1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "cds/cdsAccess.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/codeHeapState.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "code/nmethod.hpp"
  34 #include "code/pcDesc.hpp"
  35 #include "code/SCCache.hpp"
  36 #include "compiler/compilationPolicy.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/compilerDefinitions.inline.hpp"
  39 #include "compiler/oopMap.hpp"
  40 #include "gc/shared/barrierSetNMethod.hpp"
  41 #include "gc/shared/classUnloadingContext.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm_io.h"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/iterator.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "oops/method.inline.hpp"
  52 #include "oops/objArrayOop.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "runtime/arguments.hpp"
  56 #include "runtime/atomic.hpp"
  57 #include "runtime/deoptimization.hpp"
  58 #include "runtime/globals_extension.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/icache.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/mutexLocker.hpp"
  64 #include "runtime/os.inline.hpp"
  65 #include "runtime/safepointVerifiers.hpp"
  66 #include "runtime/vmThread.hpp"
  67 #include "sanitizers/leak.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/vmError.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Compilation.hpp"
  74 #include "c1/c1_Compiler.hpp"
  75 #endif
  76 #ifdef COMPILER2
  77 #include "opto/c2compiler.hpp"
  78 #include "opto/compile.hpp"
  79 #include "opto/node.hpp"
  80 #endif
  81 
  82 // Helper class for printing in CodeCache
  83 class CodeBlob_sizes {
  84  private:
  85   int count;
  86   int total_size;
  87   int header_size;
  88   int code_size;
  89   int stub_size;
  90   int relocation_size;
  91   int scopes_oop_size;
  92   int scopes_metadata_size;
  93   int scopes_data_size;
  94   int scopes_pcs_size;
  95 
  96  public:
  97   CodeBlob_sizes() {
  98     count            = 0;
  99     total_size       = 0;
 100     header_size      = 0;
 101     code_size        = 0;
 102     stub_size        = 0;
 103     relocation_size  = 0;
 104     scopes_oop_size  = 0;
 105     scopes_metadata_size  = 0;
 106     scopes_data_size = 0;
 107     scopes_pcs_size  = 0;
 108   }
 109 
 110   int total() const                              { return total_size; }
 111   bool is_empty() const                          { return count == 0; }
 112 
 113   void print(const char* title) const {
 114     if (is_empty()) {
 115       tty->print_cr(" #%d %s = %dK",
 116                     count,
 117                     title,
 118                     total()                 / (int)K);
 119     } else {
 120       tty->print_cr(" #%d %s = %dK (hdr %dK %d%%, loc %dK %d%%, code %dK %d%%, stub %dK %d%%, [oops %dK %d%%, metadata %dK %d%%, data %dK %d%%, pcs %dK %d%%])",
 121                     count,
 122                     title,
 123                     total()                 / (int)K,
 124                     header_size             / (int)K,
 125                     header_size             * 100 / total_size,
 126                     relocation_size         / (int)K,
 127                     relocation_size         * 100 / total_size,
 128                     code_size               / (int)K,
 129                     code_size               * 100 / total_size,
 130                     stub_size               / (int)K,
 131                     stub_size               * 100 / total_size,
 132                     scopes_oop_size         / (int)K,
 133                     scopes_oop_size         * 100 / total_size,
 134                     scopes_metadata_size    / (int)K,
 135                     scopes_metadata_size    * 100 / total_size,
 136                     scopes_data_size        / (int)K,
 137                     scopes_data_size        * 100 / total_size,
 138                     scopes_pcs_size         / (int)K,
 139                     scopes_pcs_size         * 100 / total_size);
 140     }
 141   }
 142 
 143   void add(CodeBlob* cb) {
 144     count++;
 145     total_size       += cb->size();
 146     header_size      += cb->header_size();
 147     relocation_size  += cb->relocation_size();
 148     if (cb->is_nmethod()) {
 149       nmethod* nm = cb->as_nmethod_or_null();
 150       code_size        += nm->insts_size();
 151       stub_size        += nm->stub_size();
 152 
 153       scopes_oop_size  += nm->oops_size();
 154       scopes_metadata_size  += nm->metadata_size();
 155       scopes_data_size += nm->scopes_data_size();
 156       scopes_pcs_size  += nm->scopes_pcs_size();
 157     } else {
 158       code_size        += cb->code_size();
 159     }
 160   }
 161 };
 162 
 163 // Iterate over all CodeHeaps
 164 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 165 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 166 
 167 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 168 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != nullptr; cb = next_blob(heap, cb))
 169 
 170 address CodeCache::_low_bound = nullptr;
 171 address CodeCache::_high_bound = nullptr;
 172 volatile int CodeCache::_number_of_nmethods_with_dependencies = 0;
 173 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = nullptr;
 174 
 175 static ReservedSpace _cds_code_space;
 176 
 177 // Initialize arrays of CodeHeap subsets
 178 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
 179 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
 180 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
 181 
 182 static void check_min_size(const char* codeheap, size_t size, size_t required_size) {
 183   if (size < required_size) {
 184     log_debug(codecache)("Code heap (%s) size " SIZE_FORMAT "K below required minimal size " SIZE_FORMAT "K",
 185                          codeheap, size/K, required_size/K);
 186     err_msg title("Not enough space in %s to run VM", codeheap);
 187     err_msg message(SIZE_FORMAT "K < " SIZE_FORMAT "K", size/K, required_size/K);
 188     vm_exit_during_initialization(title, message);
 189   }
 190 }
 191 
 192 struct CodeHeapInfo {
 193   size_t size;
 194   bool set;
 195   bool enabled;
 196 };
 197 
 198 static void set_size_of_unset_code_heap(CodeHeapInfo* heap, size_t available_size, size_t used_size, size_t min_size) {
 199   assert(!heap->set, "sanity");
 200   heap->size = (available_size > (used_size + min_size)) ? (available_size - used_size) : min_size;
 201 }
 202 
 203 void CodeCache::initialize_heaps() {
 204   CodeHeapInfo non_nmethod = {NonNMethodCodeHeapSize, FLAG_IS_CMDLINE(NonNMethodCodeHeapSize), true};
 205   CodeHeapInfo profiled = {ProfiledCodeHeapSize, FLAG_IS_CMDLINE(ProfiledCodeHeapSize), true};
 206   CodeHeapInfo non_profiled = {NonProfiledCodeHeapSize, FLAG_IS_CMDLINE(NonProfiledCodeHeapSize), true};
 207 
 208   const bool cache_size_set   = FLAG_IS_CMDLINE(ReservedCodeCacheSize);
 209   const size_t ps             = page_size(false, 8);
 210   const size_t min_size       = MAX2(os::vm_allocation_granularity(), ps);
 211   const size_t min_cache_size = CompilerConfig::min_code_cache_size(); // Make sure we have enough space for VM internal code
 212   size_t cache_size           = align_up(ReservedCodeCacheSize, min_size);
 213 
 214   // Prerequisites
 215   if (!heap_available(CodeBlobType::MethodProfiled)) {
 216     // For compatibility reasons, disabled tiered compilation overrides
 217     // segment size even if it is set explicitly.
 218     non_profiled.size += profiled.size;
 219     // Profiled code heap is not available, forcibly set size to 0
 220     profiled.size = 0;
 221     profiled.set = true;
 222     profiled.enabled = false;
 223   }
 224 
 225   assert(heap_available(CodeBlobType::MethodNonProfiled), "MethodNonProfiled heap is always available for segmented code heap");
 226 
 227   size_t compiler_buffer_size = 0;
 228   COMPILER1_PRESENT(compiler_buffer_size += CompilationPolicy::c1_count() * Compiler::code_buffer_size());
 229   COMPILER2_PRESENT(compiler_buffer_size += CompilationPolicy::c2_count() * C2Compiler::initial_code_buffer_size());
 230   COMPILER2_PRESENT(compiler_buffer_size += (CompilationPolicy::c2_count() + CompilationPolicy::c3_count()) * C2Compiler::initial_code_buffer_size());
 231 
 232   if (!non_nmethod.set) {
 233     non_nmethod.size += compiler_buffer_size;
 234     // Further down, just before FLAG_SET_ERGO(), all segment sizes are
 235     // aligned down to the next lower multiple of min_size. For large page
 236     // sizes, this may result in (non_nmethod.size == 0) which is not acceptable.
 237     // Therefore, force non_nmethod.size to at least min_size.
 238     non_nmethod.size = MAX2(non_nmethod.size, min_size);
 239   }
 240 
 241   if (!profiled.set && !non_profiled.set) {
 242     non_profiled.size = profiled.size = (cache_size > non_nmethod.size + 2 * min_size) ?
 243                                         (cache_size - non_nmethod.size) / 2 : min_size;
 244   }
 245 
 246   if (profiled.set && !non_profiled.set) {
 247     set_size_of_unset_code_heap(&non_profiled, cache_size, non_nmethod.size + profiled.size, min_size);
 248   }
 249 
 250   if (!profiled.set && non_profiled.set) {
 251     set_size_of_unset_code_heap(&profiled, cache_size, non_nmethod.size + non_profiled.size, min_size);
 252   }
 253 
 254   // Compatibility.
 255   size_t non_nmethod_min_size = min_cache_size + compiler_buffer_size;
 256   if (!non_nmethod.set && profiled.set && non_profiled.set) {
 257     set_size_of_unset_code_heap(&non_nmethod, cache_size, profiled.size + non_profiled.size, non_nmethod_min_size);
 258   }
 259 
 260   size_t total = non_nmethod.size + profiled.size + non_profiled.size;
 261   if (total != cache_size && !cache_size_set) {
 262     log_info(codecache)("ReservedCodeCache size " SIZE_FORMAT "K changed to total segments size NonNMethod "
 263                         SIZE_FORMAT "K NonProfiled " SIZE_FORMAT "K Profiled " SIZE_FORMAT "K = " SIZE_FORMAT "K",
 264                         cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K, total/K);
 265     // Adjust ReservedCodeCacheSize as necessary because it was not set explicitly
 266     cache_size = total;
 267   }
 268 
 269   log_debug(codecache)("Initializing code heaps ReservedCodeCache " SIZE_FORMAT "K NonNMethod " SIZE_FORMAT "K"
 270                        " NonProfiled " SIZE_FORMAT "K Profiled " SIZE_FORMAT "K",
 271                        cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K);
 272 
 273   // Validation
 274   // Check minimal required sizes
 275   check_min_size("non-nmethod code heap", non_nmethod.size, non_nmethod_min_size);
 276   if (profiled.enabled) {
 277     check_min_size("profiled code heap", profiled.size, min_size);
 278   }
 279   if (non_profiled.enabled) { // non_profiled.enabled is always ON for segmented code heap, leave it checked for clarity
 280     check_min_size("non-profiled code heap", non_profiled.size, min_size);
 281   }
 282   if (cache_size_set) {
 283     check_min_size("reserved code cache", cache_size, min_cache_size);
 284   }
 285 
 286   // ReservedCodeCacheSize was set explicitly, so report an error and abort if it doesn't match the segment sizes
 287   if (total != cache_size && cache_size_set) {
 288     err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K)", non_nmethod.size/K);
 289     if (profiled.enabled) {
 290       message.append(" + ProfiledCodeHeapSize (" SIZE_FORMAT "K)", profiled.size/K);
 291     }
 292     if (non_profiled.enabled) {
 293       message.append(" + NonProfiledCodeHeapSize (" SIZE_FORMAT "K)", non_profiled.size/K);
 294     }
 295     message.append(" = " SIZE_FORMAT "K", total/K);
 296     message.append((total > cache_size) ? " is greater than " : " is less than ");
 297     message.append("ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 298 
 299     vm_exit_during_initialization("Invalid code heap sizes", message);
 300   }
 301 
 302   // Compatibility. Print warning if using large pages but not able to use the size given
 303   if (UseLargePages) {
 304     const size_t lg_ps = page_size(false, 1);
 305     if (ps < lg_ps) {
 306       log_warning(codecache)("Code cache size too small for " PROPERFMT " pages. "
 307                              "Reverting to smaller page size (" PROPERFMT ").",
 308                              PROPERFMTARGS(lg_ps), PROPERFMTARGS(ps));
 309     }
 310   }
 311 
 312   // Note: if large page support is enabled, min_size is at least the large
 313   // page size. This ensures that the code cache is covered by large pages.
 314   non_profiled.size += non_nmethod.size & alignment_mask(min_size);
 315   non_profiled.size += profiled.size & alignment_mask(min_size);
 316   non_nmethod.size = align_down(non_nmethod.size, min_size);
 317   profiled.size = align_down(profiled.size, min_size);
 318   non_profiled.size = align_down(non_profiled.size, min_size);
 319 
 320   FLAG_SET_ERGO(NonNMethodCodeHeapSize, non_nmethod.size);
 321   FLAG_SET_ERGO(ProfiledCodeHeapSize, profiled.size);
 322   FLAG_SET_ERGO(NonProfiledCodeHeapSize, non_profiled.size);
 323   FLAG_SET_ERGO(ReservedCodeCacheSize, cache_size);
 324 
 325   const size_t cds_code_size = align_up(CDSAccess::get_cached_code_size(), min_size);
 326   cache_size += cds_code_size;
 327 
 328   ReservedCodeSpace rs = reserve_heap_memory(cache_size, ps);
 329 
 330   // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory.
 331   LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size());
 332 
 333   size_t offset = 0;
 334   if (cds_code_size > 0) {
 335     // FIXME: use CodeHeapInfo for this hack ...
 336     _cds_code_space = rs.partition(offset, cds_code_size);
 337     offset += cds_code_size;
 338   }
 339 
 340   if (profiled.enabled) {
 341     ReservedSpace profiled_space = rs.partition(offset, profiled.size);
 342     offset += profiled.size;
 343     // Tier 2 and tier 3 (profiled) methods
 344     add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 345   }
 346 
 347   ReservedSpace non_method_space = rs.partition(offset, non_nmethod.size);
 348   offset += non_nmethod.size;
 349   // Non-nmethods (stubs, adapters, ...)
 350   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 351 
 352   if (non_profiled.enabled) {
 353     ReservedSpace non_profiled_space  = rs.partition(offset, non_profiled.size);
 354     // Tier 1 and tier 4 (non-profiled) methods and native methods
 355     add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 356   }
 357 }
 358 
 359 void* CodeCache::map_cached_code() {
 360   if (_cds_code_space.size() > 0 && CDSAccess::map_cached_code(_cds_code_space)) {
 361     return _cds_code_space.base();
 362   } else {
 363     return nullptr;
 364   }
 365 }
 366 
 367 size_t CodeCache::page_size(bool aligned, size_t min_pages) {
 368   return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) :
 369                    os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages);
 370 }
 371 
 372 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size, size_t rs_ps) {
 373   // Align and reserve space for code cache
 374   const size_t rs_align = MAX2(rs_ps, os::vm_allocation_granularity());
 375   const size_t rs_size = align_up(size, rs_align);
 376   ReservedCodeSpace rs(rs_size, rs_align, rs_ps);
 377   if (!rs.is_reserved()) {
 378     vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
 379                                           rs_size/K));
 380   }
 381 
 382   // Initialize bounds
 383   _low_bound = (address)rs.base();
 384   _high_bound = _low_bound + rs.size();
 385   return rs;
 386 }
 387 
 388 // Heaps available for allocation
 389 bool CodeCache::heap_available(CodeBlobType code_blob_type) {
 390   if (!SegmentedCodeCache) {
 391     // No segmentation: use a single code heap
 392     return (code_blob_type == CodeBlobType::All);
 393   } else if (CompilerConfig::is_interpreter_only()) {
 394     // Interpreter only: we don't need any method code heaps
 395     return (code_blob_type == CodeBlobType::NonNMethod);
 396   } else if (CompilerConfig::is_c1_profiling()) {
 397     // Tiered compilation: use all code heaps
 398     return (code_blob_type < CodeBlobType::All);
 399   } else {
 400     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 401     return (code_blob_type == CodeBlobType::NonNMethod) ||
 402            (code_blob_type == CodeBlobType::MethodNonProfiled);
 403   }
 404 }
 405 
 406 const char* CodeCache::get_code_heap_flag_name(CodeBlobType code_blob_type) {
 407   switch(code_blob_type) {
 408   case CodeBlobType::NonNMethod:
 409     return "NonNMethodCodeHeapSize";
 410     break;
 411   case CodeBlobType::MethodNonProfiled:
 412     return "NonProfiledCodeHeapSize";
 413     break;
 414   case CodeBlobType::MethodProfiled:
 415     return "ProfiledCodeHeapSize";
 416     break;
 417   default:
 418     ShouldNotReachHere();
 419     return nullptr;
 420   }
 421 }
 422 
 423 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 424   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 425     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 426   } else {
 427     return static_cast<int>(lhs->code_blob_type()) - static_cast<int>(rhs->code_blob_type());
 428   }
 429 }
 430 
 431 void CodeCache::add_heap(CodeHeap* heap) {
 432   assert(!Universe::is_fully_initialized(), "late heap addition?");
 433 
 434   _heaps->insert_sorted<code_heap_compare>(heap);
 435 
 436   CodeBlobType type = heap->code_blob_type();
 437   if (code_blob_type_accepts_nmethod(type)) {
 438     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 439   }
 440   if (code_blob_type_accepts_allocable(type)) {
 441     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 442   }
 443 }
 444 
 445 void CodeCache::add_heap(ReservedSpace rs, const char* name, CodeBlobType code_blob_type) {
 446   // Check if heap is needed
 447   if (!heap_available(code_blob_type)) {
 448     return;
 449   }
 450 
 451   // Create CodeHeap
 452   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 453   add_heap(heap);
 454 
 455   // Reserve Space
 456   size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
 457   size_initial = align_up(size_initial, os::vm_page_size());
 458   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 459     vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
 460                                           heap->name(), size_initial/K));
 461   }
 462 
 463   // Register the CodeHeap
 464   MemoryService::add_code_heap_memory_pool(heap, name);
 465 }
 466 
 467 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 468   FOR_ALL_HEAPS(heap) {
 469     if ((*heap)->contains(start)) {
 470       return *heap;
 471     }
 472   }
 473   return nullptr;
 474 }
 475 
 476 CodeHeap* CodeCache::get_code_heap(const void* cb) {
 477   assert(cb != nullptr, "CodeBlob is null");
 478   FOR_ALL_HEAPS(heap) {
 479     if ((*heap)->contains(cb)) {
 480       return *heap;
 481     }
 482   }
 483   ShouldNotReachHere();
 484   return nullptr;
 485 }
 486 
 487 CodeHeap* CodeCache::get_code_heap(CodeBlobType code_blob_type) {
 488   FOR_ALL_HEAPS(heap) {
 489     if ((*heap)->accepts(code_blob_type)) {
 490       return *heap;
 491     }
 492   }
 493   return nullptr;
 494 }
 495 
 496 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 497   assert_locked_or_safepoint(CodeCache_lock);
 498   assert(heap != nullptr, "heap is null");
 499   return (CodeBlob*)heap->first();
 500 }
 501 
 502 CodeBlob* CodeCache::first_blob(CodeBlobType code_blob_type) {
 503   if (heap_available(code_blob_type)) {
 504     return first_blob(get_code_heap(code_blob_type));
 505   } else {
 506     return nullptr;
 507   }
 508 }
 509 
 510 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 511   assert_locked_or_safepoint(CodeCache_lock);
 512   assert(heap != nullptr, "heap is null");
 513   return (CodeBlob*)heap->next(cb);
 514 }
 515 
 516 /**
 517  * Do not seize the CodeCache lock here--if the caller has not
 518  * already done so, we are going to lose bigtime, since the code
 519  * cache will contain a garbage CodeBlob until the caller can
 520  * run the constructor for the CodeBlob subclass he is busy
 521  * instantiating.
 522  */
 523 CodeBlob* CodeCache::allocate(uint size, CodeBlobType code_blob_type, bool handle_alloc_failure, CodeBlobType orig_code_blob_type) {
 524   assert_locked_or_safepoint(CodeCache_lock);
 525   assert(size > 0, "Code cache allocation request must be > 0");
 526   if (size == 0) {
 527     return nullptr;
 528   }
 529   CodeBlob* cb = nullptr;
 530 
 531   // Get CodeHeap for the given CodeBlobType
 532   CodeHeap* heap = get_code_heap(code_blob_type);
 533   assert(heap != nullptr, "heap is null");
 534 
 535   while (true) {
 536     cb = (CodeBlob*)heap->allocate(size);
 537     if (cb != nullptr) break;
 538     if (!heap->expand_by(CodeCacheExpansionSize)) {
 539       // Save original type for error reporting
 540       if (orig_code_blob_type == CodeBlobType::All) {
 541         orig_code_blob_type = code_blob_type;
 542       }
 543       // Expansion failed
 544       if (SegmentedCodeCache) {
 545         // Fallback solution: Try to store code in another code heap.
 546         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 547         CodeBlobType type = code_blob_type;
 548         switch (type) {
 549         case CodeBlobType::NonNMethod:
 550           type = CodeBlobType::MethodNonProfiled;
 551           break;
 552         case CodeBlobType::MethodNonProfiled:
 553           type = CodeBlobType::MethodProfiled;
 554           break;
 555         case CodeBlobType::MethodProfiled:
 556           // Avoid loop if we already tried that code heap
 557           if (type == orig_code_blob_type) {
 558             type = CodeBlobType::MethodNonProfiled;
 559           }
 560           break;
 561         default:
 562           break;
 563         }
 564         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 565           if (PrintCodeCacheExtension) {
 566             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 567                           heap->name(), get_code_heap(type)->name());
 568           }
 569           return allocate(size, type, handle_alloc_failure, orig_code_blob_type);
 570         }
 571       }
 572       if (handle_alloc_failure) {
 573         MutexUnlocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 574         CompileBroker::handle_full_code_cache(orig_code_blob_type);
 575       }
 576       return nullptr;
 577     } else {
 578       OrderAccess::release(); // ensure heap expansion is visible to an asynchronous observer (e.g. CodeHeapPool::get_memory_usage())
 579     }
 580     if (PrintCodeCacheExtension) {
 581       ResourceMark rm;
 582       if (_nmethod_heaps->length() >= 1) {
 583         tty->print("%s", heap->name());
 584       } else {
 585         tty->print("CodeCache");
 586       }
 587       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 588                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 589                     (address)heap->high() - (address)heap->low_boundary());
 590     }
 591   }
 592   print_trace("allocation", cb, size);
 593   return cb;
 594 }
 595 
 596 void CodeCache::free(CodeBlob* cb) {
 597   assert_locked_or_safepoint(CodeCache_lock);
 598   CodeHeap* heap = get_code_heap(cb);
 599   print_trace("free", cb);
 600   if (cb->is_nmethod()) {
 601     heap->set_nmethod_count(heap->nmethod_count() - 1);
 602     if (((nmethod *)cb)->has_dependencies()) {
 603       Atomic::dec(&_number_of_nmethods_with_dependencies);
 604     }
 605   }
 606   if (cb->is_adapter_blob()) {
 607     heap->set_adapter_count(heap->adapter_count() - 1);
 608   }
 609 
 610   cb->~CodeBlob();
 611   // Get heap for given CodeBlob and deallocate
 612   heap->deallocate(cb);
 613 
 614   assert(heap->blob_count() >= 0, "sanity check");
 615 }
 616 
 617 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
 618   assert_locked_or_safepoint(CodeCache_lock);
 619   guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
 620   print_trace("free_unused_tail", cb);
 621 
 622   // We also have to account for the extra space (i.e. header) used by the CodeBlob
 623   // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
 624   used += CodeBlob::align_code_offset(cb->header_size());
 625 
 626   // Get heap for given CodeBlob and deallocate its unused tail
 627   get_code_heap(cb)->deallocate_tail(cb, used);
 628   // Adjust the sizes of the CodeBlob
 629   cb->adjust_size(used);
 630 }
 631 
 632 void CodeCache::commit(CodeBlob* cb) {
 633   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 634   assert_locked_or_safepoint(CodeCache_lock);
 635   CodeHeap* heap = get_code_heap(cb);
 636   if (cb->is_nmethod()) {
 637     heap->set_nmethod_count(heap->nmethod_count() + 1);
 638     if (((nmethod *)cb)->has_dependencies()) {
 639       Atomic::inc(&_number_of_nmethods_with_dependencies);
 640     }
 641   }
 642   if (cb->is_adapter_blob()) {
 643     heap->set_adapter_count(heap->adapter_count() + 1);
 644   }
 645 }
 646 
 647 bool CodeCache::contains(void *p) {
 648   // S390 uses contains() in current_frame(), which is used before
 649   // code cache initialization if NativeMemoryTracking=detail is set.
 650   S390_ONLY(if (_heaps == nullptr) return false;)
 651   // It should be ok to call contains without holding a lock.
 652   FOR_ALL_HEAPS(heap) {
 653     if ((*heap)->contains(p)) {
 654       return true;
 655     }
 656   }
 657   return false;
 658 }
 659 
 660 bool CodeCache::contains(nmethod *nm) {
 661   return contains((void *)nm);
 662 }
 663 
 664 // This method is safe to call without holding the CodeCache_lock. It only depends on the _segmap to contain
 665 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 666 CodeBlob* CodeCache::find_blob(void* start) {
 667   // NMT can walk the stack before code cache is created
 668   if (_heaps != nullptr) {
 669     CodeHeap* heap = get_code_heap_containing(start);
 670     if (heap != nullptr) {
 671       return heap->find_blob(start);
 672     }
 673   }
 674   return nullptr;
 675 }
 676 
 677 nmethod* CodeCache::find_nmethod(void* start) {
 678   CodeBlob* cb = find_blob(start);
 679   assert(cb == nullptr || cb->is_nmethod(), "did not find an nmethod");
 680   return (nmethod*)cb;
 681 }
 682 
 683 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 684   assert_locked_or_safepoint(CodeCache_lock);
 685   FOR_ALL_HEAPS(heap) {
 686     FOR_ALL_BLOBS(cb, *heap) {
 687       f(cb);
 688     }
 689   }
 690 }
 691 
 692 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 693   assert_locked_or_safepoint(CodeCache_lock);
 694   NMethodIterator iter(NMethodIterator::all);
 695   while(iter.next()) {
 696     f(iter.method());
 697   }
 698 }
 699 
 700 void CodeCache::nmethods_do(NMethodClosure* cl) {
 701   assert_locked_or_safepoint(CodeCache_lock);
 702   NMethodIterator iter(NMethodIterator::all);
 703   while(iter.next()) {
 704     cl->do_nmethod(iter.method());
 705   }
 706 }
 707 
 708 void CodeCache::metadata_do(MetadataClosure* f) {
 709   assert_locked_or_safepoint(CodeCache_lock);
 710   NMethodIterator iter(NMethodIterator::all);
 711   while(iter.next()) {
 712     iter.method()->metadata_do(f);
 713   }
 714 }
 715 
 716 // Calculate the number of GCs after which an nmethod is expected to have been
 717 // used in order to not be classed as cold.
 718 void CodeCache::update_cold_gc_count() {
 719   if (!MethodFlushing || !UseCodeCacheFlushing || NmethodSweepActivity == 0) {
 720     // No aging
 721     return;
 722   }
 723 
 724   size_t last_used = _last_unloading_used;
 725   double last_time = _last_unloading_time;
 726 
 727   double time = os::elapsedTime();
 728 
 729   size_t free = unallocated_capacity();
 730   size_t max = max_capacity();
 731   size_t used = max - free;
 732   double gc_interval = time - last_time;
 733 
 734   _unloading_threshold_gc_requested = false;
 735   _last_unloading_time = time;
 736   _last_unloading_used = used;
 737 
 738   if (last_time == 0.0) {
 739     // The first GC doesn't have enough information to make good
 740     // decisions, so just keep everything afloat
 741     log_info(codecache)("Unknown code cache pressure; don't age code");
 742     return;
 743   }
 744 
 745   if (gc_interval <= 0.0 || last_used >= used) {
 746     // Dodge corner cases where there is no pressure or negative pressure
 747     // on the code cache. Just don't unload when this happens.
 748     _cold_gc_count = INT_MAX;
 749     log_info(codecache)("No code cache pressure; don't age code");
 750     return;
 751   }
 752 
 753   double allocation_rate = (used - last_used) / gc_interval;
 754 
 755   _unloading_allocation_rates.add(allocation_rate);
 756   _unloading_gc_intervals.add(gc_interval);
 757 
 758   size_t aggressive_sweeping_free_threshold = StartAggressiveSweepingAt / 100.0 * max;
 759   if (free < aggressive_sweeping_free_threshold) {
 760     // We are already in the red zone; be very aggressive to avoid disaster
 761     // But not more aggressive than 2. This ensures that an nmethod must
 762     // have been unused at least between two GCs to be considered cold still.
 763     _cold_gc_count = 2;
 764     log_info(codecache)("Code cache critically low; use aggressive aging");
 765     return;
 766   }
 767 
 768   // The code cache has an expected time for cold nmethods to "time out"
 769   // when they have not been used. The time for nmethods to time out
 770   // depends on how long we expect we can keep allocating code until
 771   // aggressive sweeping starts, based on sampled allocation rates.
 772   double average_gc_interval = _unloading_gc_intervals.avg();
 773   double average_allocation_rate = _unloading_allocation_rates.avg();
 774   double time_to_aggressive = ((double)(free - aggressive_sweeping_free_threshold)) / average_allocation_rate;
 775   double cold_timeout = time_to_aggressive / NmethodSweepActivity;
 776 
 777   // Convert time to GC cycles, and crop at INT_MAX. The reason for
 778   // that is that the _cold_gc_count will be added to an epoch number
 779   // and that addition must not overflow, or we can crash the VM.
 780   // But not more aggressive than 2. This ensures that an nmethod must
 781   // have been unused at least between two GCs to be considered cold still.
 782   _cold_gc_count = MAX2(MIN2((uint64_t)(cold_timeout / average_gc_interval), (uint64_t)INT_MAX), (uint64_t)2);
 783 
 784   double used_ratio = double(used) / double(max);
 785   double last_used_ratio = double(last_used) / double(max);
 786   log_info(codecache)("Allocation rate: %.3f KB/s, time to aggressive unloading: %.3f s, cold timeout: %.3f s, cold gc count: " UINT64_FORMAT
 787                       ", used: %.3f MB (%.3f%%), last used: %.3f MB (%.3f%%), gc interval: %.3f s",
 788                       average_allocation_rate / K, time_to_aggressive, cold_timeout, _cold_gc_count,
 789                       double(used) / M, used_ratio * 100.0, double(last_used) / M, last_used_ratio * 100.0, average_gc_interval);
 790 
 791 }
 792 
 793 uint64_t CodeCache::cold_gc_count() {
 794   return _cold_gc_count;
 795 }
 796 
 797 void CodeCache::gc_on_allocation() {
 798   if (!is_init_completed()) {
 799     // Let's not heuristically trigger GCs before the JVM is ready for GCs, no matter what
 800     return;
 801   }
 802 
 803   size_t free = unallocated_capacity();
 804   size_t max = max_capacity();
 805   size_t used = max - free;
 806   double free_ratio = double(free) / double(max);
 807   if (free_ratio <= StartAggressiveSweepingAt / 100.0)  {
 808     // In case the GC is concurrent, we make sure only one thread requests the GC.
 809     if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) {
 810       log_info(codecache)("Triggering aggressive GC due to having only %.3f%% free memory", free_ratio * 100.0);
 811       Universe::heap()->collect(GCCause::_codecache_GC_aggressive);
 812     }
 813     return;
 814   }
 815 
 816   size_t last_used = _last_unloading_used;
 817   if (last_used >= used) {
 818     // No increase since last GC; no need to sweep yet
 819     return;
 820   }
 821   size_t allocated_since_last = used - last_used;
 822   double allocated_since_last_ratio = double(allocated_since_last) / double(max);
 823   double threshold = SweeperThreshold / 100.0;
 824   double used_ratio = double(used) / double(max);
 825   double last_used_ratio = double(last_used) / double(max);
 826   if (used_ratio > threshold) {
 827     // After threshold is reached, scale it by free_ratio so that more aggressive
 828     // GC is triggered as we approach code cache exhaustion
 829     threshold *= free_ratio;
 830   }
 831   // If code cache has been allocated without any GC at all, let's make sure
 832   // it is eventually invoked to avoid trouble.
 833   if (allocated_since_last_ratio > threshold) {
 834     // In case the GC is concurrent, we make sure only one thread requests the GC.
 835     if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) {
 836       log_info(codecache)("Triggering threshold (%.3f%%) GC due to allocating %.3f%% since last unloading (%.3f%% used -> %.3f%% used)",
 837                           threshold * 100.0, allocated_since_last_ratio * 100.0, last_used_ratio * 100.0, used_ratio * 100.0);
 838       Universe::heap()->collect(GCCause::_codecache_GC_threshold);
 839     }
 840   }
 841 }
 842 
 843 // We initialize the _gc_epoch to 2, because previous_completed_gc_marking_cycle
 844 // subtracts the value by 2, and the type is unsigned. We don't want underflow.
 845 //
 846 // Odd values mean that marking is in progress, and even values mean that no
 847 // marking is currently active.
 848 uint64_t CodeCache::_gc_epoch = 2;
 849 
 850 // How many GCs after an nmethod has not been used, do we consider it cold?
 851 uint64_t CodeCache::_cold_gc_count = INT_MAX;
 852 
 853 double CodeCache::_last_unloading_time = 0.0;
 854 size_t CodeCache::_last_unloading_used = 0;
 855 volatile bool CodeCache::_unloading_threshold_gc_requested = false;
 856 TruncatedSeq CodeCache::_unloading_gc_intervals(10 /* samples */);
 857 TruncatedSeq CodeCache::_unloading_allocation_rates(10 /* samples */);
 858 
 859 uint64_t CodeCache::gc_epoch() {
 860   return _gc_epoch;
 861 }
 862 
 863 bool CodeCache::is_gc_marking_cycle_active() {
 864   // Odd means that marking is active
 865   return (_gc_epoch % 2) == 1;
 866 }
 867 
 868 uint64_t CodeCache::previous_completed_gc_marking_cycle() {
 869   if (is_gc_marking_cycle_active()) {
 870     return _gc_epoch - 2;
 871   } else {
 872     return _gc_epoch - 1;
 873   }
 874 }
 875 
 876 void CodeCache::on_gc_marking_cycle_start() {
 877   assert(!is_gc_marking_cycle_active(), "Previous marking cycle never ended");
 878   ++_gc_epoch;
 879 }
 880 
 881 // Once started the code cache marking cycle must only be finished after marking of
 882 // the java heap is complete. Otherwise nmethods could appear to be not on stack even
 883 // if they have frames in continuation StackChunks that were not yet visited.
 884 void CodeCache::on_gc_marking_cycle_finish() {
 885   assert(is_gc_marking_cycle_active(), "Marking cycle started before last one finished");
 886   ++_gc_epoch;
 887   update_cold_gc_count();
 888 }
 889 
 890 void CodeCache::arm_all_nmethods() {
 891   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
 892   if (bs_nm != nullptr) {
 893     bs_nm->arm_all_nmethods();
 894   }
 895 }
 896 
 897 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 898 void CodeCache::do_unloading(bool unloading_occurred) {
 899   assert_locked_or_safepoint(CodeCache_lock);
 900   NMethodIterator iter(NMethodIterator::all);
 901   while(iter.next()) {
 902     iter.method()->do_unloading(unloading_occurred);
 903   }
 904 }
 905 
 906 void CodeCache::verify_clean_inline_caches() {
 907 #ifdef ASSERT
 908   NMethodIterator iter(NMethodIterator::not_unloading);
 909   while(iter.next()) {
 910     nmethod* nm = iter.method();
 911     nm->verify_clean_inline_caches();
 912     nm->verify();
 913   }
 914 #endif
 915 }
 916 
 917 // Defer freeing of concurrently cleaned ExceptionCache entries until
 918 // after a global handshake operation.
 919 void CodeCache::release_exception_cache(ExceptionCache* entry) {
 920   if (SafepointSynchronize::is_at_safepoint()) {
 921     delete entry;
 922   } else {
 923     for (;;) {
 924       ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
 925       entry->set_purge_list_next(purge_list_head);
 926       if (Atomic::cmpxchg(&_exception_cache_purge_list, purge_list_head, entry) == purge_list_head) {
 927         break;
 928       }
 929     }
 930   }
 931 }
 932 
 933 // Delete exception caches that have been concurrently unlinked,
 934 // followed by a global handshake operation.
 935 void CodeCache::purge_exception_caches() {
 936   ExceptionCache* curr = _exception_cache_purge_list;
 937   while (curr != nullptr) {
 938     ExceptionCache* next = curr->purge_list_next();
 939     delete curr;
 940     curr = next;
 941   }
 942   _exception_cache_purge_list = nullptr;
 943 }
 944 
 945 // Restart compiler if possible and required..
 946 void CodeCache::maybe_restart_compiler(size_t freed_memory) {
 947 
 948   // Try to start the compiler again if we freed any memory
 949   if (!CompileBroker::should_compile_new_jobs() && freed_memory != 0) {
 950     CompileBroker::set_should_compile_new_jobs(CompileBroker::run_compilation);
 951     log_info(codecache)("Restarting compiler");
 952     EventJITRestart event;
 953     event.set_freedMemory(freed_memory);
 954     event.set_codeCacheMaxCapacity(CodeCache::max_capacity());
 955     event.commit();
 956   }
 957 }
 958 
 959 uint8_t CodeCache::_unloading_cycle = 1;
 960 
 961 void CodeCache::increment_unloading_cycle() {
 962   // 2-bit value (see IsUnloadingState in nmethod.cpp for details)
 963   // 0 is reserved for new methods.
 964   _unloading_cycle = (_unloading_cycle + 1) % 4;
 965   if (_unloading_cycle == 0) {
 966     _unloading_cycle = 1;
 967   }
 968 }
 969 
 970 CodeCache::UnlinkingScope::UnlinkingScope(BoolObjectClosure* is_alive)
 971   : _is_unloading_behaviour(is_alive)
 972 {
 973   _saved_behaviour = IsUnloadingBehaviour::current();
 974   IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
 975   increment_unloading_cycle();
 976   DependencyContext::cleaning_start();
 977 }
 978 
 979 CodeCache::UnlinkingScope::~UnlinkingScope() {
 980   IsUnloadingBehaviour::set_current(_saved_behaviour);
 981   DependencyContext::cleaning_end();
 982 }
 983 
 984 void CodeCache::verify_oops() {
 985   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 986   VerifyOopClosure voc;
 987   NMethodIterator iter(NMethodIterator::not_unloading);
 988   while(iter.next()) {
 989     nmethod* nm = iter.method();
 990     nm->oops_do(&voc);
 991     nm->verify_oop_relocations();
 992   }
 993 }
 994 
 995 int CodeCache::blob_count(CodeBlobType code_blob_type) {
 996   CodeHeap* heap = get_code_heap(code_blob_type);
 997   return (heap != nullptr) ? heap->blob_count() : 0;
 998 }
 999 
1000 int CodeCache::blob_count() {
1001   int count = 0;
1002   FOR_ALL_HEAPS(heap) {
1003     count += (*heap)->blob_count();
1004   }
1005   return count;
1006 }
1007 
1008 int CodeCache::nmethod_count(CodeBlobType code_blob_type) {
1009   CodeHeap* heap = get_code_heap(code_blob_type);
1010   return (heap != nullptr) ? heap->nmethod_count() : 0;
1011 }
1012 
1013 int CodeCache::nmethod_count() {
1014   int count = 0;
1015   for (CodeHeap* heap : *_nmethod_heaps) {
1016     count += heap->nmethod_count();
1017   }
1018   return count;
1019 }
1020 
1021 int CodeCache::adapter_count(CodeBlobType code_blob_type) {
1022   CodeHeap* heap = get_code_heap(code_blob_type);
1023   return (heap != nullptr) ? heap->adapter_count() : 0;
1024 }
1025 
1026 int CodeCache::adapter_count() {
1027   int count = 0;
1028   FOR_ALL_HEAPS(heap) {
1029     count += (*heap)->adapter_count();
1030   }
1031   return count;
1032 }
1033 
1034 address CodeCache::low_bound(CodeBlobType code_blob_type) {
1035   CodeHeap* heap = get_code_heap(code_blob_type);
1036   return (heap != nullptr) ? (address)heap->low_boundary() : nullptr;
1037 }
1038 
1039 address CodeCache::high_bound(CodeBlobType code_blob_type) {
1040   CodeHeap* heap = get_code_heap(code_blob_type);
1041   return (heap != nullptr) ? (address)heap->high_boundary() : nullptr;
1042 }
1043 
1044 size_t CodeCache::capacity() {
1045   size_t cap = 0;
1046   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1047     cap += (*heap)->capacity();
1048   }
1049   return cap;
1050 }
1051 
1052 size_t CodeCache::unallocated_capacity(CodeBlobType code_blob_type) {
1053   CodeHeap* heap = get_code_heap(code_blob_type);
1054   return (heap != nullptr) ? heap->unallocated_capacity() : 0;
1055 }
1056 
1057 size_t CodeCache::unallocated_capacity() {
1058   size_t unallocated_cap = 0;
1059   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1060     unallocated_cap += (*heap)->unallocated_capacity();
1061   }
1062   return unallocated_cap;
1063 }
1064 
1065 size_t CodeCache::max_capacity() {
1066   size_t max_cap = 0;
1067   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1068     max_cap += (*heap)->max_capacity();
1069   }
1070   return max_cap;
1071 }
1072 
1073 bool CodeCache::is_non_nmethod(address addr) {
1074   CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod);
1075   return blob->contains(addr);
1076 }
1077 
1078 size_t CodeCache::max_distance_to_non_nmethod() {
1079   if (!SegmentedCodeCache) {
1080     return ReservedCodeCacheSize;
1081   } else {
1082     CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod);
1083     // the max distance is minimized by placing the NonNMethod segment
1084     // in between MethodProfiled and MethodNonProfiled segments
1085     size_t dist1 = (size_t)blob->high() - (size_t)_low_bound;
1086     size_t dist2 = (size_t)_high_bound - (size_t)blob->low();
1087     return dist1 > dist2 ? dist1 : dist2;
1088   }
1089 }
1090 
1091 // Returns the reverse free ratio. E.g., if 25% (1/4) of the code cache
1092 // is free, reverse_free_ratio() returns 4.
1093 // Since code heap for each type of code blobs falls forward to the next
1094 // type of code heap, return the reverse free ratio for the entire
1095 // code cache.
1096 double CodeCache::reverse_free_ratio() {
1097   double unallocated = MAX2((double)unallocated_capacity(), 1.0); // Avoid division by 0;
1098   double max = (double)max_capacity();
1099   double result = max / unallocated;
1100   assert (max >= unallocated, "Must be");
1101   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1102   return result;
1103 }
1104 
1105 size_t CodeCache::bytes_allocated_in_freelists() {
1106   size_t allocated_bytes = 0;
1107   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1108     allocated_bytes += (*heap)->allocated_in_freelist();
1109   }
1110   return allocated_bytes;
1111 }
1112 
1113 int CodeCache::allocated_segments() {
1114   int number_of_segments = 0;
1115   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1116     number_of_segments += (*heap)->allocated_segments();
1117   }
1118   return number_of_segments;
1119 }
1120 
1121 size_t CodeCache::freelists_length() {
1122   size_t length = 0;
1123   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1124     length += (*heap)->freelist_length();
1125   }
1126   return length;
1127 }
1128 
1129 void icache_init();
1130 
1131 void CodeCache::initialize() {
1132   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1133 #ifdef COMPILER2
1134   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1135 #endif
1136   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1137   // This was originally just a check of the alignment, causing failure, instead, round
1138   // the code cache to the page size.  In particular, Solaris is moving to a larger
1139   // default page size.
1140   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1141 
1142   if (SegmentedCodeCache) {
1143     // Use multiple code heaps
1144     initialize_heaps();
1145   } else {
1146     // Use a single code heap
1147     FLAG_SET_ERGO(NonNMethodCodeHeapSize, (uintx)os::vm_page_size());
1148     FLAG_SET_ERGO(ProfiledCodeHeapSize, 0);
1149     FLAG_SET_ERGO(NonProfiledCodeHeapSize, 0);
1150 
1151     // If InitialCodeCacheSize is equal to ReservedCodeCacheSize, then it's more likely
1152     // users want to use the largest available page.
1153     const size_t min_pages = (InitialCodeCacheSize == ReservedCodeCacheSize) ? 1 : 8;
1154     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize, page_size(false, min_pages));
1155     // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory.
1156     LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size());
1157     add_heap(rs, "CodeCache", CodeBlobType::All);
1158   }
1159 
1160   // Initialize ICache flush mechanism
1161   // This service is needed for os::register_code_area
1162   icache_init();
1163 
1164   // Give OS a chance to register generated code area.
1165   // This is used on Windows 64 bit platforms to register
1166   // Structured Exception Handlers for our generated code.
1167   os::register_code_area((char*)low_bound(), (char*)high_bound());
1168 }
1169 
1170 void codeCache_init() {
1171   CodeCache::initialize();
1172 }
1173 
1174 //------------------------------------------------------------------------------------------------
1175 
1176 bool CodeCache::has_nmethods_with_dependencies() {
1177   return Atomic::load_acquire(&_number_of_nmethods_with_dependencies) != 0;
1178 }
1179 
1180 void CodeCache::clear_inline_caches() {
1181   assert_locked_or_safepoint(CodeCache_lock);
1182   NMethodIterator iter(NMethodIterator::not_unloading);
1183   while(iter.next()) {
1184     iter.method()->clear_inline_caches();
1185   }
1186 }
1187 
1188 // Only used by whitebox API
1189 void CodeCache::cleanup_inline_caches_whitebox() {
1190   assert_locked_or_safepoint(CodeCache_lock);
1191   NMethodIterator iter(NMethodIterator::not_unloading);
1192   while(iter.next()) {
1193     iter.method()->cleanup_inline_caches_whitebox();
1194   }
1195 }
1196 
1197 // Keeps track of time spent for checking dependencies
1198 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1199 
1200 #ifndef PRODUCT
1201 // Check if any of live methods dependencies have been invalidated.
1202 // (this is expensive!)
1203 static void check_live_nmethods_dependencies(DepChange& changes) {
1204   // Checked dependencies are allocated into this ResourceMark
1205   ResourceMark rm;
1206 
1207   // Turn off dependency tracing while actually testing dependencies.
1208   FlagSetting fs(Dependencies::_verify_in_progress, true);
1209 
1210   typedef ResourceHashtable<DependencySignature, int, 11027,
1211                             AnyObj::RESOURCE_AREA, mtInternal,
1212                             &DependencySignature::hash,
1213                             &DependencySignature::equals> DepTable;
1214 
1215   DepTable* table = new DepTable();
1216 
1217   // Iterate over live nmethods and check dependencies of all nmethods that are not
1218   // marked for deoptimization. A particular dependency is only checked once.
1219   NMethodIterator iter(NMethodIterator::not_unloading);
1220   while(iter.next()) {
1221     nmethod* nm = iter.method();
1222     // Only notify for live nmethods
1223     if (!nm->is_marked_for_deoptimization()) {
1224       for (Dependencies::DepStream deps(nm); deps.next(); ) {
1225         // Construct abstraction of a dependency.
1226         DependencySignature* current_sig = new DependencySignature(deps);
1227 
1228         // Determine if dependency is already checked. table->put(...) returns
1229         // 'true' if the dependency is added (i.e., was not in the hashtable).
1230         if (table->put(*current_sig, 1)) {
1231           Klass* witness = deps.check_dependency();
1232           if (witness != nullptr) {
1233             // Dependency checking failed. Print out information about the failed
1234             // dependency and finally fail with an assert. We can fail here, since
1235             // dependency checking is never done in a product build.
1236             deps.print_dependency(tty, witness, true);
1237             changes.print();
1238             nm->print();
1239             nm->print_dependencies_on(tty);
1240             assert(false, "Should have been marked for deoptimization");
1241           }
1242         }
1243       }
1244     }
1245   }
1246 }
1247 #endif
1248 
1249 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, KlassDepChange& changes) {
1250   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1251 
1252   // search the hierarchy looking for nmethods which are affected by the loading of this class
1253 
1254   // then search the interfaces this class implements looking for nmethods
1255   // which might be dependent of the fact that an interface only had one
1256   // implementor.
1257   // nmethod::check_all_dependencies works only correctly, if no safepoint
1258   // can happen
1259   NoSafepointVerifier nsv;
1260   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1261     InstanceKlass* d = str.klass();
1262     {
1263       LogStreamHandle(Trace, dependencies) log;
1264       if (log.is_enabled()) {
1265         log.print("Processing context ");
1266         d->name()->print_value_on(&log);
1267       }
1268     }
1269     d->mark_dependent_nmethods(deopt_scope, changes);
1270   }
1271 
1272 #ifndef PRODUCT
1273   if (VerifyDependencies) {
1274     // Object pointers are used as unique identifiers for dependency arguments. This
1275     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1276     dependentCheckTime.start();
1277     check_live_nmethods_dependencies(changes);
1278     dependentCheckTime.stop();
1279   }
1280 #endif
1281 }
1282 
1283 #if INCLUDE_JVMTI
1284 // RedefineClasses support for saving nmethods that are dependent on "old" methods.
1285 // We don't really expect this table to grow very large.  If it does, it can become a hashtable.
1286 static GrowableArray<nmethod*>* old_nmethod_table = nullptr;
1287 
1288 static void add_to_old_table(nmethod* c) {
1289   if (old_nmethod_table == nullptr) {
1290     old_nmethod_table = new (mtCode) GrowableArray<nmethod*>(100, mtCode);
1291   }
1292   old_nmethod_table->push(c);
1293 }
1294 
1295 static void reset_old_method_table() {
1296   if (old_nmethod_table != nullptr) {
1297     delete old_nmethod_table;
1298     old_nmethod_table = nullptr;
1299   }
1300 }
1301 
1302 // Remove this method when flushed.
1303 void CodeCache::unregister_old_nmethod(nmethod* c) {
1304   assert_lock_strong(CodeCache_lock);
1305   if (old_nmethod_table != nullptr) {
1306     int index = old_nmethod_table->find(c);
1307     if (index != -1) {
1308       old_nmethod_table->delete_at(index);
1309     }
1310   }
1311 }
1312 
1313 void CodeCache::old_nmethods_do(MetadataClosure* f) {
1314   // Walk old method table and mark those on stack.
1315   int length = 0;
1316   if (old_nmethod_table != nullptr) {
1317     length = old_nmethod_table->length();
1318     for (int i = 0; i < length; i++) {
1319       // Walk all methods saved on the last pass.  Concurrent class unloading may
1320       // also be looking at this method's metadata, so don't delete it yet if
1321       // it is marked as unloaded.
1322       old_nmethod_table->at(i)->metadata_do(f);
1323     }
1324   }
1325   log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length);
1326 }
1327 
1328 // Walk compiled methods and mark dependent methods for deoptimization.
1329 void CodeCache::mark_dependents_for_evol_deoptimization(DeoptimizationScope* deopt_scope) {
1330   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1331   // Each redefinition creates a new set of nmethods that have references to "old" Methods
1332   // So delete old method table and create a new one.
1333   reset_old_method_table();
1334 
1335   NMethodIterator iter(NMethodIterator::all);
1336   while(iter.next()) {
1337     nmethod* nm = iter.method();
1338     // Walk all alive nmethods to check for old Methods.
1339     // This includes methods whose inline caches point to old methods, so
1340     // inline cache clearing is unnecessary.
1341     if (nm->has_evol_metadata()) {
1342       deopt_scope->mark(nm);
1343       add_to_old_table(nm);
1344     }
1345   }
1346 }
1347 
1348 void CodeCache::mark_all_nmethods_for_evol_deoptimization(DeoptimizationScope* deopt_scope) {
1349   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1350   NMethodIterator iter(NMethodIterator::all);
1351   while(iter.next()) {
1352     nmethod* nm = iter.method();
1353     if (!nm->method()->is_method_handle_intrinsic()) {
1354       if (nm->can_be_deoptimized()) {
1355         deopt_scope->mark(nm);
1356       }
1357       if (nm->has_evol_metadata()) {
1358         add_to_old_table(nm);
1359       }
1360     }
1361   }
1362 }
1363 
1364 #endif // INCLUDE_JVMTI
1365 
1366 // Mark methods for deopt (if safe or possible).
1367 void CodeCache::mark_all_nmethods_for_deoptimization(DeoptimizationScope* deopt_scope) {
1368   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1369   NMethodIterator iter(NMethodIterator::not_unloading);
1370   while(iter.next()) {
1371     nmethod* nm = iter.method();
1372     if (!nm->is_native_method()) {
1373       deopt_scope->mark(nm);
1374     }
1375   }
1376 }
1377 
1378 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, Method* dependee) {
1379   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1380 
1381   NMethodIterator iter(NMethodIterator::not_unloading);
1382   while(iter.next()) {
1383     nmethod* nm = iter.method();
1384     if (nm->is_dependent_on_method(dependee)) {
1385       deopt_scope->mark(nm);
1386     }
1387   }
1388 }
1389 
1390 void CodeCache::make_marked_nmethods_deoptimized() {
1391   RelaxedNMethodIterator iter(RelaxedNMethodIterator::not_unloading);
1392   while(iter.next()) {
1393     nmethod* nm = iter.method();
1394     if (nm->is_marked_for_deoptimization() && !nm->has_been_deoptimized() && nm->can_be_deoptimized()) {
1395       nm->make_not_entrant();
1396       nm->make_deoptimized();
1397     }
1398   }
1399 }
1400 
1401 // Marks compiled methods dependent on dependee.
1402 void CodeCache::mark_dependents_on(DeoptimizationScope* deopt_scope, InstanceKlass* dependee) {
1403   assert_lock_strong(Compile_lock);
1404 
1405   if (!has_nmethods_with_dependencies()) {
1406     return;
1407   }
1408 
1409   if (dependee->is_linked()) {
1410     // Class initialization state change.
1411     KlassInitDepChange changes(dependee);
1412     mark_for_deoptimization(deopt_scope, changes);
1413   } else {
1414     // New class is loaded.
1415     NewKlassDepChange changes(dependee);
1416     mark_for_deoptimization(deopt_scope, changes);
1417   }
1418 }
1419 
1420 // Marks compiled methods dependent on dependee
1421 void CodeCache::mark_dependents_on_method_for_breakpoint(const methodHandle& m_h) {
1422   assert(SafepointSynchronize::is_at_safepoint(), "invariant");
1423 
1424   DeoptimizationScope deopt_scope;
1425   // Compute the dependent nmethods
1426   mark_for_deoptimization(&deopt_scope, m_h());
1427   deopt_scope.deoptimize_marked();
1428 }
1429 
1430 void CodeCache::verify() {
1431   assert_locked_or_safepoint(CodeCache_lock);
1432   FOR_ALL_HEAPS(heap) {
1433     (*heap)->verify();
1434     FOR_ALL_BLOBS(cb, *heap) {
1435       cb->verify();
1436     }
1437   }
1438 }
1439 
1440 // A CodeHeap is full. Print out warning and report event.
1441 PRAGMA_DIAG_PUSH
1442 PRAGMA_FORMAT_NONLITERAL_IGNORED
1443 void CodeCache::report_codemem_full(CodeBlobType code_blob_type, bool print) {
1444   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1445   CodeHeap* heap = get_code_heap(code_blob_type);
1446   assert(heap != nullptr, "heap is null");
1447 
1448   int full_count = heap->report_full();
1449 
1450   if ((full_count == 1) || print) {
1451     // Not yet reported for this heap, report
1452     if (SegmentedCodeCache) {
1453       ResourceMark rm;
1454       stringStream msg1_stream, msg2_stream;
1455       msg1_stream.print("%s is full. Compiler has been disabled.",
1456                         get_code_heap_name(code_blob_type));
1457       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1458                  get_code_heap_flag_name(code_blob_type));
1459       const char *msg1 = msg1_stream.as_string();
1460       const char *msg2 = msg2_stream.as_string();
1461 
1462       log_warning(codecache)("%s", msg1);
1463       log_warning(codecache)("%s", msg2);
1464       warning("%s", msg1);
1465       warning("%s", msg2);
1466     } else {
1467       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1468       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1469 
1470       log_warning(codecache)("%s", msg1);
1471       log_warning(codecache)("%s", msg2);
1472       warning("%s", msg1);
1473       warning("%s", msg2);
1474     }
1475     stringStream s;
1476     // Dump code cache into a buffer before locking the tty.
1477     {
1478       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1479       print_summary(&s);
1480     }
1481     {
1482       ttyLocker ttyl;
1483       tty->print("%s", s.freeze());
1484     }
1485 
1486     if (full_count == 1) {
1487       if (PrintCodeHeapAnalytics) {
1488         CompileBroker::print_heapinfo(tty, "all", 4096); // details, may be a lot!
1489       }
1490     }
1491   }
1492 
1493   EventCodeCacheFull event;
1494   if (event.should_commit()) {
1495     event.set_codeBlobType((u1)code_blob_type);
1496     event.set_startAddress((u8)heap->low_boundary());
1497     event.set_commitedTopAddress((u8)heap->high());
1498     event.set_reservedTopAddress((u8)heap->high_boundary());
1499     event.set_entryCount(heap->blob_count());
1500     event.set_methodCount(heap->nmethod_count());
1501     event.set_adaptorCount(heap->adapter_count());
1502     event.set_unallocatedCapacity(heap->unallocated_capacity());
1503     event.set_fullCount(heap->full_count());
1504     event.set_codeCacheMaxCapacity(CodeCache::max_capacity());
1505     event.commit();
1506   }
1507 }
1508 PRAGMA_DIAG_POP
1509 
1510 void CodeCache::print_memory_overhead() {
1511   size_t wasted_bytes = 0;
1512   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1513       CodeHeap* curr_heap = *heap;
1514       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != nullptr; cb = (CodeBlob*)curr_heap->next(cb)) {
1515         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1516         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1517       }
1518   }
1519   // Print bytes that are allocated in the freelist
1520   ttyLocker ttl;
1521   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1522   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1523   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1524   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1525 }
1526 
1527 static void print_helper1(outputStream* st, const char* prefix, int total, int not_entrant, int used) {
1528   if (total > 0) {
1529     double ratio = (100.0 * used) / total;
1530     st->print("%s %3d nmethods: %3d not_entrant, %d used (%2.1f%%)", prefix, total, not_entrant, used, ratio);
1531   }
1532 }
1533 
1534 void CodeCache::print_nmethod_statistics_on(outputStream* st) {
1535   int stats     [2][6][3][2] = {0};
1536   int stats_used[2][6][3][2] = {0};
1537 
1538   int total_osr = 0;
1539   int total_entrant = 0;
1540   int total_non_entrant = 0;
1541   int total_other = 0;
1542   int total_used = 0;
1543 
1544   NMethodIterator iter(NMethodIterator::all);
1545   while (iter.next()) {
1546     nmethod* nm = iter.method();
1547     if (nm->is_in_use()) {
1548       ++total_entrant;
1549     } else if (nm->is_not_entrant()) {
1550       ++total_non_entrant;
1551     } else {
1552       ++total_other;
1553     }
1554     if (nm->is_osr_method()) {
1555       ++total_osr;
1556     }
1557     if (nm->used()) {
1558       ++total_used;
1559     }
1560     assert(!nm->preloaded() || nm->comp_level() == CompLevel_full_optimization, "");
1561 
1562     int idx1 = nm->is_scc() ? 1 : 0;
1563     int idx2 = nm->comp_level() + (nm->preloaded() ? 1 : 0);
1564     int idx3 = (nm->is_in_use()      ? 0 :
1565                (nm->is_not_entrant() ? 1 :
1566                                        2));
1567     int idx4 = (nm->is_osr_method() ? 1 : 0);
1568     stats[idx1][idx2][idx3][idx4] += 1;
1569     if (nm->used()) {
1570       stats_used[idx1][idx2][idx3][idx4] += 1;
1571     }
1572   }
1573 
1574   st->print("Total: %d methods (%d entrant / %d not_entrant; osr: %d ",
1575                total_entrant + total_non_entrant + total_other,
1576                total_entrant, total_non_entrant, total_osr);
1577   if (total_other > 0) {
1578     st->print("; %d other", total_other);
1579   }
1580   st->print_cr(")");
1581 
1582   for (int i = CompLevel_simple; i <= CompLevel_full_optimization; i++) {
1583     int total_normal = stats[0][i][0][0] + stats[0][i][1][0] + stats[0][i][2][0];
1584     int total_osr    = stats[0][i][0][1] + stats[0][i][1][1] + stats[0][i][2][1];
1585     if (total_normal + total_osr > 0) {
1586       st->print("  Tier%d:", i);
1587       print_helper1(st,      "", total_normal, stats[0][i][1][0], stats_used[0][i][0][0] + stats_used[0][i][1][0]);
1588       print_helper1(st, "; osr:", total_osr,    stats[0][i][1][1], stats_used[0][i][0][1] + stats_used[0][i][1][1]);
1589       st->cr();
1590     }
1591   }
1592   st->cr();
1593   for (int i = CompLevel_simple; i <= CompLevel_full_optimization + 1; i++) {
1594     int total_normal = stats[1][i][0][0] + stats[1][i][1][0] + stats[1][i][2][0];
1595     int total_osr    = stats[1][i][0][1] + stats[1][i][1][1] + stats[1][i][2][1];
1596     assert(total_osr == 0, "sanity");
1597     if (total_normal + total_osr > 0) {
1598       st->print("  SC T%d:", i);
1599       print_helper1(st,      "", total_normal, stats[1][i][1][0], stats_used[1][i][0][0] + stats_used[1][i][1][0]);
1600       print_helper1(st, "; osr:", total_osr,    stats[1][i][1][1], stats_used[1][i][0][1] + stats_used[1][i][1][1]);
1601       st->cr();
1602     }
1603   }
1604 }
1605 
1606 //------------------------------------------------------------------------------------------------
1607 // Non-product version
1608 
1609 #ifndef PRODUCT
1610 
1611 void CodeCache::print_trace(const char* event, CodeBlob* cb, uint size) {
1612   if (PrintCodeCache2) {  // Need to add a new flag
1613     ResourceMark rm;
1614     if (size == 0) {
1615       int s = cb->size();
1616       assert(s >= 0, "CodeBlob size is negative: %d", s);
1617       size = (uint) s;
1618     }
1619     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1620   }
1621 }
1622 
1623 void CodeCache::print_internals() {
1624   int nmethodCount = 0;
1625   int runtimeStubCount = 0;
1626   int adapterCount = 0;
1627   int deoptimizationStubCount = 0;
1628   int uncommonTrapStubCount = 0;
1629   int bufferBlobCount = 0;
1630   int total = 0;
1631   int nmethodNotEntrant = 0;
1632   int nmethodJava = 0;
1633   int nmethodNative = 0;
1634   int max_nm_size = 0;
1635   ResourceMark rm;
1636 
1637   int i = 0;
1638   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1639     int heap_total = 0;
1640     tty->print_cr("-- %s --", (*heap)->name());
1641     FOR_ALL_BLOBS(cb, *heap) {
1642       total++;
1643       heap_total++;
1644       if (cb->is_nmethod()) {
1645         nmethod* nm = (nmethod*)cb;
1646 
1647         tty->print("%4d: ", heap_total);
1648         CompileTask::print(tty, nm, (nm->is_not_entrant() ? "non-entrant" : ""), true, true);
1649 
1650         nmethodCount++;
1651 
1652         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1653         if(nm->method() != nullptr && nm->is_native_method()) { nmethodNative++; }
1654 
1655         if(nm->method() != nullptr && nm->is_java_method()) {
1656           nmethodJava++;
1657           max_nm_size = MAX2(max_nm_size, nm->size());
1658         }
1659       } else if (cb->is_runtime_stub()) {
1660         runtimeStubCount++;
1661       } else if (cb->is_deoptimization_stub()) {
1662         deoptimizationStubCount++;
1663       } else if (cb->is_uncommon_trap_stub()) {
1664         uncommonTrapStubCount++;
1665       } else if (cb->is_adapter_blob()) {
1666         adapterCount++;
1667       } else if (cb->is_buffer_blob()) {
1668         bufferBlobCount++;
1669       }
1670     }
1671   }
1672 
1673   int bucketSize = 512;
1674   int bucketLimit = max_nm_size / bucketSize + 1;
1675   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1676   memset(buckets, 0, sizeof(int) * bucketLimit);
1677 
1678   NMethodIterator iter(NMethodIterator::all);
1679   while(iter.next()) {
1680     nmethod* nm = iter.method();
1681     if(nm->method() != nullptr && nm->is_java_method()) {
1682       buckets[nm->size() / bucketSize]++;
1683     }
1684   }
1685 
1686   tty->print_cr("Code Cache Entries (total of %d)",total);
1687   tty->print_cr("-------------------------------------------------");
1688   tty->print_cr("nmethods: %d",nmethodCount);
1689   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1690   tty->print_cr("\tjava: %d",nmethodJava);
1691   tty->print_cr("\tnative: %d",nmethodNative);
1692   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1693   tty->print_cr("adapters: %d",adapterCount);
1694   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1695   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1696   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1697   tty->print_cr("\nnmethod size distribution");
1698   tty->print_cr("-------------------------------------------------");
1699 
1700   for(int i=0; i<bucketLimit; i++) {
1701     if(buckets[i] != 0) {
1702       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1703       tty->fill_to(40);
1704       tty->print_cr("%d",buckets[i]);
1705     }
1706   }
1707 
1708   FREE_C_HEAP_ARRAY(int, buckets);
1709   print_memory_overhead();
1710 }
1711 
1712 #endif // !PRODUCT
1713 
1714 void CodeCache::print() {
1715   print_summary(tty);
1716 
1717 #ifndef PRODUCT
1718   if (!Verbose) return;
1719 
1720   CodeBlob_sizes live[CompLevel_full_optimization + 1];
1721   CodeBlob_sizes runtimeStub;
1722   CodeBlob_sizes uncommonTrapStub;
1723   CodeBlob_sizes deoptimizationStub;
1724   CodeBlob_sizes adapter;
1725   CodeBlob_sizes bufferBlob;
1726   CodeBlob_sizes other;
1727 
1728   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1729     FOR_ALL_BLOBS(cb, *heap) {
1730       if (cb->is_nmethod()) {
1731         const int level = cb->as_nmethod()->comp_level();
1732         assert(0 <= level && level <= CompLevel_full_optimization, "Invalid compilation level");
1733         live[level].add(cb);
1734       } else if (cb->is_runtime_stub()) {
1735         runtimeStub.add(cb);
1736       } else if (cb->is_deoptimization_stub()) {
1737         deoptimizationStub.add(cb);
1738       } else if (cb->is_uncommon_trap_stub()) {
1739         uncommonTrapStub.add(cb);
1740       } else if (cb->is_adapter_blob()) {
1741         adapter.add(cb);
1742       } else if (cb->is_buffer_blob()) {
1743         bufferBlob.add(cb);
1744       } else {
1745         other.add(cb);
1746       }
1747     }
1748   }
1749 
1750   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1751 
1752   tty->print_cr("nmethod blobs per compilation level:");
1753   for (int i = 0; i <= CompLevel_full_optimization; i++) {
1754     const char *level_name;
1755     switch (i) {
1756     case CompLevel_none:              level_name = "none";              break;
1757     case CompLevel_simple:            level_name = "simple";            break;
1758     case CompLevel_limited_profile:   level_name = "limited profile";   break;
1759     case CompLevel_full_profile:      level_name = "full profile";      break;
1760     case CompLevel_full_optimization: level_name = "full optimization"; break;
1761     default: assert(false, "invalid compilation level");
1762     }
1763     tty->print_cr("%s:", level_name);
1764     live[i].print("live");
1765   }
1766 
1767   struct {
1768     const char* name;
1769     const CodeBlob_sizes* sizes;
1770   } non_nmethod_blobs[] = {
1771     { "runtime",        &runtimeStub },
1772     { "uncommon trap",  &uncommonTrapStub },
1773     { "deoptimization", &deoptimizationStub },
1774     { "adapter",        &adapter },
1775     { "buffer blob",    &bufferBlob },
1776     { "other",          &other },
1777   };
1778   tty->print_cr("Non-nmethod blobs:");
1779   for (auto& blob: non_nmethod_blobs) {
1780     blob.sizes->print(blob.name);
1781   }
1782 
1783   if (WizardMode) {
1784      // print the oop_map usage
1785     int code_size = 0;
1786     int number_of_blobs = 0;
1787     int number_of_oop_maps = 0;
1788     int map_size = 0;
1789     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1790       FOR_ALL_BLOBS(cb, *heap) {
1791         number_of_blobs++;
1792         code_size += cb->code_size();
1793         ImmutableOopMapSet* set = cb->oop_maps();
1794         if (set != nullptr) {
1795           number_of_oop_maps += set->count();
1796           map_size           += set->nr_of_bytes();
1797         }
1798       }
1799     }
1800     tty->print_cr("OopMaps");
1801     tty->print_cr("  #blobs    = %d", number_of_blobs);
1802     tty->print_cr("  code size = %d", code_size);
1803     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1804     tty->print_cr("  map size  = %d", map_size);
1805   }
1806 
1807 #endif // !PRODUCT
1808 }
1809 
1810 void CodeCache::print_nmethods_on(outputStream* st) {
1811   ResourceMark rm;
1812   int i = 0;
1813   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1814     st->print_cr("-- %s --", (*heap)->name());
1815     FOR_ALL_BLOBS(cb, *heap) {
1816       i++;
1817       if (cb->is_nmethod()) {
1818         nmethod* nm = (nmethod*)cb;
1819         st->print("%4d: ", i);
1820         CompileTask::print(st, nm, nullptr, true, false);
1821 
1822         const char non_entrant_char = (nm->is_not_entrant() ? 'N' : ' ');
1823         st->print_cr(" %c", non_entrant_char);
1824       }
1825     }
1826   }
1827 }
1828 
1829 void CodeCache::print_summary(outputStream* st, bool detailed) {
1830   int full_count = 0;
1831   julong total_used = 0;
1832   julong total_max_used = 0;
1833   julong total_free = 0;
1834   julong total_size = 0;
1835   FOR_ALL_HEAPS(heap_iterator) {
1836     CodeHeap* heap = (*heap_iterator);
1837     size_t total = (heap->high_boundary() - heap->low_boundary());
1838     if (_heaps->length() >= 1) {
1839       st->print("%s:", heap->name());
1840     } else {
1841       st->print("CodeCache:");
1842     }
1843     size_t size = total/K;
1844     size_t used = (total - heap->unallocated_capacity())/K;
1845     size_t max_used = heap->max_allocated_capacity()/K;
1846     size_t free = heap->unallocated_capacity()/K;
1847     total_size += size;
1848     total_used += used;
1849     total_max_used += max_used;
1850     total_free += free;
1851     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1852                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1853                  size, used, max_used, free);
1854 
1855     if (detailed) {
1856       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1857                    p2i(heap->low_boundary()),
1858                    p2i(heap->high()),
1859                    p2i(heap->high_boundary()));
1860 
1861       full_count += get_codemem_full_count(heap->code_blob_type());
1862     }
1863   }
1864 
1865   if (detailed) {
1866     if (SegmentedCodeCache) {
1867       st->print("CodeCache:");
1868       st->print_cr(" size=" JULONG_FORMAT "Kb, used=" JULONG_FORMAT
1869                    "Kb, max_used=" JULONG_FORMAT "Kb, free=" JULONG_FORMAT "Kb",
1870                    total_size, total_used, total_max_used, total_free);
1871     }
1872     st->print_cr(" total_blobs=" UINT32_FORMAT ", nmethods=" UINT32_FORMAT
1873                  ", adapters=" UINT32_FORMAT ", full_count=" UINT32_FORMAT,
1874                  blob_count(), nmethod_count(), adapter_count(), full_count);
1875     st->print_cr("Compilation: %s, stopped_count=%d, restarted_count=%d",
1876                  CompileBroker::should_compile_new_jobs() ?
1877                  "enabled" : Arguments::mode() == Arguments::_int ?
1878                  "disabled (interpreter mode)" :
1879                  "disabled (not enough contiguous free space left)",
1880                  CompileBroker::get_total_compiler_stopped_count(),
1881                  CompileBroker::get_total_compiler_restarted_count());
1882   }
1883 }
1884 
1885 void CodeCache::print_codelist(outputStream* st) {
1886   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1887 
1888   NMethodIterator iter(NMethodIterator::not_unloading);
1889   while (iter.next()) {
1890     nmethod* nm = iter.method();
1891     ResourceMark rm;
1892     char* method_name = nm->method()->name_and_sig_as_C_string();
1893     const char* jvmci_name = nullptr;
1894 #if INCLUDE_JVMCI
1895     jvmci_name = nm->jvmci_name();
1896 #endif
1897     st->print_cr("%d %d %d %s%s%s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1898                  nm->compile_id(), nm->comp_level(), nm->get_state(),
1899                  method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "",
1900                  (intptr_t)nm->header_begin(), (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1901   }
1902 }
1903 
1904 void CodeCache::print_layout(outputStream* st) {
1905   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1906   ResourceMark rm;
1907   print_summary(st, true);
1908 }
1909 
1910 void CodeCache::log_state(outputStream* st) {
1911   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1912             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1913             blob_count(), nmethod_count(), adapter_count(),
1914             unallocated_capacity());
1915 }
1916 
1917 #ifdef LINUX
1918 void CodeCache::write_perf_map(const char* filename, outputStream* st) {
1919   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1920   char fname[JVM_MAXPATHLEN];
1921   if (filename == nullptr) {
1922     // Invocation outside of jcmd requires pid substitution.
1923     if (!Arguments::copy_expand_pid(DEFAULT_PERFMAP_FILENAME,
1924                                     strlen(DEFAULT_PERFMAP_FILENAME),
1925                                     fname, JVM_MAXPATHLEN)) {
1926       st->print_cr("Warning: Not writing perf map as pid substitution failed.");
1927       return;
1928     }
1929     filename = fname;
1930   }
1931   fileStream fs(filename, "w");
1932   if (!fs.is_open()) {
1933     st->print_cr("Warning: Failed to create %s for perf map", filename);
1934     return;
1935   }
1936 
1937   AllCodeBlobsIterator iter(AllCodeBlobsIterator::not_unloading);
1938   while (iter.next()) {
1939     CodeBlob *cb = iter.method();
1940     ResourceMark rm;
1941     const char* method_name = nullptr;
1942     const char* jvmci_name = nullptr;
1943     if (cb->is_nmethod()) {
1944       nmethod* nm = cb->as_nmethod();
1945       method_name = nm->method()->external_name();
1946 #if INCLUDE_JVMCI
1947       jvmci_name = nm->jvmci_name();
1948 #endif
1949     } else {
1950       method_name = cb->name();
1951     }
1952     fs.print_cr(INTPTR_FORMAT " " INTPTR_FORMAT " %s%s%s",
1953                 (intptr_t)cb->code_begin(), (intptr_t)cb->code_size(),
1954                 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "");
1955   }
1956 }
1957 #endif // LINUX
1958 
1959 //---<  BEGIN  >--- CodeHeap State Analytics.
1960 
1961 void CodeCache::aggregate(outputStream *out, size_t granularity) {
1962   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1963     CodeHeapState::aggregate(out, (*heap), granularity);
1964   }
1965 }
1966 
1967 void CodeCache::discard(outputStream *out) {
1968   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1969     CodeHeapState::discard(out, (*heap));
1970   }
1971 }
1972 
1973 void CodeCache::print_usedSpace(outputStream *out) {
1974   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1975     CodeHeapState::print_usedSpace(out, (*heap));
1976   }
1977 }
1978 
1979 void CodeCache::print_freeSpace(outputStream *out) {
1980   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1981     CodeHeapState::print_freeSpace(out, (*heap));
1982   }
1983 }
1984 
1985 void CodeCache::print_count(outputStream *out) {
1986   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1987     CodeHeapState::print_count(out, (*heap));
1988   }
1989 }
1990 
1991 void CodeCache::print_space(outputStream *out) {
1992   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1993     CodeHeapState::print_space(out, (*heap));
1994   }
1995 }
1996 
1997 void CodeCache::print_age(outputStream *out) {
1998   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1999     CodeHeapState::print_age(out, (*heap));
2000   }
2001 }
2002 
2003 void CodeCache::print_names(outputStream *out) {
2004   FOR_ALL_ALLOCABLE_HEAPS(heap) {
2005     CodeHeapState::print_names(out, (*heap));
2006   }
2007 }
2008 //---<  END  >--- CodeHeap State Analytics.