1 /*
   2  * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciEnv.hpp"
  28 #include "ci/ciKlass.hpp"
  29 #include "ci/ciMethod.hpp"
  30 #include "classfile/javaClasses.inline.hpp"
  31 #include "classfile/vmClasses.hpp"
  32 #include "code/dependencies.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/klass.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/method.inline.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/flags/flagSetting.hpp"
  42 #include "runtime/handles.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/javaThread.inline.hpp"
  45 #include "runtime/jniHandles.inline.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/perfData.hpp"
  48 #include "runtime/vmThread.hpp"
  49 #include "utilities/copy.hpp"
  50 
  51 
  52 #ifdef ASSERT
  53 static bool must_be_in_vm() {
  54   Thread* thread = Thread::current();
  55   if (thread->is_Java_thread()) {
  56     return JavaThread::cast(thread)->thread_state() == _thread_in_vm;
  57   } else {
  58     return true;  // Could be VMThread or GC thread
  59   }
  60 }
  61 #endif //ASSERT
  62 
  63 bool Dependencies::_verify_in_progress = false;  // don't -Xlog:dependencies
  64 
  65 void Dependencies::initialize(ciEnv* env) {
  66   Arena* arena = env->arena();
  67   _oop_recorder = env->oop_recorder();
  68   _log = env->log();
  69   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  70 #if INCLUDE_JVMCI
  71   _using_dep_values = false;
  72 #endif
  73   DEBUG_ONLY(_deps[end_marker] = nullptr);
  74   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  75     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
  76   }
  77   _content_bytes = nullptr;
  78   _size_in_bytes = (size_t)-1;
  79 
  80   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  81 }
  82 
  83 void Dependencies::assert_evol_method(ciMethod* m) {
  84   assert_common_1(evol_method, m);
  85 }
  86 
  87 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  88   if (ctxk->is_array_klass()) {
  89     // As a special case, support this assertion on an array type,
  90     // which reduces to an assertion on its element type.
  91     // Note that this cannot be done with assertions that
  92     // relate to concreteness or abstractness.
  93     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  94     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  95     ctxk = elemt->as_instance_klass();
  96     //if (ctxk->is_final())  return;            // Ex:  String[][]
  97   }
  98   check_ctxk(ctxk);
  99   assert_common_1(leaf_type, ctxk);
 100 }
 101 
 102 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
 103   check_ctxk_abstract(ctxk);
 104   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
 105 }
 106 
 107 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
 108   check_ctxk(ctxk);
 109   check_unique_method(ctxk, uniqm);
 110   assert_common_2(unique_concrete_method_2, ctxk, uniqm);
 111 }
 112 
 113 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method) {
 114   check_ctxk(ctxk);
 115   check_unique_method(ctxk, uniqm);
 116   if (UseVtableBasedCHA) {
 117     assert_common_4(unique_concrete_method_4, ctxk, uniqm, resolved_klass, resolved_method);
 118   } else {
 119     assert_common_2(unique_concrete_method_2, ctxk, uniqm);
 120   }
 121 }
 122 
 123 void Dependencies::assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) {
 124   check_ctxk(ctxk);
 125   check_unique_implementor(ctxk, uniqk);
 126   assert_common_2(unique_implementor, ctxk, uniqk);
 127 }
 128 
 129 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 130   check_ctxk(ctxk);
 131   assert_common_1(no_finalizable_subclasses, ctxk);
 132 }
 133 
 134 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 135   assert_common_2(call_site_target_value, call_site, method_handle);
 136 }
 137 
 138 #if INCLUDE_JVMCI
 139 
 140 Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) {
 141   _oop_recorder = oop_recorder;
 142   _log = log;
 143   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
 144   _using_dep_values = true;
 145   DEBUG_ONLY(_dep_values[end_marker] = nullptr);
 146   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
 147     _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
 148   }
 149   _content_bytes = nullptr;
 150   _size_in_bytes = (size_t)-1;
 151 
 152   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
 153 }
 154 
 155 void Dependencies::assert_evol_method(Method* m) {
 156   assert_common_1(evol_method, DepValue(_oop_recorder, m));
 157 }
 158 
 159 void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
 160   check_ctxk(ctxk);
 161   assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
 162 }
 163 
 164 void Dependencies::assert_leaf_type(Klass* ctxk) {
 165   if (ctxk->is_array_klass()) {
 166     // As a special case, support this assertion on an array type,
 167     // which reduces to an assertion on its element type.
 168     // Note that this cannot be done with assertions that
 169     // relate to concreteness or abstractness.
 170     BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
 171     if (is_java_primitive(elemt))  return;   // Ex:  int[][]
 172     ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
 173     //if (ctxk->is_final())  return;            // Ex:  String[][]
 174   }
 175   check_ctxk(ctxk);
 176   assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
 177 }
 178 
 179 void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
 180   check_ctxk_abstract(ctxk);
 181   DepValue ctxk_dv(_oop_recorder, ctxk);
 182   DepValue conck_dv(_oop_recorder, conck, &ctxk_dv);
 183   assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv);
 184 }
 185 
 186 void Dependencies::assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk) {
 187   check_ctxk(ctxk);
 188   assert(ctxk->is_interface(), "not an interface");
 189   assert(ctxk->implementor() == uniqk, "not a unique implementor");
 190   assert_common_2(unique_implementor, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqk));
 191 }
 192 
 193 void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
 194   check_ctxk(ctxk);
 195   check_unique_method(ctxk, uniqm);
 196   assert_common_2(unique_concrete_method_2, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
 197 }
 198 
 199 void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) {
 200   assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle)));
 201 }
 202 
 203 #endif // INCLUDE_JVMCI
 204 
 205 
 206 // Helper function.  If we are adding a new dep. under ctxk2,
 207 // try to find an old dep. under a broader* ctxk1.  If there is
 208 //
 209 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 210                                     int ctxk_i, ciKlass* ctxk2) {
 211   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 212   if (ctxk2->is_subtype_of(ctxk1)) {
 213     return true;  // success, and no need to change
 214   } else if (ctxk1->is_subtype_of(ctxk2)) {
 215     // new context class fully subsumes previous one
 216     deps->at_put(ctxk_i, ctxk2);
 217     return true;
 218   } else {
 219     return false;
 220   }
 221 }
 222 
 223 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 224   assert(dep_args(dept) == 1, "sanity");
 225   log_dependency(dept, x);
 226   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 227 
 228   // see if the same (or a similar) dep is already recorded
 229   if (note_dep_seen(dept, x)) {
 230     assert(deps->find(x) >= 0, "sanity");
 231   } else {
 232     deps->append(x);
 233   }
 234 }
 235 
 236 void Dependencies::assert_common_2(DepType dept,
 237                                    ciBaseObject* x0, ciBaseObject* x1) {
 238   assert(dep_args(dept) == 2, "sanity");
 239   log_dependency(dept, x0, x1);
 240   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 241 
 242   // see if the same (or a similar) dep is already recorded
 243   bool has_ctxk = has_explicit_context_arg(dept);
 244   if (has_ctxk) {
 245     assert(dep_context_arg(dept) == 0, "sanity");
 246     if (note_dep_seen(dept, x1)) {
 247       // look in this bucket for redundant assertions
 248       const int stride = 2;
 249       for (int i = deps->length(); (i -= stride) >= 0; ) {
 250         ciBaseObject* y1 = deps->at(i+1);
 251         if (x1 == y1) {  // same subject; check the context
 252           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 253             return;
 254           }
 255         }
 256       }
 257     }
 258   } else {
 259     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 260     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 261     if (dep_seen_x0 && dep_seen_x1) {
 262       // look in this bucket for redundant assertions
 263       const int stride = 2;
 264       for (int i = deps->length(); (i -= stride) >= 0; ) {
 265         ciBaseObject* y0 = deps->at(i+0);
 266         ciBaseObject* y1 = deps->at(i+1);
 267         if (x0 == y0 && x1 == y1) {
 268           return;
 269         }
 270       }
 271     }
 272   }
 273 
 274   // append the assertion in the correct bucket:
 275   deps->append(x0);
 276   deps->append(x1);
 277 }
 278 
 279 void Dependencies::assert_common_4(DepType dept,
 280                                    ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3) {
 281   assert(has_explicit_context_arg(dept), "sanity");
 282   assert(dep_context_arg(dept) == 0, "sanity");
 283   assert(dep_args(dept) == 4, "sanity");
 284   log_dependency(dept, ctxk, x1, x2, x3);
 285   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 286 
 287   // see if the same (or a similar) dep is already recorded
 288   bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 289   bool dep_seen_x2 = note_dep_seen(dept, x2); // records x2 for future queries
 290   bool dep_seen_x3 = note_dep_seen(dept, x3); // records x3 for future queries
 291   if (dep_seen_x1 && dep_seen_x2 && dep_seen_x3) {
 292     // look in this bucket for redundant assertions
 293     const int stride = 4;
 294     for (int i = deps->length(); (i -= stride) >= 0; ) {
 295       ciBaseObject* y1 = deps->at(i+1);
 296       ciBaseObject* y2 = deps->at(i+2);
 297       ciBaseObject* y3 = deps->at(i+3);
 298       if (x1 == y1 && x2 == y2 && x3 == y3) {  // same subjects; check the context
 299         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 300           return;
 301         }
 302       }
 303     }
 304   }
 305   // append the assertion in the correct bucket:
 306   deps->append(ctxk);
 307   deps->append(x1);
 308   deps->append(x2);
 309   deps->append(x3);
 310 }
 311 
 312 #if INCLUDE_JVMCI
 313 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 314                                     int ctxk_i, DepValue ctxk2_dv) {
 315   Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
 316   Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder);
 317   if (ctxk2->is_subtype_of(ctxk1)) {
 318     return true;  // success, and no need to change
 319   } else if (ctxk1->is_subtype_of(ctxk2)) {
 320     // new context class fully subsumes previous one
 321     deps->at_put(ctxk_i, ctxk2_dv);
 322     return true;
 323   } else {
 324     return false;
 325   }
 326 }
 327 
 328 void Dependencies::assert_common_1(DepType dept, DepValue x) {
 329   assert(dep_args(dept) == 1, "sanity");
 330   //log_dependency(dept, x);
 331   GrowableArray<DepValue>* deps = _dep_values[dept];
 332 
 333   // see if the same (or a similar) dep is already recorded
 334   if (note_dep_seen(dept, x)) {
 335     assert(deps->find(x) >= 0, "sanity");
 336   } else {
 337     deps->append(x);
 338   }
 339 }
 340 
 341 void Dependencies::assert_common_2(DepType dept,
 342                                    DepValue x0, DepValue x1) {
 343   assert(dep_args(dept) == 2, "sanity");
 344   //log_dependency(dept, x0, x1);
 345   GrowableArray<DepValue>* deps = _dep_values[dept];
 346 
 347   // see if the same (or a similar) dep is already recorded
 348   bool has_ctxk = has_explicit_context_arg(dept);
 349   if (has_ctxk) {
 350     assert(dep_context_arg(dept) == 0, "sanity");
 351     if (note_dep_seen(dept, x1)) {
 352       // look in this bucket for redundant assertions
 353       const int stride = 2;
 354       for (int i = deps->length(); (i -= stride) >= 0; ) {
 355         DepValue y1 = deps->at(i+1);
 356         if (x1 == y1) {  // same subject; check the context
 357           if (maybe_merge_ctxk(deps, i+0, x0)) {
 358             return;
 359           }
 360         }
 361       }
 362     }
 363   } else {
 364     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 365     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 366     if (dep_seen_x0 && dep_seen_x1) {
 367       // look in this bucket for redundant assertions
 368       const int stride = 2;
 369       for (int i = deps->length(); (i -= stride) >= 0; ) {
 370         DepValue y0 = deps->at(i+0);
 371         DepValue y1 = deps->at(i+1);
 372         if (x0 == y0 && x1 == y1) {
 373           return;
 374         }
 375       }
 376     }
 377   }
 378 
 379   // append the assertion in the correct bucket:
 380   deps->append(x0);
 381   deps->append(x1);
 382 }
 383 #endif // INCLUDE_JVMCI
 384 
 385 /// Support for encoding dependencies into an nmethod:
 386 
 387 void Dependencies::copy_to(nmethod* nm) {
 388   address beg = nm->dependencies_begin();
 389   address end = nm->dependencies_end();
 390   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 391   (void)memcpy(beg, content_bytes(), size_in_bytes());
 392   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 393 }
 394 
 395 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 396   for (int i = 0; i < narg; i++) {
 397     int diff = p1[i]->ident() - p2[i]->ident();
 398     if (diff != 0)  return diff;
 399   }
 400   return 0;
 401 }
 402 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 403 { return sort_dep(p1, p2, 1); }
 404 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 405 { return sort_dep(p1, p2, 2); }
 406 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 407 { return sort_dep(p1, p2, 3); }
 408 static int sort_dep_arg_4(ciBaseObject** p1, ciBaseObject** p2)
 409 { return sort_dep(p1, p2, 4); }
 410 
 411 #if INCLUDE_JVMCI
 412 // metadata deps are sorted before object deps
 413 static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
 414   for (int i = 0; i < narg; i++) {
 415     int diff = p1[i].sort_key() - p2[i].sort_key();
 416     if (diff != 0)  return diff;
 417   }
 418   return 0;
 419 }
 420 static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 421 { return sort_dep_value(p1, p2, 1); }
 422 static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 423 { return sort_dep_value(p1, p2, 2); }
 424 static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 425 { return sort_dep_value(p1, p2, 3); }
 426 #endif // INCLUDE_JVMCI
 427 
 428 void Dependencies::sort_all_deps() {
 429 #if INCLUDE_JVMCI
 430   if (_using_dep_values) {
 431     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 432       DepType dept = (DepType)deptv;
 433       GrowableArray<DepValue>* deps = _dep_values[dept];
 434       if (deps->length() <= 1)  continue;
 435       switch (dep_args(dept)) {
 436       case 1: deps->sort(sort_dep_value_arg_1, 1); break;
 437       case 2: deps->sort(sort_dep_value_arg_2, 2); break;
 438       case 3: deps->sort(sort_dep_value_arg_3, 3); break;
 439       default: ShouldNotReachHere(); break;
 440       }
 441     }
 442     return;
 443   }
 444 #endif // INCLUDE_JVMCI
 445   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 446     DepType dept = (DepType)deptv;
 447     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 448     if (deps->length() <= 1)  continue;
 449     switch (dep_args(dept)) {
 450     case 1: deps->sort(sort_dep_arg_1, 1); break;
 451     case 2: deps->sort(sort_dep_arg_2, 2); break;
 452     case 3: deps->sort(sort_dep_arg_3, 3); break;
 453     case 4: deps->sort(sort_dep_arg_4, 4); break;
 454     default: ShouldNotReachHere(); break;
 455     }
 456   }
 457 }
 458 
 459 size_t Dependencies::estimate_size_in_bytes() {
 460   size_t est_size = 100;
 461 #if INCLUDE_JVMCI
 462   if (_using_dep_values) {
 463     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 464       DepType dept = (DepType)deptv;
 465       GrowableArray<DepValue>* deps = _dep_values[dept];
 466       est_size += deps->length() * 2;  // tags and argument(s)
 467     }
 468     return est_size;
 469   }
 470 #endif // INCLUDE_JVMCI
 471   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 472     DepType dept = (DepType)deptv;
 473     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 474     est_size += deps->length()*2;  // tags and argument(s)
 475   }
 476   return est_size;
 477 }
 478 
 479 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 480   switch (dept) {
 481   case unique_concrete_method_2:
 482   case unique_concrete_method_4:
 483     return x->as_metadata()->as_method()->holder();
 484   default:
 485     return nullptr;  // let nullptr be nullptr
 486   }
 487 }
 488 
 489 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 490   assert(must_be_in_vm(), "raw oops here");
 491   switch (dept) {
 492   case unique_concrete_method_2:
 493   case unique_concrete_method_4:
 494     assert(x->is_method(), "sanity");
 495     return ((Method*)x)->method_holder();
 496   default:
 497     return nullptr;  // let nullptr be nullptr
 498   }
 499 }
 500 
 501 void Dependencies::encode_content_bytes() {
 502   sort_all_deps();
 503 
 504   // cast is safe, no deps can overflow INT_MAX
 505   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 506 
 507 #if INCLUDE_JVMCI
 508   if (_using_dep_values) {
 509     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 510       DepType dept = (DepType)deptv;
 511       GrowableArray<DepValue>* deps = _dep_values[dept];
 512       if (deps->length() == 0)  continue;
 513       int stride = dep_args(dept);
 514       int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 515       assert(stride > 0, "sanity");
 516       for (int i = 0; i < deps->length(); i += stride) {
 517         jbyte code_byte = (jbyte)dept;
 518         int skipj = -1;
 519         if (ctxkj >= 0 && ctxkj+1 < stride) {
 520           Klass*  ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
 521           DepValue x = deps->at(i+ctxkj+1);  // following argument
 522           if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) {
 523             skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 524             code_byte |= default_context_type_bit;
 525           }
 526         }
 527         bytes.write_byte(code_byte);
 528         for (int j = 0; j < stride; j++) {
 529           if (j == skipj)  continue;
 530           DepValue v = deps->at(i+j);
 531           int idx = v.index();
 532           bytes.write_int(idx);
 533         }
 534       }
 535     }
 536   } else {
 537 #endif // INCLUDE_JVMCI
 538   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 539     DepType dept = (DepType)deptv;
 540     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 541     if (deps->length() == 0)  continue;
 542     int stride = dep_args(dept);
 543     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 544     assert(stride > 0, "sanity");
 545     for (int i = 0; i < deps->length(); i += stride) {
 546       jbyte code_byte = (jbyte)dept;
 547       int skipj = -1;
 548       if (ctxkj >= 0 && ctxkj+1 < stride) {
 549         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 550         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 551         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 552           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 553           code_byte |= default_context_type_bit;
 554         }
 555       }
 556       bytes.write_byte(code_byte);
 557       for (int j = 0; j < stride; j++) {
 558         if (j == skipj)  continue;
 559         ciBaseObject* v = deps->at(i+j);
 560         int idx;
 561         if (v->is_object()) {
 562           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
 563         } else {
 564           ciMetadata* meta = v->as_metadata();
 565           idx = _oop_recorder->find_index(meta->constant_encoding());
 566         }
 567         bytes.write_int(idx);
 568       }
 569     }
 570   }
 571 #if INCLUDE_JVMCI
 572   }
 573 #endif
 574 
 575   // write a sentinel byte to mark the end
 576   bytes.write_byte(end_marker);
 577 
 578   // round it out to a word boundary
 579   while (bytes.position() % sizeof(HeapWord) != 0) {
 580     bytes.write_byte(end_marker);
 581   }
 582 
 583   // check whether the dept byte encoding really works
 584   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 585 
 586   _content_bytes = bytes.buffer();
 587   _size_in_bytes = bytes.position();
 588 }
 589 
 590 
 591 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 592   "end_marker",
 593   "evol_method",
 594   "leaf_type",
 595   "abstract_with_unique_concrete_subtype",
 596   "unique_concrete_method_2",
 597   "unique_concrete_method_4",
 598   "unique_implementor",
 599   "no_finalizable_subclasses",
 600   "call_site_target_value"
 601 };
 602 
 603 int Dependencies::_dep_args[TYPE_LIMIT] = {
 604   -1,// end_marker
 605   1, // evol_method m
 606   1, // leaf_type ctxk
 607   2, // abstract_with_unique_concrete_subtype ctxk, k
 608   2, // unique_concrete_method_2 ctxk, m
 609   4, // unique_concrete_method_4 ctxk, m, resolved_klass, resolved_method
 610   2, // unique_implementor ctxk, implementor
 611   1, // no_finalizable_subclasses ctxk
 612   2  // call_site_target_value call_site, method_handle
 613 };
 614 
 615 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 616   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 617   return _dep_name[dept];
 618 }
 619 
 620 int Dependencies::dep_args(Dependencies::DepType dept) {
 621   if (!dept_in_mask(dept, all_types))  return -1;
 622   return _dep_args[dept];
 623 }
 624 
 625 void Dependencies::check_valid_dependency_type(DepType dept) {
 626   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept);
 627 }
 628 
 629 Dependencies::DepType Dependencies::validate_dependencies(CompileTask* task, char** failure_detail) {
 630   int klass_violations = 0;
 631   DepType result = end_marker;
 632   for (Dependencies::DepStream deps(this); deps.next(); ) {
 633     Klass* witness = deps.check_dependency();
 634     if (witness != nullptr) {
 635       if (klass_violations == 0) {
 636         result = deps.type();
 637         if (failure_detail != nullptr && klass_violations == 0) {
 638           // Use a fixed size buffer to prevent the string stream from
 639           // resizing in the context of an inner resource mark.
 640           char* buffer = NEW_RESOURCE_ARRAY(char, O_BUFLEN);
 641           stringStream st(buffer, O_BUFLEN);
 642           deps.print_dependency(&st, witness, true);
 643           *failure_detail = st.as_string();
 644         }
 645       }
 646       klass_violations++;
 647       if (xtty == nullptr) {
 648         // If we're not logging then a single violation is sufficient,
 649         // otherwise we want to log all the dependences which were
 650         // violated.
 651         break;
 652       }
 653     }
 654   }
 655 
 656   return result;
 657 }
 658 
 659 // for the sake of the compiler log, print out current dependencies:
 660 void Dependencies::log_all_dependencies() {
 661   if (log() == nullptr)  return;
 662   ResourceMark rm;
 663   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 664     DepType dept = (DepType)deptv;
 665     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 666     int deplen = deps->length();
 667     if (deplen == 0) {
 668       continue;
 669     }
 670     int stride = dep_args(dept);
 671     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
 672     for (int i = 0; i < deps->length(); i += stride) {
 673       for (int j = 0; j < stride; j++) {
 674         // flush out the identities before printing
 675         ciargs->push(deps->at(i+j));
 676       }
 677       write_dependency_to(log(), dept, ciargs);
 678       ciargs->clear();
 679     }
 680     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
 681   }
 682 }
 683 
 684 void Dependencies::write_dependency_to(CompileLog* log,
 685                                        DepType dept,
 686                                        GrowableArray<DepArgument>* args,
 687                                        Klass* witness) {
 688   if (log == nullptr) {
 689     return;
 690   }
 691   ResourceMark rm;
 692   ciEnv* env = ciEnv::current();
 693   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
 694   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
 695     DepArgument arg = *it;
 696     if (arg.is_oop()) {
 697       ciargs->push(env->get_object(arg.oop_value()));
 698     } else {
 699       ciargs->push(env->get_metadata(arg.metadata_value()));
 700     }
 701   }
 702   int argslen = ciargs->length();
 703   Dependencies::write_dependency_to(log, dept, ciargs, witness);
 704   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
 705 }
 706 
 707 void Dependencies::write_dependency_to(CompileLog* log,
 708                                        DepType dept,
 709                                        GrowableArray<ciBaseObject*>* args,
 710                                        Klass* witness) {
 711   if (log == nullptr) {
 712     return;
 713   }
 714   ResourceMark rm;
 715   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
 716   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
 717     ciBaseObject* obj = *it;
 718     if (obj->is_object()) {
 719       argids->push(log->identify(obj->as_object()));
 720     } else {
 721       argids->push(log->identify(obj->as_metadata()));
 722     }
 723   }
 724   if (witness != nullptr) {
 725     log->begin_elem("dependency_failed");
 726   } else {
 727     log->begin_elem("dependency");
 728   }
 729   log->print(" type='%s'", dep_name(dept));
 730   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 731   if (ctxkj >= 0 && ctxkj < argids->length()) {
 732     log->print(" ctxk='%d'", argids->at(ctxkj));
 733   }
 734   // write remaining arguments, if any.
 735   for (int j = 0; j < argids->length(); j++) {
 736     if (j == ctxkj)  continue;  // already logged
 737     if (j == 1) {
 738       log->print(  " x='%d'",    argids->at(j));
 739     } else {
 740       log->print(" x%d='%d'", j, argids->at(j));
 741     }
 742   }
 743   if (witness != nullptr) {
 744     log->object("witness", witness);
 745     log->stamp();
 746   }
 747   log->end_elem();
 748 }
 749 
 750 void Dependencies::write_dependency_to(xmlStream* xtty,
 751                                        DepType dept,
 752                                        GrowableArray<DepArgument>* args,
 753                                        Klass* witness) {
 754   if (xtty == nullptr) {
 755     return;
 756   }
 757   Thread* thread = Thread::current();
 758   HandleMark rm(thread);
 759   ttyLocker ttyl;
 760   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 761   if (witness != nullptr) {
 762     xtty->begin_elem("dependency_failed");
 763   } else {
 764     xtty->begin_elem("dependency");
 765   }
 766   xtty->print(" type='%s'", dep_name(dept));
 767   if (ctxkj >= 0) {
 768     xtty->object("ctxk", args->at(ctxkj).metadata_value());
 769   }
 770   // write remaining arguments, if any.
 771   for (int j = 0; j < args->length(); j++) {
 772     if (j == ctxkj)  continue;  // already logged
 773     DepArgument arg = args->at(j);
 774     if (j == 1) {
 775       if (arg.is_oop()) {
 776         xtty->object("x", Handle(thread, arg.oop_value()));
 777       } else {
 778         xtty->object("x", arg.metadata_value());
 779       }
 780     } else {
 781       char xn[12];
 782       os::snprintf_checked(xn, sizeof(xn), "x%d", j);
 783       if (arg.is_oop()) {
 784         xtty->object(xn, Handle(thread, arg.oop_value()));
 785       } else {
 786         xtty->object(xn, arg.metadata_value());
 787       }
 788     }
 789   }
 790   if (witness != nullptr) {
 791     xtty->object("witness", witness);
 792     xtty->stamp();
 793   }
 794   xtty->end_elem();
 795 }
 796 
 797 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
 798                                     Klass* witness, outputStream* st) {
 799   ResourceMark rm;
 800   ttyLocker ttyl;   // keep the following output all in one block
 801   st->print_cr("%s of type %s",
 802                 (witness == nullptr)? "Dependency": "Failed dependency",
 803                 dep_name(dept));
 804   // print arguments
 805   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 806   for (int j = 0; j < args->length(); j++) {
 807     DepArgument arg = args->at(j);
 808     bool put_star = false;
 809     if (arg.is_null())  continue;
 810     const char* what;
 811     if (j == ctxkj) {
 812       assert(arg.is_metadata(), "must be");
 813       what = "context";
 814       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 815     } else if (arg.is_method()) {
 816       what = "method ";
 817       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), nullptr);
 818     } else if (arg.is_klass()) {
 819       what = "class  ";
 820     } else {
 821       what = "object ";
 822     }
 823     st->print("  %s = %s", what, (put_star? "*": ""));
 824     if (arg.is_klass()) {
 825       st->print("%s", ((Klass*)arg.metadata_value())->external_name());
 826     } else if (arg.is_method()) {
 827       ((Method*)arg.metadata_value())->print_value_on(st);
 828     } else if (arg.is_oop()) {
 829       arg.oop_value()->print_value_on(st);
 830     } else {
 831       ShouldNotReachHere(); // Provide impl for this type.
 832     }
 833 
 834     st->cr();
 835   }
 836   if (witness != nullptr) {
 837     bool put_star = !Dependencies::is_concrete_klass(witness);
 838     st->print("  witness = %s%s",
 839               (put_star ? "*": ""),
 840               witness->external_name());
 841     if (witness->is_instance_klass()) {
 842       st->print(" (%s)", InstanceKlass::cast(witness)->init_state_name());
 843     }
 844     st->cr();
 845   }
 846 }
 847 
 848 void Dependencies::DepStream::log_dependency(Klass* witness) {
 849   if (_deps == nullptr && xtty == nullptr)  return;  // fast cutout for runtime
 850   ResourceMark rm;
 851   const int nargs = argument_count();
 852   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 853   for (int j = 0; j < nargs; j++) {
 854     if (is_oop_argument(j)) {
 855       args->push(argument_oop(j));
 856     } else {
 857       args->push(argument(j));
 858     }
 859   }
 860   int argslen = args->length();
 861   if (_deps != nullptr && _deps->log() != nullptr) {
 862     if (ciEnv::current() != nullptr) {
 863       Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
 864     } else {
 865       // Treat the CompileLog as an xmlstream instead
 866       Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness);
 867     }
 868   } else {
 869     Dependencies::write_dependency_to(xtty, type(), args, witness);
 870   }
 871   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 872 }
 873 
 874 void Dependencies::DepStream::print_dependency(outputStream* st, Klass* witness, bool verbose) {
 875   ResourceMark rm;
 876   int nargs = argument_count();
 877   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 878   for (int j = 0; j < nargs; j++) {
 879     if (is_oop_argument(j)) {
 880       args->push(argument_oop(j));
 881     } else {
 882       args->push(argument(j));
 883     }
 884   }
 885   int argslen = args->length();
 886   Dependencies::print_dependency(type(), args, witness, st);
 887   if (verbose) {
 888     if (_code != nullptr) {
 889       st->print("  code: ");
 890       _code->print_value_on(st);
 891       st->cr();
 892     }
 893   }
 894   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 895 }
 896 
 897 
 898 /// Dependency stream support (decodes dependencies from an nmethod):
 899 
 900 #ifdef ASSERT
 901 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 902   assert(must_be_in_vm(), "raw oops here");
 903   _byte_limit = byte_limit;
 904   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
 905   assert((_code!=nullptr) + (_deps!=nullptr) == 1, "one or t'other");
 906 }
 907 #endif //ASSERT
 908 
 909 bool Dependencies::DepStream::next() {
 910   assert(_type != end_marker, "already at end");
 911   if (_bytes.position() == 0 && _code != nullptr
 912       && _code->dependencies_size() == 0) {
 913     // Method has no dependencies at all.
 914     return false;
 915   }
 916   int code_byte = (_bytes.read_byte() & 0xFF);
 917   if (code_byte == end_marker) {
 918     DEBUG_ONLY(_type = end_marker);
 919     return false;
 920   } else {
 921     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 922     code_byte -= ctxk_bit;
 923     DepType dept = (DepType)code_byte;
 924     _type = dept;
 925     Dependencies::check_valid_dependency_type(dept);
 926     int stride = _dep_args[dept];
 927     assert(stride == dep_args(dept), "sanity");
 928     int skipj = -1;
 929     if (ctxk_bit != 0) {
 930       skipj = 0;  // currently the only context argument is at zero
 931       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 932     }
 933     for (int j = 0; j < stride; j++) {
 934       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 935     }
 936     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 937     return true;
 938   }
 939 }
 940 
 941 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 942   Metadata* o = nullptr;
 943   if (_code != nullptr) {
 944     o = _code->metadata_at(i);
 945   } else {
 946     o = _deps->oop_recorder()->metadata_at(i);
 947   }
 948   return o;
 949 }
 950 
 951 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 952   return (_code != nullptr)
 953          ? _code->oop_at(i)
 954     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 955 }
 956 
 957 Metadata* Dependencies::DepStream::argument(int i) {
 958   Metadata* result = recorded_metadata_at(argument_index(i));
 959 
 960   if (result == nullptr) { // Explicit context argument can be compressed
 961     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 962     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 963       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 964     }
 965   }
 966 
 967   assert(result == nullptr || result->is_klass() || result->is_method(), "must be");
 968   return result;
 969 }
 970 
 971 /**
 972  * Returns a unique identifier for each dependency argument.
 973  */
 974 uintptr_t Dependencies::DepStream::get_identifier(int i) {
 975   if (is_oop_argument(i)) {
 976     return (uintptr_t)(oopDesc*)argument_oop(i);
 977   } else {
 978     return (uintptr_t)argument(i);
 979   }
 980 }
 981 
 982 oop Dependencies::DepStream::argument_oop(int i) {
 983   oop result = recorded_oop_at(argument_index(i));
 984   assert(oopDesc::is_oop_or_null(result), "must be");
 985   return result;
 986 }
 987 
 988 InstanceKlass* Dependencies::DepStream::context_type() {
 989   assert(must_be_in_vm(), "raw oops here");
 990 
 991   // Most dependencies have an explicit context type argument.
 992   {
 993     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 994     if (ctxkj >= 0) {
 995       Metadata* k = argument(ctxkj);
 996       assert(k != nullptr && k->is_klass(), "type check");
 997       return InstanceKlass::cast((Klass*)k);
 998     }
 999   }
1000 
1001   // Some dependencies are using the klass of the first object
1002   // argument as implicit context type.
1003   {
1004     int ctxkj = dep_implicit_context_arg(type());
1005     if (ctxkj >= 0) {
1006       Klass* k = argument_oop(ctxkj)->klass();
1007       assert(k != nullptr, "type check");
1008       return InstanceKlass::cast(k);
1009     }
1010   }
1011 
1012   // And some dependencies don't have a context type at all,
1013   // e.g. evol_method.
1014   return nullptr;
1015 }
1016 
1017 // ----------------- DependencySignature --------------------------------------
1018 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
1019   if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
1020     return false;
1021   }
1022 
1023   for (int i = 0; i < s1.args_count(); i++) {
1024     if (s1.arg(i) != s2.arg(i)) {
1025       return false;
1026     }
1027   }
1028   return true;
1029 }
1030 
1031 /// Checking dependencies
1032 
1033 // This hierarchy walker inspects subtypes of a given type, trying to find a "bad" class which breaks a dependency.
1034 // Such a class is called a "witness" to the broken dependency.
1035 // While searching around, we ignore "participants", which are already known to the dependency.
1036 class AbstractClassHierarchyWalker {
1037  public:
1038   enum { PARTICIPANT_LIMIT = 3 };
1039 
1040  private:
1041   // if non-zero, tells how many witnesses to convert to participants
1042   uint _record_witnesses;
1043 
1044   // special classes which are not allowed to be witnesses:
1045   Klass* _participants[PARTICIPANT_LIMIT+1];
1046   uint   _num_participants;
1047 
1048 #ifdef ASSERT
1049   uint _nof_requests; // one-shot walker
1050 #endif // ASSERT
1051 
1052   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1053   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1054   static PerfCounter* _perf_find_witness_in_calls_count;
1055 
1056  protected:
1057   virtual Klass* find_witness_in(KlassDepChange& changes) = 0;
1058   virtual Klass* find_witness_anywhere(InstanceKlass* context_type) = 0;
1059 
1060   AbstractClassHierarchyWalker(Klass* participant) : _record_witnesses(0), _num_participants(0)
1061 #ifdef ASSERT
1062   , _nof_requests(0)
1063 #endif // ASSERT
1064   {
1065     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1066       _participants[i] = nullptr;
1067     }
1068     if (participant != nullptr) {
1069       add_participant(participant);
1070     }
1071   }
1072 
1073   bool is_participant(Klass* k) {
1074     for (uint i = 0; i < _num_participants; i++) {
1075       if (_participants[i] == k) {
1076         return true;
1077       }
1078     }
1079     return false;
1080   }
1081 
1082   bool record_witness(Klass* witness) {
1083     if (_record_witnesses > 0) {
1084       --_record_witnesses;
1085       add_participant(witness);
1086       return false; // not a witness
1087     } else {
1088       return true; // is a witness
1089     }
1090   }
1091 
1092   class CountingClassHierarchyIterator : public ClassHierarchyIterator {
1093    private:
1094     jlong _nof_steps;
1095    public:
1096     CountingClassHierarchyIterator(InstanceKlass* root) : ClassHierarchyIterator(root), _nof_steps(0) {}
1097 
1098     void next() {
1099       _nof_steps++;
1100       ClassHierarchyIterator::next();
1101     }
1102 
1103     ~CountingClassHierarchyIterator() {
1104       if (UsePerfData) {
1105         _perf_find_witness_anywhere_steps_count->inc(_nof_steps);
1106       }
1107     }
1108   };
1109 
1110  public:
1111   uint num_participants() { return _num_participants; }
1112   Klass* participant(uint n) {
1113     assert(n <= _num_participants, "oob");
1114     if (n < _num_participants) {
1115       return _participants[n];
1116     } else {
1117       return nullptr;
1118     }
1119   }
1120 
1121   void add_participant(Klass* participant) {
1122     assert(!is_participant(participant), "sanity");
1123     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
1124     uint np = _num_participants++;
1125     _participants[np] = participant;
1126   }
1127 
1128   void record_witnesses(uint add) {
1129     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
1130     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
1131     _record_witnesses = add;
1132   }
1133 
1134   Klass* find_witness(InstanceKlass* context_type, KlassDepChange* changes = nullptr);
1135 
1136   static void init();
1137   static void print_statistics();
1138 };
1139 
1140 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_calls_count = nullptr;
1141 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_steps_count = nullptr;
1142 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_in_calls_count       = nullptr;
1143 
1144 void AbstractClassHierarchyWalker::init() {
1145   if (UsePerfData) {
1146     EXCEPTION_MARK;
1147     _perf_find_witness_anywhere_calls_count =
1148         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhere", PerfData::U_Events, CHECK);
1149     _perf_find_witness_anywhere_steps_count =
1150         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhereSteps", PerfData::U_Events, CHECK);
1151     _perf_find_witness_in_calls_count =
1152         PerfDataManager::create_counter(SUN_CI, "findWitnessIn", PerfData::U_Events, CHECK);
1153   }
1154 }
1155 
1156 Klass* AbstractClassHierarchyWalker::find_witness(InstanceKlass* context_type, KlassDepChange* changes) {
1157   // Current thread must be in VM (not native mode, as in CI):
1158   assert(must_be_in_vm(), "raw oops here");
1159   // Must not move the class hierarchy during this check:
1160   assert_locked_or_safepoint(Compile_lock);
1161   assert(_nof_requests++ == 0, "repeated requests are not supported");
1162 
1163   assert(changes == nullptr || changes->involves_context(context_type), "irrelevant dependency");
1164 
1165   // (Note: Interfaces do not have subclasses.)
1166   // If it is an interface, search its direct implementors.
1167   // (Their subclasses are additional indirect implementors. See InstanceKlass::add_implementor().)
1168   if (context_type->is_interface()) {
1169     int nof_impls = context_type->nof_implementors();
1170     if (nof_impls == 0) {
1171       return nullptr; // no implementors
1172     } else if (nof_impls == 1) { // unique implementor
1173       assert(context_type != context_type->implementor(), "not unique");
1174       context_type = context_type->implementor();
1175     } else { // nof_impls >= 2
1176       // Avoid this case: *I.m > { A.m, C }; B.m > C
1177       // Here, I.m has 2 concrete implementations, but m appears unique
1178       // as A.m, because the search misses B.m when checking C.
1179       // The inherited method B.m was getting missed by the walker
1180       // when interface 'I' was the starting point.
1181       // %%% Until this is fixed more systematically, bail out.
1182       return context_type;
1183     }
1184   }
1185   assert(!context_type->is_interface(), "no interfaces allowed");
1186 
1187   if (changes != nullptr) {
1188     if (UsePerfData) {
1189       _perf_find_witness_in_calls_count->inc();
1190     }
1191     return find_witness_in(*changes);
1192   } else {
1193     if (UsePerfData) {
1194       _perf_find_witness_anywhere_calls_count->inc();
1195     }
1196     return find_witness_anywhere(context_type);
1197   }
1198 }
1199 
1200 class ConcreteSubtypeFinder : public AbstractClassHierarchyWalker {
1201  private:
1202   bool is_witness(Klass* k);
1203 
1204  protected:
1205   virtual Klass* find_witness_in(KlassDepChange& changes);
1206   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1207 
1208  public:
1209   ConcreteSubtypeFinder(Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {}
1210 };
1211 
1212 bool ConcreteSubtypeFinder::is_witness(Klass* k) {
1213   if (Dependencies::is_concrete_klass(k)) {
1214     return record_witness(k); // concrete subtype
1215   } else {
1216     return false; // not a concrete class
1217   }
1218 }
1219 
1220 Klass* ConcreteSubtypeFinder::find_witness_in(KlassDepChange& changes) {
1221   // When looking for unexpected concrete types, do not look beneath expected ones:
1222   //  * CX > CC > C' is OK, even if C' is new.
1223   //  * CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
1224   Klass* new_type = changes.as_new_klass_change()->new_type();
1225   assert(!is_participant(new_type), "only old classes are participants");
1226   // If the new type is a subtype of a participant, we are done.
1227   for (uint i = 0; i < num_participants(); i++) {
1228     if (changes.involves_context(participant(i))) {
1229       // new guy is protected from this check by previous participant
1230       return nullptr;
1231     }
1232   }
1233   if (is_witness(new_type)) {
1234     return new_type;
1235   }
1236   // No witness found.  The dependency remains unbroken.
1237   return nullptr;
1238 }
1239 
1240 Klass* ConcreteSubtypeFinder::find_witness_anywhere(InstanceKlass* context_type) {
1241   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1242     Klass* sub = iter.klass();
1243     // Do not report participant types.
1244     if (is_participant(sub)) {
1245       // Don't walk beneath a participant since it hides witnesses.
1246       iter.skip_subclasses();
1247     } else if (is_witness(sub)) {
1248       return sub; // found a witness
1249     }
1250   }
1251   // No witness found.  The dependency remains unbroken.
1252   return nullptr;
1253 }
1254 
1255 class ConcreteMethodFinder : public AbstractClassHierarchyWalker {
1256  private:
1257   Symbol* _name;
1258   Symbol* _signature;
1259 
1260   // cache of method lookups
1261   Method* _found_methods[PARTICIPANT_LIMIT+1];
1262 
1263   bool is_witness(Klass* k);
1264 
1265  protected:
1266   virtual Klass* find_witness_in(KlassDepChange& changes);
1267   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1268 
1269  public:
1270   bool witnessed_reabstraction_in_supers(Klass* k);
1271 
1272   ConcreteMethodFinder(Method* m, Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {
1273     assert(m != nullptr && m->is_method(), "sanity");
1274     _name      = m->name();
1275     _signature = m->signature();
1276 
1277     for (int i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1278       _found_methods[i] = nullptr;
1279     }
1280   }
1281 
1282   // Note:  If n==num_participants, returns nullptr.
1283   Method* found_method(uint n) {
1284     assert(n <= num_participants(), "oob");
1285     Method* fm = _found_methods[n];
1286     assert(n == num_participants() || fm != nullptr, "proper usage");
1287     if (fm != nullptr && fm->method_holder() != participant(n)) {
1288       // Default methods from interfaces can be added to classes. In
1289       // that case the holder of the method is not the class but the
1290       // interface where it's defined.
1291       assert(fm->is_default_method(), "sanity");
1292       return nullptr;
1293     }
1294     return fm;
1295   }
1296 
1297   void add_participant(Klass* participant) {
1298     AbstractClassHierarchyWalker::add_participant(participant);
1299     _found_methods[num_participants()] = nullptr;
1300   }
1301 
1302   bool record_witness(Klass* witness, Method* m) {
1303     _found_methods[num_participants()] = m;
1304     return AbstractClassHierarchyWalker::record_witness(witness);
1305   }
1306 
1307  private:
1308   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1309   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1310   static PerfCounter* _perf_find_witness_in_calls_count;
1311 
1312  public:
1313   static void init();
1314   static void print_statistics();
1315 };
1316 
1317 bool ConcreteMethodFinder::is_witness(Klass* k) {
1318   if (is_participant(k)) {
1319     return false; // do not report participant types
1320   }
1321   if (k->is_instance_klass()) {
1322     InstanceKlass* ik = InstanceKlass::cast(k);
1323     // Search class hierarchy first, skipping private implementations
1324     // as they never override any inherited methods
1325     Method* m = ik->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1326     if (Dependencies::is_concrete_method(m, ik)) {
1327       return record_witness(k, m); // concrete method found
1328     } else {
1329       // Check for re-abstraction of method
1330       if (!ik->is_interface() && m != nullptr && m->is_abstract()) {
1331         // Found a matching abstract method 'm' in the class hierarchy.
1332         // This is fine iff 'k' is an abstract class and all concrete subtypes
1333         // of 'k' override 'm' and are participates of the current search.
1334         ConcreteSubtypeFinder wf;
1335         for (uint i = 0; i < num_participants(); i++) {
1336           Klass* p = participant(i);
1337           wf.add_participant(p);
1338         }
1339         Klass* w = wf.find_witness(ik);
1340         if (w != nullptr) {
1341           Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1342           if (!Dependencies::is_concrete_method(wm, w)) {
1343             // Found a concrete subtype 'w' which does not override abstract method 'm'.
1344             // Bail out because 'm' could be called with 'w' as receiver (leading to an
1345             // AbstractMethodError) and thus the method we are looking for is not unique.
1346             return record_witness(k, m);
1347           }
1348         }
1349       }
1350       // Check interface defaults also, if any exist.
1351       Array<Method*>* default_methods = ik->default_methods();
1352       if (default_methods != nullptr) {
1353         Method* dm = ik->find_method(default_methods, _name, _signature);
1354         if (Dependencies::is_concrete_method(dm, nullptr)) {
1355           return record_witness(k, dm); // default method found
1356         }
1357       }
1358       return false; // no concrete method found
1359     }
1360   } else {
1361     return false; // no methods to find in an array type
1362   }
1363 }
1364 
1365 Klass* ConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1366   // When looking for unexpected concrete methods, look beneath expected ones, to see if there are overrides.
1367   //  * CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
1368   Klass* new_type = changes.as_new_klass_change()->new_type();
1369   assert(!is_participant(new_type), "only old classes are participants");
1370   if (is_witness(new_type)) {
1371     return new_type;
1372   } else {
1373     // No witness found, but is_witness() doesn't detect method re-abstraction in case of spot-checking.
1374     if (witnessed_reabstraction_in_supers(new_type)) {
1375       return new_type;
1376     }
1377   }
1378   // No witness found.  The dependency remains unbroken.
1379   return nullptr;
1380 }
1381 
1382 bool ConcreteMethodFinder::witnessed_reabstraction_in_supers(Klass* k) {
1383   if (!k->is_instance_klass()) {
1384     return false; // no methods to find in an array type
1385   } else {
1386     // Looking for a case when an abstract method is inherited into a concrete class.
1387     if (Dependencies::is_concrete_klass(k) && !k->is_interface()) {
1388       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1389       if (m != nullptr) {
1390         return false; // no reabstraction possible: local method found
1391       }
1392       for (InstanceKlass* super = k->java_super(); super != nullptr; super = super->java_super()) {
1393         m = super->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1394         if (m != nullptr) { // inherited method found
1395           if (m->is_abstract() || m->is_overpass()) {
1396             return record_witness(super, m); // abstract method found
1397           }
1398           return false;
1399         }
1400       }
1401       // Miranda.
1402       return true;
1403     }
1404     return false;
1405   }
1406 }
1407 
1408 
1409 Klass* ConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1410   // Walk hierarchy under a context type, looking for unexpected types.
1411   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1412     Klass* sub = iter.klass();
1413     if (is_witness(sub)) {
1414       return sub; // found a witness
1415     }
1416   }
1417   // No witness found.  The dependency remains unbroken.
1418   return nullptr;
1419 }
1420 
1421 // For some method m and some class ctxk (subclass of method holder),
1422 // enumerate all distinct overrides of m in concrete subclasses of ctxk.
1423 // It relies on vtable/itable information to perform method selection on each linked subclass
1424 // and ignores all non yet linked ones (speculatively treat them as "effectively abstract").
1425 class LinkedConcreteMethodFinder : public AbstractClassHierarchyWalker {
1426  private:
1427   InstanceKlass* _resolved_klass;   // resolved class (JVMS-5.4.3.1)
1428   InstanceKlass* _declaring_klass;  // the holder of resolved method (JVMS-5.4.3.3)
1429   int            _vtable_index;     // vtable/itable index of the resolved method
1430   bool           _do_itable_lookup; // choose between itable and vtable lookup logic
1431 
1432   // cache of method lookups
1433   Method* _found_methods[PARTICIPANT_LIMIT+1];
1434 
1435   bool is_witness(Klass* k);
1436   Method* select_method(InstanceKlass* recv_klass);
1437   static int compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, bool& is_itable_index);
1438   static bool is_concrete_klass(InstanceKlass* ik);
1439 
1440   void add_participant(Method* m, Klass* participant) {
1441     uint np = num_participants();
1442     AbstractClassHierarchyWalker::add_participant(participant);
1443     assert(np + 1 == num_participants(), "sanity");
1444     _found_methods[np] = m; // record the method for the participant
1445   }
1446 
1447   bool record_witness(Klass* witness, Method* m) {
1448     for (uint i = 0; i < num_participants(); i++) {
1449       if (found_method(i) == m) {
1450         return false; // already recorded
1451       }
1452     }
1453     // Record not yet seen method.
1454     _found_methods[num_participants()] = m;
1455     return AbstractClassHierarchyWalker::record_witness(witness);
1456   }
1457 
1458   void initialize(Method* participant) {
1459     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1460       _found_methods[i] = nullptr;
1461     }
1462     if (participant != nullptr) {
1463       add_participant(participant, participant->method_holder());
1464     }
1465   }
1466 
1467  protected:
1468   virtual Klass* find_witness_in(KlassDepChange& changes);
1469   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1470 
1471  public:
1472   // In order to perform method selection, the following info is needed:
1473   //  (1) interface or virtual call;
1474   //  (2) vtable/itable index;
1475   //  (3) declaring class (in case of interface call).
1476   //
1477   // It is prepared based on the results of method resolution: resolved class and resolved method (as specified in JVMS-5.4.3.3).
1478   // Optionally, a method which was previously determined as a unique target (uniqm) is added as a participant
1479   // to enable dependency spot-checking and speed up the search.
1480   LinkedConcreteMethodFinder(InstanceKlass* resolved_klass, Method* resolved_method, Method* uniqm = nullptr) : AbstractClassHierarchyWalker(nullptr) {
1481     assert(UseVtableBasedCHA, "required");
1482     assert(resolved_klass->is_linked(), "required");
1483     assert(resolved_method->method_holder()->is_linked(), "required");
1484     assert(!resolved_method->can_be_statically_bound(), "no vtable index available");
1485 
1486     _resolved_klass  = resolved_klass;
1487     _declaring_klass = resolved_method->method_holder();
1488     _vtable_index    = compute_vtable_index(resolved_klass, resolved_method,
1489                                             _do_itable_lookup); // out parameter
1490     assert(_vtable_index >= 0, "invalid vtable index");
1491 
1492     initialize(uniqm);
1493   }
1494 
1495   // Note:  If n==num_participants, returns nullptr.
1496   Method* found_method(uint n) {
1497     assert(n <= num_participants(), "oob");
1498     assert(participant(n) != nullptr || n == num_participants(), "proper usage");
1499     return _found_methods[n];
1500   }
1501 };
1502 
1503 Klass* LinkedConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1504   Klass* type = changes.type();
1505 
1506   assert(!is_participant(type), "only old classes are participants");
1507 
1508   if (is_witness(type)) {
1509     return type;
1510   }
1511   return nullptr; // No witness found.  The dependency remains unbroken.
1512 }
1513 
1514 Klass* LinkedConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1515   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1516     Klass* sub = iter.klass();
1517     if (is_witness(sub)) {
1518       return sub;
1519     }
1520     if (sub->is_instance_klass() && !InstanceKlass::cast(sub)->is_linked()) {
1521       iter.skip_subclasses(); // ignore not yet linked classes
1522     }
1523   }
1524   return nullptr; // No witness found. The dependency remains unbroken.
1525 }
1526 
1527 bool LinkedConcreteMethodFinder::is_witness(Klass* k) {
1528   if (is_participant(k)) {
1529     return false; // do not report participant types
1530   } else if (k->is_instance_klass()) {
1531     InstanceKlass* ik = InstanceKlass::cast(k);
1532     if (is_concrete_klass(ik)) {
1533       Method* m = select_method(ik);
1534       return record_witness(ik, m);
1535     } else {
1536       return false; // ignore non-concrete holder class
1537     }
1538   } else {
1539     return false; // no methods to find in an array type
1540   }
1541 }
1542 
1543 Method* LinkedConcreteMethodFinder::select_method(InstanceKlass* recv_klass) {
1544   Method* selected_method = nullptr;
1545   if (_do_itable_lookup) {
1546     assert(_declaring_klass->is_interface(), "sanity");
1547     bool implements_interface; // initialized by method_at_itable_or_null()
1548     selected_method = recv_klass->method_at_itable_or_null(_declaring_klass, _vtable_index,
1549                                                            implements_interface); // out parameter
1550     assert(implements_interface, "not implemented");
1551   } else {
1552     selected_method = recv_klass->method_at_vtable(_vtable_index);
1553   }
1554   return selected_method; // nullptr when corresponding slot is empty (AbstractMethodError case)
1555 }
1556 
1557 int LinkedConcreteMethodFinder::compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method,
1558                                                      // out parameter
1559                                                      bool& is_itable_index) {
1560   if (resolved_klass->is_interface() && resolved_method->has_itable_index()) {
1561     is_itable_index = true;
1562     return resolved_method->itable_index();
1563   }
1564   // Check for default or miranda method first.
1565   InstanceKlass* declaring_klass = resolved_method->method_holder();
1566   if (!resolved_klass->is_interface() && declaring_klass->is_interface()) {
1567     is_itable_index = false;
1568     return resolved_klass->vtable_index_of_interface_method(resolved_method);
1569   }
1570   // At this point we are sure that resolved_method is virtual and not
1571   // a default or miranda method; therefore, it must have a valid vtable index.
1572   assert(resolved_method->has_vtable_index(), "");
1573   is_itable_index = false;
1574   return resolved_method->vtable_index();
1575 }
1576 
1577 bool LinkedConcreteMethodFinder::is_concrete_klass(InstanceKlass* ik) {
1578   if (!Dependencies::is_concrete_klass(ik)) {
1579     return false; // not concrete
1580   }
1581   if (ik->is_interface()) {
1582     return false; // interfaces aren't concrete
1583   }
1584   if (!ik->is_linked()) {
1585     return false; // not yet linked classes don't have instances
1586   }
1587   return true;
1588 }
1589 
1590 #ifdef ASSERT
1591 // Assert that m is inherited into ctxk, without intervening overrides.
1592 // (May return true even if this is not true, in corner cases where we punt.)
1593 bool Dependencies::verify_method_context(InstanceKlass* ctxk, Method* m) {
1594   if (m->is_private()) {
1595     return false; // Quick lose.  Should not happen.
1596   }
1597   if (m->method_holder() == ctxk) {
1598     return true;  // Quick win.
1599   }
1600   if (!(m->is_public() || m->is_protected())) {
1601     // The override story is complex when packages get involved.
1602     return true;  // Must punt the assertion to true.
1603   }
1604   Method* lm = ctxk->lookup_method(m->name(), m->signature());
1605   if (lm == nullptr) {
1606     // It might be an interface method
1607     lm = ctxk->lookup_method_in_ordered_interfaces(m->name(), m->signature());
1608   }
1609   if (lm == m) {
1610     // Method m is inherited into ctxk.
1611     return true;
1612   }
1613   if (lm != nullptr) {
1614     if (!(lm->is_public() || lm->is_protected())) {
1615       // Method is [package-]private, so the override story is complex.
1616       return true;  // Must punt the assertion to true.
1617     }
1618     if (lm->is_static()) {
1619       // Static methods don't override non-static so punt
1620       return true;
1621     }
1622     if (!Dependencies::is_concrete_method(lm, ctxk) &&
1623         !Dependencies::is_concrete_method(m, ctxk)) {
1624       // They are both non-concrete
1625       if (lm->method_holder()->is_subtype_of(m->method_holder())) {
1626         // Method m is overridden by lm, but both are non-concrete.
1627         return true;
1628       }
1629       if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() &&
1630           ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) {
1631         // Interface method defined in multiple super interfaces
1632         return true;
1633       }
1634     }
1635   }
1636   ResourceMark rm;
1637   tty->print_cr("Dependency method not found in the associated context:");
1638   tty->print_cr("  context = %s", ctxk->external_name());
1639   tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
1640   if (lm != nullptr) {
1641     tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
1642   }
1643   return false;
1644 }
1645 #endif // ASSERT
1646 
1647 bool Dependencies::is_concrete_klass(Klass* k) {
1648   if (k->is_abstract())  return false;
1649   // %%% We could treat classes which are concrete but
1650   // have not yet been instantiated as virtually abstract.
1651   // This would require a deoptimization barrier on first instantiation.
1652   //if (k->is_not_instantiated())  return false;
1653   return true;
1654 }
1655 
1656 bool Dependencies::is_concrete_method(Method* m, Klass* k) {
1657   // nullptr is not a concrete method.
1658   if (m == nullptr) {
1659     return false;
1660   }
1661   // Statics are irrelevant to virtual call sites.
1662   if (m->is_static()) {
1663     return false;
1664   }
1665   // Abstract methods are not concrete.
1666   if (m->is_abstract()) {
1667     return false;
1668   }
1669   // Overpass (error) methods are not concrete if k is abstract.
1670   if (m->is_overpass() && k != nullptr) {
1671      return !k->is_abstract();
1672   }
1673   // Note "true" is conservative answer: overpass clause is false if k == nullptr,
1674   // implies return true if answer depends on overpass clause.
1675   return true;
1676  }
1677 
1678 Klass* Dependencies::find_finalizable_subclass(InstanceKlass* ik) {
1679   for (ClassHierarchyIterator iter(ik); !iter.done(); iter.next()) {
1680     Klass* sub = iter.klass();
1681     if (sub->has_finalizer() && !sub->is_interface()) {
1682       return sub;
1683     }
1684   }
1685   return nullptr; // not found
1686 }
1687 
1688 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1689   if (k->is_abstract())  return false;
1690   // We could also return false if k does not yet appear to be
1691   // instantiated, if the VM version supports this distinction also.
1692   //if (k->is_not_instantiated())  return false;
1693   return true;
1694 }
1695 
1696 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1697   return k->has_finalizable_subclass();
1698 }
1699 
1700 // Any use of the contents (bytecodes) of a method must be
1701 // marked by an "evol_method" dependency, if those contents
1702 // can change.  (Note: A method is always dependent on itself.)
1703 Klass* Dependencies::check_evol_method(Method* m) {
1704   assert(must_be_in_vm(), "raw oops here");
1705   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1706   // Or is there a now a breakpoint?
1707   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1708   if (m->is_old()
1709       || m->number_of_breakpoints() > 0) {
1710     return m->method_holder();
1711   } else {
1712     return nullptr;
1713   }
1714 }
1715 
1716 // This is a strong assertion:  It is that the given type
1717 // has no subtypes whatever.  It is most useful for
1718 // optimizing checks on reflected types or on array types.
1719 // (Checks on types which are derived from real instances
1720 // can be optimized more strongly than this, because we
1721 // know that the checked type comes from a concrete type,
1722 // and therefore we can disregard abstract types.)
1723 Klass* Dependencies::check_leaf_type(InstanceKlass* ctxk) {
1724   assert(must_be_in_vm(), "raw oops here");
1725   assert_locked_or_safepoint(Compile_lock);
1726   Klass* sub = ctxk->subklass();
1727   if (sub != nullptr) {
1728     return sub;
1729   } else if (ctxk->nof_implementors() != 0) {
1730     // if it is an interface, it must be unimplemented
1731     // (if it is not an interface, nof_implementors is always zero)
1732     InstanceKlass* impl = ctxk->implementor();
1733     assert(impl != nullptr, "must be set");
1734     return impl;
1735   } else {
1736     return nullptr;
1737   }
1738 }
1739 
1740 // Test the assertion that conck is the only concrete subtype* of ctxk.
1741 // The type conck itself is allowed to have have further concrete subtypes.
1742 // This allows the compiler to narrow occurrences of ctxk by conck,
1743 // when dealing with the types of actual instances.
1744 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk,
1745                                                                  Klass* conck,
1746                                                                  NewKlassDepChange* changes) {
1747   ConcreteSubtypeFinder wf(conck);
1748   Klass* k = wf.find_witness(ctxk, changes);
1749   return k;
1750 }
1751 
1752 
1753 // Find the unique concrete proper subtype of ctxk, or nullptr if there
1754 // is more than one concrete proper subtype.  If there are no concrete
1755 // proper subtypes, return ctxk itself, whether it is concrete or not.
1756 // The returned subtype is allowed to have have further concrete subtypes.
1757 // That is, return CC1 for CX > CC1 > CC2, but nullptr for CX > { CC1, CC2 }.
1758 Klass* Dependencies::find_unique_concrete_subtype(InstanceKlass* ctxk) {
1759   ConcreteSubtypeFinder wf(ctxk);  // Ignore ctxk when walking.
1760   wf.record_witnesses(1);          // Record one other witness when walking.
1761   Klass* wit = wf.find_witness(ctxk);
1762   if (wit != nullptr)  return nullptr;   // Too many witnesses.
1763   Klass* conck = wf.participant(0);
1764   if (conck == nullptr) {
1765     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1766   } else {
1767 #ifndef PRODUCT
1768     // Make sure the dependency mechanism will pass this discovery:
1769     if (VerifyDependencies) {
1770       // Turn off dependency tracing while actually testing deps.
1771       FlagSetting fs(_verify_in_progress, true);
1772       if (!Dependencies::is_concrete_klass(ctxk)) {
1773         guarantee(nullptr == (void *)
1774                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1775                   "verify dep.");
1776       }
1777     }
1778 #endif //PRODUCT
1779     return conck;
1780   }
1781 }
1782 
1783 // Try to determine whether root method in some context is concrete or not based on the information about the unique method
1784 // in that context. It exploits the fact that concrete root method is always inherited into the context when there's a unique method.
1785 // Hence, unique method holder is always a supertype of the context class when root method is concrete.
1786 // Examples for concrete_root_method
1787 //      C (C.m uniqm)
1788 //      |
1789 //      CX (ctxk) uniqm is inherited into context.
1790 //
1791 //      CX (ctxk) (CX.m uniqm) here uniqm is defined in ctxk.
1792 // Examples for !concrete_root_method
1793 //      CX (ctxk)
1794 //      |
1795 //      C (C.m uniqm) uniqm is in subtype of ctxk.
1796 bool Dependencies::is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk) {
1797   if (uniqm == nullptr) {
1798     return false; // match Dependencies::is_concrete_method() behavior
1799   }
1800   // Theoretically, the "direction" of subtype check matters here.
1801   // On one hand, in case of interface context with a single implementor, uniqm can be in a superclass of the implementor which
1802   // is not related to context class.
1803   // On another hand, uniqm could come from an interface unrelated to the context class, but right now it is not possible:
1804   // it is required that uniqm->method_holder() is the participant (uniqm->method_holder() <: ctxk), hence a default method
1805   // can't be used as unique.
1806   if (ctxk->is_interface()) {
1807     InstanceKlass* implementor = ctxk->implementor();
1808     assert(implementor != ctxk, "single implementor only"); // should have been invalidated earlier
1809     ctxk = implementor;
1810   }
1811   InstanceKlass* holder = uniqm->method_holder();
1812   assert(!holder->is_interface(), "no default methods allowed");
1813   assert(ctxk->is_subclass_of(holder) || holder->is_subclass_of(ctxk), "not related");
1814   return ctxk->is_subclass_of(holder);
1815 }
1816 
1817 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1818 // Otherwise, return a class that contains an interfering method.
1819 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1820                                                   Method* uniqm,
1821                                                   NewKlassDepChange* changes) {
1822   ConcreteMethodFinder wf(uniqm, uniqm->method_holder());
1823   Klass* k = wf.find_witness(ctxk, changes);
1824   if (k != nullptr) {
1825     return k;
1826   }
1827   if (!Dependencies::is_concrete_root_method(uniqm, ctxk) || changes != nullptr) {
1828     Klass* conck = find_witness_AME(ctxk, uniqm, changes);
1829     if (conck != nullptr) {
1830       // Found a concrete subtype 'conck' which does not override abstract root method.
1831       return conck;
1832     }
1833   }
1834   return nullptr;
1835 }
1836 
1837 Klass* Dependencies::check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes) {
1838   assert(ctxk->is_interface(), "sanity");
1839   assert(ctxk->nof_implementors() > 0, "no implementors");
1840   if (ctxk->nof_implementors() == 1) {
1841     assert(ctxk->implementor() == uniqk, "sanity");
1842     return nullptr;
1843   }
1844   return ctxk; // no unique implementor
1845 }
1846 
1847 // Search for AME.
1848 // There are two version of checks.
1849 //   1) Spot checking version(Classload time). Newly added class is checked for AME.
1850 //      Checks whether abstract/overpass method is inherited into/declared in newly added concrete class.
1851 //   2) Compile time analysis for abstract/overpass(abstract klass) root_m. The non uniqm subtrees are checked for concrete classes.
1852 Klass* Dependencies::find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes) {
1853   if (m != nullptr) {
1854     if (changes != nullptr) {
1855       // Spot checking version.
1856       ConcreteMethodFinder wf(m);
1857       Klass* new_type = changes->as_new_klass_change()->new_type();
1858       if (wf.witnessed_reabstraction_in_supers(new_type)) {
1859         return new_type;
1860       }
1861     } else {
1862       // Note: It is required that uniqm->method_holder() is the participant (see ClassHierarchyWalker::found_method()).
1863       ConcreteSubtypeFinder wf(m->method_holder());
1864       Klass* conck = wf.find_witness(ctxk);
1865       if (conck != nullptr) {
1866         Method* cm = InstanceKlass::cast(conck)->find_instance_method(m->name(), m->signature(), Klass::PrivateLookupMode::skip);
1867         if (!Dependencies::is_concrete_method(cm, conck)) {
1868           return conck;
1869         }
1870       }
1871     }
1872   }
1873   return nullptr;
1874 }
1875 
1876 // This function is used by find_unique_concrete_method(non vtable based)
1877 // to check whether subtype method overrides the base method.
1878 static bool overrides(Method* sub_m, Method* base_m) {
1879   assert(base_m != nullptr, "base method should be non null");
1880   if (sub_m == nullptr) {
1881     return false;
1882   }
1883   /**
1884    *  If base_m is public or protected then sub_m always overrides.
1885    *  If base_m is !public, !protected and !private (i.e. base_m is package private)
1886    *  then sub_m should be in the same package as that of base_m.
1887    *  For package private base_m this is conservative approach as it allows only subset of all allowed cases in
1888    *  the jvm specification.
1889    **/
1890   if (base_m->is_public() || base_m->is_protected() ||
1891       base_m->method_holder()->is_same_class_package(sub_m->method_holder())) {
1892     return true;
1893   }
1894   return false;
1895 }
1896 
1897 // Find the set of all non-abstract methods under ctxk that match m.
1898 // (The method m must be defined or inherited in ctxk.)
1899 // Include m itself in the set, unless it is abstract.
1900 // If this set has exactly one element, return that element.
1901 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass** participant) {
1902   // Return nullptr if m is marked old; must have been a redefined method.
1903   if (m->is_old()) {
1904     return nullptr;
1905   }
1906   if (m->is_default_method()) {
1907     return nullptr; // not supported
1908   }
1909   assert(verify_method_context(ctxk, m), "proper context");
1910   ConcreteMethodFinder wf(m);
1911   wf.record_witnesses(1);
1912   Klass* wit = wf.find_witness(ctxk);
1913   if (wit != nullptr)  return nullptr;  // Too many witnesses.
1914   Method* fm = wf.found_method(0);  // Will be nullptr if num_parts == 0.
1915   if (participant != nullptr) {
1916     (*participant) = wf.participant(0);
1917   }
1918   if (!Dependencies::is_concrete_method(fm, nullptr)) {
1919     fm = nullptr; // ignore abstract methods
1920   }
1921   if (Dependencies::is_concrete_method(m, ctxk)) {
1922     if (fm == nullptr) {
1923       // It turns out that m was always the only implementation.
1924       fm = m;
1925     } else if (fm != m) {
1926       // Two conflicting implementations after all.
1927       // (This can happen if m is inherited into ctxk and fm overrides it.)
1928       return nullptr;
1929     }
1930   } else if (Dependencies::find_witness_AME(ctxk, fm) != nullptr) {
1931     // Found a concrete subtype which does not override abstract root method.
1932     return nullptr;
1933   } else if (!overrides(fm, m)) {
1934     // Found method doesn't override abstract root method.
1935     return nullptr;
1936   }
1937   assert(Dependencies::is_concrete_root_method(fm, ctxk) == Dependencies::is_concrete_method(m, ctxk), "mismatch");
1938 #ifndef PRODUCT
1939   // Make sure the dependency mechanism will pass this discovery:
1940   if (VerifyDependencies && fm != nullptr) {
1941     guarantee(nullptr == (void *)check_unique_concrete_method(ctxk, fm),
1942               "verify dep.");
1943   }
1944 #endif //PRODUCT
1945   return fm;
1946 }
1947 
1948 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1949 // Otherwise, return a class that contains an interfering method.
1950 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1951                                                   Method* uniqm,
1952                                                   Klass* resolved_klass,
1953                                                   Method* resolved_method,
1954                                                   KlassDepChange* changes) {
1955   assert(UseVtableBasedCHA, "required");
1956   assert(!ctxk->is_interface() || ctxk == resolved_klass, "sanity");
1957   assert(!resolved_method->can_be_statically_bound() || resolved_method == uniqm, "sanity");
1958   assert(resolved_klass->is_subtype_of(resolved_method->method_holder()), "sanity");
1959 
1960   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1961       !resolved_method->method_holder()->is_linked() ||
1962       resolved_method->can_be_statically_bound()) {
1963     // Dependency is redundant, but benign. Just keep it to avoid unnecessary recompilation.
1964     return nullptr; // no vtable index available
1965   }
1966 
1967   LinkedConcreteMethodFinder mf(InstanceKlass::cast(resolved_klass), resolved_method, uniqm);
1968   return mf.find_witness(ctxk, changes);
1969 }
1970 
1971 // Find the set of all non-abstract methods under ctxk that match m.
1972 // (The method m must be defined or inherited in ctxk.)
1973 // Include m itself in the set, unless it is abstract.
1974 // If this set has exactly one element, return that element.
1975 // Not yet linked subclasses of ctxk are ignored since they don't have any instances yet.
1976 // Additionally, resolved_klass and resolved_method complete the description of the call site being analyzed.
1977 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method) {
1978   // Return nullptr if m is marked old; must have been a redefined method.
1979   if (m->is_old()) {
1980     return nullptr;
1981   }
1982   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1983       !resolved_method->method_holder()->is_linked() ||
1984       resolved_method->can_be_statically_bound()) {
1985     return m; // nothing to do: no witness under ctxk
1986   }
1987   LinkedConcreteMethodFinder wf(InstanceKlass::cast(resolved_klass), resolved_method);
1988   assert(Dependencies::verify_method_context(ctxk, m), "proper context");
1989   wf.record_witnesses(1);
1990   Klass* wit = wf.find_witness(ctxk);
1991   if (wit != nullptr) {
1992     return nullptr;  // Too many witnesses.
1993   }
1994   // p == nullptr when no participants are found (wf.num_participants() == 0).
1995   // fm == nullptr case has 2 meanings:
1996   //  * when p == nullptr: no method found;
1997   //  * when p != nullptr: AbstractMethodError-throwing method found.
1998   // Also, found method should always be accompanied by a participant class.
1999   Klass*   p = wf.participant(0);
2000   Method* fm = wf.found_method(0);
2001   assert(fm == nullptr || p != nullptr, "no participant");
2002   // Normalize all error-throwing cases to nullptr.
2003   if (fm == Universe::throw_illegal_access_error() ||
2004       fm == Universe::throw_no_such_method_error() ||
2005       !Dependencies::is_concrete_method(fm, p)) {
2006     fm = nullptr; // error-throwing method
2007   }
2008   if (Dependencies::is_concrete_method(m, ctxk)) {
2009     if (p == nullptr) {
2010       // It turns out that m was always the only implementation.
2011       assert(fm == nullptr, "sanity");
2012       fm = m;
2013     }
2014   }
2015 #ifndef PRODUCT
2016   // Make sure the dependency mechanism will pass this discovery:
2017   if (VerifyDependencies && fm != nullptr) {
2018     guarantee(nullptr == check_unique_concrete_method(ctxk, fm, resolved_klass, resolved_method),
2019               "verify dep.");
2020   }
2021 #endif // PRODUCT
2022   assert(fm == nullptr || !fm->is_abstract(), "sanity");
2023   // Old CHA conservatively reports concrete methods in abstract classes
2024   // irrespective of whether they have concrete subclasses or not.
2025   // Also, abstract root method case is not fully supported.
2026 #ifdef ASSERT
2027   Klass*  uniqp = nullptr;
2028   Method* uniqm = Dependencies::find_unique_concrete_method(ctxk, m, &uniqp);
2029   assert(uniqm == nullptr || uniqm == fm ||
2030          m->is_abstract() ||
2031          uniqm->method_holder()->is_abstract() ||
2032          (fm == nullptr && uniqm != nullptr && uniqp != nullptr && !InstanceKlass::cast(uniqp)->is_linked()),
2033          "sanity");
2034 #endif // ASSERT
2035   return fm;
2036 }
2037 
2038 Klass* Dependencies::check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes) {
2039   InstanceKlass* search_at = ctxk;
2040   if (changes != nullptr) {
2041     search_at = changes->new_type(); // just look at the new bit
2042   }
2043   return find_finalizable_subclass(search_at);
2044 }
2045 
2046 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
2047   assert(call_site != nullptr, "sanity");
2048   assert(method_handle != nullptr, "sanity");
2049   assert(call_site->is_a(vmClasses::CallSite_klass()),     "sanity");
2050 
2051   if (changes == nullptr) {
2052     // Validate all CallSites
2053     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
2054       return call_site->klass();  // assertion failed
2055   } else {
2056     // Validate the given CallSite
2057     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
2058       assert(method_handle != changes->method_handle(), "must be");
2059       return call_site->klass();  // assertion failed
2060     }
2061   }
2062   return nullptr;  // assertion still valid
2063 }
2064 
2065 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
2066   if (_verify_in_progress) return;  // don't log
2067   if (witness != nullptr) {
2068     LogTarget(Debug, dependencies) lt;
2069     if (lt.is_enabled()) {
2070       LogStream ls(&lt);
2071       print_dependency(&ls, witness, /*verbose=*/ true);
2072     }
2073     // The following is a no-op unless logging is enabled:
2074     log_dependency(witness);
2075   }
2076 }
2077 
2078 Klass* Dependencies::DepStream::check_new_klass_dependency(NewKlassDepChange* changes) {
2079   assert_locked_or_safepoint(Compile_lock);
2080   Dependencies::check_valid_dependency_type(type());
2081 
2082   Klass* witness = nullptr;
2083   switch (type()) {
2084   case evol_method:
2085     witness = check_evol_method(method_argument(0));
2086     break;
2087   case leaf_type:
2088     witness = check_leaf_type(context_type());
2089     break;
2090   case abstract_with_unique_concrete_subtype:
2091     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
2092     break;
2093   case unique_concrete_method_2:
2094     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
2095     break;
2096   case unique_concrete_method_4:
2097     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2098     break;
2099   case unique_implementor:
2100     witness = check_unique_implementor(context_type(), type_argument(1), changes);
2101     break;
2102   case no_finalizable_subclasses:
2103     witness = check_has_no_finalizable_subclasses(context_type(), changes);
2104     break;
2105   default:
2106     witness = nullptr;
2107     break;
2108   }
2109   trace_and_log_witness(witness);
2110   return witness;
2111 }
2112 
2113 Klass* Dependencies::DepStream::check_klass_init_dependency(KlassInitDepChange* changes) {
2114   assert_locked_or_safepoint(Compile_lock);
2115   Dependencies::check_valid_dependency_type(type());
2116 
2117   // No new types added. Only unique_concrete_method_4 is sensitive to class initialization changes.
2118   Klass* witness = nullptr;
2119   switch (type()) {
2120   case unique_concrete_method_4:
2121     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2122     break;
2123   default:
2124     witness = nullptr;
2125     break;
2126   }
2127   trace_and_log_witness(witness);
2128   return witness;
2129 }
2130 
2131 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
2132   assert_locked_or_safepoint(Compile_lock);
2133   Dependencies::check_valid_dependency_type(type());
2134 
2135   if (changes != nullptr) {
2136     if (UseVtableBasedCHA && changes->is_klass_init_change()) {
2137       return check_klass_init_dependency(changes->as_klass_init_change());
2138     } else {
2139       return check_new_klass_dependency(changes->as_new_klass_change());
2140     }
2141   } else {
2142     Klass* witness = check_new_klass_dependency(nullptr);
2143     // check_klass_init_dependency duplicates check_new_klass_dependency checks when class hierarchy change info is absent.
2144     assert(witness != nullptr || check_klass_init_dependency(nullptr) == nullptr, "missed dependency");
2145     return witness;
2146   }
2147 }
2148 
2149 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
2150   assert_locked_or_safepoint(Compile_lock);
2151   Dependencies::check_valid_dependency_type(type());
2152 
2153   Klass* witness = nullptr;
2154   switch (type()) {
2155   case call_site_target_value:
2156     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
2157     break;
2158   default:
2159     witness = nullptr;
2160     break;
2161   }
2162   trace_and_log_witness(witness);
2163   return witness;
2164 }
2165 
2166 
2167 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
2168   // Handle klass dependency
2169   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
2170     return check_klass_dependency(changes.as_klass_change());
2171 
2172   // Handle CallSite dependency
2173   if (changes.is_call_site_change())
2174     return check_call_site_dependency(changes.as_call_site_change());
2175 
2176   // irrelevant dependency; skip it
2177   return nullptr;
2178 }
2179 
2180 
2181 void DepChange::print() { print_on(tty); }
2182 
2183 void DepChange::print_on(outputStream* st) {
2184   int nsup = 0, nint = 0;
2185   for (ContextStream str(*this); str.next(); ) {
2186     InstanceKlass* k = str.klass();
2187     switch (str.change_type()) {
2188     case Change_new_type:
2189       st->print_cr("  dependee = %s", k->external_name());
2190       break;
2191     case Change_new_sub:
2192       if (!WizardMode) {
2193         ++nsup;
2194       } else {
2195         st->print_cr("  context super = %s", k->external_name());
2196       }
2197       break;
2198     case Change_new_impl:
2199       if (!WizardMode) {
2200         ++nint;
2201       } else {
2202         st->print_cr("  context interface = %s", k->external_name());
2203       }
2204       break;
2205     default:
2206       break;
2207     }
2208   }
2209   if (nsup + nint != 0) {
2210     st->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
2211   }
2212 }
2213 
2214 void DepChange::ContextStream::start() {
2215   InstanceKlass* type = (_changes.is_klass_change() ? _changes.as_klass_change()->type() : (InstanceKlass*) nullptr);
2216   _change_type = (type == nullptr ? NO_CHANGE : Start_Klass);
2217   _klass = type;
2218   _ti_base = nullptr;
2219   _ti_index = 0;
2220   _ti_limit = 0;
2221 }
2222 
2223 bool DepChange::ContextStream::next() {
2224   switch (_change_type) {
2225   case Start_Klass:             // initial state; _klass is the new type
2226     _ti_base = _klass->transitive_interfaces();
2227     _ti_index = 0;
2228     _change_type = Change_new_type;
2229     return true;
2230   case Change_new_type:
2231     // fall through:
2232     _change_type = Change_new_sub;
2233   case Change_new_sub:
2234     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
2235     {
2236       _klass = _klass->java_super();
2237       if (_klass != nullptr) {
2238         return true;
2239       }
2240     }
2241     // else set up _ti_limit and fall through:
2242     _ti_limit = (_ti_base == nullptr) ? 0 : _ti_base->length();
2243     _change_type = Change_new_impl;
2244   case Change_new_impl:
2245     if (_ti_index < _ti_limit) {
2246       _klass = _ti_base->at(_ti_index++);
2247       return true;
2248     }
2249     // fall through:
2250     _change_type = NO_CHANGE;  // iterator is exhausted
2251   case NO_CHANGE:
2252     break;
2253   default:
2254     ShouldNotReachHere();
2255   }
2256   return false;
2257 }
2258 
2259 void KlassDepChange::initialize() {
2260   // entire transaction must be under this lock:
2261   assert_lock_strong(Compile_lock);
2262 
2263   // Mark all dependee and all its superclasses
2264   // Mark transitive interfaces
2265   for (ContextStream str(*this); str.next(); ) {
2266     InstanceKlass* d = str.klass();
2267     assert(!d->is_marked_dependent(), "checking");
2268     d->set_is_marked_dependent(true);
2269   }
2270 }
2271 
2272 KlassDepChange::~KlassDepChange() {
2273   // Unmark all dependee and all its superclasses
2274   // Unmark transitive interfaces
2275   for (ContextStream str(*this); str.next(); ) {
2276     InstanceKlass* d = str.klass();
2277     d->set_is_marked_dependent(false);
2278   }
2279 }
2280 
2281 bool KlassDepChange::involves_context(Klass* k) {
2282   if (k == nullptr || !k->is_instance_klass()) {
2283     return false;
2284   }
2285   InstanceKlass* ik = InstanceKlass::cast(k);
2286   bool is_contained = ik->is_marked_dependent();
2287   assert(is_contained == type()->is_subtype_of(k),
2288          "correct marking of potential context types");
2289   return is_contained;
2290 }
2291 
2292 void Dependencies::print_statistics() {
2293   AbstractClassHierarchyWalker::print_statistics();
2294 }
2295 
2296 void AbstractClassHierarchyWalker::print_statistics() {
2297   if (UsePerfData) {
2298     jlong deps_find_witness_calls   = _perf_find_witness_anywhere_calls_count->get_value();
2299     jlong deps_find_witness_steps   = _perf_find_witness_anywhere_steps_count->get_value();
2300     jlong deps_find_witness_singles = _perf_find_witness_in_calls_count->get_value();
2301 
2302     ttyLocker ttyl;
2303     tty->print_cr("Dependency check (find_witness) "
2304                   "calls=" JLONG_FORMAT ", steps=" JLONG_FORMAT " (avg=%.1f), singles=" JLONG_FORMAT,
2305                   deps_find_witness_calls,
2306                   deps_find_witness_steps,
2307                   (double)deps_find_witness_steps / deps_find_witness_calls,
2308                   deps_find_witness_singles);
2309     if (xtty != nullptr) {
2310       xtty->elem("deps_find_witness calls='" JLONG_FORMAT "' steps='" JLONG_FORMAT "' singles='" JLONG_FORMAT "'",
2311                  deps_find_witness_calls,
2312                  deps_find_witness_steps,
2313                  deps_find_witness_singles);
2314     }
2315   }
2316 }
2317 
2318 CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) :
2319   _call_site(call_site),
2320   _method_handle(method_handle) {
2321   assert(_call_site()->is_a(vmClasses::CallSite_klass()), "must be");
2322   assert(_method_handle.is_null() || _method_handle()->is_a(vmClasses::MethodHandle_klass()), "must be");
2323 }
2324 
2325 void dependencies_init() {
2326   AbstractClassHierarchyWalker::init();
2327 }