1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciArrayKlass.hpp"
  26 #include "ci/ciEnv.hpp"
  27 #include "ci/ciKlass.hpp"
  28 #include "ci/ciMethod.hpp"
  29 #include "classfile/javaClasses.inline.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/klass.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/method.inline.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/handles.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/javaThread.inline.hpp"
  44 #include "runtime/jniHandles.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/perfData.hpp"
  47 #include "runtime/vmThread.hpp"
  48 #include "utilities/copy.hpp"
  49 
  50 
  51 #ifdef ASSERT
  52 static bool must_be_in_vm() {
  53   Thread* thread = Thread::current();
  54   if (thread->is_Java_thread()) {
  55     return JavaThread::cast(thread)->thread_state() == _thread_in_vm;
  56   } else {
  57     return true;  // Could be VMThread or GC thread
  58   }
  59 }
  60 #endif //ASSERT
  61 
  62 bool Dependencies::_verify_in_progress = false;  // don't -Xlog:dependencies
  63 
  64 void Dependencies::initialize(ciEnv* env) {
  65   Arena* arena = env->arena();
  66   _oop_recorder = env->oop_recorder();
  67   _log = env->log();
  68   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  69 #if INCLUDE_JVMCI
  70   _using_dep_values = false;
  71 #endif
  72   DEBUG_ONLY(_deps[end_marker] = nullptr);
  73   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  74     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, nullptr);
  75   }
  76   _content_bytes = nullptr;
  77   _size_in_bytes = (size_t)-1;
  78 
  79   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  80 }
  81 
  82 void Dependencies::assert_evol_method(ciMethod* m) {
  83   assert_common_1(evol_method, m);
  84 }
  85 
  86 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  87   if (ctxk->is_array_klass()) {
  88     // As a special case, support this assertion on an array type,
  89     // which reduces to an assertion on its element type.
  90     // Note that this cannot be done with assertions that
  91     // relate to concreteness or abstractness.
  92     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  93     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  94     ctxk = elemt->as_instance_klass();
  95     //if (ctxk->is_final())  return;            // Ex:  String[][]
  96   }
  97   check_ctxk(ctxk);
  98   assert_common_1(leaf_type, ctxk);
  99 }
 100 
 101 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
 102   check_ctxk_abstract(ctxk);
 103   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
 104 }
 105 
 106 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
 107   check_ctxk(ctxk);
 108   check_unique_method(ctxk, uniqm);
 109   assert_common_2(unique_concrete_method_2, ctxk, uniqm);
 110 }
 111 
 112 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method) {
 113   check_ctxk(ctxk);
 114   check_unique_method(ctxk, uniqm);
 115   assert_common_4(unique_concrete_method_4, ctxk, uniqm, resolved_klass, resolved_method);
 116 }
 117 
 118 void Dependencies::assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) {
 119   check_ctxk(ctxk);
 120   check_unique_implementor(ctxk, uniqk);
 121   assert_common_2(unique_implementor, ctxk, uniqk);
 122 }
 123 
 124 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 125   check_ctxk(ctxk);
 126   assert_common_1(no_finalizable_subclasses, ctxk);
 127 }
 128 
 129 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 130   assert_common_2(call_site_target_value, call_site, method_handle);
 131 }
 132 
 133 #if INCLUDE_JVMCI
 134 
 135 Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) {
 136   _oop_recorder = oop_recorder;
 137   _log = log;
 138   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
 139   _using_dep_values = true;
 140   DEBUG_ONLY(_dep_values[end_marker] = nullptr);
 141   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
 142     _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
 143   }
 144   _content_bytes = nullptr;
 145   _size_in_bytes = (size_t)-1;
 146 
 147   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
 148 }
 149 
 150 void Dependencies::assert_evol_method(Method* m) {
 151   assert_common_1(evol_method, DepValue(_oop_recorder, m));
 152 }
 153 
 154 void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
 155   check_ctxk(ctxk);
 156   assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
 157 }
 158 
 159 void Dependencies::assert_leaf_type(Klass* ctxk) {
 160   if (ctxk->is_array_klass()) {
 161     // As a special case, support this assertion on an array type,
 162     // which reduces to an assertion on its element type.
 163     // Note that this cannot be done with assertions that
 164     // relate to concreteness or abstractness.
 165     BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
 166     if (is_java_primitive(elemt))  return;   // Ex:  int[][]
 167     ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
 168     //if (ctxk->is_final())  return;            // Ex:  String[][]
 169   }
 170   check_ctxk(ctxk);
 171   assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
 172 }
 173 
 174 void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
 175   check_ctxk_abstract(ctxk);
 176   DepValue ctxk_dv(_oop_recorder, ctxk);
 177   DepValue conck_dv(_oop_recorder, conck, &ctxk_dv);
 178   assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv);
 179 }
 180 
 181 void Dependencies::assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk) {
 182   check_ctxk(ctxk);
 183   assert(ctxk->is_interface(), "not an interface");
 184   assert(ctxk->implementor() == uniqk, "not a unique implementor");
 185   assert_common_2(unique_implementor, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqk));
 186 }
 187 
 188 void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
 189   check_ctxk(ctxk);
 190   check_unique_method(ctxk, uniqm);
 191   assert_common_2(unique_concrete_method_2, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
 192 }
 193 
 194 void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) {
 195   assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle)));
 196 }
 197 
 198 #endif // INCLUDE_JVMCI
 199 
 200 
 201 // Helper function.  If we are adding a new dep. under ctxk2,
 202 // try to find an old dep. under a broader* ctxk1.  If there is
 203 //
 204 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 205                                     int ctxk_i, ciKlass* ctxk2) {
 206   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 207   if (ctxk2->is_subtype_of(ctxk1)) {
 208     return true;  // success, and no need to change
 209   } else if (ctxk1->is_subtype_of(ctxk2)) {
 210     // new context class fully subsumes previous one
 211     deps->at_put(ctxk_i, ctxk2);
 212     return true;
 213   } else {
 214     return false;
 215   }
 216 }
 217 
 218 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 219   assert(dep_args(dept) == 1, "sanity");
 220   log_dependency(dept, x);
 221   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 222 
 223   // see if the same (or a similar) dep is already recorded
 224   if (note_dep_seen(dept, x)) {
 225     assert(deps->find(x) >= 0, "sanity");
 226   } else {
 227     deps->append(x);
 228   }
 229 }
 230 
 231 void Dependencies::assert_common_2(DepType dept,
 232                                    ciBaseObject* x0, ciBaseObject* x1) {
 233   assert(dep_args(dept) == 2, "sanity");
 234   log_dependency(dept, x0, x1);
 235   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 236 
 237   // see if the same (or a similar) dep is already recorded
 238   bool has_ctxk = has_explicit_context_arg(dept);
 239   if (has_ctxk) {
 240     assert(dep_context_arg(dept) == 0, "sanity");
 241     if (note_dep_seen(dept, x1)) {
 242       // look in this bucket for redundant assertions
 243       const int stride = 2;
 244       for (int i = deps->length(); (i -= stride) >= 0; ) {
 245         ciBaseObject* y1 = deps->at(i+1);
 246         if (x1 == y1) {  // same subject; check the context
 247           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 248             return;
 249           }
 250         }
 251       }
 252     }
 253   } else {
 254     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 255     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 256     if (dep_seen_x0 && dep_seen_x1) {
 257       // look in this bucket for redundant assertions
 258       const int stride = 2;
 259       for (int i = deps->length(); (i -= stride) >= 0; ) {
 260         ciBaseObject* y0 = deps->at(i+0);
 261         ciBaseObject* y1 = deps->at(i+1);
 262         if (x0 == y0 && x1 == y1) {
 263           return;
 264         }
 265       }
 266     }
 267   }
 268 
 269   // append the assertion in the correct bucket:
 270   deps->append(x0);
 271   deps->append(x1);
 272 }
 273 
 274 void Dependencies::assert_common_4(DepType dept,
 275                                    ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3) {
 276   assert(has_explicit_context_arg(dept), "sanity");
 277   assert(dep_context_arg(dept) == 0, "sanity");
 278   assert(dep_args(dept) == 4, "sanity");
 279   log_dependency(dept, ctxk, x1, x2, x3);
 280   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 281 
 282   // see if the same (or a similar) dep is already recorded
 283   bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 284   bool dep_seen_x2 = note_dep_seen(dept, x2); // records x2 for future queries
 285   bool dep_seen_x3 = note_dep_seen(dept, x3); // records x3 for future queries
 286   if (dep_seen_x1 && dep_seen_x2 && dep_seen_x3) {
 287     // look in this bucket for redundant assertions
 288     const int stride = 4;
 289     for (int i = deps->length(); (i -= stride) >= 0; ) {
 290       ciBaseObject* y1 = deps->at(i+1);
 291       ciBaseObject* y2 = deps->at(i+2);
 292       ciBaseObject* y3 = deps->at(i+3);
 293       if (x1 == y1 && x2 == y2 && x3 == y3) {  // same subjects; check the context
 294         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 295           return;
 296         }
 297       }
 298     }
 299   }
 300   // append the assertion in the correct bucket:
 301   deps->append(ctxk);
 302   deps->append(x1);
 303   deps->append(x2);
 304   deps->append(x3);
 305 }
 306 
 307 #if INCLUDE_JVMCI
 308 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 309                                     int ctxk_i, DepValue ctxk2_dv) {
 310   Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
 311   Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder);
 312   if (ctxk2->is_subtype_of(ctxk1)) {
 313     return true;  // success, and no need to change
 314   } else if (ctxk1->is_subtype_of(ctxk2)) {
 315     // new context class fully subsumes previous one
 316     deps->at_put(ctxk_i, ctxk2_dv);
 317     return true;
 318   } else {
 319     return false;
 320   }
 321 }
 322 
 323 void Dependencies::assert_common_1(DepType dept, DepValue x) {
 324   assert(dep_args(dept) == 1, "sanity");
 325   //log_dependency(dept, x);
 326   GrowableArray<DepValue>* deps = _dep_values[dept];
 327 
 328   // see if the same (or a similar) dep is already recorded
 329   if (note_dep_seen(dept, x)) {
 330     assert(deps->find(x) >= 0, "sanity");
 331   } else {
 332     deps->append(x);
 333   }
 334 }
 335 
 336 void Dependencies::assert_common_2(DepType dept,
 337                                    DepValue x0, DepValue x1) {
 338   assert(dep_args(dept) == 2, "sanity");
 339   //log_dependency(dept, x0, x1);
 340   GrowableArray<DepValue>* deps = _dep_values[dept];
 341 
 342   // see if the same (or a similar) dep is already recorded
 343   bool has_ctxk = has_explicit_context_arg(dept);
 344   if (has_ctxk) {
 345     assert(dep_context_arg(dept) == 0, "sanity");
 346     if (note_dep_seen(dept, x1)) {
 347       // look in this bucket for redundant assertions
 348       const int stride = 2;
 349       for (int i = deps->length(); (i -= stride) >= 0; ) {
 350         DepValue y1 = deps->at(i+1);
 351         if (x1 == y1) {  // same subject; check the context
 352           if (maybe_merge_ctxk(deps, i+0, x0)) {
 353             return;
 354           }
 355         }
 356       }
 357     }
 358   } else {
 359     bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
 360     bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
 361     if (dep_seen_x0 && dep_seen_x1) {
 362       // look in this bucket for redundant assertions
 363       const int stride = 2;
 364       for (int i = deps->length(); (i -= stride) >= 0; ) {
 365         DepValue y0 = deps->at(i+0);
 366         DepValue y1 = deps->at(i+1);
 367         if (x0 == y0 && x1 == y1) {
 368           return;
 369         }
 370       }
 371     }
 372   }
 373 
 374   // append the assertion in the correct bucket:
 375   deps->append(x0);
 376   deps->append(x1);
 377 }
 378 #endif // INCLUDE_JVMCI
 379 
 380 /// Support for encoding dependencies into an nmethod:
 381 
 382 void Dependencies::copy_to(nmethod* nm) {
 383   address beg = nm->dependencies_begin();
 384   address end = nm->dependencies_end();
 385   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 386   (void)memcpy(beg, content_bytes(), size_in_bytes());
 387   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 388 }
 389 
 390 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 391   for (int i = 0; i < narg; i++) {
 392     int diff = p1[i]->ident() - p2[i]->ident();
 393     if (diff != 0)  return diff;
 394   }
 395   return 0;
 396 }
 397 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 398 { return sort_dep(p1, p2, 1); }
 399 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 400 { return sort_dep(p1, p2, 2); }
 401 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 402 { return sort_dep(p1, p2, 3); }
 403 static int sort_dep_arg_4(ciBaseObject** p1, ciBaseObject** p2)
 404 { return sort_dep(p1, p2, 4); }
 405 
 406 #if INCLUDE_JVMCI
 407 // metadata deps are sorted before object deps
 408 static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
 409   for (int i = 0; i < narg; i++) {
 410     int diff = p1[i].sort_key() - p2[i].sort_key();
 411     if (diff != 0)  return diff;
 412   }
 413   return 0;
 414 }
 415 static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 416 { return sort_dep_value(p1, p2, 1); }
 417 static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 418 { return sort_dep_value(p1, p2, 2); }
 419 static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
 420 { return sort_dep_value(p1, p2, 3); }
 421 #endif // INCLUDE_JVMCI
 422 
 423 void Dependencies::sort_all_deps() {
 424 #if INCLUDE_JVMCI
 425   if (_using_dep_values) {
 426     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 427       DepType dept = (DepType)deptv;
 428       GrowableArray<DepValue>* deps = _dep_values[dept];
 429       if (deps->length() <= 1)  continue;
 430       switch (dep_args(dept)) {
 431       case 1: deps->sort(sort_dep_value_arg_1, 1); break;
 432       case 2: deps->sort(sort_dep_value_arg_2, 2); break;
 433       case 3: deps->sort(sort_dep_value_arg_3, 3); break;
 434       default: ShouldNotReachHere(); break;
 435       }
 436     }
 437     return;
 438   }
 439 #endif // INCLUDE_JVMCI
 440   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 441     DepType dept = (DepType)deptv;
 442     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 443     if (deps->length() <= 1)  continue;
 444     switch (dep_args(dept)) {
 445     case 1: deps->sort(sort_dep_arg_1, 1); break;
 446     case 2: deps->sort(sort_dep_arg_2, 2); break;
 447     case 3: deps->sort(sort_dep_arg_3, 3); break;
 448     case 4: deps->sort(sort_dep_arg_4, 4); break;
 449     default: ShouldNotReachHere(); break;
 450     }
 451   }
 452 }
 453 
 454 size_t Dependencies::estimate_size_in_bytes() {
 455   size_t est_size = 100;
 456 #if INCLUDE_JVMCI
 457   if (_using_dep_values) {
 458     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 459       DepType dept = (DepType)deptv;
 460       GrowableArray<DepValue>* deps = _dep_values[dept];
 461       est_size += deps->length() * 2;  // tags and argument(s)
 462     }
 463     return est_size;
 464   }
 465 #endif // INCLUDE_JVMCI
 466   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 467     DepType dept = (DepType)deptv;
 468     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 469     est_size += deps->length()*2;  // tags and argument(s)
 470   }
 471   return est_size;
 472 }
 473 
 474 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 475   switch (dept) {
 476   case unique_concrete_method_2:
 477   case unique_concrete_method_4:
 478     return x->as_metadata()->as_method()->holder();
 479   default:
 480     return nullptr;  // let nullptr be nullptr
 481   }
 482 }
 483 
 484 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 485   assert(must_be_in_vm(), "raw oops here");
 486   switch (dept) {
 487   case unique_concrete_method_2:
 488   case unique_concrete_method_4:
 489     assert(x->is_method(), "sanity");
 490     return ((Method*)x)->method_holder();
 491   default:
 492     return nullptr;  // let nullptr be nullptr
 493   }
 494 }
 495 
 496 void Dependencies::encode_content_bytes() {
 497   sort_all_deps();
 498 
 499   // cast is safe, no deps can overflow INT_MAX
 500   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 501 
 502 #if INCLUDE_JVMCI
 503   if (_using_dep_values) {
 504     for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 505       DepType dept = (DepType)deptv;
 506       GrowableArray<DepValue>* deps = _dep_values[dept];
 507       if (deps->length() == 0)  continue;
 508       int stride = dep_args(dept);
 509       int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 510       assert(stride > 0, "sanity");
 511       for (int i = 0; i < deps->length(); i += stride) {
 512         jbyte code_byte = (jbyte)dept;
 513         int skipj = -1;
 514         if (ctxkj >= 0 && ctxkj+1 < stride) {
 515           Klass*  ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
 516           DepValue x = deps->at(i+ctxkj+1);  // following argument
 517           if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) {
 518             skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 519             code_byte |= default_context_type_bit;
 520           }
 521         }
 522         bytes.write_byte(code_byte);
 523         for (int j = 0; j < stride; j++) {
 524           if (j == skipj)  continue;
 525           DepValue v = deps->at(i+j);
 526           int idx = v.index();
 527           bytes.write_int(idx);
 528         }
 529       }
 530     }
 531   } else {
 532 #endif // INCLUDE_JVMCI
 533   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 534     DepType dept = (DepType)deptv;
 535     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 536     if (deps->length() == 0)  continue;
 537     int stride = dep_args(dept);
 538     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 539     assert(stride > 0, "sanity");
 540     for (int i = 0; i < deps->length(); i += stride) {
 541       jbyte code_byte = (jbyte)dept;
 542       int skipj = -1;
 543       if (ctxkj >= 0 && ctxkj+1 < stride) {
 544         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 545         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 546         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 547           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 548           code_byte |= default_context_type_bit;
 549         }
 550       }
 551       bytes.write_byte(code_byte);
 552       for (int j = 0; j < stride; j++) {
 553         if (j == skipj)  continue;
 554         ciBaseObject* v = deps->at(i+j);
 555         int idx;
 556         if (v->is_object()) {
 557           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
 558         } else {
 559           ciMetadata* meta = v->as_metadata();
 560           idx = _oop_recorder->find_index(meta->constant_encoding());
 561         }
 562         bytes.write_int(idx);
 563       }
 564     }
 565   }
 566 #if INCLUDE_JVMCI
 567   }
 568 #endif
 569 
 570   // write a sentinel byte to mark the end
 571   bytes.write_byte(end_marker);
 572 
 573   // round it out to a word boundary
 574   while (bytes.position() % sizeof(HeapWord) != 0) {
 575     bytes.write_byte(end_marker);
 576   }
 577 
 578   // check whether the dept byte encoding really works
 579   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 580 
 581   _content_bytes = bytes.buffer();
 582   _size_in_bytes = bytes.position();
 583 }
 584 
 585 
 586 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 587   "end_marker",
 588   "evol_method",
 589   "leaf_type",
 590   "abstract_with_unique_concrete_subtype",
 591   "unique_concrete_method_2",
 592   "unique_concrete_method_4",
 593   "unique_implementor",
 594   "no_finalizable_subclasses",
 595   "call_site_target_value"
 596 };
 597 
 598 int Dependencies::_dep_args[TYPE_LIMIT] = {
 599   -1,// end_marker
 600   1, // evol_method m
 601   1, // leaf_type ctxk
 602   2, // abstract_with_unique_concrete_subtype ctxk, k
 603   2, // unique_concrete_method_2 ctxk, m
 604   4, // unique_concrete_method_4 ctxk, m, resolved_klass, resolved_method
 605   2, // unique_implementor ctxk, implementor
 606   1, // no_finalizable_subclasses ctxk
 607   2  // call_site_target_value call_site, method_handle
 608 };
 609 
 610 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 611   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 612   return _dep_name[dept];
 613 }
 614 
 615 int Dependencies::dep_args(Dependencies::DepType dept) {
 616   if (!dept_in_mask(dept, all_types))  return -1;
 617   return _dep_args[dept];
 618 }
 619 
 620 void Dependencies::check_valid_dependency_type(DepType dept) {
 621   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept);
 622 }
 623 
 624 Dependencies::DepType Dependencies::validate_dependencies(CompileTask* task, char** failure_detail) {
 625   int klass_violations = 0;
 626   DepType result = end_marker;
 627   for (Dependencies::DepStream deps(this); deps.next(); ) {
 628     Klass* witness = deps.check_dependency();
 629     if (witness != nullptr) {
 630       if (klass_violations == 0) {
 631         result = deps.type();
 632         if (failure_detail != nullptr && klass_violations == 0) {
 633           // Use a fixed size buffer to prevent the string stream from
 634           // resizing in the context of an inner resource mark.
 635           char* buffer = NEW_RESOURCE_ARRAY(char, O_BUFLEN);
 636           stringStream st(buffer, O_BUFLEN);
 637           deps.print_dependency(&st, witness, true);
 638           *failure_detail = st.as_string();
 639         }
 640       }
 641       klass_violations++;
 642       if (xtty == nullptr) {
 643         // If we're not logging then a single violation is sufficient,
 644         // otherwise we want to log all the dependences which were
 645         // violated.
 646         break;
 647       }
 648     }
 649   }
 650 
 651   return result;
 652 }
 653 
 654 // for the sake of the compiler log, print out current dependencies:
 655 void Dependencies::log_all_dependencies() {
 656   if (log() == nullptr)  return;
 657   ResourceMark rm;
 658   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 659     DepType dept = (DepType)deptv;
 660     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 661     int deplen = deps->length();
 662     if (deplen == 0) {
 663       continue;
 664     }
 665     int stride = dep_args(dept);
 666     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
 667     for (int i = 0; i < deps->length(); i += stride) {
 668       for (int j = 0; j < stride; j++) {
 669         // flush out the identities before printing
 670         ciargs->push(deps->at(i+j));
 671       }
 672       write_dependency_to(log(), dept, ciargs);
 673       ciargs->clear();
 674     }
 675     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
 676   }
 677 }
 678 
 679 void Dependencies::write_dependency_to(CompileLog* log,
 680                                        DepType dept,
 681                                        GrowableArray<DepArgument>* args,
 682                                        Klass* witness) {
 683   if (log == nullptr) {
 684     return;
 685   }
 686   ResourceMark rm;
 687   ciEnv* env = ciEnv::current();
 688   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
 689   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
 690     DepArgument arg = *it;
 691     if (arg.is_oop()) {
 692       ciargs->push(env->get_object(arg.oop_value()));
 693     } else {
 694       ciargs->push(env->get_metadata(arg.metadata_value()));
 695     }
 696   }
 697   int argslen = ciargs->length();
 698   Dependencies::write_dependency_to(log, dept, ciargs, witness);
 699   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
 700 }
 701 
 702 void Dependencies::write_dependency_to(CompileLog* log,
 703                                        DepType dept,
 704                                        GrowableArray<ciBaseObject*>* args,
 705                                        Klass* witness) {
 706   if (log == nullptr) {
 707     return;
 708   }
 709   ResourceMark rm;
 710   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
 711   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
 712     ciBaseObject* obj = *it;
 713     if (obj->is_object()) {
 714       argids->push(log->identify(obj->as_object()));
 715     } else {
 716       argids->push(log->identify(obj->as_metadata()));
 717     }
 718   }
 719   if (witness != nullptr) {
 720     log->begin_elem("dependency_failed");
 721   } else {
 722     log->begin_elem("dependency");
 723   }
 724   log->print(" type='%s'", dep_name(dept));
 725   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 726   if (ctxkj >= 0 && ctxkj < argids->length()) {
 727     log->print(" ctxk='%d'", argids->at(ctxkj));
 728   }
 729   // write remaining arguments, if any.
 730   for (int j = 0; j < argids->length(); j++) {
 731     if (j == ctxkj)  continue;  // already logged
 732     if (j == 1) {
 733       log->print(  " x='%d'",    argids->at(j));
 734     } else {
 735       log->print(" x%d='%d'", j, argids->at(j));
 736     }
 737   }
 738   if (witness != nullptr) {
 739     log->object("witness", witness);
 740     log->stamp();
 741   }
 742   log->end_elem();
 743 }
 744 
 745 void Dependencies::write_dependency_to(xmlStream* xtty,
 746                                        DepType dept,
 747                                        GrowableArray<DepArgument>* args,
 748                                        Klass* witness) {
 749   if (xtty == nullptr) {
 750     return;
 751   }
 752   Thread* thread = Thread::current();
 753   HandleMark rm(thread);
 754   ttyLocker ttyl;
 755   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 756   if (witness != nullptr) {
 757     xtty->begin_elem("dependency_failed");
 758   } else {
 759     xtty->begin_elem("dependency");
 760   }
 761   xtty->print(" type='%s'", dep_name(dept));
 762   if (ctxkj >= 0) {
 763     xtty->object("ctxk", args->at(ctxkj).metadata_value());
 764   }
 765   // write remaining arguments, if any.
 766   for (int j = 0; j < args->length(); j++) {
 767     if (j == ctxkj)  continue;  // already logged
 768     DepArgument arg = args->at(j);
 769     if (j == 1) {
 770       if (arg.is_oop()) {
 771         xtty->object("x", Handle(thread, arg.oop_value()));
 772       } else {
 773         xtty->object("x", arg.metadata_value());
 774       }
 775     } else {
 776       char xn[12];
 777       os::snprintf_checked(xn, sizeof(xn), "x%d", j);
 778       if (arg.is_oop()) {
 779         xtty->object(xn, Handle(thread, arg.oop_value()));
 780       } else {
 781         xtty->object(xn, arg.metadata_value());
 782       }
 783     }
 784   }
 785   if (witness != nullptr) {
 786     xtty->object("witness", witness);
 787     xtty->stamp();
 788   }
 789   xtty->end_elem();
 790 }
 791 
 792 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
 793                                     Klass* witness, outputStream* st) {
 794   ResourceMark rm;
 795   ttyLocker ttyl;   // keep the following output all in one block
 796   st->print_cr("%s of type %s",
 797                 (witness == nullptr)? "Dependency": "Failed dependency",
 798                 dep_name(dept));
 799   // print arguments
 800   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 801   for (int j = 0; j < args->length(); j++) {
 802     DepArgument arg = args->at(j);
 803     bool put_star = false;
 804     if (arg.is_null())  continue;
 805     const char* what;
 806     if (j == ctxkj) {
 807       assert(arg.is_metadata(), "must be");
 808       what = "context";
 809       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 810     } else if (arg.is_method()) {
 811       what = "method ";
 812       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), nullptr);
 813     } else if (arg.is_klass()) {
 814       what = "class  ";
 815     } else {
 816       what = "object ";
 817     }
 818     st->print("  %s = %s", what, (put_star? "*": ""));
 819     if (arg.is_klass()) {
 820       st->print("%s", ((Klass*)arg.metadata_value())->external_name());
 821     } else if (arg.is_method()) {
 822       ((Method*)arg.metadata_value())->print_value_on(st);
 823     } else if (arg.is_oop()) {
 824       arg.oop_value()->print_value_on(st);
 825     } else {
 826       ShouldNotReachHere(); // Provide impl for this type.
 827     }
 828 
 829     st->cr();
 830   }
 831   if (witness != nullptr) {
 832     bool put_star = !Dependencies::is_concrete_klass(witness);
 833     st->print("  witness = %s%s",
 834               (put_star ? "*": ""),
 835               witness->external_name());
 836     if (witness->is_instance_klass()) {
 837       st->print(" (%s)", InstanceKlass::cast(witness)->init_state_name());
 838     }
 839     st->cr();
 840   }
 841 }
 842 
 843 void Dependencies::DepStream::log_dependency(Klass* witness) {
 844   if (_deps == nullptr && xtty == nullptr)  return;  // fast cutout for runtime
 845   ResourceMark rm;
 846   const int nargs = argument_count();
 847   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 848   for (int j = 0; j < nargs; j++) {
 849     if (is_oop_argument(j)) {
 850       args->push(argument_oop(j));
 851     } else {
 852       args->push(argument(j));
 853     }
 854   }
 855   int argslen = args->length();
 856   if (_deps != nullptr && _deps->log() != nullptr) {
 857     if (ciEnv::current() != nullptr) {
 858       Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
 859     } else {
 860       // Treat the CompileLog as an xmlstream instead
 861       Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness);
 862     }
 863   } else {
 864     Dependencies::write_dependency_to(xtty, type(), args, witness);
 865   }
 866   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 867 }
 868 
 869 void Dependencies::DepStream::print_dependency(outputStream* st, Klass* witness, bool verbose) {
 870   ResourceMark rm;
 871   int nargs = argument_count();
 872   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
 873   for (int j = 0; j < nargs; j++) {
 874     if (is_oop_argument(j)) {
 875       args->push(argument_oop(j));
 876     } else {
 877       args->push(argument(j));
 878     }
 879   }
 880   int argslen = args->length();
 881   Dependencies::print_dependency(type(), args, witness, st);
 882   if (verbose) {
 883     if (_code != nullptr) {
 884       st->print("  code: ");
 885       _code->print_value_on(st);
 886       st->cr();
 887     }
 888   }
 889   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
 890 }
 891 
 892 
 893 /// Dependency stream support (decodes dependencies from an nmethod):
 894 
 895 #ifdef ASSERT
 896 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 897   assert(must_be_in_vm(), "raw oops here");
 898   _byte_limit = byte_limit;
 899   _type       = undefined_dependency;  // defeat "already at end" assert
 900   assert((_code!=nullptr) + (_deps!=nullptr) == 1, "one or t'other");
 901 }
 902 #endif //ASSERT
 903 
 904 bool Dependencies::DepStream::next() {
 905   assert(_type != end_marker, "already at end");
 906   if (_bytes.position() == 0 && _code != nullptr
 907       && _code->dependencies_size() == 0) {
 908     // Method has no dependencies at all.
 909     return false;
 910   }
 911   int code_byte = (_bytes.read_byte() & 0xFF);
 912   if (code_byte == end_marker) {
 913     DEBUG_ONLY(_type = end_marker);
 914     return false;
 915   } else {
 916     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 917     code_byte -= ctxk_bit;
 918     DepType dept = (DepType)code_byte;
 919     _type = dept;
 920     Dependencies::check_valid_dependency_type(dept);
 921     int stride = _dep_args[dept];
 922     assert(stride == dep_args(dept), "sanity");
 923     int skipj = -1;
 924     if (ctxk_bit != 0) {
 925       skipj = 0;  // currently the only context argument is at zero
 926       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 927     }
 928     for (int j = 0; j < stride; j++) {
 929       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 930     }
 931     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 932     return true;
 933   }
 934 }
 935 
 936 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 937   Metadata* o = nullptr;
 938   if (_code != nullptr) {
 939     o = _code->metadata_at(i);
 940   } else {
 941     o = _deps->oop_recorder()->metadata_at(i);
 942   }
 943   return o;
 944 }
 945 
 946 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 947   return (_code != nullptr)
 948          ? _code->oop_at(i)
 949     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 950 }
 951 
 952 Metadata* Dependencies::DepStream::argument(int i) {
 953   Metadata* result = recorded_metadata_at(argument_index(i));
 954 
 955   if (result == nullptr) { // Explicit context argument can be compressed
 956     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 957     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 958       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 959     }
 960   }
 961 
 962   assert(result == nullptr || result->is_klass() || result->is_method(), "must be");
 963   return result;
 964 }
 965 
 966 /**
 967  * Returns a unique identifier for each dependency argument.
 968  */
 969 uintptr_t Dependencies::DepStream::get_identifier(int i) {
 970   if (is_oop_argument(i)) {
 971     return (uintptr_t)(oopDesc*)argument_oop(i);
 972   } else {
 973     return (uintptr_t)argument(i);
 974   }
 975 }
 976 
 977 oop Dependencies::DepStream::argument_oop(int i) {
 978   oop result = recorded_oop_at(argument_index(i));
 979   assert(oopDesc::is_oop_or_null(result), "must be");
 980   return result;
 981 }
 982 
 983 InstanceKlass* Dependencies::DepStream::context_type() {
 984   assert(must_be_in_vm(), "raw oops here");
 985 
 986   // Most dependencies have an explicit context type argument.
 987   {
 988     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 989     if (ctxkj >= 0) {
 990       Metadata* k = argument(ctxkj);
 991       assert(k != nullptr && k->is_klass(), "type check");
 992       return InstanceKlass::cast((Klass*)k);
 993     }
 994   }
 995 
 996   // Some dependencies are using the klass of the first object
 997   // argument as implicit context type.
 998   {
 999     int ctxkj = dep_implicit_context_arg(type());
1000     if (ctxkj >= 0) {
1001       Klass* k = argument_oop(ctxkj)->klass();
1002       assert(k != nullptr, "type check");
1003       return InstanceKlass::cast(k);
1004     }
1005   }
1006 
1007   // And some dependencies don't have a context type at all,
1008   // e.g. evol_method.
1009   return nullptr;
1010 }
1011 
1012 // ----------------- DependencySignature --------------------------------------
1013 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
1014   if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
1015     return false;
1016   }
1017 
1018   for (int i = 0; i < s1.args_count(); i++) {
1019     if (s1.arg(i) != s2.arg(i)) {
1020       return false;
1021     }
1022   }
1023   return true;
1024 }
1025 
1026 /// Checking dependencies
1027 
1028 // This hierarchy walker inspects subtypes of a given type, trying to find a "bad" class which breaks a dependency.
1029 // Such a class is called a "witness" to the broken dependency.
1030 // While searching around, we ignore "participants", which are already known to the dependency.
1031 class AbstractClassHierarchyWalker {
1032  public:
1033   enum { PARTICIPANT_LIMIT = 3 };
1034 
1035  private:
1036   // if non-zero, tells how many witnesses to convert to participants
1037   uint _record_witnesses;
1038 
1039   // special classes which are not allowed to be witnesses:
1040   Klass* _participants[PARTICIPANT_LIMIT+1];
1041   uint   _num_participants;
1042 
1043 #ifdef ASSERT
1044   uint _nof_requests; // one-shot walker
1045 #endif // ASSERT
1046 
1047   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1048   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1049   static PerfCounter* _perf_find_witness_in_calls_count;
1050 
1051  protected:
1052   virtual Klass* find_witness_in(KlassDepChange& changes) = 0;
1053   virtual Klass* find_witness_anywhere(InstanceKlass* context_type) = 0;
1054 
1055   AbstractClassHierarchyWalker(Klass* participant) : _record_witnesses(0), _num_participants(0)
1056 #ifdef ASSERT
1057   , _nof_requests(0)
1058 #endif // ASSERT
1059   {
1060     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1061       _participants[i] = nullptr;
1062     }
1063     if (participant != nullptr) {
1064       add_participant(participant);
1065     }
1066   }
1067 
1068   bool is_participant(Klass* k) {
1069     for (uint i = 0; i < _num_participants; i++) {
1070       if (_participants[i] == k) {
1071         return true;
1072       }
1073     }
1074     return false;
1075   }
1076 
1077   bool record_witness(Klass* witness) {
1078     if (_record_witnesses > 0) {
1079       --_record_witnesses;
1080       add_participant(witness);
1081       return false; // not a witness
1082     } else {
1083       return true; // is a witness
1084     }
1085   }
1086 
1087   class CountingClassHierarchyIterator : public ClassHierarchyIterator {
1088    private:
1089     jlong _nof_steps;
1090    public:
1091     CountingClassHierarchyIterator(InstanceKlass* root) : ClassHierarchyIterator(root), _nof_steps(0) {}
1092 
1093     void next() {
1094       _nof_steps++;
1095       ClassHierarchyIterator::next();
1096     }
1097 
1098     ~CountingClassHierarchyIterator() {
1099       if (UsePerfData) {
1100         _perf_find_witness_anywhere_steps_count->inc(_nof_steps);
1101       }
1102     }
1103   };
1104 
1105  public:
1106   uint num_participants() { return _num_participants; }
1107   Klass* participant(uint n) {
1108     assert(n <= _num_participants, "oob");
1109     if (n < _num_participants) {
1110       return _participants[n];
1111     } else {
1112       return nullptr;
1113     }
1114   }
1115 
1116   void add_participant(Klass* participant) {
1117     assert(!is_participant(participant), "sanity");
1118     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
1119     uint np = _num_participants++;
1120     _participants[np] = participant;
1121   }
1122 
1123   void record_witnesses(uint add) {
1124     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
1125     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
1126     _record_witnesses = add;
1127   }
1128 
1129   Klass* find_witness(InstanceKlass* context_type, KlassDepChange* changes = nullptr);
1130 
1131   static void init();
1132   static void print_statistics();
1133 };
1134 
1135 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_calls_count = nullptr;
1136 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_steps_count = nullptr;
1137 PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_in_calls_count       = nullptr;
1138 
1139 void AbstractClassHierarchyWalker::init() {
1140   if (UsePerfData) {
1141     EXCEPTION_MARK;
1142     _perf_find_witness_anywhere_calls_count =
1143         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhere", PerfData::U_Events, CHECK);
1144     _perf_find_witness_anywhere_steps_count =
1145         PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhereSteps", PerfData::U_Events, CHECK);
1146     _perf_find_witness_in_calls_count =
1147         PerfDataManager::create_counter(SUN_CI, "findWitnessIn", PerfData::U_Events, CHECK);
1148   }
1149 }
1150 
1151 Klass* AbstractClassHierarchyWalker::find_witness(InstanceKlass* context_type, KlassDepChange* changes) {
1152   // Current thread must be in VM (not native mode, as in CI):
1153   assert(must_be_in_vm(), "raw oops here");
1154   // Must not move the class hierarchy during this check:
1155   assert_locked_or_safepoint(Compile_lock);
1156   assert(_nof_requests++ == 0, "repeated requests are not supported");
1157 
1158   assert(changes == nullptr || changes->involves_context(context_type), "irrelevant dependency");
1159 
1160   // (Note: Interfaces do not have subclasses.)
1161   // If it is an interface, search its direct implementors.
1162   // (Their subclasses are additional indirect implementors. See InstanceKlass::add_implementor().)
1163   if (context_type->is_interface()) {
1164     int nof_impls = context_type->nof_implementors();
1165     if (nof_impls == 0) {
1166       return nullptr; // no implementors
1167     } else if (nof_impls == 1) { // unique implementor
1168       assert(context_type != context_type->implementor(), "not unique");
1169       context_type = context_type->implementor();
1170     } else { // nof_impls >= 2
1171       // Avoid this case: *I.m > { A.m, C }; B.m > C
1172       // Here, I.m has 2 concrete implementations, but m appears unique
1173       // as A.m, because the search misses B.m when checking C.
1174       // The inherited method B.m was getting missed by the walker
1175       // when interface 'I' was the starting point.
1176       // %%% Until this is fixed more systematically, bail out.
1177       return context_type;
1178     }
1179   }
1180   assert(!context_type->is_interface(), "no interfaces allowed");
1181 
1182   if (changes != nullptr) {
1183     if (UsePerfData) {
1184       _perf_find_witness_in_calls_count->inc();
1185     }
1186     return find_witness_in(*changes);
1187   } else {
1188     if (UsePerfData) {
1189       _perf_find_witness_anywhere_calls_count->inc();
1190     }
1191     return find_witness_anywhere(context_type);
1192   }
1193 }
1194 
1195 class ConcreteSubtypeFinder : public AbstractClassHierarchyWalker {
1196  private:
1197   bool is_witness(Klass* k);
1198 
1199  protected:
1200   virtual Klass* find_witness_in(KlassDepChange& changes);
1201   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1202 
1203  public:
1204   ConcreteSubtypeFinder(Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {}
1205 };
1206 
1207 bool ConcreteSubtypeFinder::is_witness(Klass* k) {
1208   if (Dependencies::is_concrete_klass(k)) {
1209     return record_witness(k); // concrete subtype
1210   } else {
1211     return false; // not a concrete class
1212   }
1213 }
1214 
1215 Klass* ConcreteSubtypeFinder::find_witness_in(KlassDepChange& changes) {
1216   // When looking for unexpected concrete types, do not look beneath expected ones:
1217   //  * CX > CC > C' is OK, even if C' is new.
1218   //  * CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
1219   Klass* new_type = changes.as_new_klass_change()->new_type();
1220   assert(!is_participant(new_type), "only old classes are participants");
1221   // If the new type is a subtype of a participant, we are done.
1222   for (uint i = 0; i < num_participants(); i++) {
1223     if (changes.involves_context(participant(i))) {
1224       // new guy is protected from this check by previous participant
1225       return nullptr;
1226     }
1227   }
1228   if (is_witness(new_type)) {
1229     return new_type;
1230   }
1231   // No witness found.  The dependency remains unbroken.
1232   return nullptr;
1233 }
1234 
1235 Klass* ConcreteSubtypeFinder::find_witness_anywhere(InstanceKlass* context_type) {
1236   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1237     Klass* sub = iter.klass();
1238     // Do not report participant types.
1239     if (is_participant(sub)) {
1240       // Don't walk beneath a participant since it hides witnesses.
1241       iter.skip_subclasses();
1242     } else if (is_witness(sub)) {
1243       return sub; // found a witness
1244     }
1245   }
1246   // No witness found.  The dependency remains unbroken.
1247   return nullptr;
1248 }
1249 
1250 class ConcreteMethodFinder : public AbstractClassHierarchyWalker {
1251  private:
1252   Symbol* _name;
1253   Symbol* _signature;
1254 
1255   // cache of method lookups
1256   Method* _found_methods[PARTICIPANT_LIMIT+1];
1257 
1258   bool is_witness(Klass* k);
1259 
1260  protected:
1261   virtual Klass* find_witness_in(KlassDepChange& changes);
1262   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1263 
1264  public:
1265   bool witnessed_reabstraction_in_supers(Klass* k);
1266 
1267   ConcreteMethodFinder(Method* m, Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {
1268     assert(m != nullptr && m->is_method(), "sanity");
1269     _name      = m->name();
1270     _signature = m->signature();
1271 
1272     for (int i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1273       _found_methods[i] = nullptr;
1274     }
1275   }
1276 
1277   // Note:  If n==num_participants, returns nullptr.
1278   Method* found_method(uint n) {
1279     assert(n <= num_participants(), "oob");
1280     Method* fm = _found_methods[n];
1281     assert(n == num_participants() || fm != nullptr, "proper usage");
1282     if (fm != nullptr && fm->method_holder() != participant(n)) {
1283       // Default methods from interfaces can be added to classes. In
1284       // that case the holder of the method is not the class but the
1285       // interface where it's defined.
1286       assert(fm->is_default_method(), "sanity");
1287       return nullptr;
1288     }
1289     return fm;
1290   }
1291 
1292   void add_participant(Klass* participant) {
1293     AbstractClassHierarchyWalker::add_participant(participant);
1294     _found_methods[num_participants()] = nullptr;
1295   }
1296 
1297   bool record_witness(Klass* witness, Method* m) {
1298     _found_methods[num_participants()] = m;
1299     return AbstractClassHierarchyWalker::record_witness(witness);
1300   }
1301 
1302  private:
1303   static PerfCounter* _perf_find_witness_anywhere_calls_count;
1304   static PerfCounter* _perf_find_witness_anywhere_steps_count;
1305   static PerfCounter* _perf_find_witness_in_calls_count;
1306 
1307  public:
1308   static void init();
1309   static void print_statistics();
1310 };
1311 
1312 bool ConcreteMethodFinder::is_witness(Klass* k) {
1313   if (is_participant(k)) {
1314     return false; // do not report participant types
1315   }
1316   if (k->is_instance_klass()) {
1317     InstanceKlass* ik = InstanceKlass::cast(k);
1318     // Search class hierarchy first, skipping private implementations
1319     // as they never override any inherited methods
1320     Method* m = ik->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1321     if (Dependencies::is_concrete_method(m, ik)) {
1322       return record_witness(k, m); // concrete method found
1323     } else {
1324       // Check for re-abstraction of method
1325       if (!ik->is_interface() && m != nullptr && m->is_abstract()) {
1326         // Found a matching abstract method 'm' in the class hierarchy.
1327         // This is fine iff 'k' is an abstract class and all concrete subtypes
1328         // of 'k' override 'm' and are participates of the current search.
1329         ConcreteSubtypeFinder wf;
1330         for (uint i = 0; i < num_participants(); i++) {
1331           Klass* p = participant(i);
1332           wf.add_participant(p);
1333         }
1334         Klass* w = wf.find_witness(ik);
1335         if (w != nullptr) {
1336           Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1337           if (!Dependencies::is_concrete_method(wm, w)) {
1338             // Found a concrete subtype 'w' which does not override abstract method 'm'.
1339             // Bail out because 'm' could be called with 'w' as receiver (leading to an
1340             // AbstractMethodError) and thus the method we are looking for is not unique.
1341             return record_witness(k, m);
1342           }
1343         }
1344       }
1345       // Check interface defaults also, if any exist.
1346       Array<Method*>* default_methods = ik->default_methods();
1347       if (default_methods != nullptr) {
1348         Method* dm = ik->find_method(default_methods, _name, _signature);
1349         if (Dependencies::is_concrete_method(dm, nullptr)) {
1350           return record_witness(k, dm); // default method found
1351         }
1352       }
1353       return false; // no concrete method found
1354     }
1355   } else {
1356     return false; // no methods to find in an array type
1357   }
1358 }
1359 
1360 Klass* ConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1361   // When looking for unexpected concrete methods, look beneath expected ones, to see if there are overrides.
1362   //  * CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
1363   Klass* new_type = changes.as_new_klass_change()->new_type();
1364   assert(!is_participant(new_type), "only old classes are participants");
1365   if (is_witness(new_type)) {
1366     return new_type;
1367   } else {
1368     // No witness found, but is_witness() doesn't detect method re-abstraction in case of spot-checking.
1369     if (witnessed_reabstraction_in_supers(new_type)) {
1370       return new_type;
1371     }
1372   }
1373   // No witness found.  The dependency remains unbroken.
1374   return nullptr;
1375 }
1376 
1377 bool ConcreteMethodFinder::witnessed_reabstraction_in_supers(Klass* k) {
1378   if (!k->is_instance_klass()) {
1379     return false; // no methods to find in an array type
1380   } else {
1381     // Looking for a case when an abstract method is inherited into a concrete class.
1382     if (Dependencies::is_concrete_klass(k) && !k->is_interface()) {
1383       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1384       if (m != nullptr) {
1385         return false; // no reabstraction possible: local method found
1386       }
1387       for (InstanceKlass* super = k->java_super(); super != nullptr; super = super->java_super()) {
1388         m = super->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1389         if (m != nullptr) { // inherited method found
1390           if (m->is_abstract() || m->is_overpass()) {
1391             return record_witness(super, m); // abstract method found
1392           }
1393           return false;
1394         }
1395       }
1396       // Miranda.
1397       return true;
1398     }
1399     return false;
1400   }
1401 }
1402 
1403 
1404 Klass* ConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1405   // Walk hierarchy under a context type, looking for unexpected types.
1406   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1407     Klass* sub = iter.klass();
1408     if (is_witness(sub)) {
1409       return sub; // found a witness
1410     }
1411   }
1412   // No witness found.  The dependency remains unbroken.
1413   return nullptr;
1414 }
1415 
1416 // For some method m and some class ctxk (subclass of method holder),
1417 // enumerate all distinct overrides of m in concrete subclasses of ctxk.
1418 // It relies on vtable/itable information to perform method selection on each linked subclass
1419 // and ignores all non yet linked ones (speculatively treat them as "effectively abstract").
1420 class LinkedConcreteMethodFinder : public AbstractClassHierarchyWalker {
1421  private:
1422   InstanceKlass* _resolved_klass;   // resolved class (JVMS-5.4.3.1)
1423   InstanceKlass* _declaring_klass;  // the holder of resolved method (JVMS-5.4.3.3)
1424   int            _vtable_index;     // vtable/itable index of the resolved method
1425   bool           _do_itable_lookup; // choose between itable and vtable lookup logic
1426 
1427   // cache of method lookups
1428   Method* _found_methods[PARTICIPANT_LIMIT+1];
1429 
1430   bool is_witness(Klass* k);
1431   Method* select_method(InstanceKlass* recv_klass);
1432   static int compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, bool& is_itable_index);
1433   static bool is_concrete_klass(InstanceKlass* ik);
1434 
1435   void add_participant(Method* m, Klass* participant) {
1436     uint np = num_participants();
1437     AbstractClassHierarchyWalker::add_participant(participant);
1438     assert(np + 1 == num_participants(), "sanity");
1439     _found_methods[np] = m; // record the method for the participant
1440   }
1441 
1442   bool record_witness(Klass* witness, Method* m) {
1443     for (uint i = 0; i < num_participants(); i++) {
1444       if (found_method(i) == m) {
1445         return false; // already recorded
1446       }
1447     }
1448     // Record not yet seen method.
1449     _found_methods[num_participants()] = m;
1450     return AbstractClassHierarchyWalker::record_witness(witness);
1451   }
1452 
1453   void initialize(Method* participant) {
1454     for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1455       _found_methods[i] = nullptr;
1456     }
1457     if (participant != nullptr) {
1458       add_participant(participant, participant->method_holder());
1459     }
1460   }
1461 
1462  protected:
1463   virtual Klass* find_witness_in(KlassDepChange& changes);
1464   virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1465 
1466  public:
1467   // In order to perform method selection, the following info is needed:
1468   //  (1) interface or virtual call;
1469   //  (2) vtable/itable index;
1470   //  (3) declaring class (in case of interface call).
1471   //
1472   // It is prepared based on the results of method resolution: resolved class and resolved method (as specified in JVMS-5.4.3.3).
1473   // Optionally, a method which was previously determined as a unique target (uniqm) is added as a participant
1474   // to enable dependency spot-checking and speed up the search.
1475   LinkedConcreteMethodFinder(InstanceKlass* resolved_klass, Method* resolved_method, Method* uniqm = nullptr) : AbstractClassHierarchyWalker(nullptr) {
1476     assert(resolved_klass->is_linked(), "required");
1477     assert(resolved_method->method_holder()->is_linked(), "required");
1478     assert(!resolved_method->can_be_statically_bound(), "no vtable index available");
1479 
1480     _resolved_klass  = resolved_klass;
1481     _declaring_klass = resolved_method->method_holder();
1482     _vtable_index    = compute_vtable_index(resolved_klass, resolved_method,
1483                                             _do_itable_lookup); // out parameter
1484     assert(_vtable_index >= 0, "invalid vtable index");
1485 
1486     initialize(uniqm);
1487   }
1488 
1489   // Note:  If n==num_participants, returns nullptr.
1490   Method* found_method(uint n) {
1491     assert(n <= num_participants(), "oob");
1492     assert(participant(n) != nullptr || n == num_participants(), "proper usage");
1493     return _found_methods[n];
1494   }
1495 };
1496 
1497 Klass* LinkedConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1498   Klass* type = changes.type();
1499 
1500   assert(!is_participant(type), "only old classes are participants");
1501 
1502   if (is_witness(type)) {
1503     return type;
1504   }
1505   return nullptr; // No witness found.  The dependency remains unbroken.
1506 }
1507 
1508 Klass* LinkedConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1509   for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1510     Klass* sub = iter.klass();
1511     if (is_witness(sub)) {
1512       return sub;
1513     }
1514     if (sub->is_instance_klass() && !InstanceKlass::cast(sub)->is_linked()) {
1515       iter.skip_subclasses(); // ignore not yet linked classes
1516     }
1517   }
1518   return nullptr; // No witness found. The dependency remains unbroken.
1519 }
1520 
1521 bool LinkedConcreteMethodFinder::is_witness(Klass* k) {
1522   if (is_participant(k)) {
1523     return false; // do not report participant types
1524   } else if (k->is_instance_klass()) {
1525     InstanceKlass* ik = InstanceKlass::cast(k);
1526     if (is_concrete_klass(ik)) {
1527       Method* m = select_method(ik);
1528       return record_witness(ik, m);
1529     } else {
1530       return false; // ignore non-concrete holder class
1531     }
1532   } else {
1533     return false; // no methods to find in an array type
1534   }
1535 }
1536 
1537 Method* LinkedConcreteMethodFinder::select_method(InstanceKlass* recv_klass) {
1538   Method* selected_method = nullptr;
1539   if (_do_itable_lookup) {
1540     assert(_declaring_klass->is_interface(), "sanity");
1541     bool implements_interface; // initialized by method_at_itable_or_null()
1542     selected_method = recv_klass->method_at_itable_or_null(_declaring_klass, _vtable_index,
1543                                                            implements_interface); // out parameter
1544     assert(implements_interface, "not implemented");
1545   } else {
1546     selected_method = recv_klass->method_at_vtable(_vtable_index);
1547   }
1548   return selected_method; // nullptr when corresponding slot is empty (AbstractMethodError case)
1549 }
1550 
1551 int LinkedConcreteMethodFinder::compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method,
1552                                                      // out parameter
1553                                                      bool& is_itable_index) {
1554   if (resolved_klass->is_interface() && resolved_method->has_itable_index()) {
1555     is_itable_index = true;
1556     return resolved_method->itable_index();
1557   }
1558   // Check for default or miranda method first.
1559   InstanceKlass* declaring_klass = resolved_method->method_holder();
1560   if (!resolved_klass->is_interface() && declaring_klass->is_interface()) {
1561     is_itable_index = false;
1562     return resolved_klass->vtable_index_of_interface_method(resolved_method);
1563   }
1564   // At this point we are sure that resolved_method is virtual and not
1565   // a default or miranda method; therefore, it must have a valid vtable index.
1566   assert(resolved_method->has_vtable_index(), "");
1567   is_itable_index = false;
1568   return resolved_method->vtable_index();
1569 }
1570 
1571 bool LinkedConcreteMethodFinder::is_concrete_klass(InstanceKlass* ik) {
1572   if (!Dependencies::is_concrete_klass(ik)) {
1573     return false; // not concrete
1574   }
1575   if (ik->is_interface()) {
1576     return false; // interfaces aren't concrete
1577   }
1578   if (!ik->is_linked()) {
1579     return false; // not yet linked classes don't have instances
1580   }
1581   return true;
1582 }
1583 
1584 #ifdef ASSERT
1585 // Assert that m is inherited into ctxk, without intervening overrides.
1586 // (May return true even if this is not true, in corner cases where we punt.)
1587 bool Dependencies::verify_method_context(InstanceKlass* ctxk, Method* m) {
1588   if (m->is_private()) {
1589     return false; // Quick lose.  Should not happen.
1590   }
1591   if (m->method_holder() == ctxk) {
1592     return true;  // Quick win.
1593   }
1594   if (!(m->is_public() || m->is_protected())) {
1595     // The override story is complex when packages get involved.
1596     return true;  // Must punt the assertion to true.
1597   }
1598   Method* lm = ctxk->lookup_method(m->name(), m->signature());
1599   if (lm == nullptr) {
1600     // It might be an interface method
1601     lm = ctxk->lookup_method_in_ordered_interfaces(m->name(), m->signature());
1602   }
1603   if (lm == m) {
1604     // Method m is inherited into ctxk.
1605     return true;
1606   }
1607   if (lm != nullptr) {
1608     if (!(lm->is_public() || lm->is_protected())) {
1609       // Method is [package-]private, so the override story is complex.
1610       return true;  // Must punt the assertion to true.
1611     }
1612     if (lm->is_static()) {
1613       // Static methods don't override non-static so punt
1614       return true;
1615     }
1616     if (!Dependencies::is_concrete_method(lm, ctxk) &&
1617         !Dependencies::is_concrete_method(m, ctxk)) {
1618       // They are both non-concrete
1619       if (lm->method_holder()->is_subtype_of(m->method_holder())) {
1620         // Method m is overridden by lm, but both are non-concrete.
1621         return true;
1622       }
1623       if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() &&
1624           ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) {
1625         // Interface method defined in multiple super interfaces
1626         return true;
1627       }
1628     }
1629   }
1630   ResourceMark rm;
1631   tty->print_cr("Dependency method not found in the associated context:");
1632   tty->print_cr("  context = %s", ctxk->external_name());
1633   tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
1634   if (lm != nullptr) {
1635     tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
1636   }
1637   return false;
1638 }
1639 #endif // ASSERT
1640 
1641 bool Dependencies::is_concrete_klass(Klass* k) {
1642   if (k->is_abstract())  return false;
1643   // %%% We could treat classes which are concrete but
1644   // have not yet been instantiated as virtually abstract.
1645   // This would require a deoptimization barrier on first instantiation.
1646   //if (k->is_not_instantiated())  return false;
1647   return true;
1648 }
1649 
1650 bool Dependencies::is_concrete_method(Method* m, Klass* k) {
1651   // nullptr is not a concrete method.
1652   if (m == nullptr) {
1653     return false;
1654   }
1655   // Statics are irrelevant to virtual call sites.
1656   if (m->is_static()) {
1657     return false;
1658   }
1659   // Abstract methods are not concrete.
1660   if (m->is_abstract()) {
1661     return false;
1662   }
1663   // Overpass (error) methods are not concrete if k is abstract.
1664   if (m->is_overpass() && k != nullptr) {
1665      return !k->is_abstract();
1666   }
1667   // Note "true" is conservative answer: overpass clause is false if k == nullptr,
1668   // implies return true if answer depends on overpass clause.
1669   return true;
1670  }
1671 
1672 Klass* Dependencies::find_finalizable_subclass(InstanceKlass* ik) {
1673   for (ClassHierarchyIterator iter(ik); !iter.done(); iter.next()) {
1674     Klass* sub = iter.klass();
1675     if (sub->has_finalizer() && !sub->is_interface()) {
1676       return sub;
1677     }
1678   }
1679   return nullptr; // not found
1680 }
1681 
1682 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1683   if (k->is_abstract())  return false;
1684   // We could also return false if k does not yet appear to be
1685   // instantiated, if the VM version supports this distinction also.
1686   //if (k->is_not_instantiated())  return false;
1687   return true;
1688 }
1689 
1690 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1691   return k->has_finalizable_subclass();
1692 }
1693 
1694 // Any use of the contents (bytecodes) of a method must be
1695 // marked by an "evol_method" dependency, if those contents
1696 // can change.  (Note: A method is always dependent on itself.)
1697 Klass* Dependencies::check_evol_method(Method* m) {
1698   assert(must_be_in_vm(), "raw oops here");
1699   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1700   // Or is there a now a breakpoint?
1701   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1702   if (m->is_old()
1703       || m->number_of_breakpoints() > 0) {
1704     return m->method_holder();
1705   } else {
1706     return nullptr;
1707   }
1708 }
1709 
1710 // This is a strong assertion:  It is that the given type
1711 // has no subtypes whatever.  It is most useful for
1712 // optimizing checks on reflected types or on array types.
1713 // (Checks on types which are derived from real instances
1714 // can be optimized more strongly than this, because we
1715 // know that the checked type comes from a concrete type,
1716 // and therefore we can disregard abstract types.)
1717 Klass* Dependencies::check_leaf_type(InstanceKlass* ctxk) {
1718   assert(must_be_in_vm(), "raw oops here");
1719   assert_locked_or_safepoint(Compile_lock);
1720   Klass* sub = ctxk->subklass();
1721   if (sub != nullptr) {
1722     return sub;
1723   } else if (ctxk->nof_implementors() != 0) {
1724     // if it is an interface, it must be unimplemented
1725     // (if it is not an interface, nof_implementors is always zero)
1726     InstanceKlass* impl = ctxk->implementor();
1727     assert(impl != nullptr, "must be set");
1728     return impl;
1729   } else {
1730     return nullptr;
1731   }
1732 }
1733 
1734 // Test the assertion that conck is the only concrete subtype* of ctxk.
1735 // The type conck itself is allowed to have have further concrete subtypes.
1736 // This allows the compiler to narrow occurrences of ctxk by conck,
1737 // when dealing with the types of actual instances.
1738 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk,
1739                                                                  Klass* conck,
1740                                                                  NewKlassDepChange* changes) {
1741   ConcreteSubtypeFinder wf(conck);
1742   Klass* k = wf.find_witness(ctxk, changes);
1743   return k;
1744 }
1745 
1746 
1747 // Find the unique concrete proper subtype of ctxk, or nullptr if there
1748 // is more than one concrete proper subtype.  If there are no concrete
1749 // proper subtypes, return ctxk itself, whether it is concrete or not.
1750 // The returned subtype is allowed to have have further concrete subtypes.
1751 // That is, return CC1 for CX > CC1 > CC2, but nullptr for CX > { CC1, CC2 }.
1752 Klass* Dependencies::find_unique_concrete_subtype(InstanceKlass* ctxk) {
1753   ConcreteSubtypeFinder wf(ctxk);  // Ignore ctxk when walking.
1754   wf.record_witnesses(1);          // Record one other witness when walking.
1755   Klass* wit = wf.find_witness(ctxk);
1756   if (wit != nullptr)  return nullptr;   // Too many witnesses.
1757   Klass* conck = wf.participant(0);
1758   if (conck == nullptr) {
1759     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1760   } else {
1761 #ifndef PRODUCT
1762     // Make sure the dependency mechanism will pass this discovery:
1763     if (VerifyDependencies) {
1764       // Turn off dependency tracing while actually testing deps.
1765       FlagSetting fs(_verify_in_progress, true);
1766       if (!Dependencies::is_concrete_klass(ctxk)) {
1767         guarantee(nullptr == (void *)
1768                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1769                   "verify dep.");
1770       }
1771     }
1772 #endif //PRODUCT
1773     return conck;
1774   }
1775 }
1776 
1777 // Try to determine whether root method in some context is concrete or not based on the information about the unique method
1778 // in that context. It exploits the fact that concrete root method is always inherited into the context when there's a unique method.
1779 // Hence, unique method holder is always a supertype of the context class when root method is concrete.
1780 // Examples for concrete_root_method
1781 //      C (C.m uniqm)
1782 //      |
1783 //      CX (ctxk) uniqm is inherited into context.
1784 //
1785 //      CX (ctxk) (CX.m uniqm) here uniqm is defined in ctxk.
1786 // Examples for !concrete_root_method
1787 //      CX (ctxk)
1788 //      |
1789 //      C (C.m uniqm) uniqm is in subtype of ctxk.
1790 bool Dependencies::is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk) {
1791   if (uniqm == nullptr) {
1792     return false; // match Dependencies::is_concrete_method() behavior
1793   }
1794   // Theoretically, the "direction" of subtype check matters here.
1795   // On one hand, in case of interface context with a single implementor, uniqm can be in a superclass of the implementor which
1796   // is not related to context class.
1797   // On another hand, uniqm could come from an interface unrelated to the context class, but right now it is not possible:
1798   // it is required that uniqm->method_holder() is the participant (uniqm->method_holder() <: ctxk), hence a default method
1799   // can't be used as unique.
1800   if (ctxk->is_interface()) {
1801     InstanceKlass* implementor = ctxk->implementor();
1802     assert(implementor != ctxk, "single implementor only"); // should have been invalidated earlier
1803     ctxk = implementor;
1804   }
1805   InstanceKlass* holder = uniqm->method_holder();
1806   assert(!holder->is_interface(), "no default methods allowed");
1807   assert(ctxk->is_subclass_of(holder) || holder->is_subclass_of(ctxk), "not related");
1808   return ctxk->is_subclass_of(holder);
1809 }
1810 
1811 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1812 // Otherwise, return a class that contains an interfering method.
1813 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1814                                                   Method* uniqm,
1815                                                   NewKlassDepChange* changes) {
1816   ConcreteMethodFinder wf(uniqm, uniqm->method_holder());
1817   Klass* k = wf.find_witness(ctxk, changes);
1818   if (k != nullptr) {
1819     return k;
1820   }
1821   if (!Dependencies::is_concrete_root_method(uniqm, ctxk) || changes != nullptr) {
1822     Klass* conck = find_witness_AME(ctxk, uniqm, changes);
1823     if (conck != nullptr) {
1824       // Found a concrete subtype 'conck' which does not override abstract root method.
1825       return conck;
1826     }
1827   }
1828   return nullptr;
1829 }
1830 
1831 Klass* Dependencies::check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes) {
1832   assert(ctxk->is_interface(), "sanity");
1833   assert(ctxk->nof_implementors() > 0, "no implementors");
1834   if (ctxk->nof_implementors() == 1) {
1835     assert(ctxk->implementor() == uniqk, "sanity");
1836     return nullptr;
1837   }
1838   return ctxk; // no unique implementor
1839 }
1840 
1841 // Search for AME.
1842 // There are two version of checks.
1843 //   1) Spot checking version(Classload time). Newly added class is checked for AME.
1844 //      Checks whether abstract/overpass method is inherited into/declared in newly added concrete class.
1845 //   2) Compile time analysis for abstract/overpass(abstract klass) root_m. The non uniqm subtrees are checked for concrete classes.
1846 Klass* Dependencies::find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes) {
1847   if (m != nullptr) {
1848     if (changes != nullptr) {
1849       // Spot checking version.
1850       ConcreteMethodFinder wf(m);
1851       Klass* new_type = changes->as_new_klass_change()->new_type();
1852       if (wf.witnessed_reabstraction_in_supers(new_type)) {
1853         return new_type;
1854       }
1855     } else {
1856       // Note: It is required that uniqm->method_holder() is the participant (see ClassHierarchyWalker::found_method()).
1857       ConcreteSubtypeFinder wf(m->method_holder());
1858       Klass* conck = wf.find_witness(ctxk);
1859       if (conck != nullptr) {
1860         Method* cm = InstanceKlass::cast(conck)->find_instance_method(m->name(), m->signature(), Klass::PrivateLookupMode::skip);
1861         if (!Dependencies::is_concrete_method(cm, conck)) {
1862           return conck;
1863         }
1864       }
1865     }
1866   }
1867   return nullptr;
1868 }
1869 
1870 // This function is used by find_unique_concrete_method(non vtable based)
1871 // to check whether subtype method overrides the base method.
1872 static bool overrides(Method* sub_m, Method* base_m) {
1873   assert(base_m != nullptr, "base method should be non null");
1874   if (sub_m == nullptr) {
1875     return false;
1876   }
1877   /**
1878    *  If base_m is public or protected then sub_m always overrides.
1879    *  If base_m is !public, !protected and !private (i.e. base_m is package private)
1880    *  then sub_m should be in the same package as that of base_m.
1881    *  For package private base_m this is conservative approach as it allows only subset of all allowed cases in
1882    *  the jvm specification.
1883    **/
1884   if (base_m->is_public() || base_m->is_protected() ||
1885       base_m->method_holder()->is_same_class_package(sub_m->method_holder())) {
1886     return true;
1887   }
1888   return false;
1889 }
1890 
1891 // Find the set of all non-abstract methods under ctxk that match m.
1892 // (The method m must be defined or inherited in ctxk.)
1893 // Include m itself in the set, unless it is abstract.
1894 // If this set has exactly one element, return that element.
1895 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass** participant) {
1896   // Return nullptr if m is marked old; must have been a redefined method.
1897   if (m->is_old()) {
1898     return nullptr;
1899   }
1900   if (m->is_default_method()) {
1901     return nullptr; // not supported
1902   }
1903   assert(verify_method_context(ctxk, m), "proper context");
1904   ConcreteMethodFinder wf(m);
1905   wf.record_witnesses(1);
1906   Klass* wit = wf.find_witness(ctxk);
1907   if (wit != nullptr)  return nullptr;  // Too many witnesses.
1908   Method* fm = wf.found_method(0);  // Will be nullptr if num_parts == 0.
1909   if (participant != nullptr) {
1910     (*participant) = wf.participant(0);
1911   }
1912   if (!Dependencies::is_concrete_method(fm, nullptr)) {
1913     fm = nullptr; // ignore abstract methods
1914   }
1915   if (Dependencies::is_concrete_method(m, ctxk)) {
1916     if (fm == nullptr) {
1917       // It turns out that m was always the only implementation.
1918       fm = m;
1919     } else if (fm != m) {
1920       // Two conflicting implementations after all.
1921       // (This can happen if m is inherited into ctxk and fm overrides it.)
1922       return nullptr;
1923     }
1924   } else if (Dependencies::find_witness_AME(ctxk, fm) != nullptr) {
1925     // Found a concrete subtype which does not override abstract root method.
1926     return nullptr;
1927   } else if (!overrides(fm, m)) {
1928     // Found method doesn't override abstract root method.
1929     return nullptr;
1930   }
1931   assert(Dependencies::is_concrete_root_method(fm, ctxk) == Dependencies::is_concrete_method(m, ctxk), "mismatch");
1932 #ifndef PRODUCT
1933   // Make sure the dependency mechanism will pass this discovery:
1934   if (VerifyDependencies && fm != nullptr) {
1935     guarantee(nullptr == (void *)check_unique_concrete_method(ctxk, fm),
1936               "verify dep.");
1937   }
1938 #endif //PRODUCT
1939   return fm;
1940 }
1941 
1942 // If a class (or interface) has a unique concrete method uniqm, return nullptr.
1943 // Otherwise, return a class that contains an interfering method.
1944 Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1945                                                   Method* uniqm,
1946                                                   Klass* resolved_klass,
1947                                                   Method* resolved_method,
1948                                                   KlassDepChange* changes) {
1949   assert(!ctxk->is_interface() || ctxk == resolved_klass, "sanity");
1950   assert(!resolved_method->can_be_statically_bound() || resolved_method == uniqm, "sanity");
1951   assert(resolved_klass->is_subtype_of(resolved_method->method_holder()), "sanity");
1952 
1953   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1954       !resolved_method->method_holder()->is_linked() ||
1955       resolved_method->can_be_statically_bound()) {
1956     // Dependency is redundant, but benign. Just keep it to avoid unnecessary recompilation.
1957     return nullptr; // no vtable index available
1958   }
1959 
1960   LinkedConcreteMethodFinder mf(InstanceKlass::cast(resolved_klass), resolved_method, uniqm);
1961   return mf.find_witness(ctxk, changes);
1962 }
1963 
1964 // Find the set of all non-abstract methods under ctxk that match m.
1965 // (The method m must be defined or inherited in ctxk.)
1966 // Include m itself in the set, unless it is abstract.
1967 // If this set has exactly one element, return that element.
1968 // Not yet linked subclasses of ctxk are ignored since they don't have any instances yet.
1969 // Additionally, resolved_klass and resolved_method complete the description of the call site being analyzed.
1970 Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method) {
1971   // Return nullptr if m is marked old; must have been a redefined method.
1972   if (m->is_old()) {
1973     return nullptr;
1974   }
1975   if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1976       !resolved_method->method_holder()->is_linked() ||
1977       resolved_method->can_be_statically_bound()) {
1978     return m; // nothing to do: no witness under ctxk
1979   }
1980   LinkedConcreteMethodFinder wf(InstanceKlass::cast(resolved_klass), resolved_method);
1981   assert(Dependencies::verify_method_context(ctxk, m), "proper context");
1982   wf.record_witnesses(1);
1983   Klass* wit = wf.find_witness(ctxk);
1984   if (wit != nullptr) {
1985     return nullptr;  // Too many witnesses.
1986   }
1987   // p == nullptr when no participants are found (wf.num_participants() == 0).
1988   // fm == nullptr case has 2 meanings:
1989   //  * when p == nullptr: no method found;
1990   //  * when p != nullptr: AbstractMethodError-throwing method found.
1991   // Also, found method should always be accompanied by a participant class.
1992   Klass*   p = wf.participant(0);
1993   Method* fm = wf.found_method(0);
1994   assert(fm == nullptr || p != nullptr, "no participant");
1995   // Normalize all error-throwing cases to nullptr.
1996   if (fm == Universe::throw_illegal_access_error() ||
1997       fm == Universe::throw_no_such_method_error() ||
1998       !Dependencies::is_concrete_method(fm, p)) {
1999     fm = nullptr; // error-throwing method
2000   }
2001   if (Dependencies::is_concrete_method(m, ctxk)) {
2002     if (p == nullptr) {
2003       // It turns out that m was always the only implementation.
2004       assert(fm == nullptr, "sanity");
2005       fm = m;
2006     }
2007   }
2008 #ifndef PRODUCT
2009   // Make sure the dependency mechanism will pass this discovery:
2010   if (VerifyDependencies && fm != nullptr) {
2011     guarantee(nullptr == check_unique_concrete_method(ctxk, fm, resolved_klass, resolved_method),
2012               "verify dep.");
2013   }
2014 #endif // PRODUCT
2015   assert(fm == nullptr || !fm->is_abstract(), "sanity");
2016   // Old CHA conservatively reports concrete methods in abstract classes
2017   // irrespective of whether they have concrete subclasses or not.
2018   // Also, abstract root method case is not fully supported.
2019 #ifdef ASSERT
2020   Klass*  uniqp = nullptr;
2021   Method* uniqm = Dependencies::find_unique_concrete_method(ctxk, m, &uniqp);
2022   assert(uniqm == nullptr || uniqm == fm ||
2023          m->is_abstract() ||
2024          uniqm->method_holder()->is_abstract() ||
2025          (fm == nullptr && uniqm != nullptr && uniqp != nullptr && !InstanceKlass::cast(uniqp)->is_linked()),
2026          "sanity");
2027 #endif // ASSERT
2028   return fm;
2029 }
2030 
2031 Klass* Dependencies::check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes) {
2032   InstanceKlass* search_at = ctxk;
2033   if (changes != nullptr) {
2034     search_at = changes->new_type(); // just look at the new bit
2035   }
2036   return find_finalizable_subclass(search_at);
2037 }
2038 
2039 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
2040   assert(call_site != nullptr, "sanity");
2041   assert(method_handle != nullptr, "sanity");
2042   assert(call_site->is_a(vmClasses::CallSite_klass()),     "sanity");
2043 
2044   if (changes == nullptr) {
2045     // Validate all CallSites
2046     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
2047       return call_site->klass();  // assertion failed
2048   } else {
2049     // Validate the given CallSite
2050     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
2051       assert(method_handle != changes->method_handle(), "must be");
2052       return call_site->klass();  // assertion failed
2053     }
2054   }
2055   return nullptr;  // assertion still valid
2056 }
2057 
2058 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
2059   if (_verify_in_progress) return;  // don't log
2060   if (witness != nullptr) {
2061     LogTarget(Debug, dependencies) lt;
2062     if (lt.is_enabled()) {
2063       LogStream ls(&lt);
2064       print_dependency(&ls, witness, /*verbose=*/ true);
2065     }
2066     // The following is a no-op unless logging is enabled:
2067     log_dependency(witness);
2068   }
2069 }
2070 
2071 Klass* Dependencies::DepStream::check_new_klass_dependency(NewKlassDepChange* changes) {
2072   assert_locked_or_safepoint(Compile_lock);
2073   Dependencies::check_valid_dependency_type(type());
2074 
2075   Klass* witness = nullptr;
2076   switch (type()) {
2077   case evol_method:
2078     witness = check_evol_method(method_argument(0));
2079     break;
2080   case leaf_type:
2081     witness = check_leaf_type(context_type());
2082     break;
2083   case abstract_with_unique_concrete_subtype:
2084     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
2085     break;
2086   case unique_concrete_method_2:
2087     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
2088     break;
2089   case unique_concrete_method_4:
2090     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2091     break;
2092   case unique_implementor:
2093     witness = check_unique_implementor(context_type(), type_argument(1), changes);
2094     break;
2095   case no_finalizable_subclasses:
2096     witness = check_has_no_finalizable_subclasses(context_type(), changes);
2097     break;
2098   default:
2099     witness = nullptr;
2100     break;
2101   }
2102   trace_and_log_witness(witness);
2103   return witness;
2104 }
2105 
2106 Klass* Dependencies::DepStream::check_klass_init_dependency(KlassInitDepChange* changes) {
2107   assert_locked_or_safepoint(Compile_lock);
2108   Dependencies::check_valid_dependency_type(type());
2109 
2110   // No new types added. Only unique_concrete_method_4 is sensitive to class initialization changes.
2111   Klass* witness = nullptr;
2112   switch (type()) {
2113   case unique_concrete_method_4:
2114     witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2115     break;
2116   default:
2117     witness = nullptr;
2118     break;
2119   }
2120   trace_and_log_witness(witness);
2121   return witness;
2122 }
2123 
2124 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
2125   assert_locked_or_safepoint(Compile_lock);
2126   Dependencies::check_valid_dependency_type(type());
2127 
2128   if (changes != nullptr) {
2129     if (changes->is_klass_init_change()) {
2130       return check_klass_init_dependency(changes->as_klass_init_change());
2131     } else {
2132       return check_new_klass_dependency(changes->as_new_klass_change());
2133     }
2134   } else {
2135     Klass* witness = check_new_klass_dependency(nullptr);
2136     // check_klass_init_dependency duplicates check_new_klass_dependency checks when class hierarchy change info is absent.
2137     assert(witness != nullptr || check_klass_init_dependency(nullptr) == nullptr, "missed dependency");
2138     return witness;
2139   }
2140 }
2141 
2142 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
2143   assert_locked_or_safepoint(Compile_lock);
2144   Dependencies::check_valid_dependency_type(type());
2145 
2146   Klass* witness = nullptr;
2147   switch (type()) {
2148   case call_site_target_value:
2149     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
2150     break;
2151   default:
2152     witness = nullptr;
2153     break;
2154   }
2155   trace_and_log_witness(witness);
2156   return witness;
2157 }
2158 
2159 
2160 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
2161   // Handle klass dependency
2162   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
2163     return check_klass_dependency(changes.as_klass_change());
2164 
2165   // Handle CallSite dependency
2166   if (changes.is_call_site_change())
2167     return check_call_site_dependency(changes.as_call_site_change());
2168 
2169   // irrelevant dependency; skip it
2170   return nullptr;
2171 }
2172 
2173 
2174 void DepChange::print() { print_on(tty); }
2175 
2176 void DepChange::print_on(outputStream* st) {
2177   int nsup = 0, nint = 0;
2178   for (ContextStream str(*this); str.next(); ) {
2179     InstanceKlass* k = str.klass();
2180     switch (str.change_type()) {
2181     case Change_new_type:
2182       st->print_cr("  dependee = %s", k->external_name());
2183       break;
2184     case Change_new_sub:
2185       if (!WizardMode) {
2186         ++nsup;
2187       } else {
2188         st->print_cr("  context super = %s", k->external_name());
2189       }
2190       break;
2191     case Change_new_impl:
2192       if (!WizardMode) {
2193         ++nint;
2194       } else {
2195         st->print_cr("  context interface = %s", k->external_name());
2196       }
2197       break;
2198     default:
2199       break;
2200     }
2201   }
2202   if (nsup + nint != 0) {
2203     st->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
2204   }
2205 }
2206 
2207 void DepChange::ContextStream::start() {
2208   InstanceKlass* type = (_changes.is_klass_change() ? _changes.as_klass_change()->type() : (InstanceKlass*) nullptr);
2209   _change_type = (type == nullptr ? NO_CHANGE : Start_Klass);
2210   _klass = type;
2211   _ti_base = nullptr;
2212   _ti_index = 0;
2213   _ti_limit = 0;
2214 }
2215 
2216 bool DepChange::ContextStream::next() {
2217   switch (_change_type) {
2218   case Start_Klass:             // initial state; _klass is the new type
2219     _ti_base = _klass->transitive_interfaces();
2220     _ti_index = 0;
2221     _change_type = Change_new_type;
2222     return true;
2223   case Change_new_type:
2224     // fall through:
2225     _change_type = Change_new_sub;
2226   case Change_new_sub:
2227     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
2228     {
2229       _klass = _klass->java_super();
2230       if (_klass != nullptr) {
2231         return true;
2232       }
2233     }
2234     // else set up _ti_limit and fall through:
2235     _ti_limit = (_ti_base == nullptr) ? 0 : _ti_base->length();
2236     _change_type = Change_new_impl;
2237   case Change_new_impl:
2238     if (_ti_index < _ti_limit) {
2239       _klass = _ti_base->at(_ti_index++);
2240       return true;
2241     }
2242     // fall through:
2243     _change_type = NO_CHANGE;  // iterator is exhausted
2244   case NO_CHANGE:
2245     break;
2246   default:
2247     ShouldNotReachHere();
2248   }
2249   return false;
2250 }
2251 
2252 void KlassDepChange::initialize() {
2253   // entire transaction must be under this lock:
2254   assert_lock_strong(Compile_lock);
2255 
2256   // Mark all dependee and all its superclasses
2257   // Mark transitive interfaces
2258   for (ContextStream str(*this); str.next(); ) {
2259     InstanceKlass* d = str.klass();
2260     assert(!d->is_marked_dependent(), "checking");
2261     d->set_is_marked_dependent(true);
2262   }
2263 }
2264 
2265 KlassDepChange::~KlassDepChange() {
2266   // Unmark all dependee and all its superclasses
2267   // Unmark transitive interfaces
2268   for (ContextStream str(*this); str.next(); ) {
2269     InstanceKlass* d = str.klass();
2270     d->set_is_marked_dependent(false);
2271   }
2272 }
2273 
2274 bool KlassDepChange::involves_context(Klass* k) {
2275   if (k == nullptr || !k->is_instance_klass()) {
2276     return false;
2277   }
2278   InstanceKlass* ik = InstanceKlass::cast(k);
2279   bool is_contained = ik->is_marked_dependent();
2280   assert(is_contained == type()->is_subtype_of(k),
2281          "correct marking of potential context types");
2282   return is_contained;
2283 }
2284 
2285 void Dependencies::print_statistics() {
2286   AbstractClassHierarchyWalker::print_statistics();
2287 }
2288 
2289 void AbstractClassHierarchyWalker::print_statistics() {
2290   if (UsePerfData) {
2291     jlong deps_find_witness_calls   = _perf_find_witness_anywhere_calls_count->get_value();
2292     jlong deps_find_witness_steps   = _perf_find_witness_anywhere_steps_count->get_value();
2293     jlong deps_find_witness_singles = _perf_find_witness_in_calls_count->get_value();
2294 
2295     ttyLocker ttyl;
2296     tty->print_cr("Dependency check (find_witness) "
2297                   "calls=" JLONG_FORMAT ", steps=" JLONG_FORMAT " (avg=%.1f), singles=" JLONG_FORMAT,
2298                   deps_find_witness_calls,
2299                   deps_find_witness_steps,
2300                   (double)deps_find_witness_steps / deps_find_witness_calls,
2301                   deps_find_witness_singles);
2302     if (xtty != nullptr) {
2303       xtty->elem("deps_find_witness calls='" JLONG_FORMAT "' steps='" JLONG_FORMAT "' singles='" JLONG_FORMAT "'",
2304                  deps_find_witness_calls,
2305                  deps_find_witness_steps,
2306                  deps_find_witness_singles);
2307     }
2308   }
2309 }
2310 
2311 CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) :
2312   _call_site(call_site),
2313   _method_handle(method_handle) {
2314   assert(_call_site()->is_a(vmClasses::CallSite_klass()), "must be");
2315   assert(_method_handle.is_null() || _method_handle()->is_a(vmClasses::MethodHandle_klass()), "must be");
2316 }
2317 
2318 void dependencies_init() {
2319   AbstractClassHierarchyWalker::init();
2320 }