1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_CODE_RELOCINFO_HPP
  26 #define SHARE_CODE_RELOCINFO_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "oops/oopsHierarchy.hpp"
  30 #include "runtime/osInfo.hpp"
  31 #include "utilities/checkedCast.hpp"
  32 #include "utilities/globalDefinitions.hpp"
  33 #include "utilities/macros.hpp"
  34 
  35 #include <new>
  36 
  37 class CodeBlob;
  38 class Metadata;
  39 class NativeMovConstReg;
  40 class nmethod;
  41 
  42 // Types in this file:
  43 //    relocInfo
  44 //      One element of an array of halfwords encoding compressed relocations.
  45 //      Also, the source of relocation types (relocInfo::oop_type, ...).
  46 //    Relocation
  47 //      A flyweight object representing a single relocation.
  48 //      It is fully unpacked from the compressed relocation array.
  49 //    metadata_Relocation, ... (subclasses of Relocation)
  50 //      The location of some type-specific operations (metadata_addr, ...).
  51 //      Also, the source of relocation specs (metadata_Relocation::spec, ...).
  52 //    oop_Relocation, ... (subclasses of Relocation)
  53 //      oops in the code stream (strings, class loaders)
  54 //      Also, the source of relocation specs (oop_Relocation::spec, ...).
  55 //    RelocationHolder
  56 //      A value type which acts as a union holding a Relocation object.
  57 //      Represents a relocation spec passed into a CodeBuffer during assembly.
  58 //    RelocIterator
  59 //      A StackObj which iterates over the relocations associated with
  60 //      a range of code addresses.  Can be used to operate a copy of code.
  61 
  62 
  63 // Notes on relocType:
  64 //
  65 // These hold enough information to read or write a value embedded in
  66 // the instructions of an CodeBlob.  They're used to update:
  67 //
  68 //   1) embedded oops     (isOop()          == true)
  69 //   2) inline caches     (isIC()           == true)
  70 //   3) runtime calls     (isRuntimeCall()  == true)
  71 //   4) internal word ref (isInternalWord() == true)
  72 //   5) external word ref (isExternalWord() == true)
  73 //
  74 // when objects move (GC) or if code moves (compacting the code heap).
  75 // They are also used to patch the code (if a call site must change)
  76 //
  77 // A relocInfo is represented in 16 bits:
  78 //   4 bits indicating the relocation type
  79 //  12 bits indicating the offset from the previous relocInfo address
  80 //
  81 // The offsets accumulate along the relocInfo stream to encode the
  82 // address within the CodeBlob, which is named RelocIterator::addr().
  83 // The address of a particular relocInfo always points to the first
  84 // byte of the relevant instruction (and not to any of its subfields
  85 // or embedded immediate constants).
  86 //
  87 // The offset value is scaled appropriately for the target machine.
  88 // (See relocInfo_<arch>.hpp for the offset scaling.)
  89 //
  90 // On some machines, there may also be a "format" field which may provide
  91 // additional information about the format of the instruction stream
  92 // at the corresponding code address.  The format value is usually zero.
  93 // Any machine (such as Intel) whose instructions can sometimes contain
  94 // more than one relocatable constant needs format codes to distinguish
  95 // which operand goes with a given relocation.
  96 //
  97 // If the target machine needs N format bits, the offset has 12-N bits,
  98 // the format is encoded between the offset and the type, and the
  99 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
 100 //
 101 // If the type is "data_prefix_tag" then the offset bits are further encoded,
 102 // and in fact represent not a code-stream offset but some inline data.
 103 // The data takes the form of a counted sequence of halfwords, which
 104 // precedes the actual relocation record.  (Clients never see it directly.)
 105 // The interpretation of this extra data depends on the relocation type.
 106 //
 107 // On machines that have 32-bit immediate fields, there is usually
 108 // little need for relocation "prefix" data, because the instruction stream
 109 // is a perfectly reasonable place to store the value.  On machines in
 110 // which 32-bit values must be "split" across instructions, the relocation
 111 // data is the "true" specification of the value, which is then applied
 112 // to some field of the instruction (22 or 13 bits, on SPARC).
 113 //
 114 // Whenever the location of the CodeBlob changes, any PC-relative
 115 // relocations, and any internal_word_type relocations, must be reapplied.
 116 // After the GC runs, oop_type relocations must be reapplied.
 117 //
 118 //
 119 // Here are meanings of the types:
 120 //
 121 // relocInfo::none -- a filler record
 122 //   Value:  none
 123 //   Instruction: The corresponding code address is ignored
 124 //   Data:  Any data prefix and format code are ignored
 125 //   (This means that any relocInfo can be disabled by setting
 126 //   its type to none.  See relocInfo::remove.)
 127 //
 128 // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
 129 //   Value:  an oop, or else the address (handle) of an oop
 130 //   Instruction types: memory (load), set (load address)
 131 //   Data:  []       an oop stored in 4 bytes of instruction
 132 //          [[N]n]   the index of an oop in the CodeBlob's oop pool
 133 //
 134 // relocInfo::internal_word_type -- an address within the same CodeBlob
 135 // relocInfo::section_word_type -- same, but can refer to another section
 136 //   Value:  an address in the CodeBlob's code or constants section
 137 //   Instruction types: memory (load), set (load address)
 138 //   Data:  []     stored in 4 bytes of instruction
 139 //          [[L]l] a relative offset (see [About Offsets] below)
 140 //   In the case of section_word_type, the offset is relative to a section
 141 //   base address, and the section number (e.g., SECT_INSTS) is encoded
 142 //   into the low two bits of the offset L.
 143 //
 144 // relocInfo::external_word_type -- a fixed address in the runtime system
 145 //   Value:  an address
 146 //   Instruction types: memory (load), set (load address)
 147 //   Data:  []   stored in 4 bytes of instruction
 148 //          [n]  the index of a "well-known" stub (usual case on RISC)
 149 //          [Ll] a 32-bit address
 150 //
 151 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
 152 //   Value:  an address
 153 //   Instruction types: PC-relative call (or a PC-relative branch)
 154 //   Data:  []   stored in 4 bytes of instruction
 155 //
 156 // relocInfo::static_call_type -- a static call
 157 //   Value:  an CodeBlob, a stub, or a fixup routine
 158 //   Instruction types: a call
 159 //   Data:  []
 160 //   The identity of the callee is extracted from debugging information.
 161 //   //%note reloc_3
 162 //
 163 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
 164 //                                 cache)
 165 //   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
 166 //   Instruction types: a call, plus some associated set-oop instructions
 167 //   Data:  []       the associated set-oops are adjacent to the call
 168 //          [n]      n is a relative offset to the first set-oop
 169 //          [[N]n l] and l is a limit within which the set-oops occur
 170 //          [Nn Ll]  both n and l may be 32 bits if necessary
 171 //   The identity of the callee is extracted from debugging information.
 172 //
 173 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
 174 //
 175 //    Same info as a static_call_type. We use a special type, so the handling of
 176 //    virtuals and statics are separated.
 177 //
 178 //
 179 //   The offset n points to the first set-oop.  (See [About Offsets] below.)
 180 //   In turn, the set-oop instruction specifies or contains an oop cell devoted
 181 //   exclusively to the IC call, which can be patched along with the call.
 182 //
 183 //   The locations of any other set-oops are found by searching the relocation
 184 //   information starting at the first set-oop, and continuing until all
 185 //   relocations up through l have been inspected.  The value l is another
 186 //   relative offset.  (Both n and l are relative to the call's first byte.)
 187 //
 188 //   The limit l of the search is exclusive.  However, if it points within
 189 //   the call (e.g., offset zero), it is adjusted to point after the call and
 190 //   any associated machine-specific delay slot.
 191 //
 192 //   Since the offsets could be as wide as 32-bits, these conventions
 193 //   put no restrictions whatever upon code reorganization.
 194 //
 195 //   The compiler is responsible for ensuring that transition from a clean
 196 //   state to a monomorphic compiled state is MP-safe.  This implies that
 197 //   the system must respond well to intermediate states where a random
 198 //   subset of the set-oops has been correctly from the clean state
 199 //   upon entry to the VEP of the compiled method.  In the case of a
 200 //   machine (Intel) with a single set-oop instruction, the 32-bit
 201 //   immediate field must not straddle a unit of memory coherence.
 202 //   //%note reloc_3
 203 //
 204 // relocInfo::static_stub_type -- an extra stub for each static_call_type
 205 //   Value:  none
 206 //   Instruction types: a virtual call:  { set_oop; jump; }
 207 //   Data:  [[N]n]  the offset of the associated static_call reloc
 208 //   This stub becomes the target of a static call which must be upgraded
 209 //   to a virtual call (because the callee is interpreted).
 210 //   See [About Offsets] below.
 211 //   //%note reloc_2
 212 //
 213 // relocInfo::poll_[return_]type -- a safepoint poll
 214 //   Value:  none
 215 //   Instruction types: memory load or test
 216 //   Data:  none
 217 //
 218 // For example:
 219 //
 220 //   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
 221 //   ------------                               ----    -----------
 222 // sethi      %hi(myObject),  R               oop_type [n(myObject)]
 223 // ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
 224 // add R2, 1, R2
 225 // st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
 226 //%note reloc_1
 227 //
 228 // This uses 4 instruction words, 8 relocation halfwords,
 229 // and an entry (which is shareable) in the CodeBlob's oop pool,
 230 // for a total of 36 bytes.
 231 //
 232 // Note that the compiler is responsible for ensuring the "fldOffset" when
 233 // added to "%lo(myObject)" does not overflow the immediate fields of the
 234 // memory instructions.
 235 //
 236 //
 237 // [About Offsets] Relative offsets are supplied to this module as
 238 // positive byte offsets, but they may be internally stored scaled
 239 // and/or negated, depending on what is most compact for the target
 240 // system.  Since the object pointed to by the offset typically
 241 // precedes the relocation address, it is profitable to store
 242 // these negative offsets as positive numbers, but this decision
 243 // is internal to the relocation information abstractions.
 244 //
 245 
 246 class Relocation;
 247 class CodeBuffer;
 248 class CodeSection;
 249 class RelocIterator;
 250 
 251 class relocInfo {
 252   friend class RelocIterator;
 253  public:
 254   enum relocType {
 255     none                    =  0, // Used when no relocation should be generated
 256     oop_type                =  1, // embedded oop
 257     virtual_call_type       =  2, // a standard inline cache call for a virtual send
 258     opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
 259     static_call_type        =  4, // a static send
 260     static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
 261     runtime_call_type       =  6, // call to fixed external routine
 262     external_word_type      =  7, // reference to fixed external address
 263     internal_word_type      =  8, // reference within the current code blob
 264     section_word_type       =  9, // internal, but a cross-section reference
 265     poll_type               = 10, // polling instruction for safepoints
 266     poll_return_type        = 11, // polling instruction for safepoints at return
 267     metadata_type           = 12, // metadata that used to be oops
 268     trampoline_stub_type    = 13, // stub-entry for trampoline
 269     runtime_call_w_cp_type  = 14, // Runtime call which may load its target from the constant pool
 270     data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
 271     post_call_nop_type      = 16, // A tag for post call nop relocations
 272     entry_guard_type        = 17, // A tag for an nmethod entry barrier guard value
 273     barrier_type            = 18, // GC barrier data
 274     type_mask               = 31  // A mask which selects only the above values
 275   };
 276 
 277  private:
 278   unsigned short _value;
 279 
 280   static const enum class RawBitsToken {} RAW_BITS{};
 281 
 282   relocInfo(relocType type, RawBitsToken, int bits)
 283     : _value(checked_cast<unsigned short>((type << nontype_width) + bits)) { }
 284 
 285   static relocType check_relocType(relocType type) NOT_DEBUG({ return type; });
 286 
 287   static void check_offset_and_format(int offset, int format) NOT_DEBUG_RETURN;
 288 
 289   static int compute_bits(int offset, int format) {
 290     check_offset_and_format(offset, format);
 291     return (offset / offset_unit) + (format << offset_width);
 292   }
 293 
 294  public:
 295   relocInfo(relocType type, int offset, int format = 0)
 296     : relocInfo(check_relocType(type), RAW_BITS, compute_bits(offset, format)) {}
 297 
 298   #define APPLY_TO_RELOCATIONS(visitor) \
 299     visitor(oop) \
 300     visitor(metadata) \
 301     visitor(virtual_call) \
 302     visitor(opt_virtual_call) \
 303     visitor(static_call) \
 304     visitor(static_stub) \
 305     visitor(runtime_call) \
 306     visitor(runtime_call_w_cp) \
 307     visitor(external_word) \
 308     visitor(internal_word) \
 309     visitor(poll) \
 310     visitor(poll_return) \
 311     visitor(section_word) \
 312     visitor(trampoline_stub) \
 313     visitor(post_call_nop) \
 314     visitor(entry_guard) \
 315     visitor(barrier) \
 316 
 317 
 318  public:
 319   enum : unsigned short{
 320     value_width             = sizeof(unsigned short) * BitsPerByte,
 321     type_width              = 5,   // == log2(type_mask+1)
 322     nontype_width           = value_width - type_width,
 323     datalen_width           = nontype_width-1,
 324     datalen_tag             = 1 << datalen_width,  // or-ed into _value
 325     datalen_limit           = 1 << datalen_width,
 326     datalen_mask            = (1 << datalen_width)-1
 327   };
 328 
 329   // accessors
 330  public:
 331   relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
 332   int  format()           const { return format_mask==0? 0: format_mask &
 333                                          ((unsigned)_value >> offset_width); }
 334   int  addr_offset()      const { assert(!is_prefix(), "must have offset");
 335                                   return (_value & offset_mask)*offset_unit; }
 336 
 337  protected:
 338   const short* data()       const { assert(is_datalen(), "must have data");
 339                                     return (const short*)(this + 1); }
 340   unsigned short datalen()  const { assert(is_datalen(), "must have data");
 341                                   return (_value & datalen_mask); }
 342   unsigned short immediate() const { assert(is_immediate(), "must have immed");
 343                                   return (_value & datalen_mask); }
 344  public:
 345   static int addr_unit()        { return offset_unit; }
 346   static int offset_limit()     { return (1 << offset_width) * offset_unit; }
 347 
 348   void set_type(relocType type);
 349 
 350   void remove() { set_type(none); }
 351 
 352  protected:
 353   bool is_none()                const { return type() == none; }
 354   bool is_prefix()              const { return type() == data_prefix_tag; }
 355   bool is_datalen()             const { assert(is_prefix(), "must be prefix");
 356                                         return (_value & datalen_tag) != 0; }
 357   bool is_immediate()           const { assert(is_prefix(), "must be prefix");
 358                                         return (_value & datalen_tag) == 0; }
 359 
 360  public:
 361   // Occasionally records of type relocInfo::none will appear in the stream.
 362   // We do not bother to filter these out, but clients should ignore them.
 363   // These records serve as "filler" in three ways:
 364   //  - to skip large spans of unrelocated code (this is rare)
 365   //  - to pad out the relocInfo array to the required oop alignment
 366   //  - to disable old relocation information which is no longer applicable
 367 
 368   static relocInfo filler_info() {
 369     return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
 370   }
 371 
 372   // Every non-prefix relocation may be preceded by at most one prefix,
 373   // which supplies 1 or more halfwords of associated data.  Conventionally,
 374   // an int is represented by 0, 1, or 2 halfwords, depending on how
 375   // many bits are required to represent the value.  (In addition,
 376   // if the sole halfword is a 10-bit unsigned number, it is made
 377   // "immediate" in the prefix header word itself.  This optimization
 378   // is invisible outside this module.)
 379 
 380   static relocInfo prefix_info(int datalen = 0) {
 381     assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
 382     return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
 383   }
 384 
 385  private:
 386   // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
 387   static relocInfo immediate_relocInfo(int data0) {
 388     assert(fits_into_immediate(data0), "data0 in limits");
 389     return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
 390   }
 391   static bool fits_into_immediate(int data0) {
 392     return (data0 >= 0 && data0 < datalen_limit);
 393   }
 394 
 395  public:
 396   // Support routines for compilers.
 397 
 398   // This routine takes an infant relocInfo (unprefixed) and
 399   // edits in its prefix, if any.  It also updates dest.locs_end.
 400   void initialize(CodeSection* dest, Relocation* reloc);
 401 
 402   // This routine updates a prefix and returns the limit pointer.
 403   // It tries to compress the prefix from 32 to 16 bits, and if
 404   // successful returns a reduced "prefix_limit" pointer.
 405   relocInfo* finish_prefix(short* prefix_limit);
 406 
 407   // bit-packers for the data array:
 408 
 409   // As it happens, the bytes within the shorts are ordered natively,
 410   // but the shorts within the word are ordered big-endian.
 411   // This is an arbitrary choice, made this way mainly to ease debugging.
 412   static short data0_from_int(jint x)         { return (short)(x >> value_width); }
 413   static short data1_from_int(jint x)         { return (short)x; }
 414   static jint jint_from_data(short* data) {
 415     return (data[0] << value_width) + (unsigned short)data[1];
 416   }
 417 
 418   static jint short_data_at(int n, short* data, int datalen) {
 419     return datalen > n ? data[n] : 0;
 420   }
 421 
 422   static jint jint_data_at(int n, short* data, int datalen) {
 423     return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
 424   }
 425 
 426   // Update methods for relocation information
 427   // (since code is dynamically patched, we also need to dynamically update the relocation info)
 428   // Both methods takes old_type, so it is able to perform sanity checks on the information removed.
 429   static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
 430 
 431   // Machine dependent stuff
 432 #include CPU_HEADER(relocInfo)
 433 
 434  protected:
 435   // Derived constant, based on format_width which is PD:
 436   enum {
 437     offset_width       = nontype_width - format_width,
 438     offset_mask        = (1<<offset_width) - 1,
 439     format_mask        = (1<<format_width) - 1
 440   };
 441  public:
 442   enum {
 443 #ifdef _LP64
 444     // for use in format
 445     // format_width must be at least 1 on _LP64
 446     narrow_oop_in_const = 1,
 447 #endif
 448     // Conservatively large estimate of maximum length (in shorts)
 449     // of any relocation record.
 450     // Extended format is length prefix, data words, and tag/offset suffix.
 451     length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
 452     have_format        = format_width > 0
 453   };
 454 
 455   static const char* type_name(relocInfo::relocType t);
 456 };
 457 
 458 #define FORWARD_DECLARE_EACH_CLASS(name)              \
 459 class name##_Relocation;
 460 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
 461 #undef FORWARD_DECLARE_EACH_CLASS
 462 
 463 // Holder for flyweight relocation objects.
 464 // Although the flyweight subclasses are of varying sizes,
 465 // the holder is "one size fits all".
 466 class RelocationHolder {
 467   friend class Relocation;
 468 
 469  private:
 470   // A Relocation is "held" by placement constructing a Relocation into
 471   // _relocbuf. Hence, _relocbuf must accomodate all subclasses of
 472   // Relocation. We also need the Relocation base class to be at the same
 473   // address as the start of the object, e.g. at the address of _relocbuf.
 474   // Both of these requirements are checked (see emplace_relocation).
 475   // The placement of the base class subobject isn't guaranteed by C++, since
 476   // these aren't standard layout classes, but all supported implementations
 477   // provide that behavior.  If that changes, we can instead add a Relocation*
 478   // _reloc member to capture the result of the placement new, and use that to
 479   // access the base subobject.
 480   static const size_t _relocbuf_size = 5 * sizeof(void*);
 481   alignas(void*) char _relocbuf[_relocbuf_size];
 482 
 483   template<typename Reloc, typename... Args>
 484   void emplace_relocation(const Args&... args) {
 485     static_assert(std::is_base_of<Relocation, Reloc>::value, "not Relocation");
 486     static_assert(sizeof(Reloc) <= sizeof(_relocbuf), "_relocbuf too small");
 487     Relocation* reloc = ::new (_relocbuf) Reloc(args...);
 488     // Verify the base class subobject of the object constructed into
 489     // _relocbuf is at the same address as the derived object.
 490     assert(static_cast<const void*>(reloc) == _relocbuf, "invariant");
 491   }
 492 
 493   // Support for Relocation::copy_into.
 494   // reloc should be a most derived object.
 495   template<typename Reloc>
 496   void copy_into_impl(const Reloc& reloc) {
 497     emplace_relocation<Reloc>(reloc);
 498   }
 499 
 500   // Tag for selecting the constructor below and carrying the type of the
 501   // relocation object the new holder will (initially) contain.
 502   template<typename Reloc> struct Construct {};
 503 
 504   // Constructor used by construct().  Constructs a new holder containing a
 505   // relocation of type Reloc that is constructed using the provided args.
 506   template<typename Reloc, typename... Args>
 507   RelocationHolder(Construct<Reloc>, const Args&... args) {
 508     emplace_relocation<Reloc>(args...);
 509   }
 510 
 511  public:
 512   Relocation* reloc() const { return (Relocation*)_relocbuf; }
 513   inline relocInfo::relocType type() const;
 514 
 515   // Return a holder containing a relocation of type Reloc, constructed using args.
 516   template<typename Reloc, typename... Args>
 517   static RelocationHolder construct(const Args&... args) {
 518     return RelocationHolder(Construct<Reloc>(), args...);
 519   }
 520 
 521   RelocationHolder();           // Initializes type to none.
 522 
 523   // Depends on the destructor for all relocation types being trivial
 524   // (verified in .cpp file).
 525   ~RelocationHolder() = default;
 526 
 527   RelocationHolder(const RelocationHolder& from);
 528   RelocationHolder& operator=(const RelocationHolder& from);
 529 
 530   static const RelocationHolder none;
 531 };
 532 
 533 // A RelocIterator iterates through the relocation information of a CodeBlob.
 534 // It provides access to successive relocations as it is advanced through a
 535 // code stream.
 536 // Usage:
 537 //   RelocIterator iter(nm);
 538 //   while (iter.next()) {
 539 //     iter.reloc()->some_operation();
 540 //   }
 541 // or:
 542 //   RelocIterator iter(nm);
 543 //   while (iter.next()) {
 544 //     switch (iter.type()) {
 545 //      case relocInfo::oop_type          :
 546 //      case relocInfo::ic_type           :
 547 //      case relocInfo::prim_type         :
 548 //      case relocInfo::uncommon_type     :
 549 //      case relocInfo::runtime_call_type :
 550 //      case relocInfo::internal_word_type:
 551 //      case relocInfo::external_word_type:
 552 //      ...
 553 //     }
 554 //   }
 555 
 556 class RelocIterator : public StackObj {
 557   friend class section_word_Relocation; // for section verification
 558   enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
 559   friend class Relocation;
 560   friend class relocInfo;   // for change_reloc_info_for_address only
 561   typedef relocInfo::relocType relocType;
 562 
 563  private:
 564   address         _limit;   // stop producing relocations after this _addr
 565   relocInfo*      _current; // the current relocation information
 566   relocInfo*      _end;     // end marker; we're done iterating when _current == _end
 567   nmethod*        _code;    // compiled method containing _addr
 568   address         _addr;    // instruction to which the relocation applies
 569   short           _databuf; // spare buffer for compressed data
 570   short*          _data;    // pointer to the relocation's data
 571   short           _datalen; // number of halfwords in _data
 572 
 573   // Base addresses needed to compute targets of section_word_type relocs.
 574   address _section_start[SECT_LIMIT];
 575   address _section_end  [SECT_LIMIT];
 576 
 577   void set_has_current(bool b) {
 578     _datalen = !b ? -1 : 0;
 579     debug_only(_data = nullptr);
 580   }
 581   void set_current(relocInfo& ri) {
 582     _current = &ri;
 583     set_has_current(true);
 584   }
 585 
 586   RelocationHolder _rh; // where the current relocation is allocated
 587 
 588   relocInfo* current() const { assert(has_current(), "must have current");
 589                                return _current; }
 590 
 591   void set_limits(address begin, address limit);
 592 
 593   void advance_over_prefix();    // helper method
 594 
 595   void initialize_misc();
 596 
 597   void initialize(nmethod* nm, address begin, address limit);
 598 
 599   RelocIterator() { initialize_misc(); }
 600 
 601  public:
 602   // constructor
 603   RelocIterator(nmethod* nm, address begin = nullptr, address limit = nullptr);
 604   RelocIterator(CodeSection* cb, address begin = nullptr, address limit = nullptr);
 605 
 606   // get next reloc info, return !eos
 607   bool next() {
 608     _current++;
 609     assert(_current <= _end, "must not overrun relocInfo");
 610     if (_current == _end) {
 611       set_has_current(false);
 612       return false;
 613     }
 614     set_has_current(true);
 615 
 616     if (_current->is_prefix()) {
 617       advance_over_prefix();
 618       assert(!current()->is_prefix(), "only one prefix at a time");
 619     }
 620 
 621     _addr += _current->addr_offset();
 622 
 623     if (_limit != nullptr && _addr >= _limit) {
 624       set_has_current(false);
 625       return false;
 626     }
 627 
 628     return true;
 629   }
 630 
 631   // accessors
 632   address      limit()        const { return _limit; }
 633   relocType    type()         const { return current()->type(); }
 634   int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
 635   address      addr()         const { return _addr; }
 636   nmethod*     code()         const { return _code; }
 637   short*       data()         const { return _data; }
 638   int          datalen()      const { return _datalen; }
 639   bool     has_current()      const { return _datalen >= 0; }
 640   bool   addr_in_const()      const;
 641 
 642   address section_start(int n) const {
 643     assert(_section_start[n], "section %d must be initialized", n);
 644     return _section_start[n];
 645   }
 646   address section_end(int n) const {
 647     assert(_section_end[n], "section %d must be initialized", n);
 648     return _section_end[n];
 649   }
 650 
 651   // The address points to the affected displacement part of the instruction.
 652   // For RISC, this is just the whole instruction.
 653   // For Intel, this is an unaligned 32-bit word.
 654 
 655   // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
 656   #define EACH_TYPE(name)                               \
 657   inline name##_Relocation* name##_reloc();
 658   APPLY_TO_RELOCATIONS(EACH_TYPE)
 659   #undef EACH_TYPE
 660   // generic relocation accessor; switches on type to call the above
 661   Relocation* reloc();
 662 
 663  public:
 664   void print_on(outputStream* st);
 665   void print_current_on(outputStream* st);
 666 };
 667 
 668 
 669 // A Relocation is a flyweight object allocated within a RelocationHolder.
 670 // It represents the relocation data of relocation record.
 671 // So, the RelocIterator unpacks relocInfos into Relocations.
 672 
 673 class Relocation {
 674   friend class RelocIterator;
 675   friend class SCCReader;
 676 
 677  private:
 678   // When a relocation has been created by a RelocIterator,
 679   // this field is non-null.  It allows the relocation to know
 680   // its context, such as the address to which it applies.
 681   RelocIterator* _binding;
 682 
 683   relocInfo::relocType _rtype;
 684 
 685  protected:
 686   RelocIterator* binding() const {
 687     assert(_binding != nullptr, "must be bound");
 688     return _binding;
 689   }
 690   void set_binding(RelocIterator* b) {
 691     assert(_binding == nullptr, "must be unbound");
 692     _binding = b;
 693     assert(_binding != nullptr, "must now be bound");
 694   }
 695 
 696   explicit Relocation(relocInfo::relocType rtype) : _binding(nullptr), _rtype(rtype) { }
 697 
 698   // Helper for copy_into functions for derived classes.
 699   // Forwards operation to RelocationHolder::copy_into_impl so that
 700   // RelocationHolder only needs to befriend this class, rather than all
 701   // derived classes that implement copy_into.
 702   template<typename Reloc>
 703   static void copy_into_helper(const Reloc& reloc, RelocationHolder& holder) {
 704     holder.copy_into_impl(reloc);
 705   }
 706 
 707  public:
 708   // make a generic relocation for a given type (if possible)
 709   static RelocationHolder spec_simple(relocInfo::relocType rtype);
 710 
 711   // here is the type-specific hook which writes relocation data:
 712   virtual void pack_data_to(CodeSection* dest) { }
 713 
 714   // here is the type-specific hook which reads (unpacks) relocation data:
 715   virtual void unpack_data() {
 716     assert(datalen()==0 || type()==relocInfo::none, "no data here");
 717   }
 718 
 719  protected:
 720   // Helper functions for pack_data_to() and unpack_data().
 721 
 722   // Most of the compression logic is confined here.
 723   // (The "immediate data" mechanism of relocInfo works independently
 724   // of this stuff, and acts to further compress most 1-word data prefixes.)
 725 
 726   // A variable-width int is encoded as a short if it will fit in 16 bits.
 727   // The decoder looks at datalen to decide whether to unpack short or jint.
 728   // Most relocation records are quite simple, containing at most two ints.
 729 
 730   static bool is_short(jint x) { return x == (short)x; }
 731   static short* add_short(short* p, short x)  { *p++ = x; return p; }
 732   static short* add_jint (short* p, jint x) {
 733     *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
 734     return p;
 735   }
 736   static short* add_var_int(short* p, jint x) {   // add a variable-width int
 737     if (is_short(x))  p = add_short(p, (short)x);
 738     else              p = add_jint (p, x);
 739     return p;
 740   }
 741 
 742   static short* pack_1_int_to(short* p, jint x0) {
 743     // Format is one of:  [] [x] [Xx]
 744     if (x0 != 0)  p = add_var_int(p, x0);
 745     return p;
 746   }
 747   int unpack_1_int() {
 748     assert(datalen() <= 2, "too much data");
 749     return relocInfo::jint_data_at(0, data(), datalen());
 750   }
 751 
 752   // With two ints, the short form is used only if both ints are short.
 753   short* pack_2_ints_to(short* p, jint x0, jint x1) {
 754     // Format is one of:  [] [x y?] [Xx Y?y]
 755     if (x0 == 0 && x1 == 0) {
 756       // no halfwords needed to store zeroes
 757     } else if (is_short(x0) && is_short(x1)) {
 758       // 1-2 halfwords needed to store shorts
 759       p = add_short(p, (short)x0); if (x1!=0) p = add_short(p, (short)x1);
 760     } else {
 761       // 3-4 halfwords needed to store jints
 762       p = add_jint(p, x0);             p = add_var_int(p, x1);
 763     }
 764     return p;
 765   }
 766   void unpack_2_ints(jint& x0, jint& x1) {
 767     int    dlen = datalen();
 768     short* dp  = data();
 769     if (dlen <= 2) {
 770       x0 = relocInfo::short_data_at(0, dp, dlen);
 771       x1 = relocInfo::short_data_at(1, dp, dlen);
 772     } else {
 773       assert(dlen <= 4, "too much data");
 774       x0 = relocInfo::jint_data_at(0, dp, dlen);
 775       x1 = relocInfo::jint_data_at(2, dp, dlen);
 776     }
 777   }
 778 
 779  protected:
 780   // platform-independent utility for patching constant section
 781   void       const_set_data_value    (address x);
 782   void       const_verify_data_value (address x);
 783   // platform-dependent utilities for decoding and patching instructions
 784   void       pd_set_data_value       (address x, bool verify_only = false); // a set or mem-ref
 785   void       pd_verify_data_value    (address x) { pd_set_data_value(x, true); }
 786   address    pd_call_destination     (address orig_addr = nullptr);
 787   void       pd_set_call_destination (address x);
 788 
 789   // this extracts the address of an address in the code stream instead of the reloc data
 790   address* pd_address_in_code       ();
 791 
 792   // this extracts an address from the code stream instead of the reloc data
 793   address  pd_get_address_from_code ();
 794 
 795   // these convert from byte offsets, to scaled offsets, to addresses
 796   static jint scaled_offset(address x, address base) {
 797     int byte_offset = checked_cast<int>(x - base);
 798     int offset = -byte_offset / relocInfo::addr_unit();
 799     assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
 800     return offset;
 801   }
 802   static jint scaled_offset_null_special(address x, address base) {
 803     // Some relocations treat offset=0 as meaning nullptr.
 804     // Handle this extra convention carefully.
 805     if (x == nullptr)  return 0;
 806     assert(x != base, "offset must not be zero");
 807     return scaled_offset(x, base);
 808   }
 809   static address address_from_scaled_offset(jint offset, address base) {
 810     int byte_offset = -( offset * relocInfo::addr_unit() );
 811     return base + byte_offset;
 812   }
 813 
 814   // helpers for mapping between old and new addresses after a move or resize
 815   address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
 816   address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
 817   void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
 818 
 819  public:
 820   // accessors which only make sense for a bound Relocation
 821   address         addr()            const { return binding()->addr(); }
 822   nmethod*        code()            const { return binding()->code(); }
 823   bool            addr_in_const()   const { return binding()->addr_in_const(); }
 824  protected:
 825   short*   data()         const { return binding()->data(); }
 826   int      datalen()      const { return binding()->datalen(); }
 827 
 828  public:
 829   // Make a filler relocation.
 830   Relocation() : Relocation(relocInfo::none) {}
 831 
 832   // Intentionally public non-virtual destructor, even though polymorphic.  We
 833   // never heap allocate a Relocation, so never delete through a base pointer.
 834   // RelocationHolder depends on the destructor for all relocation types being
 835   // trivial, so this must not be virtual (and hence non-trivial).
 836   ~Relocation() = default;
 837 
 838   int      format()       const { return binding()->format(); }
 839 
 840   relocInfo::relocType type()              const { return _rtype; }
 841 
 842   // Copy this relocation into holder.
 843   virtual void copy_into(RelocationHolder& holder) const;
 844 
 845   // is it a call instruction?
 846   virtual bool is_call()                         { return false; }
 847 
 848   // is it a data movement instruction?
 849   virtual bool is_data()                         { return false; }
 850 
 851   // some relocations can compute their own values
 852   virtual address  value();
 853 
 854   // all relocations are able to reassert their values
 855   virtual void set_value(address x);
 856 
 857   virtual void clear_inline_cache() {}
 858 
 859   // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
 860   // ic_call_type is not always position dependent (depending on the state of the cache)). However, this is
 861   // probably a reasonable assumption, since empty caches simplifies code reloacation.
 862   virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
 863 };
 864 
 865 
 866 // certain inlines must be deferred until class Relocation is defined:
 867 
 868 inline RelocationHolder::RelocationHolder() :
 869   RelocationHolder(Construct<Relocation>())
 870 {}
 871 
 872 inline RelocationHolder::RelocationHolder(const RelocationHolder& from) {
 873   from.reloc()->copy_into(*this);
 874 }
 875 
 876 inline RelocationHolder& RelocationHolder::operator=(const RelocationHolder& from) {
 877   // All Relocation types are trivially destructible (verified in .cpp file),
 878   // so we don't need to destruct our old value before copying over it.
 879   // If not for that we would need to decide what to do about self-assignment.
 880   from.reloc()->copy_into(*this);
 881   return *this;
 882 }
 883 
 884 relocInfo::relocType RelocationHolder::type() const {
 885   return reloc()->type();
 886 }
 887 
 888 // A DataRelocation always points at a memory or load-constant instruction..
 889 // It is absolute on most machines, and the constant is split on RISCs.
 890 // The specific subtypes are oop, external_word, and internal_word.
 891 class DataRelocation : public Relocation {
 892  public:
 893   DataRelocation(relocInfo::relocType type) : Relocation(type) {}
 894 
 895   bool    is_data() override { return true; }
 896 
 897   // target must be computed somehow from relocation data
 898   address value() override = 0;
 899   void    set_value(address x) override {
 900     if (addr_in_const()) {
 901       const_set_data_value(x);
 902     } else {
 903       pd_set_data_value(x);
 904     }
 905   }
 906   void    verify_value(address x) {
 907     if (addr_in_const()) {
 908       const_verify_data_value(x);
 909     } else {
 910       pd_verify_data_value(x);
 911     }
 912   }
 913 };
 914 
 915 class post_call_nop_Relocation : public Relocation {
 916   friend class RelocationHolder;
 917 
 918 public:
 919   post_call_nop_Relocation() : Relocation(relocInfo::post_call_nop_type) { }
 920 
 921   static RelocationHolder spec() {
 922     return RelocationHolder::construct<post_call_nop_Relocation>();
 923   }
 924 
 925   void copy_into(RelocationHolder& holder) const override;
 926 };
 927 
 928 class entry_guard_Relocation : public Relocation {
 929   friend class RelocationHolder;
 930 
 931 public:
 932   entry_guard_Relocation() : Relocation(relocInfo::entry_guard_type) { }
 933 
 934   static RelocationHolder spec() {
 935     return RelocationHolder::construct<entry_guard_Relocation>();
 936   }
 937 
 938   void copy_into(RelocationHolder& holder) const override;
 939 };
 940 
 941 // A CallRelocation always points at a call instruction.
 942 // It is PC-relative on most machines.
 943 class CallRelocation : public Relocation {
 944  public:
 945   CallRelocation(relocInfo::relocType type) : Relocation(type) { }
 946 
 947   bool is_call() override { return true; }
 948 
 949   address  destination()                    { return pd_call_destination(); }
 950   void     set_destination(address x); // pd_set_call_destination
 951 
 952   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) override;
 953   address  value() override                 { return destination();  }
 954   void     set_value(address x) override    { set_destination(x); }
 955 };
 956 
 957 class oop_Relocation : public DataRelocation {
 958  public:
 959   // an oop in the CodeBlob's oop pool; encoded as [n] or [Nn]
 960   static RelocationHolder spec(int oop_index) {
 961     assert(oop_index > 0, "must be a pool-resident oop");
 962     return RelocationHolder::construct<oop_Relocation>(oop_index);
 963   }
 964   // an oop in the instruction stream; encoded as []
 965   static RelocationHolder spec_for_immediate() {
 966     // If no immediate oops are generated, we can skip some walks over nmethods.
 967     // Assert that they don't get generated accidentally!
 968     assert(relocInfo::mustIterateImmediateOopsInCode(),
 969            "Must return true so we will search for oops as roots etc. in the code.");
 970     const int oop_index = 0;
 971     return RelocationHolder::construct<oop_Relocation>(oop_index);
 972   }
 973 
 974   void copy_into(RelocationHolder& holder) const override;
 975 
 976  private:
 977   jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
 978 
 979   oop_Relocation(int oop_index)
 980     : DataRelocation(relocInfo::oop_type), _oop_index(oop_index) { }
 981 
 982   friend class RelocationHolder;
 983   oop_Relocation() : DataRelocation(relocInfo::oop_type) {}
 984 
 985  public:
 986   int oop_index() { return _oop_index; }
 987 
 988   // oop_index is packed in "1_int" format:  [n] or [Nn]
 989   void pack_data_to(CodeSection* dest) override;
 990   void unpack_data() override;
 991 
 992   void fix_oop_relocation();        // reasserts oop value
 993 
 994   void verify_oop_relocation();
 995 
 996   address value() override { return *reinterpret_cast<address*>(oop_addr()); }
 997 
 998   bool oop_is_immediate()  { return oop_index() == 0; }
 999 
1000   oop* oop_addr();                  // addr or &pool[jint_data]
1001   oop  oop_value();                 // *oop_addr
1002   // Note:  oop_value transparently converts Universe::non_oop_word to nullptr.
1003 };
1004 
1005 
1006 // copy of oop_Relocation for now but may delete stuff in both/either
1007 class metadata_Relocation : public DataRelocation {
1008 
1009  public:
1010   // an metadata in the CodeBlob's metadata pool; encoded as [n] or [Nn]
1011   static RelocationHolder spec(int metadata_index) {
1012     assert(metadata_index > 0, "must be a pool-resident metadata");
1013     return RelocationHolder::construct<metadata_Relocation>(metadata_index);
1014   }
1015   // an metadata in the instruction stream; encoded as []
1016   static RelocationHolder spec_for_immediate() {
1017     const int metadata_index = 0;
1018     return RelocationHolder::construct<metadata_Relocation>(metadata_index);
1019   }
1020 
1021   void copy_into(RelocationHolder& holder) const override;
1022 
1023  private:
1024   jint _metadata_index;            // if > 0, index into nmethod::metadata_at
1025 
1026   metadata_Relocation(int metadata_index)
1027     : DataRelocation(relocInfo::metadata_type), _metadata_index(metadata_index) { }
1028 
1029   friend class RelocationHolder;
1030   metadata_Relocation() : DataRelocation(relocInfo::metadata_type) { }
1031 
1032   // Fixes a Metadata pointer in the code. Most platforms embeds the
1033   // Metadata pointer in the code at compile time so this is empty
1034   // for them.
1035   void pd_fix_value(address x);
1036 
1037  public:
1038   int metadata_index() { return _metadata_index; }
1039 
1040   // metadata_index is packed in "1_int" format:  [n] or [Nn]
1041   void pack_data_to(CodeSection* dest) override;
1042   void unpack_data() override;
1043 
1044   void fix_metadata_relocation();        // reasserts metadata value
1045 
1046   address value() override { return (address) *metadata_addr(); }
1047 
1048   bool metadata_is_immediate()  { return metadata_index() == 0; }
1049 
1050   Metadata**   metadata_addr();                  // addr or &pool[jint_data]
1051   Metadata*    metadata_value();                 // *metadata_addr
1052   // Note:  metadata_value transparently converts Universe::non_metadata_word to nullptr.
1053 };
1054 
1055 
1056 class barrier_Relocation : public Relocation {
1057 
1058  public:
1059   // The uninitialized value used before the relocation has been patched.
1060   // Code assumes that the unpatched value is zero.
1061   static const int16_t unpatched = 0;
1062 
1063   static RelocationHolder spec() {
1064     return RelocationHolder::construct<barrier_Relocation>();
1065   }
1066 
1067   void copy_into(RelocationHolder& holder) const override;
1068 
1069  private:
1070   friend class RelocIterator;
1071   friend class RelocationHolder;
1072   barrier_Relocation() : Relocation(relocInfo::barrier_type) { }
1073 };
1074 
1075 
1076 class virtual_call_Relocation : public CallRelocation {
1077 
1078  public:
1079   // "cached_value" points to the first associated set-oop.
1080   // The oop_limit helps find the last associated set-oop.
1081   // (See comments at the top of this file.)
1082   static RelocationHolder spec(address cached_value, jint method_index = 0) {
1083     return RelocationHolder::construct<virtual_call_Relocation>(cached_value, method_index);
1084   }
1085 
1086   void copy_into(RelocationHolder& holder) const override;
1087 
1088  private:
1089   address _cached_value; // location of set-value instruction
1090   jint    _method_index; // resolved method for a Java call
1091 
1092   virtual_call_Relocation(address cached_value, int method_index)
1093     : CallRelocation(relocInfo::virtual_call_type),
1094       _cached_value(cached_value),
1095       _method_index(method_index) {
1096     assert(cached_value != nullptr, "first oop address must be specified");
1097   }
1098 
1099   friend class RelocationHolder;
1100   virtual_call_Relocation() : CallRelocation(relocInfo::virtual_call_type) { }
1101 
1102  public:
1103   address cached_value();
1104 
1105   int     method_index() { return _method_index; }
1106   Method* method_value();
1107 
1108   // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
1109   // oop_limit is set to 0 if the limit falls somewhere within the call.
1110   // When unpacking, a zero oop_limit is taken to refer to the end of the call.
1111   // (This has the effect of bringing in the call's delay slot on SPARC.)
1112   void pack_data_to(CodeSection* dest) override;
1113   void unpack_data() override;
1114 
1115   void clear_inline_cache() override;
1116 };
1117 
1118 
1119 class opt_virtual_call_Relocation : public CallRelocation {
1120  public:
1121   static RelocationHolder spec(int method_index = 0) {
1122     return RelocationHolder::construct<opt_virtual_call_Relocation>(method_index);
1123   }
1124 
1125   void copy_into(RelocationHolder& holder) const override;
1126 
1127  private:
1128   jint _method_index; // resolved method for a Java call
1129 
1130   opt_virtual_call_Relocation(int method_index)
1131     : CallRelocation(relocInfo::opt_virtual_call_type),
1132       _method_index(method_index) { }
1133 
1134   friend class RelocationHolder;
1135   opt_virtual_call_Relocation() : CallRelocation(relocInfo::opt_virtual_call_type) {}
1136 
1137  public:
1138   int     method_index() { return _method_index; }
1139   Method* method_value();
1140 
1141   void pack_data_to(CodeSection* dest) override;
1142   void unpack_data() override;
1143 
1144   void clear_inline_cache() override;
1145 
1146   // find the matching static_stub
1147   address static_stub();
1148 };
1149 
1150 
1151 class static_call_Relocation : public CallRelocation {
1152  public:
1153   static RelocationHolder spec(int method_index = 0) {
1154     return RelocationHolder::construct<static_call_Relocation>(method_index);
1155   }
1156 
1157   void copy_into(RelocationHolder& holder) const override;
1158 
1159  private:
1160   jint _method_index; // resolved method for a Java call
1161 
1162   static_call_Relocation(int method_index)
1163     : CallRelocation(relocInfo::static_call_type),
1164     _method_index(method_index) { }
1165 
1166   friend class RelocationHolder;
1167   static_call_Relocation() : CallRelocation(relocInfo::static_call_type) {}
1168 
1169  public:
1170   int     method_index() { return _method_index; }
1171   Method* method_value();
1172 
1173   void pack_data_to(CodeSection* dest) override;
1174   void unpack_data() override;
1175 
1176   void clear_inline_cache() override;
1177 
1178   // find the matching static_stub
1179   address static_stub();
1180 };
1181 
1182 class static_stub_Relocation : public Relocation {
1183  public:
1184   static RelocationHolder spec(address static_call) {
1185     return RelocationHolder::construct<static_stub_Relocation>(static_call);
1186   }
1187 
1188   void copy_into(RelocationHolder& holder) const override;
1189 
1190  private:
1191   address _static_call;  // location of corresponding static_call
1192 
1193   static_stub_Relocation(address static_call)
1194     : Relocation(relocInfo::static_stub_type),
1195       _static_call(static_call) { }
1196 
1197   friend class RelocationHolder;
1198   static_stub_Relocation() : Relocation(relocInfo::static_stub_type) { }
1199 
1200  public:
1201   void clear_inline_cache() override;
1202 
1203   address static_call() { return _static_call; }
1204 
1205   // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
1206   void pack_data_to(CodeSection* dest) override;
1207   void unpack_data() override;
1208 };
1209 
1210 class runtime_call_Relocation : public CallRelocation {
1211 
1212  public:
1213   static RelocationHolder spec() {
1214     return RelocationHolder::construct<runtime_call_Relocation>();
1215   }
1216 
1217   void copy_into(RelocationHolder& holder) const override;
1218 
1219  private:
1220   friend class RelocationHolder;
1221   runtime_call_Relocation() : CallRelocation(relocInfo::runtime_call_type) { }
1222 };
1223 
1224 
1225 class runtime_call_w_cp_Relocation : public CallRelocation {
1226  public:
1227   static RelocationHolder spec() {
1228     return RelocationHolder::construct<runtime_call_w_cp_Relocation>();
1229   }
1230 
1231   void copy_into(RelocationHolder& holder) const override;
1232 
1233  private:
1234   friend class RelocationHolder;
1235   runtime_call_w_cp_Relocation()
1236     : CallRelocation(relocInfo::runtime_call_w_cp_type),
1237       _offset(-4) /* <0 = invalid */ { }
1238 
1239   // On z/Architecture, runtime calls are either a sequence
1240   // of two instructions (load destination of call from constant pool + do call)
1241   // or a pc-relative call. The pc-relative call is faster, but it can only
1242   // be used if the destination of the call is not too far away.
1243   // In order to be able to patch a pc-relative call back into one using
1244   // the constant pool, we have to remember the location of the call's destination
1245   // in the constant pool.
1246   int _offset;
1247 
1248  public:
1249   void set_constant_pool_offset(int offset) { _offset = offset; }
1250   int get_constant_pool_offset() { return _offset; }
1251   void pack_data_to(CodeSection * dest) override;
1252   void unpack_data() override;
1253 };
1254 
1255 // Trampoline Relocations.
1256 // A trampoline allows to encode a small branch in the code, even if there
1257 // is the chance that this branch can not reach all possible code locations.
1258 // If the relocation finds that a branch is too far for the instruction
1259 // in the code, it can patch it to jump to the trampoline where is
1260 // sufficient space for a far branch. Needed on PPC.
1261 class trampoline_stub_Relocation : public Relocation {
1262 #ifdef USE_TRAMPOLINE_STUB_FIX_OWNER
1263   void pd_fix_owner_after_move();
1264   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) override;
1265 #endif
1266 
1267  public:
1268   static RelocationHolder spec(address static_call) {
1269     return RelocationHolder::construct<trampoline_stub_Relocation>(static_call);
1270   }
1271 
1272   void copy_into(RelocationHolder& holder) const override;
1273 
1274  private:
1275   address _owner;    // Address of the NativeCall that owns the trampoline.
1276 
1277   trampoline_stub_Relocation(address owner)
1278     : Relocation(relocInfo::trampoline_stub_type),
1279       _owner(owner) { }
1280 
1281   friend class RelocationHolder;
1282   trampoline_stub_Relocation() : Relocation(relocInfo::trampoline_stub_type) { }
1283 
1284  public:
1285 
1286   // Return the address of the NativeCall that owns the trampoline.
1287   address owner() { return _owner; }
1288 
1289   void pack_data_to(CodeSection * dest) override;
1290   void unpack_data() override;
1291 #if defined(AARCH64)
1292   address    pd_destination     ();
1293   void       pd_set_destination (address x);
1294 #endif
1295   address  destination() {
1296 #if defined(AARCH64)
1297     return pd_destination();
1298 #else
1299     fatal("trampoline_stub_Relocation::destination() unimplemented");
1300     return (address)-1;
1301 #endif
1302   }
1303   void     set_destination(address x) {
1304 #if defined(AARCH64)
1305     pd_set_destination(x);
1306 #else
1307     fatal("trampoline_stub_Relocation::set_destination() unimplemented");
1308 #endif
1309   }
1310 
1311   // Find the trampoline stub for a call.
1312   static address get_trampoline_for(address call, nmethod* code);
1313 };
1314 
1315 class external_word_Relocation : public DataRelocation {
1316  public:
1317   static RelocationHolder spec(address target) {
1318     assert(target != nullptr, "must not be null");
1319     return RelocationHolder::construct<external_word_Relocation>(target);
1320   }
1321 
1322   // Use this one where all 32/64 bits of the target live in the code stream.
1323   // The target must be an intptr_t, and must be absolute (not relative).
1324   static RelocationHolder spec_for_immediate() {
1325     return RelocationHolder::construct<external_word_Relocation>(nullptr);
1326   }
1327 
1328   void copy_into(RelocationHolder& holder) const override;
1329 
1330   // Some address looking values aren't safe to treat as relocations
1331   // and should just be treated as constants.
1332   static bool can_be_relocated(address target) {
1333     assert(target == nullptr || (uintptr_t)target >= (uintptr_t)OSInfo::vm_page_size(), INTPTR_FORMAT, (intptr_t)target);
1334     return target != nullptr;
1335   }
1336 
1337  private:
1338   address _target;                  // address in runtime
1339 
1340   external_word_Relocation(address target)
1341     : DataRelocation(relocInfo::external_word_type), _target(target) { }
1342 
1343   friend class RelocationHolder;
1344   external_word_Relocation() : DataRelocation(relocInfo::external_word_type) { }
1345 
1346  public:
1347   // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
1348   // The function runtime_address_to_index is used to turn full addresses
1349   // to short indexes, if they are pre-registered by the stub mechanism.
1350   // If the "a" value is 0 (i.e., _target is nullptr), the address is stored
1351   // in the code stream.  See external_word_Relocation::target().
1352   void pack_data_to(CodeSection* dest) override;
1353   void unpack_data() override;
1354 
1355   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) override;
1356   address  target();        // if _target==nullptr, fetch addr from code stream
1357   address  value() override { return target(); }
1358 };
1359 
1360 class internal_word_Relocation : public DataRelocation {
1361 
1362  public:
1363   static RelocationHolder spec(address target) {
1364     assert(target != nullptr, "must not be null");
1365     return RelocationHolder::construct<internal_word_Relocation>(target);
1366   }
1367 
1368   // use this one where all the bits of the target can fit in the code stream:
1369   static RelocationHolder spec_for_immediate() {
1370     return RelocationHolder::construct<internal_word_Relocation>(nullptr);
1371   }
1372 
1373   void copy_into(RelocationHolder& holder) const override;
1374 
1375   // default section -1 means self-relative
1376   internal_word_Relocation(address target, int section = -1,
1377     relocInfo::relocType type = relocInfo::internal_word_type)
1378     : DataRelocation(type), _target(target), _section(section) { }
1379 
1380  protected:
1381   address _target;                  // address in CodeBlob
1382   int     _section;                 // section providing base address, if any
1383 
1384   friend class RelocationHolder;
1385   internal_word_Relocation(relocInfo::relocType type = relocInfo::internal_word_type)
1386     : DataRelocation(type) { }
1387 
1388   // bit-width of LSB field in packed offset, if section >= 0
1389   enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1390 
1391  public:
1392   // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
1393   // If the "o" value is 0 (i.e., _target is nullptr), the offset is stored
1394   // in the code stream.  See internal_word_Relocation::target().
1395   // If _section is not -1, it is appended to the low bits of the offset.
1396   void pack_data_to(CodeSection* dest) override;
1397   void unpack_data() override;
1398 
1399   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) override;
1400   address  target();        // if _target==nullptr, fetch addr from code stream
1401   int      section()        { return _section;   }
1402   address  value() override { return target();   }
1403 };
1404 
1405 class section_word_Relocation : public internal_word_Relocation {
1406  public:
1407   static RelocationHolder spec(address target, int section) {
1408     return RelocationHolder::construct<section_word_Relocation>(target, section);
1409   }
1410 
1411   void copy_into(RelocationHolder& holder) const override;
1412 
1413   section_word_Relocation(address target, int section)
1414     : internal_word_Relocation(target, section, relocInfo::section_word_type) {
1415     assert(target != nullptr, "must not be null");
1416     assert(section >= 0 && section < RelocIterator::SECT_LIMIT, "must be a valid section");
1417   }
1418 
1419   //void pack_data_to -- inherited
1420   void unpack_data() override;
1421 
1422  private:
1423   friend class RelocationHolder;
1424   section_word_Relocation() : internal_word_Relocation(relocInfo::section_word_type) { }
1425 };
1426 
1427 
1428 class poll_Relocation : public Relocation {
1429   bool is_data() override { return true; }
1430   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) override;
1431  public:
1432   poll_Relocation(relocInfo::relocType type = relocInfo::poll_type) : Relocation(type) { }
1433 
1434   void copy_into(RelocationHolder& holder) const override;
1435 };
1436 
1437 class poll_return_Relocation : public poll_Relocation {
1438  public:
1439   poll_return_Relocation() : poll_Relocation(relocInfo::relocInfo::poll_return_type) { }
1440 
1441   void copy_into(RelocationHolder& holder) const override;
1442 };
1443 
1444 // We know all the xxx_Relocation classes, so now we can define these:
1445 #define EACH_CASE_AUX(Accessor, Reloc)                                  \
1446 inline Reloc* RelocIterator::Accessor() {                               \
1447   static const RelocationHolder proto = RelocationHolder::construct<Reloc>(); \
1448   assert(type() == proto.type(), "type must agree");                    \
1449   _rh = proto;                                                          \
1450   Reloc* r = static_cast<Reloc*>(_rh.reloc());                          \
1451   r->set_binding(this);                                                 \
1452   r->Reloc::unpack_data();                                              \
1453   return r;                                                             \
1454 }
1455 #define EACH_CASE(name) \
1456   EACH_CASE_AUX(PASTE_TOKENS(name, _reloc), PASTE_TOKENS(name, _Relocation))
1457 APPLY_TO_RELOCATIONS(EACH_CASE);
1458 #undef EACH_CASE_AUX
1459 #undef EACH_CASE
1460 
1461 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
1462   initialize(nm, begin, limit);
1463 }
1464 
1465 #endif // SHARE_CODE_RELOCINFO_HPP