1 /* 2 * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotLinkedClassBulkLoader.hpp" 26 #include "code/scopeDesc.hpp" 27 #include "compiler/compilationPolicy.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "compiler/compilerDefinitions.inline.hpp" 30 #include "compiler/compilerOracle.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "oops/method.inline.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "oops/trainingData.hpp" 36 #include "prims/jvmtiExport.hpp" 37 #include "runtime/arguments.hpp" 38 #include "runtime/deoptimization.hpp" 39 #include "runtime/frame.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/globals_extension.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/safepoint.hpp" 44 #include "runtime/safepointVerifiers.hpp" 45 #ifdef COMPILER1 46 #include "c1/c1_Compiler.hpp" 47 #endif 48 #ifdef COMPILER2 49 #include "opto/c2compiler.hpp" 50 #endif 51 #if INCLUDE_JVMCI 52 #include "jvmci/jvmci.hpp" 53 #endif 54 55 int64_t CompilationPolicy::_start_time = 0; 56 int CompilationPolicy::_c1_count = 0; 57 int CompilationPolicy::_c2_count = 0; 58 double CompilationPolicy::_increase_threshold_at_ratio = 0; 59 60 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue; 61 62 void compilationPolicy_init() { 63 CompilationPolicy::initialize(); 64 } 65 66 int CompilationPolicy::compiler_count(CompLevel comp_level) { 67 if (is_c1_compile(comp_level)) { 68 return c1_count(); 69 } else if (is_c2_compile(comp_level)) { 70 return c2_count(); 71 } 72 return 0; 73 } 74 75 // Returns true if m must be compiled before executing it 76 // This is intended to force compiles for methods (usually for 77 // debugging) that would otherwise be interpreted for some reason. 78 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 79 // Don't allow Xcomp to cause compiles in replay mode 80 if (ReplayCompiles) return false; 81 82 if (m->has_compiled_code()) return false; // already compiled 83 if (!can_be_compiled(m, comp_level)) return false; 84 85 return !UseInterpreter || // must compile all methods 86 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 87 } 88 89 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) { 90 if (m->method_holder()->is_not_initialized()) { 91 // 'is_not_initialized' means not only '!is_initialized', but also that 92 // initialization has not been started yet ('!being_initialized') 93 // Do not force compilation of methods in uninitialized classes. 94 return; 95 } 96 if (!m->is_native() && MethodTrainingData::have_data()) { 97 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 98 if (mtd == nullptr) { 99 return; // there is no training data recorded for m 100 } 101 CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level()); 102 CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD); 103 if (next_level != cur_level && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) { 104 if (PrintTieredEvents) { 105 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level); 106 } 107 CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, CompileTask::Reason_MustBeCompiled, THREAD); 108 if (HAS_PENDING_EXCEPTION) { 109 CLEAR_PENDING_EXCEPTION; 110 } 111 } 112 } 113 } 114 115 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 116 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 117 // don't force compilation, resolve was on behalf of compiler 118 return; 119 } 120 if (m->method_holder()->is_not_initialized()) { 121 // 'is_not_initialized' means not only '!is_initialized', but also that 122 // initialization has not been started yet ('!being_initialized') 123 // Do not force compilation of methods in uninitialized classes. 124 // Note that doing this would throw an assert later, 125 // in CompileBroker::compile_method. 126 // We sometimes use the link resolver to do reflective lookups 127 // even before classes are initialized. 128 return; 129 } 130 131 if (must_be_compiled(m)) { 132 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 133 CompLevel level = initial_compile_level(m); 134 if (PrintTieredEvents) { 135 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level); 136 } 137 CompileBroker::compile_method(m, InvocationEntryBci, level, 0, CompileTask::Reason_MustBeCompiled, THREAD); 138 } 139 } 140 141 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) { 142 if (!klass->has_init_deps_processed()) { 143 ResourceMark rm; 144 log_debug(training)("Replay training: %s", klass->external_name()); 145 146 KlassTrainingData* ktd = KlassTrainingData::find(klass); 147 if (ktd != nullptr) { 148 guarantee(ktd->has_holder(), ""); 149 ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit 150 assert(klass->has_init_deps_processed(), ""); 151 if (AOTCompileEagerly) { 152 ktd->iterate_comp_deps([&](CompileTrainingData* ctd) { 153 if (ctd->init_deps_left() == 0) { 154 MethodTrainingData* mtd = ctd->method(); 155 if (mtd->has_holder()) { 156 const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder())); 157 CompilationPolicy::maybe_compile_early(mh, THREAD); 158 } 159 } 160 }); 161 } 162 } 163 } 164 } 165 166 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) { 167 assert(klass->is_initialized(), ""); 168 if (TrainingData::have_data() && klass->is_shared()) { 169 _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD); 170 } 171 } 172 173 // For TrainingReplayQueue 174 template<> 175 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) { 176 int pos = 0; 177 for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) { 178 ResourceMark rm; 179 InstanceKlass* ik = cur->value(); 180 st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name()); 181 } 182 } 183 184 void CompilationPolicy::replay_training_at_init_loop(TRAPS) { 185 while (!CompileBroker::is_compilation_disabled_forever()) { 186 InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD); 187 if (ik != nullptr) { 188 replay_training_at_init_impl(ik, THREAD); 189 } 190 } 191 } 192 193 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 194 if (comp_level == CompLevel_any) { 195 if (CompilerConfig::is_c1_only()) { 196 comp_level = CompLevel_simple; 197 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 198 comp_level = CompLevel_full_optimization; 199 } 200 } 201 return comp_level; 202 } 203 204 // Returns true if m is allowed to be compiled 205 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 206 // allow any levels for WhiteBox 207 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level); 208 209 if (m->is_abstract()) return false; 210 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 211 212 // Math intrinsics should never be compiled as this can lead to 213 // monotonicity problems because the interpreter will prefer the 214 // compiled code to the intrinsic version. This can't happen in 215 // production because the invocation counter can't be incremented 216 // but we shouldn't expose the system to this problem in testing 217 // modes. 218 if (!AbstractInterpreter::can_be_compiled(m)) { 219 return false; 220 } 221 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 222 if (comp_level == CompLevel_any || is_compile(comp_level)) { 223 return !m->is_not_compilable(comp_level); 224 } 225 return false; 226 } 227 228 // Returns true if m is allowed to be osr compiled 229 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 230 bool result = false; 231 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 232 if (comp_level == CompLevel_any || is_compile(comp_level)) { 233 result = !m->is_not_osr_compilable(comp_level); 234 } 235 return (result && can_be_compiled(m, comp_level)); 236 } 237 238 bool CompilationPolicy::is_compilation_enabled() { 239 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 240 return CompileBroker::should_compile_new_jobs(); 241 } 242 243 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 244 // Remove unloaded methods from the queue 245 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 246 CompileTask* next = task->next(); 247 if (task->is_unloaded()) { 248 compile_queue->remove_and_mark_stale(task); 249 } 250 task = next; 251 } 252 #if INCLUDE_JVMCI 253 if (UseJVMCICompiler && !BackgroundCompilation) { 254 /* 255 * In blocking compilation mode, the CompileBroker will make 256 * compilations submitted by a JVMCI compiler thread non-blocking. These 257 * compilations should be scheduled after all blocking compilations 258 * to service non-compiler related compilations sooner and reduce the 259 * chance of such compilations timing out. 260 */ 261 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 262 if (task->is_blocking()) { 263 return task; 264 } 265 } 266 } 267 #endif 268 return compile_queue->first(); 269 } 270 271 // Simple methods are as good being compiled with C1 as C2. 272 // Determine if a given method is such a case. 273 bool CompilationPolicy::is_trivial(const methodHandle& method) { 274 if (method->is_accessor() || 275 method->is_constant_getter()) { 276 return true; 277 } 278 return false; 279 } 280 281 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 282 if (CompilationModeFlag::quick_internal()) { 283 #if INCLUDE_JVMCI 284 if (UseJVMCICompiler) { 285 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 286 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 287 return true; 288 } 289 } 290 #endif 291 } 292 return false; 293 } 294 295 CompLevel CompilationPolicy::comp_level(Method* method) { 296 nmethod *nm = method->code(); 297 if (nm != nullptr && nm->is_in_use()) { 298 return (CompLevel)nm->comp_level(); 299 } 300 return CompLevel_none; 301 } 302 303 // Call and loop predicates determine whether a transition to a higher 304 // compilation level should be performed (pointers to predicate functions 305 // are passed to common()). 306 // Tier?LoadFeedback is basically a coefficient that determines of 307 // how many methods per compiler thread can be in the queue before 308 // the threshold values double. 309 class LoopPredicate : AllStatic { 310 public: 311 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 312 double threshold_scaling; 313 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 314 scale *= threshold_scaling; 315 } 316 switch(cur_level) { 317 case CompLevel_none: 318 case CompLevel_limited_profile: 319 return b >= Tier3BackEdgeThreshold * scale; 320 case CompLevel_full_profile: 321 return b >= Tier4BackEdgeThreshold * scale; 322 default: 323 return true; 324 } 325 } 326 327 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 328 double k = 1; 329 switch(cur_level) { 330 case CompLevel_none: 331 // Fall through 332 case CompLevel_limited_profile: { 333 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 334 break; 335 } 336 case CompLevel_full_profile: { 337 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 338 break; 339 } 340 default: 341 return true; 342 } 343 return apply_scaled(method, cur_level, i, b, k); 344 } 345 }; 346 347 class CallPredicate : AllStatic { 348 public: 349 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 350 double threshold_scaling; 351 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 352 scale *= threshold_scaling; 353 } 354 switch(cur_level) { 355 case CompLevel_none: 356 case CompLevel_limited_profile: 357 return (i >= Tier3InvocationThreshold * scale) || 358 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 359 case CompLevel_full_profile: 360 return (i >= Tier4InvocationThreshold * scale) || 361 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 362 default: 363 return true; 364 } 365 } 366 367 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 368 double k = 1; 369 switch(cur_level) { 370 case CompLevel_none: 371 case CompLevel_limited_profile: { 372 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 373 break; 374 } 375 case CompLevel_full_profile: { 376 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 377 break; 378 } 379 default: 380 return true; 381 } 382 return apply_scaled(method, cur_level, i, b, k); 383 } 384 }; 385 386 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 387 int comp_count = compiler_count(level); 388 if (comp_count > 0) { 389 double queue_size = CompileBroker::queue_size(level); 390 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 391 392 // Increase C1 compile threshold when the code cache is filled more 393 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 394 // The main intention is to keep enough free space for C2 compiled code 395 // to achieve peak performance if the code cache is under stress. 396 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 397 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 398 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 399 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 400 } 401 } 402 return k; 403 } 404 return 1; 405 } 406 407 void CompilationPolicy::print_counters(const char* prefix, Method* m) { 408 int invocation_count = m->invocation_count(); 409 int backedge_count = m->backedge_count(); 410 MethodData* mdh = m->method_data(); 411 int mdo_invocations = 0, mdo_backedges = 0; 412 int mdo_invocations_start = 0, mdo_backedges_start = 0; 413 if (mdh != nullptr) { 414 mdo_invocations = mdh->invocation_count(); 415 mdo_backedges = mdh->backedge_count(); 416 mdo_invocations_start = mdh->invocation_count_start(); 417 mdo_backedges_start = mdh->backedge_count_start(); 418 } 419 tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 420 invocation_count, backedge_count, prefix, 421 mdo_invocations, mdo_invocations_start, 422 mdo_backedges, mdo_backedges_start); 423 tty->print(" %smax levels=%d,%d", prefix, 424 m->highest_comp_level(), m->highest_osr_comp_level()); 425 } 426 427 void CompilationPolicy::print_training_data(const char* prefix, Method* method) { 428 methodHandle m(Thread::current(), method); 429 tty->print(" %smtd: ", prefix); 430 MethodTrainingData* mtd = MethodTrainingData::find(m); 431 if (mtd == nullptr) { 432 tty->print("null"); 433 } else { 434 MethodData* md = mtd->final_profile(); 435 tty->print("mdo="); 436 if (md == nullptr) { 437 tty->print("null"); 438 } else { 439 int mdo_invocations = md->invocation_count(); 440 int mdo_backedges = md->backedge_count(); 441 int mdo_invocations_start = md->invocation_count_start(); 442 int mdo_backedges_start = md->backedge_count_start(); 443 tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start); 444 } 445 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 446 tty->print(", deps="); 447 if (ctd == nullptr) { 448 tty->print("null"); 449 } else { 450 tty->print("%d", ctd->init_deps_left()); 451 } 452 } 453 } 454 455 // Print an event. 456 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) { 457 bool inlinee_event = m != im; 458 459 ttyLocker tty_lock; 460 tty->print("%lf: [", os::elapsedTime()); 461 462 switch(type) { 463 case CALL: 464 tty->print("call"); 465 break; 466 case LOOP: 467 tty->print("loop"); 468 break; 469 case COMPILE: 470 tty->print("compile"); 471 break; 472 case FORCE_COMPILE: 473 tty->print("force-compile"); 474 break; 475 case REMOVE_FROM_QUEUE: 476 tty->print("remove-from-queue"); 477 break; 478 case UPDATE_IN_QUEUE: 479 tty->print("update-in-queue"); 480 break; 481 case REPROFILE: 482 tty->print("reprofile"); 483 break; 484 case MAKE_NOT_ENTRANT: 485 tty->print("make-not-entrant"); 486 break; 487 default: 488 tty->print("unknown"); 489 } 490 491 tty->print(" level=%d ", level); 492 493 ResourceMark rm; 494 char *method_name = m->name_and_sig_as_C_string(); 495 tty->print("[%s", method_name); 496 if (inlinee_event) { 497 char *inlinee_name = im->name_and_sig_as_C_string(); 498 tty->print(" [%s]] ", inlinee_name); 499 } 500 else tty->print("] "); 501 tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 502 CompileBroker::queue_size(CompLevel_full_optimization)); 503 504 tty->print(" rate="); 505 if (m->prev_time() == 0) tty->print("n/a"); 506 else tty->print("%f", m->rate()); 507 508 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 509 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 510 511 if (type != COMPILE) { 512 print_counters("", m); 513 if (inlinee_event) { 514 print_counters("inlinee ", im); 515 } 516 tty->print(" compilable="); 517 bool need_comma = false; 518 if (!m->is_not_compilable(CompLevel_full_profile)) { 519 tty->print("c1"); 520 need_comma = true; 521 } 522 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 523 if (need_comma) tty->print(","); 524 tty->print("c1-osr"); 525 need_comma = true; 526 } 527 if (!m->is_not_compilable(CompLevel_full_optimization)) { 528 if (need_comma) tty->print(","); 529 tty->print("c2"); 530 need_comma = true; 531 } 532 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 533 if (need_comma) tty->print(","); 534 tty->print("c2-osr"); 535 } 536 tty->print(" status="); 537 if (m->queued_for_compilation()) { 538 tty->print("in-queue"); 539 } else tty->print("idle"); 540 print_training_data("", m); 541 if (inlinee_event) { 542 print_training_data("inlinee ", im); 543 } 544 } 545 tty->print_cr("]"); 546 } 547 548 void CompilationPolicy::initialize() { 549 if (!CompilerConfig::is_interpreter_only()) { 550 int count = CICompilerCount; 551 bool c1_only = CompilerConfig::is_c1_only(); 552 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 553 554 #ifdef _LP64 555 // Turn on ergonomic compiler count selection 556 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 557 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 558 } 559 if (CICompilerCountPerCPU) { 560 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 561 int log_cpu = log2i(os::active_processor_count()); 562 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 563 count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); 564 // Make sure there is enough space in the code cache to hold all the compiler buffers 565 size_t c1_size = 0; 566 #ifdef COMPILER1 567 c1_size = Compiler::code_buffer_size(); 568 #endif 569 size_t c2_size = 0; 570 #ifdef COMPILER2 571 c2_size = C2Compiler::initial_code_buffer_size(); 572 #endif 573 size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); 574 int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size; 575 if (count > max_count) { 576 // Lower the compiler count such that all buffers fit into the code cache 577 count = MAX2(max_count, c1_only ? 1 : 2); 578 } 579 FLAG_SET_ERGO(CICompilerCount, count); 580 } 581 #else 582 // On 32-bit systems, the number of compiler threads is limited to 3. 583 // On these systems, the virtual address space available to the JVM 584 // is usually limited to 2-4 GB (the exact value depends on the platform). 585 // As the compilers (especially C2) can consume a large amount of 586 // memory, scaling the number of compiler threads with the number of 587 // available cores can result in the exhaustion of the address space 588 /// available to the VM and thus cause the VM to crash. 589 if (FLAG_IS_DEFAULT(CICompilerCount)) { 590 count = 3; 591 FLAG_SET_ERGO(CICompilerCount, count); 592 } 593 #endif 594 595 if (c1_only) { 596 // No C2 compiler thread required 597 set_c1_count(count); 598 } else if (c2_only) { 599 set_c2_count(count); 600 } else { 601 #if INCLUDE_JVMCI 602 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 603 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 604 int c1_count = MAX2(count - libjvmci_count, 1); 605 set_c2_count(libjvmci_count); 606 set_c1_count(c1_count); 607 } else 608 #endif 609 { 610 set_c1_count(MAX2(count / 3, 1)); 611 set_c2_count(MAX2(count - c1_count(), 1)); 612 } 613 } 614 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 615 set_increase_threshold_at_ratio(); 616 } 617 set_start_time(nanos_to_millis(os::javaTimeNanos())); 618 } 619 620 621 #ifdef ASSERT 622 bool CompilationPolicy::verify_level(CompLevel level) { 623 if (TieredCompilation && level > TieredStopAtLevel) { 624 return false; 625 } 626 // Check if there is a compiler to process the requested level 627 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 628 return false; 629 } 630 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 631 return false; 632 } 633 634 // Interpreter level is always valid. 635 if (level == CompLevel_none) { 636 return true; 637 } 638 if (CompilationModeFlag::normal()) { 639 return true; 640 } else if (CompilationModeFlag::quick_only()) { 641 return level == CompLevel_simple; 642 } else if (CompilationModeFlag::high_only()) { 643 return level == CompLevel_full_optimization; 644 } else if (CompilationModeFlag::high_only_quick_internal()) { 645 return level == CompLevel_full_optimization || level == CompLevel_simple; 646 } 647 return false; 648 } 649 #endif 650 651 652 CompLevel CompilationPolicy::highest_compile_level() { 653 CompLevel level = CompLevel_none; 654 // Setup the maximum level available for the current compiler configuration. 655 if (!CompilerConfig::is_interpreter_only()) { 656 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 657 level = CompLevel_full_optimization; 658 } else if (CompilerConfig::is_c1_enabled()) { 659 if (CompilerConfig::is_c1_simple_only()) { 660 level = CompLevel_simple; 661 } else { 662 level = CompLevel_full_profile; 663 } 664 } 665 } 666 // Clamp the maximum level with TieredStopAtLevel. 667 if (TieredCompilation) { 668 level = MIN2(level, (CompLevel) TieredStopAtLevel); 669 } 670 671 // Fix it up if after the clamping it has become invalid. 672 // Bring it monotonically down depending on the next available level for 673 // the compilation mode. 674 if (!CompilationModeFlag::normal()) { 675 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 676 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 677 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 678 if (CompilationModeFlag::quick_only()) { 679 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 680 level = CompLevel_simple; 681 } 682 } else if (CompilationModeFlag::high_only()) { 683 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 684 level = CompLevel_none; 685 } 686 } else if (CompilationModeFlag::high_only_quick_internal()) { 687 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 688 level = CompLevel_simple; 689 } 690 } 691 } 692 693 assert(verify_level(level), "Invalid highest compilation level: %d", level); 694 return level; 695 } 696 697 CompLevel CompilationPolicy::limit_level(CompLevel level) { 698 level = MIN2(level, highest_compile_level()); 699 assert(verify_level(level), "Invalid compilation level: %d", level); 700 return level; 701 } 702 703 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 704 CompLevel level = CompLevel_any; 705 if (CompilationModeFlag::normal()) { 706 level = CompLevel_full_profile; 707 } else if (CompilationModeFlag::quick_only()) { 708 level = CompLevel_simple; 709 } else if (CompilationModeFlag::high_only()) { 710 level = CompLevel_full_optimization; 711 } else if (CompilationModeFlag::high_only_quick_internal()) { 712 if (force_comp_at_level_simple(method)) { 713 level = CompLevel_simple; 714 } else { 715 level = CompLevel_full_optimization; 716 } 717 } 718 assert(level != CompLevel_any, "Unhandled compilation mode"); 719 return limit_level(level); 720 } 721 722 // Set carry flags on the counters if necessary 723 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 724 MethodCounters *mcs = method->method_counters(); 725 if (mcs != nullptr) { 726 mcs->invocation_counter()->set_carry_on_overflow(); 727 mcs->backedge_counter()->set_carry_on_overflow(); 728 } 729 MethodData* mdo = method->method_data(); 730 if (mdo != nullptr) { 731 mdo->invocation_counter()->set_carry_on_overflow(); 732 mdo->backedge_counter()->set_carry_on_overflow(); 733 } 734 } 735 736 // Called with the queue locked and with at least one element 737 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) { 738 CompileTask *max_blocking_task = nullptr; 739 CompileTask *max_task = nullptr; 740 Method* max_method = nullptr; 741 742 int64_t t = nanos_to_millis(os::javaTimeNanos()); 743 // Iterate through the queue and find a method with a maximum rate. 744 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 745 CompileTask* next_task = task->next(); 746 // If a method was unloaded or has been stale for some time, remove it from the queue. 747 // Blocking tasks and tasks submitted from whitebox API don't become stale 748 if (task->is_unloaded()) { 749 compile_queue->remove_and_mark_stale(task); 750 task = next_task; 751 continue; 752 } 753 if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) { 754 // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate 755 // selection and/or any level adjustments. Just return them in order. 756 return task; 757 } 758 Method* method = task->method(); 759 methodHandle mh(THREAD, method); 760 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 761 if (PrintTieredEvents) { 762 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 763 } 764 method->clear_queued_for_compilation(); 765 compile_queue->remove_and_mark_stale(task); 766 task = next_task; 767 continue; 768 } 769 update_rate(t, mh); 770 if (max_task == nullptr || compare_methods(method, max_method)) { 771 // Select a method with the highest rate 772 max_task = task; 773 max_method = method; 774 } 775 776 if (task->is_blocking()) { 777 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 778 max_blocking_task = task; 779 } 780 } 781 782 task = next_task; 783 } 784 785 if (max_blocking_task != nullptr) { 786 // In blocking compilation mode, the CompileBroker will make 787 // compilations submitted by a JVMCI compiler thread non-blocking. These 788 // compilations should be scheduled after all blocking compilations 789 // to service non-compiler related compilations sooner and reduce the 790 // chance of such compilations timing out. 791 max_task = max_blocking_task; 792 max_method = max_task->method(); 793 } 794 795 methodHandle max_method_h(THREAD, max_method); 796 797 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 798 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 799 max_task->set_comp_level(CompLevel_limited_profile); 800 801 if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) { 802 if (PrintTieredEvents) { 803 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 804 } 805 compile_queue->remove_and_mark_stale(max_task); 806 max_method->clear_queued_for_compilation(); 807 return nullptr; 808 } 809 810 if (PrintTieredEvents) { 811 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 812 } 813 } 814 return max_task; 815 } 816 817 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 818 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 819 if (PrintTieredEvents) { 820 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 821 } 822 MethodData* mdo = sd->method()->method_data(); 823 if (mdo != nullptr) { 824 mdo->reset_start_counters(); 825 } 826 if (sd->is_top()) break; 827 } 828 } 829 830 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 831 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 832 if (PrintTieredEvents) { 833 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 834 } 835 836 #if INCLUDE_JVMCI 837 if (EnableJVMCI && UseJVMCICompiler && 838 comp_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) { 839 return nullptr; 840 } 841 #endif 842 843 if (comp_level == CompLevel_none && 844 JvmtiExport::can_post_interpreter_events() && 845 THREAD->is_interp_only_mode()) { 846 return nullptr; 847 } 848 if (ReplayCompiles) { 849 // Don't trigger other compiles in testing mode 850 return nullptr; 851 } 852 853 handle_counter_overflow(method); 854 if (method() != inlinee()) { 855 handle_counter_overflow(inlinee); 856 } 857 858 if (bci == InvocationEntryBci) { 859 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 860 } else { 861 // method == inlinee if the event originated in the main method 862 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 863 // Check if event led to a higher level OSR compilation 864 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 865 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 866 // It's not possible to reach the expected level so fall back to simple. 867 expected_comp_level = CompLevel_simple; 868 } 869 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 870 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 871 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 872 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 873 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 874 // Perform OSR with new nmethod 875 return osr_nm; 876 } 877 } 878 } 879 return nullptr; 880 } 881 882 // Check if the method can be compiled, change level if necessary 883 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 884 assert(verify_level(level), "Invalid compilation level requested: %d", level); 885 886 if (level == CompLevel_none) { 887 if (mh->has_compiled_code()) { 888 // Happens when we switch to interpreter to profile. 889 MutexLocker ml(Compile_lock); 890 NoSafepointVerifier nsv; 891 if (mh->has_compiled_code()) { 892 mh->code()->make_not_used(); 893 } 894 // Deoptimize immediately (we don't have to wait for a compile). 895 JavaThread* jt = THREAD; 896 RegisterMap map(jt, 897 RegisterMap::UpdateMap::skip, 898 RegisterMap::ProcessFrames::include, 899 RegisterMap::WalkContinuation::skip); 900 frame fr = jt->last_frame().sender(&map); 901 Deoptimization::deoptimize_frame(jt, fr.id()); 902 } 903 return; 904 } 905 906 if (!CompilationModeFlag::disable_intermediate()) { 907 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 908 // in the interpreter and then compile with C2 (the transition function will request that, 909 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 910 // pure C1. 911 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 912 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 913 compile(mh, bci, CompLevel_simple, THREAD); 914 } 915 return; 916 } 917 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 918 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 919 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 920 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 921 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 922 osr_nm->make_not_entrant("OSR invalidation for compiling with C1"); 923 } 924 compile(mh, bci, CompLevel_simple, THREAD); 925 } 926 return; 927 } 928 } 929 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 930 return; 931 } 932 if (!CompileBroker::compilation_is_in_queue(mh)) { 933 if (PrintTieredEvents) { 934 print_event(COMPILE, mh(), mh(), bci, level); 935 } 936 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 937 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 938 CompileBroker::compile_method(mh, bci, level, hot_count, CompileTask::Reason_Tiered, THREAD); 939 } 940 } 941 942 // update_rate() is called from select_task() while holding a compile queue lock. 943 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) { 944 // Skip update if counters are absent. 945 // Can't allocate them since we are holding compile queue lock. 946 if (method->method_counters() == nullptr) return; 947 948 if (is_old(method)) { 949 // We don't remove old methods from the queue, 950 // so we can just zero the rate. 951 method->set_rate(0); 952 return; 953 } 954 955 // We don't update the rate if we've just came out of a safepoint. 956 // delta_s is the time since last safepoint in milliseconds. 957 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 958 int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 959 // How many events were there since the last time? 960 int event_count = method->invocation_count() + method->backedge_count(); 961 int delta_e = event_count - method->prev_event_count(); 962 963 // We should be running for at least 1ms. 964 if (delta_s >= TieredRateUpdateMinTime) { 965 // And we must've taken the previous point at least 1ms before. 966 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 967 method->set_prev_time(t); 968 method->set_prev_event_count(event_count); 969 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 970 } else { 971 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 972 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 973 method->set_rate(0); 974 } 975 } 976 } 977 } 978 979 // Check if this method has been stale for a given number of milliseconds. 980 // See select_task(). 981 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) { 982 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 983 int64_t delta_t = t - method->prev_time(); 984 if (delta_t > timeout && delta_s > timeout) { 985 int event_count = method->invocation_count() + method->backedge_count(); 986 int delta_e = event_count - method->prev_event_count(); 987 // Return true if there were no events. 988 return delta_e == 0; 989 } 990 return false; 991 } 992 993 // We don't remove old methods from the compile queue even if they have 994 // very low activity. See select_task(). 995 bool CompilationPolicy::is_old(const methodHandle& method) { 996 int i = method->invocation_count(); 997 int b = method->backedge_count(); 998 double k = TieredOldPercentage / 100.0; 999 1000 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1001 } 1002 1003 double CompilationPolicy::weight(Method* method) { 1004 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 1005 } 1006 1007 // Apply heuristics and return true if x should be compiled before y 1008 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 1009 if (x->highest_comp_level() > y->highest_comp_level()) { 1010 // recompilation after deopt 1011 return true; 1012 } else 1013 if (x->highest_comp_level() == y->highest_comp_level()) { 1014 if (weight(x) > weight(y)) { 1015 return true; 1016 } 1017 } 1018 return false; 1019 } 1020 1021 // Is method profiled enough? 1022 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 1023 MethodData* mdo = method->method_data(); 1024 if (mdo != nullptr) { 1025 int i = mdo->invocation_count_delta(); 1026 int b = mdo->backedge_count_delta(); 1027 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 1028 } 1029 return false; 1030 } 1031 1032 1033 // Determine is a method is mature. 1034 bool CompilationPolicy::is_mature(MethodData* mdo) { 1035 if (Arguments::is_compiler_only()) { 1036 // Always report profiles as immature with -Xcomp 1037 return false; 1038 } 1039 methodHandle mh(Thread::current(), mdo->method()); 1040 if (mdo != nullptr) { 1041 int i = mdo->invocation_count(); 1042 int b = mdo->backedge_count(); 1043 double k = ProfileMaturityPercentage / 100.0; 1044 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 1045 } 1046 return false; 1047 } 1048 1049 // If a method is old enough and is still in the interpreter we would want to 1050 // start profiling without waiting for the compiled method to arrive. 1051 // We also take the load on compilers into the account. 1052 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 1053 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 1054 return false; 1055 } 1056 1057 if (TrainingData::have_data()) { 1058 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1059 if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) { 1060 return true; 1061 } 1062 } 1063 1064 if (is_old(method)) { 1065 return true; 1066 } 1067 1068 int i = method->invocation_count(); 1069 int b = method->backedge_count(); 1070 double k = Tier0ProfilingStartPercentage / 100.0; 1071 1072 // If the top level compiler is not keeping up, delay profiling. 1073 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 1074 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1075 } 1076 return false; 1077 } 1078 1079 // Inlining control: if we're compiling a profiled method with C1 and the callee 1080 // is known to have OSRed in a C2 version, don't inline it. 1081 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 1082 CompLevel comp_level = (CompLevel)env->comp_level(); 1083 if (comp_level == CompLevel_full_profile || 1084 comp_level == CompLevel_limited_profile) { 1085 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 1086 } 1087 return false; 1088 } 1089 1090 // Create MDO if necessary. 1091 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 1092 if (mh->is_native() || 1093 mh->is_abstract() || 1094 mh->is_accessor() || 1095 mh->is_constant_getter()) { 1096 return; 1097 } 1098 if (mh->method_data() == nullptr) { 1099 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 1100 } 1101 if (ProfileInterpreter && THREAD->has_last_Java_frame()) { 1102 MethodData* mdo = mh->method_data(); 1103 if (mdo != nullptr) { 1104 frame last_frame = THREAD->last_frame(); 1105 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 1106 int bci = last_frame.interpreter_frame_bci(); 1107 address dp = mdo->bci_to_dp(bci); 1108 last_frame.interpreter_frame_set_mdp(dp); 1109 } 1110 } 1111 } 1112 } 1113 1114 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1115 precond(mtd != nullptr); 1116 precond(cur_level == CompLevel_none); 1117 1118 if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) { 1119 return CompLevel_none; 1120 } 1121 1122 bool training_has_profile = (mtd->final_profile() != nullptr); 1123 if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) { 1124 return CompLevel_full_profile; 1125 } 1126 1127 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1128 switch (highest_training_level) { 1129 case CompLevel_limited_profile: 1130 case CompLevel_full_profile: 1131 return CompLevel_limited_profile; 1132 case CompLevel_simple: 1133 return CompLevel_simple; 1134 case CompLevel_none: 1135 return CompLevel_none; 1136 default: 1137 break; 1138 } 1139 1140 // Now handle the case of level 4. 1141 assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level); 1142 if (!training_has_profile) { 1143 // The method was a part of a level 4 compile, but don't have a stored profile, 1144 // we need to profile it. 1145 return CompLevel_full_profile; 1146 } 1147 const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization); 1148 // If we deopted, then we reprofile 1149 if (deopt && !is_method_profiled(method)) { 1150 return CompLevel_full_profile; 1151 } 1152 1153 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1154 assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization"); 1155 // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately 1156 if (SkipTier2IfPossible && ctd->init_deps_left() == 0) { 1157 if (method->method_data() == nullptr) { 1158 create_mdo(method, THREAD); 1159 } 1160 return CompLevel_full_optimization; 1161 } 1162 1163 // Otherwise go to level 2 1164 return CompLevel_limited_profile; 1165 } 1166 1167 1168 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1169 precond(mtd != nullptr); 1170 precond(cur_level == CompLevel_limited_profile); 1171 1172 // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready. 1173 1174 // But first, check if we have a saved profile 1175 bool training_has_profile = (mtd->final_profile() != nullptr); 1176 if (!training_has_profile) { 1177 return CompLevel_full_profile; 1178 } 1179 1180 1181 assert(training_has_profile, "Have to have a profile to be here"); 1182 // Check if the method is ready 1183 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1184 if (ctd != nullptr && ctd->init_deps_left() == 0) { 1185 if (method->method_data() == nullptr) { 1186 create_mdo(method, THREAD); 1187 } 1188 return CompLevel_full_optimization; 1189 } 1190 1191 // Otherwise stay at the current level 1192 return CompLevel_limited_profile; 1193 } 1194 1195 1196 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1197 precond(mtd != nullptr); 1198 precond(cur_level == CompLevel_full_profile); 1199 1200 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1201 // We have method at the full profile level and we also know that it's possibly an important method. 1202 if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) { 1203 // Check if it is adequately profiled 1204 if (is_method_profiled(method)) { 1205 return CompLevel_full_optimization; 1206 } 1207 } 1208 1209 // Otherwise stay at the current level 1210 return CompLevel_full_profile; 1211 } 1212 1213 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1214 precond(MethodTrainingData::have_data()); 1215 1216 // If there is no training data recorded for this method, bail out. 1217 if (mtd == nullptr) { 1218 return cur_level; 1219 } 1220 1221 CompLevel next_level = cur_level; 1222 switch(cur_level) { 1223 default: break; 1224 case CompLevel_none: 1225 next_level = trained_transition_from_none(method, cur_level, mtd, THREAD); 1226 break; 1227 case CompLevel_limited_profile: 1228 next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD); 1229 break; 1230 case CompLevel_full_profile: 1231 next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD); 1232 break; 1233 } 1234 1235 // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now. 1236 if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) { 1237 return CompLevel_none; 1238 } 1239 if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) { 1240 return CompLevel_none; 1241 } 1242 return (cur_level != next_level) ? limit_level(next_level) : cur_level; 1243 } 1244 1245 /* 1246 * Method states: 1247 * 0 - interpreter (CompLevel_none) 1248 * 1 - pure C1 (CompLevel_simple) 1249 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 1250 * 3 - C1 with full profiling (CompLevel_full_profile) 1251 * 4 - C2 or Graal (CompLevel_full_optimization) 1252 * 1253 * Common state transition patterns: 1254 * a. 0 -> 3 -> 4. 1255 * The most common path. But note that even in this straightforward case 1256 * profiling can start at level 0 and finish at level 3. 1257 * 1258 * b. 0 -> 2 -> 3 -> 4. 1259 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 1260 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 1261 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 1262 * 1263 * c. 0 -> (3->2) -> 4. 1264 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1265 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1266 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1267 * without full profiling while c2 is compiling. 1268 * 1269 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1270 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1271 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1272 * 1273 * e. 0 -> 4. 1274 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1275 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1276 * the compiled version already exists). 1277 * 1278 * Note that since state 0 can be reached from any other state via deoptimization different loops 1279 * are possible. 1280 * 1281 */ 1282 1283 // Common transition function. Given a predicate determines if a method should transition to another level. 1284 template<typename Predicate> 1285 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) { 1286 CompLevel next_level = cur_level; 1287 1288 if (force_comp_at_level_simple(method)) { 1289 next_level = CompLevel_simple; 1290 } else if (is_trivial(method) || method->is_native()) { 1291 // We do not care if there is profiling data for these methods, throw them to compiler. 1292 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1293 } else if (MethodTrainingData::have_data()) { 1294 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1295 if (mtd == nullptr) { 1296 // We haven't see compilations of this method in training. It's either very cold or the behavior changed. 1297 // Feed it to the standard TF with no profiling delay. 1298 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1299 } else { 1300 next_level = trained_transition(method, cur_level, mtd, THREAD); 1301 if (cur_level == next_level) { 1302 // trained_transtion() is going to return the same level if no startup/warmup optimizations apply. 1303 // In order to catch possible pathologies due to behavior change we feed the event to the regular 1304 // TF but with profiling delay. 1305 next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback); 1306 } 1307 } 1308 } else { 1309 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1310 } 1311 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1312 } 1313 1314 1315 template<typename Predicate> 1316 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1317 CompLevel next_level = cur_level; 1318 switch(cur_level) { 1319 default: break; 1320 case CompLevel_none: 1321 next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1322 break; 1323 case CompLevel_limited_profile: 1324 next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1325 break; 1326 case CompLevel_full_profile: 1327 next_level = transition_from_full_profile<Predicate>(method, cur_level); 1328 break; 1329 } 1330 return next_level; 1331 } 1332 1333 template<typename Predicate> 1334 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1335 precond(cur_level == CompLevel_none); 1336 CompLevel next_level = cur_level; 1337 int i = method->invocation_count(); 1338 int b = method->backedge_count(); 1339 double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0; 1340 // If we were at full profile level, would we switch to full opt? 1341 if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) { 1342 next_level = CompLevel_full_optimization; 1343 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) { 1344 // C1-generated fully profiled code is about 30% slower than the limited profile 1345 // code that has only invocation and backedge counters. The observation is that 1346 // if C2 queue is large enough we can spend too much time in the fully profiled code 1347 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1348 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1349 // we choose to compile a limited profiled version and then recompile with full profiling 1350 // when the load on C2 goes down. 1351 if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) { 1352 next_level = CompLevel_limited_profile; 1353 } else { 1354 next_level = CompLevel_full_profile; 1355 } 1356 } 1357 return next_level; 1358 } 1359 1360 template<typename Predicate> 1361 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) { 1362 precond(cur_level == CompLevel_full_profile); 1363 CompLevel next_level = cur_level; 1364 MethodData* mdo = method->method_data(); 1365 if (mdo != nullptr) { 1366 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1367 int mdo_i = mdo->invocation_count_delta(); 1368 int mdo_b = mdo->backedge_count_delta(); 1369 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1370 next_level = CompLevel_full_optimization; 1371 } 1372 } else { 1373 next_level = CompLevel_full_optimization; 1374 } 1375 } 1376 return next_level; 1377 } 1378 1379 template<typename Predicate> 1380 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1381 precond(cur_level == CompLevel_limited_profile); 1382 CompLevel next_level = cur_level; 1383 int i = method->invocation_count(); 1384 int b = method->backedge_count(); 1385 double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0; 1386 MethodData* mdo = method->method_data(); 1387 if (mdo != nullptr) { 1388 if (mdo->would_profile()) { 1389 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1390 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1391 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1392 next_level = CompLevel_full_profile; 1393 } 1394 } else { 1395 next_level = CompLevel_full_optimization; 1396 } 1397 } else { 1398 // If there is no MDO we need to profile 1399 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1400 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1401 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1402 next_level = CompLevel_full_profile; 1403 } 1404 } 1405 if (next_level == CompLevel_full_profile && is_method_profiled(method)) { 1406 next_level = CompLevel_full_optimization; 1407 } 1408 return next_level; 1409 } 1410 1411 1412 // Determine if a method should be compiled with a normal entry point at a different level. 1413 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1414 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true)); 1415 CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method)); 1416 1417 // If OSR method level is greater than the regular method level, the levels should be 1418 // equalized by raising the regular method level in order to avoid OSRs during each 1419 // invocation of the method. 1420 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1421 MethodData* mdo = method->method_data(); 1422 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1423 if (mdo->invocation_count() >= 1) { 1424 next_level = CompLevel_full_optimization; 1425 } 1426 } else { 1427 next_level = MAX2(osr_level, next_level); 1428 } 1429 #if INCLUDE_JVMCI 1430 if (EnableJVMCI && UseJVMCICompiler && 1431 next_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) { 1432 next_level = cur_level; 1433 } 1434 #endif 1435 return next_level; 1436 } 1437 1438 // Determine if we should do an OSR compilation of a given method. 1439 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1440 CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true); 1441 if (cur_level == CompLevel_none) { 1442 // If there is a live OSR method that means that we deopted to the interpreter 1443 // for the transition. 1444 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1445 if (osr_level > CompLevel_none) { 1446 return osr_level; 1447 } 1448 } 1449 return next_level; 1450 } 1451 1452 // Handle the invocation event. 1453 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1454 CompLevel level, nmethod* nm, TRAPS) { 1455 if (should_create_mdo(mh, level)) { 1456 create_mdo(mh, THREAD); 1457 } 1458 CompLevel next_level = call_event(mh, level, THREAD); 1459 if (next_level != level) { 1460 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1461 compile(mh, InvocationEntryBci, next_level, THREAD); 1462 } 1463 } 1464 } 1465 1466 // Handle the back branch event. Notice that we can compile the method 1467 // with a regular entry from here. 1468 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1469 int bci, CompLevel level, nmethod* nm, TRAPS) { 1470 if (should_create_mdo(mh, level)) { 1471 create_mdo(mh, THREAD); 1472 } 1473 // Check if MDO should be created for the inlined method 1474 if (should_create_mdo(imh, level)) { 1475 create_mdo(imh, THREAD); 1476 } 1477 1478 if (is_compilation_enabled()) { 1479 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1480 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1481 // At the very least compile the OSR version 1482 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1483 compile(imh, bci, next_osr_level, CHECK); 1484 } 1485 1486 // Use loop event as an opportunity to also check if there's been 1487 // enough calls. 1488 CompLevel cur_level, next_level; 1489 if (mh() != imh()) { // If there is an enclosing method 1490 { 1491 guarantee(nm != nullptr, "Should have nmethod here"); 1492 cur_level = comp_level(mh()); 1493 next_level = call_event(mh, cur_level, THREAD); 1494 1495 if (max_osr_level == CompLevel_full_optimization) { 1496 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1497 bool make_not_entrant = false; 1498 if (nm->is_osr_method()) { 1499 // This is an osr method, just make it not entrant and recompile later if needed 1500 make_not_entrant = true; 1501 } else { 1502 if (next_level != CompLevel_full_optimization) { 1503 // next_level is not full opt, so we need to recompile the 1504 // enclosing method without the inlinee 1505 cur_level = CompLevel_none; 1506 make_not_entrant = true; 1507 } 1508 } 1509 if (make_not_entrant) { 1510 if (PrintTieredEvents) { 1511 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1512 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1513 } 1514 nm->make_not_entrant("OSR invalidation, back branch"); 1515 } 1516 } 1517 // Fix up next_level if necessary to avoid deopts 1518 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1519 next_level = CompLevel_full_profile; 1520 } 1521 if (cur_level != next_level) { 1522 if (!CompileBroker::compilation_is_in_queue(mh)) { 1523 compile(mh, InvocationEntryBci, next_level, THREAD); 1524 } 1525 } 1526 } 1527 } else { 1528 cur_level = comp_level(mh()); 1529 next_level = call_event(mh, cur_level, THREAD); 1530 if (next_level != cur_level) { 1531 if (!CompileBroker::compilation_is_in_queue(mh)) { 1532 compile(mh, InvocationEntryBci, next_level, THREAD); 1533 } 1534 } 1535 } 1536 } 1537 } 1538