< BEGIN >--- CodeHeap State Analytics. 1962 1963 void CodeCache::aggregate(outputStream *out, size_t granularity) { 1964 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1965 CodeHeapState::aggregate(out, (*heap), granularity); 1966 } 1967 } 1968 1969 void CodeCache::discard(outputStream *out) { 1970 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1971 CodeHeapState::discard(out, (*heap)); 1972 } 1973 } 1974 1975 void CodeCache::print_usedSpace(outputStream *out) { 1976 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1977 CodeHeapState::print_usedSpace(out, (*heap)); 1978 } 1979 } 1980 1981 void CodeCache::print_freeSpace(outputStream *out) { 1982 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1983 CodeHeapState::print_freeSpace(out, (*heap)); 1984 } 1985 } 1986 1987 void CodeCache::print_count(outputStream *out) { 1988 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1989 CodeHeapState::print_count(out, (*heap)); 1990 } 1991 } 1992 1993 void CodeCache::print_space(outputStream *out) { 1994 FOR_ALL_ALLOCABLE_HEAPS(heap) { 1995 CodeHeapState::print_space(out, (*heap)); 1996 } 1997 } 1998 1999 void CodeCache::print_age(outputStream *out) { 2000 FOR_ALL_ALLOCABLE_HEAPS(heap) { 2001 CodeHeapState::print_age(out, (*heap)); 2002 } 2003 } 2004 2005 void CodeCache::print_names(outputStream *out) { 2006 FOR_ALL_ALLOCABLE_HEAPS(heap) { 2007 CodeHeapState::print_names(out, (*heap)); 2008 } 2009 } 2010 //---< END >--- CodeHeap State Analytics.