1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/cdsAccess.hpp"
  26 #include "code/codeBlob.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/codeHeapState.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "code/dependencyContext.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/SCCache.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/compilerDefinitions.inline.hpp"
  38 #include "compiler/oopMap.hpp"
  39 #include "gc/shared/barrierSetNMethod.hpp"
  40 #include "gc/shared/classUnloadingContext.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "jvm_io.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/iterator.hpp"
  48 #include "memory/memoryReserver.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "oops/method.inline.hpp"
  52 #include "oops/objArrayOop.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "runtime/arguments.hpp"
  56 #include "runtime/atomic.hpp"
  57 #include "runtime/deoptimization.hpp"
  58 #include "runtime/globals_extension.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/icache.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/mutexLocker.hpp"
  64 #include "runtime/os.inline.hpp"
  65 #include "runtime/safepointVerifiers.hpp"
  66 #include "runtime/vmThread.hpp"
  67 #include "sanitizers/leak.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/vmError.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Compilation.hpp"
  74 #include "c1/c1_Compiler.hpp"
  75 #endif
  76 #ifdef COMPILER2
  77 #include "opto/c2compiler.hpp"
  78 #include "opto/compile.hpp"
  79 #include "opto/node.hpp"
  80 #endif
  81 
  82 // Helper class for printing in CodeCache
  83 class CodeBlob_sizes {
  84  private:
  85   int count;
  86   int total_size;
  87   int header_size;
  88   int code_size;
  89   int stub_size;
  90   int relocation_size;
  91   int scopes_oop_size;
  92   int scopes_metadata_size;
  93   int scopes_data_size;
  94   int scopes_pcs_size;
  95 
  96  public:
  97   CodeBlob_sizes() {
  98     count            = 0;
  99     total_size       = 0;
 100     header_size      = 0;
 101     code_size        = 0;
 102     stub_size        = 0;
 103     relocation_size  = 0;
 104     scopes_oop_size  = 0;
 105     scopes_metadata_size  = 0;
 106     scopes_data_size = 0;
 107     scopes_pcs_size  = 0;
 108   }
 109 
 110   int total() const                              { return total_size; }
 111   bool is_empty() const                          { return count == 0; }
 112 
 113   void print(const char* title) const {
 114     if (is_empty()) {
 115       tty->print_cr(" #%d %s = %dK",
 116                     count,
 117                     title,
 118                     total()                 / (int)K);
 119     } else {
 120       tty->print_cr(" #%d %s = %dK (hdr %dK %d%%, loc %dK %d%%, code %dK %d%%, stub %dK %d%%, [oops %dK %d%%, metadata %dK %d%%, data %dK %d%%, pcs %dK %d%%])",
 121                     count,
 122                     title,
 123                     total()                 / (int)K,
 124                     header_size             / (int)K,
 125                     header_size             * 100 / total_size,
 126                     relocation_size         / (int)K,
 127                     relocation_size         * 100 / total_size,
 128                     code_size               / (int)K,
 129                     code_size               * 100 / total_size,
 130                     stub_size               / (int)K,
 131                     stub_size               * 100 / total_size,
 132                     scopes_oop_size         / (int)K,
 133                     scopes_oop_size         * 100 / total_size,
 134                     scopes_metadata_size    / (int)K,
 135                     scopes_metadata_size    * 100 / total_size,
 136                     scopes_data_size        / (int)K,
 137                     scopes_data_size        * 100 / total_size,
 138                     scopes_pcs_size         / (int)K,
 139                     scopes_pcs_size         * 100 / total_size);
 140     }
 141   }
 142 
 143   void add(CodeBlob* cb) {
 144     count++;
 145     total_size       += cb->size();
 146     header_size      += cb->header_size();
 147     relocation_size  += cb->relocation_size();
 148     if (cb->is_nmethod()) {
 149       nmethod* nm = cb->as_nmethod_or_null();
 150       code_size        += nm->insts_size();
 151       stub_size        += nm->stub_size();
 152 
 153       scopes_oop_size  += nm->oops_size();
 154       scopes_metadata_size  += nm->metadata_size();
 155       scopes_data_size += nm->scopes_data_size();
 156       scopes_pcs_size  += nm->scopes_pcs_size();
 157     } else {
 158       code_size        += cb->code_size();
 159     }
 160   }
 161 };
 162 
 163 // Iterate over all CodeHeaps
 164 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 165 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 166 
 167 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 168 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != nullptr; cb = next_blob(heap, cb))
 169 
 170 address CodeCache::_low_bound = nullptr;
 171 address CodeCache::_high_bound = nullptr;
 172 volatile int CodeCache::_number_of_nmethods_with_dependencies = 0;
 173 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = nullptr;
 174 
 175 static ReservedSpace _cds_code_space;
 176 
 177 // Initialize arrays of CodeHeap subsets
 178 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
 179 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
 180 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(mtCode) GrowableArray<CodeHeap*> (static_cast<int>(CodeBlobType::All), mtCode);
 181 
 182 static void check_min_size(const char* codeheap, size_t size, size_t required_size) {
 183   if (size < required_size) {
 184     log_debug(codecache)("Code heap (%s) size %zuK below required minimal size %zuK",
 185                          codeheap, size/K, required_size/K);
 186     err_msg title("Not enough space in %s to run VM", codeheap);
 187     err_msg message("%zuK < %zuK", size/K, required_size/K);
 188     vm_exit_during_initialization(title, message);
 189   }
 190 }
 191 
 192 struct CodeHeapInfo {
 193   size_t size;
 194   bool set;
 195   bool enabled;
 196 };
 197 
 198 static void set_size_of_unset_code_heap(CodeHeapInfo* heap, size_t available_size, size_t used_size, size_t min_size) {
 199   assert(!heap->set, "sanity");
 200   heap->size = (available_size > (used_size + min_size)) ? (available_size - used_size) : min_size;
 201 }
 202 
 203 void CodeCache::initialize_heaps() {
 204   CodeHeapInfo non_nmethod = {NonNMethodCodeHeapSize, FLAG_IS_CMDLINE(NonNMethodCodeHeapSize), true};
 205   CodeHeapInfo profiled = {ProfiledCodeHeapSize, FLAG_IS_CMDLINE(ProfiledCodeHeapSize), true};
 206   CodeHeapInfo non_profiled = {NonProfiledCodeHeapSize, FLAG_IS_CMDLINE(NonProfiledCodeHeapSize), true};
 207 
 208   const bool cache_size_set   = FLAG_IS_CMDLINE(ReservedCodeCacheSize);
 209   const size_t ps             = page_size(false, 8);
 210   const size_t min_size       = MAX2(os::vm_allocation_granularity(), ps);
 211   const size_t min_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3); // Make sure we have enough space for VM internal code
 212   size_t cache_size           = align_up(ReservedCodeCacheSize, min_size);
 213 
 214   // Prerequisites
 215   if (!heap_available(CodeBlobType::MethodProfiled)) {
 216     // For compatibility reasons, disabled tiered compilation overrides
 217     // segment size even if it is set explicitly.
 218     non_profiled.size += profiled.size;
 219     // Profiled code heap is not available, forcibly set size to 0
 220     profiled.size = 0;
 221     profiled.set = true;
 222     profiled.enabled = false;
 223   }
 224 
 225   assert(heap_available(CodeBlobType::MethodNonProfiled), "MethodNonProfiled heap is always available for segmented code heap");
 226 
 227   size_t compiler_buffer_size = 0;
 228   COMPILER1_PRESENT(compiler_buffer_size += CompilationPolicy::c1_count() * Compiler::code_buffer_size());
 229   COMPILER2_PRESENT(compiler_buffer_size += CompilationPolicy::c2_count() * C2Compiler::initial_code_buffer_size());
 230   COMPILER2_PRESENT(compiler_buffer_size += (CompilationPolicy::c2_count() + CompilationPolicy::c3_count()) * C2Compiler::initial_code_buffer_size());
 231 
 232   if (!non_nmethod.set) {
 233     non_nmethod.size += compiler_buffer_size;
 234     // Further down, just before FLAG_SET_ERGO(), all segment sizes are
 235     // aligned down to the next lower multiple of min_size. For large page
 236     // sizes, this may result in (non_nmethod.size == 0) which is not acceptable.
 237     // Therefore, force non_nmethod.size to at least min_size.
 238     non_nmethod.size = MAX2(non_nmethod.size, min_size);
 239   }
 240 
 241   if (!profiled.set && !non_profiled.set) {
 242     non_profiled.size = profiled.size = (cache_size > non_nmethod.size + 2 * min_size) ?
 243                                         (cache_size - non_nmethod.size) / 2 : min_size;
 244   }
 245 
 246   if (profiled.set && !non_profiled.set) {
 247     set_size_of_unset_code_heap(&non_profiled, cache_size, non_nmethod.size + profiled.size, min_size);
 248   }
 249 
 250   if (!profiled.set && non_profiled.set) {
 251     set_size_of_unset_code_heap(&profiled, cache_size, non_nmethod.size + non_profiled.size, min_size);
 252   }
 253 
 254   // Compatibility.
 255   size_t non_nmethod_min_size = min_cache_size + compiler_buffer_size;
 256   if (!non_nmethod.set && profiled.set && non_profiled.set) {
 257     set_size_of_unset_code_heap(&non_nmethod, cache_size, profiled.size + non_profiled.size, non_nmethod_min_size);
 258   }
 259 
 260   size_t total = non_nmethod.size + profiled.size + non_profiled.size;
 261   if (total != cache_size && !cache_size_set) {
 262     log_info(codecache)("ReservedCodeCache size %zuK changed to total segments size NonNMethod "
 263                         "%zuK NonProfiled %zuK Profiled %zuK = %zuK",
 264                         cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K, total/K);
 265     // Adjust ReservedCodeCacheSize as necessary because it was not set explicitly
 266     cache_size = total;
 267   }
 268 
 269   log_debug(codecache)("Initializing code heaps ReservedCodeCache %zuK NonNMethod %zuK"
 270                        " NonProfiled %zuK Profiled %zuK",
 271                        cache_size/K, non_nmethod.size/K, non_profiled.size/K, profiled.size/K);
 272 
 273   // Validation
 274   // Check minimal required sizes
 275   check_min_size("non-nmethod code heap", non_nmethod.size, non_nmethod_min_size);
 276   if (profiled.enabled) {
 277     check_min_size("profiled code heap", profiled.size, min_size);
 278   }
 279   if (non_profiled.enabled) { // non_profiled.enabled is always ON for segmented code heap, leave it checked for clarity
 280     check_min_size("non-profiled code heap", non_profiled.size, min_size);
 281   }
 282   if (cache_size_set) {
 283     check_min_size("reserved code cache", cache_size, min_cache_size);
 284   }
 285 
 286   // ReservedCodeCacheSize was set explicitly, so report an error and abort if it doesn't match the segment sizes
 287   if (total != cache_size && cache_size_set) {
 288     err_msg message("NonNMethodCodeHeapSize (%zuK)", non_nmethod.size/K);
 289     if (profiled.enabled) {
 290       message.append(" + ProfiledCodeHeapSize (%zuK)", profiled.size/K);
 291     }
 292     if (non_profiled.enabled) {
 293       message.append(" + NonProfiledCodeHeapSize (%zuK)", non_profiled.size/K);
 294     }
 295     message.append(" = %zuK", total/K);
 296     message.append((total > cache_size) ? " is greater than " : " is less than ");
 297     message.append("ReservedCodeCacheSize (%zuK).", cache_size/K);
 298 
 299     vm_exit_during_initialization("Invalid code heap sizes", message);
 300   }
 301 
 302   // Compatibility. Print warning if using large pages but not able to use the size given
 303   if (UseLargePages) {
 304     const size_t lg_ps = page_size(false, 1);
 305     if (ps < lg_ps) {
 306       log_warning(codecache)("Code cache size too small for " PROPERFMT " pages. "
 307                              "Reverting to smaller page size (" PROPERFMT ").",
 308                              PROPERFMTARGS(lg_ps), PROPERFMTARGS(ps));
 309     }
 310   }
 311 
 312   // Note: if large page support is enabled, min_size is at least the large
 313   // page size. This ensures that the code cache is covered by large pages.
 314   non_profiled.size += non_nmethod.size & alignment_mask(min_size);
 315   non_profiled.size += profiled.size & alignment_mask(min_size);
 316   non_nmethod.size = align_down(non_nmethod.size, min_size);
 317   profiled.size = align_down(profiled.size, min_size);
 318   non_profiled.size = align_down(non_profiled.size, min_size);
 319 
 320   FLAG_SET_ERGO(NonNMethodCodeHeapSize, non_nmethod.size);
 321   FLAG_SET_ERGO(ProfiledCodeHeapSize, profiled.size);
 322   FLAG_SET_ERGO(NonProfiledCodeHeapSize, non_profiled.size);
 323   FLAG_SET_ERGO(ReservedCodeCacheSize, cache_size);
 324 
 325   const size_t cds_code_size = align_up(CDSAccess::get_cached_code_size(), min_size);
 326   cache_size += cds_code_size;
 327 
 328   ReservedSpace rs = reserve_heap_memory(cache_size, ps);
 329 
 330   // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory.
 331   LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size());
 332 
 333   size_t offset = 0;
 334   if (cds_code_size > 0) {
 335     // FIXME: use CodeHeapInfo for this hack ...
 336     _cds_code_space = rs.partition(offset, cds_code_size);
 337     offset += cds_code_size;
 338   }
 339 
 340   if (profiled.enabled) {
 341     ReservedSpace profiled_space = rs.partition(offset, profiled.size);
 342     offset += profiled.size;
 343     // Tier 2 and tier 3 (profiled) methods
 344     add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 345   }
 346 
 347   ReservedSpace non_method_space = rs.partition(offset, non_nmethod.size);
 348   offset += non_nmethod.size;
 349   // Non-nmethods (stubs, adapters, ...)
 350   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 351 
 352   if (non_profiled.enabled) {
 353     ReservedSpace non_profiled_space  = rs.partition(offset, non_profiled.size);
 354     // Tier 1 and tier 4 (non-profiled) methods and native methods
 355     add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 356   }
 357 }
 358 
 359 void* CodeCache::map_cached_code() {
 360   if (_cds_code_space.size() > 0 && CDSAccess::map_cached_code(_cds_code_space)) {
 361     return _cds_code_space.base();
 362   } else {
 363     return nullptr;
 364   }
 365 }
 366 
 367 size_t CodeCache::page_size(bool aligned, size_t min_pages) {
 368   return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) :
 369                    os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages);
 370 }
 371 
 372 ReservedSpace CodeCache::reserve_heap_memory(size_t size, size_t rs_ps) {
 373   // Align and reserve space for code cache
 374   const size_t rs_align = MAX2(rs_ps, os::vm_allocation_granularity());
 375   const size_t rs_size = align_up(size, rs_align);
 376 
 377   ReservedSpace rs = CodeMemoryReserver::reserve(rs_size, rs_align, rs_ps);
 378   if (!rs.is_reserved()) {
 379     vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (%zuK)",
 380                                           rs_size/K));
 381   }
 382 
 383   // Initialize bounds
 384   _low_bound = (address)rs.base();
 385   _high_bound = _low_bound + rs.size();
 386   return rs;
 387 }
 388 
 389 // Heaps available for allocation
 390 bool CodeCache::heap_available(CodeBlobType code_blob_type) {
 391   if (!SegmentedCodeCache) {
 392     // No segmentation: use a single code heap
 393     return (code_blob_type == CodeBlobType::All);
 394   } else if (CompilerConfig::is_interpreter_only()) {
 395     // Interpreter only: we don't need any method code heaps
 396     return (code_blob_type == CodeBlobType::NonNMethod);
 397   } else if (CompilerConfig::is_c1_profiling()) {
 398     // Tiered compilation: use all code heaps
 399     return (code_blob_type < CodeBlobType::All);
 400   } else {
 401     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 402     return (code_blob_type == CodeBlobType::NonNMethod) ||
 403            (code_blob_type == CodeBlobType::MethodNonProfiled);
 404   }
 405 }
 406 
 407 const char* CodeCache::get_code_heap_flag_name(CodeBlobType code_blob_type) {
 408   switch(code_blob_type) {
 409   case CodeBlobType::NonNMethod:
 410     return "NonNMethodCodeHeapSize";
 411     break;
 412   case CodeBlobType::MethodNonProfiled:
 413     return "NonProfiledCodeHeapSize";
 414     break;
 415   case CodeBlobType::MethodProfiled:
 416     return "ProfiledCodeHeapSize";
 417     break;
 418   default:
 419     ShouldNotReachHere();
 420     return nullptr;
 421   }
 422 }
 423 
 424 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 425   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 426     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 427   } else {
 428     return static_cast<int>(lhs->code_blob_type()) - static_cast<int>(rhs->code_blob_type());
 429   }
 430 }
 431 
 432 void CodeCache::add_heap(CodeHeap* heap) {
 433   assert(!Universe::is_fully_initialized(), "late heap addition?");
 434 
 435   _heaps->insert_sorted<code_heap_compare>(heap);
 436 
 437   CodeBlobType type = heap->code_blob_type();
 438   if (code_blob_type_accepts_nmethod(type)) {
 439     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 440   }
 441   if (code_blob_type_accepts_allocable(type)) {
 442     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 443   }
 444 }
 445 
 446 void CodeCache::add_heap(ReservedSpace rs, const char* name, CodeBlobType code_blob_type) {
 447   // Check if heap is needed
 448   if (!heap_available(code_blob_type)) {
 449     return;
 450   }
 451 
 452   // Create CodeHeap
 453   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 454   add_heap(heap);
 455 
 456   // Reserve Space
 457   size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
 458   size_initial = align_up(size_initial, rs.page_size());
 459   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 460     vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (%zuK)",
 461                                           heap->name(), size_initial/K));
 462   }
 463 
 464   // Register the CodeHeap
 465   MemoryService::add_code_heap_memory_pool(heap, name);
 466 }
 467 
 468 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 469   FOR_ALL_HEAPS(heap) {
 470     if ((*heap)->contains(start)) {
 471       return *heap;
 472     }
 473   }
 474   return nullptr;
 475 }
 476 
 477 CodeHeap* CodeCache::get_code_heap(const void* cb) {
 478   assert(cb != nullptr, "CodeBlob is null");
 479   FOR_ALL_HEAPS(heap) {
 480     if ((*heap)->contains(cb)) {
 481       return *heap;
 482     }
 483   }
 484   ShouldNotReachHere();
 485   return nullptr;
 486 }
 487 
 488 CodeHeap* CodeCache::get_code_heap(CodeBlobType code_blob_type) {
 489   FOR_ALL_HEAPS(heap) {
 490     if ((*heap)->accepts(code_blob_type)) {
 491       return *heap;
 492     }
 493   }
 494   return nullptr;
 495 }
 496 
 497 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 498   assert_locked_or_safepoint(CodeCache_lock);
 499   assert(heap != nullptr, "heap is null");
 500   return (CodeBlob*)heap->first();
 501 }
 502 
 503 CodeBlob* CodeCache::first_blob(CodeBlobType code_blob_type) {
 504   if (heap_available(code_blob_type)) {
 505     return first_blob(get_code_heap(code_blob_type));
 506   } else {
 507     return nullptr;
 508   }
 509 }
 510 
 511 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 512   assert_locked_or_safepoint(CodeCache_lock);
 513   assert(heap != nullptr, "heap is null");
 514   return (CodeBlob*)heap->next(cb);
 515 }
 516 
 517 /**
 518  * Do not seize the CodeCache lock here--if the caller has not
 519  * already done so, we are going to lose bigtime, since the code
 520  * cache will contain a garbage CodeBlob until the caller can
 521  * run the constructor for the CodeBlob subclass he is busy
 522  * instantiating.
 523  */
 524 CodeBlob* CodeCache::allocate(uint size, CodeBlobType code_blob_type, bool handle_alloc_failure, CodeBlobType orig_code_blob_type) {
 525   assert_locked_or_safepoint(CodeCache_lock);
 526   assert(size > 0, "Code cache allocation request must be > 0");
 527   if (size == 0) {
 528     return nullptr;
 529   }
 530   CodeBlob* cb = nullptr;
 531 
 532   // Get CodeHeap for the given CodeBlobType
 533   CodeHeap* heap = get_code_heap(code_blob_type);
 534   assert(heap != nullptr, "heap is null");
 535 
 536   while (true) {
 537     cb = (CodeBlob*)heap->allocate(size);
 538     if (cb != nullptr) break;
 539     if (!heap->expand_by(CodeCacheExpansionSize)) {
 540       // Save original type for error reporting
 541       if (orig_code_blob_type == CodeBlobType::All) {
 542         orig_code_blob_type = code_blob_type;
 543       }
 544       // Expansion failed
 545       if (SegmentedCodeCache) {
 546         // Fallback solution: Try to store code in another code heap.
 547         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 548         CodeBlobType type = code_blob_type;
 549         switch (type) {
 550         case CodeBlobType::NonNMethod:
 551           type = CodeBlobType::MethodNonProfiled;
 552           break;
 553         case CodeBlobType::MethodNonProfiled:
 554           type = CodeBlobType::MethodProfiled;
 555           break;
 556         case CodeBlobType::MethodProfiled:
 557           // Avoid loop if we already tried that code heap
 558           if (type == orig_code_blob_type) {
 559             type = CodeBlobType::MethodNonProfiled;
 560           }
 561           break;
 562         default:
 563           break;
 564         }
 565         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 566           if (PrintCodeCacheExtension) {
 567             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 568                           heap->name(), get_code_heap(type)->name());
 569           }
 570           return allocate(size, type, handle_alloc_failure, orig_code_blob_type);
 571         }
 572       }
 573       if (handle_alloc_failure) {
 574         MutexUnlocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 575         CompileBroker::handle_full_code_cache(orig_code_blob_type);
 576       }
 577       return nullptr;
 578     } else {
 579       OrderAccess::release(); // ensure heap expansion is visible to an asynchronous observer (e.g. CodeHeapPool::get_memory_usage())
 580     }
 581     if (PrintCodeCacheExtension) {
 582       ResourceMark rm;
 583       if (_nmethod_heaps->length() >= 1) {
 584         tty->print("%s", heap->name());
 585       } else {
 586         tty->print("CodeCache");
 587       }
 588       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (%zd bytes)",
 589                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 590                     (address)heap->high() - (address)heap->low_boundary());
 591     }
 592   }
 593   print_trace("allocation", cb, size);
 594   return cb;
 595 }
 596 
 597 void CodeCache::free(CodeBlob* cb) {
 598   assert_locked_or_safepoint(CodeCache_lock);
 599   CodeHeap* heap = get_code_heap(cb);
 600   print_trace("free", cb);
 601   if (cb->is_nmethod()) {
 602     heap->set_nmethod_count(heap->nmethod_count() - 1);
 603     if (((nmethod *)cb)->has_dependencies()) {
 604       Atomic::dec(&_number_of_nmethods_with_dependencies);
 605     }
 606   }
 607   if (cb->is_adapter_blob()) {
 608     heap->set_adapter_count(heap->adapter_count() - 1);
 609   }
 610 
 611   cb->~CodeBlob();
 612   // Get heap for given CodeBlob and deallocate
 613   heap->deallocate(cb);
 614 
 615   assert(heap->blob_count() >= 0, "sanity check");
 616 }
 617 
 618 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
 619   assert_locked_or_safepoint(CodeCache_lock);
 620   guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
 621   print_trace("free_unused_tail", cb);
 622 
 623   // We also have to account for the extra space (i.e. header) used by the CodeBlob
 624   // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
 625   used += CodeBlob::align_code_offset(cb->header_size());
 626 
 627   // Get heap for given CodeBlob and deallocate its unused tail
 628   get_code_heap(cb)->deallocate_tail(cb, used);
 629   // Adjust the sizes of the CodeBlob
 630   cb->adjust_size(used);
 631 }
 632 
 633 void CodeCache::commit(CodeBlob* cb) {
 634   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 635   assert_locked_or_safepoint(CodeCache_lock);
 636   CodeHeap* heap = get_code_heap(cb);
 637   if (cb->is_nmethod()) {
 638     heap->set_nmethod_count(heap->nmethod_count() + 1);
 639     if (((nmethod *)cb)->has_dependencies()) {
 640       Atomic::inc(&_number_of_nmethods_with_dependencies);
 641     }
 642   }
 643   if (cb->is_adapter_blob()) {
 644     heap->set_adapter_count(heap->adapter_count() + 1);
 645   }
 646 }
 647 
 648 bool CodeCache::contains(void *p) {
 649   // S390 uses contains() in current_frame(), which is used before
 650   // code cache initialization if NativeMemoryTracking=detail is set.
 651   S390_ONLY(if (_heaps == nullptr) return false;)
 652   // It should be ok to call contains without holding a lock.
 653   FOR_ALL_HEAPS(heap) {
 654     if ((*heap)->contains(p)) {
 655       return true;
 656     }
 657   }
 658   return false;
 659 }
 660 
 661 bool CodeCache::contains(nmethod *nm) {
 662   return contains((void *)nm);
 663 }
 664 
 665 // This method is safe to call without holding the CodeCache_lock. It only depends on the _segmap to contain
 666 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 667 CodeBlob* CodeCache::find_blob(void* start) {
 668   // NMT can walk the stack before code cache is created
 669   if (_heaps != nullptr) {
 670     CodeHeap* heap = get_code_heap_containing(start);
 671     if (heap != nullptr) {
 672       return heap->find_blob(start);
 673     }
 674   }
 675   return nullptr;
 676 }
 677 
 678 nmethod* CodeCache::find_nmethod(void* start) {
 679   CodeBlob* cb = find_blob(start);
 680   assert(cb == nullptr || cb->is_nmethod(), "did not find an nmethod");
 681   return (nmethod*)cb;
 682 }
 683 
 684 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 685   assert_locked_or_safepoint(CodeCache_lock);
 686   FOR_ALL_HEAPS(heap) {
 687     FOR_ALL_BLOBS(cb, *heap) {
 688       f(cb);
 689     }
 690   }
 691 }
 692 
 693 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 694   assert_locked_or_safepoint(CodeCache_lock);
 695   NMethodIterator iter(NMethodIterator::all);
 696   while(iter.next()) {
 697     f(iter.method());
 698   }
 699 }
 700 
 701 void CodeCache::nmethods_do(NMethodClosure* cl) {
 702   assert_locked_or_safepoint(CodeCache_lock);
 703   NMethodIterator iter(NMethodIterator::all);
 704   while(iter.next()) {
 705     cl->do_nmethod(iter.method());
 706   }
 707 }
 708 
 709 void CodeCache::metadata_do(MetadataClosure* f) {
 710   assert_locked_or_safepoint(CodeCache_lock);
 711   NMethodIterator iter(NMethodIterator::all);
 712   while(iter.next()) {
 713     iter.method()->metadata_do(f);
 714   }
 715 }
 716 
 717 // Calculate the number of GCs after which an nmethod is expected to have been
 718 // used in order to not be classed as cold.
 719 void CodeCache::update_cold_gc_count() {
 720   if (!MethodFlushing || !UseCodeCacheFlushing || NmethodSweepActivity == 0) {
 721     // No aging
 722     return;
 723   }
 724 
 725   size_t last_used = _last_unloading_used;
 726   double last_time = _last_unloading_time;
 727 
 728   double time = os::elapsedTime();
 729 
 730   size_t free = unallocated_capacity();
 731   size_t max = max_capacity();
 732   size_t used = max - free;
 733   double gc_interval = time - last_time;
 734 
 735   _unloading_threshold_gc_requested = false;
 736   _last_unloading_time = time;
 737   _last_unloading_used = used;
 738 
 739   if (last_time == 0.0) {
 740     // The first GC doesn't have enough information to make good
 741     // decisions, so just keep everything afloat
 742     log_info(codecache)("Unknown code cache pressure; don't age code");
 743     return;
 744   }
 745 
 746   if (gc_interval <= 0.0 || last_used >= used) {
 747     // Dodge corner cases where there is no pressure or negative pressure
 748     // on the code cache. Just don't unload when this happens.
 749     _cold_gc_count = INT_MAX;
 750     log_info(codecache)("No code cache pressure; don't age code");
 751     return;
 752   }
 753 
 754   double allocation_rate = (used - last_used) / gc_interval;
 755 
 756   _unloading_allocation_rates.add(allocation_rate);
 757   _unloading_gc_intervals.add(gc_interval);
 758 
 759   size_t aggressive_sweeping_free_threshold = StartAggressiveSweepingAt / 100.0 * max;
 760   if (free < aggressive_sweeping_free_threshold) {
 761     // We are already in the red zone; be very aggressive to avoid disaster
 762     // But not more aggressive than 2. This ensures that an nmethod must
 763     // have been unused at least between two GCs to be considered cold still.
 764     _cold_gc_count = 2;
 765     log_info(codecache)("Code cache critically low; use aggressive aging");
 766     return;
 767   }
 768 
 769   // The code cache has an expected time for cold nmethods to "time out"
 770   // when they have not been used. The time for nmethods to time out
 771   // depends on how long we expect we can keep allocating code until
 772   // aggressive sweeping starts, based on sampled allocation rates.
 773   double average_gc_interval = _unloading_gc_intervals.avg();
 774   double average_allocation_rate = _unloading_allocation_rates.avg();
 775   double time_to_aggressive = ((double)(free - aggressive_sweeping_free_threshold)) / average_allocation_rate;
 776   double cold_timeout = time_to_aggressive / NmethodSweepActivity;
 777 
 778   // Convert time to GC cycles, and crop at INT_MAX. The reason for
 779   // that is that the _cold_gc_count will be added to an epoch number
 780   // and that addition must not overflow, or we can crash the VM.
 781   // But not more aggressive than 2. This ensures that an nmethod must
 782   // have been unused at least between two GCs to be considered cold still.
 783   _cold_gc_count = MAX2(MIN2((uint64_t)(cold_timeout / average_gc_interval), (uint64_t)INT_MAX), (uint64_t)2);
 784 
 785   double used_ratio = double(used) / double(max);
 786   double last_used_ratio = double(last_used) / double(max);
 787   log_info(codecache)("Allocation rate: %.3f KB/s, time to aggressive unloading: %.3f s, cold timeout: %.3f s, cold gc count: " UINT64_FORMAT
 788                       ", used: %.3f MB (%.3f%%), last used: %.3f MB (%.3f%%), gc interval: %.3f s",
 789                       average_allocation_rate / K, time_to_aggressive, cold_timeout, _cold_gc_count,
 790                       double(used) / M, used_ratio * 100.0, double(last_used) / M, last_used_ratio * 100.0, average_gc_interval);
 791 
 792 }
 793 
 794 uint64_t CodeCache::cold_gc_count() {
 795   return _cold_gc_count;
 796 }
 797 
 798 void CodeCache::gc_on_allocation() {
 799   if (!is_init_completed()) {
 800     // Let's not heuristically trigger GCs before the JVM is ready for GCs, no matter what
 801     return;
 802   }
 803 
 804   size_t free = unallocated_capacity();
 805   size_t max = max_capacity();
 806   size_t used = max - free;
 807   double free_ratio = double(free) / double(max);
 808   if (free_ratio <= StartAggressiveSweepingAt / 100.0)  {
 809     // In case the GC is concurrent, we make sure only one thread requests the GC.
 810     if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) {
 811       log_info(codecache)("Triggering aggressive GC due to having only %.3f%% free memory", free_ratio * 100.0);
 812       Universe::heap()->collect(GCCause::_codecache_GC_aggressive);
 813     }
 814     return;
 815   }
 816 
 817   size_t last_used = _last_unloading_used;
 818   if (last_used >= used) {
 819     // No increase since last GC; no need to sweep yet
 820     return;
 821   }
 822   size_t allocated_since_last = used - last_used;
 823   double allocated_since_last_ratio = double(allocated_since_last) / double(max);
 824   double threshold = SweeperThreshold / 100.0;
 825   double used_ratio = double(used) / double(max);
 826   double last_used_ratio = double(last_used) / double(max);
 827   if (used_ratio > threshold) {
 828     // After threshold is reached, scale it by free_ratio so that more aggressive
 829     // GC is triggered as we approach code cache exhaustion
 830     threshold *= free_ratio;
 831   }
 832   // If code cache has been allocated without any GC at all, let's make sure
 833   // it is eventually invoked to avoid trouble.
 834   if (allocated_since_last_ratio > threshold) {
 835     // In case the GC is concurrent, we make sure only one thread requests the GC.
 836     if (Atomic::cmpxchg(&_unloading_threshold_gc_requested, false, true) == false) {
 837       log_info(codecache)("Triggering threshold (%.3f%%) GC due to allocating %.3f%% since last unloading (%.3f%% used -> %.3f%% used)",
 838                           threshold * 100.0, allocated_since_last_ratio * 100.0, last_used_ratio * 100.0, used_ratio * 100.0);
 839       Universe::heap()->collect(GCCause::_codecache_GC_threshold);
 840     }
 841   }
 842 }
 843 
 844 // We initialize the _gc_epoch to 2, because previous_completed_gc_marking_cycle
 845 // subtracts the value by 2, and the type is unsigned. We don't want underflow.
 846 //
 847 // Odd values mean that marking is in progress, and even values mean that no
 848 // marking is currently active.
 849 uint64_t CodeCache::_gc_epoch = 2;
 850 
 851 // How many GCs after an nmethod has not been used, do we consider it cold?
 852 uint64_t CodeCache::_cold_gc_count = INT_MAX;
 853 
 854 double CodeCache::_last_unloading_time = 0.0;
 855 size_t CodeCache::_last_unloading_used = 0;
 856 volatile bool CodeCache::_unloading_threshold_gc_requested = false;
 857 TruncatedSeq CodeCache::_unloading_gc_intervals(10 /* samples */);
 858 TruncatedSeq CodeCache::_unloading_allocation_rates(10 /* samples */);
 859 
 860 uint64_t CodeCache::gc_epoch() {
 861   return _gc_epoch;
 862 }
 863 
 864 bool CodeCache::is_gc_marking_cycle_active() {
 865   // Odd means that marking is active
 866   return (_gc_epoch % 2) == 1;
 867 }
 868 
 869 uint64_t CodeCache::previous_completed_gc_marking_cycle() {
 870   if (is_gc_marking_cycle_active()) {
 871     return _gc_epoch - 2;
 872   } else {
 873     return _gc_epoch - 1;
 874   }
 875 }
 876 
 877 void CodeCache::on_gc_marking_cycle_start() {
 878   assert(!is_gc_marking_cycle_active(), "Previous marking cycle never ended");
 879   ++_gc_epoch;
 880 }
 881 
 882 // Once started the code cache marking cycle must only be finished after marking of
 883 // the java heap is complete. Otherwise nmethods could appear to be not on stack even
 884 // if they have frames in continuation StackChunks that were not yet visited.
 885 void CodeCache::on_gc_marking_cycle_finish() {
 886   assert(is_gc_marking_cycle_active(), "Marking cycle started before last one finished");
 887   ++_gc_epoch;
 888   update_cold_gc_count();
 889 }
 890 
 891 void CodeCache::arm_all_nmethods() {
 892   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
 893   if (bs_nm != nullptr) {
 894     bs_nm->arm_all_nmethods();
 895   }
 896 }
 897 
 898 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 899 void CodeCache::do_unloading(bool unloading_occurred) {
 900   assert_locked_or_safepoint(CodeCache_lock);
 901   NMethodIterator iter(NMethodIterator::all);
 902   while(iter.next()) {
 903     iter.method()->do_unloading(unloading_occurred);
 904   }
 905 }
 906 
 907 void CodeCache::verify_clean_inline_caches() {
 908 #ifdef ASSERT
 909   NMethodIterator iter(NMethodIterator::not_unloading);
 910   while(iter.next()) {
 911     nmethod* nm = iter.method();
 912     nm->verify_clean_inline_caches();
 913     nm->verify();
 914   }
 915 #endif
 916 }
 917 
 918 // Defer freeing of concurrently cleaned ExceptionCache entries until
 919 // after a global handshake operation.
 920 void CodeCache::release_exception_cache(ExceptionCache* entry) {
 921   if (SafepointSynchronize::is_at_safepoint()) {
 922     delete entry;
 923   } else {
 924     for (;;) {
 925       ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
 926       entry->set_purge_list_next(purge_list_head);
 927       if (Atomic::cmpxchg(&_exception_cache_purge_list, purge_list_head, entry) == purge_list_head) {
 928         break;
 929       }
 930     }
 931   }
 932 }
 933 
 934 // Delete exception caches that have been concurrently unlinked,
 935 // followed by a global handshake operation.
 936 void CodeCache::purge_exception_caches() {
 937   ExceptionCache* curr = _exception_cache_purge_list;
 938   while (curr != nullptr) {
 939     ExceptionCache* next = curr->purge_list_next();
 940     delete curr;
 941     curr = next;
 942   }
 943   _exception_cache_purge_list = nullptr;
 944 }
 945 
 946 // Restart compiler if possible and required..
 947 void CodeCache::maybe_restart_compiler(size_t freed_memory) {
 948 
 949   // Try to start the compiler again if we freed any memory
 950   if (!CompileBroker::should_compile_new_jobs() && freed_memory != 0) {
 951     CompileBroker::set_should_compile_new_jobs(CompileBroker::run_compilation);
 952     log_info(codecache)("Restarting compiler");
 953     EventJITRestart event;
 954     event.set_freedMemory(freed_memory);
 955     event.set_codeCacheMaxCapacity(CodeCache::max_capacity());
 956     event.commit();
 957   }
 958 }
 959 
 960 uint8_t CodeCache::_unloading_cycle = 1;
 961 
 962 void CodeCache::increment_unloading_cycle() {
 963   // 2-bit value (see IsUnloadingState in nmethod.cpp for details)
 964   // 0 is reserved for new methods.
 965   _unloading_cycle = (_unloading_cycle + 1) % 4;
 966   if (_unloading_cycle == 0) {
 967     _unloading_cycle = 1;
 968   }
 969 }
 970 
 971 CodeCache::UnlinkingScope::UnlinkingScope(BoolObjectClosure* is_alive)
 972   : _is_unloading_behaviour(is_alive)
 973 {
 974   _saved_behaviour = IsUnloadingBehaviour::current();
 975   IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
 976   increment_unloading_cycle();
 977   DependencyContext::cleaning_start();
 978 }
 979 
 980 CodeCache::UnlinkingScope::~UnlinkingScope() {
 981   IsUnloadingBehaviour::set_current(_saved_behaviour);
 982   DependencyContext::cleaning_end();
 983 }
 984 
 985 void CodeCache::verify_oops() {
 986   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 987   VerifyOopClosure voc;
 988   NMethodIterator iter(NMethodIterator::not_unloading);
 989   while(iter.next()) {
 990     nmethod* nm = iter.method();
 991     nm->oops_do(&voc);
 992     nm->verify_oop_relocations();
 993   }
 994 }
 995 
 996 int CodeCache::blob_count(CodeBlobType code_blob_type) {
 997   CodeHeap* heap = get_code_heap(code_blob_type);
 998   return (heap != nullptr) ? heap->blob_count() : 0;
 999 }
1000 
1001 int CodeCache::blob_count() {
1002   int count = 0;
1003   FOR_ALL_HEAPS(heap) {
1004     count += (*heap)->blob_count();
1005   }
1006   return count;
1007 }
1008 
1009 int CodeCache::nmethod_count(CodeBlobType code_blob_type) {
1010   CodeHeap* heap = get_code_heap(code_blob_type);
1011   return (heap != nullptr) ? heap->nmethod_count() : 0;
1012 }
1013 
1014 int CodeCache::nmethod_count() {
1015   int count = 0;
1016   for (CodeHeap* heap : *_nmethod_heaps) {
1017     count += heap->nmethod_count();
1018   }
1019   return count;
1020 }
1021 
1022 int CodeCache::adapter_count(CodeBlobType code_blob_type) {
1023   CodeHeap* heap = get_code_heap(code_blob_type);
1024   return (heap != nullptr) ? heap->adapter_count() : 0;
1025 }
1026 
1027 int CodeCache::adapter_count() {
1028   int count = 0;
1029   FOR_ALL_HEAPS(heap) {
1030     count += (*heap)->adapter_count();
1031   }
1032   return count;
1033 }
1034 
1035 address CodeCache::low_bound(CodeBlobType code_blob_type) {
1036   CodeHeap* heap = get_code_heap(code_blob_type);
1037   return (heap != nullptr) ? (address)heap->low_boundary() : nullptr;
1038 }
1039 
1040 address CodeCache::high_bound(CodeBlobType code_blob_type) {
1041   CodeHeap* heap = get_code_heap(code_blob_type);
1042   return (heap != nullptr) ? (address)heap->high_boundary() : nullptr;
1043 }
1044 
1045 size_t CodeCache::capacity() {
1046   size_t cap = 0;
1047   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1048     cap += (*heap)->capacity();
1049   }
1050   return cap;
1051 }
1052 
1053 size_t CodeCache::unallocated_capacity(CodeBlobType code_blob_type) {
1054   CodeHeap* heap = get_code_heap(code_blob_type);
1055   return (heap != nullptr) ? heap->unallocated_capacity() : 0;
1056 }
1057 
1058 size_t CodeCache::unallocated_capacity() {
1059   size_t unallocated_cap = 0;
1060   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1061     unallocated_cap += (*heap)->unallocated_capacity();
1062   }
1063   return unallocated_cap;
1064 }
1065 
1066 size_t CodeCache::max_capacity() {
1067   size_t max_cap = 0;
1068   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1069     max_cap += (*heap)->max_capacity();
1070   }
1071   return max_cap;
1072 }
1073 
1074 bool CodeCache::is_non_nmethod(address addr) {
1075   CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod);
1076   return blob->contains(addr);
1077 }
1078 
1079 size_t CodeCache::max_distance_to_non_nmethod() {
1080   if (!SegmentedCodeCache) {
1081     return ReservedCodeCacheSize;
1082   } else {
1083     CodeHeap* blob = get_code_heap(CodeBlobType::NonNMethod);
1084     // the max distance is minimized by placing the NonNMethod segment
1085     // in between MethodProfiled and MethodNonProfiled segments
1086     size_t dist1 = (size_t)blob->high() - (size_t)_low_bound;
1087     size_t dist2 = (size_t)_high_bound - (size_t)blob->low();
1088     return dist1 > dist2 ? dist1 : dist2;
1089   }
1090 }
1091 
1092 // Returns the reverse free ratio. E.g., if 25% (1/4) of the code cache
1093 // is free, reverse_free_ratio() returns 4.
1094 // Since code heap for each type of code blobs falls forward to the next
1095 // type of code heap, return the reverse free ratio for the entire
1096 // code cache.
1097 double CodeCache::reverse_free_ratio() {
1098   double unallocated = MAX2((double)unallocated_capacity(), 1.0); // Avoid division by 0;
1099   double max = (double)max_capacity();
1100   double result = max / unallocated;
1101   assert (max >= unallocated, "Must be");
1102   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1103   return result;
1104 }
1105 
1106 size_t CodeCache::bytes_allocated_in_freelists() {
1107   size_t allocated_bytes = 0;
1108   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1109     allocated_bytes += (*heap)->allocated_in_freelist();
1110   }
1111   return allocated_bytes;
1112 }
1113 
1114 int CodeCache::allocated_segments() {
1115   int number_of_segments = 0;
1116   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1117     number_of_segments += (*heap)->allocated_segments();
1118   }
1119   return number_of_segments;
1120 }
1121 
1122 size_t CodeCache::freelists_length() {
1123   size_t length = 0;
1124   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1125     length += (*heap)->freelist_length();
1126   }
1127   return length;
1128 }
1129 
1130 void icache_init();
1131 
1132 void CodeCache::initialize() {
1133   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1134 #ifdef COMPILER2
1135   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1136 #endif
1137   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1138   // This was originally just a check of the alignment, causing failure, instead, round
1139   // the code cache to the page size.  In particular, Solaris is moving to a larger
1140   // default page size.
1141   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1142 
1143   if (SegmentedCodeCache) {
1144     // Use multiple code heaps
1145     initialize_heaps();
1146   } else {
1147     // Use a single code heap
1148     FLAG_SET_ERGO(NonNMethodCodeHeapSize, (uintx)os::vm_page_size());
1149     FLAG_SET_ERGO(ProfiledCodeHeapSize, 0);
1150     FLAG_SET_ERGO(NonProfiledCodeHeapSize, 0);
1151 
1152     // If InitialCodeCacheSize is equal to ReservedCodeCacheSize, then it's more likely
1153     // users want to use the largest available page.
1154     const size_t min_pages = (InitialCodeCacheSize == ReservedCodeCacheSize) ? 1 : 8;
1155     ReservedSpace rs = reserve_heap_memory(ReservedCodeCacheSize, page_size(false, min_pages));
1156     // Register CodeHeaps with LSan as we sometimes embed pointers to malloc memory.
1157     LSAN_REGISTER_ROOT_REGION(rs.base(), rs.size());
1158     add_heap(rs, "CodeCache", CodeBlobType::All);
1159   }
1160 
1161   // Initialize ICache flush mechanism
1162   // This service is needed for os::register_code_area
1163   icache_init();
1164 
1165   // Give OS a chance to register generated code area.
1166   // This is used on Windows 64 bit platforms to register
1167   // Structured Exception Handlers for our generated code.
1168   os::register_code_area((char*)low_bound(), (char*)high_bound());
1169 }
1170 
1171 void codeCache_init() {
1172   CodeCache::initialize();
1173 }
1174 
1175 //------------------------------------------------------------------------------------------------
1176 
1177 bool CodeCache::has_nmethods_with_dependencies() {
1178   return Atomic::load_acquire(&_number_of_nmethods_with_dependencies) != 0;
1179 }
1180 
1181 void CodeCache::clear_inline_caches() {
1182   assert_locked_or_safepoint(CodeCache_lock);
1183   NMethodIterator iter(NMethodIterator::not_unloading);
1184   while(iter.next()) {
1185     iter.method()->clear_inline_caches();
1186   }
1187 }
1188 
1189 // Only used by whitebox API
1190 void CodeCache::cleanup_inline_caches_whitebox() {
1191   assert_locked_or_safepoint(CodeCache_lock);
1192   NMethodIterator iter(NMethodIterator::not_unloading);
1193   while(iter.next()) {
1194     iter.method()->cleanup_inline_caches_whitebox();
1195   }
1196 }
1197 
1198 // Keeps track of time spent for checking dependencies
1199 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1200 
1201 #ifndef PRODUCT
1202 // Check if any of live methods dependencies have been invalidated.
1203 // (this is expensive!)
1204 static void check_live_nmethods_dependencies(DepChange& changes) {
1205   // Checked dependencies are allocated into this ResourceMark
1206   ResourceMark rm;
1207 
1208   // Turn off dependency tracing while actually testing dependencies.
1209   FlagSetting fs(Dependencies::_verify_in_progress, true);
1210 
1211   typedef ResourceHashtable<DependencySignature, int, 11027,
1212                             AnyObj::RESOURCE_AREA, mtInternal,
1213                             &DependencySignature::hash,
1214                             &DependencySignature::equals> DepTable;
1215 
1216   DepTable* table = new DepTable();
1217 
1218   // Iterate over live nmethods and check dependencies of all nmethods that are not
1219   // marked for deoptimization. A particular dependency is only checked once.
1220   NMethodIterator iter(NMethodIterator::not_unloading);
1221   while(iter.next()) {
1222     nmethod* nm = iter.method();
1223     // Only notify for live nmethods
1224     if (!nm->is_marked_for_deoptimization()) {
1225       for (Dependencies::DepStream deps(nm); deps.next(); ) {
1226         // Construct abstraction of a dependency.
1227         DependencySignature* current_sig = new DependencySignature(deps);
1228 
1229         // Determine if dependency is already checked. table->put(...) returns
1230         // 'true' if the dependency is added (i.e., was not in the hashtable).
1231         if (table->put(*current_sig, 1)) {
1232           Klass* witness = deps.check_dependency();
1233           if (witness != nullptr) {
1234             // Dependency checking failed. Print out information about the failed
1235             // dependency and finally fail with an assert. We can fail here, since
1236             // dependency checking is never done in a product build.
1237             deps.print_dependency(tty, witness, true);
1238             changes.print();
1239             nm->print();
1240             nm->print_dependencies_on(tty);
1241             assert(false, "Should have been marked for deoptimization");
1242           }
1243         }
1244       }
1245     }
1246   }
1247 }
1248 #endif
1249 
1250 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, KlassDepChange& changes) {
1251   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1252 
1253   // search the hierarchy looking for nmethods which are affected by the loading of this class
1254 
1255   // then search the interfaces this class implements looking for nmethods
1256   // which might be dependent of the fact that an interface only had one
1257   // implementor.
1258   // nmethod::check_all_dependencies works only correctly, if no safepoint
1259   // can happen
1260   NoSafepointVerifier nsv;
1261   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1262     InstanceKlass* d = str.klass();
1263     {
1264       LogStreamHandle(Trace, dependencies) log;
1265       if (log.is_enabled()) {
1266         log.print("Processing context ");
1267         d->name()->print_value_on(&log);
1268       }
1269     }
1270     d->mark_dependent_nmethods(deopt_scope, changes);
1271   }
1272 
1273 #ifndef PRODUCT
1274   if (VerifyDependencies) {
1275     // Object pointers are used as unique identifiers for dependency arguments. This
1276     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1277     dependentCheckTime.start();
1278     check_live_nmethods_dependencies(changes);
1279     dependentCheckTime.stop();
1280   }
1281 #endif
1282 }
1283 
1284 #if INCLUDE_JVMTI
1285 // RedefineClasses support for saving nmethods that are dependent on "old" methods.
1286 // We don't really expect this table to grow very large.  If it does, it can become a hashtable.
1287 static GrowableArray<nmethod*>* old_nmethod_table = nullptr;
1288 
1289 static void add_to_old_table(nmethod* c) {
1290   if (old_nmethod_table == nullptr) {
1291     old_nmethod_table = new (mtCode) GrowableArray<nmethod*>(100, mtCode);
1292   }
1293   old_nmethod_table->push(c);
1294 }
1295 
1296 static void reset_old_method_table() {
1297   if (old_nmethod_table != nullptr) {
1298     delete old_nmethod_table;
1299     old_nmethod_table = nullptr;
1300   }
1301 }
1302 
1303 // Remove this method when flushed.
1304 void CodeCache::unregister_old_nmethod(nmethod* c) {
1305   assert_lock_strong(CodeCache_lock);
1306   if (old_nmethod_table != nullptr) {
1307     int index = old_nmethod_table->find(c);
1308     if (index != -1) {
1309       old_nmethod_table->delete_at(index);
1310     }
1311   }
1312 }
1313 
1314 void CodeCache::old_nmethods_do(MetadataClosure* f) {
1315   // Walk old method table and mark those on stack.
1316   int length = 0;
1317   if (old_nmethod_table != nullptr) {
1318     length = old_nmethod_table->length();
1319     for (int i = 0; i < length; i++) {
1320       // Walk all methods saved on the last pass.  Concurrent class unloading may
1321       // also be looking at this method's metadata, so don't delete it yet if
1322       // it is marked as unloaded.
1323       old_nmethod_table->at(i)->metadata_do(f);
1324     }
1325   }
1326   log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length);
1327 }
1328 
1329 // Walk compiled methods and mark dependent methods for deoptimization.
1330 void CodeCache::mark_dependents_for_evol_deoptimization(DeoptimizationScope* deopt_scope) {
1331   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1332   // Each redefinition creates a new set of nmethods that have references to "old" Methods
1333   // So delete old method table and create a new one.
1334   reset_old_method_table();
1335 
1336   NMethodIterator iter(NMethodIterator::all);
1337   while(iter.next()) {
1338     nmethod* nm = iter.method();
1339     // Walk all alive nmethods to check for old Methods.
1340     // This includes methods whose inline caches point to old methods, so
1341     // inline cache clearing is unnecessary.
1342     if (nm->has_evol_metadata()) {
1343       deopt_scope->mark(nm);
1344       add_to_old_table(nm);
1345     }
1346   }
1347 }
1348 
1349 void CodeCache::mark_all_nmethods_for_evol_deoptimization(DeoptimizationScope* deopt_scope) {
1350   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1351   NMethodIterator iter(NMethodIterator::all);
1352   while(iter.next()) {
1353     nmethod* nm = iter.method();
1354     if (!nm->method()->is_method_handle_intrinsic()) {
1355       if (nm->can_be_deoptimized()) {
1356         deopt_scope->mark(nm);
1357       }
1358       if (nm->has_evol_metadata()) {
1359         add_to_old_table(nm);
1360       }
1361     }
1362   }
1363 }
1364 
1365 #endif // INCLUDE_JVMTI
1366 
1367 // Mark methods for deopt (if safe or possible).
1368 void CodeCache::mark_all_nmethods_for_deoptimization(DeoptimizationScope* deopt_scope) {
1369   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1370   NMethodIterator iter(NMethodIterator::not_unloading);
1371   while(iter.next()) {
1372     nmethod* nm = iter.method();
1373     if (!nm->is_native_method()) {
1374       deopt_scope->mark(nm);
1375     }
1376   }
1377 }
1378 
1379 void CodeCache::mark_for_deoptimization(DeoptimizationScope* deopt_scope, Method* dependee) {
1380   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1381 
1382   NMethodIterator iter(NMethodIterator::not_unloading);
1383   while(iter.next()) {
1384     nmethod* nm = iter.method();
1385     if (nm->is_dependent_on_method(dependee)) {
1386       deopt_scope->mark(nm);
1387     }
1388   }
1389 }
1390 
1391 void CodeCache::make_marked_nmethods_deoptimized() {
1392   RelaxedNMethodIterator iter(RelaxedNMethodIterator::not_unloading);
1393   while(iter.next()) {
1394     nmethod* nm = iter.method();
1395     if (nm->is_marked_for_deoptimization() && !nm->has_been_deoptimized() && nm->can_be_deoptimized()) {
1396       nm->make_not_entrant();
1397       nm->make_deoptimized();
1398     }
1399   }
1400 }
1401 
1402 // Marks compiled methods dependent on dependee.
1403 void CodeCache::mark_dependents_on(DeoptimizationScope* deopt_scope, InstanceKlass* dependee) {
1404   assert_lock_strong(Compile_lock);
1405 
1406   if (!has_nmethods_with_dependencies()) {
1407     return;
1408   }
1409 
1410   if (dependee->is_linked()) {
1411     // Class initialization state change.
1412     KlassInitDepChange changes(dependee);
1413     mark_for_deoptimization(deopt_scope, changes);
1414   } else {
1415     // New class is loaded.
1416     NewKlassDepChange changes(dependee);
1417     mark_for_deoptimization(deopt_scope, changes);
1418   }
1419 }
1420 
1421 // Marks compiled methods dependent on dependee
1422 void CodeCache::mark_dependents_on_method_for_breakpoint(const methodHandle& m_h) {
1423   assert(SafepointSynchronize::is_at_safepoint(), "invariant");
1424 
1425   DeoptimizationScope deopt_scope;
1426   // Compute the dependent nmethods
1427   mark_for_deoptimization(&deopt_scope, m_h());
1428   deopt_scope.deoptimize_marked();
1429 }
1430 
1431 void CodeCache::verify() {
1432   assert_locked_or_safepoint(CodeCache_lock);
1433   FOR_ALL_HEAPS(heap) {
1434     (*heap)->verify();
1435     FOR_ALL_BLOBS(cb, *heap) {
1436       cb->verify();
1437     }
1438   }
1439 }
1440 
1441 // A CodeHeap is full. Print out warning and report event.
1442 PRAGMA_DIAG_PUSH
1443 PRAGMA_FORMAT_NONLITERAL_IGNORED
1444 void CodeCache::report_codemem_full(CodeBlobType code_blob_type, bool print) {
1445   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1446   CodeHeap* heap = get_code_heap(code_blob_type);
1447   assert(heap != nullptr, "heap is null");
1448 
1449   int full_count = heap->report_full();
1450 
1451   if ((full_count == 1) || print) {
1452     // Not yet reported for this heap, report
1453     if (SegmentedCodeCache) {
1454       ResourceMark rm;
1455       stringStream msg1_stream, msg2_stream;
1456       msg1_stream.print("%s is full. Compiler has been disabled.",
1457                         get_code_heap_name(code_blob_type));
1458       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1459                  get_code_heap_flag_name(code_blob_type));
1460       const char *msg1 = msg1_stream.as_string();
1461       const char *msg2 = msg2_stream.as_string();
1462 
1463       log_warning(codecache)("%s", msg1);
1464       log_warning(codecache)("%s", msg2);
1465       warning("%s", msg1);
1466       warning("%s", msg2);
1467     } else {
1468       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1469       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1470 
1471       log_warning(codecache)("%s", msg1);
1472       log_warning(codecache)("%s", msg2);
1473       warning("%s", msg1);
1474       warning("%s", msg2);
1475     }
1476     stringStream s;
1477     // Dump code cache into a buffer before locking the tty.
1478     {
1479       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1480       print_summary(&s);
1481     }
1482     {
1483       ttyLocker ttyl;
1484       tty->print("%s", s.freeze());
1485     }
1486 
1487     if (full_count == 1) {
1488       if (PrintCodeHeapAnalytics) {
1489         CompileBroker::print_heapinfo(tty, "all", 4096); // details, may be a lot!
1490       }
1491     }
1492   }
1493 
1494   EventCodeCacheFull event;
1495   if (event.should_commit()) {
1496     event.set_codeBlobType((u1)code_blob_type);
1497     event.set_startAddress((u8)heap->low_boundary());
1498     event.set_commitedTopAddress((u8)heap->high());
1499     event.set_reservedTopAddress((u8)heap->high_boundary());
1500     event.set_entryCount(heap->blob_count());
1501     event.set_methodCount(heap->nmethod_count());
1502     event.set_adaptorCount(heap->adapter_count());
1503     event.set_unallocatedCapacity(heap->unallocated_capacity());
1504     event.set_fullCount(heap->full_count());
1505     event.set_codeCacheMaxCapacity(CodeCache::max_capacity());
1506     event.commit();
1507   }
1508 }
1509 PRAGMA_DIAG_POP
1510 
1511 void CodeCache::print_memory_overhead() {
1512   size_t wasted_bytes = 0;
1513   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1514       CodeHeap* curr_heap = *heap;
1515       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != nullptr; cb = (CodeBlob*)curr_heap->next(cb)) {
1516         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1517         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1518       }
1519   }
1520   // Print bytes that are allocated in the freelist
1521   ttyLocker ttl;
1522   tty->print_cr("Number of elements in freelist: %zd",       freelists_length());
1523   tty->print_cr("Allocated in freelist:          %zdkB",  bytes_allocated_in_freelists()/K);
1524   tty->print_cr("Unused bytes in CodeBlobs:      %zdkB",  (wasted_bytes/K));
1525   tty->print_cr("Segment map size:               %zdkB",  allocated_segments()/K); // 1 byte per segment
1526 }
1527 
1528 static void print_helper1(outputStream* st, const char* prefix, int total, int not_entrant, int used) {
1529   if (total > 0) {
1530     double ratio = (100.0 * used) / total;
1531     st->print("%s %3d nmethods: %3d not_entrant, %d used (%2.1f%%)", prefix, total, not_entrant, used, ratio);
1532   }
1533 }
1534 
1535 void CodeCache::print_nmethod_statistics_on(outputStream* st) {
1536   int stats     [2][6][3][2] = {0};
1537   int stats_used[2][6][3][2] = {0};
1538 
1539   int total_osr = 0;
1540   int total_entrant = 0;
1541   int total_non_entrant = 0;
1542   int total_other = 0;
1543   int total_used = 0;
1544 
1545   NMethodIterator iter(NMethodIterator::all);
1546   while (iter.next()) {
1547     nmethod* nm = iter.method();
1548     if (nm->is_in_use()) {
1549       ++total_entrant;
1550     } else if (nm->is_not_entrant()) {
1551       ++total_non_entrant;
1552     } else {
1553       ++total_other;
1554     }
1555     if (nm->is_osr_method()) {
1556       ++total_osr;
1557     }
1558     if (nm->used()) {
1559       ++total_used;
1560     }
1561     assert(!nm->preloaded() || nm->comp_level() == CompLevel_full_optimization, "");
1562 
1563     int idx1 = nm->is_scc() ? 1 : 0;
1564     int idx2 = nm->comp_level() + (nm->preloaded() ? 1 : 0);
1565     int idx3 = (nm->is_in_use()      ? 0 :
1566                (nm->is_not_entrant() ? 1 :
1567                                        2));
1568     int idx4 = (nm->is_osr_method() ? 1 : 0);
1569     stats[idx1][idx2][idx3][idx4] += 1;
1570     if (nm->used()) {
1571       stats_used[idx1][idx2][idx3][idx4] += 1;
1572     }
1573   }
1574 
1575   st->print("Total: %d methods (%d entrant / %d not_entrant; osr: %d ",
1576                total_entrant + total_non_entrant + total_other,
1577                total_entrant, total_non_entrant, total_osr);
1578   if (total_other > 0) {
1579     st->print("; %d other", total_other);
1580   }
1581   st->print_cr(")");
1582 
1583   for (int i = CompLevel_simple; i <= CompLevel_full_optimization; i++) {
1584     int total_normal = stats[0][i][0][0] + stats[0][i][1][0] + stats[0][i][2][0];
1585     int total_osr    = stats[0][i][0][1] + stats[0][i][1][1] + stats[0][i][2][1];
1586     if (total_normal + total_osr > 0) {
1587       st->print("  Tier%d:", i);
1588       print_helper1(st,      "", total_normal, stats[0][i][1][0], stats_used[0][i][0][0] + stats_used[0][i][1][0]);
1589       print_helper1(st, "; osr:", total_osr,    stats[0][i][1][1], stats_used[0][i][0][1] + stats_used[0][i][1][1]);
1590       st->cr();
1591     }
1592   }
1593   st->cr();
1594   for (int i = CompLevel_simple; i <= CompLevel_full_optimization + 1; i++) {
1595     int total_normal = stats[1][i][0][0] + stats[1][i][1][0] + stats[1][i][2][0];
1596     int total_osr    = stats[1][i][0][1] + stats[1][i][1][1] + stats[1][i][2][1];
1597     assert(total_osr == 0, "sanity");
1598     if (total_normal + total_osr > 0) {
1599       st->print("  SC T%d:", i);
1600       print_helper1(st,      "", total_normal, stats[1][i][1][0], stats_used[1][i][0][0] + stats_used[1][i][1][0]);
1601       print_helper1(st, "; osr:", total_osr,    stats[1][i][1][1], stats_used[1][i][0][1] + stats_used[1][i][1][1]);
1602       st->cr();
1603     }
1604   }
1605 }
1606 
1607 //------------------------------------------------------------------------------------------------
1608 // Non-product version
1609 
1610 #ifndef PRODUCT
1611 
1612 void CodeCache::print_trace(const char* event, CodeBlob* cb, uint size) {
1613   if (PrintCodeCache2) {  // Need to add a new flag
1614     ResourceMark rm;
1615     if (size == 0) {
1616       int s = cb->size();
1617       assert(s >= 0, "CodeBlob size is negative: %d", s);
1618       size = (uint) s;
1619     }
1620     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1621   }
1622 }
1623 
1624 void CodeCache::print_internals() {
1625   int nmethodCount = 0;
1626   int runtimeStubCount = 0;
1627   int adapterCount = 0;
1628   int deoptimizationStubCount = 0;
1629   int uncommonTrapStubCount = 0;
1630   int bufferBlobCount = 0;
1631   int total = 0;
1632   int nmethodNotEntrant = 0;
1633   int nmethodJava = 0;
1634   int nmethodNative = 0;
1635   int max_nm_size = 0;
1636   ResourceMark rm;
1637 
1638   int i = 0;
1639   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1640     int heap_total = 0;
1641     tty->print_cr("-- %s --", (*heap)->name());
1642     FOR_ALL_BLOBS(cb, *heap) {
1643       total++;
1644       heap_total++;
1645       if (cb->is_nmethod()) {
1646         nmethod* nm = (nmethod*)cb;
1647 
1648         tty->print("%4d: ", heap_total);
1649         CompileTask::print(tty, nm, (nm->is_not_entrant() ? "non-entrant" : ""), true, true);
1650 
1651         nmethodCount++;
1652 
1653         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1654         if(nm->method() != nullptr && nm->is_native_method()) { nmethodNative++; }
1655 
1656         if(nm->method() != nullptr && nm->is_java_method()) {
1657           nmethodJava++;
1658           max_nm_size = MAX2(max_nm_size, nm->size());
1659         }
1660       } else if (cb->is_runtime_stub()) {
1661         runtimeStubCount++;
1662       } else if (cb->is_deoptimization_stub()) {
1663         deoptimizationStubCount++;
1664       } else if (cb->is_uncommon_trap_stub()) {
1665         uncommonTrapStubCount++;
1666       } else if (cb->is_adapter_blob()) {
1667         adapterCount++;
1668       } else if (cb->is_buffer_blob()) {
1669         bufferBlobCount++;
1670       }
1671     }
1672   }
1673 
1674   int bucketSize = 512;
1675   int bucketLimit = max_nm_size / bucketSize + 1;
1676   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1677   memset(buckets, 0, sizeof(int) * bucketLimit);
1678 
1679   NMethodIterator iter(NMethodIterator::all);
1680   while(iter.next()) {
1681     nmethod* nm = iter.method();
1682     if(nm->method() != nullptr && nm->is_java_method()) {
1683       buckets[nm->size() / bucketSize]++;
1684     }
1685   }
1686 
1687   tty->print_cr("Code Cache Entries (total of %d)",total);
1688   tty->print_cr("-------------------------------------------------");
1689   tty->print_cr("nmethods: %d",nmethodCount);
1690   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1691   tty->print_cr("\tjava: %d",nmethodJava);
1692   tty->print_cr("\tnative: %d",nmethodNative);
1693   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1694   tty->print_cr("adapters: %d",adapterCount);
1695   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1696   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1697   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1698   tty->print_cr("\nnmethod size distribution");
1699   tty->print_cr("-------------------------------------------------");
1700 
1701   for(int i=0; i<bucketLimit; i++) {
1702     if(buckets[i] != 0) {
1703       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1704       tty->fill_to(40);
1705       tty->print_cr("%d",buckets[i]);
1706     }
1707   }
1708 
1709   FREE_C_HEAP_ARRAY(int, buckets);
1710   print_memory_overhead();
1711 }
1712 
1713 #endif // !PRODUCT
1714 
1715 void CodeCache::print() {
1716   print_summary(tty);
1717 
1718 #ifndef PRODUCT
1719   if (!Verbose) return;
1720 
1721   CodeBlob_sizes live[CompLevel_full_optimization + 1];
1722   CodeBlob_sizes runtimeStub;
1723   CodeBlob_sizes uncommonTrapStub;
1724   CodeBlob_sizes deoptimizationStub;
1725   CodeBlob_sizes adapter;
1726   CodeBlob_sizes bufferBlob;
1727   CodeBlob_sizes other;
1728 
1729   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1730     FOR_ALL_BLOBS(cb, *heap) {
1731       if (cb->is_nmethod()) {
1732         const int level = cb->as_nmethod()->comp_level();
1733         assert(0 <= level && level <= CompLevel_full_optimization, "Invalid compilation level");
1734         live[level].add(cb);
1735       } else if (cb->is_runtime_stub()) {
1736         runtimeStub.add(cb);
1737       } else if (cb->is_deoptimization_stub()) {
1738         deoptimizationStub.add(cb);
1739       } else if (cb->is_uncommon_trap_stub()) {
1740         uncommonTrapStub.add(cb);
1741       } else if (cb->is_adapter_blob()) {
1742         adapter.add(cb);
1743       } else if (cb->is_buffer_blob()) {
1744         bufferBlob.add(cb);
1745       } else {
1746         other.add(cb);
1747       }
1748     }
1749   }
1750 
1751   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1752 
1753   tty->print_cr("nmethod blobs per compilation level:");
1754   for (int i = 0; i <= CompLevel_full_optimization; i++) {
1755     const char *level_name;
1756     switch (i) {
1757     case CompLevel_none:              level_name = "none";              break;
1758     case CompLevel_simple:            level_name = "simple";            break;
1759     case CompLevel_limited_profile:   level_name = "limited profile";   break;
1760     case CompLevel_full_profile:      level_name = "full profile";      break;
1761     case CompLevel_full_optimization: level_name = "full optimization"; break;
1762     default: assert(false, "invalid compilation level");
1763     }
1764     tty->print_cr("%s:", level_name);
1765     live[i].print("live");
1766   }
1767 
1768   struct {
1769     const char* name;
1770     const CodeBlob_sizes* sizes;
1771   } non_nmethod_blobs[] = {
1772     { "runtime",        &runtimeStub },
1773     { "uncommon trap",  &uncommonTrapStub },
1774     { "deoptimization", &deoptimizationStub },
1775     { "adapter",        &adapter },
1776     { "buffer blob",    &bufferBlob },
1777     { "other",          &other },
1778   };
1779   tty->print_cr("Non-nmethod blobs:");
1780   for (auto& blob: non_nmethod_blobs) {
1781     blob.sizes->print(blob.name);
1782   }
1783 
1784   if (WizardMode) {
1785      // print the oop_map usage
1786     int code_size = 0;
1787     int number_of_blobs = 0;
1788     int number_of_oop_maps = 0;
1789     int map_size = 0;
1790     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1791       FOR_ALL_BLOBS(cb, *heap) {
1792         number_of_blobs++;
1793         code_size += cb->code_size();
1794         ImmutableOopMapSet* set = cb->oop_maps();
1795         if (set != nullptr) {
1796           number_of_oop_maps += set->count();
1797           map_size           += set->nr_of_bytes();
1798         }
1799       }
1800     }
1801     tty->print_cr("OopMaps");
1802     tty->print_cr("  #blobs    = %d", number_of_blobs);
1803     tty->print_cr("  code size = %d", code_size);
1804     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1805     tty->print_cr("  map size  = %d", map_size);
1806   }
1807 
1808 #endif // !PRODUCT
1809 }
1810 
1811 void CodeCache::print_nmethods_on(outputStream* st) {
1812   ResourceMark rm;
1813   int i = 0;
1814   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1815     st->print_cr("-- %s --", (*heap)->name());
1816     FOR_ALL_BLOBS(cb, *heap) {
1817       i++;
1818       if (cb->is_nmethod()) {
1819         nmethod* nm = (nmethod*)cb;
1820         st->print("%4d: ", i);
1821         CompileTask::print(st, nm, nullptr, true, false);
1822 
1823         const char non_entrant_char = (nm->is_not_entrant() ? 'N' : ' ');
1824         st->print_cr(" %c", non_entrant_char);
1825       }
1826     }
1827   }
1828 }
1829 
1830 void CodeCache::print_summary(outputStream* st, bool detailed) {
1831   int full_count = 0;
1832   julong total_used = 0;
1833   julong total_max_used = 0;
1834   julong total_free = 0;
1835   julong total_size = 0;
1836   FOR_ALL_HEAPS(heap_iterator) {
1837     CodeHeap* heap = (*heap_iterator);
1838     size_t total = (heap->high_boundary() - heap->low_boundary());
1839     if (_heaps->length() >= 1) {
1840       st->print("%s:", heap->name());
1841     } else {
1842       st->print("CodeCache:");
1843     }
1844     size_t size = total/K;
1845     size_t used = (total - heap->unallocated_capacity())/K;
1846     size_t max_used = heap->max_allocated_capacity()/K;
1847     size_t free = heap->unallocated_capacity()/K;
1848     total_size += size;
1849     total_used += used;
1850     total_max_used += max_used;
1851     total_free += free;
1852     st->print_cr(" size=%zuKb used=%zu"
1853                  "Kb max_used=%zuKb free=%zuKb",
1854                  size, used, max_used, free);
1855 
1856     if (detailed) {
1857       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1858                    p2i(heap->low_boundary()),
1859                    p2i(heap->high()),
1860                    p2i(heap->high_boundary()));
1861 
1862       full_count += get_codemem_full_count(heap->code_blob_type());
1863     }
1864   }
1865 
1866   if (detailed) {
1867     if (SegmentedCodeCache) {
1868       st->print("CodeCache:");
1869       st->print_cr(" size=" JULONG_FORMAT "Kb, used=" JULONG_FORMAT
1870                    "Kb, max_used=" JULONG_FORMAT "Kb, free=" JULONG_FORMAT "Kb",
1871                    total_size, total_used, total_max_used, total_free);
1872     }
1873     st->print_cr(" total_blobs=" UINT32_FORMAT ", nmethods=" UINT32_FORMAT
1874                  ", adapters=" UINT32_FORMAT ", full_count=" UINT32_FORMAT,
1875                  blob_count(), nmethod_count(), adapter_count(), full_count);
1876     st->print_cr("Compilation: %s, stopped_count=%d, restarted_count=%d",
1877                  CompileBroker::should_compile_new_jobs() ?
1878                  "enabled" : Arguments::mode() == Arguments::_int ?
1879                  "disabled (interpreter mode)" :
1880                  "disabled (not enough contiguous free space left)",
1881                  CompileBroker::get_total_compiler_stopped_count(),
1882                  CompileBroker::get_total_compiler_restarted_count());
1883   }
1884 }
1885 
1886 void CodeCache::print_codelist(outputStream* st) {
1887   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1888 
1889   NMethodIterator iter(NMethodIterator::not_unloading);
1890   while (iter.next()) {
1891     nmethod* nm = iter.method();
1892     ResourceMark rm;
1893     char* method_name = nm->method()->name_and_sig_as_C_string();
1894     const char* jvmci_name = nullptr;
1895 #if INCLUDE_JVMCI
1896     jvmci_name = nm->jvmci_name();
1897 #endif
1898     st->print_cr("%d %d %d %s%s%s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1899                  nm->compile_id(), nm->comp_level(), nm->get_state(),
1900                  method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "",
1901                  (intptr_t)nm->header_begin(), (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1902   }
1903 }
1904 
1905 void CodeCache::print_layout(outputStream* st) {
1906   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1907   ResourceMark rm;
1908   print_summary(st, true);
1909 }
1910 
1911 void CodeCache::log_state(outputStream* st) {
1912   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1913             " adapters='" UINT32_FORMAT "' free_code_cache='%zu'",
1914             blob_count(), nmethod_count(), adapter_count(),
1915             unallocated_capacity());
1916 }
1917 
1918 #ifdef LINUX
1919 void CodeCache::write_perf_map(const char* filename, outputStream* st) {
1920   MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1921   char fname[JVM_MAXPATHLEN];
1922   if (filename == nullptr) {
1923     // Invocation outside of jcmd requires pid substitution.
1924     if (!Arguments::copy_expand_pid(DEFAULT_PERFMAP_FILENAME,
1925                                     strlen(DEFAULT_PERFMAP_FILENAME),
1926                                     fname, JVM_MAXPATHLEN)) {
1927       st->print_cr("Warning: Not writing perf map as pid substitution failed.");
1928       return;
1929     }
1930     filename = fname;
1931   }
1932   fileStream fs(filename, "w");
1933   if (!fs.is_open()) {
1934     st->print_cr("Warning: Failed to create %s for perf map", filename);
1935     return;
1936   }
1937 
1938   AllCodeBlobsIterator iter(AllCodeBlobsIterator::not_unloading);
1939   while (iter.next()) {
1940     CodeBlob *cb = iter.method();
1941     ResourceMark rm;
1942     const char* method_name = nullptr;
1943     const char* jvmci_name = nullptr;
1944     if (cb->is_nmethod()) {
1945       nmethod* nm = cb->as_nmethod();
1946       method_name = nm->method()->external_name();
1947 #if INCLUDE_JVMCI
1948       jvmci_name = nm->jvmci_name();
1949 #endif
1950     } else {
1951       method_name = cb->name();
1952     }
1953     fs.print_cr(INTPTR_FORMAT " " INTPTR_FORMAT " %s%s%s",
1954                 (intptr_t)cb->code_begin(), (intptr_t)cb->code_size(),
1955                 method_name, jvmci_name ? " jvmci_name=" : "", jvmci_name ? jvmci_name : "");
1956   }
1957 }
1958 #endif // LINUX
1959 
1960 //---<  BEGIN  >--- CodeHeap State Analytics.
1961 
1962 void CodeCache::aggregate(outputStream *out, size_t granularity) {
1963   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1964     CodeHeapState::aggregate(out, (*heap), granularity);
1965   }
1966 }
1967 
1968 void CodeCache::discard(outputStream *out) {
1969   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1970     CodeHeapState::discard(out, (*heap));
1971   }
1972 }
1973 
1974 void CodeCache::print_usedSpace(outputStream *out) {
1975   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1976     CodeHeapState::print_usedSpace(out, (*heap));
1977   }
1978 }
1979 
1980 void CodeCache::print_freeSpace(outputStream *out) {
1981   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1982     CodeHeapState::print_freeSpace(out, (*heap));
1983   }
1984 }
1985 
1986 void CodeCache::print_count(outputStream *out) {
1987   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1988     CodeHeapState::print_count(out, (*heap));
1989   }
1990 }
1991 
1992 void CodeCache::print_space(outputStream *out) {
1993   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1994     CodeHeapState::print_space(out, (*heap));
1995   }
1996 }
1997 
1998 void CodeCache::print_age(outputStream *out) {
1999   FOR_ALL_ALLOCABLE_HEAPS(heap) {
2000     CodeHeapState::print_age(out, (*heap));
2001   }
2002 }
2003 
2004 void CodeCache::print_names(outputStream *out) {
2005   FOR_ALL_ALLOCABLE_HEAPS(heap) {
2006     CodeHeapState::print_names(out, (*heap));
2007   }
2008 }
2009 //---<  END  >--- CodeHeap State Analytics.