1 /* 2 * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotLinkedClassBulkLoader.hpp" 26 #include "code/scopeDesc.hpp" 27 #include "code/SCCache.hpp" 28 #include "compiler/compilationPolicy.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compilerDefinitions.inline.hpp" 31 #include "compiler/compilerOracle.hpp" 32 #include "compiler/recompilationPolicy.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/methodData.hpp" 35 #include "oops/method.inline.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/trainingData.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "runtime/arguments.hpp" 40 #include "runtime/deoptimization.hpp" 41 #include "runtime/frame.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/globals_extension.hpp" 44 #include "runtime/handles.inline.hpp" 45 #include "runtime/safepoint.hpp" 46 #include "runtime/safepointVerifiers.hpp" 47 #ifdef COMPILER1 48 #include "c1/c1_Compiler.hpp" 49 #endif 50 #ifdef COMPILER2 51 #include "opto/c2compiler.hpp" 52 #endif 53 #if INCLUDE_JVMCI 54 #include "jvmci/jvmci.hpp" 55 #endif 56 57 int64_t CompilationPolicy::_start_time = 0; 58 int CompilationPolicy::_c1_count = 0; 59 int CompilationPolicy::_c2_count = 0; 60 int CompilationPolicy::_c3_count = 0; 61 int CompilationPolicy::_sc_count = 0; 62 double CompilationPolicy::_increase_threshold_at_ratio = 0; 63 64 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue; 65 66 void compilationPolicy_init() { 67 CompilationPolicy::initialize(); 68 } 69 70 int CompilationPolicy::compiler_count(CompLevel comp_level) { 71 if (is_c1_compile(comp_level)) { 72 return c1_count(); 73 } else if (is_c2_compile(comp_level)) { 74 return c2_count(); 75 } 76 return 0; 77 } 78 79 // Returns true if m must be compiled before executing it 80 // This is intended to force compiles for methods (usually for 81 // debugging) that would otherwise be interpreted for some reason. 82 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 83 // Don't allow Xcomp to cause compiles in replay mode 84 if (ReplayCompiles) return false; 85 86 if (m->has_compiled_code()) return false; // already compiled 87 if (!can_be_compiled(m, comp_level)) return false; 88 89 return !UseInterpreter || // must compile all methods 90 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 91 } 92 93 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) { 94 if (m->method_holder()->is_not_initialized()) { 95 // 'is_not_initialized' means not only '!is_initialized', but also that 96 // initialization has not been started yet ('!being_initialized') 97 // Do not force compilation of methods in uninitialized classes. 98 return; 99 } 100 if (!m->is_native() && MethodTrainingData::have_data()) { 101 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 102 if (mtd == nullptr) { 103 return; // there is no training data recorded for m 104 } 105 bool recompile = m->code_has_clinit_barriers(); 106 CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level()); 107 CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD); 108 if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) { 109 bool requires_online_compilation = false; 110 CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level); 111 if (ctd != nullptr) { 112 requires_online_compilation = (ctd->init_deps_left() > 0); 113 } 114 if (requires_online_compilation && recompile) { 115 return; 116 } 117 if (PrintTieredEvents) { 118 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level); 119 } 120 CompileBroker::compile_method(m, InvocationEntryBci, next_level, methodHandle(), 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD); 121 if (HAS_PENDING_EXCEPTION) { 122 CLEAR_PENDING_EXCEPTION; 123 } 124 } 125 } 126 } 127 128 void CompilationPolicy::maybe_compile_early_after_init(const methodHandle& m, TRAPS) { 129 assert(m->method_holder()->is_initialized(), "Should be called after class initialization"); 130 maybe_compile_early(m, THREAD); 131 } 132 133 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 134 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 135 // don't force compilation, resolve was on behalf of compiler 136 return; 137 } 138 if (m->method_holder()->is_not_initialized()) { 139 // 'is_not_initialized' means not only '!is_initialized', but also that 140 // initialization has not been started yet ('!being_initialized') 141 // Do not force compilation of methods in uninitialized classes. 142 // Note that doing this would throw an assert later, 143 // in CompileBroker::compile_method. 144 // We sometimes use the link resolver to do reflective lookups 145 // even before classes are initialized. 146 return; 147 } 148 149 if (must_be_compiled(m)) { 150 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 151 CompLevel level = initial_compile_level(m); 152 if (PrintTieredEvents) { 153 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level); 154 } 155 CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, false, CompileTask::Reason_MustBeCompiled, THREAD); 156 } 157 } 158 159 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) { 160 if (!klass->has_init_deps_processed()) { 161 ResourceMark rm; 162 log_debug(training)("Replay training: %s", klass->external_name()); 163 164 KlassTrainingData* ktd = KlassTrainingData::find(klass); 165 if (ktd != nullptr) { 166 guarantee(ktd->has_holder(), ""); 167 ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit 168 assert(klass->has_init_deps_processed(), ""); 169 170 ktd->iterate_comp_deps([&](CompileTrainingData* ctd) { 171 if (ctd->init_deps_left() == 0) { 172 MethodTrainingData* mtd = ctd->method(); 173 if (mtd->has_holder()) { 174 const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder())); 175 CompilationPolicy::maybe_compile_early(mh, THREAD); 176 } 177 } 178 }); 179 } 180 } 181 } 182 183 void CompilationPolicy::flush_replay_training_at_init(TRAPS) { 184 MonitorLocker locker(THREAD, TrainingReplayQueue_lock); 185 while (!_training_replay_queue.is_empty_unlocked()) { 186 locker.wait(); // let the replay training thread drain the queue 187 } 188 } 189 190 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) { 191 assert(klass->is_initialized(), ""); 192 if (TrainingData::have_data() && klass->is_shared()) { 193 _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD); 194 } 195 } 196 197 // For TrainingReplayQueue 198 template<> 199 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) { 200 int pos = 0; 201 for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) { 202 ResourceMark rm; 203 InstanceKlass* ik = cur->value(); 204 st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name()); 205 } 206 } 207 208 void CompilationPolicy::replay_training_at_init_loop(TRAPS) { 209 while (!CompileBroker::is_compilation_disabled_forever() || VerifyTrainingData) { 210 InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD); 211 replay_training_at_init_impl(ik, THREAD); 212 } 213 } 214 215 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 216 if (comp_level == CompLevel_any) { 217 if (CompilerConfig::is_c1_only()) { 218 comp_level = CompLevel_simple; 219 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 220 comp_level = CompLevel_full_optimization; 221 } 222 } 223 return comp_level; 224 } 225 226 // Returns true if m is allowed to be compiled 227 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 228 // allow any levels for WhiteBox 229 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level); 230 231 if (m->is_abstract()) return false; 232 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 233 234 // Math intrinsics should never be compiled as this can lead to 235 // monotonicity problems because the interpreter will prefer the 236 // compiled code to the intrinsic version. This can't happen in 237 // production because the invocation counter can't be incremented 238 // but we shouldn't expose the system to this problem in testing 239 // modes. 240 if (!AbstractInterpreter::can_be_compiled(m)) { 241 return false; 242 } 243 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 244 if (comp_level == CompLevel_any || is_compile(comp_level)) { 245 return !m->is_not_compilable(comp_level); 246 } 247 return false; 248 } 249 250 // Returns true if m is allowed to be osr compiled 251 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 252 bool result = false; 253 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 254 if (comp_level == CompLevel_any || is_compile(comp_level)) { 255 result = !m->is_not_osr_compilable(comp_level); 256 } 257 return (result && can_be_compiled(m, comp_level)); 258 } 259 260 bool CompilationPolicy::is_compilation_enabled() { 261 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 262 return CompileBroker::should_compile_new_jobs(); 263 } 264 265 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 266 // Remove unloaded methods from the queue 267 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 268 CompileTask* next = task->next(); 269 if (task->is_unloaded()) { 270 compile_queue->remove_and_mark_stale(task); 271 } 272 task = next; 273 } 274 #if INCLUDE_JVMCI 275 if (UseJVMCICompiler && !BackgroundCompilation) { 276 /* 277 * In blocking compilation mode, the CompileBroker will make 278 * compilations submitted by a JVMCI compiler thread non-blocking. These 279 * compilations should be scheduled after all blocking compilations 280 * to service non-compiler related compilations sooner and reduce the 281 * chance of such compilations timing out. 282 */ 283 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 284 if (task->is_blocking()) { 285 return task; 286 } 287 } 288 } 289 #endif 290 return compile_queue->first(); 291 } 292 293 // Simple methods are as good being compiled with C1 as C2. 294 // Determine if a given method is such a case. 295 bool CompilationPolicy::is_trivial(const methodHandle& method) { 296 if (method->is_accessor() || 297 method->is_constant_getter()) { 298 return true; 299 } 300 return false; 301 } 302 303 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 304 if (CompilationModeFlag::quick_internal()) { 305 #if INCLUDE_JVMCI 306 if (UseJVMCICompiler) { 307 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 308 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 309 return !SCCache::is_C3_on(); 310 } 311 } 312 #endif 313 } 314 return false; 315 } 316 317 CompLevel CompilationPolicy::comp_level(Method* method) { 318 nmethod *nm = method->code(); 319 if (nm != nullptr && nm->is_in_use()) { 320 return (CompLevel)nm->comp_level(); 321 } 322 return CompLevel_none; 323 } 324 325 // Call and loop predicates determine whether a transition to a higher 326 // compilation level should be performed (pointers to predicate functions 327 // are passed to common()). 328 // Tier?LoadFeedback is basically a coefficient that determines of 329 // how many methods per compiler thread can be in the queue before 330 // the threshold values double. 331 class LoopPredicate : AllStatic { 332 public: 333 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 334 double threshold_scaling; 335 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 336 scale *= threshold_scaling; 337 } 338 switch(cur_level) { 339 case CompLevel_none: 340 case CompLevel_limited_profile: 341 return b >= Tier3BackEdgeThreshold * scale; 342 case CompLevel_full_profile: 343 return b >= Tier4BackEdgeThreshold * scale; 344 default: 345 return true; 346 } 347 } 348 349 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 350 double k = 1; 351 switch(cur_level) { 352 case CompLevel_none: 353 // Fall through 354 case CompLevel_limited_profile: { 355 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 356 break; 357 } 358 case CompLevel_full_profile: { 359 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 360 break; 361 } 362 default: 363 return true; 364 } 365 return apply_scaled(method, cur_level, i, b, k); 366 } 367 }; 368 369 class CallPredicate : AllStatic { 370 public: 371 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 372 double threshold_scaling; 373 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 374 scale *= threshold_scaling; 375 } 376 switch(cur_level) { 377 case CompLevel_none: 378 case CompLevel_limited_profile: 379 return (i >= Tier3InvocationThreshold * scale) || 380 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 381 case CompLevel_full_profile: 382 return (i >= Tier4InvocationThreshold * scale) || 383 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 384 default: 385 return true; 386 } 387 } 388 389 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 390 double k = 1; 391 switch(cur_level) { 392 case CompLevel_none: 393 case CompLevel_limited_profile: { 394 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 395 break; 396 } 397 case CompLevel_full_profile: { 398 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 399 break; 400 } 401 default: 402 return true; 403 } 404 return apply_scaled(method, cur_level, i, b, k); 405 } 406 }; 407 408 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 409 int comp_count = compiler_count(level); 410 if (comp_count > 0) { 411 double queue_size = CompileBroker::queue_size(level); 412 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 413 414 // Increase C1 compile threshold when the code cache is filled more 415 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 416 // The main intention is to keep enough free space for C2 compiled code 417 // to achieve peak performance if the code cache is under stress. 418 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 419 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 420 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 421 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 422 } 423 } 424 return k; 425 } 426 return 1; 427 } 428 429 void CompilationPolicy::print_counters(const char* prefix, Method* m) { 430 int invocation_count = m->invocation_count(); 431 int backedge_count = m->backedge_count(); 432 MethodData* mdh = m->method_data(); 433 int mdo_invocations = 0, mdo_backedges = 0; 434 int mdo_invocations_start = 0, mdo_backedges_start = 0; 435 if (mdh != nullptr) { 436 mdo_invocations = mdh->invocation_count(); 437 mdo_backedges = mdh->backedge_count(); 438 mdo_invocations_start = mdh->invocation_count_start(); 439 mdo_backedges_start = mdh->backedge_count_start(); 440 } 441 tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 442 invocation_count, backedge_count, prefix, 443 mdo_invocations, mdo_invocations_start, 444 mdo_backedges, mdo_backedges_start); 445 tty->print(" %smax levels=%d,%d", prefix, 446 m->highest_comp_level(), m->highest_osr_comp_level()); 447 } 448 449 void CompilationPolicy::print_training_data(const char* prefix, Method* method) { 450 methodHandle m(Thread::current(), method); 451 tty->print(" %smtd: ", prefix); 452 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 453 if (mtd == nullptr) { 454 tty->print("null"); 455 } else { 456 MethodData* md = mtd->final_profile(); 457 tty->print("mdo="); 458 if (md == nullptr) { 459 tty->print("null"); 460 } else { 461 int mdo_invocations = md->invocation_count(); 462 int mdo_backedges = md->backedge_count(); 463 int mdo_invocations_start = md->invocation_count_start(); 464 int mdo_backedges_start = md->backedge_count_start(); 465 tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start); 466 } 467 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 468 tty->print(", deps="); 469 if (ctd == nullptr) { 470 tty->print("null"); 471 } else { 472 tty->print("%d", ctd->init_deps_left()); 473 } 474 } 475 } 476 477 // Print an event. 478 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) { 479 bool inlinee_event = m != im; 480 481 ttyLocker tty_lock; 482 tty->print("%lf: [", os::elapsedTime()); 483 484 switch(type) { 485 case CALL: 486 tty->print("call"); 487 break; 488 case LOOP: 489 tty->print("loop"); 490 break; 491 case COMPILE: 492 tty->print("compile"); 493 break; 494 case FORCE_COMPILE: 495 tty->print("force-compile"); 496 break; 497 case FORCE_RECOMPILE: 498 tty->print("force-recompile"); 499 break; 500 case REMOVE_FROM_QUEUE: 501 tty->print("remove-from-queue"); 502 break; 503 case UPDATE_IN_QUEUE: 504 tty->print("update-in-queue"); 505 break; 506 case REPROFILE: 507 tty->print("reprofile"); 508 break; 509 case MAKE_NOT_ENTRANT: 510 tty->print("make-not-entrant"); 511 break; 512 default: 513 tty->print("unknown"); 514 } 515 516 tty->print(" level=%d ", level); 517 518 ResourceMark rm; 519 char *method_name = m->name_and_sig_as_C_string(); 520 tty->print("[%s", method_name); 521 if (inlinee_event) { 522 char *inlinee_name = im->name_and_sig_as_C_string(); 523 tty->print(" [%s]] ", inlinee_name); 524 } 525 else tty->print("] "); 526 tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 527 CompileBroker::queue_size(CompLevel_full_optimization)); 528 529 tty->print(" rate="); 530 if (m->prev_time() == 0) tty->print("n/a"); 531 else tty->print("%f", m->rate()); 532 533 RecompilationPolicy::print_load_average(); 534 535 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 536 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 537 538 if (type != COMPILE) { 539 print_counters("", m); 540 if (inlinee_event) { 541 print_counters("inlinee ", im); 542 } 543 tty->print(" compilable="); 544 bool need_comma = false; 545 if (!m->is_not_compilable(CompLevel_full_profile)) { 546 tty->print("c1"); 547 need_comma = true; 548 } 549 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 550 if (need_comma) tty->print(","); 551 tty->print("c1-osr"); 552 need_comma = true; 553 } 554 if (!m->is_not_compilable(CompLevel_full_optimization)) { 555 if (need_comma) tty->print(","); 556 tty->print("c2"); 557 need_comma = true; 558 } 559 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 560 if (need_comma) tty->print(","); 561 tty->print("c2-osr"); 562 } 563 tty->print(" status="); 564 if (m->queued_for_compilation()) { 565 tty->print("in-queue"); 566 } else tty->print("idle"); 567 print_training_data("", m); 568 if (inlinee_event) { 569 print_training_data("inlinee ", im); 570 } 571 } 572 tty->print_cr("]"); 573 } 574 575 void CompilationPolicy::initialize() { 576 if (!CompilerConfig::is_interpreter_only()) { 577 int count = CICompilerCount; 578 bool c1_only = CompilerConfig::is_c1_only(); 579 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 580 581 #ifdef _LP64 582 // Turn on ergonomic compiler count selection 583 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 584 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 585 } 586 if (CICompilerCountPerCPU) { 587 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 588 int log_cpu = log2i(os::active_processor_count()); 589 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 590 count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); 591 // Make sure there is enough space in the code cache to hold all the compiler buffers 592 size_t c1_size = 0; 593 #ifdef COMPILER1 594 c1_size = Compiler::code_buffer_size(); 595 #endif 596 size_t c2_size = 0; 597 #ifdef COMPILER2 598 c2_size = C2Compiler::initial_code_buffer_size(); 599 #endif 600 size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); 601 int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size; 602 if (count > max_count) { 603 // Lower the compiler count such that all buffers fit into the code cache 604 count = MAX2(max_count, c1_only ? 1 : 2); 605 } 606 FLAG_SET_ERGO(CICompilerCount, count); 607 } 608 #else 609 // On 32-bit systems, the number of compiler threads is limited to 3. 610 // On these systems, the virtual address space available to the JVM 611 // is usually limited to 2-4 GB (the exact value depends on the platform). 612 // As the compilers (especially C2) can consume a large amount of 613 // memory, scaling the number of compiler threads with the number of 614 // available cores can result in the exhaustion of the address space 615 /// available to the VM and thus cause the VM to crash. 616 if (FLAG_IS_DEFAULT(CICompilerCount)) { 617 count = 3; 618 FLAG_SET_ERGO(CICompilerCount, count); 619 } 620 #endif 621 622 if (c1_only) { 623 // No C2 compiler thread required 624 set_c1_count(count); 625 } else if (c2_only) { 626 set_c2_count(count); 627 } else { 628 #if INCLUDE_JVMCI 629 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 630 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 631 int c1_count = MAX2(count - libjvmci_count, 1); 632 set_c2_count(libjvmci_count); 633 set_c1_count(c1_count); 634 } else if (SCCache::is_C3_on()) { 635 set_c1_count(MAX2(count / 3, 1)); 636 set_c2_count(MAX2(count - c1_count(), 1)); 637 set_c3_count(1); 638 } else 639 #endif 640 { 641 set_c1_count(MAX2(count / 3, 1)); 642 set_c2_count(MAX2(count - c1_count(), 1)); 643 } 644 } 645 if (SCCache::is_code_load_thread_on()) { 646 set_sc_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 cached code in parallel 647 } 648 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 649 set_increase_threshold_at_ratio(); 650 } 651 652 set_start_time(nanos_to_millis(os::javaTimeNanos())); 653 } 654 655 656 657 658 #ifdef ASSERT 659 bool CompilationPolicy::verify_level(CompLevel level) { 660 if (TieredCompilation && level > TieredStopAtLevel) { 661 return false; 662 } 663 // Check if there is a compiler to process the requested level 664 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 665 return false; 666 } 667 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 668 return false; 669 } 670 671 // Interpreter level is always valid. 672 if (level == CompLevel_none) { 673 return true; 674 } 675 if (CompilationModeFlag::normal()) { 676 return true; 677 } else if (CompilationModeFlag::quick_only()) { 678 return level == CompLevel_simple; 679 } else if (CompilationModeFlag::high_only()) { 680 return level == CompLevel_full_optimization; 681 } else if (CompilationModeFlag::high_only_quick_internal()) { 682 return level == CompLevel_full_optimization || level == CompLevel_simple; 683 } 684 return false; 685 } 686 #endif 687 688 689 CompLevel CompilationPolicy::highest_compile_level() { 690 CompLevel level = CompLevel_none; 691 // Setup the maximum level available for the current compiler configuration. 692 if (!CompilerConfig::is_interpreter_only()) { 693 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 694 level = CompLevel_full_optimization; 695 } else if (CompilerConfig::is_c1_enabled()) { 696 if (CompilerConfig::is_c1_simple_only()) { 697 level = CompLevel_simple; 698 } else { 699 level = CompLevel_full_profile; 700 } 701 } 702 } 703 // Clamp the maximum level with TieredStopAtLevel. 704 if (TieredCompilation) { 705 level = MIN2(level, (CompLevel) TieredStopAtLevel); 706 } 707 708 // Fix it up if after the clamping it has become invalid. 709 // Bring it monotonically down depending on the next available level for 710 // the compilation mode. 711 if (!CompilationModeFlag::normal()) { 712 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 713 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 714 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 715 if (CompilationModeFlag::quick_only()) { 716 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 717 level = CompLevel_simple; 718 } 719 } else if (CompilationModeFlag::high_only()) { 720 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 721 level = CompLevel_none; 722 } 723 } else if (CompilationModeFlag::high_only_quick_internal()) { 724 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 725 level = CompLevel_simple; 726 } 727 } 728 } 729 730 assert(verify_level(level), "Invalid highest compilation level: %d", level); 731 return level; 732 } 733 734 CompLevel CompilationPolicy::limit_level(CompLevel level) { 735 level = MIN2(level, highest_compile_level()); 736 assert(verify_level(level), "Invalid compilation level: %d", level); 737 return level; 738 } 739 740 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 741 CompLevel level = CompLevel_any; 742 if (CompilationModeFlag::normal()) { 743 level = CompLevel_full_profile; 744 } else if (CompilationModeFlag::quick_only()) { 745 level = CompLevel_simple; 746 } else if (CompilationModeFlag::high_only()) { 747 level = CompLevel_full_optimization; 748 } else if (CompilationModeFlag::high_only_quick_internal()) { 749 if (force_comp_at_level_simple(method)) { 750 level = CompLevel_simple; 751 } else { 752 level = CompLevel_full_optimization; 753 } 754 } 755 assert(level != CompLevel_any, "Unhandled compilation mode"); 756 return limit_level(level); 757 } 758 759 // Set carry flags on the counters if necessary 760 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 761 MethodCounters *mcs = method->method_counters(); 762 if (mcs != nullptr) { 763 mcs->invocation_counter()->set_carry_on_overflow(); 764 mcs->backedge_counter()->set_carry_on_overflow(); 765 } 766 MethodData* mdo = method->method_data(); 767 if (mdo != nullptr) { 768 mdo->invocation_counter()->set_carry_on_overflow(); 769 mdo->backedge_counter()->set_carry_on_overflow(); 770 } 771 } 772 773 // Called with the queue locked and with at least one element 774 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) { 775 CompileTask *max_blocking_task = nullptr; 776 CompileTask *max_task = nullptr; 777 Method* max_method = nullptr; 778 779 int64_t t = nanos_to_millis(os::javaTimeNanos()); 780 // Iterate through the queue and find a method with a maximum rate. 781 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 782 CompileTask* next_task = task->next(); 783 // If a method was unloaded or has been stale for some time, remove it from the queue. 784 // Blocking tasks and tasks submitted from whitebox API don't become stale 785 if (task->is_unloaded()) { 786 compile_queue->remove_and_mark_stale(task); 787 task = next_task; 788 continue; 789 } 790 if (task->is_scc()) { 791 // SCC tasks are on separate queue, and they should load fast. There is no need to walk 792 // the rest of the queue, just take the task and go. 793 return task; 794 } 795 if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) { 796 // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate 797 // selection and/or any level adjustments. Just return them in order. 798 return task; 799 } 800 Method* method = task->method(); 801 methodHandle mh(THREAD, method); 802 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 803 if (PrintTieredEvents) { 804 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 805 } 806 method->clear_queued_for_compilation(); 807 method->set_pending_queue_processed(false); 808 compile_queue->remove_and_mark_stale(task); 809 task = next_task; 810 continue; 811 } 812 update_rate(t, mh); 813 if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) { 814 // Select a method with the highest rate 815 max_task = task; 816 max_method = method; 817 } 818 819 if (task->is_blocking()) { 820 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 821 max_blocking_task = task; 822 } 823 } 824 825 task = next_task; 826 } 827 828 if (max_blocking_task != nullptr) { 829 // In blocking compilation mode, the CompileBroker will make 830 // compilations submitted by a JVMCI compiler thread non-blocking. These 831 // compilations should be scheduled after all blocking compilations 832 // to service non-compiler related compilations sooner and reduce the 833 // chance of such compilations timing out. 834 max_task = max_blocking_task; 835 max_method = max_task->method(); 836 } 837 838 methodHandle max_method_h(THREAD, max_method); 839 840 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 841 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 842 max_task->set_comp_level(CompLevel_limited_profile); 843 844 if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile, 845 false /* requires_online_compilation */, 846 CompileTask::Reason_None)) { 847 if (PrintTieredEvents) { 848 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 849 } 850 compile_queue->remove_and_mark_stale(max_task); 851 max_method->clear_queued_for_compilation(); 852 return nullptr; 853 } 854 855 if (PrintTieredEvents) { 856 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 857 } 858 } 859 return max_task; 860 } 861 862 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 863 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 864 if (PrintTieredEvents) { 865 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 866 } 867 MethodData* mdo = sd->method()->method_data(); 868 if (mdo != nullptr) { 869 mdo->reset_start_counters(); 870 } 871 if (sd->is_top()) break; 872 } 873 } 874 875 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 876 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 877 if (PrintTieredEvents) { 878 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 879 } 880 881 #if INCLUDE_JVMCI 882 if (EnableJVMCI && UseJVMCICompiler && 883 comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 884 return nullptr; 885 } 886 #endif 887 888 if (comp_level == CompLevel_none && 889 JvmtiExport::can_post_interpreter_events() && 890 THREAD->is_interp_only_mode()) { 891 return nullptr; 892 } 893 if (ReplayCompiles) { 894 // Don't trigger other compiles in testing mode 895 return nullptr; 896 } 897 898 handle_counter_overflow(method); 899 if (method() != inlinee()) { 900 handle_counter_overflow(inlinee); 901 } 902 903 if (bci == InvocationEntryBci) { 904 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 905 } else { 906 // method == inlinee if the event originated in the main method 907 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 908 // Check if event led to a higher level OSR compilation 909 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 910 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 911 // It's not possible to reach the expected level so fall back to simple. 912 expected_comp_level = CompLevel_simple; 913 } 914 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 915 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 916 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 917 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 918 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 919 // Perform OSR with new nmethod 920 return osr_nm; 921 } 922 } 923 } 924 return nullptr; 925 } 926 927 // Check if the method can be compiled, change level if necessary 928 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 929 assert(verify_level(level), "Invalid compilation level requested: %d", level); 930 931 if (level == CompLevel_none) { 932 if (mh->has_compiled_code()) { 933 // Happens when we switch to interpreter to profile. 934 MutexLocker ml(Compile_lock); 935 NoSafepointVerifier nsv; 936 if (mh->has_compiled_code()) { 937 mh->code()->make_not_used(); 938 } 939 // Deoptimize immediately (we don't have to wait for a compile). 940 JavaThread* jt = THREAD; 941 RegisterMap map(jt, 942 RegisterMap::UpdateMap::skip, 943 RegisterMap::ProcessFrames::include, 944 RegisterMap::WalkContinuation::skip); 945 frame fr = jt->last_frame().sender(&map); 946 Deoptimization::deoptimize_frame(jt, fr.id()); 947 } 948 return; 949 } 950 951 if (!CompilationModeFlag::disable_intermediate()) { 952 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 953 // in the interpreter and then compile with C2 (the transition function will request that, 954 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 955 // pure C1. 956 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 957 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 958 compile(mh, bci, CompLevel_simple, THREAD); 959 } 960 return; 961 } 962 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 963 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 964 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 965 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 966 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 967 osr_nm->make_not_entrant(); 968 } 969 compile(mh, bci, CompLevel_simple, THREAD); 970 } 971 return; 972 } 973 } 974 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 975 return; 976 } 977 if (!CompileBroker::compilation_is_in_queue(mh)) { 978 if (PrintTieredEvents) { 979 print_event(COMPILE, mh(), mh(), bci, level); 980 } 981 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 982 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 983 bool requires_online_compilation = false; 984 if (TrainingData::have_data()) { 985 MethodTrainingData* mtd = MethodTrainingData::find_fast(mh); 986 if (mtd != nullptr) { 987 CompileTrainingData* ctd = mtd->last_toplevel_compile(level); 988 if (ctd != nullptr) { 989 requires_online_compilation = (ctd->init_deps_left() > 0); 990 } 991 } 992 } 993 CompileBroker::compile_method(mh, bci, level, mh, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD); 994 } 995 } 996 997 // update_rate() is called from select_task() while holding a compile queue lock. 998 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) { 999 // Skip update if counters are absent. 1000 // Can't allocate them since we are holding compile queue lock. 1001 if (method->method_counters() == nullptr) return; 1002 1003 if (is_old(method)) { 1004 // We don't remove old methods from the queue, 1005 // so we can just zero the rate. 1006 method->set_rate(0); 1007 return; 1008 } 1009 1010 // We don't update the rate if we've just came out of a safepoint. 1011 // delta_s is the time since last safepoint in milliseconds. 1012 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1013 int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 1014 // How many events were there since the last time? 1015 int event_count = method->invocation_count() + method->backedge_count(); 1016 int delta_e = event_count - method->prev_event_count(); 1017 1018 // We should be running for at least 1ms. 1019 if (delta_s >= TieredRateUpdateMinTime) { 1020 // And we must've taken the previous point at least 1ms before. 1021 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 1022 method->set_prev_time(t); 1023 method->set_prev_event_count(event_count); 1024 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 1025 } else { 1026 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 1027 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 1028 method->set_rate(0); 1029 } 1030 } 1031 } 1032 } 1033 1034 // Check if this method has been stale for a given number of milliseconds. 1035 // See select_task(). 1036 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) { 1037 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1038 int64_t delta_t = t - method->prev_time(); 1039 if (delta_t > timeout && delta_s > timeout) { 1040 int event_count = method->invocation_count() + method->backedge_count(); 1041 int delta_e = event_count - method->prev_event_count(); 1042 // Return true if there were no events. 1043 return delta_e == 0; 1044 } 1045 return false; 1046 } 1047 1048 // We don't remove old methods from the compile queue even if they have 1049 // very low activity. See select_task(). 1050 bool CompilationPolicy::is_old(const methodHandle& method) { 1051 int i = method->invocation_count(); 1052 int b = method->backedge_count(); 1053 double k = TieredOldPercentage / 100.0; 1054 1055 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1056 } 1057 1058 double CompilationPolicy::weight(Method* method) { 1059 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 1060 } 1061 1062 // Apply heuristics and return true if x should be compiled before y 1063 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 1064 if (x->highest_comp_level() > y->highest_comp_level()) { 1065 // recompilation after deopt 1066 return true; 1067 } else 1068 if (x->highest_comp_level() == y->highest_comp_level()) { 1069 if (weight(x) > weight(y)) { 1070 return true; 1071 } 1072 } 1073 return false; 1074 } 1075 1076 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) { 1077 assert(!x->is_scc() && !y->is_scc(), "SC tasks are not expected here"); 1078 if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) { 1079 return true; 1080 } 1081 return false; 1082 } 1083 1084 // Is method profiled enough? 1085 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 1086 MethodData* mdo = method->method_data(); 1087 if (mdo != nullptr) { 1088 int i = mdo->invocation_count_delta(); 1089 int b = mdo->backedge_count_delta(); 1090 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 1091 } 1092 return false; 1093 } 1094 1095 1096 // Determine is a method is mature. 1097 bool CompilationPolicy::is_mature(MethodData* mdo) { 1098 if (Arguments::is_compiler_only()) { 1099 // Always report profiles as immature with -Xcomp 1100 return false; 1101 } 1102 methodHandle mh(Thread::current(), mdo->method()); 1103 if (mdo != nullptr) { 1104 int i = mdo->invocation_count(); 1105 int b = mdo->backedge_count(); 1106 double k = ProfileMaturityPercentage / 100.0; 1107 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 1108 } 1109 return false; 1110 } 1111 1112 // If a method is old enough and is still in the interpreter we would want to 1113 // start profiling without waiting for the compiled method to arrive. 1114 // We also take the load on compilers into the account. 1115 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 1116 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 1117 return false; 1118 } 1119 1120 if (TrainingData::have_data()) { 1121 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1122 if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) { 1123 return true; 1124 } 1125 return false; 1126 } 1127 1128 if (is_old(method)) { 1129 return true; 1130 } 1131 1132 int i = method->invocation_count(); 1133 int b = method->backedge_count(); 1134 double k = Tier0ProfilingStartPercentage / 100.0; 1135 1136 // If the top level compiler is not keeping up, delay profiling. 1137 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 1138 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1139 } 1140 return false; 1141 } 1142 1143 // Inlining control: if we're compiling a profiled method with C1 and the callee 1144 // is known to have OSRed in a C2 version, don't inline it. 1145 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 1146 CompLevel comp_level = (CompLevel)env->comp_level(); 1147 if (comp_level == CompLevel_full_profile || 1148 comp_level == CompLevel_limited_profile) { 1149 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 1150 } 1151 return false; 1152 } 1153 1154 // Create MDO if necessary. 1155 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 1156 if (mh->is_native() || 1157 mh->is_abstract() || 1158 mh->is_accessor() || 1159 mh->is_constant_getter()) { 1160 return; 1161 } 1162 if (mh->method_data() == nullptr) { 1163 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 1164 } 1165 if (ProfileInterpreter && THREAD->has_last_Java_frame()) { 1166 MethodData* mdo = mh->method_data(); 1167 if (mdo != nullptr) { 1168 frame last_frame = THREAD->last_frame(); 1169 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 1170 int bci = last_frame.interpreter_frame_bci(); 1171 address dp = mdo->bci_to_dp(bci); 1172 last_frame.interpreter_frame_set_mdp(dp); 1173 } 1174 } 1175 } 1176 } 1177 1178 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1179 precond(mtd != nullptr); 1180 precond(cur_level == CompLevel_none); 1181 1182 if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) { 1183 return CompLevel_none; 1184 } 1185 1186 bool training_has_profile = (mtd->final_profile() != nullptr); 1187 if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) { 1188 return CompLevel_full_profile; 1189 } 1190 1191 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1192 switch (highest_training_level) { 1193 case CompLevel_limited_profile: 1194 case CompLevel_full_profile: 1195 return CompLevel_limited_profile; 1196 case CompLevel_simple: 1197 return CompLevel_simple; 1198 case CompLevel_none: 1199 return CompLevel_none; 1200 default: 1201 break; 1202 } 1203 1204 // Now handle the case of level 4. 1205 assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level); 1206 if (!training_has_profile) { 1207 // The method was a part of a level 4 compile, but don't have a stored profile, 1208 // we need to profile it. 1209 return CompLevel_full_profile; 1210 } 1211 const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization); 1212 // If we deopted, then we reprofile 1213 if (deopt && !is_method_profiled(method)) { 1214 return CompLevel_full_profile; 1215 } 1216 1217 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1218 assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization"); 1219 // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately 1220 if (SkipTier2IfPossible && ctd->init_deps_left() == 0) { 1221 if (method->method_data() == nullptr) { 1222 create_mdo(method, THREAD); 1223 } 1224 return CompLevel_full_optimization; 1225 } 1226 1227 // Otherwise go to level 2 1228 return CompLevel_limited_profile; 1229 } 1230 1231 1232 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1233 precond(mtd != nullptr); 1234 precond(cur_level == CompLevel_limited_profile); 1235 1236 // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready. 1237 1238 // But first, check if we have a saved profile 1239 bool training_has_profile = (mtd->final_profile() != nullptr); 1240 if (!training_has_profile) { 1241 return CompLevel_full_profile; 1242 } 1243 1244 1245 assert(training_has_profile, "Have to have a profile to be here"); 1246 // Check if the method is ready 1247 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1248 if (ctd != nullptr && ctd->init_deps_left() == 0) { 1249 if (method->method_data() == nullptr) { 1250 create_mdo(method, THREAD); 1251 } 1252 return CompLevel_full_optimization; 1253 } 1254 1255 // Otherwise stay at the current level 1256 return CompLevel_limited_profile; 1257 } 1258 1259 1260 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1261 precond(mtd != nullptr); 1262 precond(cur_level == CompLevel_full_profile); 1263 1264 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1265 // We have method at the full profile level and we also know that it's possibly an important method. 1266 if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) { 1267 // Check if it is adequately profiled 1268 if (is_method_profiled(method)) { 1269 return CompLevel_full_optimization; 1270 } 1271 } 1272 1273 // Otherwise stay at the current level 1274 return CompLevel_full_profile; 1275 } 1276 1277 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1278 precond(MethodTrainingData::have_data()); 1279 1280 // If there is no training data recorded for this method, bail out. 1281 if (mtd == nullptr) { 1282 return cur_level; 1283 } 1284 1285 CompLevel next_level = cur_level; 1286 switch(cur_level) { 1287 default: break; 1288 case CompLevel_none: 1289 next_level = trained_transition_from_none(method, cur_level, mtd, THREAD); 1290 break; 1291 case CompLevel_limited_profile: 1292 next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD); 1293 break; 1294 case CompLevel_full_profile: 1295 next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD); 1296 break; 1297 } 1298 1299 // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now. 1300 if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) { 1301 return CompLevel_none; 1302 } 1303 if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) { 1304 return CompLevel_none; 1305 } 1306 return (cur_level != next_level) ? limit_level(next_level) : cur_level; 1307 } 1308 1309 /* 1310 * Method states: 1311 * 0 - interpreter (CompLevel_none) 1312 * 1 - pure C1 (CompLevel_simple) 1313 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 1314 * 3 - C1 with full profiling (CompLevel_full_profile) 1315 * 4 - C2 or Graal (CompLevel_full_optimization) 1316 * 1317 * Common state transition patterns: 1318 * a. 0 -> 3 -> 4. 1319 * The most common path. But note that even in this straightforward case 1320 * profiling can start at level 0 and finish at level 3. 1321 * 1322 * b. 0 -> 2 -> 3 -> 4. 1323 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 1324 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 1325 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 1326 * 1327 * c. 0 -> (3->2) -> 4. 1328 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1329 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1330 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1331 * without full profiling while c2 is compiling. 1332 * 1333 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1334 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1335 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1336 * 1337 * e. 0 -> 4. 1338 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1339 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1340 * the compiled version already exists). 1341 * 1342 * Note that since state 0 can be reached from any other state via deoptimization different loops 1343 * are possible. 1344 * 1345 */ 1346 1347 // Common transition function. Given a predicate determines if a method should transition to another level. 1348 template<typename Predicate> 1349 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) { 1350 CompLevel next_level = cur_level; 1351 int i = method->invocation_count(); 1352 int b = method->backedge_count(); 1353 1354 if (force_comp_at_level_simple(method)) { 1355 next_level = CompLevel_simple; 1356 } else { 1357 if (MethodTrainingData::have_data()) { 1358 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1359 if (mtd == nullptr) { 1360 // We haven't see compilations of this method in training. It's either very cold or the behavior changed. 1361 // Feed it to the standard TF with no profiling delay. 1362 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1363 } else { 1364 next_level = trained_transition(method, cur_level, mtd, THREAD); 1365 if (cur_level == next_level) { 1366 // trained_transtion() is going to return the same level if no startup/warmup optimizations apply. 1367 // In order to catch possible pathologies due to behavior change we feed the event to the regular 1368 // TF but with profiling delay. 1369 next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback); 1370 } 1371 } 1372 } else if (is_trivial(method) || method->is_native()) { 1373 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1374 } else { 1375 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1376 } 1377 } 1378 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1379 } 1380 1381 1382 template<typename Predicate> 1383 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1384 CompLevel next_level = cur_level; 1385 switch(cur_level) { 1386 default: break; 1387 case CompLevel_none: 1388 next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1389 break; 1390 case CompLevel_limited_profile: 1391 next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1392 break; 1393 case CompLevel_full_profile: 1394 next_level = transition_from_full_profile<Predicate>(method, cur_level); 1395 break; 1396 } 1397 return next_level; 1398 } 1399 1400 template<typename Predicate> 1401 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1402 precond(cur_level == CompLevel_none); 1403 CompLevel next_level = cur_level; 1404 int i = method->invocation_count(); 1405 int b = method->backedge_count(); 1406 double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0; 1407 // If we were at full profile level, would we switch to full opt? 1408 if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) { 1409 next_level = CompLevel_full_optimization; 1410 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) { 1411 // C1-generated fully profiled code is about 30% slower than the limited profile 1412 // code that has only invocation and backedge counters. The observation is that 1413 // if C2 queue is large enough we can spend too much time in the fully profiled code 1414 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1415 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1416 // we choose to compile a limited profiled version and then recompile with full profiling 1417 // when the load on C2 goes down. 1418 if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) { 1419 next_level = CompLevel_limited_profile; 1420 } else { 1421 next_level = CompLevel_full_profile; 1422 } 1423 } 1424 return next_level; 1425 } 1426 1427 template<typename Predicate> 1428 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) { 1429 precond(cur_level == CompLevel_full_profile); 1430 CompLevel next_level = cur_level; 1431 MethodData* mdo = method->method_data(); 1432 if (mdo != nullptr) { 1433 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1434 int mdo_i = mdo->invocation_count_delta(); 1435 int mdo_b = mdo->backedge_count_delta(); 1436 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1437 next_level = CompLevel_full_optimization; 1438 } 1439 } else { 1440 next_level = CompLevel_full_optimization; 1441 } 1442 } 1443 return next_level; 1444 } 1445 1446 template<typename Predicate> 1447 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1448 precond(cur_level == CompLevel_limited_profile); 1449 CompLevel next_level = cur_level; 1450 int i = method->invocation_count(); 1451 int b = method->backedge_count(); 1452 double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0; 1453 MethodData* mdo = method->method_data(); 1454 if (mdo != nullptr) { 1455 if (mdo->would_profile()) { 1456 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1457 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1458 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1459 next_level = CompLevel_full_profile; 1460 } 1461 } else { 1462 next_level = CompLevel_full_optimization; 1463 } 1464 } else { 1465 // If there is no MDO we need to profile 1466 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1467 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1468 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1469 next_level = CompLevel_full_profile; 1470 } 1471 } 1472 if (next_level == CompLevel_full_profile && is_method_profiled(method)) { 1473 next_level = CompLevel_full_optimization; 1474 } 1475 return next_level; 1476 } 1477 1478 1479 // Determine if a method should be compiled with a normal entry point at a different level. 1480 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1481 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true)); 1482 CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method)); 1483 1484 // If OSR method level is greater than the regular method level, the levels should be 1485 // equalized by raising the regular method level in order to avoid OSRs during each 1486 // invocation of the method. 1487 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1488 MethodData* mdo = method->method_data(); 1489 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1490 if (mdo->invocation_count() >= 1) { 1491 next_level = CompLevel_full_optimization; 1492 } 1493 } else { 1494 next_level = MAX2(osr_level, next_level); 1495 } 1496 #if INCLUDE_JVMCI 1497 if (EnableJVMCI && UseJVMCICompiler && 1498 next_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 1499 next_level = cur_level; 1500 } 1501 #endif 1502 return next_level; 1503 } 1504 1505 // Determine if we should do an OSR compilation of a given method. 1506 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1507 CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true); 1508 if (cur_level == CompLevel_none) { 1509 // If there is a live OSR method that means that we deopted to the interpreter 1510 // for the transition. 1511 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1512 if (osr_level > CompLevel_none) { 1513 return osr_level; 1514 } 1515 } 1516 return next_level; 1517 } 1518 1519 // Handle the invocation event. 1520 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1521 CompLevel level, nmethod* nm, TRAPS) { 1522 if (should_create_mdo(mh, level)) { 1523 create_mdo(mh, THREAD); 1524 } 1525 CompLevel next_level = call_event(mh, level, THREAD); 1526 if (next_level != level) { 1527 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1528 compile(mh, InvocationEntryBci, next_level, THREAD); 1529 } 1530 } 1531 } 1532 1533 // Handle the back branch event. Notice that we can compile the method 1534 // with a regular entry from here. 1535 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1536 int bci, CompLevel level, nmethod* nm, TRAPS) { 1537 if (should_create_mdo(mh, level)) { 1538 create_mdo(mh, THREAD); 1539 } 1540 // Check if MDO should be created for the inlined method 1541 if (should_create_mdo(imh, level)) { 1542 create_mdo(imh, THREAD); 1543 } 1544 1545 if (is_compilation_enabled()) { 1546 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1547 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1548 // At the very least compile the OSR version 1549 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1550 compile(imh, bci, next_osr_level, CHECK); 1551 } 1552 1553 // Use loop event as an opportunity to also check if there's been 1554 // enough calls. 1555 CompLevel cur_level, next_level; 1556 if (mh() != imh()) { // If there is an enclosing method 1557 { 1558 guarantee(nm != nullptr, "Should have nmethod here"); 1559 cur_level = comp_level(mh()); 1560 next_level = call_event(mh, cur_level, THREAD); 1561 1562 if (max_osr_level == CompLevel_full_optimization) { 1563 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1564 bool make_not_entrant = false; 1565 if (nm->is_osr_method()) { 1566 // This is an osr method, just make it not entrant and recompile later if needed 1567 make_not_entrant = true; 1568 } else { 1569 if (next_level != CompLevel_full_optimization) { 1570 // next_level is not full opt, so we need to recompile the 1571 // enclosing method without the inlinee 1572 cur_level = CompLevel_none; 1573 make_not_entrant = true; 1574 } 1575 } 1576 if (make_not_entrant) { 1577 if (PrintTieredEvents) { 1578 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1579 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1580 } 1581 nm->make_not_entrant(); 1582 } 1583 } 1584 // Fix up next_level if necessary to avoid deopts 1585 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1586 next_level = CompLevel_full_profile; 1587 } 1588 if (cur_level != next_level) { 1589 if (!CompileBroker::compilation_is_in_queue(mh)) { 1590 compile(mh, InvocationEntryBci, next_level, THREAD); 1591 } 1592 } 1593 } 1594 } else { 1595 cur_level = comp_level(mh()); 1596 next_level = call_event(mh, cur_level, THREAD); 1597 if (next_level != cur_level) { 1598 if (!CompileBroker::compilation_is_in_queue(mh)) { 1599 compile(mh, InvocationEntryBci, next_level, THREAD); 1600 } 1601 } 1602 } 1603 } 1604 } 1605