1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciArrayKlass.hpp"
  26 #include "ci/ciEnv.hpp"
  27 #include "ci/ciKlass.hpp"
  28 #include "ci/ciMethod.hpp"
  29 #include "classfile/javaClasses.inline.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/klass.hpp"
  37 #include "oops/method.inline.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/javaThread.inline.hpp"
  43 #include "runtime/jniHandles.inline.hpp"
  44 #include "runtime/mutexLocker.hpp"
  45 #include "runtime/perfData.hpp"
  46 #include "runtime/vmThread.hpp"
  47 #include "utilities/copy.hpp"
  48 
  49 
  50 #ifdef ASSERT
  51 static bool must_be_in_vm() {
  52   Thread* thread = Thread::current();
  53   if (thread->is_Java_thread()) {
  54     return JavaThread::cast(thread)->thread_state() == _thread_in_vm;
  55   } else {
  56     return true;  // Could be VMThread or GC thread
  57   }
  58 }
  59 #endif //ASSERT
  60 
  61 bool Dependencies::_verify_in_progress = false;  // don't -Xlog:dependencies
  62 
  63 void Dependencies::initialize(ciEnv* env) {
  64   Arena* arena = env->arena();
  65   _oop_recorder = env->oop_recorder();
  66   _log = env->log();
  67   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  68 #if INCLUDE_JVMCI
  69   _using_dep_values = false;
  70 #endif
  71   DEBUG_ONLY(_deps[end_marker] = nullptr);
  72   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  73     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, nullptr);
  74   }
  75   _content_bytes = nullptr;
  76   _size_in_bytes = (size_t)-1;
  77 
  78   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  79 }
  80 
  81 void Dependencies::assert_evol_method(ciMethod* m) {
  82   assert_common_1(evol_method, m);
  83 }
  84 
  85 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  86   if (ctxk->is_array_klass()) {
  87     // As a special case, support this assertion on an array type,
  88     // which reduces to an assertion on its element type.
  89     // Note that this cannot be done with assertions that
  90     // relate to concreteness or abstractness.
  91     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  92     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  93     ctxk = elemt->as_instance_klass();
  94     //if (ctxk->is_final())  return;            // Ex:  String[][]
  95   }
  96   check_ctxk(ctxk);
  97   assert_common_1(leaf_type, ctxk);
  98 }
  99 
 100 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
 101   check_ctxk_abstract(ctxk);
 102   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
 103 }
 104 
 105 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
 106   check_ctxk(ctxk);
 107   check_unique_method(ctxk, uniqm);
 108   assert_common_2(unique_concrete_method_2, ctxk, uniqm);
 109 }
 110 
 111 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method) {
 112   check_ctxk(ctxk);
 113   check_unique_method(ctxk, uniqm);
 114   assert_common_4(unique_concrete_method_4, ctxk, uniqm, resolved_klass, resolved_method);
 115 }
 116 
 117 void Dependencies::assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) {
 118   check_ctxk(ctxk);
 119   check_unique_implementor(ctxk, uniqk);
 120   assert_common_2(unique_implementor, ctxk, uniqk);
 121 }
 122 
 123 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 124   check_ctxk(ctxk);
 125   assert_common_1(no_finalizable_subclasses, ctxk);
 126 }
 127 
 128 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 129   assert_common_2(call_site_target_value, call_site, method_handle);
 130 }
 131 
 132 #if INCLUDE_JVMCI
 133 
 134 Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) {
 135   _oop_recorder = oop_recorder;
 136   _log = log;
 137   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
 138   _using_dep_values = true;
 139   DEBUG_ONLY(_dep_values[end_marker] = nullptr);
 140   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
 141     _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
 142   }
 143   _content_bytes = nullptr;
 144   _size_in_bytes = (size_t)-1;
 145 
 146   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
 147 }
 148 
 149 void Dependencies::assert_evol_method(Method* m) {
 150   assert_common_1(evol_method, DepValue(_oop_recorder, m));
 151 }
 152 
 153 void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
 154   check_ctxk(ctxk);
 155   assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
 156 }
 157 
 158 void Dependencies::assert_leaf_type(Klass* ctxk) {
 159   if (ctxk->is_array_klass()) {
 160     // As a special case, support this assertion on an array type,
 161     // which reduces to an assertion on its element type.
 162     // Note that this cannot be done with assertions that
 163     // relate to concreteness or abstractness.
 164     BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
 165     if (is_java_primitive(elemt))  return;   // Ex:  int[][]
 166     ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
 167     //if (ctxk->is_final())  return;            // Ex:  String[][]
 168   }
 169   check_ctxk(ctxk);
 170   assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
 171 }
 172 
 173 void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
 174   check_ctxk_abstract(ctxk);
 175   DepValue ctxk_dv(_oop_recorder, ctxk);
 176   DepValue conck_dv(_oop_recorder, conck, &ctxk_dv);
 177   assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv);
 178 }
 179 
 180 void Dependencies::assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk) {
 181   check_ctxk(ctxk);
 182   assert(ctxk->is_interface(), "not an interface");
 183   assert(ctxk->implementor() == uniqk, "not a unique implementor");
 184   assert_common_2(unique_implementor, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqk));
 185 }
 186 
 187 void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
 188   check_ctxk(ctxk);
 189   check_unique_method(ctxk, uniqm);
 190   assert_common_2(unique_concrete_method_2, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
 191 }
 192 
 193 void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) {
 194   assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle)));
 195 }
 196 
 197 #endif // INCLUDE_JVMCI
 198 
 199 
 200 // Helper function.  If we are adding a new dep. under ctxk2,
 201 // try to find an old dep. under a broader* ctxk1.  If there is
 202 //
 203 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 204                                     int ctxk_i, ciKlass* ctxk2) {
 205   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 206   if (ctxk2->is_subtype_of(ctxk1)) {
 207     return true;  // success, and no need to change
 208   } else if (ctxk1->is_subtype_of(ctxk2)) {
 209     // new context class fully subsumes previous one
 210     deps->at_put(ctxk_i, ctxk2);
 211     return true;
 212   } else {
 213     return false;
 214   }
 215 }
 216 
 217 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 218   assert(dep_args(dept) == 1, "sanity");
 219   log_dependency(dept, x);
 220   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 221 
 222   // see if the same (or a similar) dep is already recorded
 223   if (note_dep_seen(dept, x)) {
 224     assert(deps->find(x) >= 0, "sanity");
 225   } else {
 226     deps->append(x);
 227   }
 228 }
 229 
 230 void Dependencies::assert_common_2(DepType dept,
 231                                    ciBaseObject* x0, ciBaseObject* x1) {
 232   assert(dep_args(dept) == 2, "sanity");
 233   log_dependency(dept, x0, x1);
 234   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 235 
 236   // see if the same (or a similar) dep is already recorded
 237   bool has_ctxk = has_explicit_context_arg(dept);
 238   if (has_ctxk) {
 239     assert(dep_context_arg(dept) == 0, "sanity");
 240     if (note_dep_seen(dept, x1)) {
 241       // look in this bucket for redundant assertions
 242       const int stride = 2;
 243       for (int i = deps->length(); (i -= stride) >= 0; ) {
 244         ciBaseObject* y1 = deps->at(i+1);
 245         if (x1 == y1) {  // same subject; check the context
 246           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 247             return;
 248           }
 249         }
 250       }
 251     }
 252   } else {
 253     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 254     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 255     if (dep_seen_x0 && dep_seen_x1) {
 256       // look in this bucket for redundant assertions
 257       const int stride = 2;
 258       for (int i = deps->length(); (i -= stride) >= 0; ) {
 259         ciBaseObject* y0 = deps->at(i+0);
 260         ciBaseObject* y1 = deps->at(i+1);
 261         if (x0 == y0 && x1 == y1) {
 262           return;
 263         }
 264       }
 265     }
 266   }
 267 
 268   // append the assertion in the correct bucket:
 269   deps->append(x0);
 270   deps->append(x1);
 271 }
 272 
 273 void Dependencies::assert_common_4(DepType dept,
 274                                    ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3) {
 275   assert(has_explicit_context_arg(dept), "sanity");
 276   assert(dep_context_arg(dept) == 0, "sanity");
 277   assert(dep_args(dept) == 4, "sanity");
 278   log_dependency(dept, ctxk, x1, x2, x3);
 279   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 280 
 281   // see if the same (or a similar) dep is already recorded
 282   bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 283   bool dep_seen_x2 = note_dep_seen(dept, x2); // records x2 for future queries
 284   bool dep_seen_x3 = note_dep_seen(dept, x3); // records x3 for future queries
 285   if (dep_seen_x1 && dep_seen_x2 && dep_seen_x3) {
 286     // look in this bucket for redundant assertions
 287     const int stride = 4;
 288     for (int i = deps->length(); (i -= stride) >= 0; ) {
 289       ciBaseObject* y1 = deps->at(i+1);
 290       ciBaseObject* y2 = deps->at(i+2);
 291       ciBaseObject* y3 = deps->at(i+3);
 292       if (x1 == y1 && x2 == y2 && x3 == y3) {  // same subjects; check the context
 293         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 294           return;
 295         }
 296       }
 297     }
 298   }
 299   // append the assertion in the correct bucket:
 300   deps->append(ctxk);
 301   deps->append(x1);
 302   deps->append(x2);
 303   deps->append(x3);
 304 }
 305 
 306 #if INCLUDE_JVMCI
 307 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 308                                     int ctxk_i, DepValue ctxk2_dv) {
 309   Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
 310   Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder);
 311   if (ctxk2->is_subtype_of(ctxk1)) {
 312     return true;  // success, and no need to change
 313   } else if (ctxk1->is_subtype_of(ctxk2)) {
 314     // new context class fully subsumes previous one
 315     deps->at_put(ctxk_i, ctxk2_dv);
 316     return true;
 317   } else {
 318     return false;
 319   }
 320 }
 321 
 322 void Dependencies::assert_common_1(DepType dept, DepValue x) {
 323   assert(dep_args(dept) == 1, "sanity");
 324   //log_dependency(dept, x);
 325   GrowableArray<DepValue>* deps = _dep_values[dept];
 326 
 327   // see if the same (or a similar) dep is already recorded
 328   if (note_dep_seen(dept, x)) {
 329     assert(deps->find(x) >= 0, "sanity");
 330   } else {
 331     deps->append(x);
 332   }
 333 }
 334 
 335 void Dependencies::assert_common_2(DepType dept,
 336                                    DepValue x0, DepValue x1) {
 337   assert(dep_args(dept) == 2, "sanity");
 338   //log_dependency(dept, x0, x1);
 339   GrowableArray<DepValue>* deps = _dep_values[dept];
 340 
 341   // see if the same (or a similar) dep is already recorded
 342   bool has_ctxk = has_explicit_context_arg(dept);
 343   if (has_ctxk) {
 344     assert(dep_context_arg(dept) == 0, "sanity");
 345     if (note_dep_seen(dept, x1)) {
 346       // look in this bucket for redundant assertions
 347       const int stride = 2;
 348       for (int i = deps->length(); (i -= stride) >= 0; ) {
 349         DepValue y1 = deps->at(i+1);
 350         if (x1 == y1) {  // same subject; check the context
 351           if (maybe_merge_ctxk(deps, i+0, x0)) {
 352             return;
 353           }
 354         }
 355       }
 356     }
 357   } else {
 358     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 359     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 360     if (dep_seen_x0 && dep_seen_x1) {
 361       // look in this bucket for redundant assertions
 362       const int stride = 2;
 363       for (int i = deps->length(); (i -= stride) >= 0; ) {
 364         DepValue y0 = deps->at(i+0);
 365         DepValue y1 = deps->at(i+1);
 366         if (x0 == y0 && x1 == y1) {
 367           return;
 368         }
 369       }
 370     }
 371   }
 372 
 373   // append the assertion in the correct bucket:
 374   deps->append(x0);
 375   deps->append(x1);
 376 }
 377 #endif // INCLUDE_JVMCI
 378 
 379 /// Support for encoding dependencies into an nmethod:
 380 
 381 void Dependencies::copy_to(nmethod* nm) {
 382   address beg = nm->dependencies_begin();
 383   address end = nm->dependencies_end();
 384   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 385   (void)memcpy(beg, content_bytes(), size_in_bytes());
 386   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 387 }
 388 
 389 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 390   for (int i = 0; i < narg; i++) {
 391     int diff = p1[i]->ident() - p2[i]->ident();
 392     if (diff != 0)  return diff;
 393   }
 394   return 0;
 395 }
 396 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 397 { return sort_dep(p1, p2, 1); }
 398 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 399 { return sort_dep(p1, p2, 2); }
 400 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 401 { return sort_dep(p1, p2, 3); }
 402 static int sort_dep_arg_4(ciBaseObject** p1, ciBaseObject** p2)
 403 { return sort_dep(p1, p2, 4); }
 404 
 405 #if INCLUDE_JVMCI
 406 // metadata deps are sorted before object deps
 407 static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
 408   for (int i = 0; i < narg; i++) {
 409     int diff = p1[i].sort_key() - p2[i].sort_key();
 410     if (diff != 0)  return diff;
 411   }
 412   return 0;
 413 }
 414 static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 415 { return sort_dep_value(p1, p2, 1); }
 416 static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 417 { return sort_dep_value(p1, p2, 2); }
 418 static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 419 { return sort_dep_value(p1, p2, 3); }
 420 #endif // INCLUDE_JVMCI
 421 
 422 void Dependencies::sort_all_deps() {
 423 #if INCLUDE_JVMCI
 424   if (_using_dep_values) {
 425     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 426       DepType dept = (DepType)deptv;
 427       GrowableArray<DepValue>* deps = _dep_values[dept];
 428       if (deps->length() <= 1)  continue;
 429       switch (dep_args(dept)) {
 430       case 1: deps->sort(sort_dep_value_arg_1, 1); break;
 431       case 2: deps->sort(sort_dep_value_arg_2, 2); break;
 432       case 3: deps->sort(sort_dep_value_arg_3, 3); break;
 433       default: ShouldNotReachHere(); break;
 434       }
 435     }
 436     return;
 437   }
 438 #endif // INCLUDE_JVMCI
 439   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 440     DepType dept = (DepType)deptv;
 441     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 442     if (deps->length() <= 1)  continue;
 443     switch (dep_args(dept)) {
 444     case 1: deps->sort(sort_dep_arg_1, 1); break;
 445     case 2: deps->sort(sort_dep_arg_2, 2); break;
 446     case 3: deps->sort(sort_dep_arg_3, 3); break;
 447     case 4: deps->sort(sort_dep_arg_4, 4); break;
 448     default: ShouldNotReachHere(); break;
 449     }
 450   }
 451 }
 452 
 453 size_t Dependencies::estimate_size_in_bytes() {
 454   size_t est_size = 100;
 455 #if INCLUDE_JVMCI
 456   if (_using_dep_values) {
 457     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 458       DepType dept = (DepType)deptv;
 459       GrowableArray<DepValue>* deps = _dep_values[dept];
 460       est_size += deps->length() * 2;  // tags and argument(s)
 461     }
 462     return est_size;
 463   }
 464 #endif // INCLUDE_JVMCI
 465   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 466     DepType dept = (DepType)deptv;
 467     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 468     est_size += deps->length()*2;  // tags and argument(s)
 469   }
 470   return est_size;
 471 }
 472 
 473 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 474   switch (dept) {
 475   case unique_concrete_method_2:
 476   case unique_concrete_method_4:
 477     return x->as_metadata()->as_method()->holder();
 478   default:
 479     return nullptr;  // let nullptr be nullptr
 480   }
 481 }
 482 
 483 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 484   assert(must_be_in_vm(), "raw oops here");
 485   switch (dept) {
 486   case unique_concrete_method_2:
 487   case unique_concrete_method_4:
 488     assert(x->is_method(), "sanity");
 489     return ((Method*)x)->method_holder();
 490   default:
 491     return nullptr;  // let nullptr be nullptr
 492   }
 493 }
 494 
 495 void Dependencies::encode_content_bytes() {
 496   sort_all_deps();
 497 
 498   // cast is safe, no deps can overflow INT_MAX
 499   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 500 
 501 #if INCLUDE_JVMCI
 502   if (_using_dep_values) {
 503     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 504       DepType dept = (DepType)deptv;
 505       GrowableArray<DepValue>* deps = _dep_values[dept];
 506       if (deps->length() == 0)  continue;
 507       int stride = dep_args(dept);
 508       int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 509       assert(stride > 0, "sanity");
 510       for (int i = 0; i < deps->length(); i += stride) {
 511         jbyte code_byte = (jbyte)dept;
 512         int skipj = -1;
 513         if (ctxkj >= 0 && ctxkj+1 < stride) {
 514           Klass*  ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
 515           DepValue x = deps->at(i+ctxkj+1);  // following argument
 516           if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) {
 517             skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 518             code_byte |= default_context_type_bit;
 519           }
 520         }
 521         bytes.write_byte(code_byte);
 522         for (int j = 0; j < stride; j++) {
 523           if (j == skipj)  continue;
 524           DepValue v = deps->at(i+j);
 525           int idx = v.index();
 526           bytes.write_int(idx);
 527         }
 528       }
 529     }
 530   } else {
 531 #endif // INCLUDE_JVMCI
 532   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 533     DepType dept = (DepType)deptv;
 534     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 535     if (deps->length() == 0)  continue;
 536     int stride = dep_args(dept);
 537     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 538     assert(stride > 0, "sanity");
 539     for (int i = 0; i < deps->length(); i += stride) {
 540       jbyte code_byte = (jbyte)dept;
 541       int skipj = -1;
 542       if (ctxkj >= 0 && ctxkj+1 < stride) {
 543         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 544         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 545         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 546           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 547           code_byte |= default_context_type_bit;
 548         }
 549       }
 550       bytes.write_byte(code_byte);
 551       for (int j = 0; j < stride; j++) {
 552         if (j == skipj)  continue;
 553         ciBaseObject* v = deps->at(i+j);
 554         int idx;
 555         if (v->is_object()) {
 556           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
 557         } else {
 558           ciMetadata* meta = v->as_metadata();
 559           idx = _oop_recorder->find_index(meta->constant_encoding());
 560         }
 561         bytes.write_int(idx);
 562       }
 563     }
 564   }
 565 #if INCLUDE_JVMCI
 566   }
 567 #endif
 568 
 569   // write a sentinel byte to mark the end
 570   bytes.write_byte(end_marker);
 571 
 572   // round it out to a word boundary
 573   while (bytes.position() % sizeof(HeapWord) != 0) {
 574     bytes.write_byte(end_marker);
 575   }
 576 
 577   // check whether the dept byte encoding really works
 578   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 579 
 580   _content_bytes = bytes.buffer();
 581   _size_in_bytes = bytes.position();
 582 }
 583 
 584 
 585 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 586   "end_marker",
 587   "evol_method",
 588   "leaf_type",
 589   "abstract_with_unique_concrete_subtype",
 590   "unique_concrete_method_2",
 591   "unique_concrete_method_4",
 592   "unique_implementor",
 593   "no_finalizable_subclasses",
 594   "call_site_target_value"
 595 };
 596 
 597 int Dependencies::_dep_args[TYPE_LIMIT] = {
 598   -1,// end_marker
 599   1, // evol_method m
 600   1, // leaf_type ctxk
 601   2, // abstract_with_unique_concrete_subtype ctxk, k
 602   2, // unique_concrete_method_2 ctxk, m
 603   4, // unique_concrete_method_4 ctxk, m, resolved_klass, resolved_method
 604   2, // unique_implementor ctxk, implementor
 605   1, // no_finalizable_subclasses ctxk
 606   2  // call_site_target_value call_site, method_handle
 607 };
 608 
 609 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 610   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 611   return _dep_name[dept];
 612 }
 613 
 614 int Dependencies::dep_args(Dependencies::DepType dept) {
 615   if (!dept_in_mask(dept, all_types))  return -1;
 616   return _dep_args[dept];
 617 }
 618 
 619 void Dependencies::check_valid_dependency_type(DepType dept) {
 620   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept);
 621 }
 622 
 623 Dependencies::DepType Dependencies::validate_dependencies(CompileTask* task, char** failure_detail) {
 624   int klass_violations = 0;
 625   DepType result = end_marker;
 626   for (Dependencies::DepStream deps(this); deps.next(); ) {
 627     Klass* witness = deps.check_dependency();
 628     if (witness != nullptr) {
 629       if (klass_violations == 0) {
 630         result = deps.type();
 631         if (failure_detail != nullptr && klass_violations == 0) {
 632           // Use a fixed size buffer to prevent the string stream from
 633           // resizing in the context of an inner resource mark.
 634           char* buffer = NEW_RESOURCE_ARRAY(char, O_BUFLEN);
 635           stringStream st(buffer, O_BUFLEN);
 636           deps.print_dependency(&st, witness, true);
 637           *failure_detail = st.as_string();
 638         }
 639       }
 640       klass_violations++;
 641       if (xtty == nullptr) {
 642         // If we're not logging then a single violation is sufficient,
 643         // otherwise we want to log all the dependences which were
 644         // violated.
 645         break;
 646       }
 647     }
 648   }
 649 
 650   return result;
 651 }
 652 
 653 // for the sake of the compiler log, print out current dependencies:
 654 void Dependencies::log_all_dependencies() {
 655   if (log() == nullptr)  return;
 656   ResourceMark rm;
 657   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 658     DepType dept = (DepType)deptv;
 659     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 660     int deplen = deps->length();
 661     if (deplen == 0) {
 662       continue;
 663     }
 664     int stride = dep_args(dept);
 665     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
 666     for (int i = 0; i < deps->length(); i += stride) {
 667       for (int j = 0; j < stride; j++) {
 668         // flush out the identities before printing
 669         ciargs->push(deps->at(i+j));
 670       }
 671       write_dependency_to(log(), dept, ciargs);
 672       ciargs->clear();
 673     }
 674     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
 675   }
 676 }
 677 
 678 void Dependencies::write_dependency_to(CompileLog* log,
 679                                        DepType dept,
 680                                        GrowableArray<DepArgument>* args,
 681                                        Klass* witness) {
 682   if (log == nullptr) {
 683     return;
 684   }
 685   ResourceMark rm;
 686   ciEnv* env = ciEnv::current();
 687   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
 688   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
 689     DepArgument arg = *it;
 690     if (arg.is_oop()) {
 691       ciargs->push(env->get_object(arg.oop_value()));
 692     } else {
 693       ciargs->push(env->get_metadata(arg.metadata_value()));
 694     }
 695   }
 696   int argslen = ciargs->length();
 697   Dependencies::write_dependency_to(log, dept, ciargs, witness);
 698   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
 699 }
 700 
 701 void Dependencies::write_dependency_to(CompileLog* log,
 702                                        DepType dept,
 703                                        GrowableArray<ciBaseObject*>* args,
 704                                        Klass* witness) {
 705   if (log == nullptr) {
 706     return;
 707   }
 708   ResourceMark rm;
 709   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
 710   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
 711     ciBaseObject* obj = *it;
 712     if (obj->is_object()) {
 713       argids->push(log->identify(obj->as_object()));
 714     } else {
 715       argids->push(log->identify(obj->as_metadata()));
 716     }
 717   }
 718   if (witness != nullptr) {
 719     log->begin_elem("dependency_failed");
 720   } else {
 721     log->begin_elem("dependency");
 722   }
 723   log->print(" type='%s'", dep_name(dept));
 724   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 725   if (ctxkj >= 0 && ctxkj < argids->length()) {
 726     log->print(" ctxk='%d'", argids->at(ctxkj));
 727   }
 728   // write remaining arguments, if any.
 729   for (int j = 0; j < argids->length(); j++) {
 730     if (j == ctxkj)  continue;  // already logged
 731     if (j == 1) {
 732       log->print(  " x='%d'",    argids->at(j));
 733     } else {
 734       log->print(" x%d='%d'", j, argids->at(j));
 735     }
 736   }
 737   if (witness != nullptr) {
 738     log->object("witness", witness);
 739     log->stamp();
 740   }
 741   log->end_elem();
 742 }
 743 
 744 void Dependencies::write_dependency_to(xmlStream* xtty,
 745                                        DepType dept,
 746                                        GrowableArray<DepArgument>* args,
 747                                        Klass* witness) {
 748   if (xtty == nullptr) {
 749     return;
 750   }
 751   Thread* thread = Thread::current();
 752   HandleMark rm(thread);
 753   ttyLocker ttyl;
 754   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 755   if (witness != nullptr) {
 756     xtty->begin_elem("dependency_failed");
 757   } else {
 758     xtty->begin_elem("dependency");
 759   }
 760   xtty->print(" type='%s'", dep_name(dept));
 761   if (ctxkj >= 0) {
 762     xtty->object("ctxk", args->at(ctxkj).metadata_value());
 763   }
 764   // write remaining arguments, if any.
 765   for (int j = 0; j < args->length(); j++) {
 766     if (j == ctxkj)  continue;  // already logged
 767     DepArgument arg = args->at(j);
 768     if (j == 1) {
 769       if (arg.is_oop()) {
 770         xtty->object("x", Handle(thread, arg.oop_value()));
 771       } else {
 772         xtty->object("x", arg.metadata_value());
 773       }
 774     } else {
 775       char xn[12];
 776       os::snprintf_checked(xn, sizeof(xn), "x%d", j);
 777       if (arg.is_oop()) {
 778         xtty->object(xn, Handle(thread, arg.oop_value()));
 779       } else {
 780         xtty->object(xn, arg.metadata_value());
 781       }
 782     }
 783   }
 784   if (witness != nullptr) {
 785     xtty->object("witness", witness);
 786     xtty->stamp();
 787   }
 788   xtty->end_elem();
 789 }
 790 
 791 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
 792                                     Klass* witness, outputStream* st) {
 793   ResourceMark rm;
 794   ttyLocker ttyl;   // keep the following output all in one block
 795   st->print_cr("%s of type %s",
 796                 (witness == nullptr)? "Dependency": "Failed dependency",
 797                 dep_name(dept));
 798   // print arguments
 799   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 800   for (int j = 0; j < args->length(); j++) {
 801     DepArgument arg = args->at(j);
 802     bool put_star = false;
 803     if (arg.is_null())  continue;
 804     const char* what;
 805     if (j == ctxkj) {
 806       assert(arg.is_metadata(), "must be");
 807       what = "context";
 808       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 809     } else if (arg.is_method()) {
 810       what = "method ";
 811       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), nullptr);
 812     } else if (arg.is_klass()) {
 813       what = "class  ";
 814     } else {
 815       what = "object ";
 816     }
 817     st->print("  %s = %s", what, (put_star? "*": ""));
 818     if (arg.is_klass()) {
 819       st->print("%s", ((Klass*)arg.metadata_value())->external_name());
 820     } else if (arg.is_method()) {
 821       ((Method*)arg.metadata_value())->print_value_on(st);
 822     } else if (arg.is_oop()) {
 823       arg.oop_value()->print_value_on(st);
 824     } else {
 825       ShouldNotReachHere(); // Provide impl for this type.
 826     }
 827 
 828     st->cr();
 829   }
 830   if (witness != nullptr) {
 831     bool put_star = !Dependencies::is_concrete_klass(witness);
 832     st->print_cr("  witness = %s%s",
 833                   (put_star? "*": ""),
 834                   witness->external_name());
 835   }
 836 }
 837 
 838 void Dependencies::DepStream::log_dependency(Klass* witness) {
 839   if (_deps == nullptr && xtty == nullptr)  return;  // fast cutout for runtime
 840   ResourceMark rm;
 841   const int nargs = argument_count();
 842   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 843   for (int j = 0; j < nargs; j++) {
 844     if (is_oop_argument(j)) {
 845       args->push(argument_oop(j));
 846     } else {
 847       args->push(argument(j));
 848     }
 849   }
 850   int argslen = args->length();
 851   if (_deps != nullptr && _deps->log() != nullptr) {
 852     if (ciEnv::current() != nullptr) {
 853       Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
 854     } else {
 855       // Treat the CompileLog as an xmlstream instead
 856       Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness);
 857     }
 858   } else {
 859     Dependencies::write_dependency_to(xtty, type(), args, witness);
 860   }
 861   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 862 }
 863 
 864 void Dependencies::DepStream::print_dependency(outputStream* st, Klass* witness, bool verbose) {
 865   ResourceMark rm;
 866   int nargs = argument_count();
 867   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 868   for (int j = 0; j < nargs; j++) {
 869     if (is_oop_argument(j)) {
 870       args->push(argument_oop(j));
 871     } else {
 872       args->push(argument(j));
 873     }
 874   }
 875   int argslen = args->length();
 876   Dependencies::print_dependency(type(), args, witness, st);
 877   if (verbose) {
 878     if (_code != nullptr) {
 879       st->print("  code: ");
 880       _code->print_value_on(st);
 881       st->cr();
 882     }
 883   }
 884   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 885 }
 886 
 887 
 888 /// Dependency stream support (decodes dependencies from an nmethod):
 889 
 890 #ifdef ASSERT
 891 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 892   assert(must_be_in_vm(), "raw oops here");
 893   _byte_limit = byte_limit;
 894   _type       = undefined_dependency;  // defeat "already at end" assert
 895   assert((_code!=nullptr) + (_deps!=nullptr) == 1, "one or t'other");
 896 }
 897 #endif //ASSERT
 898 
 899 bool Dependencies::DepStream::next() {
 900   assert(_type != end_marker, "already at end");
 901   if (_bytes.position() == 0 && _code != nullptr
 902       && _code->dependencies_size() == 0) {
 903     // Method has no dependencies at all.
 904     return false;
 905   }
 906   int code_byte = (_bytes.read_byte() & 0xFF);
 907   if (code_byte == end_marker) {
 908     DEBUG_ONLY(_type = end_marker);
 909     return false;
 910   } else {
 911     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 912     code_byte -= ctxk_bit;
 913     DepType dept = (DepType)code_byte;
 914     _type = dept;
 915     Dependencies::check_valid_dependency_type(dept);
 916     int stride = _dep_args[dept];
 917     assert(stride == dep_args(dept), "sanity");
 918     int skipj = -1;
 919     if (ctxk_bit != 0) {
 920       skipj = 0;  // currently the only context argument is at zero
 921       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 922     }
 923     for (int j = 0; j < stride; j++) {
 924       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 925     }
 926     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 927     return true;
 928   }
 929 }
 930 
 931 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 932   Metadata* o = nullptr;
 933   if (_code != nullptr) {
 934     o = _code->metadata_at(i);
 935   } else {
 936     o = _deps->oop_recorder()->metadata_at(i);
 937   }
 938   return o;
 939 }
 940 
 941 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 942   return (_code != nullptr)
 943          ? _code->oop_at(i)
 944     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 945 }
 946 
 947 Metadata* Dependencies::DepStream::argument(int i) {
 948   Metadata* result = recorded_metadata_at(argument_index(i));
 949 
 950   if (result == nullptr) { // Explicit context argument can be compressed
 951     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 952     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 953       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 954     }
 955   }
 956 
 957   assert(result == nullptr || result->is_klass() || result->is_method(), "must be");
 958   return result;
 959 }
 960 
 961 /**
 962  * Returns a unique identifier for each dependency argument.
 963  */
 964 uintptr_t Dependencies::DepStream::get_identifier(int i) {
 965   if (is_oop_argument(i)) {
 966     return (uintptr_t)(oopDesc*)argument_oop(i);
 967   } else {
 968     return (uintptr_t)argument(i);
 969   }
 970 }
 971 
 972 oop Dependencies::DepStream::argument_oop(int i) {
 973   oop result = recorded_oop_at(argument_index(i));
 974   assert(oopDesc::is_oop_or_null(result), "must be");
 975   return result;
 976 }
 977 
 978 InstanceKlass* Dependencies::DepStream::context_type() {
 979   assert(must_be_in_vm(), "raw oops here");
 980 
 981   // Most dependencies have an explicit context type argument.
 982   {
 983     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 984     if (ctxkj >= 0) {
 985       Metadata* k = argument(ctxkj);
 986       assert(k != nullptr && k->is_klass(), "type check");
 987       return InstanceKlass::cast((Klass*)k);
 988     }
 989   }
 990 
 991   // Some dependencies are using the klass of the first object
 992   // argument as implicit context type.
 993   {
 994     int ctxkj = dep_implicit_context_arg(type());
 995     if (ctxkj >= 0) {
 996       Klass* k = argument_oop(ctxkj)->klass();
 997       assert(k != nullptr, "type check");
 998       return InstanceKlass::cast(k);
 999     }
1000   }
1001 
1002   // And some dependencies don't have a context type at all,
1003   // e.g. evol_method.
1004   return nullptr;
1005 }
1006 
1007 // ----------------- DependencySignature --------------------------------------
1008 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
1009   if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
1010     return false;
1011   }
1012 
1013   for (int i = 0; i < s1.args_count(); i++) {
1014     if (s1.arg(i) != s2.arg(i)) {
1015       return false;
1016     }
1017   }
1018   return true;
1019 }
1020 
1021 /// Checking dependencies
1022 
1023 // This hierarchy walker inspects subtypes of a given type, trying to find a "bad" class which breaks a dependency.
1024 // Such a class is called a "witness" to the broken dependency.
1025 // While searching around, we ignore "participants", which are already known to the dependency.
1026 class AbstractClassHierarchyWalker {
1027  public:
1028   enum { PARTICIPANT_LIMIT = 3 };
1029 
1030  private:
1031   // if non-zero, tells how many witnesses to convert to participants
1032   uint _record_witnesses;
1033 
1034   // special classes which are not allowed to be witnesses:
1035   Klass* _participants[PARTICIPANT_LIMIT+1];
1036   uint   _num_participants;
1037 
1038 #ifdef ASSERT
1039   uint _nof_requests; // one-shot walker
1040 #endif // ASSERT
1041 
1042   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1043   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1044   static PerfCounter* _perf_find_witness_in_calls_count;
1045 
1046  protected:
1047   virtual Klass* find_witness_in(KlassDepChange& changes) = 0;
1048   virtual Klass* find_witness_anywhere(InstanceKlass* context_type) = 0;
1049 
1050   AbstractClassHierarchyWalker(Klass* participant) : _record_witnesses(0), _num_participants(0)
1051 #ifdef ASSERT
1052   , _nof_requests(0)
1053 #endif // ASSERT
1054   {
1055     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1056       _participants[i] = nullptr;
1057     }
1058     if (participant != nullptr) {
1059       add_participant(participant);
1060     }
1061   }
1062 
1063   bool is_participant(Klass* k) {
1064     for (uint i = 0; i < _num_participants; i++) {
1065       if (_participants[i] == k) {
1066         return true;
1067       }
1068     }
1069     return false;
1070   }
1071 
1072   bool record_witness(Klass* witness) {
1073     if (_record_witnesses > 0) {
1074       --_record_witnesses;
1075       add_participant(witness);
1076       return false; // not a witness
1077     } else {
1078       return true; // is a witness
1079     }
1080   }
1081 
1082   class CountingClassHierarchyIterator : public ClassHierarchyIterator {
1083    private:
1084     jlong _nof_steps;
1085    public:
1086     CountingClassHierarchyIterator(InstanceKlass* root) : ClassHierarchyIterator(root), _nof_steps(0) {}
1087 
1088     void next() {
1089       _nof_steps++;
1090       ClassHierarchyIterator::next();
1091     }
1092 
1093     ~CountingClassHierarchyIterator() {
1094       if (UsePerfData) {
1095         _perf_find_witness_anywhere_steps_count->inc(_nof_steps);
1096       }
1097     }
1098   };
1099 
1100  public:
1101   uint num_participants() { return _num_participants; }
1102   Klass* participant(uint n) {
1103     assert(n <= _num_participants, "oob");
1104     if (n < _num_participants) {
1105       return _participants[n];
1106     } else {
1107       return nullptr;
1108     }
1109   }
1110 
1111   void add_participant(Klass* participant) {
1112     assert(!is_participant(participant), "sanity");
1113     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
1114     uint np = _num_participants++;
1115     _participants[np] = participant;
1116   }
1117 
1118   void record_witnesses(uint add) {
1119     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
1120     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
1121     _record_witnesses = add;
1122   }
1123 
1124   Klass* find_witness(InstanceKlass* context_type, KlassDepChange* changes = nullptr);
1125 
1126   static void init();
1127   static void print_statistics();
1128 };
1129 
1130 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_calls_count = nullptr;
1131 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_steps_count = nullptr;
1132 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_in_calls_count       = nullptr;
1133 
1134 void AbstractClassHierarchyWalker::init() {
1135   if (UsePerfData) {
1136     EXCEPTION_MARK;
1137     _perf_find_witness_anywhere_calls_count =
1138         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhere", PerfData::U_Events, CHECK);
1139     _perf_find_witness_anywhere_steps_count =
1140         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhereSteps", PerfData::U_Events, CHECK);
1141     _perf_find_witness_in_calls_count =
1142         PerfDataManager::create_counter(SUN_CI, "findWitnessIn", PerfData::U_Events, CHECK);
1143   }
1144 }
1145 
1146 Klass* AbstractClassHierarchyWalker::find_witness(InstanceKlass* context_type, KlassDepChange* changes) {
1147   // Current thread must be in VM (not native mode, as in CI):
1148   assert(must_be_in_vm(), "raw oops here");
1149   // Must not move the class hierarchy during this check:
1150   assert_locked_or_safepoint(Compile_lock);
1151   assert(_nof_requests++ == 0, "repeated requests are not supported");
1152 
1153   assert(changes == nullptr || changes->involves_context(context_type), "irrelevant dependency");
1154 
1155   // (Note: Interfaces do not have subclasses.)
1156   // If it is an interface, search its direct implementors.
1157   // (Their subclasses are additional indirect implementors. See InstanceKlass::add_implementor().)
1158   if (context_type->is_interface()) {
1159     int nof_impls = context_type->nof_implementors();
1160     if (nof_impls == 0) {
1161       return nullptr; // no implementors
1162     } else if (nof_impls == 1) { // unique implementor
1163       assert(context_type != context_type->implementor(), "not unique");
1164       context_type = context_type->implementor();
1165     } else { // nof_impls >= 2
1166       // Avoid this case: *I.m > { A.m, C }; B.m > C
1167       // Here, I.m has 2 concrete implementations, but m appears unique
1168       // as A.m, because the search misses B.m when checking C.
1169       // The inherited method B.m was getting missed by the walker
1170       // when interface 'I' was the starting point.
1171       // %%% Until this is fixed more systematically, bail out.
1172       return context_type;
1173     }
1174   }
1175   assert(!context_type->is_interface(), "no interfaces allowed");
1176 
1177   if (changes != nullptr) {
1178     if (UsePerfData) {
1179       _perf_find_witness_in_calls_count->inc();
1180     }
1181     return find_witness_in(*changes);
1182   } else {
1183     if (UsePerfData) {
1184       _perf_find_witness_anywhere_calls_count->inc();
1185     }
1186     return find_witness_anywhere(context_type);
1187   }
1188 }
1189 
1190 class ConcreteSubtypeFinder : public AbstractClassHierarchyWalker {
1191  private:
1192   bool is_witness(Klass* k);
1193 
1194  protected:
1195   virtual Klass* find_witness_in(KlassDepChange& changes);
1196   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1197 
1198  public:
1199   ConcreteSubtypeFinder(Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {}
1200 };
1201 
1202 bool ConcreteSubtypeFinder::is_witness(Klass* k) {
1203   if (Dependencies::is_concrete_klass(k)) {
1204     return record_witness(k); // concrete subtype
1205   } else {
1206     return false; // not a concrete class
1207   }
1208 }
1209 
1210 Klass* ConcreteSubtypeFinder::find_witness_in(KlassDepChange& changes) {
1211   // When looking for unexpected concrete types, do not look beneath expected ones:
1212   //  * CX > CC > C' is OK, even if C' is new.
1213   //  * CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
1214   Klass* new_type = changes.as_new_klass_change()->new_type();
1215   assert(!is_participant(new_type), "only old classes are participants");
1216   // If the new type is a subtype of a participant, we are done.
1217   for (uint i = 0; i < num_participants(); i++) {
1218     if (changes.involves_context(participant(i))) {
1219       // new guy is protected from this check by previous participant
1220       return nullptr;
1221     }
1222   }
1223   if (is_witness(new_type)) {
1224     return new_type;
1225   }
1226   // No witness found.  The dependency remains unbroken.
1227   return nullptr;
1228 }
1229 
1230 Klass* ConcreteSubtypeFinder::find_witness_anywhere(InstanceKlass* context_type) {
1231   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1232     Klass* sub = iter.klass();
1233     // Do not report participant types.
1234     if (is_participant(sub)) {
1235       // Don't walk beneath a participant since it hides witnesses.
1236       iter.skip_subclasses();
1237     } else if (is_witness(sub)) {
1238       return sub; // found a witness
1239     }
1240   }
1241   // No witness found.  The dependency remains unbroken.
1242   return nullptr;
1243 }
1244 
1245 class ConcreteMethodFinder : public AbstractClassHierarchyWalker {
1246  private:
1247   Symbol* _name;
1248   Symbol* _signature;
1249 
1250   // cache of method lookups
1251   Method* _found_methods[PARTICIPANT_LIMIT+1];
1252 
1253   bool is_witness(Klass* k);
1254 
1255  protected:
1256   virtual Klass* find_witness_in(KlassDepChange& changes);
1257   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1258 
1259  public:
1260   bool witnessed_reabstraction_in_supers(Klass* k);
1261 
1262   ConcreteMethodFinder(Method* m, Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {
1263     assert(m != nullptr && m->is_method(), "sanity");
1264     _name      = m->name();
1265     _signature = m->signature();
1266 
1267     for (int i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1268       _found_methods[i] = nullptr;
1269     }
1270   }
1271 
1272   // Note:  If n==num_participants, returns nullptr.
1273   Method* found_method(uint n) {
1274     assert(n <= num_participants(), "oob");
1275     Method* fm = _found_methods[n];
1276     assert(n == num_participants() || fm != nullptr, "proper usage");
1277     if (fm != nullptr && fm->method_holder() != participant(n)) {
1278       // Default methods from interfaces can be added to classes. In
1279       // that case the holder of the method is not the class but the
1280       // interface where it's defined.
1281       assert(fm->is_default_method(), "sanity");
1282       return nullptr;
1283     }
1284     return fm;
1285   }
1286 
1287   void add_participant(Klass* participant) {
1288     AbstractClassHierarchyWalker::add_participant(participant);
1289     _found_methods[num_participants()] = nullptr;
1290   }
1291 
1292   bool record_witness(Klass* witness, Method* m) {
1293     _found_methods[num_participants()] = m;
1294     return AbstractClassHierarchyWalker::record_witness(witness);
1295   }
1296 
1297  private:
1298   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1299   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1300   static PerfCounter* _perf_find_witness_in_calls_count;
1301 
1302  public:
1303   static void init();
1304   static void print_statistics();
1305 };
1306 
1307 bool ConcreteMethodFinder::is_witness(Klass* k) {
1308   if (is_participant(k)) {
1309     return false; // do not report participant types
1310   }
1311   if (k->is_instance_klass()) {
1312     InstanceKlass* ik = InstanceKlass::cast(k);
1313     // Search class hierarchy first, skipping private implementations
1314     // as they never override any inherited methods
1315     Method* m = ik->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1316     if (Dependencies::is_concrete_method(m, ik)) {
1317       return record_witness(k, m); // concrete method found
1318     } else {
1319       // Check for re-abstraction of method
1320       if (!ik->is_interface() && m != nullptr && m->is_abstract()) {
1321         // Found a matching abstract method 'm' in the class hierarchy.
1322         // This is fine iff 'k' is an abstract class and all concrete subtypes
1323         // of 'k' override 'm' and are participates of the current search.
1324         ConcreteSubtypeFinder wf;
1325         for (uint i = 0; i < num_participants(); i++) {
1326           Klass* p = participant(i);
1327           wf.add_participant(p);
1328         }
1329         Klass* w = wf.find_witness(ik);
1330         if (w != nullptr) {
1331           Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1332           if (!Dependencies::is_concrete_method(wm, w)) {
1333             // Found a concrete subtype 'w' which does not override abstract method 'm'.
1334             // Bail out because 'm' could be called with 'w' as receiver (leading to an
1335             // AbstractMethodError) and thus the method we are looking for is not unique.
1336             return record_witness(k, m);
1337           }
1338         }
1339       }
1340       // Check interface defaults also, if any exist.
1341       Array<Method*>* default_methods = ik->default_methods();
1342       if (default_methods != nullptr) {
1343         Method* dm = ik->find_method(default_methods, _name, _signature);
1344         if (Dependencies::is_concrete_method(dm, nullptr)) {
1345           return record_witness(k, dm); // default method found
1346         }
1347       }
1348       return false; // no concrete method found
1349     }
1350   } else {
1351     return false; // no methods to find in an array type
1352   }
1353 }
1354 
1355 Klass* ConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1356   // When looking for unexpected concrete methods, look beneath expected ones, to see if there are overrides.
1357   //  * CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
1358   Klass* new_type = changes.as_new_klass_change()->new_type();
1359   assert(!is_participant(new_type), "only old classes are participants");
1360   if (is_witness(new_type)) {
1361     return new_type;
1362   } else {
1363     // No witness found, but is_witness() doesn't detect method re-abstraction in case of spot-checking.
1364     if (witnessed_reabstraction_in_supers(new_type)) {
1365       return new_type;
1366     }
1367   }
1368   // No witness found.  The dependency remains unbroken.
1369   return nullptr;
1370 }
1371 
1372 bool ConcreteMethodFinder::witnessed_reabstraction_in_supers(Klass* k) {
1373   if (!k->is_instance_klass()) {
1374     return false; // no methods to find in an array type
1375   } else {
1376     // Looking for a case when an abstract method is inherited into a concrete class.
1377     if (Dependencies::is_concrete_klass(k) && !k->is_interface()) {
1378       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1379       if (m != nullptr) {
1380         return false; // no reabstraction possible: local method found
1381       }
1382       for (InstanceKlass* super = k->java_super(); super != nullptr; super = super->java_super()) {
1383         m = super->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1384         if (m != nullptr) { // inherited method found
1385           if (m->is_abstract() || m->is_overpass()) {
1386             return record_witness(super, m); // abstract method found
1387           }
1388           return false;
1389         }
1390       }
1391       // Miranda.
1392       return true;
1393     }
1394     return false;
1395   }
1396 }
1397 
1398 
1399 Klass* ConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1400   // Walk hierarchy under a context type, looking for unexpected types.
1401   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1402     Klass* sub = iter.klass();
1403     if (is_witness(sub)) {
1404       return sub; // found a witness
1405     }
1406   }
1407   // No witness found.  The dependency remains unbroken.
1408   return nullptr;
1409 }
1410 
1411 // For some method m and some class ctxk (subclass of method holder),
1412 // enumerate all distinct overrides of m in concrete subclasses of ctxk.
1413 // It relies on vtable/itable information to perform method selection on each linked subclass
1414 // and ignores all non yet linked ones (speculatively treat them as "effectively abstract").
1415 class LinkedConcreteMethodFinder : public AbstractClassHierarchyWalker {
1416  private:
1417   InstanceKlass* _resolved_klass;   // resolved class (JVMS-5.4.3.1)
1418   InstanceKlass* _declaring_klass;  // the holder of resolved method (JVMS-5.4.3.3)
1419   int            _vtable_index;     // vtable/itable index of the resolved method
1420   bool           _do_itable_lookup; // choose between itable and vtable lookup logic
1421 
1422   // cache of method lookups
1423   Method* _found_methods[PARTICIPANT_LIMIT+1];
1424 
1425   bool is_witness(Klass* k);
1426   Method* select_method(InstanceKlass* recv_klass);
1427   static int compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, bool& is_itable_index);
1428   static bool is_concrete_klass(InstanceKlass* ik);
1429 
1430   void add_participant(Method* m, Klass* participant) {
1431     uint np = num_participants();
1432     AbstractClassHierarchyWalker::add_participant(participant);
1433     assert(np + 1 == num_participants(), "sanity");
1434     _found_methods[np] = m; // record the method for the participant
1435   }
1436 
1437   bool record_witness(Klass* witness, Method* m) {
1438     for (uint i = 0; i < num_participants(); i++) {
1439       if (found_method(i) == m) {
1440         return false; // already recorded
1441       }
1442     }
1443     // Record not yet seen method.
1444     _found_methods[num_participants()] = m;
1445     return AbstractClassHierarchyWalker::record_witness(witness);
1446   }
1447 
1448   void initialize(Method* participant) {
1449     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1450       _found_methods[i] = nullptr;
1451     }
1452     if (participant != nullptr) {
1453       add_participant(participant, participant->method_holder());
1454     }
1455   }
1456 
1457  protected:
1458   virtual Klass* find_witness_in(KlassDepChange& changes);
1459   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1460 
1461  public:
1462   // In order to perform method selection, the following info is needed:
1463   //  (1) interface or virtual call;
1464   //  (2) vtable/itable index;
1465   //  (3) declaring class (in case of interface call).
1466   //
1467   // It is prepared based on the results of method resolution: resolved class and resolved method (as specified in JVMS-5.4.3.3).
1468   // Optionally, a method which was previously determined as a unique target (uniqm) is added as a participant
1469   // to enable dependency spot-checking and speed up the search.
1470   LinkedConcreteMethodFinder(InstanceKlass* resolved_klass, Method* resolved_method, Method* uniqm = nullptr) : AbstractClassHierarchyWalker(nullptr) {
1471     assert(resolved_klass->is_linked(), "required");
1472     assert(resolved_method->method_holder()->is_linked(), "required");
1473     assert(!resolved_method->can_be_statically_bound(), "no vtable index available");
1474 
1475     _resolved_klass  = resolved_klass;
1476     _declaring_klass = resolved_method->method_holder();
1477     _vtable_index    = compute_vtable_index(resolved_klass, resolved_method,
1478                                             _do_itable_lookup); // out parameter
1479     assert(_vtable_index >= 0, "invalid vtable index");
1480 
1481     initialize(uniqm);
1482   }
1483 
1484   // Note:  If n==num_participants, returns nullptr.
1485   Method* found_method(uint n) {
1486     assert(n <= num_participants(), "oob");
1487     assert(participant(n) != nullptr || n == num_participants(), "proper usage");
1488     return _found_methods[n];
1489   }
1490 };
1491 
1492 Klass* LinkedConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1493   Klass* type = changes.type();
1494 
1495   assert(!is_participant(type), "only old classes are participants");
1496 
1497   if (is_witness(type)) {
1498     return type;
1499   }
1500   return nullptr; // No witness found.  The dependency remains unbroken.
1501 }
1502 
1503 Klass* LinkedConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1504   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1505     Klass* sub = iter.klass();
1506     if (is_witness(sub)) {
1507       return sub;
1508     }
1509     if (sub->is_instance_klass() && !InstanceKlass::cast(sub)->is_linked()) {
1510       iter.skip_subclasses(); // ignore not yet linked classes
1511     }
1512   }
1513   return nullptr; // No witness found. The dependency remains unbroken.
1514 }
1515 
1516 bool LinkedConcreteMethodFinder::is_witness(Klass* k) {
1517   if (is_participant(k)) {
1518     return false; // do not report participant types
1519   } else if (k->is_instance_klass()) {
1520     InstanceKlass* ik = InstanceKlass::cast(k);
1521     if (is_concrete_klass(ik)) {
1522       Method* m = select_method(ik);
1523       return record_witness(ik, m);
1524     } else {
1525       return false; // ignore non-concrete holder class
1526     }
1527   } else {
1528     return false; // no methods to find in an array type
1529   }
1530 }
1531 
1532 Method* LinkedConcreteMethodFinder::select_method(InstanceKlass* recv_klass) {
1533   Method* selected_method = nullptr;
1534   if (_do_itable_lookup) {
1535     assert(_declaring_klass->is_interface(), "sanity");
1536     bool implements_interface; // initialized by method_at_itable_or_null()
1537     selected_method = recv_klass->method_at_itable_or_null(_declaring_klass, _vtable_index,
1538                                                            implements_interface); // out parameter
1539     assert(implements_interface, "not implemented");
1540   } else {
1541     selected_method = recv_klass->method_at_vtable(_vtable_index);
1542   }
1543   return selected_method; // nullptr when corresponding slot is empty (AbstractMethodError case)
1544 }
1545 
1546 int LinkedConcreteMethodFinder::compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method,
1547                                                      // out parameter
1548                                                      bool& is_itable_index) {
1549   if (resolved_klass->is_interface() && resolved_method->has_itable_index()) {
1550     is_itable_index = true;
1551     return resolved_method->itable_index();
1552   }
1553   // Check for default or miranda method first.
1554   InstanceKlass* declaring_klass = resolved_method->method_holder();
1555   if (!resolved_klass->is_interface() && declaring_klass->is_interface()) {
1556     is_itable_index = false;
1557     return resolved_klass->vtable_index_of_interface_method(resolved_method);
1558   }
1559   // At this point we are sure that resolved_method is virtual and not
1560   // a default or miranda method; therefore, it must have a valid vtable index.
1561   assert(resolved_method->has_vtable_index(), "");
1562   is_itable_index = false;
1563   return resolved_method->vtable_index();
1564 }
1565 
1566 bool LinkedConcreteMethodFinder::is_concrete_klass(InstanceKlass* ik) {
1567   if (!Dependencies::is_concrete_klass(ik)) {
1568     return false; // not concrete
1569   }
1570   if (ik->is_interface()) {
1571     return false; // interfaces aren't concrete
1572   }
1573   if (!ik->is_linked()) {
1574     return false; // not yet linked classes don't have instances
1575   }
1576   return true;
1577 }
1578 
1579 #ifdef ASSERT
1580 // Assert that m is inherited into ctxk, without intervening overrides.
1581 // (May return true even if this is not true, in corner cases where we punt.)
1582 bool Dependencies::verify_method_context(InstanceKlass* ctxk, Method* m) {
1583   if (m->is_private()) {
1584     return false; // Quick lose.  Should not happen.
1585   }
1586   if (m->method_holder() == ctxk) {
1587     return true;  // Quick win.
1588   }
1589   if (!(m->is_public() || m->is_protected())) {
1590     // The override story is complex when packages get involved.
1591     return true;  // Must punt the assertion to true.
1592   }
1593   Method* lm = ctxk->lookup_method(m->name(), m->signature());
1594   if (lm == nullptr) {
1595     // It might be an interface method
1596     lm = ctxk->lookup_method_in_ordered_interfaces(m->name(), m->signature());
1597   }
1598   if (lm == m) {
1599     // Method m is inherited into ctxk.
1600     return true;
1601   }
1602   if (lm != nullptr) {
1603     if (!(lm->is_public() || lm->is_protected())) {
1604       // Method is [package-]private, so the override story is complex.
1605       return true;  // Must punt the assertion to true.
1606     }
1607     if (lm->is_static()) {
1608       // Static methods don't override non-static so punt
1609       return true;
1610     }
1611     if (!Dependencies::is_concrete_method(lm, ctxk) &&
1612         !Dependencies::is_concrete_method(m, ctxk)) {
1613       // They are both non-concrete
1614       if (lm->method_holder()->is_subtype_of(m->method_holder())) {
1615         // Method m is overridden by lm, but both are non-concrete.
1616         return true;
1617       }
1618       if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() &&
1619           ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) {
1620         // Interface method defined in multiple super interfaces
1621         return true;
1622       }
1623     }
1624   }
1625   ResourceMark rm;
1626   tty->print_cr("Dependency method not found in the associated context:");
1627   tty->print_cr("  context = %s", ctxk->external_name());
1628   tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
1629   if (lm != nullptr) {
1630     tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
1631   }
1632   return false;
1633 }
1634 #endif // ASSERT
1635 
1636 bool Dependencies::is_concrete_klass(Klass* k) {
1637   if (k->is_abstract())  return false;
1638   // %%% We could treat classes which are concrete but
1639   // have not yet been instantiated as virtually abstract.
1640   // This would require a deoptimization barrier on first instantiation.
1641   //if (k->is_not_instantiated())  return false;
1642   return true;
1643 }
1644 
1645 bool Dependencies::is_concrete_method(Method* m, Klass* k) {
1646   // nullptr is not a concrete method.
1647   if (m == nullptr) {
1648     return false;
1649   }
1650   // Statics are irrelevant to virtual call sites.
1651   if (m->is_static()) {
1652     return false;
1653   }
1654   // Abstract methods are not concrete.
1655   if (m->is_abstract()) {
1656     return false;
1657   }
1658   // Overpass (error) methods are not concrete if k is abstract.
1659   if (m->is_overpass() && k != nullptr) {
1660      return !k->is_abstract();
1661   }
1662   // Note "true" is conservative answer: overpass clause is false if k == nullptr,
1663   // implies return true if answer depends on overpass clause.
1664   return true;
1665  }
1666 
1667 Klass* Dependencies::find_finalizable_subclass(InstanceKlass* ik) {
1668   for (ClassHierarchyIterator iter(ik); !iter.done(); iter.next()) {
1669     Klass* sub = iter.klass();
1670     if (sub->has_finalizer() && !sub->is_interface()) {
1671       return sub;
1672     }
1673   }
1674   return nullptr; // not found
1675 }
1676 
1677 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1678   if (k->is_abstract())  return false;
1679   // We could also return false if k does not yet appear to be
1680   // instantiated, if the VM version supports this distinction also.
1681   //if (k->is_not_instantiated())  return false;
1682   return true;
1683 }
1684 
1685 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1686   return k->has_finalizable_subclass();
1687 }
1688 
1689 // Any use of the contents (bytecodes) of a method must be
1690 // marked by an "evol_method" dependency, if those contents
1691 // can change.  (Note: A method is always dependent on itself.)
1692 Klass* Dependencies::check_evol_method(Method* m) {
1693   assert(must_be_in_vm(), "raw oops here");
1694   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1695   // Or is there a now a breakpoint?
1696   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1697   if (m->is_old()
1698       || m->number_of_breakpoints() > 0) {
1699     return m->method_holder();
1700   } else {
1701     return nullptr;
1702   }
1703 }
1704 
1705 // This is a strong assertion:  It is that the given type
1706 // has no subtypes whatever.  It is most useful for
1707 // optimizing checks on reflected types or on array types.
1708 // (Checks on types which are derived from real instances
1709 // can be optimized more strongly than this, because we
1710 // know that the checked type comes from a concrete type,
1711 // and therefore we can disregard abstract types.)
1712 Klass* Dependencies::check_leaf_type(InstanceKlass* ctxk) {
1713   assert(must_be_in_vm(), "raw oops here");
1714   assert_locked_or_safepoint(Compile_lock);
1715   Klass* sub = ctxk->subklass();
1716   if (sub != nullptr) {
1717     return sub;
1718   } else if (ctxk->nof_implementors() != 0) {
1719     // if it is an interface, it must be unimplemented
1720     // (if it is not an interface, nof_implementors is always zero)
1721     InstanceKlass* impl = ctxk->implementor();
1722     assert(impl != nullptr, "must be set");
1723     return impl;
1724   } else {
1725     return nullptr;
1726   }
1727 }
1728 
1729 // Test the assertion that conck is the only concrete subtype* of ctxk.
1730 // The type conck itself is allowed to have have further concrete subtypes.
1731 // This allows the compiler to narrow occurrences of ctxk by conck,
1732 // when dealing with the types of actual instances.
1733 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk,
1734                                                                  Klass* conck,
1735                                                                  NewKlassDepChange* changes) {
1736   ConcreteSubtypeFinder wf(conck);
1737   Klass* k = wf.find_witness(ctxk, changes);
1738   return k;
1739 }
1740 
1741 
1742 // Find the unique concrete proper subtype of ctxk, or nullptr if there
1743 // is more than one concrete proper subtype.  If there are no concrete
1744 // proper subtypes, return ctxk itself, whether it is concrete or not.
1745 // The returned subtype is allowed to have have further concrete subtypes.
1746 // That is, return CC1 for CX > CC1 > CC2, but nullptr for CX > { CC1, CC2 }.
1747 Klass* Dependencies::find_unique_concrete_subtype(InstanceKlass* ctxk) {
1748   ConcreteSubtypeFinder wf(ctxk);  // Ignore ctxk when walking.
1749   wf.record_witnesses(1);          // Record one other witness when walking.
1750   Klass* wit = wf.find_witness(ctxk);
1751   if (wit != nullptr)  return nullptr;   // Too many witnesses.
1752   Klass* conck = wf.participant(0);
1753   if (conck == nullptr) {
1754     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1755   } else {
1756 #ifndef PRODUCT
1757     // Make sure the dependency mechanism will pass this discovery:
1758     if (VerifyDependencies) {
1759       // Turn off dependency tracing while actually testing deps.
1760       FlagSetting fs(_verify_in_progress, true);
1761       if (!Dependencies::is_concrete_klass(ctxk)) {
1762         guarantee(nullptr == (void *)
1763                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1764                   "verify dep.");
1765       }
1766     }
1767 #endif //PRODUCT
1768     return conck;
1769   }
1770 }
1771 
1772 // Try to determine whether root method in some context is concrete or not based on the information about the unique method
1773 // in that context. It exploits the fact that concrete root method is always inherited into the context when there's a unique method.
1774 // Hence, unique method holder is always a supertype of the context class when root method is concrete.
1775 // Examples for concrete_root_method
1776 //      C (C.m uniqm)
1777 //      |
1778 //      CX (ctxk) uniqm is inherited into context.
1779 //
1780 //      CX (ctxk) (CX.m uniqm) here uniqm is defined in ctxk.
1781 // Examples for !concrete_root_method
1782 //      CX (ctxk)
1783 //      |
1784 //      C (C.m uniqm) uniqm is in subtype of ctxk.
1785 bool Dependencies::is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk) {
1786   if (uniqm == nullptr) {
1787     return false; // match Dependencies::is_concrete_method() behavior
1788   }
1789   // Theoretically, the "direction" of subtype check matters here.
1790   // On one hand, in case of interface context with a single implementor, uniqm can be in a superclass of the implementor which
1791   // is not related to context class.
1792   // On another hand, uniqm could come from an interface unrelated to the context class, but right now it is not possible:
1793   // it is required that uniqm->method_holder() is the participant (uniqm->method_holder() <: ctxk), hence a default method
1794   // can't be used as unique.
1795   if (ctxk->is_interface()) {
1796     InstanceKlass* implementor = ctxk->implementor();
1797     assert(implementor != ctxk, "single implementor only"); // should have been invalidated earlier
1798     ctxk = implementor;
1799   }
1800   InstanceKlass* holder = uniqm->method_holder();
1801   assert(!holder->is_interface(), "no default methods allowed");
1802   assert(ctxk->is_subclass_of(holder) || holder->is_subclass_of(ctxk), "not related");
1803   return ctxk->is_subclass_of(holder);
1804 }
1805 
1806 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1807 // Otherwise, return a class that contains an interfering method.
1808 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1809                                                   Method* uniqm,
1810                                                   NewKlassDepChange* changes) {
1811   ConcreteMethodFinder wf(uniqm, uniqm->method_holder());
1812   Klass* k = wf.find_witness(ctxk, changes);
1813   if (k != nullptr) {
1814     return k;
1815   }
1816   if (!Dependencies::is_concrete_root_method(uniqm, ctxk) || changes != nullptr) {
1817     Klass* conck = find_witness_AME(ctxk, uniqm, changes);
1818     if (conck != nullptr) {
1819       // Found a concrete subtype 'conck' which does not override abstract root method.
1820       return conck;
1821     }
1822   }
1823   return nullptr;
1824 }
1825 
1826 Klass* Dependencies::check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes) {
1827   assert(ctxk->is_interface(), "sanity");
1828   assert(ctxk->nof_implementors() > 0, "no implementors");
1829   if (ctxk->nof_implementors() == 1) {
1830     assert(ctxk->implementor() == uniqk, "sanity");
1831     return nullptr;
1832   }
1833   return ctxk; // no unique implementor
1834 }
1835 
1836 // Search for AME.
1837 // There are two version of checks.
1838 //   1) Spot checking version(Classload time). Newly added class is checked for AME.
1839 //      Checks whether abstract/overpass method is inherited into/declared in newly added concrete class.
1840 //   2) Compile time analysis for abstract/overpass(abstract klass) root_m. The non uniqm subtrees are checked for concrete classes.
1841 Klass* Dependencies::find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes) {
1842   if (m != nullptr) {
1843     if (changes != nullptr) {
1844       // Spot checking version.
1845       ConcreteMethodFinder wf(m);
1846       Klass* new_type = changes->as_new_klass_change()->new_type();
1847       if (wf.witnessed_reabstraction_in_supers(new_type)) {
1848         return new_type;
1849       }
1850     } else {
1851       // Note: It is required that uniqm->method_holder() is the participant (see ClassHierarchyWalker::found_method()).
1852       ConcreteSubtypeFinder wf(m->method_holder());
1853       Klass* conck = wf.find_witness(ctxk);
1854       if (conck != nullptr) {
1855         Method* cm = InstanceKlass::cast(conck)->find_instance_method(m->name(), m->signature(), Klass::PrivateLookupMode::skip);
1856         if (!Dependencies::is_concrete_method(cm, conck)) {
1857           return conck;
1858         }
1859       }
1860     }
1861   }
1862   return nullptr;
1863 }
1864 
1865 // This function is used by find_unique_concrete_method(non vtable based)
1866 // to check whether subtype method overrides the base method.
1867 static bool overrides(Method* sub_m, Method* base_m) {
1868   assert(base_m != nullptr, "base method should be non null");
1869   if (sub_m == nullptr) {
1870     return false;
1871   }
1872   /**
1873    *  If base_m is public or protected then sub_m always overrides.
1874    *  If base_m is !public, !protected and !private (i.e. base_m is package private)
1875    *  then sub_m should be in the same package as that of base_m.
1876    *  For package private base_m this is conservative approach as it allows only subset of all allowed cases in
1877    *  the jvm specification.
1878    **/
1879   if (base_m->is_public() || base_m->is_protected() ||
1880       base_m->method_holder()->is_same_class_package(sub_m->method_holder())) {
1881     return true;
1882   }
1883   return false;
1884 }
1885 
1886 // Find the set of all non-abstract methods under ctxk that match m.
1887 // (The method m must be defined or inherited in ctxk.)
1888 // Include m itself in the set, unless it is abstract.
1889 // If this set has exactly one element, return that element.
1890 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass** participant) {
1891   // Return nullptr if m is marked old; must have been a redefined method.
1892   if (m->is_old()) {
1893     return nullptr;
1894   }
1895   if (m->is_default_method()) {
1896     return nullptr; // not supported
1897   }
1898   assert(verify_method_context(ctxk, m), "proper context");
1899   ConcreteMethodFinder wf(m);
1900   wf.record_witnesses(1);
1901   Klass* wit = wf.find_witness(ctxk);
1902   if (wit != nullptr)  return nullptr;  // Too many witnesses.
1903   Method* fm = wf.found_method(0);  // Will be nullptr if num_parts == 0.
1904   if (participant != nullptr) {
1905     (*participant) = wf.participant(0);
1906   }
1907   if (!Dependencies::is_concrete_method(fm, nullptr)) {
1908     fm = nullptr; // ignore abstract methods
1909   }
1910   if (Dependencies::is_concrete_method(m, ctxk)) {
1911     if (fm == nullptr) {
1912       // It turns out that m was always the only implementation.
1913       fm = m;
1914     } else if (fm != m) {
1915       // Two conflicting implementations after all.
1916       // (This can happen if m is inherited into ctxk and fm overrides it.)
1917       return nullptr;
1918     }
1919   } else if (Dependencies::find_witness_AME(ctxk, fm) != nullptr) {
1920     // Found a concrete subtype which does not override abstract root method.
1921     return nullptr;
1922   } else if (!overrides(fm, m)) {
1923     // Found method doesn't override abstract root method.
1924     return nullptr;
1925   }
1926   assert(Dependencies::is_concrete_root_method(fm, ctxk) == Dependencies::is_concrete_method(m, ctxk), "mismatch");
1927 #ifndef PRODUCT
1928   // Make sure the dependency mechanism will pass this discovery:
1929   if (VerifyDependencies && fm != nullptr) {
1930     guarantee(nullptr == (void *)check_unique_concrete_method(ctxk, fm),
1931               "verify dep.");
1932   }
1933 #endif //PRODUCT
1934   return fm;
1935 }
1936 
1937 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1938 // Otherwise, return a class that contains an interfering method.
1939 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1940                                                   Method* uniqm,
1941                                                   Klass* resolved_klass,
1942                                                   Method* resolved_method,
1943                                                   KlassDepChange* changes) {
1944   assert(!ctxk->is_interface() || ctxk == resolved_klass, "sanity");
1945   assert(!resolved_method->can_be_statically_bound() || resolved_method == uniqm, "sanity");
1946   assert(resolved_klass->is_subtype_of(resolved_method->method_holder()), "sanity");
1947 
1948   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1949       !resolved_method->method_holder()->is_linked() ||
1950       resolved_method->can_be_statically_bound()) {
1951     // Dependency is redundant, but benign. Just keep it to avoid unnecessary recompilation.
1952     return nullptr; // no vtable index available
1953   }
1954 
1955   LinkedConcreteMethodFinder mf(InstanceKlass::cast(resolved_klass), resolved_method, uniqm);
1956   return mf.find_witness(ctxk, changes);
1957 }
1958 
1959 // Find the set of all non-abstract methods under ctxk that match m.
1960 // (The method m must be defined or inherited in ctxk.)
1961 // Include m itself in the set, unless it is abstract.
1962 // If this set has exactly one element, return that element.
1963 // Not yet linked subclasses of ctxk are ignored since they don't have any instances yet.
1964 // Additionally, resolved_klass and resolved_method complete the description of the call site being analyzed.
1965 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method) {
1966   // Return nullptr if m is marked old; must have been a redefined method.
1967   if (m->is_old()) {
1968     return nullptr;
1969   }
1970   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1971       !resolved_method->method_holder()->is_linked() ||
1972       resolved_method->can_be_statically_bound()) {
1973     return m; // nothing to do: no witness under ctxk
1974   }
1975   LinkedConcreteMethodFinder wf(InstanceKlass::cast(resolved_klass), resolved_method);
1976   assert(Dependencies::verify_method_context(ctxk, m), "proper context");
1977   wf.record_witnesses(1);
1978   Klass* wit = wf.find_witness(ctxk);
1979   if (wit != nullptr) {
1980     return nullptr;  // Too many witnesses.
1981   }
1982   // p == nullptr when no participants are found (wf.num_participants() == 0).
1983   // fm == nullptr case has 2 meanings:
1984   //  * when p == nullptr: no method found;
1985   //  * when p != nullptr: AbstractMethodError-throwing method found.
1986   // Also, found method should always be accompanied by a participant class.
1987   Klass*   p = wf.participant(0);
1988   Method* fm = wf.found_method(0);
1989   assert(fm == nullptr || p != nullptr, "no participant");
1990   // Normalize all error-throwing cases to nullptr.
1991   if (fm == Universe::throw_illegal_access_error() ||
1992       fm == Universe::throw_no_such_method_error() ||
1993       !Dependencies::is_concrete_method(fm, p)) {
1994     fm = nullptr; // error-throwing method
1995   }
1996   if (Dependencies::is_concrete_method(m, ctxk)) {
1997     if (p == nullptr) {
1998       // It turns out that m was always the only implementation.
1999       assert(fm == nullptr, "sanity");
2000       fm = m;
2001     }
2002   }
2003 #ifndef PRODUCT
2004   // Make sure the dependency mechanism will pass this discovery:
2005   if (VerifyDependencies && fm != nullptr) {
2006     guarantee(nullptr == check_unique_concrete_method(ctxk, fm, resolved_klass, resolved_method),
2007               "verify dep.");
2008   }
2009 #endif // PRODUCT
2010   assert(fm == nullptr || !fm->is_abstract(), "sanity");
2011   // Old CHA conservatively reports concrete methods in abstract classes
2012   // irrespective of whether they have concrete subclasses or not.
2013   // Also, abstract root method case is not fully supported.
2014 #ifdef ASSERT
2015   Klass*  uniqp = nullptr;
2016   Method* uniqm = Dependencies::find_unique_concrete_method(ctxk, m, &uniqp);
2017   assert(uniqm == nullptr || uniqm == fm ||
2018          m->is_abstract() ||
2019          uniqm->method_holder()->is_abstract() ||
2020          (fm == nullptr && uniqm != nullptr && uniqp != nullptr && !InstanceKlass::cast(uniqp)->is_linked()),
2021          "sanity");
2022 #endif // ASSERT
2023   return fm;
2024 }
2025 
2026 Klass* Dependencies::check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes) {
2027   InstanceKlass* search_at = ctxk;
2028   if (changes != nullptr) {
2029     search_at = changes->new_type(); // just look at the new bit
2030   }
2031   return find_finalizable_subclass(search_at);
2032 }
2033 
2034 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
2035   assert(call_site != nullptr, "sanity");
2036   assert(method_handle != nullptr, "sanity");
2037   assert(call_site->is_a(vmClasses::CallSite_klass()),     "sanity");
2038 
2039   if (changes == nullptr) {
2040     // Validate all CallSites
2041     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
2042       return call_site->klass();  // assertion failed
2043   } else {
2044     // Validate the given CallSite
2045     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
2046       assert(method_handle != changes->method_handle(), "must be");
2047       return call_site->klass();  // assertion failed
2048     }
2049   }
2050   return nullptr;  // assertion still valid
2051 }
2052 
2053 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
2054   if (_verify_in_progress) return;  // don't log
2055   if (witness != nullptr) {
2056     LogTarget(Debug, dependencies) lt;
2057     if (lt.is_enabled()) {
2058       LogStream ls(&lt);
2059       print_dependency(&ls, witness, /*verbose=*/ true);
2060     }
2061     // The following is a no-op unless logging is enabled:
2062     log_dependency(witness);
2063   }
2064 }
2065 
2066 Klass* Dependencies::DepStream::check_new_klass_dependency(NewKlassDepChange* changes) {
2067   assert_locked_or_safepoint(Compile_lock);
2068   Dependencies::check_valid_dependency_type(type());
2069 
2070   Klass* witness = nullptr;
2071   switch (type()) {
2072   case evol_method:
2073     witness = check_evol_method(method_argument(0));
2074     break;
2075   case leaf_type:
2076     witness = check_leaf_type(context_type());
2077     break;
2078   case abstract_with_unique_concrete_subtype:
2079     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
2080     break;
2081   case unique_concrete_method_2:
2082     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
2083     break;
2084   case unique_concrete_method_4:
2085     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2086     break;
2087   case unique_implementor:
2088     witness = check_unique_implementor(context_type(), type_argument(1), changes);
2089     break;
2090   case no_finalizable_subclasses:
2091     witness = check_has_no_finalizable_subclasses(context_type(), changes);
2092     break;
2093   default:
2094     witness = nullptr;
2095     break;
2096   }
2097   trace_and_log_witness(witness);
2098   return witness;
2099 }
2100 
2101 Klass* Dependencies::DepStream::check_klass_init_dependency(KlassInitDepChange* changes) {
2102   assert_locked_or_safepoint(Compile_lock);
2103   Dependencies::check_valid_dependency_type(type());
2104 
2105   // No new types added. Only unique_concrete_method_4 is sensitive to class initialization changes.
2106   Klass* witness = nullptr;
2107   switch (type()) {
2108   case unique_concrete_method_4:
2109     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2110     break;
2111   default:
2112     witness = nullptr;
2113     break;
2114   }
2115   trace_and_log_witness(witness);
2116   return witness;
2117 }
2118 
2119 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
2120   assert_locked_or_safepoint(Compile_lock);
2121   Dependencies::check_valid_dependency_type(type());
2122 
2123   if (changes != nullptr) {
2124     if (changes->is_klass_init_change()) {
2125       return check_klass_init_dependency(changes->as_klass_init_change());
2126     } else {
2127       return check_new_klass_dependency(changes->as_new_klass_change());
2128     }
2129   } else {
2130     Klass* witness = check_new_klass_dependency(nullptr);
2131     // check_klass_init_dependency duplicates check_new_klass_dependency checks when class hierarchy change info is absent.
2132     assert(witness != nullptr || check_klass_init_dependency(nullptr) == nullptr, "missed dependency");
2133     return witness;
2134   }
2135 }
2136 
2137 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
2138   assert_locked_or_safepoint(Compile_lock);
2139   Dependencies::check_valid_dependency_type(type());
2140 
2141   Klass* witness = nullptr;
2142   switch (type()) {
2143   case call_site_target_value:
2144     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
2145     break;
2146   default:
2147     witness = nullptr;
2148     break;
2149   }
2150   trace_and_log_witness(witness);
2151   return witness;
2152 }
2153 
2154 
2155 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
2156   // Handle klass dependency
2157   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
2158     return check_klass_dependency(changes.as_klass_change());
2159 
2160   // Handle CallSite dependency
2161   if (changes.is_call_site_change())
2162     return check_call_site_dependency(changes.as_call_site_change());
2163 
2164   // irrelevant dependency; skip it
2165   return nullptr;
2166 }
2167 
2168 
2169 void DepChange::print() { print_on(tty); }
2170 
2171 void DepChange::print_on(outputStream* st) {
2172   int nsup = 0, nint = 0;
2173   for (ContextStream str(*this); str.next(); ) {
2174     InstanceKlass* k = str.klass();
2175     switch (str.change_type()) {
2176     case Change_new_type:
2177       st->print_cr("  dependee = %s", k->external_name());
2178       break;
2179     case Change_new_sub:
2180       if (!WizardMode) {
2181         ++nsup;
2182       } else {
2183         st->print_cr("  context super = %s", k->external_name());
2184       }
2185       break;
2186     case Change_new_impl:
2187       if (!WizardMode) {
2188         ++nint;
2189       } else {
2190         st->print_cr("  context interface = %s", k->external_name());
2191       }
2192       break;
2193     default:
2194       break;
2195     }
2196   }
2197   if (nsup + nint != 0) {
2198     st->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
2199   }
2200 }
2201 
2202 void DepChange::ContextStream::start() {
2203   InstanceKlass* type = (_changes.is_klass_change() ? _changes.as_klass_change()->type() : (InstanceKlass*) nullptr);
2204   _change_type = (type == nullptr ? NO_CHANGE : Start_Klass);
2205   _klass = type;
2206   _ti_base = nullptr;
2207   _ti_index = 0;
2208   _ti_limit = 0;
2209 }
2210 
2211 bool DepChange::ContextStream::next() {
2212   switch (_change_type) {
2213   case Start_Klass:             // initial state; _klass is the new type
2214     _ti_base = _klass->transitive_interfaces();
2215     _ti_index = 0;
2216     _change_type = Change_new_type;
2217     return true;
2218   case Change_new_type:
2219     // fall through:
2220     _change_type = Change_new_sub;
2221   case Change_new_sub:
2222     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
2223     {
2224       _klass = _klass->java_super();
2225       if (_klass != nullptr) {
2226         return true;
2227       }
2228     }
2229     // else set up _ti_limit and fall through:
2230     _ti_limit = (_ti_base == nullptr) ? 0 : _ti_base->length();
2231     _change_type = Change_new_impl;
2232   case Change_new_impl:
2233     if (_ti_index < _ti_limit) {
2234       _klass = _ti_base->at(_ti_index++);
2235       return true;
2236     }
2237     // fall through:
2238     _change_type = NO_CHANGE;  // iterator is exhausted
2239   case NO_CHANGE:
2240     break;
2241   default:
2242     ShouldNotReachHere();
2243   }
2244   return false;
2245 }
2246 
2247 void KlassDepChange::initialize() {
2248   // entire transaction must be under this lock:
2249   assert_lock_strong(Compile_lock);
2250 
2251   // Mark all dependee and all its superclasses
2252   // Mark transitive interfaces
2253   for (ContextStream str(*this); str.next(); ) {
2254     InstanceKlass* d = str.klass();
2255     assert(!d->is_marked_dependent(), "checking");
2256     d->set_is_marked_dependent(true);
2257   }
2258 }
2259 
2260 KlassDepChange::~KlassDepChange() {
2261   // Unmark all dependee and all its superclasses
2262   // Unmark transitive interfaces
2263   for (ContextStream str(*this); str.next(); ) {
2264     InstanceKlass* d = str.klass();
2265     d->set_is_marked_dependent(false);
2266   }
2267 }
2268 
2269 bool KlassDepChange::involves_context(Klass* k) {
2270   if (k == nullptr || !k->is_instance_klass()) {
2271     return false;
2272   }
2273   InstanceKlass* ik = InstanceKlass::cast(k);
2274   bool is_contained = ik->is_marked_dependent();
2275   assert(is_contained == type()->is_subtype_of(k),
2276          "correct marking of potential context types");
2277   return is_contained;
2278 }
2279 
2280 void Dependencies::print_statistics() {
2281   AbstractClassHierarchyWalker::print_statistics();
2282 }
2283 
2284 void AbstractClassHierarchyWalker::print_statistics() {
2285   if (UsePerfData) {
2286     jlong deps_find_witness_calls   = _perf_find_witness_anywhere_calls_count->get_value();
2287     jlong deps_find_witness_steps   = _perf_find_witness_anywhere_steps_count->get_value();
2288     jlong deps_find_witness_singles = _perf_find_witness_in_calls_count->get_value();
2289 
2290     ttyLocker ttyl;
2291     tty->print_cr("Dependency check (find_witness) "
2292                   "calls=" JLONG_FORMAT ", steps=" JLONG_FORMAT " (avg=%.1f), singles=" JLONG_FORMAT,
2293                   deps_find_witness_calls,
2294                   deps_find_witness_steps,
2295                   (double)deps_find_witness_steps / deps_find_witness_calls,
2296                   deps_find_witness_singles);
2297     if (xtty != nullptr) {
2298       xtty->elem("deps_find_witness calls='" JLONG_FORMAT "' steps='" JLONG_FORMAT "' singles='" JLONG_FORMAT "'",
2299                  deps_find_witness_calls,
2300                  deps_find_witness_steps,
2301                  deps_find_witness_singles);
2302     }
2303   }
2304 }
2305 
2306 CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) :
2307   _call_site(call_site),
2308   _method_handle(method_handle) {
2309   assert(_call_site()->is_a(vmClasses::CallSite_klass()), "must be");
2310   assert(_method_handle.is_null() || _method_handle()->is_a(vmClasses::MethodHandle_klass()), "must be");
2311 }
2312 
2313 void dependencies_init() {
2314   AbstractClassHierarchyWalker::init();
2315 }