1 /*
   2  * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "code/scopeDesc.hpp"
  27 #include "compiler/compilationPolicy.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compilerDefinitions.inline.hpp"
  30 #include "compiler/compilerOracle.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/method.inline.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "oops/trainingData.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/deoptimization.hpp"
  39 #include "runtime/frame.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/globals_extension.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/safepoint.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #ifdef COMPILER1
  46 #include "c1/c1_Compiler.hpp"
  47 #endif
  48 #ifdef COMPILER2
  49 #include "opto/c2compiler.hpp"
  50 #endif
  51 #if INCLUDE_JVMCI
  52 #include "jvmci/jvmci.hpp"
  53 #endif
  54 
  55 int64_t CompilationPolicy::_start_time = 0;
  56 int CompilationPolicy::_c1_count = 0;
  57 int CompilationPolicy::_c2_count = 0;
  58 double CompilationPolicy::_increase_threshold_at_ratio = 0;
  59 
  60 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
  61 
  62 void compilationPolicy_init() {
  63   CompilationPolicy::initialize();
  64 }
  65 
  66 int CompilationPolicy::compiler_count(CompLevel comp_level) {
  67   if (is_c1_compile(comp_level)) {
  68     return c1_count();
  69   } else if (is_c2_compile(comp_level)) {
  70     return c2_count();
  71   }
  72   return 0;
  73 }
  74 
  75 // Returns true if m must be compiled before executing it
  76 // This is intended to force compiles for methods (usually for
  77 // debugging) that would otherwise be interpreted for some reason.
  78 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
  79   // Don't allow Xcomp to cause compiles in replay mode
  80   if (ReplayCompiles) return false;
  81 
  82   if (m->has_compiled_code()) return false;       // already compiled
  83   if (!can_be_compiled(m, comp_level)) return false;
  84 
  85   return !UseInterpreter ||                                                                        // must compile all methods
  86          (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
  87 }
  88 
  89 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
  90   if (m->method_holder()->is_not_initialized()) {
  91     // 'is_not_initialized' means not only '!is_initialized', but also that
  92     // initialization has not been started yet ('!being_initialized')
  93     // Do not force compilation of methods in uninitialized classes.
  94     return;
  95   }
  96   if (!m->is_native() && MethodTrainingData::have_data()) {
  97     MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
  98     if (mtd == nullptr) {
  99       return;              // there is no training data recorded for m
 100     }
 101     CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
 102     CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
 103     if (next_level != cur_level && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
 104       if (PrintTieredEvents) {
 105         print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
 106       }
 107       CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, CompileTask::Reason_MustBeCompiled, THREAD);
 108       if (HAS_PENDING_EXCEPTION) {
 109         CLEAR_PENDING_EXCEPTION;
 110       }
 111     }
 112   }
 113 }
 114 
 115 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
 116   if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
 117     // don't force compilation, resolve was on behalf of compiler
 118     return;
 119   }
 120   if (m->method_holder()->is_not_initialized()) {
 121     // 'is_not_initialized' means not only '!is_initialized', but also that
 122     // initialization has not been started yet ('!being_initialized')
 123     // Do not force compilation of methods in uninitialized classes.
 124     // Note that doing this would throw an assert later,
 125     // in CompileBroker::compile_method.
 126     // We sometimes use the link resolver to do reflective lookups
 127     // even before classes are initialized.
 128     return;
 129   }
 130 
 131   if (must_be_compiled(m)) {
 132     // This path is unusual, mostly used by the '-Xcomp' stress test mode.
 133     CompLevel level = initial_compile_level(m);
 134     if (PrintTieredEvents) {
 135       print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
 136     }
 137     CompileBroker::compile_method(m, InvocationEntryBci, level, 0, CompileTask::Reason_MustBeCompiled, THREAD);
 138   }
 139 }
 140 
 141 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, JavaThread* current) {
 142   if (!klass->has_init_deps_processed()) {
 143     ResourceMark rm;
 144     log_debug(training)("Replay training: %s", klass->external_name());
 145 
 146     KlassTrainingData* ktd = KlassTrainingData::find(klass);
 147     if (ktd != nullptr) {
 148       guarantee(ktd->has_holder(), "");
 149       ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
 150       assert(klass->has_init_deps_processed(), "");
 151       if (AOTCompileEagerly) {
 152         ktd->iterate_comp_deps([&](CompileTrainingData* ctd) {
 153           if (ctd->init_deps_left_acquire() == 0) {
 154             MethodTrainingData* mtd = ctd->method();
 155             if (mtd->has_holder()) {
 156               const methodHandle mh(current, const_cast<Method*>(mtd->holder()));
 157               CompilationPolicy::maybe_compile_early(mh, current);
 158             }
 159           }
 160         });
 161       }
 162     }
 163   }
 164 }
 165 
 166 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, JavaThread* current) {
 167   assert(klass->is_initialized(), "");
 168   if (TrainingData::have_data() && klass->in_aot_cache()) {
 169     _training_replay_queue.push(klass, TrainingReplayQueue_lock, current);
 170   }
 171 }
 172 
 173 // For TrainingReplayQueue
 174 template<>
 175 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
 176   int pos = 0;
 177   for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
 178     ResourceMark rm;
 179     InstanceKlass* ik = cur->value();
 180     st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
 181   }
 182 }
 183 
 184 void CompilationPolicy::replay_training_at_init_loop(JavaThread* current) {
 185   while (!CompileBroker::is_compilation_disabled_forever()) {
 186     InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, current);
 187     if (ik != nullptr) {
 188       replay_training_at_init_impl(ik, current);
 189     }
 190   }
 191 }
 192 
 193 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
 194   if (comp_level == CompLevel_any) {
 195      if (CompilerConfig::is_c1_only()) {
 196        comp_level = CompLevel_simple;
 197      } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
 198        comp_level = CompLevel_full_optimization;
 199      }
 200   }
 201   return comp_level;
 202 }
 203 
 204 // Returns true if m is allowed to be compiled
 205 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
 206   // allow any levels for WhiteBox
 207   assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
 208 
 209   if (m->is_abstract()) return false;
 210   if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
 211 
 212   // Math intrinsics should never be compiled as this can lead to
 213   // monotonicity problems because the interpreter will prefer the
 214   // compiled code to the intrinsic version.  This can't happen in
 215   // production because the invocation counter can't be incremented
 216   // but we shouldn't expose the system to this problem in testing
 217   // modes.
 218   if (!AbstractInterpreter::can_be_compiled(m)) {
 219     return false;
 220   }
 221   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 222   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 223     return !m->is_not_compilable(comp_level);
 224   }
 225   return false;
 226 }
 227 
 228 // Returns true if m is allowed to be osr compiled
 229 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
 230   bool result = false;
 231   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 232   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 233     result = !m->is_not_osr_compilable(comp_level);
 234   }
 235   return (result && can_be_compiled(m, comp_level));
 236 }
 237 
 238 bool CompilationPolicy::is_compilation_enabled() {
 239   // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
 240   return CompileBroker::should_compile_new_jobs();
 241 }
 242 
 243 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
 244   // Remove unloaded methods from the queue
 245   for (CompileTask* task = compile_queue->first(); task != nullptr; ) {
 246     CompileTask* next = task->next();
 247     if (task->is_unloaded()) {
 248       compile_queue->remove_and_mark_stale(task);
 249     }
 250     task = next;
 251   }
 252 #if INCLUDE_JVMCI
 253   if (UseJVMCICompiler && !BackgroundCompilation) {
 254     /*
 255      * In blocking compilation mode, the CompileBroker will make
 256      * compilations submitted by a JVMCI compiler thread non-blocking. These
 257      * compilations should be scheduled after all blocking compilations
 258      * to service non-compiler related compilations sooner and reduce the
 259      * chance of such compilations timing out.
 260      */
 261     for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) {
 262       if (task->is_blocking()) {
 263         return task;
 264       }
 265     }
 266   }
 267 #endif
 268   return compile_queue->first();
 269 }
 270 
 271 // Simple methods are as good being compiled with C1 as C2.
 272 // Determine if a given method is such a case.
 273 bool CompilationPolicy::is_trivial(const methodHandle& method) {
 274   if (method->is_accessor() ||
 275       method->is_constant_getter()) {
 276     return true;
 277   }
 278   return false;
 279 }
 280 
 281 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
 282   if (CompilationModeFlag::quick_internal()) {
 283 #if INCLUDE_JVMCI
 284     if (UseJVMCICompiler) {
 285       AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 286       if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 287         return true;
 288       }
 289     }
 290 #endif
 291   }
 292   return false;
 293 }
 294 
 295 CompLevel CompilationPolicy::comp_level(Method* method) {
 296   nmethod *nm = method->code();
 297   if (nm != nullptr && nm->is_in_use()) {
 298     return (CompLevel)nm->comp_level();
 299   }
 300   return CompLevel_none;
 301 }
 302 
 303 // Call and loop predicates determine whether a transition to a higher
 304 // compilation level should be performed (pointers to predicate functions
 305 // are passed to common()).
 306 // Tier?LoadFeedback is basically a coefficient that determines of
 307 // how many methods per compiler thread can be in the queue before
 308 // the threshold values double.
 309 class LoopPredicate : AllStatic {
 310 public:
 311   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 312     double threshold_scaling;
 313     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 314       scale *= threshold_scaling;
 315     }
 316     switch(cur_level) {
 317     case CompLevel_none:
 318     case CompLevel_limited_profile:
 319       return b >= Tier3BackEdgeThreshold * scale;
 320     case CompLevel_full_profile:
 321       return b >= Tier4BackEdgeThreshold * scale;
 322     default:
 323       return true;
 324     }
 325   }
 326 
 327   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 328     double k = 1;
 329     switch(cur_level) {
 330     case CompLevel_none:
 331     // Fall through
 332     case CompLevel_limited_profile: {
 333       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 334       break;
 335     }
 336     case CompLevel_full_profile: {
 337       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 338       break;
 339     }
 340     default:
 341       return true;
 342     }
 343     return apply_scaled(method, cur_level, i, b, k);
 344   }
 345 };
 346 
 347 class CallPredicate : AllStatic {
 348 public:
 349   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 350     double threshold_scaling;
 351     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 352       scale *= threshold_scaling;
 353     }
 354     switch(cur_level) {
 355     case CompLevel_none:
 356     case CompLevel_limited_profile:
 357       return (i >= Tier3InvocationThreshold * scale) ||
 358              (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
 359     case CompLevel_full_profile:
 360       return (i >= Tier4InvocationThreshold * scale) ||
 361              (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
 362     default:
 363      return true;
 364     }
 365   }
 366 
 367   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 368     double k = 1;
 369     switch(cur_level) {
 370     case CompLevel_none:
 371     case CompLevel_limited_profile: {
 372       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 373       break;
 374     }
 375     case CompLevel_full_profile: {
 376       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 377       break;
 378     }
 379     default:
 380       return true;
 381     }
 382     return apply_scaled(method, cur_level, i, b, k);
 383   }
 384 };
 385 
 386 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
 387   int comp_count = compiler_count(level);
 388   if (comp_count > 0 && feedback_k > 0) {
 389     double queue_size = CompileBroker::queue_size(level);
 390     double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1;
 391 
 392     // Increase C1 compile threshold when the code cache is filled more
 393     // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 394     // The main intention is to keep enough free space for C2 compiled code
 395     // to achieve peak performance if the code cache is under stress.
 396     if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level))  {
 397       double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 398       if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 399         k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 400       }
 401     }
 402     return k;
 403   }
 404   return 1;
 405 }
 406 
 407 void CompilationPolicy::print_counters_on(outputStream* st, const char* prefix, Method* m) {
 408   int invocation_count = m->invocation_count();
 409   int backedge_count = m->backedge_count();
 410   MethodData* mdh = m->method_data();
 411   int mdo_invocations = 0, mdo_backedges = 0;
 412   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 413   if (mdh != nullptr) {
 414     mdo_invocations = mdh->invocation_count();
 415     mdo_backedges = mdh->backedge_count();
 416     mdo_invocations_start = mdh->invocation_count_start();
 417     mdo_backedges_start = mdh->backedge_count_start();
 418   }
 419   st->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 420     invocation_count, backedge_count, prefix,
 421     mdo_invocations, mdo_invocations_start,
 422     mdo_backedges, mdo_backedges_start);
 423   st->print(" %smax levels=%d,%d", prefix, m->highest_comp_level(), m->highest_osr_comp_level());
 424 }
 425 
 426 void CompilationPolicy::print_training_data_on(outputStream* st,  const char* prefix, Method* method, CompLevel cur_level) {
 427   methodHandle m(Thread::current(), method);
 428   st->print(" %smtd: ", prefix);
 429   MethodTrainingData* mtd = MethodTrainingData::find(m);
 430   if (mtd == nullptr) {
 431     st->print("null");
 432   } else {
 433     if (should_delay_standard_transition(m, cur_level, mtd)) {
 434       st->print("delayed, ");
 435     }
 436     MethodData* md = mtd->final_profile();
 437     st->print("mdo=");
 438     if (md == nullptr) {
 439       st->print("null");
 440     } else {
 441       int mdo_invocations = md->invocation_count();
 442       int mdo_backedges = md->backedge_count();
 443       int mdo_invocations_start = md->invocation_count_start();
 444       int mdo_backedges_start = md->backedge_count_start();
 445       st->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
 446     }
 447     CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
 448     st->print(", deps=");
 449     if (ctd == nullptr) {
 450       st->print("null");
 451     } else {
 452       st->print("%d", ctd->init_deps_left_acquire());
 453     }
 454   }
 455 }
 456 
 457 // Print an event.
 458 void CompilationPolicy::print_event_on(outputStream *st, EventType type, Method* m, Method* im, int bci, CompLevel level) {
 459   bool inlinee_event = m != im;
 460 
 461   st->print("%lf: [", os::elapsedTime());
 462 
 463   switch(type) {
 464   case CALL:
 465     st->print("call");
 466     break;
 467   case LOOP:
 468     st->print("loop");
 469     break;
 470   case COMPILE:
 471     st->print("compile");
 472     break;
 473   case FORCE_COMPILE:
 474     st->print("force-compile");
 475     break;
 476   case REMOVE_FROM_QUEUE:
 477     st->print("remove-from-queue");
 478     break;
 479   case UPDATE_IN_QUEUE:
 480     st->print("update-in-queue");
 481     break;
 482   case REPROFILE:
 483     st->print("reprofile");
 484     break;
 485   case MAKE_NOT_ENTRANT:
 486     st->print("make-not-entrant");
 487     break;
 488   default:
 489     st->print("unknown");
 490   }
 491 
 492   st->print(" level=%d ", level);
 493 
 494   ResourceMark rm;
 495   char *method_name = m->name_and_sig_as_C_string();
 496   st->print("[%s", method_name);
 497   if (inlinee_event) {
 498     char *inlinee_name = im->name_and_sig_as_C_string();
 499     st->print(" [%s]] ", inlinee_name);
 500   }
 501   else st->print("] ");
 502   st->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 503                                      CompileBroker::queue_size(CompLevel_full_optimization));
 504 
 505   st->print(" rate=");
 506   if (m->prev_time() == 0) st->print("n/a");
 507   else st->print("%f", m->rate());
 508 
 509   st->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 510                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 511 
 512   if (type != COMPILE) {
 513     print_counters_on(st, "", m);
 514     if (inlinee_event) {
 515       print_counters_on(st, "inlinee ", im);
 516     }
 517     st->print(" compilable=");
 518     bool need_comma = false;
 519     if (!m->is_not_compilable(CompLevel_full_profile)) {
 520       st->print("c1");
 521       need_comma = true;
 522     }
 523     if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
 524       if (need_comma) st->print(",");
 525       st->print("c1-osr");
 526       need_comma = true;
 527     }
 528     if (!m->is_not_compilable(CompLevel_full_optimization)) {
 529       if (need_comma) st->print(",");
 530       st->print("c2");
 531       need_comma = true;
 532     }
 533     if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
 534       if (need_comma) st->print(",");
 535       st->print("c2-osr");
 536     }
 537     st->print(" status=");
 538     if (m->queued_for_compilation()) {
 539       st->print("in-queue");
 540     } else st->print("idle");
 541 
 542     print_training_data_on(st, "", m, level);
 543     if (inlinee_event) {
 544       print_training_data_on(st, "inlinee ", im, level);
 545     }
 546   }
 547   st->print_cr("]");
 548 
 549 }
 550 
 551 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
 552   stringStream s;
 553   print_event_on(&s, type, m, im, bci, level);
 554   ResourceMark rm;
 555   tty->print("%s", s.as_string());
 556 }
 557 
 558 void CompilationPolicy::initialize() {
 559   if (!CompilerConfig::is_interpreter_only()) {
 560     int count = CICompilerCount;
 561     bool c1_only = CompilerConfig::is_c1_only();
 562     bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
 563     int min_count = (c1_only || c2_only) ? 1 : 2;
 564 
 565 #ifdef _LP64
 566     // Turn on ergonomic compiler count selection
 567     if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 568       FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 569     }
 570     if (CICompilerCountPerCPU) {
 571       // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 572       int log_cpu = log2i(os::active_processor_count());
 573       int loglog_cpu = log2i(MAX2(log_cpu, 1));
 574       count = MAX2(log_cpu * loglog_cpu * 3 / 2, min_count);
 575       // Make sure there is enough space in the code cache to hold all the compiler buffers
 576       size_t c1_size = 0;
 577 #ifdef COMPILER1
 578       c1_size = Compiler::code_buffer_size();
 579 #endif
 580       size_t c2_size = 0;
 581 #ifdef COMPILER2
 582       c2_size = C2Compiler::initial_code_buffer_size();
 583 #endif
 584       size_t buffer_size = 0;
 585       if (c1_only) {
 586         buffer_size = c1_size;
 587       } else if (c2_only) {
 588         buffer_size = c2_size;
 589       } else {
 590         buffer_size = c1_size / 3 + 2 * c2_size / 3;
 591       }
 592       size_t max_count = (NonNMethodCodeHeapSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / buffer_size;
 593       if ((size_t)count > max_count) {
 594         // Lower the compiler count such that all buffers fit into the code cache
 595         count = MAX2((int)max_count, min_count);
 596       }
 597       FLAG_SET_ERGO(CICompilerCount, count);
 598     }
 599 #else
 600     // On 32-bit systems, the number of compiler threads is limited to 3.
 601     // On these systems, the virtual address space available to the JVM
 602     // is usually limited to 2-4 GB (the exact value depends on the platform).
 603     // As the compilers (especially C2) can consume a large amount of
 604     // memory, scaling the number of compiler threads with the number of
 605     // available cores can result in the exhaustion of the address space
 606     /// available to the VM and thus cause the VM to crash.
 607     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 608       count = 3;
 609       FLAG_SET_ERGO(CICompilerCount, count);
 610     }
 611 #endif // _LP64
 612 
 613     if (c1_only) {
 614       // No C2 compiler threads are needed
 615       set_c1_count(count);
 616     } else if (c2_only) {
 617       // No C1 compiler threads are needed
 618       set_c2_count(count);
 619     } else {
 620 #if INCLUDE_JVMCI
 621       if (UseJVMCICompiler && UseJVMCINativeLibrary) {
 622         int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
 623         int c1_count = MAX2(count - libjvmci_count, 1);
 624         set_c2_count(libjvmci_count);
 625         set_c1_count(c1_count);
 626       } else
 627 #endif
 628       {
 629         set_c1_count(MAX2(count / 3, 1));
 630         set_c2_count(MAX2(count - c1_count(), 1));
 631       }
 632     }
 633     assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 634     set_increase_threshold_at_ratio();
 635   } else {
 636     // Interpreter mode creates no compilers
 637     FLAG_SET_ERGO(CICompilerCount, 0);
 638   }
 639   set_start_time(nanos_to_millis(os::javaTimeNanos()));
 640 }
 641 
 642 
 643 #ifdef ASSERT
 644 bool CompilationPolicy::verify_level(CompLevel level) {
 645   if (TieredCompilation && level > TieredStopAtLevel) {
 646     return false;
 647   }
 648   // Check if there is a compiler to process the requested level
 649   if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
 650     return false;
 651   }
 652   if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
 653     return false;
 654   }
 655 
 656   // Interpreter level is always valid.
 657   if (level == CompLevel_none) {
 658     return true;
 659   }
 660   if (CompilationModeFlag::normal()) {
 661     return true;
 662   } else if (CompilationModeFlag::quick_only()) {
 663     return level == CompLevel_simple;
 664   } else if (CompilationModeFlag::high_only()) {
 665     return level == CompLevel_full_optimization;
 666   } else if (CompilationModeFlag::high_only_quick_internal()) {
 667     return level == CompLevel_full_optimization || level == CompLevel_simple;
 668   }
 669   return false;
 670 }
 671 #endif
 672 
 673 
 674 CompLevel CompilationPolicy::highest_compile_level() {
 675   CompLevel level = CompLevel_none;
 676   // Setup the maximum level available for the current compiler configuration.
 677   if (!CompilerConfig::is_interpreter_only()) {
 678     if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
 679       level = CompLevel_full_optimization;
 680     } else if (CompilerConfig::is_c1_enabled()) {
 681       if (CompilerConfig::is_c1_simple_only()) {
 682         level = CompLevel_simple;
 683       } else {
 684         level = CompLevel_full_profile;
 685       }
 686     }
 687   }
 688   // Clamp the maximum level with TieredStopAtLevel.
 689   if (TieredCompilation) {
 690     level = MIN2(level, (CompLevel) TieredStopAtLevel);
 691   }
 692 
 693   // Fix it up if after the clamping it has become invalid.
 694   // Bring it monotonically down depending on the next available level for
 695   // the compilation mode.
 696   if (!CompilationModeFlag::normal()) {
 697     // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
 698     // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
 699     // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
 700     if (CompilationModeFlag::quick_only()) {
 701       if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
 702         level = CompLevel_simple;
 703       }
 704     } else if (CompilationModeFlag::high_only()) {
 705       if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 706         level = CompLevel_none;
 707       }
 708     } else if (CompilationModeFlag::high_only_quick_internal()) {
 709       if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 710         level = CompLevel_simple;
 711       }
 712     }
 713   }
 714 
 715   assert(verify_level(level), "Invalid highest compilation level: %d", level);
 716   return level;
 717 }
 718 
 719 CompLevel CompilationPolicy::limit_level(CompLevel level) {
 720   level = MIN2(level, highest_compile_level());
 721   assert(verify_level(level), "Invalid compilation level: %d", level);
 722   return level;
 723 }
 724 
 725 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
 726   CompLevel level = CompLevel_any;
 727   if (CompilationModeFlag::normal()) {
 728     level = CompLevel_full_profile;
 729   } else if (CompilationModeFlag::quick_only()) {
 730     level = CompLevel_simple;
 731   } else if (CompilationModeFlag::high_only()) {
 732     level = CompLevel_full_optimization;
 733   } else if (CompilationModeFlag::high_only_quick_internal()) {
 734     if (force_comp_at_level_simple(method)) {
 735       level = CompLevel_simple;
 736     } else {
 737       level = CompLevel_full_optimization;
 738     }
 739   }
 740   assert(level != CompLevel_any, "Unhandled compilation mode");
 741   return limit_level(level);
 742 }
 743 
 744 // Set carry flags on the counters if necessary
 745 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) {
 746   MethodCounters *mcs = method->method_counters();
 747   if (mcs != nullptr) {
 748     mcs->invocation_counter()->set_carry_on_overflow();
 749     mcs->backedge_counter()->set_carry_on_overflow();
 750   }
 751   MethodData* mdo = method->method_data();
 752   if (mdo != nullptr) {
 753     mdo->invocation_counter()->set_carry_on_overflow();
 754     mdo->backedge_counter()->set_carry_on_overflow();
 755   }
 756 }
 757 
 758 // Called with the queue locked and with at least one element
 759 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
 760   CompileTask *max_blocking_task = nullptr;
 761   CompileTask *max_task = nullptr;
 762   Method* max_method = nullptr;
 763 
 764   int64_t t = nanos_to_millis(os::javaTimeNanos());
 765   // Iterate through the queue and find a method with a maximum rate.
 766   for (CompileTask* task = compile_queue->first(); task != nullptr;) {
 767     CompileTask* next_task = task->next();
 768     // If a method was unloaded or has been stale for some time, remove it from the queue.
 769     // Blocking tasks and tasks submitted from whitebox API don't become stale
 770     if (task->is_unloaded()) {
 771       compile_queue->remove_and_mark_stale(task);
 772       task = next_task;
 773       continue;
 774     }
 775     if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) {
 776       // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate
 777       // selection and/or any level adjustments. Just return them in order.
 778       return task;
 779     }
 780     Method* method = task->method();
 781     methodHandle mh(THREAD, method);
 782     if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
 783       if (PrintTieredEvents) {
 784         print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 785       }
 786       method->clear_queued_for_compilation();
 787       compile_queue->remove_and_mark_stale(task);
 788       task = next_task;
 789       continue;
 790     }
 791     update_rate(t, mh);
 792     if (max_task == nullptr || compare_methods(method, max_method)) {
 793       // Select a method with the highest rate
 794       max_task = task;
 795       max_method = method;
 796     }
 797 
 798     if (task->is_blocking()) {
 799       if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) {
 800         max_blocking_task = task;
 801       }
 802     }
 803 
 804     task = next_task;
 805   }
 806 
 807   if (max_blocking_task != nullptr) {
 808     // In blocking compilation mode, the CompileBroker will make
 809     // compilations submitted by a JVMCI compiler thread non-blocking. These
 810     // compilations should be scheduled after all blocking compilations
 811     // to service non-compiler related compilations sooner and reduce the
 812     // chance of such compilations timing out.
 813     max_task = max_blocking_task;
 814     max_method = max_task->method();
 815   }
 816 
 817   methodHandle max_method_h(THREAD, max_method);
 818 
 819   if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
 820       max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
 821     max_task->set_comp_level(CompLevel_limited_profile);
 822 
 823     if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) {
 824       if (PrintTieredEvents) {
 825         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 826       }
 827       compile_queue->remove_and_mark_stale(max_task);
 828       max_method->clear_queued_for_compilation();
 829       return nullptr;
 830     }
 831 
 832     if (PrintTieredEvents) {
 833       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 834     }
 835   }
 836   return max_task;
 837 }
 838 
 839 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 840   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 841     if (PrintTieredEvents) {
 842       print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
 843     }
 844     MethodData* mdo = sd->method()->method_data();
 845     if (mdo != nullptr) {
 846       mdo->reset_start_counters();
 847     }
 848     if (sd->is_top()) break;
 849   }
 850 }
 851 
 852 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 853                                       int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
 854   if (PrintTieredEvents) {
 855     print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
 856   }
 857 
 858   if (comp_level == CompLevel_none &&
 859       JvmtiExport::can_post_interpreter_events() &&
 860       THREAD->is_interp_only_mode()) {
 861     return nullptr;
 862   }
 863   if (ReplayCompiles) {
 864     // Don't trigger other compiles in testing mode
 865     return nullptr;
 866   }
 867 
 868   handle_counter_overflow(method);
 869   if (method() != inlinee()) {
 870     handle_counter_overflow(inlinee);
 871   }
 872 
 873   if (bci == InvocationEntryBci) {
 874     method_invocation_event(method, inlinee, comp_level, nm, THREAD);
 875   } else {
 876     // method == inlinee if the event originated in the main method
 877     method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
 878     // Check if event led to a higher level OSR compilation
 879     CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
 880     if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
 881       // It's not possible to reach the expected level so fall back to simple.
 882       expected_comp_level = CompLevel_simple;
 883     }
 884     CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
 885     if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
 886       nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 887       assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 888       if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) {
 889         // Perform OSR with new nmethod
 890         return osr_nm;
 891       }
 892     }
 893   }
 894   return nullptr;
 895 }
 896 
 897 // Check if the method can be compiled, change level if necessary
 898 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
 899   assert(verify_level(level), "Invalid compilation level requested: %d", level);
 900 
 901   if (level == CompLevel_none) {
 902     if (mh->has_compiled_code()) {
 903       // Happens when we switch to interpreter to profile.
 904       MutexLocker ml(Compile_lock);
 905       NoSafepointVerifier nsv;
 906       if (mh->has_compiled_code()) {
 907         mh->code()->make_not_used();
 908       }
 909       // Deoptimize immediately (we don't have to wait for a compile).
 910       JavaThread* jt = THREAD;
 911       RegisterMap map(jt,
 912                       RegisterMap::UpdateMap::skip,
 913                       RegisterMap::ProcessFrames::include,
 914                       RegisterMap::WalkContinuation::skip);
 915       frame fr = jt->last_frame().sender(&map);
 916       Deoptimization::deoptimize_frame(jt, fr.id());
 917     }
 918     return;
 919   }
 920 
 921   // Check if the method can be compiled. Additional logic for TieredCompilation:
 922   // If it cannot be compiled with C1, continue profiling in the interpreter
 923   // and then compile with C2 (the transition function will request that,
 924   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 925   // pure C1.
 926   if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 927     if (!CompilationModeFlag::disable_intermediate() &&
 928         level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 929       compile(mh, bci, CompLevel_simple, THREAD);
 930     }
 931     return;
 932   }
 933   if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 934     if (!CompilationModeFlag::disable_intermediate() &&
 935         level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 936       nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
 937       if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) {
 938         // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
 939         osr_nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_FOR_COMPILING_WITH_C1);
 940       }
 941       compile(mh, bci, CompLevel_simple, THREAD);
 942     }
 943     return;
 944   }
 945   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
 946     return;
 947   }
 948   if (!CompileBroker::compilation_is_in_queue(mh)) {
 949     if (PrintTieredEvents) {
 950       print_event(COMPILE, mh(), mh(), bci, level);
 951     }
 952     int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 953     update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
 954     CompileBroker::compile_method(mh, bci, level, hot_count, CompileTask::Reason_Tiered, THREAD);
 955   }
 956 }
 957 
 958 // update_rate() is called from select_task() while holding a compile queue lock.
 959 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
 960   // Skip update if counters are absent.
 961   // Can't allocate them since we are holding compile queue lock.
 962   if (method->method_counters() == nullptr)  return;
 963 
 964   if (is_old(method)) {
 965     // We don't remove old methods from the queue,
 966     // so we can just zero the rate.
 967     method->set_rate(0);
 968     return;
 969   }
 970 
 971   // We don't update the rate if we've just came out of a safepoint.
 972   // delta_s is the time since last safepoint in milliseconds.
 973   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
 974   int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
 975   // How many events were there since the last time?
 976   int event_count = method->invocation_count() + method->backedge_count();
 977   int delta_e = event_count - method->prev_event_count();
 978 
 979   // We should be running for at least 1ms.
 980   if (delta_s >= TieredRateUpdateMinTime) {
 981     // And we must've taken the previous point at least 1ms before.
 982     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 983       method->set_prev_time(t);
 984       method->set_prev_event_count(event_count);
 985       method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 986     } else {
 987       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 988         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 989         method->set_rate(0);
 990       }
 991     }
 992   }
 993 }
 994 
 995 // Check if this method has been stale for a given number of milliseconds.
 996 // See select_task().
 997 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
 998   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
 999   int64_t delta_t = t - method->prev_time();
1000   if (delta_t > timeout && delta_s > timeout) {
1001     int event_count = method->invocation_count() + method->backedge_count();
1002     int delta_e = event_count - method->prev_event_count();
1003     // Return true if there were no events.
1004     return delta_e == 0;
1005   }
1006   return false;
1007 }
1008 
1009 // We don't remove old methods from the compile queue even if they have
1010 // very low activity. See select_task().
1011 bool CompilationPolicy::is_old(const methodHandle& method) {
1012   int i = method->invocation_count();
1013   int b = method->backedge_count();
1014   double k = TieredOldPercentage / 100.0;
1015 
1016   return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1017 }
1018 
1019 double CompilationPolicy::weight(Method* method) {
1020   return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1);
1021 }
1022 
1023 // Apply heuristics and return true if x should be compiled before y
1024 bool CompilationPolicy::compare_methods(Method* x, Method* y) {
1025   if (x->highest_comp_level() > y->highest_comp_level()) {
1026     // recompilation after deopt
1027     return true;
1028   } else
1029     if (x->highest_comp_level() == y->highest_comp_level()) {
1030       if (weight(x) > weight(y)) {
1031         return true;
1032       }
1033     }
1034   return false;
1035 }
1036 
1037 // Is method profiled enough?
1038 bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
1039   MethodData* mdo = method->method_data();
1040   if (mdo != nullptr) {
1041     int i = mdo->invocation_count_delta();
1042     int b = mdo->backedge_count_delta();
1043     return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
1044   }
1045   return false;
1046 }
1047 
1048 
1049 // Determine is a method is mature.
1050 bool CompilationPolicy::is_mature(MethodData* mdo) {
1051   if (Arguments::is_compiler_only()) {
1052     // Always report profiles as immature with -Xcomp
1053     return false;
1054   }
1055   methodHandle mh(Thread::current(), mdo->method());
1056   if (mdo != nullptr) {
1057     int i = mdo->invocation_count();
1058     int b = mdo->backedge_count();
1059     double k = ProfileMaturityPercentage / 100.0;
1060     return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
1061   }
1062   return false;
1063 }
1064 
1065 // If a method is old enough and is still in the interpreter we would want to
1066 // start profiling without waiting for the compiled method to arrive.
1067 // We also take the load on compilers into the account.
1068 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
1069   if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
1070     return false;
1071   }
1072 
1073   if (TrainingData::have_data()) {
1074     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1075     if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
1076       return true;
1077     }
1078   }
1079 
1080   if (is_old(method)) {
1081     return true;
1082   }
1083 
1084   int i = method->invocation_count();
1085   int b = method->backedge_count();
1086   double k = Tier0ProfilingStartPercentage / 100.0;
1087 
1088   // If the top level compiler is not keeping up, delay profiling.
1089   if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
1090     return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1091   }
1092   return false;
1093 }
1094 
1095 // Inlining control: if we're compiling a profiled method with C1 and the callee
1096 // is known to have OSRed in a C2 version, don't inline it.
1097 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
1098   CompLevel comp_level = (CompLevel)env->comp_level();
1099   if (comp_level == CompLevel_full_profile ||
1100       comp_level == CompLevel_limited_profile) {
1101     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
1102   }
1103   return false;
1104 }
1105 
1106 // Create MDO if necessary.
1107 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
1108   if (mh->is_native() ||
1109       mh->is_abstract() ||
1110       mh->is_accessor() ||
1111       mh->is_constant_getter()) {
1112     return;
1113   }
1114   if (mh->method_data() == nullptr) {
1115     Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
1116   }
1117   if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
1118     MethodData* mdo = mh->method_data();
1119     if (mdo != nullptr) {
1120       frame last_frame = THREAD->last_frame();
1121       if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
1122         int bci = last_frame.interpreter_frame_bci();
1123         address dp = mdo->bci_to_dp(bci);
1124         last_frame.interpreter_frame_set_mdp(dp);
1125       }
1126     }
1127   }
1128 }
1129 
1130 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1131   precond(mtd != nullptr);
1132   precond(cur_level == CompLevel_none);
1133 
1134   if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
1135     return CompLevel_none;
1136   }
1137 
1138   bool training_has_profile = (mtd->final_profile() != nullptr);
1139   if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
1140     return CompLevel_full_profile;
1141   }
1142 
1143   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1144   switch (highest_training_level) {
1145     case CompLevel_limited_profile:
1146     case CompLevel_full_profile:
1147       return CompLevel_limited_profile;
1148     case CompLevel_simple:
1149       return CompLevel_simple;
1150     case CompLevel_none:
1151       return CompLevel_none;
1152     default:
1153       break;
1154   }
1155 
1156   // Now handle the case of level 4.
1157   assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
1158   if (!training_has_profile) {
1159     // The method was a part of a level 4 compile, but doesn't have a stored profile,
1160     // we need to profile it.
1161     return CompLevel_full_profile;
1162   }
1163   const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
1164   // If we deopted, then we reprofile
1165   if (deopt && !is_method_profiled(method)) {
1166     return CompLevel_full_profile;
1167   }
1168 
1169   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1170   assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
1171   // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
1172   if (SkipTier2IfPossible && ctd->init_deps_left_acquire() == 0) {
1173     if (method->method_data() == nullptr) {
1174       create_mdo(method, THREAD);
1175     }
1176     return CompLevel_full_optimization;
1177   }
1178 
1179   // Otherwise go to level 2
1180   return CompLevel_limited_profile;
1181 }
1182 
1183 
1184 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1185   precond(mtd != nullptr);
1186   precond(cur_level == CompLevel_limited_profile);
1187 
1188   // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
1189 
1190   // But first, check if we have a saved profile
1191   bool training_has_profile = (mtd->final_profile() != nullptr);
1192   if (!training_has_profile) {
1193     return CompLevel_full_profile;
1194   }
1195 
1196 
1197   assert(training_has_profile, "Have to have a profile to be here");
1198   // Check if the method is ready
1199   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1200   if (ctd != nullptr && ctd->init_deps_left_acquire() == 0) {
1201     if (method->method_data() == nullptr) {
1202       create_mdo(method, THREAD);
1203     }
1204     return CompLevel_full_optimization;
1205   }
1206 
1207   // Otherwise stay at the current level
1208   return CompLevel_limited_profile;
1209 }
1210 
1211 
1212 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1213   precond(mtd != nullptr);
1214   precond(cur_level == CompLevel_full_profile);
1215 
1216   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1217   // We have method at the full profile level and we also know that it's possibly an important method.
1218   if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
1219     // Check if it is adequately profiled
1220     if (is_method_profiled(method)) {
1221       return CompLevel_full_optimization;
1222     }
1223   }
1224 
1225   // Otherwise stay at the current level
1226   return CompLevel_full_profile;
1227 }
1228 
1229 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1230   precond(MethodTrainingData::have_data());
1231 
1232   // If there is no training data recorded for this method, bail out.
1233   if (mtd == nullptr) {
1234     return cur_level;
1235   }
1236 
1237   CompLevel next_level = cur_level;
1238   switch(cur_level) {
1239     default: break;
1240     case CompLevel_none:
1241       next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
1242       break;
1243     case CompLevel_limited_profile:
1244       next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
1245       break;
1246     case CompLevel_full_profile:
1247       next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
1248       break;
1249   }
1250 
1251   // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
1252   if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
1253     return CompLevel_none;
1254   }
1255   if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
1256     return CompLevel_none;
1257   }
1258   return (cur_level != next_level) ? limit_level(next_level) : cur_level;
1259 }
1260 
1261 /*
1262  * Method states:
1263  *   0 - interpreter (CompLevel_none)
1264  *   1 - pure C1 (CompLevel_simple)
1265  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
1266  *   3 - C1 with full profiling (CompLevel_full_profile)
1267  *   4 - C2 or Graal (CompLevel_full_optimization)
1268  *
1269  * Common state transition patterns:
1270  * a. 0 -> 3 -> 4.
1271  *    The most common path. But note that even in this straightforward case
1272  *    profiling can start at level 0 and finish at level 3.
1273  *
1274  * b. 0 -> 2 -> 3 -> 4.
1275  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
1276  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
1277  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
1278  *
1279  * c. 0 -> (3->2) -> 4.
1280  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
1281  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
1282  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
1283  *    without full profiling while c2 is compiling.
1284  *
1285  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
1286  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
1287  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
1288  *
1289  * e. 0 -> 4.
1290  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
1291  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
1292  *    the compiled version already exists).
1293  *
1294  * Note that since state 0 can be reached from any other state via deoptimization different loops
1295  * are possible.
1296  *
1297  */
1298 
1299 // Common transition function. Given a predicate determines if a method should transition to another level.
1300 template<typename Predicate>
1301 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
1302   CompLevel next_level = cur_level;
1303 
1304   if (force_comp_at_level_simple(method)) {
1305     next_level = CompLevel_simple;
1306   } else if (is_trivial(method) || method->is_native()) {
1307     // We do not care if there is profiling data for these methods, throw them to compiler.
1308     next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
1309   } else if (MethodTrainingData::have_data()) {
1310     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1311     if (mtd == nullptr) {
1312       // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
1313       // Feed it to the standard TF with no profiling delay.
1314       next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1315     } else {
1316       next_level = trained_transition(method, cur_level, mtd, THREAD);
1317       if (cur_level == next_level && !should_delay_standard_transition(method, cur_level, mtd)) {
1318         // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
1319         // In order to catch possible pathologies due to behavior change we feed the event to the regular
1320         // TF but with profiling delay.
1321         next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1322       }
1323     }
1324   } else {
1325     next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1326   }
1327   return (next_level != cur_level) ? limit_level(next_level) : next_level;
1328 }
1329 
1330 bool CompilationPolicy::should_delay_standard_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd) {
1331   precond(mtd != nullptr);
1332   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1333   if (highest_training_level != CompLevel_full_optimization && cur_level == CompLevel_limited_profile) {
1334     // This is a lukewarm method - it hasn't been compiled with C2 during the tranining run and is currently
1335     // running at level 2. Delay any further state changes until its counters exceed the training run counts.
1336     MethodCounters* mc = method->method_counters();
1337     if (mc == nullptr) {
1338       return false;
1339     }
1340     if (mc->invocation_counter()->carry() || mc->backedge_counter()->carry()) {
1341       return false;
1342     }
1343     if (static_cast<int>(mc->invocation_counter()->count()) <= mtd->invocation_count() &&
1344         static_cast<int>(mc->backedge_counter()->count()) <= mtd->backedge_count()) {
1345       return true;
1346     }
1347   }
1348   return false;
1349 }
1350 
1351 template<typename Predicate>
1352 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1353   CompLevel next_level = cur_level;
1354   switch(cur_level) {
1355   default: break;
1356   case CompLevel_none:
1357     next_level = transition_from_none<Predicate>(method, cur_level, disable_feedback);
1358     break;
1359   case CompLevel_limited_profile:
1360     next_level = transition_from_limited_profile<Predicate>(method, cur_level, disable_feedback);
1361     break;
1362   case CompLevel_full_profile:
1363     next_level = transition_from_full_profile<Predicate>(method, cur_level);
1364     break;
1365   }
1366   return next_level;
1367 }
1368 
1369 template<typename Predicate>
1370 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1371   precond(cur_level == CompLevel_none);
1372   CompLevel next_level = cur_level;
1373   int i = method->invocation_count();
1374   int b = method->backedge_count();
1375   // If we were at full profile level, would we switch to full opt?
1376   if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
1377     next_level = CompLevel_full_optimization;
1378   } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply(method, cur_level, i, b)) {
1379     // C1-generated fully profiled code is about 30% slower than the limited profile
1380     // code that has only invocation and backedge counters. The observation is that
1381     // if C2 queue is large enough we can spend too much time in the fully profiled code
1382     // while waiting for C2 to pick the method from the queue. To alleviate this problem
1383     // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
1384     // we choose to compile a limited profiled version and then recompile with full profiling
1385     // when the load on C2 goes down.
1386     if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
1387       next_level = CompLevel_limited_profile;
1388     } else {
1389       next_level = CompLevel_full_profile;
1390     }
1391   }
1392   return next_level;
1393 }
1394 
1395 template<typename Predicate>
1396 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
1397   precond(cur_level == CompLevel_full_profile);
1398   CompLevel next_level = cur_level;
1399   MethodData* mdo = method->method_data();
1400   if (mdo != nullptr) {
1401     if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
1402       int mdo_i = mdo->invocation_count_delta();
1403       int mdo_b = mdo->backedge_count_delta();
1404       if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
1405         next_level = CompLevel_full_optimization;
1406       }
1407     } else {
1408       next_level = CompLevel_full_optimization;
1409     }
1410   }
1411   return next_level;
1412 }
1413 
1414 template<typename Predicate>
1415 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1416   precond(cur_level == CompLevel_limited_profile);
1417   CompLevel next_level = cur_level;
1418   int i = method->invocation_count();
1419   int b = method->backedge_count();
1420   MethodData* mdo = method->method_data();
1421   if (mdo != nullptr) {
1422     if (mdo->would_profile()) {
1423       if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1424                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1425                               Predicate::apply(method, cur_level, i, b))) {
1426         next_level = CompLevel_full_profile;
1427       }
1428     } else {
1429       next_level = CompLevel_full_optimization;
1430     }
1431   } else {
1432     // If there is no MDO we need to profile
1433     if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1434                             Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1435                             Predicate::apply(method, cur_level, i, b))) {
1436       next_level = CompLevel_full_profile;
1437     }
1438   }
1439   if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
1440     next_level = CompLevel_full_optimization;
1441   }
1442   return next_level;
1443 }
1444 
1445 
1446 // Determine if a method should be compiled with a normal entry point at a different level.
1447 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1448   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
1449   CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
1450 
1451   // If OSR method level is greater than the regular method level, the levels should be
1452   // equalized by raising the regular method level in order to avoid OSRs during each
1453   // invocation of the method.
1454   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
1455     MethodData* mdo = method->method_data();
1456     guarantee(mdo != nullptr, "MDO should not be nullptr");
1457     if (mdo->invocation_count() >= 1) {
1458       next_level = CompLevel_full_optimization;
1459     }
1460   } else {
1461     next_level = MAX2(osr_level, next_level);
1462   }
1463 
1464   return next_level;
1465 }
1466 
1467 // Determine if we should do an OSR compilation of a given method.
1468 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1469   CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
1470   if (cur_level == CompLevel_none) {
1471     // If there is a live OSR method that means that we deopted to the interpreter
1472     // for the transition.
1473     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
1474     if (osr_level > CompLevel_none) {
1475       return osr_level;
1476     }
1477   }
1478   return next_level;
1479 }
1480 
1481 // Handle the invocation event.
1482 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
1483                                                       CompLevel level, nmethod* nm, TRAPS) {
1484   if (should_create_mdo(mh, level)) {
1485     create_mdo(mh, THREAD);
1486   }
1487   CompLevel next_level = call_event(mh, level, THREAD);
1488   if (next_level != level) {
1489     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
1490       compile(mh, InvocationEntryBci, next_level, THREAD);
1491     }
1492   }
1493 }
1494 
1495 // Handle the back branch event. Notice that we can compile the method
1496 // with a regular entry from here.
1497 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
1498                                                      int bci, CompLevel level, nmethod* nm, TRAPS) {
1499   if (should_create_mdo(mh, level)) {
1500     create_mdo(mh, THREAD);
1501   }
1502   // Check if MDO should be created for the inlined method
1503   if (should_create_mdo(imh, level)) {
1504     create_mdo(imh, THREAD);
1505   }
1506 
1507   if (is_compilation_enabled()) {
1508     CompLevel next_osr_level = loop_event(imh, level, THREAD);
1509     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
1510     // At the very least compile the OSR version
1511     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
1512       compile(imh, bci, next_osr_level, CHECK);
1513     }
1514 
1515     // Use loop event as an opportunity to also check if there's been
1516     // enough calls.
1517     CompLevel cur_level, next_level;
1518     if (mh() != imh()) { // If there is an enclosing method
1519       {
1520         guarantee(nm != nullptr, "Should have nmethod here");
1521         cur_level = comp_level(mh());
1522         next_level = call_event(mh, cur_level, THREAD);
1523 
1524         if (max_osr_level == CompLevel_full_optimization) {
1525           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
1526           bool make_not_entrant = false;
1527           if (nm->is_osr_method()) {
1528             // This is an osr method, just make it not entrant and recompile later if needed
1529             make_not_entrant = true;
1530           } else {
1531             if (next_level != CompLevel_full_optimization) {
1532               // next_level is not full opt, so we need to recompile the
1533               // enclosing method without the inlinee
1534               cur_level = CompLevel_none;
1535               make_not_entrant = true;
1536             }
1537           }
1538           if (make_not_entrant) {
1539             if (PrintTieredEvents) {
1540               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
1541               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
1542             }
1543             nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_BACK_BRANCH);
1544           }
1545         }
1546         // Fix up next_level if necessary to avoid deopts
1547         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
1548           next_level = CompLevel_full_profile;
1549         }
1550         if (cur_level != next_level) {
1551           if (!CompileBroker::compilation_is_in_queue(mh)) {
1552             compile(mh, InvocationEntryBci, next_level, THREAD);
1553           }
1554         }
1555       }
1556     } else {
1557       cur_level = comp_level(mh());
1558       next_level = call_event(mh, cur_level, THREAD);
1559       if (next_level != cur_level) {
1560         if (!CompileBroker::compilation_is_in_queue(mh)) {
1561           compile(mh, InvocationEntryBci, next_level, THREAD);
1562         }
1563       }
1564     }
1565   }
1566 }
1567