1 /*
   2  * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "code/scopeDesc.hpp"
  27 #include "compiler/compilationPolicy.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compilerDefinitions.inline.hpp"
  30 #include "compiler/compilerOracle.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/method.inline.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "oops/trainingData.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/deoptimization.hpp"
  39 #include "runtime/frame.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/globals_extension.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/safepoint.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #ifdef COMPILER1
  46 #include "c1/c1_Compiler.hpp"
  47 #endif
  48 #ifdef COMPILER2
  49 #include "opto/c2compiler.hpp"
  50 #endif
  51 #if INCLUDE_JVMCI
  52 #include "jvmci/jvmci.hpp"
  53 #endif
  54 
  55 int64_t CompilationPolicy::_start_time = 0;
  56 int CompilationPolicy::_c1_count = 0;
  57 int CompilationPolicy::_c2_count = 0;
  58 double CompilationPolicy::_increase_threshold_at_ratio = 0;
  59 
  60 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
  61 
  62 void compilationPolicy_init() {
  63   CompilationPolicy::initialize();
  64 }
  65 
  66 int CompilationPolicy::compiler_count(CompLevel comp_level) {
  67   if (is_c1_compile(comp_level)) {
  68     return c1_count();
  69   } else if (is_c2_compile(comp_level)) {
  70     return c2_count();
  71   }
  72   return 0;
  73 }
  74 
  75 // Returns true if m must be compiled before executing it
  76 // This is intended to force compiles for methods (usually for
  77 // debugging) that would otherwise be interpreted for some reason.
  78 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
  79   // Don't allow Xcomp to cause compiles in replay mode
  80   if (ReplayCompiles) return false;
  81 
  82   if (m->has_compiled_code()) return false;       // already compiled
  83   if (!can_be_compiled(m, comp_level)) return false;
  84 
  85   return !UseInterpreter ||                                                                        // must compile all methods
  86          (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
  87 }
  88 
  89 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
  90   if (m->method_holder()->is_not_initialized()) {
  91     // 'is_not_initialized' means not only '!is_initialized', but also that
  92     // initialization has not been started yet ('!being_initialized')
  93     // Do not force compilation of methods in uninitialized classes.
  94     return;
  95   }
  96   if (!m->is_native() && MethodTrainingData::have_data()) {
  97     MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
  98     if (mtd == nullptr) {
  99       return;              // there is no training data recorded for m
 100     }
 101     CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
 102     CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
 103     if (next_level != cur_level && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
 104       if (PrintTieredEvents) {
 105         print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
 106       }
 107       CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, CompileTask::Reason_MustBeCompiled, THREAD);
 108       if (HAS_PENDING_EXCEPTION) {
 109         CLEAR_PENDING_EXCEPTION;
 110       }
 111     }
 112   }
 113 }
 114 
 115 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
 116   if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
 117     // don't force compilation, resolve was on behalf of compiler
 118     return;
 119   }
 120   if (m->method_holder()->is_not_initialized()) {
 121     // 'is_not_initialized' means not only '!is_initialized', but also that
 122     // initialization has not been started yet ('!being_initialized')
 123     // Do not force compilation of methods in uninitialized classes.
 124     // Note that doing this would throw an assert later,
 125     // in CompileBroker::compile_method.
 126     // We sometimes use the link resolver to do reflective lookups
 127     // even before classes are initialized.
 128     return;
 129   }
 130 
 131   if (must_be_compiled(m)) {
 132     // This path is unusual, mostly used by the '-Xcomp' stress test mode.
 133     CompLevel level = initial_compile_level(m);
 134     if (PrintTieredEvents) {
 135       print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
 136     }
 137     CompileBroker::compile_method(m, InvocationEntryBci, level, 0, CompileTask::Reason_MustBeCompiled, THREAD);
 138   }
 139 }
 140 
 141 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) {
 142   if (!klass->has_init_deps_processed()) {
 143     ResourceMark rm;
 144     log_debug(training)("Replay training: %s", klass->external_name());
 145 
 146     KlassTrainingData* ktd = KlassTrainingData::find(klass);
 147     if (ktd != nullptr) {
 148       guarantee(ktd->has_holder(), "");
 149       ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
 150       assert(klass->has_init_deps_processed(), "");
 151       if (AOTCompileEagerly) {
 152         ktd->iterate_comp_deps([&](CompileTrainingData* ctd) {
 153           if (ctd->init_deps_left() == 0) {
 154             MethodTrainingData* mtd = ctd->method();
 155             if (mtd->has_holder()) {
 156               const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder()));
 157               CompilationPolicy::maybe_compile_early(mh, THREAD);
 158             }
 159           }
 160         });
 161       }
 162     }
 163   }
 164 }
 165 
 166 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) {
 167   assert(klass->is_initialized(), "");
 168   if (TrainingData::have_data() && klass->is_shared()) {
 169     _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD);
 170   }
 171 }
 172 
 173 // For TrainingReplayQueue
 174 template<>
 175 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
 176   int pos = 0;
 177   for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
 178     ResourceMark rm;
 179     InstanceKlass* ik = cur->value();
 180     st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
 181   }
 182 }
 183 
 184 void CompilationPolicy::replay_training_at_init_loop(TRAPS) {
 185   while (!CompileBroker::is_compilation_disabled_forever()) {
 186     InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD);
 187     if (ik != nullptr) {
 188       replay_training_at_init_impl(ik, THREAD);
 189     }
 190   }
 191 }
 192 
 193 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
 194   if (comp_level == CompLevel_any) {
 195      if (CompilerConfig::is_c1_only()) {
 196        comp_level = CompLevel_simple;
 197      } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
 198        comp_level = CompLevel_full_optimization;
 199      }
 200   }
 201   return comp_level;
 202 }
 203 
 204 // Returns true if m is allowed to be compiled
 205 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
 206   // allow any levels for WhiteBox
 207   assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
 208 
 209   if (m->is_abstract()) return false;
 210   if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
 211 
 212   // Math intrinsics should never be compiled as this can lead to
 213   // monotonicity problems because the interpreter will prefer the
 214   // compiled code to the intrinsic version.  This can't happen in
 215   // production because the invocation counter can't be incremented
 216   // but we shouldn't expose the system to this problem in testing
 217   // modes.
 218   if (!AbstractInterpreter::can_be_compiled(m)) {
 219     return false;
 220   }
 221   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 222   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 223     return !m->is_not_compilable(comp_level);
 224   }
 225   return false;
 226 }
 227 
 228 // Returns true if m is allowed to be osr compiled
 229 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
 230   bool result = false;
 231   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 232   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 233     result = !m->is_not_osr_compilable(comp_level);
 234   }
 235   return (result && can_be_compiled(m, comp_level));
 236 }
 237 
 238 bool CompilationPolicy::is_compilation_enabled() {
 239   // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
 240   return CompileBroker::should_compile_new_jobs();
 241 }
 242 
 243 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
 244   // Remove unloaded methods from the queue
 245   for (CompileTask* task = compile_queue->first(); task != nullptr; ) {
 246     CompileTask* next = task->next();
 247     if (task->is_unloaded()) {
 248       compile_queue->remove_and_mark_stale(task);
 249     }
 250     task = next;
 251   }
 252 #if INCLUDE_JVMCI
 253   if (UseJVMCICompiler && !BackgroundCompilation) {
 254     /*
 255      * In blocking compilation mode, the CompileBroker will make
 256      * compilations submitted by a JVMCI compiler thread non-blocking. These
 257      * compilations should be scheduled after all blocking compilations
 258      * to service non-compiler related compilations sooner and reduce the
 259      * chance of such compilations timing out.
 260      */
 261     for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) {
 262       if (task->is_blocking()) {
 263         return task;
 264       }
 265     }
 266   }
 267 #endif
 268   return compile_queue->first();
 269 }
 270 
 271 // Simple methods are as good being compiled with C1 as C2.
 272 // Determine if a given method is such a case.
 273 bool CompilationPolicy::is_trivial(const methodHandle& method) {
 274   if (method->is_accessor() ||
 275       method->is_constant_getter()) {
 276     return true;
 277   }
 278   return false;
 279 }
 280 
 281 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
 282   if (CompilationModeFlag::quick_internal()) {
 283 #if INCLUDE_JVMCI
 284     if (UseJVMCICompiler) {
 285       AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 286       if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 287         return true;
 288       }
 289     }
 290 #endif
 291   }
 292   return false;
 293 }
 294 
 295 CompLevel CompilationPolicy::comp_level(Method* method) {
 296   nmethod *nm = method->code();
 297   if (nm != nullptr && nm->is_in_use()) {
 298     return (CompLevel)nm->comp_level();
 299   }
 300   return CompLevel_none;
 301 }
 302 
 303 // Call and loop predicates determine whether a transition to a higher
 304 // compilation level should be performed (pointers to predicate functions
 305 // are passed to common()).
 306 // Tier?LoadFeedback is basically a coefficient that determines of
 307 // how many methods per compiler thread can be in the queue before
 308 // the threshold values double.
 309 class LoopPredicate : AllStatic {
 310 public:
 311   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 312     double threshold_scaling;
 313     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 314       scale *= threshold_scaling;
 315     }
 316     switch(cur_level) {
 317     case CompLevel_none:
 318     case CompLevel_limited_profile:
 319       return b >= Tier3BackEdgeThreshold * scale;
 320     case CompLevel_full_profile:
 321       return b >= Tier4BackEdgeThreshold * scale;
 322     default:
 323       return true;
 324     }
 325   }
 326 
 327   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 328     double k = 1;
 329     switch(cur_level) {
 330     case CompLevel_none:
 331     // Fall through
 332     case CompLevel_limited_profile: {
 333       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 334       break;
 335     }
 336     case CompLevel_full_profile: {
 337       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 338       break;
 339     }
 340     default:
 341       return true;
 342     }
 343     return apply_scaled(method, cur_level, i, b, k);
 344   }
 345 };
 346 
 347 class CallPredicate : AllStatic {
 348 public:
 349   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 350     double threshold_scaling;
 351     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 352       scale *= threshold_scaling;
 353     }
 354     switch(cur_level) {
 355     case CompLevel_none:
 356     case CompLevel_limited_profile:
 357       return (i >= Tier3InvocationThreshold * scale) ||
 358              (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
 359     case CompLevel_full_profile:
 360       return (i >= Tier4InvocationThreshold * scale) ||
 361              (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
 362     default:
 363      return true;
 364     }
 365   }
 366 
 367   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 368     double k = 1;
 369     switch(cur_level) {
 370     case CompLevel_none:
 371     case CompLevel_limited_profile: {
 372       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 373       break;
 374     }
 375     case CompLevel_full_profile: {
 376       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 377       break;
 378     }
 379     default:
 380       return true;
 381     }
 382     return apply_scaled(method, cur_level, i, b, k);
 383   }
 384 };
 385 
 386 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
 387   int comp_count = compiler_count(level);
 388   if (comp_count > 0) {
 389     double queue_size = CompileBroker::queue_size(level);
 390     double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1;
 391 
 392     // Increase C1 compile threshold when the code cache is filled more
 393     // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 394     // The main intention is to keep enough free space for C2 compiled code
 395     // to achieve peak performance if the code cache is under stress.
 396     if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level))  {
 397       double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 398       if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 399         k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 400       }
 401     }
 402     return k;
 403   }
 404   return 1;
 405 }
 406 
 407 void CompilationPolicy::print_counters(const char* prefix, Method* m) {
 408   int invocation_count = m->invocation_count();
 409   int backedge_count = m->backedge_count();
 410   MethodData* mdh = m->method_data();
 411   int mdo_invocations = 0, mdo_backedges = 0;
 412   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 413   if (mdh != nullptr) {
 414     mdo_invocations = mdh->invocation_count();
 415     mdo_backedges = mdh->backedge_count();
 416     mdo_invocations_start = mdh->invocation_count_start();
 417     mdo_backedges_start = mdh->backedge_count_start();
 418   }
 419   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 420       invocation_count, backedge_count, prefix,
 421       mdo_invocations, mdo_invocations_start,
 422       mdo_backedges, mdo_backedges_start);
 423   tty->print(" %smax levels=%d,%d", prefix,
 424       m->highest_comp_level(), m->highest_osr_comp_level());
 425 }
 426 
 427 void CompilationPolicy::print_training_data(const char* prefix, Method* method) {
 428   methodHandle m(Thread::current(), method);
 429   tty->print(" %smtd: ", prefix);
 430   MethodTrainingData* mtd = MethodTrainingData::find(m);
 431   if (mtd == nullptr) {
 432     tty->print("null");
 433   } else {
 434     MethodData* md = mtd->final_profile();
 435     tty->print("mdo=");
 436     if (md == nullptr) {
 437       tty->print("null");
 438     } else {
 439       int mdo_invocations = md->invocation_count();
 440       int mdo_backedges = md->backedge_count();
 441       int mdo_invocations_start = md->invocation_count_start();
 442       int mdo_backedges_start = md->backedge_count_start();
 443       tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
 444     }
 445     CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
 446     tty->print(", deps=");
 447     if (ctd == nullptr) {
 448       tty->print("null");
 449     } else {
 450       tty->print("%d", ctd->init_deps_left());
 451     }
 452   }
 453 }
 454 
 455 // Print an event.
 456 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
 457   bool inlinee_event = m != im;
 458 
 459   ttyLocker tty_lock;
 460   tty->print("%lf: [", os::elapsedTime());
 461 
 462   switch(type) {
 463   case CALL:
 464     tty->print("call");
 465     break;
 466   case LOOP:
 467     tty->print("loop");
 468     break;
 469   case COMPILE:
 470     tty->print("compile");
 471     break;
 472   case FORCE_COMPILE:
 473     tty->print("force-compile");
 474     break;
 475   case REMOVE_FROM_QUEUE:
 476     tty->print("remove-from-queue");
 477     break;
 478   case UPDATE_IN_QUEUE:
 479     tty->print("update-in-queue");
 480     break;
 481   case REPROFILE:
 482     tty->print("reprofile");
 483     break;
 484   case MAKE_NOT_ENTRANT:
 485     tty->print("make-not-entrant");
 486     break;
 487   default:
 488     tty->print("unknown");
 489   }
 490 
 491   tty->print(" level=%d ", level);
 492 
 493   ResourceMark rm;
 494   char *method_name = m->name_and_sig_as_C_string();
 495   tty->print("[%s", method_name);
 496   if (inlinee_event) {
 497     char *inlinee_name = im->name_and_sig_as_C_string();
 498     tty->print(" [%s]] ", inlinee_name);
 499   }
 500   else tty->print("] ");
 501   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 502                                       CompileBroker::queue_size(CompLevel_full_optimization));
 503 
 504   tty->print(" rate=");
 505   if (m->prev_time() == 0) tty->print("n/a");
 506   else tty->print("%f", m->rate());
 507 
 508   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 509                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 510 
 511   if (type != COMPILE) {
 512     print_counters("", m);
 513     if (inlinee_event) {
 514       print_counters("inlinee ", im);
 515     }
 516     tty->print(" compilable=");
 517     bool need_comma = false;
 518     if (!m->is_not_compilable(CompLevel_full_profile)) {
 519       tty->print("c1");
 520       need_comma = true;
 521     }
 522     if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
 523       if (need_comma) tty->print(",");
 524       tty->print("c1-osr");
 525       need_comma = true;
 526     }
 527     if (!m->is_not_compilable(CompLevel_full_optimization)) {
 528       if (need_comma) tty->print(",");
 529       tty->print("c2");
 530       need_comma = true;
 531     }
 532     if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
 533       if (need_comma) tty->print(",");
 534       tty->print("c2-osr");
 535     }
 536     tty->print(" status=");
 537     if (m->queued_for_compilation()) {
 538       tty->print("in-queue");
 539     } else tty->print("idle");
 540     print_training_data("", m);
 541     if (inlinee_event) {
 542       print_training_data("inlinee ", im);
 543     }
 544   }
 545   tty->print_cr("]");
 546 }
 547 
 548 void CompilationPolicy::initialize() {
 549   if (!CompilerConfig::is_interpreter_only()) {
 550     int count = CICompilerCount;
 551     bool c1_only = CompilerConfig::is_c1_only();
 552     bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
 553 
 554 #ifdef _LP64
 555     // Turn on ergonomic compiler count selection
 556     if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 557       FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 558     }
 559     if (CICompilerCountPerCPU) {
 560       // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 561       int log_cpu = log2i(os::active_processor_count());
 562       int loglog_cpu = log2i(MAX2(log_cpu, 1));
 563       count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
 564       // Make sure there is enough space in the code cache to hold all the compiler buffers
 565       size_t c1_size = 0;
 566 #ifdef COMPILER1
 567       c1_size = Compiler::code_buffer_size();
 568 #endif
 569       size_t c2_size = 0;
 570 #ifdef COMPILER2
 571       c2_size = C2Compiler::initial_code_buffer_size();
 572 #endif
 573       size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
 574       int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
 575       if (count > max_count) {
 576         // Lower the compiler count such that all buffers fit into the code cache
 577         count = MAX2(max_count, c1_only ? 1 : 2);
 578       }
 579       FLAG_SET_ERGO(CICompilerCount, count);
 580     }
 581 #else
 582     // On 32-bit systems, the number of compiler threads is limited to 3.
 583     // On these systems, the virtual address space available to the JVM
 584     // is usually limited to 2-4 GB (the exact value depends on the platform).
 585     // As the compilers (especially C2) can consume a large amount of
 586     // memory, scaling the number of compiler threads with the number of
 587     // available cores can result in the exhaustion of the address space
 588     /// available to the VM and thus cause the VM to crash.
 589     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 590       count = 3;
 591       FLAG_SET_ERGO(CICompilerCount, count);
 592     }
 593 #endif
 594 
 595     if (c1_only) {
 596       // No C2 compiler thread required
 597       set_c1_count(count);
 598     } else if (c2_only) {
 599       set_c2_count(count);
 600     } else {
 601 #if INCLUDE_JVMCI
 602       if (UseJVMCICompiler && UseJVMCINativeLibrary) {
 603         int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
 604         int c1_count = MAX2(count - libjvmci_count, 1);
 605         set_c2_count(libjvmci_count);
 606         set_c1_count(c1_count);
 607       } else
 608 #endif
 609       {
 610         set_c1_count(MAX2(count / 3, 1));
 611         set_c2_count(MAX2(count - c1_count(), 1));
 612       }
 613     }
 614     assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 615     set_increase_threshold_at_ratio();
 616   }
 617   set_start_time(nanos_to_millis(os::javaTimeNanos()));
 618 }
 619 
 620 
 621 #ifdef ASSERT
 622 bool CompilationPolicy::verify_level(CompLevel level) {
 623   if (TieredCompilation && level > TieredStopAtLevel) {
 624     return false;
 625   }
 626   // Check if there is a compiler to process the requested level
 627   if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
 628     return false;
 629   }
 630   if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
 631     return false;
 632   }
 633 
 634   // Interpreter level is always valid.
 635   if (level == CompLevel_none) {
 636     return true;
 637   }
 638   if (CompilationModeFlag::normal()) {
 639     return true;
 640   } else if (CompilationModeFlag::quick_only()) {
 641     return level == CompLevel_simple;
 642   } else if (CompilationModeFlag::high_only()) {
 643     return level == CompLevel_full_optimization;
 644   } else if (CompilationModeFlag::high_only_quick_internal()) {
 645     return level == CompLevel_full_optimization || level == CompLevel_simple;
 646   }
 647   return false;
 648 }
 649 #endif
 650 
 651 
 652 CompLevel CompilationPolicy::highest_compile_level() {
 653   CompLevel level = CompLevel_none;
 654   // Setup the maximum level available for the current compiler configuration.
 655   if (!CompilerConfig::is_interpreter_only()) {
 656     if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
 657       level = CompLevel_full_optimization;
 658     } else if (CompilerConfig::is_c1_enabled()) {
 659       if (CompilerConfig::is_c1_simple_only()) {
 660         level = CompLevel_simple;
 661       } else {
 662         level = CompLevel_full_profile;
 663       }
 664     }
 665   }
 666   // Clamp the maximum level with TieredStopAtLevel.
 667   if (TieredCompilation) {
 668     level = MIN2(level, (CompLevel) TieredStopAtLevel);
 669   }
 670 
 671   // Fix it up if after the clamping it has become invalid.
 672   // Bring it monotonically down depending on the next available level for
 673   // the compilation mode.
 674   if (!CompilationModeFlag::normal()) {
 675     // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
 676     // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
 677     // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
 678     if (CompilationModeFlag::quick_only()) {
 679       if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
 680         level = CompLevel_simple;
 681       }
 682     } else if (CompilationModeFlag::high_only()) {
 683       if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 684         level = CompLevel_none;
 685       }
 686     } else if (CompilationModeFlag::high_only_quick_internal()) {
 687       if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 688         level = CompLevel_simple;
 689       }
 690     }
 691   }
 692 
 693   assert(verify_level(level), "Invalid highest compilation level: %d", level);
 694   return level;
 695 }
 696 
 697 CompLevel CompilationPolicy::limit_level(CompLevel level) {
 698   level = MIN2(level, highest_compile_level());
 699   assert(verify_level(level), "Invalid compilation level: %d", level);
 700   return level;
 701 }
 702 
 703 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
 704   CompLevel level = CompLevel_any;
 705   if (CompilationModeFlag::normal()) {
 706     level = CompLevel_full_profile;
 707   } else if (CompilationModeFlag::quick_only()) {
 708     level = CompLevel_simple;
 709   } else if (CompilationModeFlag::high_only()) {
 710     level = CompLevel_full_optimization;
 711   } else if (CompilationModeFlag::high_only_quick_internal()) {
 712     if (force_comp_at_level_simple(method)) {
 713       level = CompLevel_simple;
 714     } else {
 715       level = CompLevel_full_optimization;
 716     }
 717   }
 718   assert(level != CompLevel_any, "Unhandled compilation mode");
 719   return limit_level(level);
 720 }
 721 
 722 // Set carry flags on the counters if necessary
 723 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) {
 724   MethodCounters *mcs = method->method_counters();
 725   if (mcs != nullptr) {
 726     mcs->invocation_counter()->set_carry_on_overflow();
 727     mcs->backedge_counter()->set_carry_on_overflow();
 728   }
 729   MethodData* mdo = method->method_data();
 730   if (mdo != nullptr) {
 731     mdo->invocation_counter()->set_carry_on_overflow();
 732     mdo->backedge_counter()->set_carry_on_overflow();
 733   }
 734 }
 735 
 736 // Called with the queue locked and with at least one element
 737 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
 738   CompileTask *max_blocking_task = nullptr;
 739   CompileTask *max_task = nullptr;
 740   Method* max_method = nullptr;
 741 
 742   int64_t t = nanos_to_millis(os::javaTimeNanos());
 743   // Iterate through the queue and find a method with a maximum rate.
 744   for (CompileTask* task = compile_queue->first(); task != nullptr;) {
 745     CompileTask* next_task = task->next();
 746     // If a method was unloaded or has been stale for some time, remove it from the queue.
 747     // Blocking tasks and tasks submitted from whitebox API don't become stale
 748     if (task->is_unloaded()) {
 749       compile_queue->remove_and_mark_stale(task);
 750       task = next_task;
 751       continue;
 752     }
 753     if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) {
 754       // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate
 755       // selection and/or any level adjustments. Just return them in order.
 756       return task;
 757     }
 758     Method* method = task->method();
 759     methodHandle mh(THREAD, method);
 760     if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
 761       if (PrintTieredEvents) {
 762         print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 763       }
 764       method->clear_queued_for_compilation();
 765       compile_queue->remove_and_mark_stale(task);
 766       task = next_task;
 767       continue;
 768     }
 769     update_rate(t, mh);
 770     if (max_task == nullptr || compare_methods(method, max_method)) {
 771       // Select a method with the highest rate
 772       max_task = task;
 773       max_method = method;
 774     }
 775 
 776     if (task->is_blocking()) {
 777       if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) {
 778         max_blocking_task = task;
 779       }
 780     }
 781 
 782     task = next_task;
 783   }
 784 
 785   if (max_blocking_task != nullptr) {
 786     // In blocking compilation mode, the CompileBroker will make
 787     // compilations submitted by a JVMCI compiler thread non-blocking. These
 788     // compilations should be scheduled after all blocking compilations
 789     // to service non-compiler related compilations sooner and reduce the
 790     // chance of such compilations timing out.
 791     max_task = max_blocking_task;
 792     max_method = max_task->method();
 793   }
 794 
 795   methodHandle max_method_h(THREAD, max_method);
 796 
 797   if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
 798       max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
 799     max_task->set_comp_level(CompLevel_limited_profile);
 800 
 801     if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) {
 802       if (PrintTieredEvents) {
 803         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 804       }
 805       compile_queue->remove_and_mark_stale(max_task);
 806       max_method->clear_queued_for_compilation();
 807       return nullptr;
 808     }
 809 
 810     if (PrintTieredEvents) {
 811       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 812     }
 813   }
 814   return max_task;
 815 }
 816 
 817 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 818   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 819     if (PrintTieredEvents) {
 820       print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
 821     }
 822     MethodData* mdo = sd->method()->method_data();
 823     if (mdo != nullptr) {
 824       mdo->reset_start_counters();
 825     }
 826     if (sd->is_top()) break;
 827   }
 828 }
 829 
 830 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 831                                       int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
 832   if (PrintTieredEvents) {
 833     print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
 834   }
 835 
 836 #if INCLUDE_JVMCI
 837   if (EnableJVMCI && UseJVMCICompiler &&
 838       comp_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
 839     return nullptr;
 840   }
 841 #endif
 842 
 843   if (comp_level == CompLevel_none &&
 844       JvmtiExport::can_post_interpreter_events() &&
 845       THREAD->is_interp_only_mode()) {
 846     return nullptr;
 847   }
 848   if (ReplayCompiles) {
 849     // Don't trigger other compiles in testing mode
 850     return nullptr;
 851   }
 852 
 853   handle_counter_overflow(method);
 854   if (method() != inlinee()) {
 855     handle_counter_overflow(inlinee);
 856   }
 857 
 858   if (bci == InvocationEntryBci) {
 859     method_invocation_event(method, inlinee, comp_level, nm, THREAD);
 860   } else {
 861     // method == inlinee if the event originated in the main method
 862     method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
 863     // Check if event led to a higher level OSR compilation
 864     CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
 865     if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
 866       // It's not possible to reach the expected level so fall back to simple.
 867       expected_comp_level = CompLevel_simple;
 868     }
 869     CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
 870     if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
 871       nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 872       assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 873       if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) {
 874         // Perform OSR with new nmethod
 875         return osr_nm;
 876       }
 877     }
 878   }
 879   return nullptr;
 880 }
 881 
 882 // Check if the method can be compiled, change level if necessary
 883 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
 884   assert(verify_level(level), "Invalid compilation level requested: %d", level);
 885 
 886   if (level == CompLevel_none) {
 887     if (mh->has_compiled_code()) {
 888       // Happens when we switch to interpreter to profile.
 889       MutexLocker ml(Compile_lock);
 890       NoSafepointVerifier nsv;
 891       if (mh->has_compiled_code()) {
 892         mh->code()->make_not_used();
 893       }
 894       // Deoptimize immediately (we don't have to wait for a compile).
 895       JavaThread* jt = THREAD;
 896       RegisterMap map(jt,
 897                       RegisterMap::UpdateMap::skip,
 898                       RegisterMap::ProcessFrames::include,
 899                       RegisterMap::WalkContinuation::skip);
 900       frame fr = jt->last_frame().sender(&map);
 901       Deoptimization::deoptimize_frame(jt, fr.id());
 902     }
 903     return;
 904   }
 905 
 906   if (!CompilationModeFlag::disable_intermediate()) {
 907     // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
 908     // in the interpreter and then compile with C2 (the transition function will request that,
 909     // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 910     // pure C1.
 911     if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 912       if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 913         compile(mh, bci, CompLevel_simple, THREAD);
 914       }
 915       return;
 916     }
 917     if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 918       if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 919         nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
 920         if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) {
 921           // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
 922           osr_nm->make_not_entrant("OSR invalidation for compiling with C1");
 923         }
 924         compile(mh, bci, CompLevel_simple, THREAD);
 925       }
 926       return;
 927     }
 928   }
 929   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
 930     return;
 931   }
 932   if (!CompileBroker::compilation_is_in_queue(mh)) {
 933     if (PrintTieredEvents) {
 934       print_event(COMPILE, mh(), mh(), bci, level);
 935     }
 936     int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 937     update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
 938     CompileBroker::compile_method(mh, bci, level, hot_count, CompileTask::Reason_Tiered, THREAD);
 939   }
 940 }
 941 
 942 // update_rate() is called from select_task() while holding a compile queue lock.
 943 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
 944   // Skip update if counters are absent.
 945   // Can't allocate them since we are holding compile queue lock.
 946   if (method->method_counters() == nullptr)  return;
 947 
 948   if (is_old(method)) {
 949     // We don't remove old methods from the queue,
 950     // so we can just zero the rate.
 951     method->set_rate(0);
 952     return;
 953   }
 954 
 955   // We don't update the rate if we've just came out of a safepoint.
 956   // delta_s is the time since last safepoint in milliseconds.
 957   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
 958   int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
 959   // How many events were there since the last time?
 960   int event_count = method->invocation_count() + method->backedge_count();
 961   int delta_e = event_count - method->prev_event_count();
 962 
 963   // We should be running for at least 1ms.
 964   if (delta_s >= TieredRateUpdateMinTime) {
 965     // And we must've taken the previous point at least 1ms before.
 966     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 967       method->set_prev_time(t);
 968       method->set_prev_event_count(event_count);
 969       method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 970     } else {
 971       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 972         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 973         method->set_rate(0);
 974       }
 975     }
 976   }
 977 }
 978 
 979 // Check if this method has been stale for a given number of milliseconds.
 980 // See select_task().
 981 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
 982   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
 983   int64_t delta_t = t - method->prev_time();
 984   if (delta_t > timeout && delta_s > timeout) {
 985     int event_count = method->invocation_count() + method->backedge_count();
 986     int delta_e = event_count - method->prev_event_count();
 987     // Return true if there were no events.
 988     return delta_e == 0;
 989   }
 990   return false;
 991 }
 992 
 993 // We don't remove old methods from the compile queue even if they have
 994 // very low activity. See select_task().
 995 bool CompilationPolicy::is_old(const methodHandle& method) {
 996   int i = method->invocation_count();
 997   int b = method->backedge_count();
 998   double k = TieredOldPercentage / 100.0;
 999 
1000   return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1001 }
1002 
1003 double CompilationPolicy::weight(Method* method) {
1004   return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1);
1005 }
1006 
1007 // Apply heuristics and return true if x should be compiled before y
1008 bool CompilationPolicy::compare_methods(Method* x, Method* y) {
1009   if (x->highest_comp_level() > y->highest_comp_level()) {
1010     // recompilation after deopt
1011     return true;
1012   } else
1013     if (x->highest_comp_level() == y->highest_comp_level()) {
1014       if (weight(x) > weight(y)) {
1015         return true;
1016       }
1017     }
1018   return false;
1019 }
1020 
1021 // Is method profiled enough?
1022 bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
1023   MethodData* mdo = method->method_data();
1024   if (mdo != nullptr) {
1025     int i = mdo->invocation_count_delta();
1026     int b = mdo->backedge_count_delta();
1027     return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
1028   }
1029   return false;
1030 }
1031 
1032 
1033 // Determine is a method is mature.
1034 bool CompilationPolicy::is_mature(MethodData* mdo) {
1035   if (Arguments::is_compiler_only()) {
1036     // Always report profiles as immature with -Xcomp
1037     return false;
1038   }
1039   methodHandle mh(Thread::current(), mdo->method());
1040   if (mdo != nullptr) {
1041     int i = mdo->invocation_count();
1042     int b = mdo->backedge_count();
1043     double k = ProfileMaturityPercentage / 100.0;
1044     return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
1045   }
1046   return false;
1047 }
1048 
1049 // If a method is old enough and is still in the interpreter we would want to
1050 // start profiling without waiting for the compiled method to arrive.
1051 // We also take the load on compilers into the account.
1052 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
1053   if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
1054     return false;
1055   }
1056 
1057   if (TrainingData::have_data()) {
1058     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1059     if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
1060       return true;
1061     }
1062   }
1063 
1064   if (is_old(method)) {
1065     return true;
1066   }
1067 
1068   int i = method->invocation_count();
1069   int b = method->backedge_count();
1070   double k = Tier0ProfilingStartPercentage / 100.0;
1071 
1072   // If the top level compiler is not keeping up, delay profiling.
1073   if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
1074     return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1075   }
1076   return false;
1077 }
1078 
1079 // Inlining control: if we're compiling a profiled method with C1 and the callee
1080 // is known to have OSRed in a C2 version, don't inline it.
1081 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
1082   CompLevel comp_level = (CompLevel)env->comp_level();
1083   if (comp_level == CompLevel_full_profile ||
1084       comp_level == CompLevel_limited_profile) {
1085     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
1086   }
1087   return false;
1088 }
1089 
1090 // Create MDO if necessary.
1091 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
1092   if (mh->is_native() ||
1093       mh->is_abstract() ||
1094       mh->is_accessor() ||
1095       mh->is_constant_getter()) {
1096     return;
1097   }
1098   if (mh->method_data() == nullptr) {
1099     Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
1100   }
1101   if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
1102     MethodData* mdo = mh->method_data();
1103     if (mdo != nullptr) {
1104       frame last_frame = THREAD->last_frame();
1105       if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
1106         int bci = last_frame.interpreter_frame_bci();
1107         address dp = mdo->bci_to_dp(bci);
1108         last_frame.interpreter_frame_set_mdp(dp);
1109       }
1110     }
1111   }
1112 }
1113 
1114 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1115   precond(mtd != nullptr);
1116   precond(cur_level == CompLevel_none);
1117 
1118   if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
1119     return CompLevel_none;
1120   }
1121 
1122   bool training_has_profile = (mtd->final_profile() != nullptr);
1123   if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
1124     return CompLevel_full_profile;
1125   }
1126 
1127   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1128   switch (highest_training_level) {
1129     case CompLevel_limited_profile:
1130     case CompLevel_full_profile:
1131       return CompLevel_limited_profile;
1132     case CompLevel_simple:
1133       return CompLevel_simple;
1134     case CompLevel_none:
1135       return CompLevel_none;
1136     default:
1137       break;
1138   }
1139 
1140   // Now handle the case of level 4.
1141   assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
1142   if (!training_has_profile) {
1143     // The method was a part of a level 4 compile, but don't have a stored profile,
1144     // we need to profile it.
1145     return CompLevel_full_profile;
1146   }
1147   const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
1148   // If we deopted, then we reprofile
1149   if (deopt && !is_method_profiled(method)) {
1150     return CompLevel_full_profile;
1151   }
1152 
1153   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1154   assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
1155   // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
1156   if (SkipTier2IfPossible && ctd->init_deps_left() == 0) {
1157     if (method->method_data() == nullptr) {
1158       create_mdo(method, THREAD);
1159     }
1160     return CompLevel_full_optimization;
1161   }
1162 
1163   // Otherwise go to level 2
1164   return CompLevel_limited_profile;
1165 }
1166 
1167 
1168 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1169   precond(mtd != nullptr);
1170   precond(cur_level == CompLevel_limited_profile);
1171 
1172   // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
1173 
1174   // But first, check if we have a saved profile
1175   bool training_has_profile = (mtd->final_profile() != nullptr);
1176   if (!training_has_profile) {
1177     return CompLevel_full_profile;
1178   }
1179 
1180 
1181   assert(training_has_profile, "Have to have a profile to be here");
1182   // Check if the method is ready
1183   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1184   if (ctd != nullptr && ctd->init_deps_left() == 0) {
1185     if (method->method_data() == nullptr) {
1186       create_mdo(method, THREAD);
1187     }
1188     return CompLevel_full_optimization;
1189   }
1190 
1191   // Otherwise stay at the current level
1192   return CompLevel_limited_profile;
1193 }
1194 
1195 
1196 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1197   precond(mtd != nullptr);
1198   precond(cur_level == CompLevel_full_profile);
1199 
1200   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1201   // We have method at the full profile level and we also know that it's possibly an important method.
1202   if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
1203     // Check if it is adequately profiled
1204     if (is_method_profiled(method)) {
1205       return CompLevel_full_optimization;
1206     }
1207   }
1208 
1209   // Otherwise stay at the current level
1210   return CompLevel_full_profile;
1211 }
1212 
1213 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1214   precond(MethodTrainingData::have_data());
1215 
1216   // If there is no training data recorded for this method, bail out.
1217   if (mtd == nullptr) {
1218     return cur_level;
1219   }
1220 
1221   CompLevel next_level = cur_level;
1222   switch(cur_level) {
1223     default: break;
1224     case CompLevel_none:
1225       next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
1226       break;
1227     case CompLevel_limited_profile:
1228       next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
1229       break;
1230     case CompLevel_full_profile:
1231       next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
1232       break;
1233   }
1234 
1235   // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
1236   if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
1237     return CompLevel_none;
1238   }
1239   if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
1240     return CompLevel_none;
1241   }
1242   return (cur_level != next_level) ? limit_level(next_level) : cur_level;
1243 }
1244 
1245 /*
1246  * Method states:
1247  *   0 - interpreter (CompLevel_none)
1248  *   1 - pure C1 (CompLevel_simple)
1249  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
1250  *   3 - C1 with full profiling (CompLevel_full_profile)
1251  *   4 - C2 or Graal (CompLevel_full_optimization)
1252  *
1253  * Common state transition patterns:
1254  * a. 0 -> 3 -> 4.
1255  *    The most common path. But note that even in this straightforward case
1256  *    profiling can start at level 0 and finish at level 3.
1257  *
1258  * b. 0 -> 2 -> 3 -> 4.
1259  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
1260  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
1261  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
1262  *
1263  * c. 0 -> (3->2) -> 4.
1264  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
1265  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
1266  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
1267  *    without full profiling while c2 is compiling.
1268  *
1269  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
1270  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
1271  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
1272  *
1273  * e. 0 -> 4.
1274  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
1275  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
1276  *    the compiled version already exists).
1277  *
1278  * Note that since state 0 can be reached from any other state via deoptimization different loops
1279  * are possible.
1280  *
1281  */
1282 
1283 // Common transition function. Given a predicate determines if a method should transition to another level.
1284 template<typename Predicate>
1285 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
1286   CompLevel next_level = cur_level;
1287 
1288   if (force_comp_at_level_simple(method)) {
1289     next_level = CompLevel_simple;
1290   } else if (is_trivial(method) || method->is_native()) {
1291     // We do not care if there is profiling data for these methods, throw them to compiler.
1292     next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
1293   } else if (MethodTrainingData::have_data()) {
1294     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1295     if (mtd == nullptr) {
1296       // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
1297       // Feed it to the standard TF with no profiling delay.
1298       next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1299     } else {
1300       next_level = trained_transition(method, cur_level, mtd, THREAD);
1301       if (cur_level == next_level) {
1302         // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
1303         // In order to catch possible pathologies due to behavior change we feed the event to the regular
1304         // TF but with profiling delay.
1305         next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback);
1306       }
1307     }
1308   } else {
1309     next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1310   }
1311   return (next_level != cur_level) ? limit_level(next_level) : next_level;
1312 }
1313 
1314 
1315 template<typename Predicate>
1316 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1317   CompLevel next_level = cur_level;
1318   switch(cur_level) {
1319   default: break;
1320   case CompLevel_none:
1321     next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1322     break;
1323   case CompLevel_limited_profile:
1324     next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1325     break;
1326   case CompLevel_full_profile:
1327     next_level = transition_from_full_profile<Predicate>(method, cur_level);
1328     break;
1329   }
1330   return next_level;
1331 }
1332 
1333 template<typename Predicate>
1334 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1335   precond(cur_level == CompLevel_none);
1336   CompLevel next_level = cur_level;
1337   int i = method->invocation_count();
1338   int b = method->backedge_count();
1339   double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0;
1340   // If we were at full profile level, would we switch to full opt?
1341   if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
1342     next_level = CompLevel_full_optimization;
1343   } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) {
1344     // C1-generated fully profiled code is about 30% slower than the limited profile
1345     // code that has only invocation and backedge counters. The observation is that
1346     // if C2 queue is large enough we can spend too much time in the fully profiled code
1347     // while waiting for C2 to pick the method from the queue. To alleviate this problem
1348     // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
1349     // we choose to compile a limited profiled version and then recompile with full profiling
1350     // when the load on C2 goes down.
1351     if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) {
1352       next_level = CompLevel_limited_profile;
1353     } else {
1354       next_level = CompLevel_full_profile;
1355     }
1356   }
1357   return next_level;
1358 }
1359 
1360 template<typename Predicate>
1361 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
1362   precond(cur_level == CompLevel_full_profile);
1363   CompLevel next_level = cur_level;
1364   MethodData* mdo = method->method_data();
1365   if (mdo != nullptr) {
1366     if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
1367       int mdo_i = mdo->invocation_count_delta();
1368       int mdo_b = mdo->backedge_count_delta();
1369       if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
1370         next_level = CompLevel_full_optimization;
1371       }
1372     } else {
1373       next_level = CompLevel_full_optimization;
1374     }
1375   }
1376   return next_level;
1377 }
1378 
1379 template<typename Predicate>
1380 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1381   precond(cur_level == CompLevel_limited_profile);
1382   CompLevel next_level = cur_level;
1383   int i = method->invocation_count();
1384   int b = method->backedge_count();
1385   double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0;
1386   MethodData* mdo = method->method_data();
1387   if (mdo != nullptr) {
1388     if (mdo->would_profile()) {
1389       if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1390                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1391                               Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1392         next_level = CompLevel_full_profile;
1393       }
1394     } else {
1395       next_level = CompLevel_full_optimization;
1396     }
1397   } else {
1398     // If there is no MDO we need to profile
1399     if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1400                             Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1401                             Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1402       next_level = CompLevel_full_profile;
1403     }
1404   }
1405   if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
1406     next_level = CompLevel_full_optimization;
1407   }
1408   return next_level;
1409 }
1410 
1411 
1412 // Determine if a method should be compiled with a normal entry point at a different level.
1413 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1414   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
1415   CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
1416 
1417   // If OSR method level is greater than the regular method level, the levels should be
1418   // equalized by raising the regular method level in order to avoid OSRs during each
1419   // invocation of the method.
1420   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
1421     MethodData* mdo = method->method_data();
1422     guarantee(mdo != nullptr, "MDO should not be nullptr");
1423     if (mdo->invocation_count() >= 1) {
1424       next_level = CompLevel_full_optimization;
1425     }
1426   } else {
1427     next_level = MAX2(osr_level, next_level);
1428   }
1429 #if INCLUDE_JVMCI
1430   if (EnableJVMCI && UseJVMCICompiler &&
1431       next_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
1432     next_level = cur_level;
1433   }
1434 #endif
1435   return next_level;
1436 }
1437 
1438 // Determine if we should do an OSR compilation of a given method.
1439 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1440   CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
1441   if (cur_level == CompLevel_none) {
1442     // If there is a live OSR method that means that we deopted to the interpreter
1443     // for the transition.
1444     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
1445     if (osr_level > CompLevel_none) {
1446       return osr_level;
1447     }
1448   }
1449   return next_level;
1450 }
1451 
1452 // Handle the invocation event.
1453 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
1454                                                       CompLevel level, nmethod* nm, TRAPS) {
1455   if (should_create_mdo(mh, level)) {
1456     create_mdo(mh, THREAD);
1457   }
1458   CompLevel next_level = call_event(mh, level, THREAD);
1459   if (next_level != level) {
1460     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
1461       compile(mh, InvocationEntryBci, next_level, THREAD);
1462     }
1463   }
1464 }
1465 
1466 // Handle the back branch event. Notice that we can compile the method
1467 // with a regular entry from here.
1468 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
1469                                                      int bci, CompLevel level, nmethod* nm, TRAPS) {
1470   if (should_create_mdo(mh, level)) {
1471     create_mdo(mh, THREAD);
1472   }
1473   // Check if MDO should be created for the inlined method
1474   if (should_create_mdo(imh, level)) {
1475     create_mdo(imh, THREAD);
1476   }
1477 
1478   if (is_compilation_enabled()) {
1479     CompLevel next_osr_level = loop_event(imh, level, THREAD);
1480     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
1481     // At the very least compile the OSR version
1482     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
1483       compile(imh, bci, next_osr_level, CHECK);
1484     }
1485 
1486     // Use loop event as an opportunity to also check if there's been
1487     // enough calls.
1488     CompLevel cur_level, next_level;
1489     if (mh() != imh()) { // If there is an enclosing method
1490       {
1491         guarantee(nm != nullptr, "Should have nmethod here");
1492         cur_level = comp_level(mh());
1493         next_level = call_event(mh, cur_level, THREAD);
1494 
1495         if (max_osr_level == CompLevel_full_optimization) {
1496           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
1497           bool make_not_entrant = false;
1498           if (nm->is_osr_method()) {
1499             // This is an osr method, just make it not entrant and recompile later if needed
1500             make_not_entrant = true;
1501           } else {
1502             if (next_level != CompLevel_full_optimization) {
1503               // next_level is not full opt, so we need to recompile the
1504               // enclosing method without the inlinee
1505               cur_level = CompLevel_none;
1506               make_not_entrant = true;
1507             }
1508           }
1509           if (make_not_entrant) {
1510             if (PrintTieredEvents) {
1511               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
1512               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
1513             }
1514             nm->make_not_entrant("OSR invalidation, back branch");
1515           }
1516         }
1517         // Fix up next_level if necessary to avoid deopts
1518         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
1519           next_level = CompLevel_full_profile;
1520         }
1521         if (cur_level != next_level) {
1522           if (!CompileBroker::compilation_is_in_queue(mh)) {
1523             compile(mh, InvocationEntryBci, next_level, THREAD);
1524           }
1525         }
1526       }
1527     } else {
1528       cur_level = comp_level(mh());
1529       next_level = call_event(mh, cur_level, THREAD);
1530       if (next_level != cur_level) {
1531         if (!CompileBroker::compilation_is_in_queue(mh)) {
1532           compile(mh, InvocationEntryBci, next_level, THREAD);
1533         }
1534       }
1535     }
1536   }
1537 }
1538