1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciArrayKlass.hpp"
  26 #include "ci/ciEnv.hpp"
  27 #include "ci/ciKlass.hpp"
  28 #include "ci/ciMethod.hpp"
  29 #include "classfile/javaClasses.inline.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/klass.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/method.inline.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/handles.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/javaThread.inline.hpp"
  44 #include "runtime/jniHandles.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/perfData.hpp"
  47 #include "runtime/vmThread.hpp"
  48 #include "utilities/copy.hpp"
  49 
  50 
  51 #ifdef ASSERT
  52 static bool must_be_in_vm() {
  53   Thread* thread = Thread::current();
  54   if (thread->is_Java_thread()) {
  55     return JavaThread::cast(thread)->thread_state() == _thread_in_vm;
  56   } else {
  57     return true;  // Could be VMThread or GC thread
  58   }
  59 }
  60 #endif //ASSERT
  61 
  62 bool Dependencies::_verify_in_progress = false;  // don't -Xlog:dependencies
  63 
  64 void Dependencies::initialize(ciEnv* env) {
  65   Arena* arena = env->arena();
  66   _oop_recorder = env->oop_recorder();
  67   _log = env->log();
  68   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  69 #if INCLUDE_JVMCI
  70   _using_dep_values = false;
  71 #endif
  72   DEBUG_ONLY(_deps[end_marker] = nullptr);
  73   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  74     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, nullptr);
  75   }
  76   _content_bytes = nullptr;
  77   _size_in_bytes = (size_t)-1;
  78 
  79   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  80 }
  81 
  82 void Dependencies::assert_evol_method(ciMethod* m) {
  83   assert_common_1(evol_method, m);
  84 }
  85 
  86 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  87   if (ctxk->is_array_klass()) {
  88     // As a special case, support this assertion on an array type,
  89     // which reduces to an assertion on its element type.
  90     // Note that this cannot be done with assertions that
  91     // relate to concreteness or abstractness.
  92     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  93     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  94     ctxk = elemt->as_instance_klass();
  95     //if (ctxk->is_final())  return;            // Ex:  String[][]
  96   }
  97   check_ctxk(ctxk);
  98   assert_common_1(leaf_type, ctxk);
  99 }
 100 
 101 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
 102   check_ctxk_abstract(ctxk);
 103   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
 104 }
 105 
 106 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
 107   check_ctxk(ctxk);
 108   check_unique_method(ctxk, uniqm);
 109   assert_common_2(unique_concrete_method_2, ctxk, uniqm);
 110 }
 111 
 112 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method) {
 113   check_ctxk(ctxk);
 114   check_unique_method(ctxk, uniqm);
 115   assert_common_4(unique_concrete_method_4, ctxk, uniqm, resolved_klass, resolved_method);
 116 }
 117 
 118 void Dependencies::assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) {
 119   check_ctxk(ctxk);
 120   check_unique_implementor(ctxk, uniqk);
 121   assert_common_2(unique_implementor, ctxk, uniqk);
 122 }
 123 
 124 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 125   check_ctxk(ctxk);
 126   assert_common_1(no_finalizable_subclasses, ctxk);
 127 }
 128 
 129 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 130   assert_common_2(call_site_target_value, call_site, method_handle);
 131 }
 132 
 133 #if INCLUDE_JVMCI
 134 
 135 Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) {
 136   _oop_recorder = oop_recorder;
 137   _log = log;
 138   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
 139   _using_dep_values = true;
 140   DEBUG_ONLY(_dep_values[end_marker] = nullptr);
 141   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
 142     _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
 143   }
 144   _content_bytes = nullptr;
 145   _size_in_bytes = (size_t)-1;
 146 
 147   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
 148 }
 149 
 150 void Dependencies::assert_evol_method(Method* m) {
 151   assert_common_1(evol_method, DepValue(_oop_recorder, m));
 152 }
 153 
 154 void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
 155   check_ctxk(ctxk);
 156   assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
 157 }
 158 
 159 void Dependencies::assert_leaf_type(Klass* ctxk) {
 160   if (ctxk->is_array_klass()) {
 161     // As a special case, support this assertion on an array type,
 162     // which reduces to an assertion on its element type.
 163     // Note that this cannot be done with assertions that
 164     // relate to concreteness or abstractness.
 165     BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
 166     if (is_java_primitive(elemt))  return;   // Ex:  int[][]
 167     ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
 168     //if (ctxk->is_final())  return;            // Ex:  String[][]
 169   }
 170   check_ctxk(ctxk);
 171   assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
 172 }
 173 
 174 void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
 175   check_ctxk_abstract(ctxk);
 176   DepValue ctxk_dv(_oop_recorder, ctxk);
 177   DepValue conck_dv(_oop_recorder, conck, &ctxk_dv);
 178   assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv);
 179 }
 180 
 181 void Dependencies::assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk) {
 182   check_ctxk(ctxk);
 183   assert(ctxk->is_interface(), "not an interface");
 184   assert(ctxk->implementor() == uniqk, "not a unique implementor");
 185   assert_common_2(unique_implementor, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqk));
 186 }
 187 
 188 void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
 189   check_ctxk(ctxk);
 190   check_unique_method(ctxk, uniqm);
 191   assert_common_2(unique_concrete_method_2, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
 192 }
 193 
 194 void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) {
 195   assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle)));
 196 }
 197 
 198 #endif // INCLUDE_JVMCI
 199 
 200 
 201 // Helper function.  If we are adding a new dep. under ctxk2,
 202 // try to find an old dep. under a broader* ctxk1.  If there is
 203 //
 204 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 205                                     int ctxk_i, ciKlass* ctxk2) {
 206   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 207   if (ctxk2->is_subtype_of(ctxk1)) {
 208     return true;  // success, and no need to change
 209   } else if (ctxk1->is_subtype_of(ctxk2)) {
 210     // new context class fully subsumes previous one
 211     deps->at_put(ctxk_i, ctxk2);
 212     return true;
 213   } else {
 214     return false;
 215   }
 216 }
 217 
 218 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 219   assert(dep_args(dept) == 1, "sanity");
 220   log_dependency(dept, x);
 221   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 222 
 223   // see if the same (or a similar) dep is already recorded
 224   if (note_dep_seen(dept, x)) {
 225     assert(deps->find(x) >= 0, "sanity");
 226   } else {
 227     deps->append(x);
 228   }
 229 }
 230 
 231 void Dependencies::assert_common_2(DepType dept,
 232                                    ciBaseObject* x0, ciBaseObject* x1) {
 233   assert(dep_args(dept) == 2, "sanity");
 234   log_dependency(dept, x0, x1);
 235   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 236 
 237   // see if the same (or a similar) dep is already recorded
 238   bool has_ctxk = has_explicit_context_arg(dept);
 239   if (has_ctxk) {
 240     assert(dep_context_arg(dept) == 0, "sanity");
 241     if (note_dep_seen(dept, x1)) {
 242       // look in this bucket for redundant assertions
 243       const int stride = 2;
 244       for (int i = deps->length(); (i -= stride) >= 0; ) {
 245         ciBaseObject* y1 = deps->at(i+1);
 246         if (x1 == y1) {  // same subject; check the context
 247           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 248             return;
 249           }
 250         }
 251       }
 252     }
 253   } else {
 254     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 255     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 256     if (dep_seen_x0 && dep_seen_x1) {
 257       // look in this bucket for redundant assertions
 258       const int stride = 2;
 259       for (int i = deps->length(); (i -= stride) >= 0; ) {
 260         ciBaseObject* y0 = deps->at(i+0);
 261         ciBaseObject* y1 = deps->at(i+1);
 262         if (x0 == y0 && x1 == y1) {
 263           return;
 264         }
 265       }
 266     }
 267   }
 268 
 269   // append the assertion in the correct bucket:
 270   deps->append(x0);
 271   deps->append(x1);
 272 }
 273 
 274 void Dependencies::assert_common_4(DepType dept,
 275                                    ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3) {
 276   assert(has_explicit_context_arg(dept), "sanity");
 277   assert(dep_context_arg(dept) == 0, "sanity");
 278   assert(dep_args(dept) == 4, "sanity");
 279   log_dependency(dept, ctxk, x1, x2, x3);
 280   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 281 
 282   // see if the same (or a similar) dep is already recorded
 283   bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 284   bool dep_seen_x2 = note_dep_seen(dept, x2); // records x2 for future queries
 285   bool dep_seen_x3 = note_dep_seen(dept, x3); // records x3 for future queries
 286   if (dep_seen_x1 && dep_seen_x2 && dep_seen_x3) {
 287     // look in this bucket for redundant assertions
 288     const int stride = 4;
 289     for (int i = deps->length(); (i -= stride) >= 0; ) {
 290       ciBaseObject* y1 = deps->at(i+1);
 291       ciBaseObject* y2 = deps->at(i+2);
 292       ciBaseObject* y3 = deps->at(i+3);
 293       if (x1 == y1 && x2 == y2 && x3 == y3) {  // same subjects; check the context
 294         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 295           return;
 296         }
 297       }
 298     }
 299   }
 300   // append the assertion in the correct bucket:
 301   deps->append(ctxk);
 302   deps->append(x1);
 303   deps->append(x2);
 304   deps->append(x3);
 305 }
 306 
 307 #if INCLUDE_JVMCI
 308 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 309                                     int ctxk_i, DepValue ctxk2_dv) {
 310   Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
 311   Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder);
 312   if (ctxk2->is_subtype_of(ctxk1)) {
 313     return true;  // success, and no need to change
 314   } else if (ctxk1->is_subtype_of(ctxk2)) {
 315     // new context class fully subsumes previous one
 316     deps->at_put(ctxk_i, ctxk2_dv);
 317     return true;
 318   } else {
 319     return false;
 320   }
 321 }
 322 
 323 void Dependencies::assert_common_1(DepType dept, DepValue x) {
 324   assert(dep_args(dept) == 1, "sanity");
 325   //log_dependency(dept, x);
 326   GrowableArray<DepValue>* deps = _dep_values[dept];
 327 
 328   // see if the same (or a similar) dep is already recorded
 329   if (note_dep_seen(dept, x)) {
 330     assert(deps->find(x) >= 0, "sanity");
 331   } else {
 332     deps->append(x);
 333   }
 334 }
 335 
 336 void Dependencies::assert_common_2(DepType dept,
 337                                    DepValue x0, DepValue x1) {
 338   assert(dep_args(dept) == 2, "sanity");
 339   //log_dependency(dept, x0, x1);
 340   GrowableArray<DepValue>* deps = _dep_values[dept];
 341 
 342   // see if the same (or a similar) dep is already recorded
 343   bool has_ctxk = has_explicit_context_arg(dept);
 344   if (has_ctxk) {
 345     assert(dep_context_arg(dept) == 0, "sanity");
 346     if (note_dep_seen(dept, x1)) {
 347       // look in this bucket for redundant assertions
 348       const int stride = 2;
 349       for (int i = deps->length(); (i -= stride) >= 0; ) {
 350         DepValue y1 = deps->at(i+1);
 351         if (x1 == y1) {  // same subject; check the context
 352           if (maybe_merge_ctxk(deps, i+0, x0)) {
 353             return;
 354           }
 355         }
 356       }
 357     }
 358   } else {
 359     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 360     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 361     if (dep_seen_x0 && dep_seen_x1) {
 362       // look in this bucket for redundant assertions
 363       const int stride = 2;
 364       for (int i = deps->length(); (i -= stride) >= 0; ) {
 365         DepValue y0 = deps->at(i+0);
 366         DepValue y1 = deps->at(i+1);
 367         if (x0 == y0 && x1 == y1) {
 368           return;
 369         }
 370       }
 371     }
 372   }
 373 
 374   // append the assertion in the correct bucket:
 375   deps->append(x0);
 376   deps->append(x1);
 377 }
 378 #endif // INCLUDE_JVMCI
 379 
 380 /// Support for encoding dependencies into an nmethod:
 381 
 382 void Dependencies::copy_to(nmethod* nm) {
 383   address beg = nm->dependencies_begin();
 384   address end = nm->dependencies_end();
 385   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 386   (void)memcpy(beg, content_bytes(), size_in_bytes());
 387   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 388 }
 389 
 390 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 391   for (int i = 0; i < narg; i++) {
 392     int diff = p1[i]->ident() - p2[i]->ident();
 393     if (diff != 0)  return diff;
 394   }
 395   return 0;
 396 }
 397 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 398 { return sort_dep(p1, p2, 1); }
 399 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 400 { return sort_dep(p1, p2, 2); }
 401 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 402 { return sort_dep(p1, p2, 3); }
 403 static int sort_dep_arg_4(ciBaseObject** p1, ciBaseObject** p2)
 404 { return sort_dep(p1, p2, 4); }
 405 
 406 #if INCLUDE_JVMCI
 407 // metadata deps are sorted before object deps
 408 static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
 409   for (int i = 0; i < narg; i++) {
 410     int diff = p1[i].sort_key() - p2[i].sort_key();
 411     if (diff != 0)  return diff;
 412   }
 413   return 0;
 414 }
 415 static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 416 { return sort_dep_value(p1, p2, 1); }
 417 static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 418 { return sort_dep_value(p1, p2, 2); }
 419 static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 420 { return sort_dep_value(p1, p2, 3); }
 421 #endif // INCLUDE_JVMCI
 422 
 423 void Dependencies::sort_all_deps() {
 424 #if INCLUDE_JVMCI
 425   if (_using_dep_values) {
 426     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 427       DepType dept = (DepType)deptv;
 428       GrowableArray<DepValue>* deps = _dep_values[dept];
 429       if (deps->length() <= 1)  continue;
 430       switch (dep_args(dept)) {
 431       case 1: deps->sort(sort_dep_value_arg_1, 1); break;
 432       case 2: deps->sort(sort_dep_value_arg_2, 2); break;
 433       case 3: deps->sort(sort_dep_value_arg_3, 3); break;
 434       default: ShouldNotReachHere(); break;
 435       }
 436     }
 437     return;
 438   }
 439 #endif // INCLUDE_JVMCI
 440   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 441     DepType dept = (DepType)deptv;
 442     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 443     if (deps->length() <= 1)  continue;
 444     switch (dep_args(dept)) {
 445     case 1: deps->sort(sort_dep_arg_1, 1); break;
 446     case 2: deps->sort(sort_dep_arg_2, 2); break;
 447     case 3: deps->sort(sort_dep_arg_3, 3); break;
 448     case 4: deps->sort(sort_dep_arg_4, 4); break;
 449     default: ShouldNotReachHere(); break;
 450     }
 451   }
 452 }
 453 
 454 size_t Dependencies::estimate_size_in_bytes() {
 455   size_t est_size = 100;
 456 #if INCLUDE_JVMCI
 457   if (_using_dep_values) {
 458     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 459       DepType dept = (DepType)deptv;
 460       GrowableArray<DepValue>* deps = _dep_values[dept];
 461       est_size += deps->length() * 2;  // tags and argument(s)
 462     }
 463     return est_size;
 464   }
 465 #endif // INCLUDE_JVMCI
 466   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 467     DepType dept = (DepType)deptv;
 468     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 469     est_size += deps->length()*2;  // tags and argument(s)
 470   }
 471   return est_size;
 472 }
 473 
 474 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 475   switch (dept) {
 476   case unique_concrete_method_2:
 477   case unique_concrete_method_4:
 478     return x->as_metadata()->as_method()->holder();
 479   default:
 480     return nullptr;  // let nullptr be nullptr
 481   }
 482 }
 483 
 484 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 485   assert(must_be_in_vm(), "raw oops here");
 486   switch (dept) {
 487   case unique_concrete_method_2:
 488   case unique_concrete_method_4:
 489     assert(x->is_method(), "sanity");
 490     return ((Method*)x)->method_holder();
 491   default:
 492     return nullptr;  // let nullptr be nullptr
 493   }
 494 }
 495 
 496 void Dependencies::encode_content_bytes() {
 497   sort_all_deps();
 498 
 499   // cast is safe, no deps can overflow INT_MAX
 500   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 501 
 502 #if INCLUDE_JVMCI
 503   if (_using_dep_values) {
 504     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 505       DepType dept = (DepType)deptv;
 506       GrowableArray<DepValue>* deps = _dep_values[dept];
 507       if (deps->length() == 0)  continue;
 508       int stride = dep_args(dept);
 509       int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 510       assert(stride > 0, "sanity");
 511       for (int i = 0; i < deps->length(); i += stride) {
 512         jbyte code_byte = (jbyte)dept;
 513         int skipj = -1;
 514         if (ctxkj >= 0 && ctxkj+1 < stride) {
 515           Klass*  ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
 516           DepValue x = deps->at(i+ctxkj+1);  // following argument
 517           if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) {
 518             skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 519             code_byte |= default_context_type_bit;
 520           }
 521         }
 522         bytes.write_byte(code_byte);
 523         for (int j = 0; j < stride; j++) {
 524           if (j == skipj)  continue;
 525           DepValue v = deps->at(i+j);
 526           int idx = v.index();
 527           bytes.write_int(idx);
 528         }
 529       }
 530     }
 531   } else {
 532 #endif // INCLUDE_JVMCI
 533   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 534     DepType dept = (DepType)deptv;
 535     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 536     if (deps->length() == 0)  continue;
 537     int stride = dep_args(dept);
 538     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 539     assert(stride > 0, "sanity");
 540     for (int i = 0; i < deps->length(); i += stride) {
 541       jbyte code_byte = (jbyte)dept;
 542       int skipj = -1;
 543       if (ctxkj >= 0 && ctxkj+1 < stride) {
 544         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 545         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 546         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 547           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 548           code_byte |= default_context_type_bit;
 549         }
 550       }
 551       bytes.write_byte(code_byte);
 552       for (int j = 0; j < stride; j++) {
 553         if (j == skipj)  continue;
 554         ciBaseObject* v = deps->at(i+j);
 555         int idx;
 556         if (v->is_object()) {
 557           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
 558         } else {
 559           ciMetadata* meta = v->as_metadata();
 560           idx = _oop_recorder->find_index(meta->constant_encoding());
 561         }
 562         bytes.write_int(idx);
 563       }
 564     }
 565   }
 566 #if INCLUDE_JVMCI
 567   }
 568 #endif
 569 
 570   // write a sentinel byte to mark the end
 571   bytes.write_byte(end_marker);
 572 
 573   // round it out to a word boundary
 574   while (bytes.position() % sizeof(HeapWord) != 0) {
 575     bytes.write_byte(end_marker);
 576   }
 577 
 578   // check whether the dept byte encoding really works
 579   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 580 
 581   _content_bytes = bytes.buffer();
 582   _size_in_bytes = bytes.position();
 583 }
 584 
 585 
 586 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 587   "end_marker",
 588   "evol_method",
 589   "leaf_type",
 590   "abstract_with_unique_concrete_subtype",
 591   "unique_concrete_method_2",
 592   "unique_concrete_method_4",
 593   "unique_implementor",
 594   "no_finalizable_subclasses",
 595   "call_site_target_value"
 596 };
 597 
 598 int Dependencies::_dep_args[TYPE_LIMIT] = {
 599   -1,// end_marker
 600   1, // evol_method m
 601   1, // leaf_type ctxk
 602   2, // abstract_with_unique_concrete_subtype ctxk, k
 603   2, // unique_concrete_method_2 ctxk, m
 604   4, // unique_concrete_method_4 ctxk, m, resolved_klass, resolved_method
 605   2, // unique_implementor ctxk, implementor
 606   1, // no_finalizable_subclasses ctxk
 607   2  // call_site_target_value call_site, method_handle
 608 };
 609 
 610 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 611   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 612   return _dep_name[dept];
 613 }
 614 
 615 int Dependencies::dep_args(Dependencies::DepType dept) {
 616   if (!dept_in_mask(dept, all_types))  return -1;
 617   return _dep_args[dept];
 618 }
 619 
 620 void Dependencies::check_valid_dependency_type(DepType dept) {
 621   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept);
 622 }
 623 
 624 Dependencies::DepType Dependencies::validate_dependencies(CompileTask* task, char** failure_detail) {
 625   int klass_violations = 0;
 626   DepType result = end_marker;
 627   for (Dependencies::DepStream deps(this); deps.next(); ) {
 628     Klass* witness = deps.check_dependency();
 629     if (witness != nullptr) {
 630       if (klass_violations == 0) {
 631         result = deps.type();
 632         if (failure_detail != nullptr && klass_violations == 0) {
 633           // Use a fixed size buffer to prevent the string stream from
 634           // resizing in the context of an inner resource mark.
 635           char* buffer = NEW_RESOURCE_ARRAY(char, O_BUFLEN);
 636           stringStream st(buffer, O_BUFLEN);
 637           deps.print_dependency(&st, witness, true);
 638           *failure_detail = st.as_string();
 639         }
 640       }
 641       klass_violations++;
 642       if (xtty == nullptr) {
 643         // If we're not logging then a single violation is sufficient,
 644         // otherwise we want to log all the dependences which were
 645         // violated.
 646         break;
 647       }
 648     }
 649   }
 650 
 651   return result;
 652 }
 653 
 654 // for the sake of the compiler log, print out current dependencies:
 655 void Dependencies::log_all_dependencies() {
 656   if (log() == nullptr)  return;
 657   ResourceMark rm;
 658   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 659     DepType dept = (DepType)deptv;
 660     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 661     int deplen = deps->length();
 662     if (deplen == 0) {
 663       continue;
 664     }
 665     int stride = dep_args(dept);
 666     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
 667     for (int i = 0; i < deps->length(); i += stride) {
 668       for (int j = 0; j < stride; j++) {
 669         // flush out the identities before printing
 670         ciargs->push(deps->at(i+j));
 671       }
 672       write_dependency_to(log(), dept, ciargs);
 673       ciargs->clear();
 674     }
 675     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
 676   }
 677 }
 678 
 679 void Dependencies::write_dependency_to(CompileLog* log,
 680                                        DepType dept,
 681                                        GrowableArray<DepArgument>* args,
 682                                        Klass* witness) {
 683   if (log == nullptr) {
 684     return;
 685   }
 686   ResourceMark rm;
 687   ciEnv* env = ciEnv::current();
 688   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
 689   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
 690     DepArgument arg = *it;
 691     if (arg.is_oop()) {
 692       ciargs->push(env->get_object(arg.oop_value()));
 693     } else {
 694       ciargs->push(env->get_metadata(arg.metadata_value()));
 695     }
 696   }
 697   int argslen = ciargs->length();
 698   Dependencies::write_dependency_to(log, dept, ciargs, witness);
 699   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
 700 }
 701 
 702 void Dependencies::write_dependency_to(CompileLog* log,
 703                                        DepType dept,
 704                                        GrowableArray<ciBaseObject*>* args,
 705                                        Klass* witness) {
 706   if (log == nullptr) {
 707     return;
 708   }
 709   ResourceMark rm;
 710   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
 711   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
 712     ciBaseObject* obj = *it;
 713     if (obj->is_object()) {
 714       argids->push(log->identify(obj->as_object()));
 715     } else {
 716       argids->push(log->identify(obj->as_metadata()));
 717     }
 718   }
 719   if (witness != nullptr) {
 720     log->begin_elem("dependency_failed");
 721   } else {
 722     log->begin_elem("dependency");
 723   }
 724   log->print(" type='%s'", dep_name(dept));
 725   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 726   if (ctxkj >= 0 && ctxkj < argids->length()) {
 727     log->print(" ctxk='%d'", argids->at(ctxkj));
 728   }
 729   // write remaining arguments, if any.
 730   for (int j = 0; j < argids->length(); j++) {
 731     if (j == ctxkj)  continue;  // already logged
 732     if (j == 1) {
 733       log->print(  " x='%d'",    argids->at(j));
 734     } else {
 735       log->print(" x%d='%d'", j, argids->at(j));
 736     }
 737   }
 738   if (witness != nullptr) {
 739     log->object("witness", witness);
 740     log->stamp();
 741   }
 742   log->end_elem();
 743 }
 744 
 745 void Dependencies::write_dependency_to(xmlStream* xtty,
 746                                        DepType dept,
 747                                        GrowableArray<DepArgument>* args,
 748                                        Klass* witness) {
 749   if (xtty == nullptr) {
 750     return;
 751   }
 752   Thread* thread = Thread::current();
 753   HandleMark rm(thread);
 754   ttyLocker ttyl;
 755   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 756   if (witness != nullptr) {
 757     xtty->begin_elem("dependency_failed");
 758   } else {
 759     xtty->begin_elem("dependency");
 760   }
 761   xtty->print(" type='%s'", dep_name(dept));
 762   if (ctxkj >= 0) {
 763     xtty->object("ctxk", args->at(ctxkj).metadata_value());
 764   }
 765   // write remaining arguments, if any.
 766   for (int j = 0; j < args->length(); j++) {
 767     if (j == ctxkj)  continue;  // already logged
 768     DepArgument arg = args->at(j);
 769     if (j == 1) {
 770       if (arg.is_oop()) {
 771         xtty->object("x", Handle(thread, arg.oop_value()));
 772       } else {
 773         xtty->object("x", arg.metadata_value());
 774       }
 775     } else {
 776       char xn[12];
 777       os::snprintf_checked(xn, sizeof(xn), "x%d", j);
 778       if (arg.is_oop()) {
 779         xtty->object(xn, Handle(thread, arg.oop_value()));
 780       } else {
 781         xtty->object(xn, arg.metadata_value());
 782       }
 783     }
 784   }
 785   if (witness != nullptr) {
 786     xtty->object("witness", witness);
 787     xtty->stamp();
 788   }
 789   xtty->end_elem();
 790 }
 791 
 792 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
 793                                     Klass* witness, outputStream* st) {
 794   ResourceMark rm;
 795   ttyLocker ttyl;   // keep the following output all in one block
 796   st->print_cr("%s of type %s",
 797                 (witness == nullptr)? "Dependency": "Failed dependency",
 798                 dep_name(dept));
 799   // print arguments
 800   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 801   for (int j = 0; j < args->length(); j++) {
 802     DepArgument arg = args->at(j);
 803     bool put_star = false;
 804     if (arg.is_null())  continue;
 805     const char* what;
 806     if (j == ctxkj) {
 807       assert(arg.is_metadata(), "must be");
 808       what = "context";
 809       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 810     } else if (arg.is_method()) {
 811       what = "method ";
 812       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), nullptr);
 813     } else if (arg.is_klass()) {
 814       what = "class  ";
 815     } else {
 816       what = "object ";
 817     }
 818     st->print("  %s = %s", what, (put_star? "*": ""));
 819     if (arg.is_klass()) {
 820       st->print("%s", ((Klass*)arg.metadata_value())->external_name());
 821     } else if (arg.is_method()) {
 822       ((Method*)arg.metadata_value())->print_value_on(st);
 823     } else if (arg.is_oop()) {
 824       arg.oop_value()->print_value_on(st);
 825     } else {
 826       ShouldNotReachHere(); // Provide impl for this type.
 827     }
 828 
 829     st->cr();
 830   }
 831   if (witness != nullptr) {
 832     bool put_star = !Dependencies::is_concrete_klass(witness);
 833     st->print_cr("  witness = %s%s",
 834                   (put_star? "*": ""),
 835                   witness->external_name());
 836   }
 837 }
 838 
 839 void Dependencies::DepStream::log_dependency(Klass* witness) {
 840   if (_deps == nullptr && xtty == nullptr)  return;  // fast cutout for runtime
 841   ResourceMark rm;
 842   const int nargs = argument_count();
 843   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 844   for (int j = 0; j < nargs; j++) {
 845     if (is_oop_argument(j)) {
 846       args->push(argument_oop(j));
 847     } else {
 848       args->push(argument(j));
 849     }
 850   }
 851   int argslen = args->length();
 852   if (_deps != nullptr && _deps->log() != nullptr) {
 853     if (ciEnv::current() != nullptr) {
 854       Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
 855     } else {
 856       // Treat the CompileLog as an xmlstream instead
 857       Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness);
 858     }
 859   } else {
 860     Dependencies::write_dependency_to(xtty, type(), args, witness);
 861   }
 862   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 863 }
 864 
 865 void Dependencies::DepStream::print_dependency(outputStream* st, Klass* witness, bool verbose) {
 866   ResourceMark rm;
 867   int nargs = argument_count();
 868   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 869   for (int j = 0; j < nargs; j++) {
 870     if (is_oop_argument(j)) {
 871       args->push(argument_oop(j));
 872     } else {
 873       args->push(argument(j));
 874     }
 875   }
 876   int argslen = args->length();
 877   Dependencies::print_dependency(type(), args, witness, st);
 878   if (verbose) {
 879     if (_code != nullptr) {
 880       st->print("  code: ");
 881       _code->print_value_on(st);
 882       st->cr();
 883     }
 884   }
 885   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 886 }
 887 
 888 
 889 /// Dependency stream support (decodes dependencies from an nmethod):
 890 
 891 #ifdef ASSERT
 892 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 893   assert(must_be_in_vm(), "raw oops here");
 894   _byte_limit = byte_limit;
 895   _type       = undefined_dependency;  // defeat "already at end" assert
 896   assert((_code!=nullptr) + (_deps!=nullptr) == 1, "one or t'other");
 897 }
 898 #endif //ASSERT
 899 
 900 bool Dependencies::DepStream::next() {
 901   assert(_type != end_marker, "already at end");
 902   if (_bytes.position() == 0 && _code != nullptr
 903       && _code->dependencies_size() == 0) {
 904     // Method has no dependencies at all.
 905     return false;
 906   }
 907   int code_byte = (_bytes.read_byte() & 0xFF);
 908   if (code_byte == end_marker) {
 909     DEBUG_ONLY(_type = end_marker);
 910     return false;
 911   } else {
 912     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 913     code_byte -= ctxk_bit;
 914     DepType dept = (DepType)code_byte;
 915     _type = dept;
 916     Dependencies::check_valid_dependency_type(dept);
 917     int stride = _dep_args[dept];
 918     assert(stride == dep_args(dept), "sanity");
 919     int skipj = -1;
 920     if (ctxk_bit != 0) {
 921       skipj = 0;  // currently the only context argument is at zero
 922       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 923     }
 924     for (int j = 0; j < stride; j++) {
 925       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 926     }
 927     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 928     return true;
 929   }
 930 }
 931 
 932 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 933   Metadata* o = nullptr;
 934   if (_code != nullptr) {
 935     o = _code->metadata_at(i);
 936   } else {
 937     o = _deps->oop_recorder()->metadata_at(i);
 938   }
 939   return o;
 940 }
 941 
 942 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 943   return (_code != nullptr)
 944          ? _code->oop_at(i)
 945     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 946 }
 947 
 948 Metadata* Dependencies::DepStream::argument(int i) {
 949   Metadata* result = recorded_metadata_at(argument_index(i));
 950 
 951   if (result == nullptr) { // Explicit context argument can be compressed
 952     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 953     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 954       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 955     }
 956   }
 957 
 958   assert(result == nullptr || result->is_klass() || result->is_method(), "must be");
 959   return result;
 960 }
 961 
 962 /**
 963  * Returns a unique identifier for each dependency argument.
 964  */
 965 uintptr_t Dependencies::DepStream::get_identifier(int i) {
 966   if (is_oop_argument(i)) {
 967     return (uintptr_t)(oopDesc*)argument_oop(i);
 968   } else {
 969     return (uintptr_t)argument(i);
 970   }
 971 }
 972 
 973 oop Dependencies::DepStream::argument_oop(int i) {
 974   oop result = recorded_oop_at(argument_index(i));
 975   assert(oopDesc::is_oop_or_null(result), "must be");
 976   return result;
 977 }
 978 
 979 InstanceKlass* Dependencies::DepStream::context_type() {
 980   assert(must_be_in_vm(), "raw oops here");
 981 
 982   // Most dependencies have an explicit context type argument.
 983   {
 984     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 985     if (ctxkj >= 0) {
 986       Metadata* k = argument(ctxkj);
 987       assert(k != nullptr && k->is_klass(), "type check");
 988       return InstanceKlass::cast((Klass*)k);
 989     }
 990   }
 991 
 992   // Some dependencies are using the klass of the first object
 993   // argument as implicit context type.
 994   {
 995     int ctxkj = dep_implicit_context_arg(type());
 996     if (ctxkj >= 0) {
 997       Klass* k = argument_oop(ctxkj)->klass();
 998       assert(k != nullptr, "type check");
 999       return InstanceKlass::cast(k);
1000     }
1001   }
1002 
1003   // And some dependencies don't have a context type at all,
1004   // e.g. evol_method.
1005   return nullptr;
1006 }
1007 
1008 // ----------------- DependencySignature --------------------------------------
1009 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
1010   if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
1011     return false;
1012   }
1013 
1014   for (int i = 0; i < s1.args_count(); i++) {
1015     if (s1.arg(i) != s2.arg(i)) {
1016       return false;
1017     }
1018   }
1019   return true;
1020 }
1021 
1022 /// Checking dependencies
1023 
1024 // This hierarchy walker inspects subtypes of a given type, trying to find a "bad" class which breaks a dependency.
1025 // Such a class is called a "witness" to the broken dependency.
1026 // While searching around, we ignore "participants", which are already known to the dependency.
1027 class AbstractClassHierarchyWalker {
1028  public:
1029   enum { PARTICIPANT_LIMIT = 3 };
1030 
1031  private:
1032   // if non-zero, tells how many witnesses to convert to participants
1033   uint _record_witnesses;
1034 
1035   // special classes which are not allowed to be witnesses:
1036   Klass* _participants[PARTICIPANT_LIMIT+1];
1037   uint   _num_participants;
1038 
1039 #ifdef ASSERT
1040   uint _nof_requests; // one-shot walker
1041 #endif // ASSERT
1042 
1043   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1044   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1045   static PerfCounter* _perf_find_witness_in_calls_count;
1046 
1047  protected:
1048   virtual Klass* find_witness_in(KlassDepChange& changes) = 0;
1049   virtual Klass* find_witness_anywhere(InstanceKlass* context_type) = 0;
1050 
1051   AbstractClassHierarchyWalker(Klass* participant) : _record_witnesses(0), _num_participants(0)
1052 #ifdef ASSERT
1053   , _nof_requests(0)
1054 #endif // ASSERT
1055   {
1056     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1057       _participants[i] = nullptr;
1058     }
1059     if (participant != nullptr) {
1060       add_participant(participant);
1061     }
1062   }
1063 
1064   bool is_participant(Klass* k) {
1065     for (uint i = 0; i < _num_participants; i++) {
1066       if (_participants[i] == k) {
1067         return true;
1068       }
1069     }
1070     return false;
1071   }
1072 
1073   bool record_witness(Klass* witness) {
1074     if (_record_witnesses > 0) {
1075       --_record_witnesses;
1076       add_participant(witness);
1077       return false; // not a witness
1078     } else {
1079       return true; // is a witness
1080     }
1081   }
1082 
1083   class CountingClassHierarchyIterator : public ClassHierarchyIterator {
1084    private:
1085     jlong _nof_steps;
1086    public:
1087     CountingClassHierarchyIterator(InstanceKlass* root) : ClassHierarchyIterator(root), _nof_steps(0) {}
1088 
1089     void next() {
1090       _nof_steps++;
1091       ClassHierarchyIterator::next();
1092     }
1093 
1094     ~CountingClassHierarchyIterator() {
1095       if (UsePerfData) {
1096         _perf_find_witness_anywhere_steps_count->inc(_nof_steps);
1097       }
1098     }
1099   };
1100 
1101  public:
1102   uint num_participants() { return _num_participants; }
1103   Klass* participant(uint n) {
1104     assert(n <= _num_participants, "oob");
1105     if (n < _num_participants) {
1106       return _participants[n];
1107     } else {
1108       return nullptr;
1109     }
1110   }
1111 
1112   void add_participant(Klass* participant) {
1113     assert(!is_participant(participant), "sanity");
1114     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
1115     uint np = _num_participants++;
1116     _participants[np] = participant;
1117   }
1118 
1119   void record_witnesses(uint add) {
1120     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
1121     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
1122     _record_witnesses = add;
1123   }
1124 
1125   Klass* find_witness(InstanceKlass* context_type, KlassDepChange* changes = nullptr);
1126 
1127   static void init();
1128   static void print_statistics();
1129 };
1130 
1131 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_calls_count = nullptr;
1132 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_steps_count = nullptr;
1133 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_in_calls_count       = nullptr;
1134 
1135 void AbstractClassHierarchyWalker::init() {
1136   if (UsePerfData) {
1137     EXCEPTION_MARK;
1138     _perf_find_witness_anywhere_calls_count =
1139         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhere", PerfData::U_Events, CHECK);
1140     _perf_find_witness_anywhere_steps_count =
1141         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhereSteps", PerfData::U_Events, CHECK);
1142     _perf_find_witness_in_calls_count =
1143         PerfDataManager::create_counter(SUN_CI, "findWitnessIn", PerfData::U_Events, CHECK);
1144   }
1145 }
1146 
1147 Klass* AbstractClassHierarchyWalker::find_witness(InstanceKlass* context_type, KlassDepChange* changes) {
1148   // Current thread must be in VM (not native mode, as in CI):
1149   assert(must_be_in_vm(), "raw oops here");
1150   // Must not move the class hierarchy during this check:
1151   assert_locked_or_safepoint(Compile_lock);
1152   assert(_nof_requests++ == 0, "repeated requests are not supported");
1153 
1154   assert(changes == nullptr || changes->involves_context(context_type), "irrelevant dependency");
1155 
1156   // (Note: Interfaces do not have subclasses.)
1157   // If it is an interface, search its direct implementors.
1158   // (Their subclasses are additional indirect implementors. See InstanceKlass::add_implementor().)
1159   if (context_type->is_interface()) {
1160     int nof_impls = context_type->nof_implementors();
1161     if (nof_impls == 0) {
1162       return nullptr; // no implementors
1163     } else if (nof_impls == 1) { // unique implementor
1164       assert(context_type != context_type->implementor(), "not unique");
1165       context_type = context_type->implementor();
1166     } else { // nof_impls >= 2
1167       // Avoid this case: *I.m > { A.m, C }; B.m > C
1168       // Here, I.m has 2 concrete implementations, but m appears unique
1169       // as A.m, because the search misses B.m when checking C.
1170       // The inherited method B.m was getting missed by the walker
1171       // when interface 'I' was the starting point.
1172       // %%% Until this is fixed more systematically, bail out.
1173       return context_type;
1174     }
1175   }
1176   assert(!context_type->is_interface(), "no interfaces allowed");
1177 
1178   if (changes != nullptr) {
1179     if (UsePerfData) {
1180       _perf_find_witness_in_calls_count->inc();
1181     }
1182     return find_witness_in(*changes);
1183   } else {
1184     if (UsePerfData) {
1185       _perf_find_witness_anywhere_calls_count->inc();
1186     }
1187     return find_witness_anywhere(context_type);
1188   }
1189 }
1190 
1191 class ConcreteSubtypeFinder : public AbstractClassHierarchyWalker {
1192  private:
1193   bool is_witness(Klass* k);
1194 
1195  protected:
1196   virtual Klass* find_witness_in(KlassDepChange& changes);
1197   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1198 
1199  public:
1200   ConcreteSubtypeFinder(Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {}
1201 };
1202 
1203 bool ConcreteSubtypeFinder::is_witness(Klass* k) {
1204   if (Dependencies::is_concrete_klass(k)) {
1205     return record_witness(k); // concrete subtype
1206   } else {
1207     return false; // not a concrete class
1208   }
1209 }
1210 
1211 Klass* ConcreteSubtypeFinder::find_witness_in(KlassDepChange& changes) {
1212   // When looking for unexpected concrete types, do not look beneath expected ones:
1213   //  * CX > CC > C' is OK, even if C' is new.
1214   //  * CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
1215   Klass* new_type = changes.as_new_klass_change()->new_type();
1216   assert(!is_participant(new_type), "only old classes are participants");
1217   // If the new type is a subtype of a participant, we are done.
1218   for (uint i = 0; i < num_participants(); i++) {
1219     if (changes.involves_context(participant(i))) {
1220       // new guy is protected from this check by previous participant
1221       return nullptr;
1222     }
1223   }
1224   if (is_witness(new_type)) {
1225     return new_type;
1226   }
1227   // No witness found.  The dependency remains unbroken.
1228   return nullptr;
1229 }
1230 
1231 Klass* ConcreteSubtypeFinder::find_witness_anywhere(InstanceKlass* context_type) {
1232   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1233     Klass* sub = iter.klass();
1234     // Do not report participant types.
1235     if (is_participant(sub)) {
1236       // Don't walk beneath a participant since it hides witnesses.
1237       iter.skip_subclasses();
1238     } else if (is_witness(sub)) {
1239       return sub; // found a witness
1240     }
1241   }
1242   // No witness found.  The dependency remains unbroken.
1243   return nullptr;
1244 }
1245 
1246 class ConcreteMethodFinder : public AbstractClassHierarchyWalker {
1247  private:
1248   Symbol* _name;
1249   Symbol* _signature;
1250 
1251   // cache of method lookups
1252   Method* _found_methods[PARTICIPANT_LIMIT+1];
1253 
1254   bool is_witness(Klass* k);
1255 
1256  protected:
1257   virtual Klass* find_witness_in(KlassDepChange& changes);
1258   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1259 
1260  public:
1261   bool witnessed_reabstraction_in_supers(Klass* k);
1262 
1263   ConcreteMethodFinder(Method* m, Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {
1264     assert(m != nullptr && m->is_method(), "sanity");
1265     _name      = m->name();
1266     _signature = m->signature();
1267 
1268     for (int i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1269       _found_methods[i] = nullptr;
1270     }
1271   }
1272 
1273   // Note:  If n==num_participants, returns nullptr.
1274   Method* found_method(uint n) {
1275     assert(n <= num_participants(), "oob");
1276     Method* fm = _found_methods[n];
1277     assert(n == num_participants() || fm != nullptr, "proper usage");
1278     if (fm != nullptr && fm->method_holder() != participant(n)) {
1279       // Default methods from interfaces can be added to classes. In
1280       // that case the holder of the method is not the class but the
1281       // interface where it's defined.
1282       assert(fm->is_default_method(), "sanity");
1283       return nullptr;
1284     }
1285     return fm;
1286   }
1287 
1288   void add_participant(Klass* participant) {
1289     AbstractClassHierarchyWalker::add_participant(participant);
1290     _found_methods[num_participants()] = nullptr;
1291   }
1292 
1293   bool record_witness(Klass* witness, Method* m) {
1294     _found_methods[num_participants()] = m;
1295     return AbstractClassHierarchyWalker::record_witness(witness);
1296   }
1297 
1298  private:
1299   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1300   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1301   static PerfCounter* _perf_find_witness_in_calls_count;
1302 
1303  public:
1304   static void init();
1305   static void print_statistics();
1306 };
1307 
1308 bool ConcreteMethodFinder::is_witness(Klass* k) {
1309   if (is_participant(k)) {
1310     return false; // do not report participant types
1311   }
1312   if (k->is_instance_klass()) {
1313     InstanceKlass* ik = InstanceKlass::cast(k);
1314     // Search class hierarchy first, skipping private implementations
1315     // as they never override any inherited methods
1316     Method* m = ik->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1317     if (Dependencies::is_concrete_method(m, ik)) {
1318       return record_witness(k, m); // concrete method found
1319     } else {
1320       // Check for re-abstraction of method
1321       if (!ik->is_interface() && m != nullptr && m->is_abstract()) {
1322         // Found a matching abstract method 'm' in the class hierarchy.
1323         // This is fine iff 'k' is an abstract class and all concrete subtypes
1324         // of 'k' override 'm' and are participates of the current search.
1325         ConcreteSubtypeFinder wf;
1326         for (uint i = 0; i < num_participants(); i++) {
1327           Klass* p = participant(i);
1328           wf.add_participant(p);
1329         }
1330         Klass* w = wf.find_witness(ik);
1331         if (w != nullptr) {
1332           Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1333           if (!Dependencies::is_concrete_method(wm, w)) {
1334             // Found a concrete subtype 'w' which does not override abstract method 'm'.
1335             // Bail out because 'm' could be called with 'w' as receiver (leading to an
1336             // AbstractMethodError) and thus the method we are looking for is not unique.
1337             return record_witness(k, m);
1338           }
1339         }
1340       }
1341       // Check interface defaults also, if any exist.
1342       Array<Method*>* default_methods = ik->default_methods();
1343       if (default_methods != nullptr) {
1344         Method* dm = ik->find_method(default_methods, _name, _signature);
1345         if (Dependencies::is_concrete_method(dm, nullptr)) {
1346           return record_witness(k, dm); // default method found
1347         }
1348       }
1349       return false; // no concrete method found
1350     }
1351   } else {
1352     return false; // no methods to find in an array type
1353   }
1354 }
1355 
1356 Klass* ConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1357   // When looking for unexpected concrete methods, look beneath expected ones, to see if there are overrides.
1358   //  * CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
1359   Klass* new_type = changes.as_new_klass_change()->new_type();
1360   assert(!is_participant(new_type), "only old classes are participants");
1361   if (is_witness(new_type)) {
1362     return new_type;
1363   } else {
1364     // No witness found, but is_witness() doesn't detect method re-abstraction in case of spot-checking.
1365     if (witnessed_reabstraction_in_supers(new_type)) {
1366       return new_type;
1367     }
1368   }
1369   // No witness found.  The dependency remains unbroken.
1370   return nullptr;
1371 }
1372 
1373 bool ConcreteMethodFinder::witnessed_reabstraction_in_supers(Klass* k) {
1374   if (!k->is_instance_klass()) {
1375     return false; // no methods to find in an array type
1376   } else {
1377     // Looking for a case when an abstract method is inherited into a concrete class.
1378     if (Dependencies::is_concrete_klass(k) && !k->is_interface()) {
1379       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1380       if (m != nullptr) {
1381         return false; // no reabstraction possible: local method found
1382       }
1383       for (InstanceKlass* super = k->java_super(); super != nullptr; super = super->java_super()) {
1384         m = super->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1385         if (m != nullptr) { // inherited method found
1386           if (m->is_abstract() || m->is_overpass()) {
1387             return record_witness(super, m); // abstract method found
1388           }
1389           return false;
1390         }
1391       }
1392       // Miranda.
1393       return true;
1394     }
1395     return false;
1396   }
1397 }
1398 
1399 
1400 Klass* ConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1401   // Walk hierarchy under a context type, looking for unexpected types.
1402   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1403     Klass* sub = iter.klass();
1404     if (is_witness(sub)) {
1405       return sub; // found a witness
1406     }
1407   }
1408   // No witness found.  The dependency remains unbroken.
1409   return nullptr;
1410 }
1411 
1412 // For some method m and some class ctxk (subclass of method holder),
1413 // enumerate all distinct overrides of m in concrete subclasses of ctxk.
1414 // It relies on vtable/itable information to perform method selection on each linked subclass
1415 // and ignores all non yet linked ones (speculatively treat them as "effectively abstract").
1416 class LinkedConcreteMethodFinder : public AbstractClassHierarchyWalker {
1417  private:
1418   InstanceKlass* _resolved_klass;   // resolved class (JVMS-5.4.3.1)
1419   InstanceKlass* _declaring_klass;  // the holder of resolved method (JVMS-5.4.3.3)
1420   int            _vtable_index;     // vtable/itable index of the resolved method
1421   bool           _do_itable_lookup; // choose between itable and vtable lookup logic
1422 
1423   // cache of method lookups
1424   Method* _found_methods[PARTICIPANT_LIMIT+1];
1425 
1426   bool is_witness(Klass* k);
1427   Method* select_method(InstanceKlass* recv_klass);
1428   static int compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, bool& is_itable_index);
1429   static bool is_concrete_klass(InstanceKlass* ik);
1430 
1431   void add_participant(Method* m, Klass* participant) {
1432     uint np = num_participants();
1433     AbstractClassHierarchyWalker::add_participant(participant);
1434     assert(np + 1 == num_participants(), "sanity");
1435     _found_methods[np] = m; // record the method for the participant
1436   }
1437 
1438   bool record_witness(Klass* witness, Method* m) {
1439     for (uint i = 0; i < num_participants(); i++) {
1440       if (found_method(i) == m) {
1441         return false; // already recorded
1442       }
1443     }
1444     // Record not yet seen method.
1445     _found_methods[num_participants()] = m;
1446     return AbstractClassHierarchyWalker::record_witness(witness);
1447   }
1448 
1449   void initialize(Method* participant) {
1450     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1451       _found_methods[i] = nullptr;
1452     }
1453     if (participant != nullptr) {
1454       add_participant(participant, participant->method_holder());
1455     }
1456   }
1457 
1458  protected:
1459   virtual Klass* find_witness_in(KlassDepChange& changes);
1460   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1461 
1462  public:
1463   // In order to perform method selection, the following info is needed:
1464   //  (1) interface or virtual call;
1465   //  (2) vtable/itable index;
1466   //  (3) declaring class (in case of interface call).
1467   //
1468   // It is prepared based on the results of method resolution: resolved class and resolved method (as specified in JVMS-5.4.3.3).
1469   // Optionally, a method which was previously determined as a unique target (uniqm) is added as a participant
1470   // to enable dependency spot-checking and speed up the search.
1471   LinkedConcreteMethodFinder(InstanceKlass* resolved_klass, Method* resolved_method, Method* uniqm = nullptr) : AbstractClassHierarchyWalker(nullptr) {
1472     assert(resolved_klass->is_linked(), "required");
1473     assert(resolved_method->method_holder()->is_linked(), "required");
1474     assert(!resolved_method->can_be_statically_bound(), "no vtable index available");
1475 
1476     _resolved_klass  = resolved_klass;
1477     _declaring_klass = resolved_method->method_holder();
1478     _vtable_index    = compute_vtable_index(resolved_klass, resolved_method,
1479                                             _do_itable_lookup); // out parameter
1480     assert(_vtable_index >= 0, "invalid vtable index");
1481 
1482     initialize(uniqm);
1483   }
1484 
1485   // Note:  If n==num_participants, returns nullptr.
1486   Method* found_method(uint n) {
1487     assert(n <= num_participants(), "oob");
1488     assert(participant(n) != nullptr || n == num_participants(), "proper usage");
1489     return _found_methods[n];
1490   }
1491 };
1492 
1493 Klass* LinkedConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1494   Klass* type = changes.type();
1495 
1496   assert(!is_participant(type), "only old classes are participants");
1497 
1498   if (is_witness(type)) {
1499     return type;
1500   }
1501   return nullptr; // No witness found.  The dependency remains unbroken.
1502 }
1503 
1504 Klass* LinkedConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1505   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1506     Klass* sub = iter.klass();
1507     if (is_witness(sub)) {
1508       return sub;
1509     }
1510     if (sub->is_instance_klass() && !InstanceKlass::cast(sub)->is_linked()) {
1511       iter.skip_subclasses(); // ignore not yet linked classes
1512     }
1513   }
1514   return nullptr; // No witness found. The dependency remains unbroken.
1515 }
1516 
1517 bool LinkedConcreteMethodFinder::is_witness(Klass* k) {
1518   if (is_participant(k)) {
1519     return false; // do not report participant types
1520   } else if (k->is_instance_klass()) {
1521     InstanceKlass* ik = InstanceKlass::cast(k);
1522     if (is_concrete_klass(ik)) {
1523       Method* m = select_method(ik);
1524       return record_witness(ik, m);
1525     } else {
1526       return false; // ignore non-concrete holder class
1527     }
1528   } else {
1529     return false; // no methods to find in an array type
1530   }
1531 }
1532 
1533 Method* LinkedConcreteMethodFinder::select_method(InstanceKlass* recv_klass) {
1534   Method* selected_method = nullptr;
1535   if (_do_itable_lookup) {
1536     assert(_declaring_klass->is_interface(), "sanity");
1537     bool implements_interface; // initialized by method_at_itable_or_null()
1538     selected_method = recv_klass->method_at_itable_or_null(_declaring_klass, _vtable_index,
1539                                                            implements_interface); // out parameter
1540     assert(implements_interface, "not implemented");
1541   } else {
1542     selected_method = recv_klass->method_at_vtable(_vtable_index);
1543   }
1544   return selected_method; // nullptr when corresponding slot is empty (AbstractMethodError case)
1545 }
1546 
1547 int LinkedConcreteMethodFinder::compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method,
1548                                                      // out parameter
1549                                                      bool& is_itable_index) {
1550   if (resolved_klass->is_interface() && resolved_method->has_itable_index()) {
1551     is_itable_index = true;
1552     return resolved_method->itable_index();
1553   }
1554   // Check for default or miranda method first.
1555   InstanceKlass* declaring_klass = resolved_method->method_holder();
1556   if (!resolved_klass->is_interface() && declaring_klass->is_interface()) {
1557     is_itable_index = false;
1558     return resolved_klass->vtable_index_of_interface_method(resolved_method);
1559   }
1560   // At this point we are sure that resolved_method is virtual and not
1561   // a default or miranda method; therefore, it must have a valid vtable index.
1562   assert(resolved_method->has_vtable_index(), "");
1563   is_itable_index = false;
1564   return resolved_method->vtable_index();
1565 }
1566 
1567 bool LinkedConcreteMethodFinder::is_concrete_klass(InstanceKlass* ik) {
1568   if (!Dependencies::is_concrete_klass(ik)) {
1569     return false; // not concrete
1570   }
1571   if (ik->is_interface()) {
1572     return false; // interfaces aren't concrete
1573   }
1574   if (!ik->is_linked()) {
1575     return false; // not yet linked classes don't have instances
1576   }
1577   return true;
1578 }
1579 
1580 #ifdef ASSERT
1581 // Assert that m is inherited into ctxk, without intervening overrides.
1582 // (May return true even if this is not true, in corner cases where we punt.)
1583 bool Dependencies::verify_method_context(InstanceKlass* ctxk, Method* m) {
1584   if (m->is_private()) {
1585     return false; // Quick lose.  Should not happen.
1586   }
1587   if (m->method_holder() == ctxk) {
1588     return true;  // Quick win.
1589   }
1590   if (!(m->is_public() || m->is_protected())) {
1591     // The override story is complex when packages get involved.
1592     return true;  // Must punt the assertion to true.
1593   }
1594   Method* lm = ctxk->lookup_method(m->name(), m->signature());
1595   if (lm == nullptr) {
1596     // It might be an interface method
1597     lm = ctxk->lookup_method_in_ordered_interfaces(m->name(), m->signature());
1598   }
1599   if (lm == m) {
1600     // Method m is inherited into ctxk.
1601     return true;
1602   }
1603   if (lm != nullptr) {
1604     if (!(lm->is_public() || lm->is_protected())) {
1605       // Method is [package-]private, so the override story is complex.
1606       return true;  // Must punt the assertion to true.
1607     }
1608     if (lm->is_static()) {
1609       // Static methods don't override non-static so punt
1610       return true;
1611     }
1612     if (!Dependencies::is_concrete_method(lm, ctxk) &&
1613         !Dependencies::is_concrete_method(m, ctxk)) {
1614       // They are both non-concrete
1615       if (lm->method_holder()->is_subtype_of(m->method_holder())) {
1616         // Method m is overridden by lm, but both are non-concrete.
1617         return true;
1618       }
1619       if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() &&
1620           ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) {
1621         // Interface method defined in multiple super interfaces
1622         return true;
1623       }
1624     }
1625   }
1626   ResourceMark rm;
1627   tty->print_cr("Dependency method not found in the associated context:");
1628   tty->print_cr("  context = %s", ctxk->external_name());
1629   tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
1630   if (lm != nullptr) {
1631     tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
1632   }
1633   return false;
1634 }
1635 #endif // ASSERT
1636 
1637 bool Dependencies::is_concrete_klass(Klass* k) {
1638   if (k->is_abstract())  return false;
1639   // %%% We could treat classes which are concrete but
1640   // have not yet been instantiated as virtually abstract.
1641   // This would require a deoptimization barrier on first instantiation.
1642   //if (k->is_not_instantiated())  return false;
1643   return true;
1644 }
1645 
1646 bool Dependencies::is_concrete_method(Method* m, Klass* k) {
1647   // nullptr is not a concrete method.
1648   if (m == nullptr) {
1649     return false;
1650   }
1651   // Statics are irrelevant to virtual call sites.
1652   if (m->is_static()) {
1653     return false;
1654   }
1655   // Abstract methods are not concrete.
1656   if (m->is_abstract()) {
1657     return false;
1658   }
1659   // Overpass (error) methods are not concrete if k is abstract.
1660   if (m->is_overpass() && k != nullptr) {
1661      return !k->is_abstract();
1662   }
1663   // Note "true" is conservative answer: overpass clause is false if k == nullptr,
1664   // implies return true if answer depends on overpass clause.
1665   return true;
1666  }
1667 
1668 Klass* Dependencies::find_finalizable_subclass(InstanceKlass* ik) {
1669   for (ClassHierarchyIterator iter(ik); !iter.done(); iter.next()) {
1670     Klass* sub = iter.klass();
1671     if (sub->has_finalizer() && !sub->is_interface()) {
1672       return sub;
1673     }
1674   }
1675   return nullptr; // not found
1676 }
1677 
1678 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1679   if (k->is_abstract())  return false;
1680   // We could also return false if k does not yet appear to be
1681   // instantiated, if the VM version supports this distinction also.
1682   //if (k->is_not_instantiated())  return false;
1683   return true;
1684 }
1685 
1686 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1687   return k->has_finalizable_subclass();
1688 }
1689 
1690 // Any use of the contents (bytecodes) of a method must be
1691 // marked by an "evol_method" dependency, if those contents
1692 // can change.  (Note: A method is always dependent on itself.)
1693 Klass* Dependencies::check_evol_method(Method* m) {
1694   assert(must_be_in_vm(), "raw oops here");
1695   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1696   // Or is there a now a breakpoint?
1697   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1698   if (m->is_old()
1699       || m->number_of_breakpoints() > 0) {
1700     return m->method_holder();
1701   } else {
1702     return nullptr;
1703   }
1704 }
1705 
1706 // This is a strong assertion:  It is that the given type
1707 // has no subtypes whatever.  It is most useful for
1708 // optimizing checks on reflected types or on array types.
1709 // (Checks on types which are derived from real instances
1710 // can be optimized more strongly than this, because we
1711 // know that the checked type comes from a concrete type,
1712 // and therefore we can disregard abstract types.)
1713 Klass* Dependencies::check_leaf_type(InstanceKlass* ctxk) {
1714   assert(must_be_in_vm(), "raw oops here");
1715   assert_locked_or_safepoint(Compile_lock);
1716   Klass* sub = ctxk->subklass();
1717   if (sub != nullptr) {
1718     return sub;
1719   } else if (ctxk->nof_implementors() != 0) {
1720     // if it is an interface, it must be unimplemented
1721     // (if it is not an interface, nof_implementors is always zero)
1722     InstanceKlass* impl = ctxk->implementor();
1723     assert(impl != nullptr, "must be set");
1724     return impl;
1725   } else {
1726     return nullptr;
1727   }
1728 }
1729 
1730 // Test the assertion that conck is the only concrete subtype* of ctxk.
1731 // The type conck itself is allowed to have have further concrete subtypes.
1732 // This allows the compiler to narrow occurrences of ctxk by conck,
1733 // when dealing with the types of actual instances.
1734 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk,
1735                                                                  Klass* conck,
1736                                                                  NewKlassDepChange* changes) {
1737   ConcreteSubtypeFinder wf(conck);
1738   Klass* k = wf.find_witness(ctxk, changes);
1739   return k;
1740 }
1741 
1742 
1743 // Find the unique concrete proper subtype of ctxk, or nullptr if there
1744 // is more than one concrete proper subtype.  If there are no concrete
1745 // proper subtypes, return ctxk itself, whether it is concrete or not.
1746 // The returned subtype is allowed to have have further concrete subtypes.
1747 // That is, return CC1 for CX > CC1 > CC2, but nullptr for CX > { CC1, CC2 }.
1748 Klass* Dependencies::find_unique_concrete_subtype(InstanceKlass* ctxk) {
1749   ConcreteSubtypeFinder wf(ctxk);  // Ignore ctxk when walking.
1750   wf.record_witnesses(1);          // Record one other witness when walking.
1751   Klass* wit = wf.find_witness(ctxk);
1752   if (wit != nullptr)  return nullptr;   // Too many witnesses.
1753   Klass* conck = wf.participant(0);
1754   if (conck == nullptr) {
1755     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1756   } else {
1757 #ifndef PRODUCT
1758     // Make sure the dependency mechanism will pass this discovery:
1759     if (VerifyDependencies) {
1760       // Turn off dependency tracing while actually testing deps.
1761       FlagSetting fs(_verify_in_progress, true);
1762       if (!Dependencies::is_concrete_klass(ctxk)) {
1763         guarantee(nullptr == (void *)
1764                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1765                   "verify dep.");
1766       }
1767     }
1768 #endif //PRODUCT
1769     return conck;
1770   }
1771 }
1772 
1773 // Try to determine whether root method in some context is concrete or not based on the information about the unique method
1774 // in that context. It exploits the fact that concrete root method is always inherited into the context when there's a unique method.
1775 // Hence, unique method holder is always a supertype of the context class when root method is concrete.
1776 // Examples for concrete_root_method
1777 //      C (C.m uniqm)
1778 //      |
1779 //      CX (ctxk) uniqm is inherited into context.
1780 //
1781 //      CX (ctxk) (CX.m uniqm) here uniqm is defined in ctxk.
1782 // Examples for !concrete_root_method
1783 //      CX (ctxk)
1784 //      |
1785 //      C (C.m uniqm) uniqm is in subtype of ctxk.
1786 bool Dependencies::is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk) {
1787   if (uniqm == nullptr) {
1788     return false; // match Dependencies::is_concrete_method() behavior
1789   }
1790   // Theoretically, the "direction" of subtype check matters here.
1791   // On one hand, in case of interface context with a single implementor, uniqm can be in a superclass of the implementor which
1792   // is not related to context class.
1793   // On another hand, uniqm could come from an interface unrelated to the context class, but right now it is not possible:
1794   // it is required that uniqm->method_holder() is the participant (uniqm->method_holder() <: ctxk), hence a default method
1795   // can't be used as unique.
1796   if (ctxk->is_interface()) {
1797     InstanceKlass* implementor = ctxk->implementor();
1798     assert(implementor != ctxk, "single implementor only"); // should have been invalidated earlier
1799     ctxk = implementor;
1800   }
1801   InstanceKlass* holder = uniqm->method_holder();
1802   assert(!holder->is_interface(), "no default methods allowed");
1803   assert(ctxk->is_subclass_of(holder) || holder->is_subclass_of(ctxk), "not related");
1804   return ctxk->is_subclass_of(holder);
1805 }
1806 
1807 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1808 // Otherwise, return a class that contains an interfering method.
1809 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1810                                                   Method* uniqm,
1811                                                   NewKlassDepChange* changes) {
1812   ConcreteMethodFinder wf(uniqm, uniqm->method_holder());
1813   Klass* k = wf.find_witness(ctxk, changes);
1814   if (k != nullptr) {
1815     return k;
1816   }
1817   if (!Dependencies::is_concrete_root_method(uniqm, ctxk) || changes != nullptr) {
1818     Klass* conck = find_witness_AME(ctxk, uniqm, changes);
1819     if (conck != nullptr) {
1820       // Found a concrete subtype 'conck' which does not override abstract root method.
1821       return conck;
1822     }
1823   }
1824   return nullptr;
1825 }
1826 
1827 Klass* Dependencies::check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes) {
1828   assert(ctxk->is_interface(), "sanity");
1829   assert(ctxk->nof_implementors() > 0, "no implementors");
1830   if (ctxk->nof_implementors() == 1) {
1831     assert(ctxk->implementor() == uniqk, "sanity");
1832     return nullptr;
1833   }
1834   return ctxk; // no unique implementor
1835 }
1836 
1837 // Search for AME.
1838 // There are two version of checks.
1839 //   1) Spot checking version(Classload time). Newly added class is checked for AME.
1840 //      Checks whether abstract/overpass method is inherited into/declared in newly added concrete class.
1841 //   2) Compile time analysis for abstract/overpass(abstract klass) root_m. The non uniqm subtrees are checked for concrete classes.
1842 Klass* Dependencies::find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes) {
1843   if (m != nullptr) {
1844     if (changes != nullptr) {
1845       // Spot checking version.
1846       ConcreteMethodFinder wf(m);
1847       Klass* new_type = changes->as_new_klass_change()->new_type();
1848       if (wf.witnessed_reabstraction_in_supers(new_type)) {
1849         return new_type;
1850       }
1851     } else {
1852       // Note: It is required that uniqm->method_holder() is the participant (see ClassHierarchyWalker::found_method()).
1853       ConcreteSubtypeFinder wf(m->method_holder());
1854       Klass* conck = wf.find_witness(ctxk);
1855       if (conck != nullptr) {
1856         Method* cm = InstanceKlass::cast(conck)->find_instance_method(m->name(), m->signature(), Klass::PrivateLookupMode::skip);
1857         if (!Dependencies::is_concrete_method(cm, conck)) {
1858           return conck;
1859         }
1860       }
1861     }
1862   }
1863   return nullptr;
1864 }
1865 
1866 // This function is used by find_unique_concrete_method(non vtable based)
1867 // to check whether subtype method overrides the base method.
1868 static bool overrides(Method* sub_m, Method* base_m) {
1869   assert(base_m != nullptr, "base method should be non null");
1870   if (sub_m == nullptr) {
1871     return false;
1872   }
1873   /**
1874    *  If base_m is public or protected then sub_m always overrides.
1875    *  If base_m is !public, !protected and !private (i.e. base_m is package private)
1876    *  then sub_m should be in the same package as that of base_m.
1877    *  For package private base_m this is conservative approach as it allows only subset of all allowed cases in
1878    *  the jvm specification.
1879    **/
1880   if (base_m->is_public() || base_m->is_protected() ||
1881       base_m->method_holder()->is_same_class_package(sub_m->method_holder())) {
1882     return true;
1883   }
1884   return false;
1885 }
1886 
1887 // Find the set of all non-abstract methods under ctxk that match m.
1888 // (The method m must be defined or inherited in ctxk.)
1889 // Include m itself in the set, unless it is abstract.
1890 // If this set has exactly one element, return that element.
1891 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass** participant) {
1892   // Return nullptr if m is marked old; must have been a redefined method.
1893   if (m->is_old()) {
1894     return nullptr;
1895   }
1896   if (m->is_default_method()) {
1897     return nullptr; // not supported
1898   }
1899   assert(verify_method_context(ctxk, m), "proper context");
1900   ConcreteMethodFinder wf(m);
1901   wf.record_witnesses(1);
1902   Klass* wit = wf.find_witness(ctxk);
1903   if (wit != nullptr)  return nullptr;  // Too many witnesses.
1904   Method* fm = wf.found_method(0);  // Will be nullptr if num_parts == 0.
1905   if (participant != nullptr) {
1906     (*participant) = wf.participant(0);
1907   }
1908   if (!Dependencies::is_concrete_method(fm, nullptr)) {
1909     fm = nullptr; // ignore abstract methods
1910   }
1911   if (Dependencies::is_concrete_method(m, ctxk)) {
1912     if (fm == nullptr) {
1913       // It turns out that m was always the only implementation.
1914       fm = m;
1915     } else if (fm != m) {
1916       // Two conflicting implementations after all.
1917       // (This can happen if m is inherited into ctxk and fm overrides it.)
1918       return nullptr;
1919     }
1920   } else if (Dependencies::find_witness_AME(ctxk, fm) != nullptr) {
1921     // Found a concrete subtype which does not override abstract root method.
1922     return nullptr;
1923   } else if (!overrides(fm, m)) {
1924     // Found method doesn't override abstract root method.
1925     return nullptr;
1926   }
1927   assert(Dependencies::is_concrete_root_method(fm, ctxk) == Dependencies::is_concrete_method(m, ctxk), "mismatch");
1928 #ifndef PRODUCT
1929   // Make sure the dependency mechanism will pass this discovery:
1930   if (VerifyDependencies && fm != nullptr) {
1931     guarantee(nullptr == (void *)check_unique_concrete_method(ctxk, fm),
1932               "verify dep.");
1933   }
1934 #endif //PRODUCT
1935   return fm;
1936 }
1937 
1938 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1939 // Otherwise, return a class that contains an interfering method.
1940 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1941                                                   Method* uniqm,
1942                                                   Klass* resolved_klass,
1943                                                   Method* resolved_method,
1944                                                   KlassDepChange* changes) {
1945   assert(!ctxk->is_interface() || ctxk == resolved_klass, "sanity");
1946   assert(!resolved_method->can_be_statically_bound() || resolved_method == uniqm, "sanity");
1947   assert(resolved_klass->is_subtype_of(resolved_method->method_holder()), "sanity");
1948 
1949   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1950       !resolved_method->method_holder()->is_linked() ||
1951       resolved_method->can_be_statically_bound()) {
1952     // Dependency is redundant, but benign. Just keep it to avoid unnecessary recompilation.
1953     return nullptr; // no vtable index available
1954   }
1955 
1956   LinkedConcreteMethodFinder mf(InstanceKlass::cast(resolved_klass), resolved_method, uniqm);
1957   return mf.find_witness(ctxk, changes);
1958 }
1959 
1960 // Find the set of all non-abstract methods under ctxk that match m.
1961 // (The method m must be defined or inherited in ctxk.)
1962 // Include m itself in the set, unless it is abstract.
1963 // If this set has exactly one element, return that element.
1964 // Not yet linked subclasses of ctxk are ignored since they don't have any instances yet.
1965 // Additionally, resolved_klass and resolved_method complete the description of the call site being analyzed.
1966 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method) {
1967   // Return nullptr if m is marked old; must have been a redefined method.
1968   if (m->is_old()) {
1969     return nullptr;
1970   }
1971   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1972       !resolved_method->method_holder()->is_linked() ||
1973       resolved_method->can_be_statically_bound()) {
1974     return m; // nothing to do: no witness under ctxk
1975   }
1976   LinkedConcreteMethodFinder wf(InstanceKlass::cast(resolved_klass), resolved_method);
1977   assert(Dependencies::verify_method_context(ctxk, m), "proper context");
1978   wf.record_witnesses(1);
1979   Klass* wit = wf.find_witness(ctxk);
1980   if (wit != nullptr) {
1981     return nullptr;  // Too many witnesses.
1982   }
1983   // p == nullptr when no participants are found (wf.num_participants() == 0).
1984   // fm == nullptr case has 2 meanings:
1985   //  * when p == nullptr: no method found;
1986   //  * when p != nullptr: AbstractMethodError-throwing method found.
1987   // Also, found method should always be accompanied by a participant class.
1988   Klass*   p = wf.participant(0);
1989   Method* fm = wf.found_method(0);
1990   assert(fm == nullptr || p != nullptr, "no participant");
1991   // Normalize all error-throwing cases to nullptr.
1992   if (fm == Universe::throw_illegal_access_error() ||
1993       fm == Universe::throw_no_such_method_error() ||
1994       !Dependencies::is_concrete_method(fm, p)) {
1995     fm = nullptr; // error-throwing method
1996   }
1997   if (Dependencies::is_concrete_method(m, ctxk)) {
1998     if (p == nullptr) {
1999       // It turns out that m was always the only implementation.
2000       assert(fm == nullptr, "sanity");
2001       fm = m;
2002     }
2003   }
2004 #ifndef PRODUCT
2005   // Make sure the dependency mechanism will pass this discovery:
2006   if (VerifyDependencies && fm != nullptr) {
2007     guarantee(nullptr == check_unique_concrete_method(ctxk, fm, resolved_klass, resolved_method),
2008               "verify dep.");
2009   }
2010 #endif // PRODUCT
2011   assert(fm == nullptr || !fm->is_abstract(), "sanity");
2012   // Old CHA conservatively reports concrete methods in abstract classes
2013   // irrespective of whether they have concrete subclasses or not.
2014   // Also, abstract root method case is not fully supported.
2015 #ifdef ASSERT
2016   Klass*  uniqp = nullptr;
2017   Method* uniqm = Dependencies::find_unique_concrete_method(ctxk, m, &uniqp);
2018   assert(uniqm == nullptr || uniqm == fm ||
2019          m->is_abstract() ||
2020          uniqm->method_holder()->is_abstract() ||
2021          (fm == nullptr && uniqm != nullptr && uniqp != nullptr && !InstanceKlass::cast(uniqp)->is_linked()),
2022          "sanity");
2023 #endif // ASSERT
2024   return fm;
2025 }
2026 
2027 Klass* Dependencies::check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes) {
2028   InstanceKlass* search_at = ctxk;
2029   if (changes != nullptr) {
2030     search_at = changes->new_type(); // just look at the new bit
2031   }
2032   return find_finalizable_subclass(search_at);
2033 }
2034 
2035 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
2036   assert(call_site != nullptr, "sanity");
2037   assert(method_handle != nullptr, "sanity");
2038   assert(call_site->is_a(vmClasses::CallSite_klass()),     "sanity");
2039 
2040   if (changes == nullptr) {
2041     // Validate all CallSites
2042     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
2043       return call_site->klass();  // assertion failed
2044   } else {
2045     // Validate the given CallSite
2046     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
2047       assert(method_handle != changes->method_handle(), "must be");
2048       return call_site->klass();  // assertion failed
2049     }
2050   }
2051   return nullptr;  // assertion still valid
2052 }
2053 
2054 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
2055   if (_verify_in_progress) return;  // don't log
2056   if (witness != nullptr) {
2057     LogTarget(Debug, dependencies) lt;
2058     if (lt.is_enabled()) {
2059       LogStream ls(&lt);
2060       print_dependency(&ls, witness, /*verbose=*/ true);
2061     }
2062     // The following is a no-op unless logging is enabled:
2063     log_dependency(witness);
2064   }
2065 }
2066 
2067 Klass* Dependencies::DepStream::check_new_klass_dependency(NewKlassDepChange* changes) {
2068   assert_locked_or_safepoint(Compile_lock);
2069   Dependencies::check_valid_dependency_type(type());
2070 
2071   Klass* witness = nullptr;
2072   switch (type()) {
2073   case evol_method:
2074     witness = check_evol_method(method_argument(0));
2075     break;
2076   case leaf_type:
2077     witness = check_leaf_type(context_type());
2078     break;
2079   case abstract_with_unique_concrete_subtype:
2080     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
2081     break;
2082   case unique_concrete_method_2:
2083     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
2084     break;
2085   case unique_concrete_method_4:
2086     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2087     break;
2088   case unique_implementor:
2089     witness = check_unique_implementor(context_type(), type_argument(1), changes);
2090     break;
2091   case no_finalizable_subclasses:
2092     witness = check_has_no_finalizable_subclasses(context_type(), changes);
2093     break;
2094   default:
2095     witness = nullptr;
2096     break;
2097   }
2098   trace_and_log_witness(witness);
2099   return witness;
2100 }
2101 
2102 Klass* Dependencies::DepStream::check_klass_init_dependency(KlassInitDepChange* changes) {
2103   assert_locked_or_safepoint(Compile_lock);
2104   Dependencies::check_valid_dependency_type(type());
2105 
2106   // No new types added. Only unique_concrete_method_4 is sensitive to class initialization changes.
2107   Klass* witness = nullptr;
2108   switch (type()) {
2109   case unique_concrete_method_4:
2110     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2111     break;
2112   default:
2113     witness = nullptr;
2114     break;
2115   }
2116   trace_and_log_witness(witness);
2117   return witness;
2118 }
2119 
2120 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
2121   assert_locked_or_safepoint(Compile_lock);
2122   Dependencies::check_valid_dependency_type(type());
2123 
2124   if (changes != nullptr) {
2125     if (changes->is_klass_init_change()) {
2126       return check_klass_init_dependency(changes->as_klass_init_change());
2127     } else {
2128       return check_new_klass_dependency(changes->as_new_klass_change());
2129     }
2130   } else {
2131     Klass* witness = check_new_klass_dependency(nullptr);
2132     // check_klass_init_dependency duplicates check_new_klass_dependency checks when class hierarchy change info is absent.
2133     assert(witness != nullptr || check_klass_init_dependency(nullptr) == nullptr, "missed dependency");
2134     return witness;
2135   }
2136 }
2137 
2138 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
2139   assert_locked_or_safepoint(Compile_lock);
2140   Dependencies::check_valid_dependency_type(type());
2141 
2142   Klass* witness = nullptr;
2143   switch (type()) {
2144   case call_site_target_value:
2145     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
2146     break;
2147   default:
2148     witness = nullptr;
2149     break;
2150   }
2151   trace_and_log_witness(witness);
2152   return witness;
2153 }
2154 
2155 
2156 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
2157   // Handle klass dependency
2158   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
2159     return check_klass_dependency(changes.as_klass_change());
2160 
2161   // Handle CallSite dependency
2162   if (changes.is_call_site_change())
2163     return check_call_site_dependency(changes.as_call_site_change());
2164 
2165   // irrelevant dependency; skip it
2166   return nullptr;
2167 }
2168 
2169 
2170 void DepChange::print() { print_on(tty); }
2171 
2172 void DepChange::print_on(outputStream* st) {
2173   int nsup = 0, nint = 0;
2174   for (ContextStream str(*this); str.next(); ) {
2175     InstanceKlass* k = str.klass();
2176     switch (str.change_type()) {
2177     case Change_new_type:
2178       st->print_cr("  dependee = %s", k->external_name());
2179       break;
2180     case Change_new_sub:
2181       if (!WizardMode) {
2182         ++nsup;
2183       } else {
2184         st->print_cr("  context super = %s", k->external_name());
2185       }
2186       break;
2187     case Change_new_impl:
2188       if (!WizardMode) {
2189         ++nint;
2190       } else {
2191         st->print_cr("  context interface = %s", k->external_name());
2192       }
2193       break;
2194     default:
2195       break;
2196     }
2197   }
2198   if (nsup + nint != 0) {
2199     st->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
2200   }
2201 }
2202 
2203 void DepChange::ContextStream::start() {
2204   InstanceKlass* type = (_changes.is_klass_change() ? _changes.as_klass_change()->type() : (InstanceKlass*) nullptr);
2205   _change_type = (type == nullptr ? NO_CHANGE : Start_Klass);
2206   _klass = type;
2207   _ti_base = nullptr;
2208   _ti_index = 0;
2209   _ti_limit = 0;
2210 }
2211 
2212 bool DepChange::ContextStream::next() {
2213   switch (_change_type) {
2214   case Start_Klass:             // initial state; _klass is the new type
2215     _ti_base = _klass->transitive_interfaces();
2216     _ti_index = 0;
2217     _change_type = Change_new_type;
2218     return true;
2219   case Change_new_type:
2220     // fall through:
2221     _change_type = Change_new_sub;
2222   case Change_new_sub:
2223     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
2224     {
2225       _klass = _klass->java_super();
2226       if (_klass != nullptr) {
2227         return true;
2228       }
2229     }
2230     // else set up _ti_limit and fall through:
2231     _ti_limit = (_ti_base == nullptr) ? 0 : _ti_base->length();
2232     _change_type = Change_new_impl;
2233   case Change_new_impl:
2234     if (_ti_index < _ti_limit) {
2235       _klass = _ti_base->at(_ti_index++);
2236       return true;
2237     }
2238     // fall through:
2239     _change_type = NO_CHANGE;  // iterator is exhausted
2240   case NO_CHANGE:
2241     break;
2242   default:
2243     ShouldNotReachHere();
2244   }
2245   return false;
2246 }
2247 
2248 void KlassDepChange::initialize() {
2249   // entire transaction must be under this lock:
2250   assert_lock_strong(Compile_lock);
2251 
2252   // Mark all dependee and all its superclasses
2253   // Mark transitive interfaces
2254   for (ContextStream str(*this); str.next(); ) {
2255     InstanceKlass* d = str.klass();
2256     assert(!d->is_marked_dependent(), "checking");
2257     d->set_is_marked_dependent(true);
2258   }
2259 }
2260 
2261 KlassDepChange::~KlassDepChange() {
2262   // Unmark all dependee and all its superclasses
2263   // Unmark transitive interfaces
2264   for (ContextStream str(*this); str.next(); ) {
2265     InstanceKlass* d = str.klass();
2266     d->set_is_marked_dependent(false);
2267   }
2268 }
2269 
2270 bool KlassDepChange::involves_context(Klass* k) {
2271   if (k == nullptr || !k->is_instance_klass()) {
2272     return false;
2273   }
2274   InstanceKlass* ik = InstanceKlass::cast(k);
2275   bool is_contained = ik->is_marked_dependent();
2276   assert(is_contained == type()->is_subtype_of(k),
2277          "correct marking of potential context types");
2278   return is_contained;
2279 }
2280 
2281 void Dependencies::print_statistics() {
2282   AbstractClassHierarchyWalker::print_statistics();
2283 }
2284 
2285 void AbstractClassHierarchyWalker::print_statistics() {
2286   if (UsePerfData) {
2287     jlong deps_find_witness_calls   = _perf_find_witness_anywhere_calls_count->get_value();
2288     jlong deps_find_witness_steps   = _perf_find_witness_anywhere_steps_count->get_value();
2289     jlong deps_find_witness_singles = _perf_find_witness_in_calls_count->get_value();
2290 
2291     ttyLocker ttyl;
2292     tty->print_cr("Dependency check (find_witness) "
2293                   "calls=" JLONG_FORMAT ", steps=" JLONG_FORMAT " (avg=%.1f), singles=" JLONG_FORMAT,
2294                   deps_find_witness_calls,
2295                   deps_find_witness_steps,
2296                   (double)deps_find_witness_steps / deps_find_witness_calls,
2297                   deps_find_witness_singles);
2298     if (xtty != nullptr) {
2299       xtty->elem("deps_find_witness calls='" JLONG_FORMAT "' steps='" JLONG_FORMAT "' singles='" JLONG_FORMAT "'",
2300                  deps_find_witness_calls,
2301                  deps_find_witness_steps,
2302                  deps_find_witness_singles);
2303     }
2304   }
2305 }
2306 
2307 CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) :
2308   _call_site(call_site),
2309   _method_handle(method_handle) {
2310   assert(_call_site()->is_a(vmClasses::CallSite_klass()), "must be");
2311   assert(_method_handle.is_null() || _method_handle()->is_a(vmClasses::MethodHandle_klass()), "must be");
2312 }
2313 
2314 void dependencies_init() {
2315   AbstractClassHierarchyWalker::init();
2316 }