1 /* 2 * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "code/scopeDesc.hpp" 26 #include "compiler/compilationPolicy.hpp" 27 #include "compiler/compileBroker.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "compiler/compilerOracle.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "oops/methodData.hpp" 32 #include "oops/method.inline.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/jvmtiExport.hpp" 35 #include "runtime/arguments.hpp" 36 #include "runtime/deoptimization.hpp" 37 #include "runtime/frame.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals_extension.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/safepoint.hpp" 42 #include "runtime/safepointVerifiers.hpp" 43 #ifdef COMPILER1 44 #include "c1/c1_Compiler.hpp" 45 #endif 46 #ifdef COMPILER2 47 #include "opto/c2compiler.hpp" 48 #endif 49 #if INCLUDE_JVMCI 50 #include "jvmci/jvmci.hpp" 51 #endif 52 53 jlong CompilationPolicy::_start_time = 0; 54 int CompilationPolicy::_c1_count = 0; 55 int CompilationPolicy::_c2_count = 0; 56 double CompilationPolicy::_increase_threshold_at_ratio = 0; 57 58 void compilationPolicy_init() { 59 CompilationPolicy::initialize(); 60 } 61 62 int CompilationPolicy::compiler_count(CompLevel comp_level) { 63 if (is_c1_compile(comp_level)) { 64 return c1_count(); 65 } else if (is_c2_compile(comp_level)) { 66 return c2_count(); 67 } 68 return 0; 69 } 70 71 // Returns true if m must be compiled before executing it 72 // This is intended to force compiles for methods (usually for 73 // debugging) that would otherwise be interpreted for some reason. 74 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 75 // Don't allow Xcomp to cause compiles in replay mode 76 if (ReplayCompiles) return false; 77 78 if (m->has_compiled_code()) return false; // already compiled 79 if (!can_be_compiled(m, comp_level)) return false; 80 81 return !UseInterpreter || // must compile all methods 82 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 83 } 84 85 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 86 if (must_be_compiled(m)) { 87 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 88 89 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 90 // don't force compilation, resolve was on behalf of compiler 91 return; 92 } 93 if (m->method_holder()->is_not_initialized()) { 94 // 'is_not_initialized' means not only '!is_initialized', but also that 95 // initialization has not been started yet ('!being_initialized') 96 // Do not force compilation of methods in uninitialized classes. 97 // Note that doing this would throw an assert later, 98 // in CompileBroker::compile_method. 99 // We sometimes use the link resolver to do reflective lookups 100 // even before classes are initialized. 101 return; 102 } 103 CompLevel level = initial_compile_level(m); 104 if (PrintTieredEvents) { 105 print_event(COMPILE, m(), m(), InvocationEntryBci, level); 106 } 107 CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, CompileTask::Reason_MustBeCompiled, THREAD); 108 } 109 } 110 111 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 112 if (comp_level == CompLevel_any) { 113 if (CompilerConfig::is_c1_only()) { 114 comp_level = CompLevel_simple; 115 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 116 comp_level = CompLevel_full_optimization; 117 } 118 } 119 return comp_level; 120 } 121 122 // Returns true if m is allowed to be compiled 123 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 124 // allow any levels for WhiteBox 125 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level"); 126 127 if (m->is_abstract()) return false; 128 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 129 130 // Math intrinsics should never be compiled as this can lead to 131 // monotonicity problems because the interpreter will prefer the 132 // compiled code to the intrinsic version. This can't happen in 133 // production because the invocation counter can't be incremented 134 // but we shouldn't expose the system to this problem in testing 135 // modes. 136 if (!AbstractInterpreter::can_be_compiled(m)) { 137 return false; 138 } 139 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 140 if (comp_level == CompLevel_any || is_compile(comp_level)) { 141 return !m->is_not_compilable(comp_level); 142 } 143 return false; 144 } 145 146 // Returns true if m is allowed to be osr compiled 147 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 148 bool result = false; 149 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 150 if (comp_level == CompLevel_any || is_compile(comp_level)) { 151 result = !m->is_not_osr_compilable(comp_level); 152 } 153 return (result && can_be_compiled(m, comp_level)); 154 } 155 156 bool CompilationPolicy::is_compilation_enabled() { 157 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 158 return CompileBroker::should_compile_new_jobs(); 159 } 160 161 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 162 // Remove unloaded methods from the queue 163 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 164 CompileTask* next = task->next(); 165 if (task->is_unloaded()) { 166 compile_queue->remove_and_mark_stale(task); 167 } 168 task = next; 169 } 170 #if INCLUDE_JVMCI 171 if (UseJVMCICompiler && !BackgroundCompilation) { 172 /* 173 * In blocking compilation mode, the CompileBroker will make 174 * compilations submitted by a JVMCI compiler thread non-blocking. These 175 * compilations should be scheduled after all blocking compilations 176 * to service non-compiler related compilations sooner and reduce the 177 * chance of such compilations timing out. 178 */ 179 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 180 if (task->is_blocking()) { 181 return task; 182 } 183 } 184 } 185 #endif 186 return compile_queue->first(); 187 } 188 189 // Simple methods are as good being compiled with C1 as C2. 190 // Determine if a given method is such a case. 191 bool CompilationPolicy::is_trivial(const methodHandle& method) { 192 if (method->is_accessor() || 193 method->is_constant_getter()) { 194 return true; 195 } 196 return false; 197 } 198 199 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 200 if (CompilationModeFlag::quick_internal()) { 201 #if INCLUDE_JVMCI 202 if (UseJVMCICompiler) { 203 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 204 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 205 return true; 206 } 207 } 208 #endif 209 } 210 return false; 211 } 212 213 CompLevel CompilationPolicy::comp_level(Method* method) { 214 nmethod *nm = method->code(); 215 if (nm != nullptr && nm->is_in_use()) { 216 return (CompLevel)nm->comp_level(); 217 } 218 return CompLevel_none; 219 } 220 221 // Call and loop predicates determine whether a transition to a higher 222 // compilation level should be performed (pointers to predicate functions 223 // are passed to common()). 224 // Tier?LoadFeedback is basically a coefficient that determines of 225 // how many methods per compiler thread can be in the queue before 226 // the threshold values double. 227 class LoopPredicate : AllStatic { 228 public: 229 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 230 double threshold_scaling; 231 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 232 scale *= threshold_scaling; 233 } 234 switch(cur_level) { 235 case CompLevel_none: 236 case CompLevel_limited_profile: 237 return b >= Tier3BackEdgeThreshold * scale; 238 case CompLevel_full_profile: 239 return b >= Tier4BackEdgeThreshold * scale; 240 default: 241 return true; 242 } 243 } 244 245 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 246 double k = 1; 247 switch(cur_level) { 248 case CompLevel_none: 249 // Fall through 250 case CompLevel_limited_profile: { 251 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 252 break; 253 } 254 case CompLevel_full_profile: { 255 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 256 break; 257 } 258 default: 259 return true; 260 } 261 return apply_scaled(method, cur_level, i, b, k); 262 } 263 }; 264 265 class CallPredicate : AllStatic { 266 public: 267 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 268 double threshold_scaling; 269 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 270 scale *= threshold_scaling; 271 } 272 switch(cur_level) { 273 case CompLevel_none: 274 case CompLevel_limited_profile: 275 return (i >= Tier3InvocationThreshold * scale) || 276 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 277 case CompLevel_full_profile: 278 return (i >= Tier4InvocationThreshold * scale) || 279 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 280 default: 281 return true; 282 } 283 } 284 285 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 286 double k = 1; 287 switch(cur_level) { 288 case CompLevel_none: 289 case CompLevel_limited_profile: { 290 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 291 break; 292 } 293 case CompLevel_full_profile: { 294 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 295 break; 296 } 297 default: 298 return true; 299 } 300 return apply_scaled(method, cur_level, i, b, k); 301 } 302 }; 303 304 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 305 int comp_count = compiler_count(level); 306 if (comp_count > 0) { 307 double queue_size = CompileBroker::queue_size(level); 308 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 309 310 // Increase C1 compile threshold when the code cache is filled more 311 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 312 // The main intention is to keep enough free space for C2 compiled code 313 // to achieve peak performance if the code cache is under stress. 314 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 315 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 316 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 317 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 318 } 319 } 320 return k; 321 } 322 return 1; 323 } 324 325 void CompilationPolicy::print_counters(const char* prefix, const Method* m) { 326 int invocation_count = m->invocation_count(); 327 int backedge_count = m->backedge_count(); 328 MethodData* mdh = m->method_data(); 329 int mdo_invocations = 0, mdo_backedges = 0; 330 int mdo_invocations_start = 0, mdo_backedges_start = 0; 331 if (mdh != nullptr) { 332 mdo_invocations = mdh->invocation_count(); 333 mdo_backedges = mdh->backedge_count(); 334 mdo_invocations_start = mdh->invocation_count_start(); 335 mdo_backedges_start = mdh->backedge_count_start(); 336 } 337 tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 338 invocation_count, backedge_count, prefix, 339 mdo_invocations, mdo_invocations_start, 340 mdo_backedges, mdo_backedges_start); 341 tty->print(" %smax levels=%d,%d", prefix, 342 m->highest_comp_level(), m->highest_osr_comp_level()); 343 } 344 345 // Print an event. 346 void CompilationPolicy::print_event(EventType type, const Method* m, const Method* im, int bci, CompLevel level) { 347 bool inlinee_event = m != im; 348 349 ttyLocker tty_lock; 350 tty->print("%lf: [", os::elapsedTime()); 351 352 switch(type) { 353 case CALL: 354 tty->print("call"); 355 break; 356 case LOOP: 357 tty->print("loop"); 358 break; 359 case COMPILE: 360 tty->print("compile"); 361 break; 362 case REMOVE_FROM_QUEUE: 363 tty->print("remove-from-queue"); 364 break; 365 case UPDATE_IN_QUEUE: 366 tty->print("update-in-queue"); 367 break; 368 case REPROFILE: 369 tty->print("reprofile"); 370 break; 371 case MAKE_NOT_ENTRANT: 372 tty->print("make-not-entrant"); 373 break; 374 default: 375 tty->print("unknown"); 376 } 377 378 tty->print(" level=%d ", level); 379 380 ResourceMark rm; 381 char *method_name = m->name_and_sig_as_C_string(); 382 tty->print("[%s", method_name); 383 if (inlinee_event) { 384 char *inlinee_name = im->name_and_sig_as_C_string(); 385 tty->print(" [%s]] ", inlinee_name); 386 } 387 else tty->print("] "); 388 tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 389 CompileBroker::queue_size(CompLevel_full_optimization)); 390 391 tty->print(" rate="); 392 if (m->prev_time() == 0) tty->print("n/a"); 393 else tty->print("%f", m->rate()); 394 395 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 396 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 397 398 if (type != COMPILE) { 399 print_counters("", m); 400 if (inlinee_event) { 401 print_counters("inlinee ", im); 402 } 403 tty->print(" compilable="); 404 bool need_comma = false; 405 if (!m->is_not_compilable(CompLevel_full_profile)) { 406 tty->print("c1"); 407 need_comma = true; 408 } 409 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 410 if (need_comma) tty->print(","); 411 tty->print("c1-osr"); 412 need_comma = true; 413 } 414 if (!m->is_not_compilable(CompLevel_full_optimization)) { 415 if (need_comma) tty->print(","); 416 tty->print("c2"); 417 need_comma = true; 418 } 419 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 420 if (need_comma) tty->print(","); 421 tty->print("c2-osr"); 422 } 423 tty->print(" status="); 424 if (m->queued_for_compilation()) { 425 tty->print("in-queue"); 426 } else tty->print("idle"); 427 } 428 tty->print_cr("]"); 429 } 430 431 void CompilationPolicy::initialize() { 432 if (!CompilerConfig::is_interpreter_only()) { 433 int count = CICompilerCount; 434 bool c1_only = CompilerConfig::is_c1_only(); 435 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 436 437 #ifdef _LP64 438 // Turn on ergonomic compiler count selection 439 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 440 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 441 } 442 if (CICompilerCountPerCPU) { 443 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 444 int log_cpu = log2i(os::active_processor_count()); 445 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 446 count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); 447 // Make sure there is enough space in the code cache to hold all the compiler buffers 448 size_t c1_size = 0; 449 #ifdef COMPILER1 450 c1_size = Compiler::code_buffer_size(); 451 #endif 452 size_t c2_size = 0; 453 #ifdef COMPILER2 454 c2_size = C2Compiler::initial_code_buffer_size(); 455 #endif 456 size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); 457 int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size; 458 if (count > max_count) { 459 // Lower the compiler count such that all buffers fit into the code cache 460 count = MAX2(max_count, c1_only ? 1 : 2); 461 } 462 FLAG_SET_ERGO(CICompilerCount, count); 463 } 464 #else 465 // On 32-bit systems, the number of compiler threads is limited to 3. 466 // On these systems, the virtual address space available to the JVM 467 // is usually limited to 2-4 GB (the exact value depends on the platform). 468 // As the compilers (especially C2) can consume a large amount of 469 // memory, scaling the number of compiler threads with the number of 470 // available cores can result in the exhaustion of the address space 471 /// available to the VM and thus cause the VM to crash. 472 if (FLAG_IS_DEFAULT(CICompilerCount)) { 473 count = 3; 474 FLAG_SET_ERGO(CICompilerCount, count); 475 } 476 #endif 477 478 if (c1_only) { 479 // No C2 compiler thread required 480 set_c1_count(count); 481 } else if (c2_only) { 482 set_c2_count(count); 483 } else { 484 #if INCLUDE_JVMCI 485 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 486 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 487 int c1_count = MAX2(count - libjvmci_count, 1); 488 set_c2_count(libjvmci_count); 489 set_c1_count(c1_count); 490 } else 491 #endif 492 { 493 set_c1_count(MAX2(count / 3, 1)); 494 set_c2_count(MAX2(count - c1_count(), 1)); 495 } 496 } 497 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 498 set_increase_threshold_at_ratio(); 499 } 500 set_start_time(nanos_to_millis(os::javaTimeNanos())); 501 } 502 503 504 #ifdef ASSERT 505 bool CompilationPolicy::verify_level(CompLevel level) { 506 if (TieredCompilation && level > TieredStopAtLevel) { 507 return false; 508 } 509 // Check if there is a compiler to process the requested level 510 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 511 return false; 512 } 513 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 514 return false; 515 } 516 517 // Interpreter level is always valid. 518 if (level == CompLevel_none) { 519 return true; 520 } 521 if (CompilationModeFlag::normal()) { 522 return true; 523 } else if (CompilationModeFlag::quick_only()) { 524 return level == CompLevel_simple; 525 } else if (CompilationModeFlag::high_only()) { 526 return level == CompLevel_full_optimization; 527 } else if (CompilationModeFlag::high_only_quick_internal()) { 528 return level == CompLevel_full_optimization || level == CompLevel_simple; 529 } 530 return false; 531 } 532 #endif 533 534 535 CompLevel CompilationPolicy::highest_compile_level() { 536 CompLevel level = CompLevel_none; 537 // Setup the maximum level available for the current compiler configuration. 538 if (!CompilerConfig::is_interpreter_only()) { 539 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 540 level = CompLevel_full_optimization; 541 } else if (CompilerConfig::is_c1_enabled()) { 542 if (CompilerConfig::is_c1_simple_only()) { 543 level = CompLevel_simple; 544 } else { 545 level = CompLevel_full_profile; 546 } 547 } 548 } 549 // Clamp the maximum level with TieredStopAtLevel. 550 if (TieredCompilation) { 551 level = MIN2(level, (CompLevel) TieredStopAtLevel); 552 } 553 554 // Fix it up if after the clamping it has become invalid. 555 // Bring it monotonically down depending on the next available level for 556 // the compilation mode. 557 if (!CompilationModeFlag::normal()) { 558 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 559 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 560 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 561 if (CompilationModeFlag::quick_only()) { 562 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 563 level = CompLevel_simple; 564 } 565 } else if (CompilationModeFlag::high_only()) { 566 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 567 level = CompLevel_none; 568 } 569 } else if (CompilationModeFlag::high_only_quick_internal()) { 570 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 571 level = CompLevel_simple; 572 } 573 } 574 } 575 576 assert(verify_level(level), "Invalid highest compilation level: %d", level); 577 return level; 578 } 579 580 CompLevel CompilationPolicy::limit_level(CompLevel level) { 581 level = MIN2(level, highest_compile_level()); 582 assert(verify_level(level), "Invalid compilation level: %d", level); 583 return level; 584 } 585 586 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 587 CompLevel level = CompLevel_any; 588 if (CompilationModeFlag::normal()) { 589 level = CompLevel_full_profile; 590 } else if (CompilationModeFlag::quick_only()) { 591 level = CompLevel_simple; 592 } else if (CompilationModeFlag::high_only()) { 593 level = CompLevel_full_optimization; 594 } else if (CompilationModeFlag::high_only_quick_internal()) { 595 if (force_comp_at_level_simple(method)) { 596 level = CompLevel_simple; 597 } else { 598 level = CompLevel_full_optimization; 599 } 600 } 601 assert(level != CompLevel_any, "Unhandled compilation mode"); 602 return limit_level(level); 603 } 604 605 // Set carry flags on the counters if necessary 606 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 607 MethodCounters *mcs = method->method_counters(); 608 if (mcs != nullptr) { 609 mcs->invocation_counter()->set_carry_on_overflow(); 610 mcs->backedge_counter()->set_carry_on_overflow(); 611 } 612 MethodData* mdo = method->method_data(); 613 if (mdo != nullptr) { 614 mdo->invocation_counter()->set_carry_on_overflow(); 615 mdo->backedge_counter()->set_carry_on_overflow(); 616 } 617 } 618 619 // Called with the queue locked and with at least one element 620 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue) { 621 CompileTask *max_blocking_task = nullptr; 622 CompileTask *max_task = nullptr; 623 Method* max_method = nullptr; 624 625 jlong t = nanos_to_millis(os::javaTimeNanos()); 626 // Iterate through the queue and find a method with a maximum rate. 627 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 628 CompileTask* next_task = task->next(); 629 // If a method was unloaded or has been stale for some time, remove it from the queue. 630 // Blocking tasks and tasks submitted from whitebox API don't become stale 631 if (task->is_unloaded()) { 632 compile_queue->remove_and_mark_stale(task); 633 task = next_task; 634 continue; 635 } 636 Method* method = task->method(); 637 methodHandle mh(Thread::current(), method); 638 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 639 if (PrintTieredEvents) { 640 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 641 } 642 method->clear_queued_for_compilation(); 643 compile_queue->remove_and_mark_stale(task); 644 task = next_task; 645 continue; 646 } 647 update_rate(t, mh); 648 if (max_task == nullptr || compare_methods(method, max_method)) { 649 // Select a method with the highest rate 650 max_task = task; 651 max_method = method; 652 } 653 654 if (task->is_blocking()) { 655 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 656 max_blocking_task = task; 657 } 658 } 659 660 task = next_task; 661 } 662 663 if (max_blocking_task != nullptr) { 664 // In blocking compilation mode, the CompileBroker will make 665 // compilations submitted by a JVMCI compiler thread non-blocking. These 666 // compilations should be scheduled after all blocking compilations 667 // to service non-compiler related compilations sooner and reduce the 668 // chance of such compilations timing out. 669 max_task = max_blocking_task; 670 max_method = max_task->method(); 671 } 672 673 methodHandle max_method_h(Thread::current(), max_method); 674 675 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 676 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 677 max_task->set_comp_level(CompLevel_limited_profile); 678 679 if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) { 680 if (PrintTieredEvents) { 681 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 682 } 683 compile_queue->remove_and_mark_stale(max_task); 684 max_method->clear_queued_for_compilation(); 685 return nullptr; 686 } 687 688 if (PrintTieredEvents) { 689 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 690 } 691 } 692 693 return max_task; 694 } 695 696 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 697 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 698 if (PrintTieredEvents) { 699 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 700 } 701 MethodData* mdo = sd->method()->method_data(); 702 if (mdo != nullptr) { 703 mdo->reset_start_counters(); 704 } 705 if (sd->is_top()) break; 706 } 707 } 708 709 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 710 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 711 if (PrintTieredEvents) { 712 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 713 } 714 715 if (comp_level == CompLevel_none && 716 JvmtiExport::can_post_interpreter_events() && 717 THREAD->is_interp_only_mode()) { 718 return nullptr; 719 } 720 if (ReplayCompiles) { 721 // Don't trigger other compiles in testing mode 722 return nullptr; 723 } 724 725 handle_counter_overflow(method); 726 if (method() != inlinee()) { 727 handle_counter_overflow(inlinee); 728 } 729 730 if (bci == InvocationEntryBci) { 731 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 732 } else { 733 // method == inlinee if the event originated in the main method 734 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 735 // Check if event led to a higher level OSR compilation 736 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 737 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 738 // It's not possible to reach the expected level so fall back to simple. 739 expected_comp_level = CompLevel_simple; 740 } 741 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 742 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 743 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 744 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 745 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 746 // Perform OSR with new nmethod 747 return osr_nm; 748 } 749 } 750 } 751 return nullptr; 752 } 753 754 // Check if the method can be compiled, change level if necessary 755 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 756 assert(verify_level(level), "Invalid compilation level requested: %d", level); 757 758 if (level == CompLevel_none) { 759 if (mh->has_compiled_code()) { 760 // Happens when we switch to interpreter to profile. 761 MutexLocker ml(Compile_lock); 762 NoSafepointVerifier nsv; 763 if (mh->has_compiled_code()) { 764 mh->code()->make_not_used(); 765 } 766 // Deoptimize immediately (we don't have to wait for a compile). 767 JavaThread* jt = THREAD; 768 RegisterMap map(jt, 769 RegisterMap::UpdateMap::skip, 770 RegisterMap::ProcessFrames::include, 771 RegisterMap::WalkContinuation::skip); 772 frame fr = jt->last_frame().sender(&map); 773 Deoptimization::deoptimize_frame(jt, fr.id()); 774 } 775 return; 776 } 777 778 if (!CompilationModeFlag::disable_intermediate()) { 779 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 780 // in the interpreter and then compile with C2 (the transition function will request that, 781 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 782 // pure C1. 783 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 784 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 785 compile(mh, bci, CompLevel_simple, THREAD); 786 } 787 return; 788 } 789 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 790 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 791 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 792 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 793 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 794 osr_nm->make_not_entrant(); 795 } 796 compile(mh, bci, CompLevel_simple, THREAD); 797 } 798 return; 799 } 800 } 801 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 802 return; 803 } 804 if (!CompileBroker::compilation_is_in_queue(mh)) { 805 if (PrintTieredEvents) { 806 print_event(COMPILE, mh(), mh(), bci, level); 807 } 808 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 809 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 810 CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, THREAD); 811 } 812 } 813 814 // update_rate() is called from select_task() while holding a compile queue lock. 815 void CompilationPolicy::update_rate(jlong t, const methodHandle& method) { 816 // Skip update if counters are absent. 817 // Can't allocate them since we are holding compile queue lock. 818 if (method->method_counters() == nullptr) return; 819 820 if (is_old(method)) { 821 // We don't remove old methods from the queue, 822 // so we can just zero the rate. 823 method->set_rate(0); 824 return; 825 } 826 827 // We don't update the rate if we've just came out of a safepoint. 828 // delta_s is the time since last safepoint in milliseconds. 829 jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 830 jlong delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 831 // How many events were there since the last time? 832 int event_count = method->invocation_count() + method->backedge_count(); 833 int delta_e = event_count - method->prev_event_count(); 834 835 // We should be running for at least 1ms. 836 if (delta_s >= TieredRateUpdateMinTime) { 837 // And we must've taken the previous point at least 1ms before. 838 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 839 method->set_prev_time(t); 840 method->set_prev_event_count(event_count); 841 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 842 } else { 843 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 844 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 845 method->set_rate(0); 846 } 847 } 848 } 849 } 850 851 // Check if this method has been stale for a given number of milliseconds. 852 // See select_task(). 853 bool CompilationPolicy::is_stale(jlong t, jlong timeout, const methodHandle& method) { 854 jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 855 jlong delta_t = t - method->prev_time(); 856 if (delta_t > timeout && delta_s > timeout) { 857 int event_count = method->invocation_count() + method->backedge_count(); 858 int delta_e = event_count - method->prev_event_count(); 859 // Return true if there were no events. 860 return delta_e == 0; 861 } 862 return false; 863 } 864 865 // We don't remove old methods from the compile queue even if they have 866 // very low activity. See select_task(). 867 bool CompilationPolicy::is_old(const methodHandle& method) { 868 int i = method->invocation_count(); 869 int b = method->backedge_count(); 870 double k = TieredOldPercentage / 100.0; 871 872 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 873 } 874 875 double CompilationPolicy::weight(Method* method) { 876 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 877 } 878 879 // Apply heuristics and return true if x should be compiled before y 880 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 881 if (x->highest_comp_level() > y->highest_comp_level()) { 882 // recompilation after deopt 883 return true; 884 } else 885 if (x->highest_comp_level() == y->highest_comp_level()) { 886 if (weight(x) > weight(y)) { 887 return true; 888 } 889 } 890 return false; 891 } 892 893 // Is method profiled enough? 894 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 895 MethodData* mdo = method->method_data(); 896 if (mdo != nullptr) { 897 int i = mdo->invocation_count_delta(); 898 int b = mdo->backedge_count_delta(); 899 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 900 } 901 return false; 902 } 903 904 905 // Determine is a method is mature. 906 bool CompilationPolicy::is_mature(Method* method) { 907 if (Arguments::is_compiler_only()) { 908 // Always report profiles as immature with -Xcomp 909 return false; 910 } 911 methodHandle mh(Thread::current(), method); 912 MethodData* mdo = method->method_data(); 913 if (mdo != nullptr) { 914 int i = mdo->invocation_count(); 915 int b = mdo->backedge_count(); 916 double k = ProfileMaturityPercentage / 100.0; 917 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 918 } 919 return false; 920 } 921 922 // If a method is old enough and is still in the interpreter we would want to 923 // start profiling without waiting for the compiled method to arrive. 924 // We also take the load on compilers into the account. 925 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 926 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 927 return false; 928 } 929 if (is_old(method)) { 930 return true; 931 } 932 int i = method->invocation_count(); 933 int b = method->backedge_count(); 934 double k = Tier0ProfilingStartPercentage / 100.0; 935 936 // If the top level compiler is not keeping up, delay profiling. 937 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 938 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 939 } 940 return false; 941 } 942 943 // Inlining control: if we're compiling a profiled method with C1 and the callee 944 // is known to have OSRed in a C2 version, don't inline it. 945 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 946 CompLevel comp_level = (CompLevel)env->comp_level(); 947 if (comp_level == CompLevel_full_profile || 948 comp_level == CompLevel_limited_profile) { 949 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 950 } 951 return false; 952 } 953 954 // Create MDO if necessary. 955 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 956 if (mh->is_native() || 957 mh->is_abstract() || 958 mh->is_accessor() || 959 mh->is_constant_getter()) { 960 return; 961 } 962 if (mh->method_data() == nullptr) { 963 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 964 } 965 if (ProfileInterpreter) { 966 MethodData* mdo = mh->method_data(); 967 if (mdo != nullptr) { 968 frame last_frame = THREAD->last_frame(); 969 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 970 int bci = last_frame.interpreter_frame_bci(); 971 address dp = mdo->bci_to_dp(bci); 972 last_frame.interpreter_frame_set_mdp(dp); 973 } 974 } 975 } 976 } 977 978 979 980 /* 981 * Method states: 982 * 0 - interpreter (CompLevel_none) 983 * 1 - pure C1 (CompLevel_simple) 984 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 985 * 3 - C1 with full profiling (CompLevel_full_profile) 986 * 4 - C2 or Graal (CompLevel_full_optimization) 987 * 988 * Common state transition patterns: 989 * a. 0 -> 3 -> 4. 990 * The most common path. But note that even in this straightforward case 991 * profiling can start at level 0 and finish at level 3. 992 * 993 * b. 0 -> 2 -> 3 -> 4. 994 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 995 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 996 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 997 * 998 * c. 0 -> (3->2) -> 4. 999 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1000 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1001 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1002 * without full profiling while c2 is compiling. 1003 * 1004 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1005 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1006 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1007 * 1008 * e. 0 -> 4. 1009 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1010 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1011 * the compiled version already exists). 1012 * 1013 * Note that since state 0 can be reached from any other state via deoptimization different loops 1014 * are possible. 1015 * 1016 */ 1017 1018 // Common transition function. Given a predicate determines if a method should transition to another level. 1019 template<typename Predicate> 1020 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, bool disable_feedback) { 1021 CompLevel next_level = cur_level; 1022 int i = method->invocation_count(); 1023 int b = method->backedge_count(); 1024 1025 if (force_comp_at_level_simple(method)) { 1026 next_level = CompLevel_simple; 1027 } else { 1028 if (is_trivial(method) || method->is_native()) { 1029 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1030 } else { 1031 switch(cur_level) { 1032 default: break; 1033 case CompLevel_none: 1034 // If we were at full profile level, would we switch to full opt? 1035 if (common<Predicate>(method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) { 1036 next_level = CompLevel_full_optimization; 1037 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply(method, cur_level, i, b)) { 1038 // C1-generated fully profiled code is about 30% slower than the limited profile 1039 // code that has only invocation and backedge counters. The observation is that 1040 // if C2 queue is large enough we can spend too much time in the fully profiled code 1041 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1042 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1043 // we choose to compile a limited profiled version and then recompile with full profiling 1044 // when the load on C2 goes down. 1045 if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > 1046 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) { 1047 next_level = CompLevel_limited_profile; 1048 } else { 1049 next_level = CompLevel_full_profile; 1050 } 1051 } 1052 break; 1053 case CompLevel_limited_profile: 1054 if (is_method_profiled(method)) { 1055 // Special case: we got here because this method was fully profiled in the interpreter. 1056 next_level = CompLevel_full_optimization; 1057 } else { 1058 MethodData* mdo = method->method_data(); 1059 if (mdo != nullptr) { 1060 if (mdo->would_profile()) { 1061 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1062 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1063 Predicate::apply(method, cur_level, i, b))) { 1064 next_level = CompLevel_full_profile; 1065 } 1066 } else { 1067 next_level = CompLevel_full_optimization; 1068 } 1069 } else { 1070 // If there is no MDO we need to profile 1071 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1072 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1073 Predicate::apply(method, cur_level, i, b))) { 1074 next_level = CompLevel_full_profile; 1075 } 1076 } 1077 } 1078 break; 1079 case CompLevel_full_profile: 1080 { 1081 MethodData* mdo = method->method_data(); 1082 if (mdo != nullptr) { 1083 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1084 int mdo_i = mdo->invocation_count_delta(); 1085 int mdo_b = mdo->backedge_count_delta(); 1086 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1087 next_level = CompLevel_full_optimization; 1088 } 1089 } else { 1090 next_level = CompLevel_full_optimization; 1091 } 1092 } 1093 } 1094 break; 1095 } 1096 } 1097 } 1098 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1099 } 1100 1101 1102 1103 // Determine if a method should be compiled with a normal entry point at a different level. 1104 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, Thread* thread) { 1105 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, true)); 1106 CompLevel next_level = common<CallPredicate>(method, cur_level, is_old(method)); 1107 1108 // If OSR method level is greater than the regular method level, the levels should be 1109 // equalized by raising the regular method level in order to avoid OSRs during each 1110 // invocation of the method. 1111 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1112 MethodData* mdo = method->method_data(); 1113 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1114 if (mdo->invocation_count() >= 1) { 1115 next_level = CompLevel_full_optimization; 1116 } 1117 } else { 1118 next_level = MAX2(osr_level, next_level); 1119 } 1120 return next_level; 1121 } 1122 1123 // Determine if we should do an OSR compilation of a given method. 1124 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, Thread* thread) { 1125 CompLevel next_level = common<LoopPredicate>(method, cur_level, true); 1126 if (cur_level == CompLevel_none) { 1127 // If there is a live OSR method that means that we deopted to the interpreter 1128 // for the transition. 1129 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1130 if (osr_level > CompLevel_none) { 1131 return osr_level; 1132 } 1133 } 1134 return next_level; 1135 } 1136 1137 // Handle the invocation event. 1138 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1139 CompLevel level, nmethod* nm, TRAPS) { 1140 if (should_create_mdo(mh, level)) { 1141 create_mdo(mh, THREAD); 1142 } 1143 CompLevel next_level = call_event(mh, level, THREAD); 1144 if (next_level != level) { 1145 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1146 compile(mh, InvocationEntryBci, next_level, THREAD); 1147 } 1148 } 1149 } 1150 1151 // Handle the back branch event. Notice that we can compile the method 1152 // with a regular entry from here. 1153 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1154 int bci, CompLevel level, nmethod* nm, TRAPS) { 1155 if (should_create_mdo(mh, level)) { 1156 create_mdo(mh, THREAD); 1157 } 1158 // Check if MDO should be created for the inlined method 1159 if (should_create_mdo(imh, level)) { 1160 create_mdo(imh, THREAD); 1161 } 1162 1163 if (is_compilation_enabled()) { 1164 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1165 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1166 // At the very least compile the OSR version 1167 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1168 compile(imh, bci, next_osr_level, CHECK); 1169 } 1170 1171 // Use loop event as an opportunity to also check if there's been 1172 // enough calls. 1173 CompLevel cur_level, next_level; 1174 if (mh() != imh()) { // If there is an enclosing method 1175 { 1176 guarantee(nm != nullptr, "Should have nmethod here"); 1177 cur_level = comp_level(mh()); 1178 next_level = call_event(mh, cur_level, THREAD); 1179 1180 if (max_osr_level == CompLevel_full_optimization) { 1181 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1182 bool make_not_entrant = false; 1183 if (nm->is_osr_method()) { 1184 // This is an osr method, just make it not entrant and recompile later if needed 1185 make_not_entrant = true; 1186 } else { 1187 if (next_level != CompLevel_full_optimization) { 1188 // next_level is not full opt, so we need to recompile the 1189 // enclosing method without the inlinee 1190 cur_level = CompLevel_none; 1191 make_not_entrant = true; 1192 } 1193 } 1194 if (make_not_entrant) { 1195 if (PrintTieredEvents) { 1196 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1197 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1198 } 1199 nm->make_not_entrant(); 1200 } 1201 } 1202 // Fix up next_level if necessary to avoid deopts 1203 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1204 next_level = CompLevel_full_profile; 1205 } 1206 if (cur_level != next_level) { 1207 if (!CompileBroker::compilation_is_in_queue(mh)) { 1208 compile(mh, InvocationEntryBci, next_level, THREAD); 1209 } 1210 } 1211 } 1212 } else { 1213 cur_level = comp_level(mh()); 1214 next_level = call_event(mh, cur_level, THREAD); 1215 if (next_level != cur_level) { 1216 if (!CompileBroker::compilation_is_in_queue(mh)) { 1217 compile(mh, InvocationEntryBci, next_level, THREAD); 1218 } 1219 } 1220 } 1221 } 1222 } 1223