1 /* 2 * Copyright (c) 2010, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/scopeDesc.hpp" 27 #include "compiler/compilationPolicy.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "compiler/compilerDefinitions.inline.hpp" 30 #include "compiler/compilerOracle.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.inline.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "runtime/arguments.hpp" 37 #include "runtime/deoptimization.hpp" 38 #include "runtime/frame.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/globals_extension.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/safepoint.hpp" 43 #include "runtime/safepointVerifiers.hpp" 44 #ifdef COMPILER1 45 #include "c1/c1_Compiler.hpp" 46 #endif 47 #ifdef COMPILER2 48 #include "opto/c2compiler.hpp" 49 #endif 50 #if INCLUDE_JVMCI 51 #include "jvmci/jvmci.hpp" 52 #endif 53 54 jlong CompilationPolicy::_start_time = 0; 55 int CompilationPolicy::_c1_count = 0; 56 int CompilationPolicy::_c2_count = 0; 57 double CompilationPolicy::_increase_threshold_at_ratio = 0; 58 59 void compilationPolicy_init() { 60 CompilationPolicy::initialize(); 61 } 62 63 int CompilationPolicy::compiler_count(CompLevel comp_level) { 64 if (is_c1_compile(comp_level)) { 65 return c1_count(); 66 } else if (is_c2_compile(comp_level)) { 67 return c2_count(); 68 } 69 return 0; 70 } 71 72 // Returns true if m must be compiled before executing it 73 // This is intended to force compiles for methods (usually for 74 // debugging) that would otherwise be interpreted for some reason. 75 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 76 // Don't allow Xcomp to cause compiles in replay mode 77 if (ReplayCompiles) return false; 78 79 if (m->has_compiled_code()) return false; // already compiled 80 if (!can_be_compiled(m, comp_level)) return false; 81 82 return !UseInterpreter || // must compile all methods 83 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 84 } 85 86 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 87 if (must_be_compiled(m)) { 88 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 89 90 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 91 // don't force compilation, resolve was on behalf of compiler 92 return; 93 } 94 if (m->method_holder()->is_not_initialized()) { 95 // 'is_not_initialized' means not only '!is_initialized', but also that 96 // initialization has not been started yet ('!being_initialized') 97 // Do not force compilation of methods in uninitialized classes. 98 // Note that doing this would throw an assert later, 99 // in CompileBroker::compile_method. 100 // We sometimes use the link resolver to do reflective lookups 101 // even before classes are initialized. 102 return; 103 } 104 CompLevel level = initial_compile_level(m); 105 if (PrintTieredEvents) { 106 print_event(COMPILE, m(), m(), InvocationEntryBci, level); 107 } 108 CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, CompileTask::Reason_MustBeCompiled, THREAD); 109 } 110 } 111 112 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 113 if (comp_level == CompLevel_any) { 114 if (CompilerConfig::is_c1_only()) { 115 comp_level = CompLevel_simple; 116 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 117 comp_level = CompLevel_full_optimization; 118 } 119 } 120 return comp_level; 121 } 122 123 // Returns true if m is allowed to be compiled 124 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 125 // allow any levels for WhiteBox 126 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level"); 127 128 if (m->is_abstract()) return false; 129 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 130 131 // Math intrinsics should never be compiled as this can lead to 132 // monotonicity problems because the interpreter will prefer the 133 // compiled code to the intrinsic version. This can't happen in 134 // production because the invocation counter can't be incremented 135 // but we shouldn't expose the system to this problem in testing 136 // modes. 137 if (!AbstractInterpreter::can_be_compiled(m)) { 138 return false; 139 } 140 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 141 if (comp_level == CompLevel_any || is_compile(comp_level)) { 142 return !m->is_not_compilable(comp_level); 143 } 144 return false; 145 } 146 147 // Returns true if m is allowed to be osr compiled 148 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 149 bool result = false; 150 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 151 if (comp_level == CompLevel_any || is_compile(comp_level)) { 152 result = !m->is_not_osr_compilable(comp_level); 153 } 154 return (result && can_be_compiled(m, comp_level)); 155 } 156 157 bool CompilationPolicy::is_compilation_enabled() { 158 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 159 return CompileBroker::should_compile_new_jobs(); 160 } 161 162 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 163 // Remove unloaded methods from the queue 164 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 165 CompileTask* next = task->next(); 166 if (task->is_unloaded()) { 167 compile_queue->remove_and_mark_stale(task); 168 } 169 task = next; 170 } 171 #if INCLUDE_JVMCI 172 if (UseJVMCICompiler && !BackgroundCompilation) { 173 /* 174 * In blocking compilation mode, the CompileBroker will make 175 * compilations submitted by a JVMCI compiler thread non-blocking. These 176 * compilations should be scheduled after all blocking compilations 177 * to service non-compiler related compilations sooner and reduce the 178 * chance of such compilations timing out. 179 */ 180 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 181 if (task->is_blocking()) { 182 return task; 183 } 184 } 185 } 186 #endif 187 return compile_queue->first(); 188 } 189 190 // Simple methods are as good being compiled with C1 as C2. 191 // Determine if a given method is such a case. 192 bool CompilationPolicy::is_trivial(const methodHandle& method) { 193 if (method->is_accessor() || 194 method->is_constant_getter()) { 195 return true; 196 } 197 return false; 198 } 199 200 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 201 if (CompilationModeFlag::quick_internal()) { 202 #if INCLUDE_JVMCI 203 if (UseJVMCICompiler) { 204 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 205 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 206 return true; 207 } 208 } 209 #endif 210 } 211 return false; 212 } 213 214 CompLevel CompilationPolicy::comp_level(Method* method) { 215 nmethod *nm = method->code(); 216 if (nm != nullptr && nm->is_in_use()) { 217 return (CompLevel)nm->comp_level(); 218 } 219 return CompLevel_none; 220 } 221 222 // Call and loop predicates determine whether a transition to a higher 223 // compilation level should be performed (pointers to predicate functions 224 // are passed to common()). 225 // Tier?LoadFeedback is basically a coefficient that determines of 226 // how many methods per compiler thread can be in the queue before 227 // the threshold values double. 228 class LoopPredicate : AllStatic { 229 public: 230 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 231 double threshold_scaling; 232 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 233 scale *= threshold_scaling; 234 } 235 switch(cur_level) { 236 case CompLevel_none: 237 case CompLevel_limited_profile: 238 return b >= Tier3BackEdgeThreshold * scale; 239 case CompLevel_full_profile: 240 return b >= Tier4BackEdgeThreshold * scale; 241 default: 242 return true; 243 } 244 } 245 246 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 247 double k = 1; 248 switch(cur_level) { 249 case CompLevel_none: 250 // Fall through 251 case CompLevel_limited_profile: { 252 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 253 break; 254 } 255 case CompLevel_full_profile: { 256 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 257 break; 258 } 259 default: 260 return true; 261 } 262 return apply_scaled(method, cur_level, i, b, k); 263 } 264 }; 265 266 class CallPredicate : AllStatic { 267 public: 268 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 269 double threshold_scaling; 270 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 271 scale *= threshold_scaling; 272 } 273 switch(cur_level) { 274 case CompLevel_none: 275 case CompLevel_limited_profile: 276 return (i >= Tier3InvocationThreshold * scale) || 277 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 278 case CompLevel_full_profile: 279 return (i >= Tier4InvocationThreshold * scale) || 280 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 281 default: 282 return true; 283 } 284 } 285 286 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 287 double k = 1; 288 switch(cur_level) { 289 case CompLevel_none: 290 case CompLevel_limited_profile: { 291 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 292 break; 293 } 294 case CompLevel_full_profile: { 295 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 296 break; 297 } 298 default: 299 return true; 300 } 301 return apply_scaled(method, cur_level, i, b, k); 302 } 303 }; 304 305 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 306 int comp_count = compiler_count(level); 307 if (comp_count > 0) { 308 double queue_size = CompileBroker::queue_size(level); 309 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 310 311 // Increase C1 compile threshold when the code cache is filled more 312 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 313 // The main intention is to keep enough free space for C2 compiled code 314 // to achieve peak performance if the code cache is under stress. 315 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 316 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 317 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 318 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 319 } 320 } 321 return k; 322 } 323 return 1; 324 } 325 326 void CompilationPolicy::print_counters(const char* prefix, const Method* m) { 327 int invocation_count = m->invocation_count(); 328 int backedge_count = m->backedge_count(); 329 MethodData* mdh = m->method_data(); 330 int mdo_invocations = 0, mdo_backedges = 0; 331 int mdo_invocations_start = 0, mdo_backedges_start = 0; 332 if (mdh != nullptr) { 333 mdo_invocations = mdh->invocation_count(); 334 mdo_backedges = mdh->backedge_count(); 335 mdo_invocations_start = mdh->invocation_count_start(); 336 mdo_backedges_start = mdh->backedge_count_start(); 337 } 338 tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 339 invocation_count, backedge_count, prefix, 340 mdo_invocations, mdo_invocations_start, 341 mdo_backedges, mdo_backedges_start); 342 tty->print(" %smax levels=%d,%d", prefix, 343 m->highest_comp_level(), m->highest_osr_comp_level()); 344 } 345 346 // Print an event. 347 void CompilationPolicy::print_event(EventType type, const Method* m, const Method* im, int bci, CompLevel level) { 348 bool inlinee_event = m != im; 349 350 ttyLocker tty_lock; 351 tty->print("%lf: [", os::elapsedTime()); 352 353 switch(type) { 354 case CALL: 355 tty->print("call"); 356 break; 357 case LOOP: 358 tty->print("loop"); 359 break; 360 case COMPILE: 361 tty->print("compile"); 362 break; 363 case REMOVE_FROM_QUEUE: 364 tty->print("remove-from-queue"); 365 break; 366 case UPDATE_IN_QUEUE: 367 tty->print("update-in-queue"); 368 break; 369 case REPROFILE: 370 tty->print("reprofile"); 371 break; 372 case MAKE_NOT_ENTRANT: 373 tty->print("make-not-entrant"); 374 break; 375 default: 376 tty->print("unknown"); 377 } 378 379 tty->print(" level=%d ", level); 380 381 ResourceMark rm; 382 char *method_name = m->name_and_sig_as_C_string(); 383 tty->print("[%s", method_name); 384 if (inlinee_event) { 385 char *inlinee_name = im->name_and_sig_as_C_string(); 386 tty->print(" [%s]] ", inlinee_name); 387 } 388 else tty->print("] "); 389 tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 390 CompileBroker::queue_size(CompLevel_full_optimization)); 391 392 tty->print(" rate="); 393 if (m->prev_time() == 0) tty->print("n/a"); 394 else tty->print("%f", m->rate()); 395 396 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 397 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 398 399 if (type != COMPILE) { 400 print_counters("", m); 401 if (inlinee_event) { 402 print_counters("inlinee ", im); 403 } 404 tty->print(" compilable="); 405 bool need_comma = false; 406 if (!m->is_not_compilable(CompLevel_full_profile)) { 407 tty->print("c1"); 408 need_comma = true; 409 } 410 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 411 if (need_comma) tty->print(","); 412 tty->print("c1-osr"); 413 need_comma = true; 414 } 415 if (!m->is_not_compilable(CompLevel_full_optimization)) { 416 if (need_comma) tty->print(","); 417 tty->print("c2"); 418 need_comma = true; 419 } 420 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 421 if (need_comma) tty->print(","); 422 tty->print("c2-osr"); 423 } 424 tty->print(" status="); 425 if (m->queued_for_compilation()) { 426 tty->print("in-queue"); 427 } else tty->print("idle"); 428 } 429 tty->print_cr("]"); 430 } 431 432 void CompilationPolicy::initialize() { 433 if (!CompilerConfig::is_interpreter_only()) { 434 int count = CICompilerCount; 435 bool c1_only = CompilerConfig::is_c1_only(); 436 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 437 438 #ifdef _LP64 439 // Turn on ergonomic compiler count selection 440 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 441 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 442 } 443 if (CICompilerCountPerCPU) { 444 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 445 int log_cpu = log2i(os::active_processor_count()); 446 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 447 count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); 448 // Make sure there is enough space in the code cache to hold all the compiler buffers 449 size_t c1_size = 0; 450 #ifdef COMPILER1 451 c1_size = Compiler::code_buffer_size(); 452 #endif 453 size_t c2_size = 0; 454 #ifdef COMPILER2 455 c2_size = C2Compiler::initial_code_buffer_size(); 456 #endif 457 size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); 458 int max_count = (ReservedCodeCacheSize - (int)CompilerConfig::min_code_cache_size()) / (int)buffer_size; 459 if (count > max_count) { 460 // Lower the compiler count such that all buffers fit into the code cache 461 count = MAX2(max_count, c1_only ? 1 : 2); 462 } 463 FLAG_SET_ERGO(CICompilerCount, count); 464 } 465 #else 466 // On 32-bit systems, the number of compiler threads is limited to 3. 467 // On these systems, the virtual address space available to the JVM 468 // is usually limited to 2-4 GB (the exact value depends on the platform). 469 // As the compilers (especially C2) can consume a large amount of 470 // memory, scaling the number of compiler threads with the number of 471 // available cores can result in the exhaustion of the address space 472 /// available to the VM and thus cause the VM to crash. 473 if (FLAG_IS_DEFAULT(CICompilerCount)) { 474 count = 3; 475 FLAG_SET_ERGO(CICompilerCount, count); 476 } 477 #endif 478 479 if (c1_only) { 480 // No C2 compiler thread required 481 set_c1_count(count); 482 } else if (c2_only) { 483 set_c2_count(count); 484 } else { 485 #if INCLUDE_JVMCI 486 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 487 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 488 int c1_count = MAX2(count - libjvmci_count, 1); 489 set_c2_count(libjvmci_count); 490 set_c1_count(c1_count); 491 } else 492 #endif 493 { 494 set_c1_count(MAX2(count / 3, 1)); 495 set_c2_count(MAX2(count - c1_count(), 1)); 496 } 497 } 498 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 499 set_increase_threshold_at_ratio(); 500 } 501 set_start_time(nanos_to_millis(os::javaTimeNanos())); 502 } 503 504 505 #ifdef ASSERT 506 bool CompilationPolicy::verify_level(CompLevel level) { 507 if (TieredCompilation && level > TieredStopAtLevel) { 508 return false; 509 } 510 // Check if there is a compiler to process the requested level 511 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 512 return false; 513 } 514 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 515 return false; 516 } 517 518 // Interpreter level is always valid. 519 if (level == CompLevel_none) { 520 return true; 521 } 522 if (CompilationModeFlag::normal()) { 523 return true; 524 } else if (CompilationModeFlag::quick_only()) { 525 return level == CompLevel_simple; 526 } else if (CompilationModeFlag::high_only()) { 527 return level == CompLevel_full_optimization; 528 } else if (CompilationModeFlag::high_only_quick_internal()) { 529 return level == CompLevel_full_optimization || level == CompLevel_simple; 530 } 531 return false; 532 } 533 #endif 534 535 536 CompLevel CompilationPolicy::highest_compile_level() { 537 CompLevel level = CompLevel_none; 538 // Setup the maximum level available for the current compiler configuration. 539 if (!CompilerConfig::is_interpreter_only()) { 540 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 541 level = CompLevel_full_optimization; 542 } else if (CompilerConfig::is_c1_enabled()) { 543 if (CompilerConfig::is_c1_simple_only()) { 544 level = CompLevel_simple; 545 } else { 546 level = CompLevel_full_profile; 547 } 548 } 549 } 550 // Clamp the maximum level with TieredStopAtLevel. 551 if (TieredCompilation) { 552 level = MIN2(level, (CompLevel) TieredStopAtLevel); 553 } 554 555 // Fix it up if after the clamping it has become invalid. 556 // Bring it monotonically down depending on the next available level for 557 // the compilation mode. 558 if (!CompilationModeFlag::normal()) { 559 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 560 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 561 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 562 if (CompilationModeFlag::quick_only()) { 563 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 564 level = CompLevel_simple; 565 } 566 } else if (CompilationModeFlag::high_only()) { 567 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 568 level = CompLevel_none; 569 } 570 } else if (CompilationModeFlag::high_only_quick_internal()) { 571 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 572 level = CompLevel_simple; 573 } 574 } 575 } 576 577 assert(verify_level(level), "Invalid highest compilation level: %d", level); 578 return level; 579 } 580 581 CompLevel CompilationPolicy::limit_level(CompLevel level) { 582 level = MIN2(level, highest_compile_level()); 583 assert(verify_level(level), "Invalid compilation level: %d", level); 584 return level; 585 } 586 587 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 588 CompLevel level = CompLevel_any; 589 if (CompilationModeFlag::normal()) { 590 level = CompLevel_full_profile; 591 } else if (CompilationModeFlag::quick_only()) { 592 level = CompLevel_simple; 593 } else if (CompilationModeFlag::high_only()) { 594 level = CompLevel_full_optimization; 595 } else if (CompilationModeFlag::high_only_quick_internal()) { 596 if (force_comp_at_level_simple(method)) { 597 level = CompLevel_simple; 598 } else { 599 level = CompLevel_full_optimization; 600 } 601 } 602 assert(level != CompLevel_any, "Unhandled compilation mode"); 603 return limit_level(level); 604 } 605 606 // Set carry flags on the counters if necessary 607 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 608 MethodCounters *mcs = method->method_counters(); 609 if (mcs != nullptr) { 610 mcs->invocation_counter()->set_carry_on_overflow(); 611 mcs->backedge_counter()->set_carry_on_overflow(); 612 } 613 MethodData* mdo = method->method_data(); 614 if (mdo != nullptr) { 615 mdo->invocation_counter()->set_carry_on_overflow(); 616 mdo->backedge_counter()->set_carry_on_overflow(); 617 } 618 } 619 620 // Called with the queue locked and with at least one element 621 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue) { 622 CompileTask *max_blocking_task = nullptr; 623 CompileTask *max_task = nullptr; 624 Method* max_method = nullptr; 625 626 jlong t = nanos_to_millis(os::javaTimeNanos()); 627 // Iterate through the queue and find a method with a maximum rate. 628 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 629 CompileTask* next_task = task->next(); 630 // If a method was unloaded or has been stale for some time, remove it from the queue. 631 // Blocking tasks and tasks submitted from whitebox API don't become stale 632 if (task->is_unloaded()) { 633 compile_queue->remove_and_mark_stale(task); 634 task = next_task; 635 continue; 636 } 637 Method* method = task->method(); 638 methodHandle mh(Thread::current(), method); 639 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 640 if (PrintTieredEvents) { 641 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 642 } 643 method->clear_queued_for_compilation(); 644 compile_queue->remove_and_mark_stale(task); 645 task = next_task; 646 continue; 647 } 648 update_rate(t, mh); 649 if (max_task == nullptr || compare_methods(method, max_method)) { 650 // Select a method with the highest rate 651 max_task = task; 652 max_method = method; 653 } 654 655 if (task->is_blocking()) { 656 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 657 max_blocking_task = task; 658 } 659 } 660 661 task = next_task; 662 } 663 664 if (max_blocking_task != nullptr) { 665 // In blocking compilation mode, the CompileBroker will make 666 // compilations submitted by a JVMCI compiler thread non-blocking. These 667 // compilations should be scheduled after all blocking compilations 668 // to service non-compiler related compilations sooner and reduce the 669 // chance of such compilations timing out. 670 max_task = max_blocking_task; 671 max_method = max_task->method(); 672 } 673 674 methodHandle max_method_h(Thread::current(), max_method); 675 676 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 677 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 678 max_task->set_comp_level(CompLevel_limited_profile); 679 680 if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) { 681 if (PrintTieredEvents) { 682 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 683 } 684 compile_queue->remove_and_mark_stale(max_task); 685 max_method->clear_queued_for_compilation(); 686 return nullptr; 687 } 688 689 if (PrintTieredEvents) { 690 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 691 } 692 } 693 694 return max_task; 695 } 696 697 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 698 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 699 if (PrintTieredEvents) { 700 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 701 } 702 MethodData* mdo = sd->method()->method_data(); 703 if (mdo != nullptr) { 704 mdo->reset_start_counters(); 705 } 706 if (sd->is_top()) break; 707 } 708 } 709 710 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 711 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 712 if (PrintTieredEvents) { 713 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 714 } 715 716 if (comp_level == CompLevel_none && 717 JvmtiExport::can_post_interpreter_events() && 718 THREAD->is_interp_only_mode()) { 719 return nullptr; 720 } 721 if (ReplayCompiles) { 722 // Don't trigger other compiles in testing mode 723 return nullptr; 724 } 725 726 handle_counter_overflow(method); 727 if (method() != inlinee()) { 728 handle_counter_overflow(inlinee); 729 } 730 731 if (bci == InvocationEntryBci) { 732 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 733 } else { 734 // method == inlinee if the event originated in the main method 735 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 736 // Check if event led to a higher level OSR compilation 737 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 738 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 739 // It's not possible to reach the expected level so fall back to simple. 740 expected_comp_level = CompLevel_simple; 741 } 742 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 743 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 744 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 745 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 746 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 747 // Perform OSR with new nmethod 748 return osr_nm; 749 } 750 } 751 } 752 return nullptr; 753 } 754 755 // Check if the method can be compiled, change level if necessary 756 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 757 assert(verify_level(level), "Invalid compilation level requested: %d", level); 758 759 if (level == CompLevel_none) { 760 if (mh->has_compiled_code()) { 761 // Happens when we switch to interpreter to profile. 762 MutexLocker ml(Compile_lock); 763 NoSafepointVerifier nsv; 764 if (mh->has_compiled_code()) { 765 mh->code()->make_not_used(); 766 } 767 // Deoptimize immediately (we don't have to wait for a compile). 768 JavaThread* jt = THREAD; 769 RegisterMap map(jt, 770 RegisterMap::UpdateMap::skip, 771 RegisterMap::ProcessFrames::include, 772 RegisterMap::WalkContinuation::skip); 773 frame fr = jt->last_frame().sender(&map); 774 Deoptimization::deoptimize_frame(jt, fr.id()); 775 } 776 return; 777 } 778 779 if (!CompilationModeFlag::disable_intermediate()) { 780 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 781 // in the interpreter and then compile with C2 (the transition function will request that, 782 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 783 // pure C1. 784 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 785 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 786 compile(mh, bci, CompLevel_simple, THREAD); 787 } 788 return; 789 } 790 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 791 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 792 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 793 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 794 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 795 osr_nm->make_not_entrant(); 796 } 797 compile(mh, bci, CompLevel_simple, THREAD); 798 } 799 return; 800 } 801 } 802 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 803 return; 804 } 805 if (!CompileBroker::compilation_is_in_queue(mh)) { 806 if (PrintTieredEvents) { 807 print_event(COMPILE, mh(), mh(), bci, level); 808 } 809 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 810 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 811 CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, THREAD); 812 } 813 } 814 815 // update_rate() is called from select_task() while holding a compile queue lock. 816 void CompilationPolicy::update_rate(jlong t, const methodHandle& method) { 817 // Skip update if counters are absent. 818 // Can't allocate them since we are holding compile queue lock. 819 if (method->method_counters() == nullptr) return; 820 821 if (is_old(method)) { 822 // We don't remove old methods from the queue, 823 // so we can just zero the rate. 824 method->set_rate(0); 825 return; 826 } 827 828 // We don't update the rate if we've just came out of a safepoint. 829 // delta_s is the time since last safepoint in milliseconds. 830 jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 831 jlong delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 832 // How many events were there since the last time? 833 int event_count = method->invocation_count() + method->backedge_count(); 834 int delta_e = event_count - method->prev_event_count(); 835 836 // We should be running for at least 1ms. 837 if (delta_s >= TieredRateUpdateMinTime) { 838 // And we must've taken the previous point at least 1ms before. 839 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 840 method->set_prev_time(t); 841 method->set_prev_event_count(event_count); 842 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 843 } else { 844 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 845 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 846 method->set_rate(0); 847 } 848 } 849 } 850 } 851 852 // Check if this method has been stale for a given number of milliseconds. 853 // See select_task(). 854 bool CompilationPolicy::is_stale(jlong t, jlong timeout, const methodHandle& method) { 855 jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 856 jlong delta_t = t - method->prev_time(); 857 if (delta_t > timeout && delta_s > timeout) { 858 int event_count = method->invocation_count() + method->backedge_count(); 859 int delta_e = event_count - method->prev_event_count(); 860 // Return true if there were no events. 861 return delta_e == 0; 862 } 863 return false; 864 } 865 866 // We don't remove old methods from the compile queue even if they have 867 // very low activity. See select_task(). 868 bool CompilationPolicy::is_old(const methodHandle& method) { 869 int i = method->invocation_count(); 870 int b = method->backedge_count(); 871 double k = TieredOldPercentage / 100.0; 872 873 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 874 } 875 876 double CompilationPolicy::weight(Method* method) { 877 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 878 } 879 880 // Apply heuristics and return true if x should be compiled before y 881 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 882 if (x->highest_comp_level() > y->highest_comp_level()) { 883 // recompilation after deopt 884 return true; 885 } else 886 if (x->highest_comp_level() == y->highest_comp_level()) { 887 if (weight(x) > weight(y)) { 888 return true; 889 } 890 } 891 return false; 892 } 893 894 // Is method profiled enough? 895 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 896 MethodData* mdo = method->method_data(); 897 if (mdo != nullptr) { 898 int i = mdo->invocation_count_delta(); 899 int b = mdo->backedge_count_delta(); 900 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 901 } 902 return false; 903 } 904 905 906 // Determine is a method is mature. 907 bool CompilationPolicy::is_mature(Method* method) { 908 if (Arguments::is_compiler_only()) { 909 // Always report profiles as immature with -Xcomp 910 return false; 911 } 912 methodHandle mh(Thread::current(), method); 913 MethodData* mdo = method->method_data(); 914 if (mdo != nullptr) { 915 int i = mdo->invocation_count(); 916 int b = mdo->backedge_count(); 917 double k = ProfileMaturityPercentage / 100.0; 918 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 919 } 920 return false; 921 } 922 923 // If a method is old enough and is still in the interpreter we would want to 924 // start profiling without waiting for the compiled method to arrive. 925 // We also take the load on compilers into the account. 926 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 927 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 928 return false; 929 } 930 if (is_old(method)) { 931 return true; 932 } 933 int i = method->invocation_count(); 934 int b = method->backedge_count(); 935 double k = Tier0ProfilingStartPercentage / 100.0; 936 937 // If the top level compiler is not keeping up, delay profiling. 938 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 939 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 940 } 941 return false; 942 } 943 944 // Inlining control: if we're compiling a profiled method with C1 and the callee 945 // is known to have OSRed in a C2 version, don't inline it. 946 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 947 CompLevel comp_level = (CompLevel)env->comp_level(); 948 if (comp_level == CompLevel_full_profile || 949 comp_level == CompLevel_limited_profile) { 950 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 951 } 952 return false; 953 } 954 955 // Create MDO if necessary. 956 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 957 if (mh->is_native() || 958 mh->is_abstract() || 959 mh->is_accessor() || 960 mh->is_constant_getter()) { 961 return; 962 } 963 if (mh->method_data() == nullptr) { 964 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 965 } 966 if (ProfileInterpreter) { 967 MethodData* mdo = mh->method_data(); 968 if (mdo != nullptr) { 969 frame last_frame = THREAD->last_frame(); 970 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 971 int bci = last_frame.interpreter_frame_bci(); 972 address dp = mdo->bci_to_dp(bci); 973 last_frame.interpreter_frame_set_mdp(dp); 974 } 975 } 976 } 977 } 978 979 980 981 /* 982 * Method states: 983 * 0 - interpreter (CompLevel_none) 984 * 1 - pure C1 (CompLevel_simple) 985 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 986 * 3 - C1 with full profiling (CompLevel_full_profile) 987 * 4 - C2 or Graal (CompLevel_full_optimization) 988 * 989 * Common state transition patterns: 990 * a. 0 -> 3 -> 4. 991 * The most common path. But note that even in this straightforward case 992 * profiling can start at level 0 and finish at level 3. 993 * 994 * b. 0 -> 2 -> 3 -> 4. 995 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 996 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 997 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 998 * 999 * c. 0 -> (3->2) -> 4. 1000 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1001 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1002 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1003 * without full profiling while c2 is compiling. 1004 * 1005 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1006 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1007 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1008 * 1009 * e. 0 -> 4. 1010 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1011 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1012 * the compiled version already exists). 1013 * 1014 * Note that since state 0 can be reached from any other state via deoptimization different loops 1015 * are possible. 1016 * 1017 */ 1018 1019 // Common transition function. Given a predicate determines if a method should transition to another level. 1020 template<typename Predicate> 1021 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, bool disable_feedback) { 1022 CompLevel next_level = cur_level; 1023 int i = method->invocation_count(); 1024 int b = method->backedge_count(); 1025 1026 if (force_comp_at_level_simple(method)) { 1027 next_level = CompLevel_simple; 1028 } else { 1029 if (is_trivial(method) || method->is_native()) { 1030 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1031 } else { 1032 switch(cur_level) { 1033 default: break; 1034 case CompLevel_none: 1035 // If we were at full profile level, would we switch to full opt? 1036 if (common<Predicate>(method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) { 1037 next_level = CompLevel_full_optimization; 1038 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply(method, cur_level, i, b)) { 1039 // C1-generated fully profiled code is about 30% slower than the limited profile 1040 // code that has only invocation and backedge counters. The observation is that 1041 // if C2 queue is large enough we can spend too much time in the fully profiled code 1042 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1043 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1044 // we choose to compile a limited profiled version and then recompile with full profiling 1045 // when the load on C2 goes down. 1046 if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > 1047 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) { 1048 next_level = CompLevel_limited_profile; 1049 } else { 1050 next_level = CompLevel_full_profile; 1051 } 1052 } 1053 break; 1054 case CompLevel_limited_profile: 1055 if (is_method_profiled(method)) { 1056 // Special case: we got here because this method was fully profiled in the interpreter. 1057 next_level = CompLevel_full_optimization; 1058 } else { 1059 MethodData* mdo = method->method_data(); 1060 if (mdo != nullptr) { 1061 if (mdo->would_profile()) { 1062 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1063 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1064 Predicate::apply(method, cur_level, i, b))) { 1065 next_level = CompLevel_full_profile; 1066 } 1067 } else { 1068 next_level = CompLevel_full_optimization; 1069 } 1070 } else { 1071 // If there is no MDO we need to profile 1072 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1073 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1074 Predicate::apply(method, cur_level, i, b))) { 1075 next_level = CompLevel_full_profile; 1076 } 1077 } 1078 } 1079 break; 1080 case CompLevel_full_profile: 1081 { 1082 MethodData* mdo = method->method_data(); 1083 if (mdo != nullptr) { 1084 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1085 int mdo_i = mdo->invocation_count_delta(); 1086 int mdo_b = mdo->backedge_count_delta(); 1087 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1088 next_level = CompLevel_full_optimization; 1089 } 1090 } else { 1091 next_level = CompLevel_full_optimization; 1092 } 1093 } 1094 } 1095 break; 1096 } 1097 } 1098 } 1099 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1100 } 1101 1102 1103 1104 // Determine if a method should be compiled with a normal entry point at a different level. 1105 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, Thread* thread) { 1106 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, true)); 1107 CompLevel next_level = common<CallPredicate>(method, cur_level, is_old(method)); 1108 1109 // If OSR method level is greater than the regular method level, the levels should be 1110 // equalized by raising the regular method level in order to avoid OSRs during each 1111 // invocation of the method. 1112 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1113 MethodData* mdo = method->method_data(); 1114 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1115 if (mdo->invocation_count() >= 1) { 1116 next_level = CompLevel_full_optimization; 1117 } 1118 } else { 1119 next_level = MAX2(osr_level, next_level); 1120 } 1121 return next_level; 1122 } 1123 1124 // Determine if we should do an OSR compilation of a given method. 1125 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, Thread* thread) { 1126 CompLevel next_level = common<LoopPredicate>(method, cur_level, true); 1127 if (cur_level == CompLevel_none) { 1128 // If there is a live OSR method that means that we deopted to the interpreter 1129 // for the transition. 1130 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1131 if (osr_level > CompLevel_none) { 1132 return osr_level; 1133 } 1134 } 1135 return next_level; 1136 } 1137 1138 // Handle the invocation event. 1139 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1140 CompLevel level, nmethod* nm, TRAPS) { 1141 if (should_create_mdo(mh, level)) { 1142 create_mdo(mh, THREAD); 1143 } 1144 CompLevel next_level = call_event(mh, level, THREAD); 1145 if (next_level != level) { 1146 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1147 compile(mh, InvocationEntryBci, next_level, THREAD); 1148 } 1149 } 1150 } 1151 1152 // Handle the back branch event. Notice that we can compile the method 1153 // with a regular entry from here. 1154 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1155 int bci, CompLevel level, nmethod* nm, TRAPS) { 1156 if (should_create_mdo(mh, level)) { 1157 create_mdo(mh, THREAD); 1158 } 1159 // Check if MDO should be created for the inlined method 1160 if (should_create_mdo(imh, level)) { 1161 create_mdo(imh, THREAD); 1162 } 1163 1164 if (is_compilation_enabled()) { 1165 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1166 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1167 // At the very least compile the OSR version 1168 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1169 compile(imh, bci, next_osr_level, CHECK); 1170 } 1171 1172 // Use loop event as an opportunity to also check if there's been 1173 // enough calls. 1174 CompLevel cur_level, next_level; 1175 if (mh() != imh()) { // If there is an enclosing method 1176 { 1177 guarantee(nm != nullptr, "Should have nmethod here"); 1178 cur_level = comp_level(mh()); 1179 next_level = call_event(mh, cur_level, THREAD); 1180 1181 if (max_osr_level == CompLevel_full_optimization) { 1182 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1183 bool make_not_entrant = false; 1184 if (nm->is_osr_method()) { 1185 // This is an osr method, just make it not entrant and recompile later if needed 1186 make_not_entrant = true; 1187 } else { 1188 if (next_level != CompLevel_full_optimization) { 1189 // next_level is not full opt, so we need to recompile the 1190 // enclosing method without the inlinee 1191 cur_level = CompLevel_none; 1192 make_not_entrant = true; 1193 } 1194 } 1195 if (make_not_entrant) { 1196 if (PrintTieredEvents) { 1197 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1198 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1199 } 1200 nm->make_not_entrant(); 1201 } 1202 } 1203 // Fix up next_level if necessary to avoid deopts 1204 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1205 next_level = CompLevel_full_profile; 1206 } 1207 if (cur_level != next_level) { 1208 if (!CompileBroker::compilation_is_in_queue(mh)) { 1209 compile(mh, InvocationEntryBci, next_level, THREAD); 1210 } 1211 } 1212 } 1213 } else { 1214 cur_level = comp_level(mh()); 1215 next_level = call_event(mh, cur_level, THREAD); 1216 if (next_level != cur_level) { 1217 if (!CompileBroker::compilation_is_in_queue(mh)) { 1218 compile(mh, InvocationEntryBci, next_level, THREAD); 1219 } 1220 } 1221 } 1222 } 1223 } 1224