1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciArrayKlass.hpp" 27 #include "ci/ciEnv.hpp" 28 #include "ci/ciKlass.hpp" 29 #include "ci/ciMethod.hpp" 30 #include "classfile/javaClasses.inline.hpp" 31 #include "classfile/vmClasses.hpp" 32 #include "code/dependencies.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileTask.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "oops/klass.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/method.inline.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "runtime/flags/flagSetting.hpp" 42 #include "runtime/handles.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/javaThread.inline.hpp" 45 #include "runtime/jniHandles.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/perfData.hpp" 48 #include "runtime/vmThread.hpp" 49 #include "utilities/copy.hpp" 50 51 52 #ifdef ASSERT 53 static bool must_be_in_vm() { 54 Thread* thread = Thread::current(); 55 if (thread->is_Java_thread()) { 56 return JavaThread::cast(thread)->thread_state() == _thread_in_vm; 57 } else { 58 return true; // Could be VMThread or GC thread 59 } 60 } 61 #endif //ASSERT 62 63 bool Dependencies::_verify_in_progress = false; // don't -Xlog:dependencies 64 65 void Dependencies::initialize(ciEnv* env) { 66 Arena* arena = env->arena(); 67 _oop_recorder = env->oop_recorder(); 68 _log = env->log(); 69 _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0); 70 #if INCLUDE_JVMCI 71 _using_dep_values = false; 72 #endif 73 DEBUG_ONLY(_deps[end_marker] = nullptr); 74 for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) { 75 _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, nullptr); 76 } 77 _content_bytes = nullptr; 78 _size_in_bytes = (size_t)-1; 79 80 assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity"); 81 } 82 83 void Dependencies::assert_evol_method(ciMethod* m) { 84 assert_common_1(evol_method, m); 85 } 86 87 void Dependencies::assert_leaf_type(ciKlass* ctxk) { 88 if (ctxk->is_array_klass()) { 89 // As a special case, support this assertion on an array type, 90 // which reduces to an assertion on its element type. 91 // Note that this cannot be done with assertions that 92 // relate to concreteness or abstractness. 93 ciType* elemt = ctxk->as_array_klass()->base_element_type(); 94 if (!elemt->is_instance_klass()) return; // Ex: int[][] 95 ctxk = elemt->as_instance_klass(); 96 //if (ctxk->is_final()) return; // Ex: String[][] 97 } 98 check_ctxk(ctxk); 99 assert_common_1(leaf_type, ctxk); 100 } 101 102 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) { 103 check_ctxk_abstract(ctxk); 104 assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck); 105 } 106 107 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) { 108 check_ctxk(ctxk); 109 check_unique_method(ctxk, uniqm); 110 assert_common_2(unique_concrete_method_2, ctxk, uniqm); 111 } 112 113 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method) { 114 check_ctxk(ctxk); 115 check_unique_method(ctxk, uniqm); 116 assert_common_4(unique_concrete_method_4, ctxk, uniqm, resolved_klass, resolved_method); 117 } 118 119 void Dependencies::assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) { 120 check_ctxk(ctxk); 121 check_unique_implementor(ctxk, uniqk); 122 assert_common_2(unique_implementor, ctxk, uniqk); 123 } 124 125 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) { 126 check_ctxk(ctxk); 127 assert_common_1(no_finalizable_subclasses, ctxk); 128 } 129 130 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) { 131 assert_common_2(call_site_target_value, call_site, method_handle); 132 } 133 134 #if INCLUDE_JVMCI 135 136 Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) { 137 _oop_recorder = oop_recorder; 138 _log = log; 139 _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0); 140 _using_dep_values = true; 141 DEBUG_ONLY(_dep_values[end_marker] = nullptr); 142 for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) { 143 _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue()); 144 } 145 _content_bytes = nullptr; 146 _size_in_bytes = (size_t)-1; 147 148 assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity"); 149 } 150 151 void Dependencies::assert_evol_method(Method* m) { 152 assert_common_1(evol_method, DepValue(_oop_recorder, m)); 153 } 154 155 void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) { 156 check_ctxk(ctxk); 157 assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk)); 158 } 159 160 void Dependencies::assert_leaf_type(Klass* ctxk) { 161 if (ctxk->is_array_klass()) { 162 // As a special case, support this assertion on an array type, 163 // which reduces to an assertion on its element type. 164 // Note that this cannot be done with assertions that 165 // relate to concreteness or abstractness. 166 BasicType elemt = ArrayKlass::cast(ctxk)->element_type(); 167 if (is_java_primitive(elemt)) return; // Ex: int[][] 168 ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass(); 169 //if (ctxk->is_final()) return; // Ex: String[][] 170 } 171 check_ctxk(ctxk); 172 assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk)); 173 } 174 175 void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) { 176 check_ctxk_abstract(ctxk); 177 DepValue ctxk_dv(_oop_recorder, ctxk); 178 DepValue conck_dv(_oop_recorder, conck, &ctxk_dv); 179 assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv); 180 } 181 182 void Dependencies::assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk) { 183 check_ctxk(ctxk); 184 assert(ctxk->is_interface(), "not an interface"); 185 assert(ctxk->implementor() == uniqk, "not a unique implementor"); 186 assert_common_2(unique_implementor, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqk)); 187 } 188 189 void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) { 190 check_ctxk(ctxk); 191 check_unique_method(ctxk, uniqm); 192 assert_common_2(unique_concrete_method_2, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm)); 193 } 194 195 void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) { 196 assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle))); 197 } 198 199 #endif // INCLUDE_JVMCI 200 201 202 // Helper function. If we are adding a new dep. under ctxk2, 203 // try to find an old dep. under a broader* ctxk1. If there is 204 // 205 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps, 206 int ctxk_i, ciKlass* ctxk2) { 207 ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass(); 208 if (ctxk2->is_subtype_of(ctxk1)) { 209 return true; // success, and no need to change 210 } else if (ctxk1->is_subtype_of(ctxk2)) { 211 // new context class fully subsumes previous one 212 deps->at_put(ctxk_i, ctxk2); 213 return true; 214 } else { 215 return false; 216 } 217 } 218 219 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) { 220 assert(dep_args(dept) == 1, "sanity"); 221 log_dependency(dept, x); 222 GrowableArray<ciBaseObject*>* deps = _deps[dept]; 223 224 // see if the same (or a similar) dep is already recorded 225 if (note_dep_seen(dept, x)) { 226 assert(deps->find(x) >= 0, "sanity"); 227 } else { 228 deps->append(x); 229 } 230 } 231 232 void Dependencies::assert_common_2(DepType dept, 233 ciBaseObject* x0, ciBaseObject* x1) { 234 assert(dep_args(dept) == 2, "sanity"); 235 log_dependency(dept, x0, x1); 236 GrowableArray<ciBaseObject*>* deps = _deps[dept]; 237 238 // see if the same (or a similar) dep is already recorded 239 bool has_ctxk = has_explicit_context_arg(dept); 240 if (has_ctxk) { 241 assert(dep_context_arg(dept) == 0, "sanity"); 242 if (note_dep_seen(dept, x1)) { 243 // look in this bucket for redundant assertions 244 const int stride = 2; 245 for (int i = deps->length(); (i -= stride) >= 0; ) { 246 ciBaseObject* y1 = deps->at(i+1); 247 if (x1 == y1) { // same subject; check the context 248 if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) { 249 return; 250 } 251 } 252 } 253 } 254 } else { 255 bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries 256 bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries 257 if (dep_seen_x0 && dep_seen_x1) { 258 // look in this bucket for redundant assertions 259 const int stride = 2; 260 for (int i = deps->length(); (i -= stride) >= 0; ) { 261 ciBaseObject* y0 = deps->at(i+0); 262 ciBaseObject* y1 = deps->at(i+1); 263 if (x0 == y0 && x1 == y1) { 264 return; 265 } 266 } 267 } 268 } 269 270 // append the assertion in the correct bucket: 271 deps->append(x0); 272 deps->append(x1); 273 } 274 275 void Dependencies::assert_common_4(DepType dept, 276 ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3) { 277 assert(has_explicit_context_arg(dept), "sanity"); 278 assert(dep_context_arg(dept) == 0, "sanity"); 279 assert(dep_args(dept) == 4, "sanity"); 280 log_dependency(dept, ctxk, x1, x2, x3); 281 GrowableArray<ciBaseObject*>* deps = _deps[dept]; 282 283 // see if the same (or a similar) dep is already recorded 284 bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries 285 bool dep_seen_x2 = note_dep_seen(dept, x2); // records x2 for future queries 286 bool dep_seen_x3 = note_dep_seen(dept, x3); // records x3 for future queries 287 if (dep_seen_x1 && dep_seen_x2 && dep_seen_x3) { 288 // look in this bucket for redundant assertions 289 const int stride = 4; 290 for (int i = deps->length(); (i -= stride) >= 0; ) { 291 ciBaseObject* y1 = deps->at(i+1); 292 ciBaseObject* y2 = deps->at(i+2); 293 ciBaseObject* y3 = deps->at(i+3); 294 if (x1 == y1 && x2 == y2 && x3 == y3) { // same subjects; check the context 295 if (maybe_merge_ctxk(deps, i+0, ctxk)) { 296 return; 297 } 298 } 299 } 300 } 301 // append the assertion in the correct bucket: 302 deps->append(ctxk); 303 deps->append(x1); 304 deps->append(x2); 305 deps->append(x3); 306 } 307 308 #if INCLUDE_JVMCI 309 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps, 310 int ctxk_i, DepValue ctxk2_dv) { 311 Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder); 312 Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder); 313 if (ctxk2->is_subtype_of(ctxk1)) { 314 return true; // success, and no need to change 315 } else if (ctxk1->is_subtype_of(ctxk2)) { 316 // new context class fully subsumes previous one 317 deps->at_put(ctxk_i, ctxk2_dv); 318 return true; 319 } else { 320 return false; 321 } 322 } 323 324 void Dependencies::assert_common_1(DepType dept, DepValue x) { 325 assert(dep_args(dept) == 1, "sanity"); 326 //log_dependency(dept, x); 327 GrowableArray<DepValue>* deps = _dep_values[dept]; 328 329 // see if the same (or a similar) dep is already recorded 330 if (note_dep_seen(dept, x)) { 331 assert(deps->find(x) >= 0, "sanity"); 332 } else { 333 deps->append(x); 334 } 335 } 336 337 void Dependencies::assert_common_2(DepType dept, 338 DepValue x0, DepValue x1) { 339 assert(dep_args(dept) == 2, "sanity"); 340 //log_dependency(dept, x0, x1); 341 GrowableArray<DepValue>* deps = _dep_values[dept]; 342 343 // see if the same (or a similar) dep is already recorded 344 bool has_ctxk = has_explicit_context_arg(dept); 345 if (has_ctxk) { 346 assert(dep_context_arg(dept) == 0, "sanity"); 347 if (note_dep_seen(dept, x1)) { 348 // look in this bucket for redundant assertions 349 const int stride = 2; 350 for (int i = deps->length(); (i -= stride) >= 0; ) { 351 DepValue y1 = deps->at(i+1); 352 if (x1 == y1) { // same subject; check the context 353 if (maybe_merge_ctxk(deps, i+0, x0)) { 354 return; 355 } 356 } 357 } 358 } 359 } else { 360 bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries 361 bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries 362 if (dep_seen_x0 && dep_seen_x1) { 363 // look in this bucket for redundant assertions 364 const int stride = 2; 365 for (int i = deps->length(); (i -= stride) >= 0; ) { 366 DepValue y0 = deps->at(i+0); 367 DepValue y1 = deps->at(i+1); 368 if (x0 == y0 && x1 == y1) { 369 return; 370 } 371 } 372 } 373 } 374 375 // append the assertion in the correct bucket: 376 deps->append(x0); 377 deps->append(x1); 378 } 379 #endif // INCLUDE_JVMCI 380 381 /// Support for encoding dependencies into an nmethod: 382 383 void Dependencies::copy_to(nmethod* nm) { 384 address beg = nm->dependencies_begin(); 385 address end = nm->dependencies_end(); 386 guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing"); 387 (void)memcpy(beg, content_bytes(), size_in_bytes()); 388 assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words"); 389 } 390 391 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) { 392 for (int i = 0; i < narg; i++) { 393 int diff = p1[i]->ident() - p2[i]->ident(); 394 if (diff != 0) return diff; 395 } 396 return 0; 397 } 398 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2) 399 { return sort_dep(p1, p2, 1); } 400 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2) 401 { return sort_dep(p1, p2, 2); } 402 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2) 403 { return sort_dep(p1, p2, 3); } 404 static int sort_dep_arg_4(ciBaseObject** p1, ciBaseObject** p2) 405 { return sort_dep(p1, p2, 4); } 406 407 #if INCLUDE_JVMCI 408 // metadata deps are sorted before object deps 409 static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) { 410 for (int i = 0; i < narg; i++) { 411 int diff = p1[i].sort_key() - p2[i].sort_key(); 412 if (diff != 0) return diff; 413 } 414 return 0; 415 } 416 static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2) 417 { return sort_dep_value(p1, p2, 1); } 418 static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2) 419 { return sort_dep_value(p1, p2, 2); } 420 static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2) 421 { return sort_dep_value(p1, p2, 3); } 422 #endif // INCLUDE_JVMCI 423 424 void Dependencies::sort_all_deps() { 425 #if INCLUDE_JVMCI 426 if (_using_dep_values) { 427 for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { 428 DepType dept = (DepType)deptv; 429 GrowableArray<DepValue>* deps = _dep_values[dept]; 430 if (deps->length() <= 1) continue; 431 switch (dep_args(dept)) { 432 case 1: deps->sort(sort_dep_value_arg_1, 1); break; 433 case 2: deps->sort(sort_dep_value_arg_2, 2); break; 434 case 3: deps->sort(sort_dep_value_arg_3, 3); break; 435 default: ShouldNotReachHere(); break; 436 } 437 } 438 return; 439 } 440 #endif // INCLUDE_JVMCI 441 for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { 442 DepType dept = (DepType)deptv; 443 GrowableArray<ciBaseObject*>* deps = _deps[dept]; 444 if (deps->length() <= 1) continue; 445 switch (dep_args(dept)) { 446 case 1: deps->sort(sort_dep_arg_1, 1); break; 447 case 2: deps->sort(sort_dep_arg_2, 2); break; 448 case 3: deps->sort(sort_dep_arg_3, 3); break; 449 case 4: deps->sort(sort_dep_arg_4, 4); break; 450 default: ShouldNotReachHere(); break; 451 } 452 } 453 } 454 455 size_t Dependencies::estimate_size_in_bytes() { 456 size_t est_size = 100; 457 #if INCLUDE_JVMCI 458 if (_using_dep_values) { 459 for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { 460 DepType dept = (DepType)deptv; 461 GrowableArray<DepValue>* deps = _dep_values[dept]; 462 est_size += deps->length() * 2; // tags and argument(s) 463 } 464 return est_size; 465 } 466 #endif // INCLUDE_JVMCI 467 for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { 468 DepType dept = (DepType)deptv; 469 GrowableArray<ciBaseObject*>* deps = _deps[dept]; 470 est_size += deps->length()*2; // tags and argument(s) 471 } 472 return est_size; 473 } 474 475 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) { 476 switch (dept) { 477 case unique_concrete_method_2: 478 case unique_concrete_method_4: 479 return x->as_metadata()->as_method()->holder(); 480 default: 481 return nullptr; // let nullptr be nullptr 482 } 483 } 484 485 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) { 486 assert(must_be_in_vm(), "raw oops here"); 487 switch (dept) { 488 case unique_concrete_method_2: 489 case unique_concrete_method_4: 490 assert(x->is_method(), "sanity"); 491 return ((Method*)x)->method_holder(); 492 default: 493 return nullptr; // let nullptr be nullptr 494 } 495 } 496 497 void Dependencies::encode_content_bytes() { 498 sort_all_deps(); 499 500 // cast is safe, no deps can overflow INT_MAX 501 CompressedWriteStream bytes((int)estimate_size_in_bytes()); 502 503 #if INCLUDE_JVMCI 504 if (_using_dep_values) { 505 for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { 506 DepType dept = (DepType)deptv; 507 GrowableArray<DepValue>* deps = _dep_values[dept]; 508 if (deps->length() == 0) continue; 509 int stride = dep_args(dept); 510 int ctxkj = dep_context_arg(dept); // -1 if no context arg 511 assert(stride > 0, "sanity"); 512 for (int i = 0; i < deps->length(); i += stride) { 513 jbyte code_byte = (jbyte)dept; 514 int skipj = -1; 515 if (ctxkj >= 0 && ctxkj+1 < stride) { 516 Klass* ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder); 517 DepValue x = deps->at(i+ctxkj+1); // following argument 518 if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) { 519 skipj = ctxkj; // we win: maybe one less oop to keep track of 520 code_byte |= default_context_type_bit; 521 } 522 } 523 bytes.write_byte(code_byte); 524 for (int j = 0; j < stride; j++) { 525 if (j == skipj) continue; 526 DepValue v = deps->at(i+j); 527 int idx = v.index(); 528 bytes.write_int(idx); 529 } 530 } 531 } 532 } else { 533 #endif // INCLUDE_JVMCI 534 for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { 535 DepType dept = (DepType)deptv; 536 GrowableArray<ciBaseObject*>* deps = _deps[dept]; 537 if (deps->length() == 0) continue; 538 int stride = dep_args(dept); 539 int ctxkj = dep_context_arg(dept); // -1 if no context arg 540 assert(stride > 0, "sanity"); 541 for (int i = 0; i < deps->length(); i += stride) { 542 jbyte code_byte = (jbyte)dept; 543 int skipj = -1; 544 if (ctxkj >= 0 && ctxkj+1 < stride) { 545 ciKlass* ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass(); 546 ciBaseObject* x = deps->at(i+ctxkj+1); // following argument 547 if (ctxk == ctxk_encoded_as_null(dept, x)) { 548 skipj = ctxkj; // we win: maybe one less oop to keep track of 549 code_byte |= default_context_type_bit; 550 } 551 } 552 bytes.write_byte(code_byte); 553 for (int j = 0; j < stride; j++) { 554 if (j == skipj) continue; 555 ciBaseObject* v = deps->at(i+j); 556 int idx; 557 if (v->is_object()) { 558 idx = _oop_recorder->find_index(v->as_object()->constant_encoding()); 559 } else { 560 ciMetadata* meta = v->as_metadata(); 561 idx = _oop_recorder->find_index(meta->constant_encoding()); 562 } 563 bytes.write_int(idx); 564 } 565 } 566 } 567 #if INCLUDE_JVMCI 568 } 569 #endif 570 571 // write a sentinel byte to mark the end 572 bytes.write_byte(end_marker); 573 574 // round it out to a word boundary 575 while (bytes.position() % sizeof(HeapWord) != 0) { 576 bytes.write_byte(end_marker); 577 } 578 579 // check whether the dept byte encoding really works 580 assert((jbyte)default_context_type_bit != 0, "byte overflow"); 581 582 _content_bytes = bytes.buffer(); 583 _size_in_bytes = bytes.position(); 584 } 585 586 587 const char* Dependencies::_dep_name[TYPE_LIMIT] = { 588 "end_marker", 589 "evol_method", 590 "leaf_type", 591 "abstract_with_unique_concrete_subtype", 592 "unique_concrete_method_2", 593 "unique_concrete_method_4", 594 "unique_implementor", 595 "no_finalizable_subclasses", 596 "call_site_target_value" 597 }; 598 599 int Dependencies::_dep_args[TYPE_LIMIT] = { 600 -1,// end_marker 601 1, // evol_method m 602 1, // leaf_type ctxk 603 2, // abstract_with_unique_concrete_subtype ctxk, k 604 2, // unique_concrete_method_2 ctxk, m 605 4, // unique_concrete_method_4 ctxk, m, resolved_klass, resolved_method 606 2, // unique_implementor ctxk, implementor 607 1, // no_finalizable_subclasses ctxk 608 2 // call_site_target_value call_site, method_handle 609 }; 610 611 const char* Dependencies::dep_name(Dependencies::DepType dept) { 612 if (!dept_in_mask(dept, all_types)) return "?bad-dep?"; 613 return _dep_name[dept]; 614 } 615 616 int Dependencies::dep_args(Dependencies::DepType dept) { 617 if (!dept_in_mask(dept, all_types)) return -1; 618 return _dep_args[dept]; 619 } 620 621 void Dependencies::check_valid_dependency_type(DepType dept) { 622 guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept); 623 } 624 625 Dependencies::DepType Dependencies::validate_dependencies(CompileTask* task, char** failure_detail) { 626 int klass_violations = 0; 627 DepType result = end_marker; 628 for (Dependencies::DepStream deps(this); deps.next(); ) { 629 Klass* witness = deps.check_dependency(); 630 if (witness != nullptr) { 631 if (klass_violations == 0) { 632 result = deps.type(); 633 if (failure_detail != nullptr && klass_violations == 0) { 634 // Use a fixed size buffer to prevent the string stream from 635 // resizing in the context of an inner resource mark. 636 char* buffer = NEW_RESOURCE_ARRAY(char, O_BUFLEN); 637 stringStream st(buffer, O_BUFLEN); 638 deps.print_dependency(&st, witness, true); 639 *failure_detail = st.as_string(); 640 } 641 } 642 klass_violations++; 643 if (xtty == nullptr) { 644 // If we're not logging then a single violation is sufficient, 645 // otherwise we want to log all the dependences which were 646 // violated. 647 break; 648 } 649 } 650 } 651 652 return result; 653 } 654 655 // for the sake of the compiler log, print out current dependencies: 656 void Dependencies::log_all_dependencies() { 657 if (log() == nullptr) return; 658 ResourceMark rm; 659 for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { 660 DepType dept = (DepType)deptv; 661 GrowableArray<ciBaseObject*>* deps = _deps[dept]; 662 int deplen = deps->length(); 663 if (deplen == 0) { 664 continue; 665 } 666 int stride = dep_args(dept); 667 GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride); 668 for (int i = 0; i < deps->length(); i += stride) { 669 for (int j = 0; j < stride; j++) { 670 // flush out the identities before printing 671 ciargs->push(deps->at(i+j)); 672 } 673 write_dependency_to(log(), dept, ciargs); 674 ciargs->clear(); 675 } 676 guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope"); 677 } 678 } 679 680 void Dependencies::write_dependency_to(CompileLog* log, 681 DepType dept, 682 GrowableArray<DepArgument>* args, 683 Klass* witness) { 684 if (log == nullptr) { 685 return; 686 } 687 ResourceMark rm; 688 ciEnv* env = ciEnv::current(); 689 GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length()); 690 for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) { 691 DepArgument arg = *it; 692 if (arg.is_oop()) { 693 ciargs->push(env->get_object(arg.oop_value())); 694 } else { 695 ciargs->push(env->get_metadata(arg.metadata_value())); 696 } 697 } 698 int argslen = ciargs->length(); 699 Dependencies::write_dependency_to(log, dept, ciargs, witness); 700 guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope"); 701 } 702 703 void Dependencies::write_dependency_to(CompileLog* log, 704 DepType dept, 705 GrowableArray<ciBaseObject*>* args, 706 Klass* witness) { 707 if (log == nullptr) { 708 return; 709 } 710 ResourceMark rm; 711 GrowableArray<int>* argids = new GrowableArray<int>(args->length()); 712 for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) { 713 ciBaseObject* obj = *it; 714 if (obj->is_object()) { 715 argids->push(log->identify(obj->as_object())); 716 } else { 717 argids->push(log->identify(obj->as_metadata())); 718 } 719 } 720 if (witness != nullptr) { 721 log->begin_elem("dependency_failed"); 722 } else { 723 log->begin_elem("dependency"); 724 } 725 log->print(" type='%s'", dep_name(dept)); 726 const int ctxkj = dep_context_arg(dept); // -1 if no context arg 727 if (ctxkj >= 0 && ctxkj < argids->length()) { 728 log->print(" ctxk='%d'", argids->at(ctxkj)); 729 } 730 // write remaining arguments, if any. 731 for (int j = 0; j < argids->length(); j++) { 732 if (j == ctxkj) continue; // already logged 733 if (j == 1) { 734 log->print( " x='%d'", argids->at(j)); 735 } else { 736 log->print(" x%d='%d'", j, argids->at(j)); 737 } 738 } 739 if (witness != nullptr) { 740 log->object("witness", witness); 741 log->stamp(); 742 } 743 log->end_elem(); 744 } 745 746 void Dependencies::write_dependency_to(xmlStream* xtty, 747 DepType dept, 748 GrowableArray<DepArgument>* args, 749 Klass* witness) { 750 if (xtty == nullptr) { 751 return; 752 } 753 Thread* thread = Thread::current(); 754 HandleMark rm(thread); 755 ttyLocker ttyl; 756 int ctxkj = dep_context_arg(dept); // -1 if no context arg 757 if (witness != nullptr) { 758 xtty->begin_elem("dependency_failed"); 759 } else { 760 xtty->begin_elem("dependency"); 761 } 762 xtty->print(" type='%s'", dep_name(dept)); 763 if (ctxkj >= 0) { 764 xtty->object("ctxk", args->at(ctxkj).metadata_value()); 765 } 766 // write remaining arguments, if any. 767 for (int j = 0; j < args->length(); j++) { 768 if (j == ctxkj) continue; // already logged 769 DepArgument arg = args->at(j); 770 if (j == 1) { 771 if (arg.is_oop()) { 772 xtty->object("x", Handle(thread, arg.oop_value())); 773 } else { 774 xtty->object("x", arg.metadata_value()); 775 } 776 } else { 777 char xn[12]; 778 os::snprintf_checked(xn, sizeof(xn), "x%d", j); 779 if (arg.is_oop()) { 780 xtty->object(xn, Handle(thread, arg.oop_value())); 781 } else { 782 xtty->object(xn, arg.metadata_value()); 783 } 784 } 785 } 786 if (witness != nullptr) { 787 xtty->object("witness", witness); 788 xtty->stamp(); 789 } 790 xtty->end_elem(); 791 } 792 793 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args, 794 Klass* witness, outputStream* st) { 795 ResourceMark rm; 796 ttyLocker ttyl; // keep the following output all in one block 797 st->print_cr("%s of type %s", 798 (witness == nullptr)? "Dependency": "Failed dependency", 799 dep_name(dept)); 800 // print arguments 801 int ctxkj = dep_context_arg(dept); // -1 if no context arg 802 for (int j = 0; j < args->length(); j++) { 803 DepArgument arg = args->at(j); 804 bool put_star = false; 805 if (arg.is_null()) continue; 806 const char* what; 807 if (j == ctxkj) { 808 assert(arg.is_metadata(), "must be"); 809 what = "context"; 810 put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value()); 811 } else if (arg.is_method()) { 812 what = "method "; 813 put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), nullptr); 814 } else if (arg.is_klass()) { 815 what = "class "; 816 } else { 817 what = "object "; 818 } 819 st->print(" %s = %s", what, (put_star? "*": "")); 820 if (arg.is_klass()) { 821 st->print("%s", ((Klass*)arg.metadata_value())->external_name()); 822 } else if (arg.is_method()) { 823 ((Method*)arg.metadata_value())->print_value_on(st); 824 } else if (arg.is_oop()) { 825 arg.oop_value()->print_value_on(st); 826 } else { 827 ShouldNotReachHere(); // Provide impl for this type. 828 } 829 830 st->cr(); 831 } 832 if (witness != nullptr) { 833 bool put_star = !Dependencies::is_concrete_klass(witness); 834 st->print(" witness = %s%s", 835 (put_star ? "*": ""), 836 witness->external_name()); 837 if (witness->is_instance_klass()) { 838 st->print(" (%s)", InstanceKlass::cast(witness)->init_state_name()); 839 } 840 st->cr(); 841 } 842 } 843 844 void Dependencies::DepStream::log_dependency(Klass* witness) { 845 if (_deps == nullptr && xtty == nullptr) return; // fast cutout for runtime 846 ResourceMark rm; 847 const int nargs = argument_count(); 848 GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs); 849 for (int j = 0; j < nargs; j++) { 850 if (is_oop_argument(j)) { 851 args->push(argument_oop(j)); 852 } else { 853 args->push(argument(j)); 854 } 855 } 856 int argslen = args->length(); 857 if (_deps != nullptr && _deps->log() != nullptr) { 858 if (ciEnv::current() != nullptr) { 859 Dependencies::write_dependency_to(_deps->log(), type(), args, witness); 860 } else { 861 // Treat the CompileLog as an xmlstream instead 862 Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness); 863 } 864 } else { 865 Dependencies::write_dependency_to(xtty, type(), args, witness); 866 } 867 guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope"); 868 } 869 870 void Dependencies::DepStream::print_dependency(outputStream* st, Klass* witness, bool verbose) { 871 ResourceMark rm; 872 int nargs = argument_count(); 873 GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs); 874 for (int j = 0; j < nargs; j++) { 875 if (is_oop_argument(j)) { 876 args->push(argument_oop(j)); 877 } else { 878 args->push(argument(j)); 879 } 880 } 881 int argslen = args->length(); 882 Dependencies::print_dependency(type(), args, witness, st); 883 if (verbose) { 884 if (_code != nullptr) { 885 st->print(" code: "); 886 _code->print_value_on(st); 887 st->cr(); 888 } 889 } 890 guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope"); 891 } 892 893 894 /// Dependency stream support (decodes dependencies from an nmethod): 895 896 #ifdef ASSERT 897 void Dependencies::DepStream::initial_asserts(size_t byte_limit) { 898 assert(must_be_in_vm(), "raw oops here"); 899 _byte_limit = byte_limit; 900 _type = undefined_dependency; // defeat "already at end" assert 901 assert((_code!=nullptr) + (_deps!=nullptr) == 1, "one or t'other"); 902 } 903 #endif //ASSERT 904 905 bool Dependencies::DepStream::next() { 906 assert(_type != end_marker, "already at end"); 907 if (_bytes.position() == 0 && _code != nullptr 908 && _code->dependencies_size() == 0) { 909 // Method has no dependencies at all. 910 return false; 911 } 912 int code_byte = (_bytes.read_byte() & 0xFF); 913 if (code_byte == end_marker) { 914 DEBUG_ONLY(_type = end_marker); 915 return false; 916 } else { 917 int ctxk_bit = (code_byte & Dependencies::default_context_type_bit); 918 code_byte -= ctxk_bit; 919 DepType dept = (DepType)code_byte; 920 _type = dept; 921 Dependencies::check_valid_dependency_type(dept); 922 int stride = _dep_args[dept]; 923 assert(stride == dep_args(dept), "sanity"); 924 int skipj = -1; 925 if (ctxk_bit != 0) { 926 skipj = 0; // currently the only context argument is at zero 927 assert(skipj == dep_context_arg(dept), "zero arg always ctxk"); 928 } 929 for (int j = 0; j < stride; j++) { 930 _xi[j] = (j == skipj)? 0: _bytes.read_int(); 931 } 932 DEBUG_ONLY(_xi[stride] = -1); // help detect overruns 933 return true; 934 } 935 } 936 937 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) { 938 Metadata* o = nullptr; 939 if (_code != nullptr) { 940 o = _code->metadata_at(i); 941 } else { 942 o = _deps->oop_recorder()->metadata_at(i); 943 } 944 return o; 945 } 946 947 inline oop Dependencies::DepStream::recorded_oop_at(int i) { 948 return (_code != nullptr) 949 ? _code->oop_at(i) 950 : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i)); 951 } 952 953 Metadata* Dependencies::DepStream::argument(int i) { 954 Metadata* result = recorded_metadata_at(argument_index(i)); 955 956 if (result == nullptr) { // Explicit context argument can be compressed 957 int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg 958 if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) { 959 result = ctxk_encoded_as_null(type(), argument(ctxkj+1)); 960 } 961 } 962 963 assert(result == nullptr || result->is_klass() || result->is_method(), "must be"); 964 return result; 965 } 966 967 /** 968 * Returns a unique identifier for each dependency argument. 969 */ 970 uintptr_t Dependencies::DepStream::get_identifier(int i) { 971 if (is_oop_argument(i)) { 972 return (uintptr_t)(oopDesc*)argument_oop(i); 973 } else { 974 return (uintptr_t)argument(i); 975 } 976 } 977 978 oop Dependencies::DepStream::argument_oop(int i) { 979 oop result = recorded_oop_at(argument_index(i)); 980 assert(oopDesc::is_oop_or_null(result), "must be"); 981 return result; 982 } 983 984 InstanceKlass* Dependencies::DepStream::context_type() { 985 assert(must_be_in_vm(), "raw oops here"); 986 987 // Most dependencies have an explicit context type argument. 988 { 989 int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg 990 if (ctxkj >= 0) { 991 Metadata* k = argument(ctxkj); 992 assert(k != nullptr && k->is_klass(), "type check"); 993 return InstanceKlass::cast((Klass*)k); 994 } 995 } 996 997 // Some dependencies are using the klass of the first object 998 // argument as implicit context type. 999 { 1000 int ctxkj = dep_implicit_context_arg(type()); 1001 if (ctxkj >= 0) { 1002 Klass* k = argument_oop(ctxkj)->klass(); 1003 assert(k != nullptr, "type check"); 1004 return InstanceKlass::cast(k); 1005 } 1006 } 1007 1008 // And some dependencies don't have a context type at all, 1009 // e.g. evol_method. 1010 return nullptr; 1011 } 1012 1013 // ----------------- DependencySignature -------------------------------------- 1014 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) { 1015 if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) { 1016 return false; 1017 } 1018 1019 for (int i = 0; i < s1.args_count(); i++) { 1020 if (s1.arg(i) != s2.arg(i)) { 1021 return false; 1022 } 1023 } 1024 return true; 1025 } 1026 1027 /// Checking dependencies 1028 1029 // This hierarchy walker inspects subtypes of a given type, trying to find a "bad" class which breaks a dependency. 1030 // Such a class is called a "witness" to the broken dependency. 1031 // While searching around, we ignore "participants", which are already known to the dependency. 1032 class AbstractClassHierarchyWalker { 1033 public: 1034 enum { PARTICIPANT_LIMIT = 3 }; 1035 1036 private: 1037 // if non-zero, tells how many witnesses to convert to participants 1038 uint _record_witnesses; 1039 1040 // special classes which are not allowed to be witnesses: 1041 Klass* _participants[PARTICIPANT_LIMIT+1]; 1042 uint _num_participants; 1043 1044 #ifdef ASSERT 1045 uint _nof_requests; // one-shot walker 1046 #endif // ASSERT 1047 1048 static PerfCounter* _perf_find_witness_anywhere_calls_count; 1049 static PerfCounter* _perf_find_witness_anywhere_steps_count; 1050 static PerfCounter* _perf_find_witness_in_calls_count; 1051 1052 protected: 1053 virtual Klass* find_witness_in(KlassDepChange& changes) = 0; 1054 virtual Klass* find_witness_anywhere(InstanceKlass* context_type) = 0; 1055 1056 AbstractClassHierarchyWalker(Klass* participant) : _record_witnesses(0), _num_participants(0) 1057 #ifdef ASSERT 1058 , _nof_requests(0) 1059 #endif // ASSERT 1060 { 1061 for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) { 1062 _participants[i] = nullptr; 1063 } 1064 if (participant != nullptr) { 1065 add_participant(participant); 1066 } 1067 } 1068 1069 bool is_participant(Klass* k) { 1070 for (uint i = 0; i < _num_participants; i++) { 1071 if (_participants[i] == k) { 1072 return true; 1073 } 1074 } 1075 return false; 1076 } 1077 1078 bool record_witness(Klass* witness) { 1079 if (_record_witnesses > 0) { 1080 --_record_witnesses; 1081 add_participant(witness); 1082 return false; // not a witness 1083 } else { 1084 return true; // is a witness 1085 } 1086 } 1087 1088 class CountingClassHierarchyIterator : public ClassHierarchyIterator { 1089 private: 1090 jlong _nof_steps; 1091 public: 1092 CountingClassHierarchyIterator(InstanceKlass* root) : ClassHierarchyIterator(root), _nof_steps(0) {} 1093 1094 void next() { 1095 _nof_steps++; 1096 ClassHierarchyIterator::next(); 1097 } 1098 1099 ~CountingClassHierarchyIterator() { 1100 if (UsePerfData) { 1101 _perf_find_witness_anywhere_steps_count->inc(_nof_steps); 1102 } 1103 } 1104 }; 1105 1106 public: 1107 uint num_participants() { return _num_participants; } 1108 Klass* participant(uint n) { 1109 assert(n <= _num_participants, "oob"); 1110 if (n < _num_participants) { 1111 return _participants[n]; 1112 } else { 1113 return nullptr; 1114 } 1115 } 1116 1117 void add_participant(Klass* participant) { 1118 assert(!is_participant(participant), "sanity"); 1119 assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob"); 1120 uint np = _num_participants++; 1121 _participants[np] = participant; 1122 } 1123 1124 void record_witnesses(uint add) { 1125 if (add > PARTICIPANT_LIMIT) add = PARTICIPANT_LIMIT; 1126 assert(_num_participants + add < PARTICIPANT_LIMIT, "oob"); 1127 _record_witnesses = add; 1128 } 1129 1130 Klass* find_witness(InstanceKlass* context_type, KlassDepChange* changes = nullptr); 1131 1132 static void init(); 1133 static void print_statistics(); 1134 }; 1135 1136 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_calls_count = nullptr; 1137 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_steps_count = nullptr; 1138 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_in_calls_count = nullptr; 1139 1140 void AbstractClassHierarchyWalker::init() { 1141 if (UsePerfData) { 1142 EXCEPTION_MARK; 1143 _perf_find_witness_anywhere_calls_count = 1144 PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhere", PerfData::U_Events, CHECK); 1145 _perf_find_witness_anywhere_steps_count = 1146 PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhereSteps", PerfData::U_Events, CHECK); 1147 _perf_find_witness_in_calls_count = 1148 PerfDataManager::create_counter(SUN_CI, "findWitnessIn", PerfData::U_Events, CHECK); 1149 } 1150 } 1151 1152 Klass* AbstractClassHierarchyWalker::find_witness(InstanceKlass* context_type, KlassDepChange* changes) { 1153 // Current thread must be in VM (not native mode, as in CI): 1154 assert(must_be_in_vm(), "raw oops here"); 1155 // Must not move the class hierarchy during this check: 1156 assert_locked_or_safepoint(Compile_lock); 1157 assert(_nof_requests++ == 0, "repeated requests are not supported"); 1158 1159 assert(changes == nullptr || changes->involves_context(context_type), "irrelevant dependency"); 1160 1161 // (Note: Interfaces do not have subclasses.) 1162 // If it is an interface, search its direct implementors. 1163 // (Their subclasses are additional indirect implementors. See InstanceKlass::add_implementor().) 1164 if (context_type->is_interface()) { 1165 int nof_impls = context_type->nof_implementors(); 1166 if (nof_impls == 0) { 1167 return nullptr; // no implementors 1168 } else if (nof_impls == 1) { // unique implementor 1169 assert(context_type != context_type->implementor(), "not unique"); 1170 context_type = context_type->implementor(); 1171 } else { // nof_impls >= 2 1172 // Avoid this case: *I.m > { A.m, C }; B.m > C 1173 // Here, I.m has 2 concrete implementations, but m appears unique 1174 // as A.m, because the search misses B.m when checking C. 1175 // The inherited method B.m was getting missed by the walker 1176 // when interface 'I' was the starting point. 1177 // %%% Until this is fixed more systematically, bail out. 1178 return context_type; 1179 } 1180 } 1181 assert(!context_type->is_interface(), "no interfaces allowed"); 1182 1183 if (changes != nullptr) { 1184 if (UsePerfData) { 1185 _perf_find_witness_in_calls_count->inc(); 1186 } 1187 return find_witness_in(*changes); 1188 } else { 1189 if (UsePerfData) { 1190 _perf_find_witness_anywhere_calls_count->inc(); 1191 } 1192 return find_witness_anywhere(context_type); 1193 } 1194 } 1195 1196 class ConcreteSubtypeFinder : public AbstractClassHierarchyWalker { 1197 private: 1198 bool is_witness(Klass* k); 1199 1200 protected: 1201 virtual Klass* find_witness_in(KlassDepChange& changes); 1202 virtual Klass* find_witness_anywhere(InstanceKlass* context_type); 1203 1204 public: 1205 ConcreteSubtypeFinder(Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {} 1206 }; 1207 1208 bool ConcreteSubtypeFinder::is_witness(Klass* k) { 1209 if (Dependencies::is_concrete_klass(k)) { 1210 return record_witness(k); // concrete subtype 1211 } else { 1212 return false; // not a concrete class 1213 } 1214 } 1215 1216 Klass* ConcreteSubtypeFinder::find_witness_in(KlassDepChange& changes) { 1217 // When looking for unexpected concrete types, do not look beneath expected ones: 1218 // * CX > CC > C' is OK, even if C' is new. 1219 // * CX > { CC, C' } is not OK if C' is new, and C' is the witness. 1220 Klass* new_type = changes.as_new_klass_change()->new_type(); 1221 assert(!is_participant(new_type), "only old classes are participants"); 1222 // If the new type is a subtype of a participant, we are done. 1223 for (uint i = 0; i < num_participants(); i++) { 1224 if (changes.involves_context(participant(i))) { 1225 // new guy is protected from this check by previous participant 1226 return nullptr; 1227 } 1228 } 1229 if (is_witness(new_type)) { 1230 return new_type; 1231 } 1232 // No witness found. The dependency remains unbroken. 1233 return nullptr; 1234 } 1235 1236 Klass* ConcreteSubtypeFinder::find_witness_anywhere(InstanceKlass* context_type) { 1237 for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) { 1238 Klass* sub = iter.klass(); 1239 // Do not report participant types. 1240 if (is_participant(sub)) { 1241 // Don't walk beneath a participant since it hides witnesses. 1242 iter.skip_subclasses(); 1243 } else if (is_witness(sub)) { 1244 return sub; // found a witness 1245 } 1246 } 1247 // No witness found. The dependency remains unbroken. 1248 return nullptr; 1249 } 1250 1251 class ConcreteMethodFinder : public AbstractClassHierarchyWalker { 1252 private: 1253 Symbol* _name; 1254 Symbol* _signature; 1255 1256 // cache of method lookups 1257 Method* _found_methods[PARTICIPANT_LIMIT+1]; 1258 1259 bool is_witness(Klass* k); 1260 1261 protected: 1262 virtual Klass* find_witness_in(KlassDepChange& changes); 1263 virtual Klass* find_witness_anywhere(InstanceKlass* context_type); 1264 1265 public: 1266 bool witnessed_reabstraction_in_supers(Klass* k); 1267 1268 ConcreteMethodFinder(Method* m, Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) { 1269 assert(m != nullptr && m->is_method(), "sanity"); 1270 _name = m->name(); 1271 _signature = m->signature(); 1272 1273 for (int i = 0; i < PARTICIPANT_LIMIT+1; i++) { 1274 _found_methods[i] = nullptr; 1275 } 1276 } 1277 1278 // Note: If n==num_participants, returns nullptr. 1279 Method* found_method(uint n) { 1280 assert(n <= num_participants(), "oob"); 1281 Method* fm = _found_methods[n]; 1282 assert(n == num_participants() || fm != nullptr, "proper usage"); 1283 if (fm != nullptr && fm->method_holder() != participant(n)) { 1284 // Default methods from interfaces can be added to classes. In 1285 // that case the holder of the method is not the class but the 1286 // interface where it's defined. 1287 assert(fm->is_default_method(), "sanity"); 1288 return nullptr; 1289 } 1290 return fm; 1291 } 1292 1293 void add_participant(Klass* participant) { 1294 AbstractClassHierarchyWalker::add_participant(participant); 1295 _found_methods[num_participants()] = nullptr; 1296 } 1297 1298 bool record_witness(Klass* witness, Method* m) { 1299 _found_methods[num_participants()] = m; 1300 return AbstractClassHierarchyWalker::record_witness(witness); 1301 } 1302 1303 private: 1304 static PerfCounter* _perf_find_witness_anywhere_calls_count; 1305 static PerfCounter* _perf_find_witness_anywhere_steps_count; 1306 static PerfCounter* _perf_find_witness_in_calls_count; 1307 1308 public: 1309 static void init(); 1310 static void print_statistics(); 1311 }; 1312 1313 bool ConcreteMethodFinder::is_witness(Klass* k) { 1314 if (is_participant(k)) { 1315 return false; // do not report participant types 1316 } 1317 if (k->is_instance_klass()) { 1318 InstanceKlass* ik = InstanceKlass::cast(k); 1319 // Search class hierarchy first, skipping private implementations 1320 // as they never override any inherited methods 1321 Method* m = ik->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); 1322 if (Dependencies::is_concrete_method(m, ik)) { 1323 return record_witness(k, m); // concrete method found 1324 } else { 1325 // Check for re-abstraction of method 1326 if (!ik->is_interface() && m != nullptr && m->is_abstract()) { 1327 // Found a matching abstract method 'm' in the class hierarchy. 1328 // This is fine iff 'k' is an abstract class and all concrete subtypes 1329 // of 'k' override 'm' and are participates of the current search. 1330 ConcreteSubtypeFinder wf; 1331 for (uint i = 0; i < num_participants(); i++) { 1332 Klass* p = participant(i); 1333 wf.add_participant(p); 1334 } 1335 Klass* w = wf.find_witness(ik); 1336 if (w != nullptr) { 1337 Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); 1338 if (!Dependencies::is_concrete_method(wm, w)) { 1339 // Found a concrete subtype 'w' which does not override abstract method 'm'. 1340 // Bail out because 'm' could be called with 'w' as receiver (leading to an 1341 // AbstractMethodError) and thus the method we are looking for is not unique. 1342 return record_witness(k, m); 1343 } 1344 } 1345 } 1346 // Check interface defaults also, if any exist. 1347 Array<Method*>* default_methods = ik->default_methods(); 1348 if (default_methods != nullptr) { 1349 Method* dm = ik->find_method(default_methods, _name, _signature); 1350 if (Dependencies::is_concrete_method(dm, nullptr)) { 1351 return record_witness(k, dm); // default method found 1352 } 1353 } 1354 return false; // no concrete method found 1355 } 1356 } else { 1357 return false; // no methods to find in an array type 1358 } 1359 } 1360 1361 Klass* ConcreteMethodFinder::find_witness_in(KlassDepChange& changes) { 1362 // When looking for unexpected concrete methods, look beneath expected ones, to see if there are overrides. 1363 // * CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness. 1364 Klass* new_type = changes.as_new_klass_change()->new_type(); 1365 assert(!is_participant(new_type), "only old classes are participants"); 1366 if (is_witness(new_type)) { 1367 return new_type; 1368 } else { 1369 // No witness found, but is_witness() doesn't detect method re-abstraction in case of spot-checking. 1370 if (witnessed_reabstraction_in_supers(new_type)) { 1371 return new_type; 1372 } 1373 } 1374 // No witness found. The dependency remains unbroken. 1375 return nullptr; 1376 } 1377 1378 bool ConcreteMethodFinder::witnessed_reabstraction_in_supers(Klass* k) { 1379 if (!k->is_instance_klass()) { 1380 return false; // no methods to find in an array type 1381 } else { 1382 // Looking for a case when an abstract method is inherited into a concrete class. 1383 if (Dependencies::is_concrete_klass(k) && !k->is_interface()) { 1384 Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); 1385 if (m != nullptr) { 1386 return false; // no reabstraction possible: local method found 1387 } 1388 for (InstanceKlass* super = k->java_super(); super != nullptr; super = super->java_super()) { 1389 m = super->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); 1390 if (m != nullptr) { // inherited method found 1391 if (m->is_abstract() || m->is_overpass()) { 1392 return record_witness(super, m); // abstract method found 1393 } 1394 return false; 1395 } 1396 } 1397 // Miranda. 1398 return true; 1399 } 1400 return false; 1401 } 1402 } 1403 1404 1405 Klass* ConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) { 1406 // Walk hierarchy under a context type, looking for unexpected types. 1407 for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) { 1408 Klass* sub = iter.klass(); 1409 if (is_witness(sub)) { 1410 return sub; // found a witness 1411 } 1412 } 1413 // No witness found. The dependency remains unbroken. 1414 return nullptr; 1415 } 1416 1417 // For some method m and some class ctxk (subclass of method holder), 1418 // enumerate all distinct overrides of m in concrete subclasses of ctxk. 1419 // It relies on vtable/itable information to perform method selection on each linked subclass 1420 // and ignores all non yet linked ones (speculatively treat them as "effectively abstract"). 1421 class LinkedConcreteMethodFinder : public AbstractClassHierarchyWalker { 1422 private: 1423 InstanceKlass* _resolved_klass; // resolved class (JVMS-5.4.3.1) 1424 InstanceKlass* _declaring_klass; // the holder of resolved method (JVMS-5.4.3.3) 1425 int _vtable_index; // vtable/itable index of the resolved method 1426 bool _do_itable_lookup; // choose between itable and vtable lookup logic 1427 1428 // cache of method lookups 1429 Method* _found_methods[PARTICIPANT_LIMIT+1]; 1430 1431 bool is_witness(Klass* k); 1432 Method* select_method(InstanceKlass* recv_klass); 1433 static int compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, bool& is_itable_index); 1434 static bool is_concrete_klass(InstanceKlass* ik); 1435 1436 void add_participant(Method* m, Klass* participant) { 1437 uint np = num_participants(); 1438 AbstractClassHierarchyWalker::add_participant(participant); 1439 assert(np + 1 == num_participants(), "sanity"); 1440 _found_methods[np] = m; // record the method for the participant 1441 } 1442 1443 bool record_witness(Klass* witness, Method* m) { 1444 for (uint i = 0; i < num_participants(); i++) { 1445 if (found_method(i) == m) { 1446 return false; // already recorded 1447 } 1448 } 1449 // Record not yet seen method. 1450 _found_methods[num_participants()] = m; 1451 return AbstractClassHierarchyWalker::record_witness(witness); 1452 } 1453 1454 void initialize(Method* participant) { 1455 for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) { 1456 _found_methods[i] = nullptr; 1457 } 1458 if (participant != nullptr) { 1459 add_participant(participant, participant->method_holder()); 1460 } 1461 } 1462 1463 protected: 1464 virtual Klass* find_witness_in(KlassDepChange& changes); 1465 virtual Klass* find_witness_anywhere(InstanceKlass* context_type); 1466 1467 public: 1468 // In order to perform method selection, the following info is needed: 1469 // (1) interface or virtual call; 1470 // (2) vtable/itable index; 1471 // (3) declaring class (in case of interface call). 1472 // 1473 // It is prepared based on the results of method resolution: resolved class and resolved method (as specified in JVMS-5.4.3.3). 1474 // Optionally, a method which was previously determined as a unique target (uniqm) is added as a participant 1475 // to enable dependency spot-checking and speed up the search. 1476 LinkedConcreteMethodFinder(InstanceKlass* resolved_klass, Method* resolved_method, Method* uniqm = nullptr) : AbstractClassHierarchyWalker(nullptr) { 1477 assert(resolved_klass->is_linked(), "required"); 1478 assert(resolved_method->method_holder()->is_linked(), "required"); 1479 assert(!resolved_method->can_be_statically_bound(), "no vtable index available"); 1480 1481 _resolved_klass = resolved_klass; 1482 _declaring_klass = resolved_method->method_holder(); 1483 _vtable_index = compute_vtable_index(resolved_klass, resolved_method, 1484 _do_itable_lookup); // out parameter 1485 assert(_vtable_index >= 0, "invalid vtable index"); 1486 1487 initialize(uniqm); 1488 } 1489 1490 // Note: If n==num_participants, returns nullptr. 1491 Method* found_method(uint n) { 1492 assert(n <= num_participants(), "oob"); 1493 assert(participant(n) != nullptr || n == num_participants(), "proper usage"); 1494 return _found_methods[n]; 1495 } 1496 }; 1497 1498 Klass* LinkedConcreteMethodFinder::find_witness_in(KlassDepChange& changes) { 1499 Klass* type = changes.type(); 1500 1501 assert(!is_participant(type), "only old classes are participants"); 1502 1503 if (is_witness(type)) { 1504 return type; 1505 } 1506 return nullptr; // No witness found. The dependency remains unbroken. 1507 } 1508 1509 Klass* LinkedConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) { 1510 for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) { 1511 Klass* sub = iter.klass(); 1512 if (is_witness(sub)) { 1513 return sub; 1514 } 1515 if (sub->is_instance_klass() && !InstanceKlass::cast(sub)->is_linked()) { 1516 iter.skip_subclasses(); // ignore not yet linked classes 1517 } 1518 } 1519 return nullptr; // No witness found. The dependency remains unbroken. 1520 } 1521 1522 bool LinkedConcreteMethodFinder::is_witness(Klass* k) { 1523 if (is_participant(k)) { 1524 return false; // do not report participant types 1525 } else if (k->is_instance_klass()) { 1526 InstanceKlass* ik = InstanceKlass::cast(k); 1527 if (is_concrete_klass(ik)) { 1528 Method* m = select_method(ik); 1529 return record_witness(ik, m); 1530 } else { 1531 return false; // ignore non-concrete holder class 1532 } 1533 } else { 1534 return false; // no methods to find in an array type 1535 } 1536 } 1537 1538 Method* LinkedConcreteMethodFinder::select_method(InstanceKlass* recv_klass) { 1539 Method* selected_method = nullptr; 1540 if (_do_itable_lookup) { 1541 assert(_declaring_klass->is_interface(), "sanity"); 1542 bool implements_interface; // initialized by method_at_itable_or_null() 1543 selected_method = recv_klass->method_at_itable_or_null(_declaring_klass, _vtable_index, 1544 implements_interface); // out parameter 1545 assert(implements_interface, "not implemented"); 1546 } else { 1547 selected_method = recv_klass->method_at_vtable(_vtable_index); 1548 } 1549 return selected_method; // nullptr when corresponding slot is empty (AbstractMethodError case) 1550 } 1551 1552 int LinkedConcreteMethodFinder::compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, 1553 // out parameter 1554 bool& is_itable_index) { 1555 if (resolved_klass->is_interface() && resolved_method->has_itable_index()) { 1556 is_itable_index = true; 1557 return resolved_method->itable_index(); 1558 } 1559 // Check for default or miranda method first. 1560 InstanceKlass* declaring_klass = resolved_method->method_holder(); 1561 if (!resolved_klass->is_interface() && declaring_klass->is_interface()) { 1562 is_itable_index = false; 1563 return resolved_klass->vtable_index_of_interface_method(resolved_method); 1564 } 1565 // At this point we are sure that resolved_method is virtual and not 1566 // a default or miranda method; therefore, it must have a valid vtable index. 1567 assert(resolved_method->has_vtable_index(), ""); 1568 is_itable_index = false; 1569 return resolved_method->vtable_index(); 1570 } 1571 1572 bool LinkedConcreteMethodFinder::is_concrete_klass(InstanceKlass* ik) { 1573 if (!Dependencies::is_concrete_klass(ik)) { 1574 return false; // not concrete 1575 } 1576 if (ik->is_interface()) { 1577 return false; // interfaces aren't concrete 1578 } 1579 if (!ik->is_linked()) { 1580 return false; // not yet linked classes don't have instances 1581 } 1582 return true; 1583 } 1584 1585 #ifdef ASSERT 1586 // Assert that m is inherited into ctxk, without intervening overrides. 1587 // (May return true even if this is not true, in corner cases where we punt.) 1588 bool Dependencies::verify_method_context(InstanceKlass* ctxk, Method* m) { 1589 if (m->is_private()) { 1590 return false; // Quick lose. Should not happen. 1591 } 1592 if (m->method_holder() == ctxk) { 1593 return true; // Quick win. 1594 } 1595 if (!(m->is_public() || m->is_protected())) { 1596 // The override story is complex when packages get involved. 1597 return true; // Must punt the assertion to true. 1598 } 1599 Method* lm = ctxk->lookup_method(m->name(), m->signature()); 1600 if (lm == nullptr) { 1601 // It might be an interface method 1602 lm = ctxk->lookup_method_in_ordered_interfaces(m->name(), m->signature()); 1603 } 1604 if (lm == m) { 1605 // Method m is inherited into ctxk. 1606 return true; 1607 } 1608 if (lm != nullptr) { 1609 if (!(lm->is_public() || lm->is_protected())) { 1610 // Method is [package-]private, so the override story is complex. 1611 return true; // Must punt the assertion to true. 1612 } 1613 if (lm->is_static()) { 1614 // Static methods don't override non-static so punt 1615 return true; 1616 } 1617 if (!Dependencies::is_concrete_method(lm, ctxk) && 1618 !Dependencies::is_concrete_method(m, ctxk)) { 1619 // They are both non-concrete 1620 if (lm->method_holder()->is_subtype_of(m->method_holder())) { 1621 // Method m is overridden by lm, but both are non-concrete. 1622 return true; 1623 } 1624 if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() && 1625 ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) { 1626 // Interface method defined in multiple super interfaces 1627 return true; 1628 } 1629 } 1630 } 1631 ResourceMark rm; 1632 tty->print_cr("Dependency method not found in the associated context:"); 1633 tty->print_cr(" context = %s", ctxk->external_name()); 1634 tty->print( " method = "); m->print_short_name(tty); tty->cr(); 1635 if (lm != nullptr) { 1636 tty->print( " found = "); lm->print_short_name(tty); tty->cr(); 1637 } 1638 return false; 1639 } 1640 #endif // ASSERT 1641 1642 bool Dependencies::is_concrete_klass(Klass* k) { 1643 if (k->is_abstract()) return false; 1644 // %%% We could treat classes which are concrete but 1645 // have not yet been instantiated as virtually abstract. 1646 // This would require a deoptimization barrier on first instantiation. 1647 //if (k->is_not_instantiated()) return false; 1648 return true; 1649 } 1650 1651 bool Dependencies::is_concrete_method(Method* m, Klass* k) { 1652 // nullptr is not a concrete method. 1653 if (m == nullptr) { 1654 return false; 1655 } 1656 // Statics are irrelevant to virtual call sites. 1657 if (m->is_static()) { 1658 return false; 1659 } 1660 // Abstract methods are not concrete. 1661 if (m->is_abstract()) { 1662 return false; 1663 } 1664 // Overpass (error) methods are not concrete if k is abstract. 1665 if (m->is_overpass() && k != nullptr) { 1666 return !k->is_abstract(); 1667 } 1668 // Note "true" is conservative answer: overpass clause is false if k == nullptr, 1669 // implies return true if answer depends on overpass clause. 1670 return true; 1671 } 1672 1673 Klass* Dependencies::find_finalizable_subclass(InstanceKlass* ik) { 1674 for (ClassHierarchyIterator iter(ik); !iter.done(); iter.next()) { 1675 Klass* sub = iter.klass(); 1676 if (sub->has_finalizer() && !sub->is_interface()) { 1677 return sub; 1678 } 1679 } 1680 return nullptr; // not found 1681 } 1682 1683 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) { 1684 if (k->is_abstract()) return false; 1685 // We could also return false if k does not yet appear to be 1686 // instantiated, if the VM version supports this distinction also. 1687 //if (k->is_not_instantiated()) return false; 1688 return true; 1689 } 1690 1691 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) { 1692 return k->has_finalizable_subclass(); 1693 } 1694 1695 // Any use of the contents (bytecodes) of a method must be 1696 // marked by an "evol_method" dependency, if those contents 1697 // can change. (Note: A method is always dependent on itself.) 1698 Klass* Dependencies::check_evol_method(Method* m) { 1699 assert(must_be_in_vm(), "raw oops here"); 1700 // Did somebody do a JVMTI RedefineClasses while our backs were turned? 1701 // Or is there a now a breakpoint? 1702 // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.) 1703 if (m->is_old() 1704 || m->number_of_breakpoints() > 0) { 1705 return m->method_holder(); 1706 } else { 1707 return nullptr; 1708 } 1709 } 1710 1711 // This is a strong assertion: It is that the given type 1712 // has no subtypes whatever. It is most useful for 1713 // optimizing checks on reflected types or on array types. 1714 // (Checks on types which are derived from real instances 1715 // can be optimized more strongly than this, because we 1716 // know that the checked type comes from a concrete type, 1717 // and therefore we can disregard abstract types.) 1718 Klass* Dependencies::check_leaf_type(InstanceKlass* ctxk) { 1719 assert(must_be_in_vm(), "raw oops here"); 1720 assert_locked_or_safepoint(Compile_lock); 1721 Klass* sub = ctxk->subklass(); 1722 if (sub != nullptr) { 1723 return sub; 1724 } else if (ctxk->nof_implementors() != 0) { 1725 // if it is an interface, it must be unimplemented 1726 // (if it is not an interface, nof_implementors is always zero) 1727 InstanceKlass* impl = ctxk->implementor(); 1728 assert(impl != nullptr, "must be set"); 1729 return impl; 1730 } else { 1731 return nullptr; 1732 } 1733 } 1734 1735 // Test the assertion that conck is the only concrete subtype* of ctxk. 1736 // The type conck itself is allowed to have have further concrete subtypes. 1737 // This allows the compiler to narrow occurrences of ctxk by conck, 1738 // when dealing with the types of actual instances. 1739 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk, 1740 Klass* conck, 1741 NewKlassDepChange* changes) { 1742 ConcreteSubtypeFinder wf(conck); 1743 Klass* k = wf.find_witness(ctxk, changes); 1744 return k; 1745 } 1746 1747 1748 // Find the unique concrete proper subtype of ctxk, or nullptr if there 1749 // is more than one concrete proper subtype. If there are no concrete 1750 // proper subtypes, return ctxk itself, whether it is concrete or not. 1751 // The returned subtype is allowed to have have further concrete subtypes. 1752 // That is, return CC1 for CX > CC1 > CC2, but nullptr for CX > { CC1, CC2 }. 1753 Klass* Dependencies::find_unique_concrete_subtype(InstanceKlass* ctxk) { 1754 ConcreteSubtypeFinder wf(ctxk); // Ignore ctxk when walking. 1755 wf.record_witnesses(1); // Record one other witness when walking. 1756 Klass* wit = wf.find_witness(ctxk); 1757 if (wit != nullptr) return nullptr; // Too many witnesses. 1758 Klass* conck = wf.participant(0); 1759 if (conck == nullptr) { 1760 return ctxk; // Return ctxk as a flag for "no subtypes". 1761 } else { 1762 #ifndef PRODUCT 1763 // Make sure the dependency mechanism will pass this discovery: 1764 if (VerifyDependencies) { 1765 // Turn off dependency tracing while actually testing deps. 1766 FlagSetting fs(_verify_in_progress, true); 1767 if (!Dependencies::is_concrete_klass(ctxk)) { 1768 guarantee(nullptr == (void *) 1769 check_abstract_with_unique_concrete_subtype(ctxk, conck), 1770 "verify dep."); 1771 } 1772 } 1773 #endif //PRODUCT 1774 return conck; 1775 } 1776 } 1777 1778 // Try to determine whether root method in some context is concrete or not based on the information about the unique method 1779 // in that context. It exploits the fact that concrete root method is always inherited into the context when there's a unique method. 1780 // Hence, unique method holder is always a supertype of the context class when root method is concrete. 1781 // Examples for concrete_root_method 1782 // C (C.m uniqm) 1783 // | 1784 // CX (ctxk) uniqm is inherited into context. 1785 // 1786 // CX (ctxk) (CX.m uniqm) here uniqm is defined in ctxk. 1787 // Examples for !concrete_root_method 1788 // CX (ctxk) 1789 // | 1790 // C (C.m uniqm) uniqm is in subtype of ctxk. 1791 bool Dependencies::is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk) { 1792 if (uniqm == nullptr) { 1793 return false; // match Dependencies::is_concrete_method() behavior 1794 } 1795 // Theoretically, the "direction" of subtype check matters here. 1796 // On one hand, in case of interface context with a single implementor, uniqm can be in a superclass of the implementor which 1797 // is not related to context class. 1798 // On another hand, uniqm could come from an interface unrelated to the context class, but right now it is not possible: 1799 // it is required that uniqm->method_holder() is the participant (uniqm->method_holder() <: ctxk), hence a default method 1800 // can't be used as unique. 1801 if (ctxk->is_interface()) { 1802 InstanceKlass* implementor = ctxk->implementor(); 1803 assert(implementor != ctxk, "single implementor only"); // should have been invalidated earlier 1804 ctxk = implementor; 1805 } 1806 InstanceKlass* holder = uniqm->method_holder(); 1807 assert(!holder->is_interface(), "no default methods allowed"); 1808 assert(ctxk->is_subclass_of(holder) || holder->is_subclass_of(ctxk), "not related"); 1809 return ctxk->is_subclass_of(holder); 1810 } 1811 1812 // If a class (or interface) has a unique concrete method uniqm, return nullptr. 1813 // Otherwise, return a class that contains an interfering method. 1814 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk, 1815 Method* uniqm, 1816 NewKlassDepChange* changes) { 1817 ConcreteMethodFinder wf(uniqm, uniqm->method_holder()); 1818 Klass* k = wf.find_witness(ctxk, changes); 1819 if (k != nullptr) { 1820 return k; 1821 } 1822 if (!Dependencies::is_concrete_root_method(uniqm, ctxk) || changes != nullptr) { 1823 Klass* conck = find_witness_AME(ctxk, uniqm, changes); 1824 if (conck != nullptr) { 1825 // Found a concrete subtype 'conck' which does not override abstract root method. 1826 return conck; 1827 } 1828 } 1829 return nullptr; 1830 } 1831 1832 Klass* Dependencies::check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes) { 1833 assert(ctxk->is_interface(), "sanity"); 1834 assert(ctxk->nof_implementors() > 0, "no implementors"); 1835 if (ctxk->nof_implementors() == 1) { 1836 assert(ctxk->implementor() == uniqk, "sanity"); 1837 return nullptr; 1838 } 1839 return ctxk; // no unique implementor 1840 } 1841 1842 // Search for AME. 1843 // There are two version of checks. 1844 // 1) Spot checking version(Classload time). Newly added class is checked for AME. 1845 // Checks whether abstract/overpass method is inherited into/declared in newly added concrete class. 1846 // 2) Compile time analysis for abstract/overpass(abstract klass) root_m. The non uniqm subtrees are checked for concrete classes. 1847 Klass* Dependencies::find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes) { 1848 if (m != nullptr) { 1849 if (changes != nullptr) { 1850 // Spot checking version. 1851 ConcreteMethodFinder wf(m); 1852 Klass* new_type = changes->as_new_klass_change()->new_type(); 1853 if (wf.witnessed_reabstraction_in_supers(new_type)) { 1854 return new_type; 1855 } 1856 } else { 1857 // Note: It is required that uniqm->method_holder() is the participant (see ClassHierarchyWalker::found_method()). 1858 ConcreteSubtypeFinder wf(m->method_holder()); 1859 Klass* conck = wf.find_witness(ctxk); 1860 if (conck != nullptr) { 1861 Method* cm = InstanceKlass::cast(conck)->find_instance_method(m->name(), m->signature(), Klass::PrivateLookupMode::skip); 1862 if (!Dependencies::is_concrete_method(cm, conck)) { 1863 return conck; 1864 } 1865 } 1866 } 1867 } 1868 return nullptr; 1869 } 1870 1871 // This function is used by find_unique_concrete_method(non vtable based) 1872 // to check whether subtype method overrides the base method. 1873 static bool overrides(Method* sub_m, Method* base_m) { 1874 assert(base_m != nullptr, "base method should be non null"); 1875 if (sub_m == nullptr) { 1876 return false; 1877 } 1878 /** 1879 * If base_m is public or protected then sub_m always overrides. 1880 * If base_m is !public, !protected and !private (i.e. base_m is package private) 1881 * then sub_m should be in the same package as that of base_m. 1882 * For package private base_m this is conservative approach as it allows only subset of all allowed cases in 1883 * the jvm specification. 1884 **/ 1885 if (base_m->is_public() || base_m->is_protected() || 1886 base_m->method_holder()->is_same_class_package(sub_m->method_holder())) { 1887 return true; 1888 } 1889 return false; 1890 } 1891 1892 // Find the set of all non-abstract methods under ctxk that match m. 1893 // (The method m must be defined or inherited in ctxk.) 1894 // Include m itself in the set, unless it is abstract. 1895 // If this set has exactly one element, return that element. 1896 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass** participant) { 1897 // Return nullptr if m is marked old; must have been a redefined method. 1898 if (m->is_old()) { 1899 return nullptr; 1900 } 1901 if (m->is_default_method()) { 1902 return nullptr; // not supported 1903 } 1904 assert(verify_method_context(ctxk, m), "proper context"); 1905 ConcreteMethodFinder wf(m); 1906 wf.record_witnesses(1); 1907 Klass* wit = wf.find_witness(ctxk); 1908 if (wit != nullptr) return nullptr; // Too many witnesses. 1909 Method* fm = wf.found_method(0); // Will be nullptr if num_parts == 0. 1910 if (participant != nullptr) { 1911 (*participant) = wf.participant(0); 1912 } 1913 if (!Dependencies::is_concrete_method(fm, nullptr)) { 1914 fm = nullptr; // ignore abstract methods 1915 } 1916 if (Dependencies::is_concrete_method(m, ctxk)) { 1917 if (fm == nullptr) { 1918 // It turns out that m was always the only implementation. 1919 fm = m; 1920 } else if (fm != m) { 1921 // Two conflicting implementations after all. 1922 // (This can happen if m is inherited into ctxk and fm overrides it.) 1923 return nullptr; 1924 } 1925 } else if (Dependencies::find_witness_AME(ctxk, fm) != nullptr) { 1926 // Found a concrete subtype which does not override abstract root method. 1927 return nullptr; 1928 } else if (!overrides(fm, m)) { 1929 // Found method doesn't override abstract root method. 1930 return nullptr; 1931 } 1932 assert(Dependencies::is_concrete_root_method(fm, ctxk) == Dependencies::is_concrete_method(m, ctxk), "mismatch"); 1933 #ifndef PRODUCT 1934 // Make sure the dependency mechanism will pass this discovery: 1935 if (VerifyDependencies && fm != nullptr) { 1936 guarantee(nullptr == (void *)check_unique_concrete_method(ctxk, fm), 1937 "verify dep."); 1938 } 1939 #endif //PRODUCT 1940 return fm; 1941 } 1942 1943 // If a class (or interface) has a unique concrete method uniqm, return nullptr. 1944 // Otherwise, return a class that contains an interfering method. 1945 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk, 1946 Method* uniqm, 1947 Klass* resolved_klass, 1948 Method* resolved_method, 1949 KlassDepChange* changes) { 1950 assert(!ctxk->is_interface() || ctxk == resolved_klass, "sanity"); 1951 assert(!resolved_method->can_be_statically_bound() || resolved_method == uniqm, "sanity"); 1952 assert(resolved_klass->is_subtype_of(resolved_method->method_holder()), "sanity"); 1953 1954 if (!InstanceKlass::cast(resolved_klass)->is_linked() || 1955 !resolved_method->method_holder()->is_linked() || 1956 resolved_method->can_be_statically_bound()) { 1957 // Dependency is redundant, but benign. Just keep it to avoid unnecessary recompilation. 1958 return nullptr; // no vtable index available 1959 } 1960 1961 LinkedConcreteMethodFinder mf(InstanceKlass::cast(resolved_klass), resolved_method, uniqm); 1962 return mf.find_witness(ctxk, changes); 1963 } 1964 1965 // Find the set of all non-abstract methods under ctxk that match m. 1966 // (The method m must be defined or inherited in ctxk.) 1967 // Include m itself in the set, unless it is abstract. 1968 // If this set has exactly one element, return that element. 1969 // Not yet linked subclasses of ctxk are ignored since they don't have any instances yet. 1970 // Additionally, resolved_klass and resolved_method complete the description of the call site being analyzed. 1971 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method) { 1972 // Return nullptr if m is marked old; must have been a redefined method. 1973 if (m->is_old()) { 1974 return nullptr; 1975 } 1976 if (!InstanceKlass::cast(resolved_klass)->is_linked() || 1977 !resolved_method->method_holder()->is_linked() || 1978 resolved_method->can_be_statically_bound()) { 1979 return m; // nothing to do: no witness under ctxk 1980 } 1981 LinkedConcreteMethodFinder wf(InstanceKlass::cast(resolved_klass), resolved_method); 1982 assert(Dependencies::verify_method_context(ctxk, m), "proper context"); 1983 wf.record_witnesses(1); 1984 Klass* wit = wf.find_witness(ctxk); 1985 if (wit != nullptr) { 1986 return nullptr; // Too many witnesses. 1987 } 1988 // p == nullptr when no participants are found (wf.num_participants() == 0). 1989 // fm == nullptr case has 2 meanings: 1990 // * when p == nullptr: no method found; 1991 // * when p != nullptr: AbstractMethodError-throwing method found. 1992 // Also, found method should always be accompanied by a participant class. 1993 Klass* p = wf.participant(0); 1994 Method* fm = wf.found_method(0); 1995 assert(fm == nullptr || p != nullptr, "no participant"); 1996 // Normalize all error-throwing cases to nullptr. 1997 if (fm == Universe::throw_illegal_access_error() || 1998 fm == Universe::throw_no_such_method_error() || 1999 !Dependencies::is_concrete_method(fm, p)) { 2000 fm = nullptr; // error-throwing method 2001 } 2002 if (Dependencies::is_concrete_method(m, ctxk)) { 2003 if (p == nullptr) { 2004 // It turns out that m was always the only implementation. 2005 assert(fm == nullptr, "sanity"); 2006 fm = m; 2007 } 2008 } 2009 #ifndef PRODUCT 2010 // Make sure the dependency mechanism will pass this discovery: 2011 if (VerifyDependencies && fm != nullptr) { 2012 guarantee(nullptr == check_unique_concrete_method(ctxk, fm, resolved_klass, resolved_method), 2013 "verify dep."); 2014 } 2015 #endif // PRODUCT 2016 assert(fm == nullptr || !fm->is_abstract(), "sanity"); 2017 // Old CHA conservatively reports concrete methods in abstract classes 2018 // irrespective of whether they have concrete subclasses or not. 2019 // Also, abstract root method case is not fully supported. 2020 #ifdef ASSERT 2021 Klass* uniqp = nullptr; 2022 Method* uniqm = Dependencies::find_unique_concrete_method(ctxk, m, &uniqp); 2023 assert(uniqm == nullptr || uniqm == fm || 2024 m->is_abstract() || 2025 uniqm->method_holder()->is_abstract() || 2026 (fm == nullptr && uniqm != nullptr && uniqp != nullptr && !InstanceKlass::cast(uniqp)->is_linked()), 2027 "sanity"); 2028 #endif // ASSERT 2029 return fm; 2030 } 2031 2032 Klass* Dependencies::check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes) { 2033 InstanceKlass* search_at = ctxk; 2034 if (changes != nullptr) { 2035 search_at = changes->new_type(); // just look at the new bit 2036 } 2037 return find_finalizable_subclass(search_at); 2038 } 2039 2040 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) { 2041 assert(call_site != nullptr, "sanity"); 2042 assert(method_handle != nullptr, "sanity"); 2043 assert(call_site->is_a(vmClasses::CallSite_klass()), "sanity"); 2044 2045 if (changes == nullptr) { 2046 // Validate all CallSites 2047 if (java_lang_invoke_CallSite::target(call_site) != method_handle) 2048 return call_site->klass(); // assertion failed 2049 } else { 2050 // Validate the given CallSite 2051 if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) { 2052 assert(method_handle != changes->method_handle(), "must be"); 2053 return call_site->klass(); // assertion failed 2054 } 2055 } 2056 return nullptr; // assertion still valid 2057 } 2058 2059 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) { 2060 if (_verify_in_progress) return; // don't log 2061 if (witness != nullptr) { 2062 LogTarget(Debug, dependencies) lt; 2063 if (lt.is_enabled()) { 2064 LogStream ls(<); 2065 print_dependency(&ls, witness, /*verbose=*/ true); 2066 } 2067 // The following is a no-op unless logging is enabled: 2068 log_dependency(witness); 2069 } 2070 } 2071 2072 Klass* Dependencies::DepStream::check_new_klass_dependency(NewKlassDepChange* changes) { 2073 assert_locked_or_safepoint(Compile_lock); 2074 Dependencies::check_valid_dependency_type(type()); 2075 2076 Klass* witness = nullptr; 2077 switch (type()) { 2078 case evol_method: 2079 witness = check_evol_method(method_argument(0)); 2080 break; 2081 case leaf_type: 2082 witness = check_leaf_type(context_type()); 2083 break; 2084 case abstract_with_unique_concrete_subtype: 2085 witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes); 2086 break; 2087 case unique_concrete_method_2: 2088 witness = check_unique_concrete_method(context_type(), method_argument(1), changes); 2089 break; 2090 case unique_concrete_method_4: 2091 witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes); 2092 break; 2093 case unique_implementor: 2094 witness = check_unique_implementor(context_type(), type_argument(1), changes); 2095 break; 2096 case no_finalizable_subclasses: 2097 witness = check_has_no_finalizable_subclasses(context_type(), changes); 2098 break; 2099 default: 2100 witness = nullptr; 2101 break; 2102 } 2103 trace_and_log_witness(witness); 2104 return witness; 2105 } 2106 2107 Klass* Dependencies::DepStream::check_klass_init_dependency(KlassInitDepChange* changes) { 2108 assert_locked_or_safepoint(Compile_lock); 2109 Dependencies::check_valid_dependency_type(type()); 2110 2111 // No new types added. Only unique_concrete_method_4 is sensitive to class initialization changes. 2112 Klass* witness = nullptr; 2113 switch (type()) { 2114 case unique_concrete_method_4: 2115 witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes); 2116 break; 2117 default: 2118 witness = nullptr; 2119 break; 2120 } 2121 trace_and_log_witness(witness); 2122 return witness; 2123 } 2124 2125 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) { 2126 assert_locked_or_safepoint(Compile_lock); 2127 Dependencies::check_valid_dependency_type(type()); 2128 2129 if (changes != nullptr) { 2130 if (changes->is_klass_init_change()) { 2131 return check_klass_init_dependency(changes->as_klass_init_change()); 2132 } else { 2133 return check_new_klass_dependency(changes->as_new_klass_change()); 2134 } 2135 } else { 2136 Klass* witness = check_new_klass_dependency(nullptr); 2137 // check_klass_init_dependency duplicates check_new_klass_dependency checks when class hierarchy change info is absent. 2138 assert(witness != nullptr || check_klass_init_dependency(nullptr) == nullptr, "missed dependency"); 2139 return witness; 2140 } 2141 } 2142 2143 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) { 2144 assert_locked_or_safepoint(Compile_lock); 2145 Dependencies::check_valid_dependency_type(type()); 2146 2147 Klass* witness = nullptr; 2148 switch (type()) { 2149 case call_site_target_value: 2150 witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes); 2151 break; 2152 default: 2153 witness = nullptr; 2154 break; 2155 } 2156 trace_and_log_witness(witness); 2157 return witness; 2158 } 2159 2160 2161 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) { 2162 // Handle klass dependency 2163 if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type())) 2164 return check_klass_dependency(changes.as_klass_change()); 2165 2166 // Handle CallSite dependency 2167 if (changes.is_call_site_change()) 2168 return check_call_site_dependency(changes.as_call_site_change()); 2169 2170 // irrelevant dependency; skip it 2171 return nullptr; 2172 } 2173 2174 2175 void DepChange::print() { print_on(tty); } 2176 2177 void DepChange::print_on(outputStream* st) { 2178 int nsup = 0, nint = 0; 2179 for (ContextStream str(*this); str.next(); ) { 2180 InstanceKlass* k = str.klass(); 2181 switch (str.change_type()) { 2182 case Change_new_type: 2183 st->print_cr(" dependee = %s", k->external_name()); 2184 break; 2185 case Change_new_sub: 2186 if (!WizardMode) { 2187 ++nsup; 2188 } else { 2189 st->print_cr(" context super = %s", k->external_name()); 2190 } 2191 break; 2192 case Change_new_impl: 2193 if (!WizardMode) { 2194 ++nint; 2195 } else { 2196 st->print_cr(" context interface = %s", k->external_name()); 2197 } 2198 break; 2199 default: 2200 break; 2201 } 2202 } 2203 if (nsup + nint != 0) { 2204 st->print_cr(" context supers = %d, interfaces = %d", nsup, nint); 2205 } 2206 } 2207 2208 void DepChange::ContextStream::start() { 2209 InstanceKlass* type = (_changes.is_klass_change() ? _changes.as_klass_change()->type() : (InstanceKlass*) nullptr); 2210 _change_type = (type == nullptr ? NO_CHANGE : Start_Klass); 2211 _klass = type; 2212 _ti_base = nullptr; 2213 _ti_index = 0; 2214 _ti_limit = 0; 2215 } 2216 2217 bool DepChange::ContextStream::next() { 2218 switch (_change_type) { 2219 case Start_Klass: // initial state; _klass is the new type 2220 _ti_base = _klass->transitive_interfaces(); 2221 _ti_index = 0; 2222 _change_type = Change_new_type; 2223 return true; 2224 case Change_new_type: 2225 // fall through: 2226 _change_type = Change_new_sub; 2227 case Change_new_sub: 2228 // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277 2229 { 2230 _klass = _klass->java_super(); 2231 if (_klass != nullptr) { 2232 return true; 2233 } 2234 } 2235 // else set up _ti_limit and fall through: 2236 _ti_limit = (_ti_base == nullptr) ? 0 : _ti_base->length(); 2237 _change_type = Change_new_impl; 2238 case Change_new_impl: 2239 if (_ti_index < _ti_limit) { 2240 _klass = _ti_base->at(_ti_index++); 2241 return true; 2242 } 2243 // fall through: 2244 _change_type = NO_CHANGE; // iterator is exhausted 2245 case NO_CHANGE: 2246 break; 2247 default: 2248 ShouldNotReachHere(); 2249 } 2250 return false; 2251 } 2252 2253 void KlassDepChange::initialize() { 2254 // entire transaction must be under this lock: 2255 assert_lock_strong(Compile_lock); 2256 2257 // Mark all dependee and all its superclasses 2258 // Mark transitive interfaces 2259 for (ContextStream str(*this); str.next(); ) { 2260 InstanceKlass* d = str.klass(); 2261 assert(!d->is_marked_dependent(), "checking"); 2262 d->set_is_marked_dependent(true); 2263 } 2264 } 2265 2266 KlassDepChange::~KlassDepChange() { 2267 // Unmark all dependee and all its superclasses 2268 // Unmark transitive interfaces 2269 for (ContextStream str(*this); str.next(); ) { 2270 InstanceKlass* d = str.klass(); 2271 d->set_is_marked_dependent(false); 2272 } 2273 } 2274 2275 bool KlassDepChange::involves_context(Klass* k) { 2276 if (k == nullptr || !k->is_instance_klass()) { 2277 return false; 2278 } 2279 InstanceKlass* ik = InstanceKlass::cast(k); 2280 bool is_contained = ik->is_marked_dependent(); 2281 assert(is_contained == type()->is_subtype_of(k), 2282 "correct marking of potential context types"); 2283 return is_contained; 2284 } 2285 2286 void Dependencies::print_statistics() { 2287 AbstractClassHierarchyWalker::print_statistics(); 2288 } 2289 2290 void AbstractClassHierarchyWalker::print_statistics() { 2291 if (UsePerfData) { 2292 jlong deps_find_witness_calls = _perf_find_witness_anywhere_calls_count->get_value(); 2293 jlong deps_find_witness_steps = _perf_find_witness_anywhere_steps_count->get_value(); 2294 jlong deps_find_witness_singles = _perf_find_witness_in_calls_count->get_value(); 2295 2296 ttyLocker ttyl; 2297 tty->print_cr("Dependency check (find_witness) " 2298 "calls=" JLONG_FORMAT ", steps=" JLONG_FORMAT " (avg=%.1f), singles=" JLONG_FORMAT, 2299 deps_find_witness_calls, 2300 deps_find_witness_steps, 2301 (double)deps_find_witness_steps / deps_find_witness_calls, 2302 deps_find_witness_singles); 2303 if (xtty != nullptr) { 2304 xtty->elem("deps_find_witness calls='" JLONG_FORMAT "' steps='" JLONG_FORMAT "' singles='" JLONG_FORMAT "'", 2305 deps_find_witness_calls, 2306 deps_find_witness_steps, 2307 deps_find_witness_singles); 2308 } 2309 } 2310 } 2311 2312 CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) : 2313 _call_site(call_site), 2314 _method_handle(method_handle) { 2315 assert(_call_site()->is_a(vmClasses::CallSite_klass()), "must be"); 2316 assert(_method_handle.is_null() || _method_handle()->is_a(vmClasses::MethodHandle_klass()), "must be"); 2317 } 2318 2319 void dependencies_init() { 2320 AbstractClassHierarchyWalker::init(); 2321 }