1 /*
   2  * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "code/scopeDesc.hpp"
  27 #include "compiler/compilationPolicy.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compilerDefinitions.inline.hpp"
  30 #include "compiler/compilerOracle.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/method.inline.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "oops/trainingData.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/deoptimization.hpp"
  39 #include "runtime/frame.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/globals_extension.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/safepoint.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #ifdef COMPILER1
  46 #include "c1/c1_Compiler.hpp"
  47 #endif
  48 #ifdef COMPILER2
  49 #include "opto/c2compiler.hpp"
  50 #endif
  51 #if INCLUDE_JVMCI
  52 #include "jvmci/jvmci.hpp"
  53 #endif
  54 
  55 int64_t CompilationPolicy::_start_time = 0;
  56 int CompilationPolicy::_c1_count = 0;
  57 int CompilationPolicy::_c2_count = 0;
  58 double CompilationPolicy::_increase_threshold_at_ratio = 0;
  59 
  60 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
  61 
  62 void compilationPolicy_init() {
  63   CompilationPolicy::initialize();
  64 }
  65 
  66 int CompilationPolicy::compiler_count(CompLevel comp_level) {
  67   if (is_c1_compile(comp_level)) {
  68     return c1_count();
  69   } else if (is_c2_compile(comp_level)) {
  70     return c2_count();
  71   }
  72   return 0;
  73 }
  74 
  75 // Returns true if m must be compiled before executing it
  76 // This is intended to force compiles for methods (usually for
  77 // debugging) that would otherwise be interpreted for some reason.
  78 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
  79   // Don't allow Xcomp to cause compiles in replay mode
  80   if (ReplayCompiles) return false;
  81 
  82   if (m->has_compiled_code()) return false;       // already compiled
  83   if (!can_be_compiled(m, comp_level)) return false;
  84 
  85   return !UseInterpreter ||                                                                        // must compile all methods
  86          (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
  87 }
  88 
  89 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
  90   if (m->method_holder()->is_not_initialized()) {
  91     // 'is_not_initialized' means not only '!is_initialized', but also that
  92     // initialization has not been started yet ('!being_initialized')
  93     // Do not force compilation of methods in uninitialized classes.
  94     return;
  95   }
  96   if (!m->is_native() && MethodTrainingData::have_data()) {
  97     MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
  98     if (mtd == nullptr) {
  99       return;              // there is no training data recorded for m
 100     }
 101     CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
 102     CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
 103     if (next_level != cur_level && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
 104       if (PrintTieredEvents) {
 105         print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
 106       }
 107       CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, CompileTask::Reason_MustBeCompiled, THREAD);
 108       if (HAS_PENDING_EXCEPTION) {
 109         CLEAR_PENDING_EXCEPTION;
 110       }
 111     }
 112   }
 113 }
 114 
 115 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
 116   if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
 117     // don't force compilation, resolve was on behalf of compiler
 118     return;
 119   }
 120   if (m->method_holder()->is_not_initialized()) {
 121     // 'is_not_initialized' means not only '!is_initialized', but also that
 122     // initialization has not been started yet ('!being_initialized')
 123     // Do not force compilation of methods in uninitialized classes.
 124     // Note that doing this would throw an assert later,
 125     // in CompileBroker::compile_method.
 126     // We sometimes use the link resolver to do reflective lookups
 127     // even before classes are initialized.
 128     return;
 129   }
 130 
 131   if (must_be_compiled(m)) {
 132     // This path is unusual, mostly used by the '-Xcomp' stress test mode.
 133     CompLevel level = initial_compile_level(m);
 134     if (PrintTieredEvents) {
 135       print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
 136     }
 137     CompileBroker::compile_method(m, InvocationEntryBci, level, 0, CompileTask::Reason_MustBeCompiled, THREAD);
 138   }
 139 }
 140 
 141 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, JavaThread* current) {
 142   if (!klass->has_init_deps_processed()) {
 143     ResourceMark rm;
 144     log_debug(training)("Replay training: %s", klass->external_name());
 145 
 146     KlassTrainingData* ktd = KlassTrainingData::find(klass);
 147     if (ktd != nullptr) {
 148       guarantee(ktd->has_holder(), "");
 149       ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
 150       assert(klass->has_init_deps_processed(), "");
 151       if (AOTCompileEagerly) {
 152         ktd->iterate_comp_deps([&](CompileTrainingData* ctd) {
 153           if (ctd->init_deps_left_acquire() == 0) {
 154             MethodTrainingData* mtd = ctd->method();
 155             if (mtd->has_holder()) {
 156               const methodHandle mh(current, const_cast<Method*>(mtd->holder()));
 157               CompilationPolicy::maybe_compile_early(mh, current);
 158             }
 159           }
 160         });
 161       }
 162     }
 163   }
 164 }
 165 
 166 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, JavaThread* current) {
 167   assert(klass->is_initialized(), "");
 168   if (TrainingData::have_data() && klass->in_aot_cache()) {
 169     _training_replay_queue.push(klass, TrainingReplayQueue_lock, current);
 170   }
 171 }
 172 
 173 // For TrainingReplayQueue
 174 template<>
 175 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
 176   int pos = 0;
 177   for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
 178     ResourceMark rm;
 179     InstanceKlass* ik = cur->value();
 180     st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
 181   }
 182 }
 183 
 184 void CompilationPolicy::replay_training_at_init_loop(JavaThread* current) {
 185   while (!CompileBroker::is_compilation_disabled_forever()) {
 186     InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, current);
 187     if (ik != nullptr) {
 188       replay_training_at_init_impl(ik, current);
 189     }
 190   }
 191 }
 192 
 193 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
 194   if (comp_level == CompLevel_any) {
 195      if (CompilerConfig::is_c1_only()) {
 196        comp_level = CompLevel_simple;
 197      } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
 198        comp_level = CompLevel_full_optimization;
 199      }
 200   }
 201   return comp_level;
 202 }
 203 
 204 // Returns true if m is allowed to be compiled
 205 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
 206   // allow any levels for WhiteBox
 207   assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
 208 
 209   if (m->is_abstract()) return false;
 210   if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
 211 
 212   // Math intrinsics should never be compiled as this can lead to
 213   // monotonicity problems because the interpreter will prefer the
 214   // compiled code to the intrinsic version.  This can't happen in
 215   // production because the invocation counter can't be incremented
 216   // but we shouldn't expose the system to this problem in testing
 217   // modes.
 218   if (!AbstractInterpreter::can_be_compiled(m)) {
 219     return false;
 220   }
 221   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 222   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 223     return !m->is_not_compilable(comp_level);
 224   }
 225   return false;
 226 }
 227 
 228 // Returns true if m is allowed to be osr compiled
 229 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
 230   bool result = false;
 231   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 232   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 233     result = !m->is_not_osr_compilable(comp_level);
 234   }
 235   return (result && can_be_compiled(m, comp_level));
 236 }
 237 
 238 bool CompilationPolicy::is_compilation_enabled() {
 239   // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
 240   return CompileBroker::should_compile_new_jobs();
 241 }
 242 
 243 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
 244   // Remove unloaded methods from the queue
 245   for (CompileTask* task = compile_queue->first(); task != nullptr; ) {
 246     CompileTask* next = task->next();
 247     if (task->is_unloaded()) {
 248       compile_queue->remove_and_mark_stale(task);
 249     }
 250     task = next;
 251   }
 252 #if INCLUDE_JVMCI
 253   if (UseJVMCICompiler && !BackgroundCompilation) {
 254     /*
 255      * In blocking compilation mode, the CompileBroker will make
 256      * compilations submitted by a JVMCI compiler thread non-blocking. These
 257      * compilations should be scheduled after all blocking compilations
 258      * to service non-compiler related compilations sooner and reduce the
 259      * chance of such compilations timing out.
 260      */
 261     for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) {
 262       if (task->is_blocking()) {
 263         return task;
 264       }
 265     }
 266   }
 267 #endif
 268   return compile_queue->first();
 269 }
 270 
 271 // Simple methods are as good being compiled with C1 as C2.
 272 // Determine if a given method is such a case.
 273 bool CompilationPolicy::is_trivial(const methodHandle& method) {
 274   if (method->is_accessor() ||
 275       method->is_constant_getter()) {
 276     return true;
 277   }
 278   return false;
 279 }
 280 
 281 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
 282   if (CompilationModeFlag::quick_internal()) {
 283 #if INCLUDE_JVMCI
 284     if (UseJVMCICompiler) {
 285       AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 286       if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 287         return true;
 288       }
 289     }
 290 #endif
 291   }
 292   return false;
 293 }
 294 
 295 CompLevel CompilationPolicy::comp_level(Method* method) {
 296   nmethod *nm = method->code();
 297   if (nm != nullptr && nm->is_in_use()) {
 298     return (CompLevel)nm->comp_level();
 299   }
 300   return CompLevel_none;
 301 }
 302 
 303 // Call and loop predicates determine whether a transition to a higher
 304 // compilation level should be performed (pointers to predicate functions
 305 // are passed to common()).
 306 // Tier?LoadFeedback is basically a coefficient that determines of
 307 // how many methods per compiler thread can be in the queue before
 308 // the threshold values double.
 309 class LoopPredicate : AllStatic {
 310 public:
 311   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 312     double threshold_scaling;
 313     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 314       scale *= threshold_scaling;
 315     }
 316     switch(cur_level) {
 317     case CompLevel_none:
 318     case CompLevel_limited_profile:
 319       return b >= Tier3BackEdgeThreshold * scale;
 320     case CompLevel_full_profile:
 321       return b >= Tier4BackEdgeThreshold * scale;
 322     default:
 323       return true;
 324     }
 325   }
 326 
 327   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 328     double k = 1;
 329     switch(cur_level) {
 330     case CompLevel_none:
 331     // Fall through
 332     case CompLevel_limited_profile: {
 333       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 334       break;
 335     }
 336     case CompLevel_full_profile: {
 337       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 338       break;
 339     }
 340     default:
 341       return true;
 342     }
 343     return apply_scaled(method, cur_level, i, b, k);
 344   }
 345 };
 346 
 347 class CallPredicate : AllStatic {
 348 public:
 349   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 350     double threshold_scaling;
 351     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 352       scale *= threshold_scaling;
 353     }
 354     switch(cur_level) {
 355     case CompLevel_none:
 356     case CompLevel_limited_profile:
 357       return (i >= Tier3InvocationThreshold * scale) ||
 358              (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
 359     case CompLevel_full_profile:
 360       return (i >= Tier4InvocationThreshold * scale) ||
 361              (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
 362     default:
 363      return true;
 364     }
 365   }
 366 
 367   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 368     double k = 1;
 369     switch(cur_level) {
 370     case CompLevel_none:
 371     case CompLevel_limited_profile: {
 372       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 373       break;
 374     }
 375     case CompLevel_full_profile: {
 376       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 377       break;
 378     }
 379     default:
 380       return true;
 381     }
 382     return apply_scaled(method, cur_level, i, b, k);
 383   }
 384 };
 385 
 386 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
 387   int comp_count = compiler_count(level);
 388   if (comp_count > 0 && feedback_k > 0) {
 389     double queue_size = CompileBroker::queue_size(level);
 390     double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1;
 391 
 392     // Increase C1 compile threshold when the code cache is filled more
 393     // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 394     // The main intention is to keep enough free space for C2 compiled code
 395     // to achieve peak performance if the code cache is under stress.
 396     if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level))  {
 397       double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 398       if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 399         k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 400       }
 401     }
 402     return k;
 403   }
 404   return 1;
 405 }
 406 
 407 void CompilationPolicy::print_counters_on(outputStream* st, const char* prefix, Method* m) {
 408   int invocation_count = m->invocation_count();
 409   int backedge_count = m->backedge_count();
 410   MethodData* mdh = m->method_data();
 411   int mdo_invocations = 0, mdo_backedges = 0;
 412   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 413   if (mdh != nullptr) {
 414     mdo_invocations = mdh->invocation_count();
 415     mdo_backedges = mdh->backedge_count();
 416     mdo_invocations_start = mdh->invocation_count_start();
 417     mdo_backedges_start = mdh->backedge_count_start();
 418   }
 419   st->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 420     invocation_count, backedge_count, prefix,
 421     mdo_invocations, mdo_invocations_start,
 422     mdo_backedges, mdo_backedges_start);
 423   st->print(" %smax levels=%d,%d", prefix, m->highest_comp_level(), m->highest_osr_comp_level());
 424 }
 425 
 426 void CompilationPolicy::print_training_data_on(outputStream* st,  const char* prefix, Method* method) {
 427   methodHandle m(Thread::current(), method);
 428   st->print(" %smtd: ", prefix);
 429   MethodTrainingData* mtd = MethodTrainingData::find(m);
 430   if (mtd == nullptr) {
 431     st->print("null");
 432   } else {
 433     MethodData* md = mtd->final_profile();
 434     st->print("mdo=");
 435     if (md == nullptr) {
 436       st->print("null");
 437     } else {
 438       int mdo_invocations = md->invocation_count();
 439       int mdo_backedges = md->backedge_count();
 440       int mdo_invocations_start = md->invocation_count_start();
 441       int mdo_backedges_start = md->backedge_count_start();
 442       st->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
 443     }
 444     CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
 445     st->print(", deps=");
 446     if (ctd == nullptr) {
 447       st->print("null");
 448     } else {
 449       st->print("%d", ctd->init_deps_left_acquire());
 450     }
 451   }
 452 }
 453 
 454 // Print an event.
 455 void CompilationPolicy::print_event_on(outputStream *st, EventType type, Method* m, Method* im, int bci, CompLevel level) {
 456   bool inlinee_event = m != im;
 457 
 458   st->print("%lf: [", os::elapsedTime());
 459 
 460   switch(type) {
 461   case CALL:
 462     st->print("call");
 463     break;
 464   case LOOP:
 465     st->print("loop");
 466     break;
 467   case COMPILE:
 468     st->print("compile");
 469     break;
 470   case FORCE_COMPILE:
 471     st->print("force-compile");
 472     break;
 473   case REMOVE_FROM_QUEUE:
 474     st->print("remove-from-queue");
 475     break;
 476   case UPDATE_IN_QUEUE:
 477     st->print("update-in-queue");
 478     break;
 479   case REPROFILE:
 480     st->print("reprofile");
 481     break;
 482   case MAKE_NOT_ENTRANT:
 483     st->print("make-not-entrant");
 484     break;
 485   default:
 486     st->print("unknown");
 487   }
 488 
 489   st->print(" level=%d ", level);
 490 
 491   ResourceMark rm;
 492   char *method_name = m->name_and_sig_as_C_string();
 493   st->print("[%s", method_name);
 494   if (inlinee_event) {
 495     char *inlinee_name = im->name_and_sig_as_C_string();
 496     st->print(" [%s]] ", inlinee_name);
 497   }
 498   else st->print("] ");
 499   st->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 500                                      CompileBroker::queue_size(CompLevel_full_optimization));
 501 
 502   st->print(" rate=");
 503   if (m->prev_time() == 0) st->print("n/a");
 504   else st->print("%f", m->rate());
 505 
 506   st->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 507                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 508 
 509   if (type != COMPILE) {
 510     print_counters_on(st, "", m);
 511     if (inlinee_event) {
 512       print_counters_on(st, "inlinee ", im);
 513     }
 514     st->print(" compilable=");
 515     bool need_comma = false;
 516     if (!m->is_not_compilable(CompLevel_full_profile)) {
 517       st->print("c1");
 518       need_comma = true;
 519     }
 520     if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
 521       if (need_comma) st->print(",");
 522       st->print("c1-osr");
 523       need_comma = true;
 524     }
 525     if (!m->is_not_compilable(CompLevel_full_optimization)) {
 526       if (need_comma) st->print(",");
 527       st->print("c2");
 528       need_comma = true;
 529     }
 530     if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
 531       if (need_comma) st->print(",");
 532       st->print("c2-osr");
 533     }
 534     st->print(" status=");
 535     if (m->queued_for_compilation()) {
 536       st->print("in-queue");
 537     } else st->print("idle");
 538 
 539     print_training_data_on(st, "", m);
 540     if (inlinee_event) {
 541       print_training_data_on(st, "inlinee ", im);
 542     }
 543   }
 544   st->print_cr("]");
 545 
 546 }
 547 
 548 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
 549   stringStream s;
 550   print_event_on(&s, type, m, im, bci, level);
 551   ResourceMark rm;
 552   tty->print("%s", s.as_string());
 553 }
 554 
 555 void CompilationPolicy::initialize() {
 556   if (!CompilerConfig::is_interpreter_only()) {
 557     int count = CICompilerCount;
 558     bool c1_only = CompilerConfig::is_c1_only();
 559     bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
 560     int min_count = (c1_only || c2_only) ? 1 : 2;
 561 
 562 #ifdef _LP64
 563     // Turn on ergonomic compiler count selection
 564     if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 565       FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 566     }
 567     if (CICompilerCountPerCPU) {
 568       // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 569       int log_cpu = log2i(os::active_processor_count());
 570       int loglog_cpu = log2i(MAX2(log_cpu, 1));
 571       count = MAX2(log_cpu * loglog_cpu * 3 / 2, min_count);
 572       // Make sure there is enough space in the code cache to hold all the compiler buffers
 573       size_t c1_size = 0;
 574 #ifdef COMPILER1
 575       c1_size = Compiler::code_buffer_size();
 576 #endif
 577       size_t c2_size = 0;
 578 #ifdef COMPILER2
 579       c2_size = C2Compiler::initial_code_buffer_size();
 580 #endif
 581       size_t buffer_size = 0;
 582       if (c1_only) {
 583         buffer_size = c1_size;
 584       } else if (c2_only) {
 585         buffer_size = c2_size;
 586       } else {
 587         buffer_size = c1_size / 3 + 2 * c2_size / 3;
 588       }
 589       size_t max_count = (NonNMethodCodeHeapSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / buffer_size;
 590       if ((size_t)count > max_count) {
 591         // Lower the compiler count such that all buffers fit into the code cache
 592         count = MAX2((int)max_count, min_count);
 593       }
 594       FLAG_SET_ERGO(CICompilerCount, count);
 595     }
 596 #else
 597     // On 32-bit systems, the number of compiler threads is limited to 3.
 598     // On these systems, the virtual address space available to the JVM
 599     // is usually limited to 2-4 GB (the exact value depends on the platform).
 600     // As the compilers (especially C2) can consume a large amount of
 601     // memory, scaling the number of compiler threads with the number of
 602     // available cores can result in the exhaustion of the address space
 603     /// available to the VM and thus cause the VM to crash.
 604     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 605       count = 3;
 606       FLAG_SET_ERGO(CICompilerCount, count);
 607     }
 608 #endif // _LP64
 609 
 610     if (c1_only) {
 611       // No C2 compiler threads are needed
 612       set_c1_count(count);
 613     } else if (c2_only) {
 614       // No C1 compiler threads are needed
 615       set_c2_count(count);
 616     } else {
 617 #if INCLUDE_JVMCI
 618       if (UseJVMCICompiler && UseJVMCINativeLibrary) {
 619         int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
 620         int c1_count = MAX2(count - libjvmci_count, 1);
 621         set_c2_count(libjvmci_count);
 622         set_c1_count(c1_count);
 623       } else
 624 #endif
 625       {
 626         set_c1_count(MAX2(count / 3, 1));
 627         set_c2_count(MAX2(count - c1_count(), 1));
 628       }
 629     }
 630     assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 631     set_increase_threshold_at_ratio();
 632   } else {
 633     // Interpreter mode creates no compilers
 634     FLAG_SET_ERGO(CICompilerCount, 0);
 635   }
 636   set_start_time(nanos_to_millis(os::javaTimeNanos()));
 637 }
 638 
 639 
 640 #ifdef ASSERT
 641 bool CompilationPolicy::verify_level(CompLevel level) {
 642   if (TieredCompilation && level > TieredStopAtLevel) {
 643     return false;
 644   }
 645   // Check if there is a compiler to process the requested level
 646   if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
 647     return false;
 648   }
 649   if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
 650     return false;
 651   }
 652 
 653   // Interpreter level is always valid.
 654   if (level == CompLevel_none) {
 655     return true;
 656   }
 657   if (CompilationModeFlag::normal()) {
 658     return true;
 659   } else if (CompilationModeFlag::quick_only()) {
 660     return level == CompLevel_simple;
 661   } else if (CompilationModeFlag::high_only()) {
 662     return level == CompLevel_full_optimization;
 663   } else if (CompilationModeFlag::high_only_quick_internal()) {
 664     return level == CompLevel_full_optimization || level == CompLevel_simple;
 665   }
 666   return false;
 667 }
 668 #endif
 669 
 670 
 671 CompLevel CompilationPolicy::highest_compile_level() {
 672   CompLevel level = CompLevel_none;
 673   // Setup the maximum level available for the current compiler configuration.
 674   if (!CompilerConfig::is_interpreter_only()) {
 675     if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
 676       level = CompLevel_full_optimization;
 677     } else if (CompilerConfig::is_c1_enabled()) {
 678       if (CompilerConfig::is_c1_simple_only()) {
 679         level = CompLevel_simple;
 680       } else {
 681         level = CompLevel_full_profile;
 682       }
 683     }
 684   }
 685   // Clamp the maximum level with TieredStopAtLevel.
 686   if (TieredCompilation) {
 687     level = MIN2(level, (CompLevel) TieredStopAtLevel);
 688   }
 689 
 690   // Fix it up if after the clamping it has become invalid.
 691   // Bring it monotonically down depending on the next available level for
 692   // the compilation mode.
 693   if (!CompilationModeFlag::normal()) {
 694     // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
 695     // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
 696     // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
 697     if (CompilationModeFlag::quick_only()) {
 698       if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
 699         level = CompLevel_simple;
 700       }
 701     } else if (CompilationModeFlag::high_only()) {
 702       if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 703         level = CompLevel_none;
 704       }
 705     } else if (CompilationModeFlag::high_only_quick_internal()) {
 706       if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 707         level = CompLevel_simple;
 708       }
 709     }
 710   }
 711 
 712   assert(verify_level(level), "Invalid highest compilation level: %d", level);
 713   return level;
 714 }
 715 
 716 CompLevel CompilationPolicy::limit_level(CompLevel level) {
 717   level = MIN2(level, highest_compile_level());
 718   assert(verify_level(level), "Invalid compilation level: %d", level);
 719   return level;
 720 }
 721 
 722 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
 723   CompLevel level = CompLevel_any;
 724   if (CompilationModeFlag::normal()) {
 725     level = CompLevel_full_profile;
 726   } else if (CompilationModeFlag::quick_only()) {
 727     level = CompLevel_simple;
 728   } else if (CompilationModeFlag::high_only()) {
 729     level = CompLevel_full_optimization;
 730   } else if (CompilationModeFlag::high_only_quick_internal()) {
 731     if (force_comp_at_level_simple(method)) {
 732       level = CompLevel_simple;
 733     } else {
 734       level = CompLevel_full_optimization;
 735     }
 736   }
 737   assert(level != CompLevel_any, "Unhandled compilation mode");
 738   return limit_level(level);
 739 }
 740 
 741 // Set carry flags on the counters if necessary
 742 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) {
 743   MethodCounters *mcs = method->method_counters();
 744   if (mcs != nullptr) {
 745     mcs->invocation_counter()->set_carry_on_overflow();
 746     mcs->backedge_counter()->set_carry_on_overflow();
 747   }
 748   MethodData* mdo = method->method_data();
 749   if (mdo != nullptr) {
 750     mdo->invocation_counter()->set_carry_on_overflow();
 751     mdo->backedge_counter()->set_carry_on_overflow();
 752   }
 753 }
 754 
 755 // Called with the queue locked and with at least one element
 756 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
 757   CompileTask *max_blocking_task = nullptr;
 758   CompileTask *max_task = nullptr;
 759   Method* max_method = nullptr;
 760 
 761   int64_t t = nanos_to_millis(os::javaTimeNanos());
 762   // Iterate through the queue and find a method with a maximum rate.
 763   for (CompileTask* task = compile_queue->first(); task != nullptr;) {
 764     CompileTask* next_task = task->next();
 765     // If a method was unloaded or has been stale for some time, remove it from the queue.
 766     // Blocking tasks and tasks submitted from whitebox API don't become stale
 767     if (task->is_unloaded()) {
 768       compile_queue->remove_and_mark_stale(task);
 769       task = next_task;
 770       continue;
 771     }
 772     if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) {
 773       // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate
 774       // selection and/or any level adjustments. Just return them in order.
 775       return task;
 776     }
 777     Method* method = task->method();
 778     methodHandle mh(THREAD, method);
 779     if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
 780       if (PrintTieredEvents) {
 781         print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 782       }
 783       method->clear_queued_for_compilation();
 784       compile_queue->remove_and_mark_stale(task);
 785       task = next_task;
 786       continue;
 787     }
 788     update_rate(t, mh);
 789     if (max_task == nullptr || compare_methods(method, max_method)) {
 790       // Select a method with the highest rate
 791       max_task = task;
 792       max_method = method;
 793     }
 794 
 795     if (task->is_blocking()) {
 796       if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) {
 797         max_blocking_task = task;
 798       }
 799     }
 800 
 801     task = next_task;
 802   }
 803 
 804   if (max_blocking_task != nullptr) {
 805     // In blocking compilation mode, the CompileBroker will make
 806     // compilations submitted by a JVMCI compiler thread non-blocking. These
 807     // compilations should be scheduled after all blocking compilations
 808     // to service non-compiler related compilations sooner and reduce the
 809     // chance of such compilations timing out.
 810     max_task = max_blocking_task;
 811     max_method = max_task->method();
 812   }
 813 
 814   methodHandle max_method_h(THREAD, max_method);
 815 
 816   if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
 817       max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
 818     max_task->set_comp_level(CompLevel_limited_profile);
 819 
 820     if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) {
 821       if (PrintTieredEvents) {
 822         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 823       }
 824       compile_queue->remove_and_mark_stale(max_task);
 825       max_method->clear_queued_for_compilation();
 826       return nullptr;
 827     }
 828 
 829     if (PrintTieredEvents) {
 830       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 831     }
 832   }
 833   return max_task;
 834 }
 835 
 836 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 837   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 838     if (PrintTieredEvents) {
 839       print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
 840     }
 841     MethodData* mdo = sd->method()->method_data();
 842     if (mdo != nullptr) {
 843       mdo->reset_start_counters();
 844     }
 845     if (sd->is_top()) break;
 846   }
 847 }
 848 
 849 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 850                                       int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
 851   if (PrintTieredEvents) {
 852     print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
 853   }
 854 
 855 #if INCLUDE_JVMCI
 856   if (EnableJVMCI && UseJVMCICompiler &&
 857       comp_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
 858     return nullptr;
 859   }
 860 #endif
 861 
 862   if (comp_level == CompLevel_none &&
 863       JvmtiExport::can_post_interpreter_events() &&
 864       THREAD->is_interp_only_mode()) {
 865     return nullptr;
 866   }
 867   if (ReplayCompiles) {
 868     // Don't trigger other compiles in testing mode
 869     return nullptr;
 870   }
 871 
 872   handle_counter_overflow(method);
 873   if (method() != inlinee()) {
 874     handle_counter_overflow(inlinee);
 875   }
 876 
 877   if (bci == InvocationEntryBci) {
 878     method_invocation_event(method, inlinee, comp_level, nm, THREAD);
 879   } else {
 880     // method == inlinee if the event originated in the main method
 881     method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
 882     // Check if event led to a higher level OSR compilation
 883     CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
 884     if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
 885       // It's not possible to reach the expected level so fall back to simple.
 886       expected_comp_level = CompLevel_simple;
 887     }
 888     CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
 889     if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
 890       nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 891       assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 892       if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) {
 893         // Perform OSR with new nmethod
 894         return osr_nm;
 895       }
 896     }
 897   }
 898   return nullptr;
 899 }
 900 
 901 // Check if the method can be compiled, change level if necessary
 902 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
 903   assert(verify_level(level), "Invalid compilation level requested: %d", level);
 904 
 905   if (level == CompLevel_none) {
 906     if (mh->has_compiled_code()) {
 907       // Happens when we switch to interpreter to profile.
 908       MutexLocker ml(Compile_lock);
 909       NoSafepointVerifier nsv;
 910       if (mh->has_compiled_code()) {
 911         mh->code()->make_not_used();
 912       }
 913       // Deoptimize immediately (we don't have to wait for a compile).
 914       JavaThread* jt = THREAD;
 915       RegisterMap map(jt,
 916                       RegisterMap::UpdateMap::skip,
 917                       RegisterMap::ProcessFrames::include,
 918                       RegisterMap::WalkContinuation::skip);
 919       frame fr = jt->last_frame().sender(&map);
 920       Deoptimization::deoptimize_frame(jt, fr.id());
 921     }
 922     return;
 923   }
 924 
 925   if (!CompilationModeFlag::disable_intermediate()) {
 926     // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
 927     // in the interpreter and then compile with C2 (the transition function will request that,
 928     // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 929     // pure C1.
 930     if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 931       if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 932         compile(mh, bci, CompLevel_simple, THREAD);
 933       }
 934       return;
 935     }
 936     if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 937       if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 938         nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
 939         if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) {
 940           // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
 941           osr_nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_FOR_COMPILING_WITH_C1);
 942         }
 943         compile(mh, bci, CompLevel_simple, THREAD);
 944       }
 945       return;
 946     }
 947   }
 948   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
 949     return;
 950   }
 951   if (!CompileBroker::compilation_is_in_queue(mh)) {
 952     if (PrintTieredEvents) {
 953       print_event(COMPILE, mh(), mh(), bci, level);
 954     }
 955     int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 956     update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
 957     CompileBroker::compile_method(mh, bci, level, hot_count, CompileTask::Reason_Tiered, THREAD);
 958   }
 959 }
 960 
 961 // update_rate() is called from select_task() while holding a compile queue lock.
 962 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
 963   // Skip update if counters are absent.
 964   // Can't allocate them since we are holding compile queue lock.
 965   if (method->method_counters() == nullptr)  return;
 966 
 967   if (is_old(method)) {
 968     // We don't remove old methods from the queue,
 969     // so we can just zero the rate.
 970     method->set_rate(0);
 971     return;
 972   }
 973 
 974   // We don't update the rate if we've just came out of a safepoint.
 975   // delta_s is the time since last safepoint in milliseconds.
 976   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
 977   int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
 978   // How many events were there since the last time?
 979   int event_count = method->invocation_count() + method->backedge_count();
 980   int delta_e = event_count - method->prev_event_count();
 981 
 982   // We should be running for at least 1ms.
 983   if (delta_s >= TieredRateUpdateMinTime) {
 984     // And we must've taken the previous point at least 1ms before.
 985     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 986       method->set_prev_time(t);
 987       method->set_prev_event_count(event_count);
 988       method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 989     } else {
 990       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 991         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 992         method->set_rate(0);
 993       }
 994     }
 995   }
 996 }
 997 
 998 // Check if this method has been stale for a given number of milliseconds.
 999 // See select_task().
1000 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
1001   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1002   int64_t delta_t = t - method->prev_time();
1003   if (delta_t > timeout && delta_s > timeout) {
1004     int event_count = method->invocation_count() + method->backedge_count();
1005     int delta_e = event_count - method->prev_event_count();
1006     // Return true if there were no events.
1007     return delta_e == 0;
1008   }
1009   return false;
1010 }
1011 
1012 // We don't remove old methods from the compile queue even if they have
1013 // very low activity. See select_task().
1014 bool CompilationPolicy::is_old(const methodHandle& method) {
1015   int i = method->invocation_count();
1016   int b = method->backedge_count();
1017   double k = TieredOldPercentage / 100.0;
1018 
1019   return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1020 }
1021 
1022 double CompilationPolicy::weight(Method* method) {
1023   return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1);
1024 }
1025 
1026 // Apply heuristics and return true if x should be compiled before y
1027 bool CompilationPolicy::compare_methods(Method* x, Method* y) {
1028   if (x->highest_comp_level() > y->highest_comp_level()) {
1029     // recompilation after deopt
1030     return true;
1031   } else
1032     if (x->highest_comp_level() == y->highest_comp_level()) {
1033       if (weight(x) > weight(y)) {
1034         return true;
1035       }
1036     }
1037   return false;
1038 }
1039 
1040 // Is method profiled enough?
1041 bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
1042   MethodData* mdo = method->method_data();
1043   if (mdo != nullptr) {
1044     int i = mdo->invocation_count_delta();
1045     int b = mdo->backedge_count_delta();
1046     return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
1047   }
1048   return false;
1049 }
1050 
1051 
1052 // Determine is a method is mature.
1053 bool CompilationPolicy::is_mature(MethodData* mdo) {
1054   if (Arguments::is_compiler_only()) {
1055     // Always report profiles as immature with -Xcomp
1056     return false;
1057   }
1058   methodHandle mh(Thread::current(), mdo->method());
1059   if (mdo != nullptr) {
1060     int i = mdo->invocation_count();
1061     int b = mdo->backedge_count();
1062     double k = ProfileMaturityPercentage / 100.0;
1063     return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
1064   }
1065   return false;
1066 }
1067 
1068 // If a method is old enough and is still in the interpreter we would want to
1069 // start profiling without waiting for the compiled method to arrive.
1070 // We also take the load on compilers into the account.
1071 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
1072   if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
1073     return false;
1074   }
1075 
1076   if (TrainingData::have_data()) {
1077     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1078     if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
1079       return true;
1080     }
1081   }
1082 
1083   if (is_old(method)) {
1084     return true;
1085   }
1086 
1087   int i = method->invocation_count();
1088   int b = method->backedge_count();
1089   double k = Tier0ProfilingStartPercentage / 100.0;
1090 
1091   // If the top level compiler is not keeping up, delay profiling.
1092   if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
1093     return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1094   }
1095   return false;
1096 }
1097 
1098 // Inlining control: if we're compiling a profiled method with C1 and the callee
1099 // is known to have OSRed in a C2 version, don't inline it.
1100 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
1101   CompLevel comp_level = (CompLevel)env->comp_level();
1102   if (comp_level == CompLevel_full_profile ||
1103       comp_level == CompLevel_limited_profile) {
1104     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
1105   }
1106   return false;
1107 }
1108 
1109 // Create MDO if necessary.
1110 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
1111   if (mh->is_native() ||
1112       mh->is_abstract() ||
1113       mh->is_accessor() ||
1114       mh->is_constant_getter()) {
1115     return;
1116   }
1117   if (mh->method_data() == nullptr) {
1118     Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
1119   }
1120   if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
1121     MethodData* mdo = mh->method_data();
1122     if (mdo != nullptr) {
1123       frame last_frame = THREAD->last_frame();
1124       if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
1125         int bci = last_frame.interpreter_frame_bci();
1126         address dp = mdo->bci_to_dp(bci);
1127         last_frame.interpreter_frame_set_mdp(dp);
1128       }
1129     }
1130   }
1131 }
1132 
1133 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1134   precond(mtd != nullptr);
1135   precond(cur_level == CompLevel_none);
1136 
1137   if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
1138     return CompLevel_none;
1139   }
1140 
1141   bool training_has_profile = (mtd->final_profile() != nullptr);
1142   if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
1143     return CompLevel_full_profile;
1144   }
1145 
1146   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1147   switch (highest_training_level) {
1148     case CompLevel_limited_profile:
1149     case CompLevel_full_profile:
1150       return CompLevel_limited_profile;
1151     case CompLevel_simple:
1152       return CompLevel_simple;
1153     case CompLevel_none:
1154       return CompLevel_none;
1155     default:
1156       break;
1157   }
1158 
1159   // Now handle the case of level 4.
1160   assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
1161   if (!training_has_profile) {
1162     // The method was a part of a level 4 compile, but don't have a stored profile,
1163     // we need to profile it.
1164     return CompLevel_full_profile;
1165   }
1166   const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
1167   // If we deopted, then we reprofile
1168   if (deopt && !is_method_profiled(method)) {
1169     return CompLevel_full_profile;
1170   }
1171 
1172   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1173   assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
1174   // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
1175   if (SkipTier2IfPossible && ctd->init_deps_left_acquire() == 0) {
1176     if (method->method_data() == nullptr) {
1177       create_mdo(method, THREAD);
1178     }
1179     return CompLevel_full_optimization;
1180   }
1181 
1182   // Otherwise go to level 2
1183   return CompLevel_limited_profile;
1184 }
1185 
1186 
1187 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1188   precond(mtd != nullptr);
1189   precond(cur_level == CompLevel_limited_profile);
1190 
1191   // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
1192 
1193   // But first, check if we have a saved profile
1194   bool training_has_profile = (mtd->final_profile() != nullptr);
1195   if (!training_has_profile) {
1196     return CompLevel_full_profile;
1197   }
1198 
1199 
1200   assert(training_has_profile, "Have to have a profile to be here");
1201   // Check if the method is ready
1202   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1203   if (ctd != nullptr && ctd->init_deps_left_acquire() == 0) {
1204     if (method->method_data() == nullptr) {
1205       create_mdo(method, THREAD);
1206     }
1207     return CompLevel_full_optimization;
1208   }
1209 
1210   // Otherwise stay at the current level
1211   return CompLevel_limited_profile;
1212 }
1213 
1214 
1215 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1216   precond(mtd != nullptr);
1217   precond(cur_level == CompLevel_full_profile);
1218 
1219   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1220   // We have method at the full profile level and we also know that it's possibly an important method.
1221   if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
1222     // Check if it is adequately profiled
1223     if (is_method_profiled(method)) {
1224       return CompLevel_full_optimization;
1225     }
1226   }
1227 
1228   // Otherwise stay at the current level
1229   return CompLevel_full_profile;
1230 }
1231 
1232 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1233   precond(MethodTrainingData::have_data());
1234 
1235   // If there is no training data recorded for this method, bail out.
1236   if (mtd == nullptr) {
1237     return cur_level;
1238   }
1239 
1240   CompLevel next_level = cur_level;
1241   switch(cur_level) {
1242     default: break;
1243     case CompLevel_none:
1244       next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
1245       break;
1246     case CompLevel_limited_profile:
1247       next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
1248       break;
1249     case CompLevel_full_profile:
1250       next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
1251       break;
1252   }
1253 
1254   // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
1255   if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
1256     return CompLevel_none;
1257   }
1258   if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
1259     return CompLevel_none;
1260   }
1261   return (cur_level != next_level) ? limit_level(next_level) : cur_level;
1262 }
1263 
1264 /*
1265  * Method states:
1266  *   0 - interpreter (CompLevel_none)
1267  *   1 - pure C1 (CompLevel_simple)
1268  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
1269  *   3 - C1 with full profiling (CompLevel_full_profile)
1270  *   4 - C2 or Graal (CompLevel_full_optimization)
1271  *
1272  * Common state transition patterns:
1273  * a. 0 -> 3 -> 4.
1274  *    The most common path. But note that even in this straightforward case
1275  *    profiling can start at level 0 and finish at level 3.
1276  *
1277  * b. 0 -> 2 -> 3 -> 4.
1278  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
1279  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
1280  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
1281  *
1282  * c. 0 -> (3->2) -> 4.
1283  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
1284  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
1285  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
1286  *    without full profiling while c2 is compiling.
1287  *
1288  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
1289  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
1290  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
1291  *
1292  * e. 0 -> 4.
1293  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
1294  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
1295  *    the compiled version already exists).
1296  *
1297  * Note that since state 0 can be reached from any other state via deoptimization different loops
1298  * are possible.
1299  *
1300  */
1301 
1302 // Common transition function. Given a predicate determines if a method should transition to another level.
1303 template<typename Predicate>
1304 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
1305   CompLevel next_level = cur_level;
1306 
1307   if (force_comp_at_level_simple(method)) {
1308     next_level = CompLevel_simple;
1309   } else if (is_trivial(method) || method->is_native()) {
1310     // We do not care if there is profiling data for these methods, throw them to compiler.
1311     next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
1312   } else if (MethodTrainingData::have_data()) {
1313     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1314     if (mtd == nullptr) {
1315       // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
1316       // Feed it to the standard TF with no profiling delay.
1317       next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1318     } else {
1319       next_level = trained_transition(method, cur_level, mtd, THREAD);
1320       if (cur_level == next_level) {
1321         // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
1322         // In order to catch possible pathologies due to behavior change we feed the event to the regular
1323         // TF but with profiling delay.
1324         next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback);
1325       }
1326     }
1327   } else {
1328     next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1329   }
1330   return (next_level != cur_level) ? limit_level(next_level) : next_level;
1331 }
1332 
1333 
1334 template<typename Predicate>
1335 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1336   CompLevel next_level = cur_level;
1337   switch(cur_level) {
1338   default: break;
1339   case CompLevel_none:
1340     next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1341     break;
1342   case CompLevel_limited_profile:
1343     next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1344     break;
1345   case CompLevel_full_profile:
1346     next_level = transition_from_full_profile<Predicate>(method, cur_level);
1347     break;
1348   }
1349   return next_level;
1350 }
1351 
1352 template<typename Predicate>
1353 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1354   precond(cur_level == CompLevel_none);
1355   CompLevel next_level = cur_level;
1356   int i = method->invocation_count();
1357   int b = method->backedge_count();
1358   double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0;
1359   // If we were at full profile level, would we switch to full opt?
1360   if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
1361     next_level = CompLevel_full_optimization;
1362   } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) {
1363     // C1-generated fully profiled code is about 30% slower than the limited profile
1364     // code that has only invocation and backedge counters. The observation is that
1365     // if C2 queue is large enough we can spend too much time in the fully profiled code
1366     // while waiting for C2 to pick the method from the queue. To alleviate this problem
1367     // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
1368     // we choose to compile a limited profiled version and then recompile with full profiling
1369     // when the load on C2 goes down.
1370     if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) {
1371       next_level = CompLevel_limited_profile;
1372     } else {
1373       next_level = CompLevel_full_profile;
1374     }
1375   }
1376   return next_level;
1377 }
1378 
1379 template<typename Predicate>
1380 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
1381   precond(cur_level == CompLevel_full_profile);
1382   CompLevel next_level = cur_level;
1383   MethodData* mdo = method->method_data();
1384   if (mdo != nullptr) {
1385     if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
1386       int mdo_i = mdo->invocation_count_delta();
1387       int mdo_b = mdo->backedge_count_delta();
1388       if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
1389         next_level = CompLevel_full_optimization;
1390       }
1391     } else {
1392       next_level = CompLevel_full_optimization;
1393     }
1394   }
1395   return next_level;
1396 }
1397 
1398 template<typename Predicate>
1399 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1400   precond(cur_level == CompLevel_limited_profile);
1401   CompLevel next_level = cur_level;
1402   int i = method->invocation_count();
1403   int b = method->backedge_count();
1404   double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0;
1405   MethodData* mdo = method->method_data();
1406   if (mdo != nullptr) {
1407     if (mdo->would_profile()) {
1408       if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1409                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1410                               Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1411         next_level = CompLevel_full_profile;
1412       }
1413     } else {
1414       next_level = CompLevel_full_optimization;
1415     }
1416   } else {
1417     // If there is no MDO we need to profile
1418     if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1419                             Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1420                             Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1421       next_level = CompLevel_full_profile;
1422     }
1423   }
1424   if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
1425     next_level = CompLevel_full_optimization;
1426   }
1427   return next_level;
1428 }
1429 
1430 
1431 // Determine if a method should be compiled with a normal entry point at a different level.
1432 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1433   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
1434   CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
1435 
1436   // If OSR method level is greater than the regular method level, the levels should be
1437   // equalized by raising the regular method level in order to avoid OSRs during each
1438   // invocation of the method.
1439   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
1440     MethodData* mdo = method->method_data();
1441     guarantee(mdo != nullptr, "MDO should not be nullptr");
1442     if (mdo->invocation_count() >= 1) {
1443       next_level = CompLevel_full_optimization;
1444     }
1445   } else {
1446     next_level = MAX2(osr_level, next_level);
1447   }
1448 #if INCLUDE_JVMCI
1449   if (EnableJVMCI && UseJVMCICompiler &&
1450       next_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
1451     next_level = cur_level;
1452   }
1453 #endif
1454   return next_level;
1455 }
1456 
1457 // Determine if we should do an OSR compilation of a given method.
1458 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1459   CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
1460   if (cur_level == CompLevel_none) {
1461     // If there is a live OSR method that means that we deopted to the interpreter
1462     // for the transition.
1463     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
1464     if (osr_level > CompLevel_none) {
1465       return osr_level;
1466     }
1467   }
1468   return next_level;
1469 }
1470 
1471 // Handle the invocation event.
1472 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
1473                                                       CompLevel level, nmethod* nm, TRAPS) {
1474   if (should_create_mdo(mh, level)) {
1475     create_mdo(mh, THREAD);
1476   }
1477   CompLevel next_level = call_event(mh, level, THREAD);
1478   if (next_level != level) {
1479     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
1480       compile(mh, InvocationEntryBci, next_level, THREAD);
1481     }
1482   }
1483 }
1484 
1485 // Handle the back branch event. Notice that we can compile the method
1486 // with a regular entry from here.
1487 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
1488                                                      int bci, CompLevel level, nmethod* nm, TRAPS) {
1489   if (should_create_mdo(mh, level)) {
1490     create_mdo(mh, THREAD);
1491   }
1492   // Check if MDO should be created for the inlined method
1493   if (should_create_mdo(imh, level)) {
1494     create_mdo(imh, THREAD);
1495   }
1496 
1497   if (is_compilation_enabled()) {
1498     CompLevel next_osr_level = loop_event(imh, level, THREAD);
1499     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
1500     // At the very least compile the OSR version
1501     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
1502       compile(imh, bci, next_osr_level, CHECK);
1503     }
1504 
1505     // Use loop event as an opportunity to also check if there's been
1506     // enough calls.
1507     CompLevel cur_level, next_level;
1508     if (mh() != imh()) { // If there is an enclosing method
1509       {
1510         guarantee(nm != nullptr, "Should have nmethod here");
1511         cur_level = comp_level(mh());
1512         next_level = call_event(mh, cur_level, THREAD);
1513 
1514         if (max_osr_level == CompLevel_full_optimization) {
1515           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
1516           bool make_not_entrant = false;
1517           if (nm->is_osr_method()) {
1518             // This is an osr method, just make it not entrant and recompile later if needed
1519             make_not_entrant = true;
1520           } else {
1521             if (next_level != CompLevel_full_optimization) {
1522               // next_level is not full opt, so we need to recompile the
1523               // enclosing method without the inlinee
1524               cur_level = CompLevel_none;
1525               make_not_entrant = true;
1526             }
1527           }
1528           if (make_not_entrant) {
1529             if (PrintTieredEvents) {
1530               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
1531               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
1532             }
1533             nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_BACK_BRANCH);
1534           }
1535         }
1536         // Fix up next_level if necessary to avoid deopts
1537         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
1538           next_level = CompLevel_full_profile;
1539         }
1540         if (cur_level != next_level) {
1541           if (!CompileBroker::compilation_is_in_queue(mh)) {
1542             compile(mh, InvocationEntryBci, next_level, THREAD);
1543           }
1544         }
1545       }
1546     } else {
1547       cur_level = comp_level(mh());
1548       next_level = call_event(mh, cur_level, THREAD);
1549       if (next_level != cur_level) {
1550         if (!CompileBroker::compilation_is_in_queue(mh)) {
1551           compile(mh, InvocationEntryBci, next_level, THREAD);
1552         }
1553       }
1554     }
1555   }
1556 }
1557