1 /* 2 * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotLinkedClassBulkLoader.hpp" 26 #include "code/scopeDesc.hpp" 27 #include "compiler/compilationPolicy.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "compiler/compilerDefinitions.inline.hpp" 30 #include "compiler/compilerOracle.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "oops/method.inline.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "oops/trainingData.hpp" 36 #include "prims/jvmtiExport.hpp" 37 #include "runtime/arguments.hpp" 38 #include "runtime/deoptimization.hpp" 39 #include "runtime/frame.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/globals_extension.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/safepoint.hpp" 44 #include "runtime/safepointVerifiers.hpp" 45 #ifdef COMPILER1 46 #include "c1/c1_Compiler.hpp" 47 #endif 48 #ifdef COMPILER2 49 #include "opto/c2compiler.hpp" 50 #endif 51 #if INCLUDE_JVMCI 52 #include "jvmci/jvmci.hpp" 53 #endif 54 55 int64_t CompilationPolicy::_start_time = 0; 56 int CompilationPolicy::_c1_count = 0; 57 int CompilationPolicy::_c2_count = 0; 58 double CompilationPolicy::_increase_threshold_at_ratio = 0; 59 60 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue; 61 62 void compilationPolicy_init() { 63 CompilationPolicy::initialize(); 64 } 65 66 int CompilationPolicy::compiler_count(CompLevel comp_level) { 67 if (is_c1_compile(comp_level)) { 68 return c1_count(); 69 } else if (is_c2_compile(comp_level)) { 70 return c2_count(); 71 } 72 return 0; 73 } 74 75 // Returns true if m must be compiled before executing it 76 // This is intended to force compiles for methods (usually for 77 // debugging) that would otherwise be interpreted for some reason. 78 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 79 // Don't allow Xcomp to cause compiles in replay mode 80 if (ReplayCompiles) return false; 81 82 if (m->has_compiled_code()) return false; // already compiled 83 if (!can_be_compiled(m, comp_level)) return false; 84 85 return !UseInterpreter || // must compile all methods 86 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 87 } 88 89 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) { 90 if (m->method_holder()->is_not_initialized()) { 91 // 'is_not_initialized' means not only '!is_initialized', but also that 92 // initialization has not been started yet ('!being_initialized') 93 // Do not force compilation of methods in uninitialized classes. 94 return; 95 } 96 if (!m->is_native() && MethodTrainingData::have_data()) { 97 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 98 if (mtd == nullptr) { 99 return; // there is no training data recorded for m 100 } 101 CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level()); 102 CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD); 103 if (next_level != cur_level && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) { 104 if (PrintTieredEvents) { 105 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level); 106 } 107 CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, CompileTask::Reason_MustBeCompiled, THREAD); 108 if (HAS_PENDING_EXCEPTION) { 109 CLEAR_PENDING_EXCEPTION; 110 } 111 } 112 } 113 } 114 115 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 116 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 117 // don't force compilation, resolve was on behalf of compiler 118 return; 119 } 120 if (m->method_holder()->is_not_initialized()) { 121 // 'is_not_initialized' means not only '!is_initialized', but also that 122 // initialization has not been started yet ('!being_initialized') 123 // Do not force compilation of methods in uninitialized classes. 124 // Note that doing this would throw an assert later, 125 // in CompileBroker::compile_method. 126 // We sometimes use the link resolver to do reflective lookups 127 // even before classes are initialized. 128 return; 129 } 130 131 if (must_be_compiled(m)) { 132 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 133 CompLevel level = initial_compile_level(m); 134 if (PrintTieredEvents) { 135 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level); 136 } 137 CompileBroker::compile_method(m, InvocationEntryBci, level, 0, CompileTask::Reason_MustBeCompiled, THREAD); 138 } 139 } 140 141 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, JavaThread* current) { 142 if (!klass->has_init_deps_processed()) { 143 ResourceMark rm; 144 log_debug(training)("Replay training: %s", klass->external_name()); 145 146 KlassTrainingData* ktd = KlassTrainingData::find(klass); 147 if (ktd != nullptr) { 148 guarantee(ktd->has_holder(), ""); 149 ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit 150 assert(klass->has_init_deps_processed(), ""); 151 if (AOTCompileEagerly) { 152 ktd->iterate_comp_deps([&](CompileTrainingData* ctd) { 153 if (ctd->init_deps_left_acquire() == 0) { 154 MethodTrainingData* mtd = ctd->method(); 155 if (mtd->has_holder()) { 156 const methodHandle mh(current, const_cast<Method*>(mtd->holder())); 157 CompilationPolicy::maybe_compile_early(mh, current); 158 } 159 } 160 }); 161 } 162 } 163 } 164 } 165 166 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, JavaThread* current) { 167 assert(klass->is_initialized(), ""); 168 if (TrainingData::have_data() && klass->in_aot_cache()) { 169 _training_replay_queue.push(klass, TrainingReplayQueue_lock, current); 170 } 171 } 172 173 // For TrainingReplayQueue 174 template<> 175 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) { 176 int pos = 0; 177 for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) { 178 ResourceMark rm; 179 InstanceKlass* ik = cur->value(); 180 st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name()); 181 } 182 } 183 184 void CompilationPolicy::replay_training_at_init_loop(JavaThread* current) { 185 while (!CompileBroker::is_compilation_disabled_forever()) { 186 InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, current); 187 if (ik != nullptr) { 188 replay_training_at_init_impl(ik, current); 189 } 190 } 191 } 192 193 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 194 if (comp_level == CompLevel_any) { 195 if (CompilerConfig::is_c1_only()) { 196 comp_level = CompLevel_simple; 197 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 198 comp_level = CompLevel_full_optimization; 199 } 200 } 201 return comp_level; 202 } 203 204 // Returns true if m is allowed to be compiled 205 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 206 // allow any levels for WhiteBox 207 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level); 208 209 if (m->is_abstract()) return false; 210 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 211 212 // Math intrinsics should never be compiled as this can lead to 213 // monotonicity problems because the interpreter will prefer the 214 // compiled code to the intrinsic version. This can't happen in 215 // production because the invocation counter can't be incremented 216 // but we shouldn't expose the system to this problem in testing 217 // modes. 218 if (!AbstractInterpreter::can_be_compiled(m)) { 219 return false; 220 } 221 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 222 if (comp_level == CompLevel_any || is_compile(comp_level)) { 223 return !m->is_not_compilable(comp_level); 224 } 225 return false; 226 } 227 228 // Returns true if m is allowed to be osr compiled 229 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 230 bool result = false; 231 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 232 if (comp_level == CompLevel_any || is_compile(comp_level)) { 233 result = !m->is_not_osr_compilable(comp_level); 234 } 235 return (result && can_be_compiled(m, comp_level)); 236 } 237 238 bool CompilationPolicy::is_compilation_enabled() { 239 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 240 return CompileBroker::should_compile_new_jobs(); 241 } 242 243 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 244 // Remove unloaded methods from the queue 245 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 246 CompileTask* next = task->next(); 247 if (task->is_unloaded()) { 248 compile_queue->remove_and_mark_stale(task); 249 } 250 task = next; 251 } 252 #if INCLUDE_JVMCI 253 if (UseJVMCICompiler && !BackgroundCompilation) { 254 /* 255 * In blocking compilation mode, the CompileBroker will make 256 * compilations submitted by a JVMCI compiler thread non-blocking. These 257 * compilations should be scheduled after all blocking compilations 258 * to service non-compiler related compilations sooner and reduce the 259 * chance of such compilations timing out. 260 */ 261 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 262 if (task->is_blocking()) { 263 return task; 264 } 265 } 266 } 267 #endif 268 return compile_queue->first(); 269 } 270 271 // Simple methods are as good being compiled with C1 as C2. 272 // Determine if a given method is such a case. 273 bool CompilationPolicy::is_trivial(const methodHandle& method) { 274 if (method->is_accessor() || 275 method->is_constant_getter()) { 276 return true; 277 } 278 return false; 279 } 280 281 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 282 if (CompilationModeFlag::quick_internal()) { 283 #if INCLUDE_JVMCI 284 if (UseJVMCICompiler) { 285 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 286 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 287 return true; 288 } 289 } 290 #endif 291 } 292 return false; 293 } 294 295 CompLevel CompilationPolicy::comp_level(Method* method) { 296 nmethod *nm = method->code(); 297 if (nm != nullptr && nm->is_in_use()) { 298 return (CompLevel)nm->comp_level(); 299 } 300 return CompLevel_none; 301 } 302 303 // Call and loop predicates determine whether a transition to a higher 304 // compilation level should be performed (pointers to predicate functions 305 // are passed to common()). 306 // Tier?LoadFeedback is basically a coefficient that determines of 307 // how many methods per compiler thread can be in the queue before 308 // the threshold values double. 309 class LoopPredicate : AllStatic { 310 public: 311 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 312 double threshold_scaling; 313 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 314 scale *= threshold_scaling; 315 } 316 switch(cur_level) { 317 case CompLevel_none: 318 case CompLevel_limited_profile: 319 return b >= Tier3BackEdgeThreshold * scale; 320 case CompLevel_full_profile: 321 return b >= Tier4BackEdgeThreshold * scale; 322 default: 323 return true; 324 } 325 } 326 327 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 328 double k = 1; 329 switch(cur_level) { 330 case CompLevel_none: 331 // Fall through 332 case CompLevel_limited_profile: { 333 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 334 break; 335 } 336 case CompLevel_full_profile: { 337 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 338 break; 339 } 340 default: 341 return true; 342 } 343 return apply_scaled(method, cur_level, i, b, k); 344 } 345 }; 346 347 class CallPredicate : AllStatic { 348 public: 349 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 350 double threshold_scaling; 351 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 352 scale *= threshold_scaling; 353 } 354 switch(cur_level) { 355 case CompLevel_none: 356 case CompLevel_limited_profile: 357 return (i >= Tier3InvocationThreshold * scale) || 358 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 359 case CompLevel_full_profile: 360 return (i >= Tier4InvocationThreshold * scale) || 361 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 362 default: 363 return true; 364 } 365 } 366 367 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 368 double k = 1; 369 switch(cur_level) { 370 case CompLevel_none: 371 case CompLevel_limited_profile: { 372 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 373 break; 374 } 375 case CompLevel_full_profile: { 376 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 377 break; 378 } 379 default: 380 return true; 381 } 382 return apply_scaled(method, cur_level, i, b, k); 383 } 384 }; 385 386 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 387 int comp_count = compiler_count(level); 388 if (comp_count > 0 && feedback_k > 0) { 389 double queue_size = CompileBroker::queue_size(level); 390 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 391 392 // Increase C1 compile threshold when the code cache is filled more 393 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 394 // The main intention is to keep enough free space for C2 compiled code 395 // to achieve peak performance if the code cache is under stress. 396 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 397 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 398 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 399 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 400 } 401 } 402 return k; 403 } 404 return 1; 405 } 406 407 void CompilationPolicy::print_counters_on(outputStream* st, const char* prefix, Method* m) { 408 int invocation_count = m->invocation_count(); 409 int backedge_count = m->backedge_count(); 410 MethodData* mdh = m->method_data(); 411 int mdo_invocations = 0, mdo_backedges = 0; 412 int mdo_invocations_start = 0, mdo_backedges_start = 0; 413 if (mdh != nullptr) { 414 mdo_invocations = mdh->invocation_count(); 415 mdo_backedges = mdh->backedge_count(); 416 mdo_invocations_start = mdh->invocation_count_start(); 417 mdo_backedges_start = mdh->backedge_count_start(); 418 } 419 st->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 420 invocation_count, backedge_count, prefix, 421 mdo_invocations, mdo_invocations_start, 422 mdo_backedges, mdo_backedges_start); 423 st->print(" %smax levels=%d,%d", prefix, m->highest_comp_level(), m->highest_osr_comp_level()); 424 } 425 426 void CompilationPolicy::print_training_data_on(outputStream* st, const char* prefix, Method* method) { 427 methodHandle m(Thread::current(), method); 428 st->print(" %smtd: ", prefix); 429 MethodTrainingData* mtd = MethodTrainingData::find(m); 430 if (mtd == nullptr) { 431 st->print("null"); 432 } else { 433 MethodData* md = mtd->final_profile(); 434 st->print("mdo="); 435 if (md == nullptr) { 436 st->print("null"); 437 } else { 438 int mdo_invocations = md->invocation_count(); 439 int mdo_backedges = md->backedge_count(); 440 int mdo_invocations_start = md->invocation_count_start(); 441 int mdo_backedges_start = md->backedge_count_start(); 442 st->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start); 443 } 444 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 445 st->print(", deps="); 446 if (ctd == nullptr) { 447 st->print("null"); 448 } else { 449 st->print("%d", ctd->init_deps_left_acquire()); 450 } 451 } 452 } 453 454 // Print an event. 455 void CompilationPolicy::print_event_on(outputStream *st, EventType type, Method* m, Method* im, int bci, CompLevel level) { 456 bool inlinee_event = m != im; 457 458 st->print("%lf: [", os::elapsedTime()); 459 460 switch(type) { 461 case CALL: 462 st->print("call"); 463 break; 464 case LOOP: 465 st->print("loop"); 466 break; 467 case COMPILE: 468 st->print("compile"); 469 break; 470 case FORCE_COMPILE: 471 st->print("force-compile"); 472 break; 473 case REMOVE_FROM_QUEUE: 474 st->print("remove-from-queue"); 475 break; 476 case UPDATE_IN_QUEUE: 477 st->print("update-in-queue"); 478 break; 479 case REPROFILE: 480 st->print("reprofile"); 481 break; 482 case MAKE_NOT_ENTRANT: 483 st->print("make-not-entrant"); 484 break; 485 default: 486 st->print("unknown"); 487 } 488 489 st->print(" level=%d ", level); 490 491 ResourceMark rm; 492 char *method_name = m->name_and_sig_as_C_string(); 493 st->print("[%s", method_name); 494 if (inlinee_event) { 495 char *inlinee_name = im->name_and_sig_as_C_string(); 496 st->print(" [%s]] ", inlinee_name); 497 } 498 else st->print("] "); 499 st->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 500 CompileBroker::queue_size(CompLevel_full_optimization)); 501 502 st->print(" rate="); 503 if (m->prev_time() == 0) st->print("n/a"); 504 else st->print("%f", m->rate()); 505 506 st->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 507 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 508 509 if (type != COMPILE) { 510 print_counters_on(st, "", m); 511 if (inlinee_event) { 512 print_counters_on(st, "inlinee ", im); 513 } 514 st->print(" compilable="); 515 bool need_comma = false; 516 if (!m->is_not_compilable(CompLevel_full_profile)) { 517 st->print("c1"); 518 need_comma = true; 519 } 520 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 521 if (need_comma) st->print(","); 522 st->print("c1-osr"); 523 need_comma = true; 524 } 525 if (!m->is_not_compilable(CompLevel_full_optimization)) { 526 if (need_comma) st->print(","); 527 st->print("c2"); 528 need_comma = true; 529 } 530 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 531 if (need_comma) st->print(","); 532 st->print("c2-osr"); 533 } 534 st->print(" status="); 535 if (m->queued_for_compilation()) { 536 st->print("in-queue"); 537 } else st->print("idle"); 538 539 print_training_data_on(st, "", m); 540 if (inlinee_event) { 541 print_training_data_on(st, "inlinee ", im); 542 } 543 } 544 st->print_cr("]"); 545 546 } 547 548 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) { 549 stringStream s; 550 print_event_on(&s, type, m, im, bci, level); 551 ResourceMark rm; 552 tty->print("%s", s.as_string()); 553 } 554 555 void CompilationPolicy::initialize() { 556 if (!CompilerConfig::is_interpreter_only()) { 557 int count = CICompilerCount; 558 bool c1_only = CompilerConfig::is_c1_only(); 559 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 560 int min_count = (c1_only || c2_only) ? 1 : 2; 561 562 #ifdef _LP64 563 // Turn on ergonomic compiler count selection 564 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 565 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 566 } 567 if (CICompilerCountPerCPU) { 568 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 569 int log_cpu = log2i(os::active_processor_count()); 570 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 571 count = MAX2(log_cpu * loglog_cpu * 3 / 2, min_count); 572 // Make sure there is enough space in the code cache to hold all the compiler buffers 573 size_t c1_size = 0; 574 #ifdef COMPILER1 575 c1_size = Compiler::code_buffer_size(); 576 #endif 577 size_t c2_size = 0; 578 #ifdef COMPILER2 579 c2_size = C2Compiler::initial_code_buffer_size(); 580 #endif 581 size_t buffer_size = 0; 582 if (c1_only) { 583 buffer_size = c1_size; 584 } else if (c2_only) { 585 buffer_size = c2_size; 586 } else { 587 buffer_size = c1_size / 3 + 2 * c2_size / 3; 588 } 589 size_t max_count = (NonNMethodCodeHeapSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / buffer_size; 590 if ((size_t)count > max_count) { 591 // Lower the compiler count such that all buffers fit into the code cache 592 count = MAX2((int)max_count, min_count); 593 } 594 FLAG_SET_ERGO(CICompilerCount, count); 595 } 596 #else 597 // On 32-bit systems, the number of compiler threads is limited to 3. 598 // On these systems, the virtual address space available to the JVM 599 // is usually limited to 2-4 GB (the exact value depends on the platform). 600 // As the compilers (especially C2) can consume a large amount of 601 // memory, scaling the number of compiler threads with the number of 602 // available cores can result in the exhaustion of the address space 603 /// available to the VM and thus cause the VM to crash. 604 if (FLAG_IS_DEFAULT(CICompilerCount)) { 605 count = 3; 606 FLAG_SET_ERGO(CICompilerCount, count); 607 } 608 #endif // _LP64 609 610 if (c1_only) { 611 // No C2 compiler threads are needed 612 set_c1_count(count); 613 } else if (c2_only) { 614 // No C1 compiler threads are needed 615 set_c2_count(count); 616 } else { 617 #if INCLUDE_JVMCI 618 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 619 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 620 int c1_count = MAX2(count - libjvmci_count, 1); 621 set_c2_count(libjvmci_count); 622 set_c1_count(c1_count); 623 } else 624 #endif 625 { 626 set_c1_count(MAX2(count / 3, 1)); 627 set_c2_count(MAX2(count - c1_count(), 1)); 628 } 629 } 630 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 631 set_increase_threshold_at_ratio(); 632 } else { 633 // Interpreter mode creates no compilers 634 FLAG_SET_ERGO(CICompilerCount, 0); 635 } 636 set_start_time(nanos_to_millis(os::javaTimeNanos())); 637 } 638 639 640 #ifdef ASSERT 641 bool CompilationPolicy::verify_level(CompLevel level) { 642 if (TieredCompilation && level > TieredStopAtLevel) { 643 return false; 644 } 645 // Check if there is a compiler to process the requested level 646 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 647 return false; 648 } 649 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 650 return false; 651 } 652 653 // Interpreter level is always valid. 654 if (level == CompLevel_none) { 655 return true; 656 } 657 if (CompilationModeFlag::normal()) { 658 return true; 659 } else if (CompilationModeFlag::quick_only()) { 660 return level == CompLevel_simple; 661 } else if (CompilationModeFlag::high_only()) { 662 return level == CompLevel_full_optimization; 663 } else if (CompilationModeFlag::high_only_quick_internal()) { 664 return level == CompLevel_full_optimization || level == CompLevel_simple; 665 } 666 return false; 667 } 668 #endif 669 670 671 CompLevel CompilationPolicy::highest_compile_level() { 672 CompLevel level = CompLevel_none; 673 // Setup the maximum level available for the current compiler configuration. 674 if (!CompilerConfig::is_interpreter_only()) { 675 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 676 level = CompLevel_full_optimization; 677 } else if (CompilerConfig::is_c1_enabled()) { 678 if (CompilerConfig::is_c1_simple_only()) { 679 level = CompLevel_simple; 680 } else { 681 level = CompLevel_full_profile; 682 } 683 } 684 } 685 // Clamp the maximum level with TieredStopAtLevel. 686 if (TieredCompilation) { 687 level = MIN2(level, (CompLevel) TieredStopAtLevel); 688 } 689 690 // Fix it up if after the clamping it has become invalid. 691 // Bring it monotonically down depending on the next available level for 692 // the compilation mode. 693 if (!CompilationModeFlag::normal()) { 694 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 695 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 696 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 697 if (CompilationModeFlag::quick_only()) { 698 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 699 level = CompLevel_simple; 700 } 701 } else if (CompilationModeFlag::high_only()) { 702 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 703 level = CompLevel_none; 704 } 705 } else if (CompilationModeFlag::high_only_quick_internal()) { 706 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 707 level = CompLevel_simple; 708 } 709 } 710 } 711 712 assert(verify_level(level), "Invalid highest compilation level: %d", level); 713 return level; 714 } 715 716 CompLevel CompilationPolicy::limit_level(CompLevel level) { 717 level = MIN2(level, highest_compile_level()); 718 assert(verify_level(level), "Invalid compilation level: %d", level); 719 return level; 720 } 721 722 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 723 CompLevel level = CompLevel_any; 724 if (CompilationModeFlag::normal()) { 725 level = CompLevel_full_profile; 726 } else if (CompilationModeFlag::quick_only()) { 727 level = CompLevel_simple; 728 } else if (CompilationModeFlag::high_only()) { 729 level = CompLevel_full_optimization; 730 } else if (CompilationModeFlag::high_only_quick_internal()) { 731 if (force_comp_at_level_simple(method)) { 732 level = CompLevel_simple; 733 } else { 734 level = CompLevel_full_optimization; 735 } 736 } 737 assert(level != CompLevel_any, "Unhandled compilation mode"); 738 return limit_level(level); 739 } 740 741 // Set carry flags on the counters if necessary 742 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 743 MethodCounters *mcs = method->method_counters(); 744 if (mcs != nullptr) { 745 mcs->invocation_counter()->set_carry_on_overflow(); 746 mcs->backedge_counter()->set_carry_on_overflow(); 747 } 748 MethodData* mdo = method->method_data(); 749 if (mdo != nullptr) { 750 mdo->invocation_counter()->set_carry_on_overflow(); 751 mdo->backedge_counter()->set_carry_on_overflow(); 752 } 753 } 754 755 // Called with the queue locked and with at least one element 756 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) { 757 CompileTask *max_blocking_task = nullptr; 758 CompileTask *max_task = nullptr; 759 Method* max_method = nullptr; 760 761 int64_t t = nanos_to_millis(os::javaTimeNanos()); 762 // Iterate through the queue and find a method with a maximum rate. 763 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 764 CompileTask* next_task = task->next(); 765 // If a method was unloaded or has been stale for some time, remove it from the queue. 766 // Blocking tasks and tasks submitted from whitebox API don't become stale 767 if (task->is_unloaded()) { 768 compile_queue->remove_and_mark_stale(task); 769 task = next_task; 770 continue; 771 } 772 if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) { 773 // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate 774 // selection and/or any level adjustments. Just return them in order. 775 return task; 776 } 777 Method* method = task->method(); 778 methodHandle mh(THREAD, method); 779 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 780 if (PrintTieredEvents) { 781 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 782 } 783 method->clear_queued_for_compilation(); 784 compile_queue->remove_and_mark_stale(task); 785 task = next_task; 786 continue; 787 } 788 update_rate(t, mh); 789 if (max_task == nullptr || compare_methods(method, max_method)) { 790 // Select a method with the highest rate 791 max_task = task; 792 max_method = method; 793 } 794 795 if (task->is_blocking()) { 796 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 797 max_blocking_task = task; 798 } 799 } 800 801 task = next_task; 802 } 803 804 if (max_blocking_task != nullptr) { 805 // In blocking compilation mode, the CompileBroker will make 806 // compilations submitted by a JVMCI compiler thread non-blocking. These 807 // compilations should be scheduled after all blocking compilations 808 // to service non-compiler related compilations sooner and reduce the 809 // chance of such compilations timing out. 810 max_task = max_blocking_task; 811 max_method = max_task->method(); 812 } 813 814 methodHandle max_method_h(THREAD, max_method); 815 816 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 817 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 818 max_task->set_comp_level(CompLevel_limited_profile); 819 820 if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) { 821 if (PrintTieredEvents) { 822 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 823 } 824 compile_queue->remove_and_mark_stale(max_task); 825 max_method->clear_queued_for_compilation(); 826 return nullptr; 827 } 828 829 if (PrintTieredEvents) { 830 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 831 } 832 } 833 return max_task; 834 } 835 836 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 837 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 838 if (PrintTieredEvents) { 839 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 840 } 841 MethodData* mdo = sd->method()->method_data(); 842 if (mdo != nullptr) { 843 mdo->reset_start_counters(); 844 } 845 if (sd->is_top()) break; 846 } 847 } 848 849 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 850 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 851 if (PrintTieredEvents) { 852 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 853 } 854 855 #if INCLUDE_JVMCI 856 if (EnableJVMCI && UseJVMCICompiler && 857 comp_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) { 858 return nullptr; 859 } 860 #endif 861 862 if (comp_level == CompLevel_none && 863 JvmtiExport::can_post_interpreter_events() && 864 THREAD->is_interp_only_mode()) { 865 return nullptr; 866 } 867 if (ReplayCompiles) { 868 // Don't trigger other compiles in testing mode 869 return nullptr; 870 } 871 872 handle_counter_overflow(method); 873 if (method() != inlinee()) { 874 handle_counter_overflow(inlinee); 875 } 876 877 if (bci == InvocationEntryBci) { 878 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 879 } else { 880 // method == inlinee if the event originated in the main method 881 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 882 // Check if event led to a higher level OSR compilation 883 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 884 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 885 // It's not possible to reach the expected level so fall back to simple. 886 expected_comp_level = CompLevel_simple; 887 } 888 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 889 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 890 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 891 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 892 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 893 // Perform OSR with new nmethod 894 return osr_nm; 895 } 896 } 897 } 898 return nullptr; 899 } 900 901 // Check if the method can be compiled, change level if necessary 902 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 903 assert(verify_level(level), "Invalid compilation level requested: %d", level); 904 905 if (level == CompLevel_none) { 906 if (mh->has_compiled_code()) { 907 // Happens when we switch to interpreter to profile. 908 MutexLocker ml(Compile_lock); 909 NoSafepointVerifier nsv; 910 if (mh->has_compiled_code()) { 911 mh->code()->make_not_used(); 912 } 913 // Deoptimize immediately (we don't have to wait for a compile). 914 JavaThread* jt = THREAD; 915 RegisterMap map(jt, 916 RegisterMap::UpdateMap::skip, 917 RegisterMap::ProcessFrames::include, 918 RegisterMap::WalkContinuation::skip); 919 frame fr = jt->last_frame().sender(&map); 920 Deoptimization::deoptimize_frame(jt, fr.id()); 921 } 922 return; 923 } 924 925 if (!CompilationModeFlag::disable_intermediate()) { 926 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 927 // in the interpreter and then compile with C2 (the transition function will request that, 928 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 929 // pure C1. 930 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 931 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 932 compile(mh, bci, CompLevel_simple, THREAD); 933 } 934 return; 935 } 936 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 937 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 938 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 939 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 940 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 941 osr_nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_FOR_COMPILING_WITH_C1); 942 } 943 compile(mh, bci, CompLevel_simple, THREAD); 944 } 945 return; 946 } 947 } 948 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 949 return; 950 } 951 if (!CompileBroker::compilation_is_in_queue(mh)) { 952 if (PrintTieredEvents) { 953 print_event(COMPILE, mh(), mh(), bci, level); 954 } 955 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 956 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 957 CompileBroker::compile_method(mh, bci, level, hot_count, CompileTask::Reason_Tiered, THREAD); 958 } 959 } 960 961 // update_rate() is called from select_task() while holding a compile queue lock. 962 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) { 963 // Skip update if counters are absent. 964 // Can't allocate them since we are holding compile queue lock. 965 if (method->method_counters() == nullptr) return; 966 967 if (is_old(method)) { 968 // We don't remove old methods from the queue, 969 // so we can just zero the rate. 970 method->set_rate(0); 971 return; 972 } 973 974 // We don't update the rate if we've just came out of a safepoint. 975 // delta_s is the time since last safepoint in milliseconds. 976 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 977 int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 978 // How many events were there since the last time? 979 int event_count = method->invocation_count() + method->backedge_count(); 980 int delta_e = event_count - method->prev_event_count(); 981 982 // We should be running for at least 1ms. 983 if (delta_s >= TieredRateUpdateMinTime) { 984 // And we must've taken the previous point at least 1ms before. 985 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 986 method->set_prev_time(t); 987 method->set_prev_event_count(event_count); 988 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 989 } else { 990 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 991 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 992 method->set_rate(0); 993 } 994 } 995 } 996 } 997 998 // Check if this method has been stale for a given number of milliseconds. 999 // See select_task(). 1000 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) { 1001 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1002 int64_t delta_t = t - method->prev_time(); 1003 if (delta_t > timeout && delta_s > timeout) { 1004 int event_count = method->invocation_count() + method->backedge_count(); 1005 int delta_e = event_count - method->prev_event_count(); 1006 // Return true if there were no events. 1007 return delta_e == 0; 1008 } 1009 return false; 1010 } 1011 1012 // We don't remove old methods from the compile queue even if they have 1013 // very low activity. See select_task(). 1014 bool CompilationPolicy::is_old(const methodHandle& method) { 1015 int i = method->invocation_count(); 1016 int b = method->backedge_count(); 1017 double k = TieredOldPercentage / 100.0; 1018 1019 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1020 } 1021 1022 double CompilationPolicy::weight(Method* method) { 1023 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 1024 } 1025 1026 // Apply heuristics and return true if x should be compiled before y 1027 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 1028 if (x->highest_comp_level() > y->highest_comp_level()) { 1029 // recompilation after deopt 1030 return true; 1031 } else 1032 if (x->highest_comp_level() == y->highest_comp_level()) { 1033 if (weight(x) > weight(y)) { 1034 return true; 1035 } 1036 } 1037 return false; 1038 } 1039 1040 // Is method profiled enough? 1041 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 1042 MethodData* mdo = method->method_data(); 1043 if (mdo != nullptr) { 1044 int i = mdo->invocation_count_delta(); 1045 int b = mdo->backedge_count_delta(); 1046 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 1047 } 1048 return false; 1049 } 1050 1051 1052 // Determine is a method is mature. 1053 bool CompilationPolicy::is_mature(MethodData* mdo) { 1054 if (Arguments::is_compiler_only()) { 1055 // Always report profiles as immature with -Xcomp 1056 return false; 1057 } 1058 methodHandle mh(Thread::current(), mdo->method()); 1059 if (mdo != nullptr) { 1060 int i = mdo->invocation_count(); 1061 int b = mdo->backedge_count(); 1062 double k = ProfileMaturityPercentage / 100.0; 1063 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 1064 } 1065 return false; 1066 } 1067 1068 // If a method is old enough and is still in the interpreter we would want to 1069 // start profiling without waiting for the compiled method to arrive. 1070 // We also take the load on compilers into the account. 1071 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 1072 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 1073 return false; 1074 } 1075 1076 if (TrainingData::have_data()) { 1077 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1078 if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) { 1079 return true; 1080 } 1081 } 1082 1083 if (is_old(method)) { 1084 return true; 1085 } 1086 1087 int i = method->invocation_count(); 1088 int b = method->backedge_count(); 1089 double k = Tier0ProfilingStartPercentage / 100.0; 1090 1091 // If the top level compiler is not keeping up, delay profiling. 1092 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 1093 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1094 } 1095 return false; 1096 } 1097 1098 // Inlining control: if we're compiling a profiled method with C1 and the callee 1099 // is known to have OSRed in a C2 version, don't inline it. 1100 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 1101 CompLevel comp_level = (CompLevel)env->comp_level(); 1102 if (comp_level == CompLevel_full_profile || 1103 comp_level == CompLevel_limited_profile) { 1104 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 1105 } 1106 return false; 1107 } 1108 1109 // Create MDO if necessary. 1110 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 1111 if (mh->is_native() || 1112 mh->is_abstract() || 1113 mh->is_accessor() || 1114 mh->is_constant_getter()) { 1115 return; 1116 } 1117 if (mh->method_data() == nullptr) { 1118 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 1119 } 1120 if (ProfileInterpreter && THREAD->has_last_Java_frame()) { 1121 MethodData* mdo = mh->method_data(); 1122 if (mdo != nullptr) { 1123 frame last_frame = THREAD->last_frame(); 1124 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 1125 int bci = last_frame.interpreter_frame_bci(); 1126 address dp = mdo->bci_to_dp(bci); 1127 last_frame.interpreter_frame_set_mdp(dp); 1128 } 1129 } 1130 } 1131 } 1132 1133 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1134 precond(mtd != nullptr); 1135 precond(cur_level == CompLevel_none); 1136 1137 if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) { 1138 return CompLevel_none; 1139 } 1140 1141 bool training_has_profile = (mtd->final_profile() != nullptr); 1142 if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) { 1143 return CompLevel_full_profile; 1144 } 1145 1146 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1147 switch (highest_training_level) { 1148 case CompLevel_limited_profile: 1149 case CompLevel_full_profile: 1150 return CompLevel_limited_profile; 1151 case CompLevel_simple: 1152 return CompLevel_simple; 1153 case CompLevel_none: 1154 return CompLevel_none; 1155 default: 1156 break; 1157 } 1158 1159 // Now handle the case of level 4. 1160 assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level); 1161 if (!training_has_profile) { 1162 // The method was a part of a level 4 compile, but don't have a stored profile, 1163 // we need to profile it. 1164 return CompLevel_full_profile; 1165 } 1166 const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization); 1167 // If we deopted, then we reprofile 1168 if (deopt && !is_method_profiled(method)) { 1169 return CompLevel_full_profile; 1170 } 1171 1172 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1173 assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization"); 1174 // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately 1175 if (SkipTier2IfPossible && ctd->init_deps_left_acquire() == 0) { 1176 if (method->method_data() == nullptr) { 1177 create_mdo(method, THREAD); 1178 } 1179 return CompLevel_full_optimization; 1180 } 1181 1182 // Otherwise go to level 2 1183 return CompLevel_limited_profile; 1184 } 1185 1186 1187 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1188 precond(mtd != nullptr); 1189 precond(cur_level == CompLevel_limited_profile); 1190 1191 // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready. 1192 1193 // But first, check if we have a saved profile 1194 bool training_has_profile = (mtd->final_profile() != nullptr); 1195 if (!training_has_profile) { 1196 return CompLevel_full_profile; 1197 } 1198 1199 1200 assert(training_has_profile, "Have to have a profile to be here"); 1201 // Check if the method is ready 1202 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1203 if (ctd != nullptr && ctd->init_deps_left_acquire() == 0) { 1204 if (method->method_data() == nullptr) { 1205 create_mdo(method, THREAD); 1206 } 1207 return CompLevel_full_optimization; 1208 } 1209 1210 // Otherwise stay at the current level 1211 return CompLevel_limited_profile; 1212 } 1213 1214 1215 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1216 precond(mtd != nullptr); 1217 precond(cur_level == CompLevel_full_profile); 1218 1219 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1220 // We have method at the full profile level and we also know that it's possibly an important method. 1221 if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) { 1222 // Check if it is adequately profiled 1223 if (is_method_profiled(method)) { 1224 return CompLevel_full_optimization; 1225 } 1226 } 1227 1228 // Otherwise stay at the current level 1229 return CompLevel_full_profile; 1230 } 1231 1232 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1233 precond(MethodTrainingData::have_data()); 1234 1235 // If there is no training data recorded for this method, bail out. 1236 if (mtd == nullptr) { 1237 return cur_level; 1238 } 1239 1240 CompLevel next_level = cur_level; 1241 switch(cur_level) { 1242 default: break; 1243 case CompLevel_none: 1244 next_level = trained_transition_from_none(method, cur_level, mtd, THREAD); 1245 break; 1246 case CompLevel_limited_profile: 1247 next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD); 1248 break; 1249 case CompLevel_full_profile: 1250 next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD); 1251 break; 1252 } 1253 1254 // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now. 1255 if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) { 1256 return CompLevel_none; 1257 } 1258 if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) { 1259 return CompLevel_none; 1260 } 1261 return (cur_level != next_level) ? limit_level(next_level) : cur_level; 1262 } 1263 1264 /* 1265 * Method states: 1266 * 0 - interpreter (CompLevel_none) 1267 * 1 - pure C1 (CompLevel_simple) 1268 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 1269 * 3 - C1 with full profiling (CompLevel_full_profile) 1270 * 4 - C2 or Graal (CompLevel_full_optimization) 1271 * 1272 * Common state transition patterns: 1273 * a. 0 -> 3 -> 4. 1274 * The most common path. But note that even in this straightforward case 1275 * profiling can start at level 0 and finish at level 3. 1276 * 1277 * b. 0 -> 2 -> 3 -> 4. 1278 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 1279 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 1280 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 1281 * 1282 * c. 0 -> (3->2) -> 4. 1283 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1284 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1285 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1286 * without full profiling while c2 is compiling. 1287 * 1288 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1289 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1290 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1291 * 1292 * e. 0 -> 4. 1293 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1294 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1295 * the compiled version already exists). 1296 * 1297 * Note that since state 0 can be reached from any other state via deoptimization different loops 1298 * are possible. 1299 * 1300 */ 1301 1302 // Common transition function. Given a predicate determines if a method should transition to another level. 1303 template<typename Predicate> 1304 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) { 1305 CompLevel next_level = cur_level; 1306 1307 if (force_comp_at_level_simple(method)) { 1308 next_level = CompLevel_simple; 1309 } else if (is_trivial(method) || method->is_native()) { 1310 // We do not care if there is profiling data for these methods, throw them to compiler. 1311 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1312 } else if (MethodTrainingData::have_data()) { 1313 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1314 if (mtd == nullptr) { 1315 // We haven't see compilations of this method in training. It's either very cold or the behavior changed. 1316 // Feed it to the standard TF with no profiling delay. 1317 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1318 } else { 1319 next_level = trained_transition(method, cur_level, mtd, THREAD); 1320 if (cur_level == next_level) { 1321 // trained_transtion() is going to return the same level if no startup/warmup optimizations apply. 1322 // In order to catch possible pathologies due to behavior change we feed the event to the regular 1323 // TF but with profiling delay. 1324 next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback); 1325 } 1326 } 1327 } else { 1328 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1329 } 1330 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1331 } 1332 1333 1334 template<typename Predicate> 1335 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1336 CompLevel next_level = cur_level; 1337 switch(cur_level) { 1338 default: break; 1339 case CompLevel_none: 1340 next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1341 break; 1342 case CompLevel_limited_profile: 1343 next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1344 break; 1345 case CompLevel_full_profile: 1346 next_level = transition_from_full_profile<Predicate>(method, cur_level); 1347 break; 1348 } 1349 return next_level; 1350 } 1351 1352 template<typename Predicate> 1353 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1354 precond(cur_level == CompLevel_none); 1355 CompLevel next_level = cur_level; 1356 int i = method->invocation_count(); 1357 int b = method->backedge_count(); 1358 double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0; 1359 // If we were at full profile level, would we switch to full opt? 1360 if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) { 1361 next_level = CompLevel_full_optimization; 1362 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) { 1363 // C1-generated fully profiled code is about 30% slower than the limited profile 1364 // code that has only invocation and backedge counters. The observation is that 1365 // if C2 queue is large enough we can spend too much time in the fully profiled code 1366 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1367 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1368 // we choose to compile a limited profiled version and then recompile with full profiling 1369 // when the load on C2 goes down. 1370 if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) { 1371 next_level = CompLevel_limited_profile; 1372 } else { 1373 next_level = CompLevel_full_profile; 1374 } 1375 } 1376 return next_level; 1377 } 1378 1379 template<typename Predicate> 1380 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) { 1381 precond(cur_level == CompLevel_full_profile); 1382 CompLevel next_level = cur_level; 1383 MethodData* mdo = method->method_data(); 1384 if (mdo != nullptr) { 1385 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1386 int mdo_i = mdo->invocation_count_delta(); 1387 int mdo_b = mdo->backedge_count_delta(); 1388 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1389 next_level = CompLevel_full_optimization; 1390 } 1391 } else { 1392 next_level = CompLevel_full_optimization; 1393 } 1394 } 1395 return next_level; 1396 } 1397 1398 template<typename Predicate> 1399 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1400 precond(cur_level == CompLevel_limited_profile); 1401 CompLevel next_level = cur_level; 1402 int i = method->invocation_count(); 1403 int b = method->backedge_count(); 1404 double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0; 1405 MethodData* mdo = method->method_data(); 1406 if (mdo != nullptr) { 1407 if (mdo->would_profile()) { 1408 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1409 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1410 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1411 next_level = CompLevel_full_profile; 1412 } 1413 } else { 1414 next_level = CompLevel_full_optimization; 1415 } 1416 } else { 1417 // If there is no MDO we need to profile 1418 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1419 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1420 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1421 next_level = CompLevel_full_profile; 1422 } 1423 } 1424 if (next_level == CompLevel_full_profile && is_method_profiled(method)) { 1425 next_level = CompLevel_full_optimization; 1426 } 1427 return next_level; 1428 } 1429 1430 1431 // Determine if a method should be compiled with a normal entry point at a different level. 1432 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1433 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true)); 1434 CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method)); 1435 1436 // If OSR method level is greater than the regular method level, the levels should be 1437 // equalized by raising the regular method level in order to avoid OSRs during each 1438 // invocation of the method. 1439 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1440 MethodData* mdo = method->method_data(); 1441 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1442 if (mdo->invocation_count() >= 1) { 1443 next_level = CompLevel_full_optimization; 1444 } 1445 } else { 1446 next_level = MAX2(osr_level, next_level); 1447 } 1448 #if INCLUDE_JVMCI 1449 if (EnableJVMCI && UseJVMCICompiler && 1450 next_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) { 1451 next_level = cur_level; 1452 } 1453 #endif 1454 return next_level; 1455 } 1456 1457 // Determine if we should do an OSR compilation of a given method. 1458 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1459 CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true); 1460 if (cur_level == CompLevel_none) { 1461 // If there is a live OSR method that means that we deopted to the interpreter 1462 // for the transition. 1463 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1464 if (osr_level > CompLevel_none) { 1465 return osr_level; 1466 } 1467 } 1468 return next_level; 1469 } 1470 1471 // Handle the invocation event. 1472 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1473 CompLevel level, nmethod* nm, TRAPS) { 1474 if (should_create_mdo(mh, level)) { 1475 create_mdo(mh, THREAD); 1476 } 1477 CompLevel next_level = call_event(mh, level, THREAD); 1478 if (next_level != level) { 1479 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1480 compile(mh, InvocationEntryBci, next_level, THREAD); 1481 } 1482 } 1483 } 1484 1485 // Handle the back branch event. Notice that we can compile the method 1486 // with a regular entry from here. 1487 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1488 int bci, CompLevel level, nmethod* nm, TRAPS) { 1489 if (should_create_mdo(mh, level)) { 1490 create_mdo(mh, THREAD); 1491 } 1492 // Check if MDO should be created for the inlined method 1493 if (should_create_mdo(imh, level)) { 1494 create_mdo(imh, THREAD); 1495 } 1496 1497 if (is_compilation_enabled()) { 1498 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1499 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1500 // At the very least compile the OSR version 1501 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1502 compile(imh, bci, next_osr_level, CHECK); 1503 } 1504 1505 // Use loop event as an opportunity to also check if there's been 1506 // enough calls. 1507 CompLevel cur_level, next_level; 1508 if (mh() != imh()) { // If there is an enclosing method 1509 { 1510 guarantee(nm != nullptr, "Should have nmethod here"); 1511 cur_level = comp_level(mh()); 1512 next_level = call_event(mh, cur_level, THREAD); 1513 1514 if (max_osr_level == CompLevel_full_optimization) { 1515 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1516 bool make_not_entrant = false; 1517 if (nm->is_osr_method()) { 1518 // This is an osr method, just make it not entrant and recompile later if needed 1519 make_not_entrant = true; 1520 } else { 1521 if (next_level != CompLevel_full_optimization) { 1522 // next_level is not full opt, so we need to recompile the 1523 // enclosing method without the inlinee 1524 cur_level = CompLevel_none; 1525 make_not_entrant = true; 1526 } 1527 } 1528 if (make_not_entrant) { 1529 if (PrintTieredEvents) { 1530 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1531 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1532 } 1533 nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_BACK_BRANCH); 1534 } 1535 } 1536 // Fix up next_level if necessary to avoid deopts 1537 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1538 next_level = CompLevel_full_profile; 1539 } 1540 if (cur_level != next_level) { 1541 if (!CompileBroker::compilation_is_in_queue(mh)) { 1542 compile(mh, InvocationEntryBci, next_level, THREAD); 1543 } 1544 } 1545 } 1546 } else { 1547 cur_level = comp_level(mh()); 1548 next_level = call_event(mh, cur_level, THREAD); 1549 if (next_level != cur_level) { 1550 if (!CompileBroker::compilation_is_in_queue(mh)) { 1551 compile(mh, InvocationEntryBci, next_level, THREAD); 1552 } 1553 } 1554 } 1555 } 1556 } 1557