1 /*
   2  * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "code/aotCodeCache.hpp"
  27 #include "code/scopeDesc.hpp"
  28 #include "compiler/compilationPolicy.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compilerDefinitions.inline.hpp"
  31 #include "compiler/compilerOracle.hpp"
  32 #include "compiler/recompilationPolicy.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/method.inline.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/trainingData.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/globals_extension.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointVerifiers.hpp"
  47 #ifdef COMPILER1
  48 #include "c1/c1_Compiler.hpp"
  49 #endif
  50 #ifdef COMPILER2
  51 #include "opto/c2compiler.hpp"
  52 #endif
  53 #if INCLUDE_JVMCI
  54 #include "jvmci/jvmci.hpp"
  55 #endif
  56 
  57 int64_t CompilationPolicy::_start_time = 0;
  58 int CompilationPolicy::_c1_count = 0;
  59 int CompilationPolicy::_c2_count = 0;
  60 int CompilationPolicy::_ac_count = 0;
  61 double CompilationPolicy::_increase_threshold_at_ratio = 0;
  62 
  63 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
  64 
  65 void compilationPolicy_init() {
  66   CompilationPolicy::initialize();
  67 }
  68 
  69 int CompilationPolicy::compiler_count(CompLevel comp_level) {
  70   if (is_c1_compile(comp_level)) {
  71     return c1_count();
  72   } else if (is_c2_compile(comp_level)) {
  73     return c2_count();
  74   }
  75   return 0;
  76 }
  77 
  78 // Returns true if m must be compiled before executing it
  79 // This is intended to force compiles for methods (usually for
  80 // debugging) that would otherwise be interpreted for some reason.
  81 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
  82   // Don't allow Xcomp to cause compiles in replay mode
  83   if (ReplayCompiles) return false;
  84 
  85   if (m->has_compiled_code()) return false;       // already compiled
  86   if (!can_be_compiled(m, comp_level)) return false;
  87 
  88   return !UseInterpreter ||                                              // must compile all methods
  89          (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
  90 }
  91 
  92 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
  93   if (m->method_holder()->is_not_initialized()) {
  94     // 'is_not_initialized' means not only '!is_initialized', but also that
  95     // initialization has not been started yet ('!being_initialized')
  96     // Do not force compilation of methods in uninitialized classes.
  97     return;
  98   }
  99   if (!m->is_native() && MethodTrainingData::have_data()) {
 100     MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
 101     if (mtd == nullptr) {
 102       return;              // there is no training data recorded for m
 103     }
 104     // Consider replacing conservatively compiled AOT Preload code with faster AOT code
 105     nmethod* nm = m->code();
 106     bool recompile = (nm != nullptr) && nm->preloaded();
 107     CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
 108     CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
 109     if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
 110       bool requires_online_compilation = false;
 111       CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level);
 112       if (ctd != nullptr) {
 113         // Can't load normal AOT code - not all dependancies are ready,
 114         // request normal compilation
 115         requires_online_compilation = (ctd->init_deps_left_acquire() > 0);
 116       }
 117       if (requires_online_compilation && recompile) {
 118         // Wait when dependencies are ready to load normal AOT code
 119         // if AOT Preload code is used now.
 120         //
 121         // FIXME. We may never (or it take long time) get all dependencies
 122         // be ready to replace AOT Preload code. Consider using time and how many
 123         // dependencies left to allow normal JIT compilation for replacement.
 124         return;
 125       }
 126       if (PrintTieredEvents) {
 127         print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
 128       }
 129       CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
 130       if (HAS_PENDING_EXCEPTION) {
 131         CLEAR_PENDING_EXCEPTION;
 132       }
 133     }
 134   }
 135 }
 136 
 137 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
 138   if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
 139     // don't force compilation, resolve was on behalf of compiler
 140     return;
 141   }
 142   if (m->method_holder()->is_not_initialized()) {
 143     // 'is_not_initialized' means not only '!is_initialized', but also that
 144     // initialization has not been started yet ('!being_initialized')
 145     // Do not force compilation of methods in uninitialized classes.
 146     // Note that doing this would throw an assert later,
 147     // in CompileBroker::compile_method.
 148     // We sometimes use the link resolver to do reflective lookups
 149     // even before classes are initialized.
 150     return;
 151   }
 152 
 153   if (must_be_compiled(m)) {
 154     // This path is unusual, mostly used by the '-Xcomp' stress test mode.
 155     CompLevel level = initial_compile_level(m);
 156     if (PrintTieredEvents) {
 157       print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
 158     }
 159     // Test AOT code too
 160     bool requires_online_compilation = false;
 161     if (TrainingData::have_data()) {
 162       MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
 163       if (mtd != nullptr) {
 164         CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
 165         if (ctd != nullptr) {
 166           requires_online_compilation = (ctd->init_deps_left_acquire() > 0);
 167         }
 168       }
 169     }
 170     CompileBroker::compile_method(m, InvocationEntryBci, level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
 171   }
 172 }
 173 
 174 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, JavaThread* current) {
 175   if (!klass->has_init_deps_processed()) {
 176     ResourceMark rm;
 177     log_debug(training)("Replay training: %s", klass->external_name());
 178 
 179     KlassTrainingData* ktd = KlassTrainingData::find(klass);
 180     if (ktd != nullptr) {
 181       guarantee(ktd->has_holder(), "");
 182       ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
 183       assert(klass->has_init_deps_processed(), "");
 184 
 185       if (AOTCompileEagerly) {
 186         GrowableArray<MethodTrainingData*> mtds;
 187         ktd->iterate_comp_deps([&](CompileTrainingData* ctd) {
 188           if (ctd->init_deps_left_acquire() == 0) {
 189             MethodTrainingData* mtd = ctd->method();
 190             if (mtd->has_holder()) {
 191               mtds.push(mtd);
 192             }
 193           }
 194         });
 195        for (int i = 0; i < mtds.length(); i++) {
 196           MethodTrainingData* mtd = mtds.at(i);
 197           const methodHandle mh(current, const_cast<Method*>(mtd->holder()));
 198           CompilationPolicy::maybe_compile_early(mh, current);
 199         }
 200       }
 201     }
 202   }
 203 }
 204 
 205 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, JavaThread* current) {
 206   assert(klass->is_initialized(), "");
 207   if (TrainingData::have_data() && klass->in_aot_cache()) {
 208     _training_replay_queue.push(klass, TrainingReplayQueue_lock, current);
 209   }
 210 }
 211 
 212 // For TrainingReplayQueue
 213 template<>
 214 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
 215   int pos = 0;
 216   for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
 217     ResourceMark rm;
 218     InstanceKlass* ik = cur->value();
 219     st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
 220   }
 221 }
 222 
 223 void CompilationPolicy::replay_training_at_init_loop(JavaThread* current) {
 224   while (!CompileBroker::is_compilation_disabled_forever()) {
 225     InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, current);
 226     if (ik != nullptr) {
 227       replay_training_at_init_impl(ik, current);
 228     }
 229   }
 230 }
 231 
 232 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
 233   if (comp_level == CompLevel_any) {
 234      if (CompilerConfig::is_c1_only()) {
 235        comp_level = CompLevel_simple;
 236      } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
 237        comp_level = CompLevel_full_optimization;
 238      }
 239   }
 240   return comp_level;
 241 }
 242 
 243 // Returns true if m is allowed to be compiled
 244 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
 245   // allow any levels for WhiteBox
 246   assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
 247 
 248   if (m->is_abstract()) return false;
 249   if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
 250 
 251   // Math intrinsics should never be compiled as this can lead to
 252   // monotonicity problems because the interpreter will prefer the
 253   // compiled code to the intrinsic version.  This can't happen in
 254   // production because the invocation counter can't be incremented
 255   // but we shouldn't expose the system to this problem in testing
 256   // modes.
 257   if (!AbstractInterpreter::can_be_compiled(m)) {
 258     return false;
 259   }
 260   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 261   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 262     return !m->is_not_compilable(comp_level);
 263   }
 264   return false;
 265 }
 266 
 267 // Returns true if m is allowed to be osr compiled
 268 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
 269   bool result = false;
 270   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 271   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 272     result = !m->is_not_osr_compilable(comp_level);
 273   }
 274   return (result && can_be_compiled(m, comp_level));
 275 }
 276 
 277 bool CompilationPolicy::is_compilation_enabled() {
 278   // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
 279   return CompileBroker::should_compile_new_jobs();
 280 }
 281 
 282 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
 283   // Remove unloaded methods from the queue
 284   for (CompileTask* task = compile_queue->first(); task != nullptr; ) {
 285     CompileTask* next = task->next();
 286     if (task->is_unloaded()) {
 287       compile_queue->remove_and_mark_stale(task);
 288     }
 289     task = next;
 290   }
 291 #if INCLUDE_JVMCI
 292   if (UseJVMCICompiler && !BackgroundCompilation) {
 293     /*
 294      * In blocking compilation mode, the CompileBroker will make
 295      * compilations submitted by a JVMCI compiler thread non-blocking. These
 296      * compilations should be scheduled after all blocking compilations
 297      * to service non-compiler related compilations sooner and reduce the
 298      * chance of such compilations timing out.
 299      */
 300     for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) {
 301       if (task->is_blocking()) {
 302         return task;
 303       }
 304     }
 305   }
 306 #endif
 307   return compile_queue->first();
 308 }
 309 
 310 // Simple methods are as good being compiled with C1 as C2.
 311 // Determine if a given method is such a case.
 312 bool CompilationPolicy::is_trivial(const methodHandle& method) {
 313   if (method->is_accessor() ||
 314       method->is_constant_getter()) {
 315     return true;
 316   }
 317   return false;
 318 }
 319 
 320 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
 321   if (CompilationModeFlag::quick_internal()) {
 322 #if INCLUDE_JVMCI
 323     if (UseJVMCICompiler) {
 324       AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 325       if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 326         return true;
 327       }
 328     }
 329 #endif
 330   }
 331   return false;
 332 }
 333 
 334 CompLevel CompilationPolicy::comp_level(Method* method) {
 335   nmethod *nm = method->code();
 336   if (nm != nullptr && nm->is_in_use()) {
 337     return (CompLevel)nm->comp_level();
 338   }
 339   return CompLevel_none;
 340 }
 341 
 342 // Call and loop predicates determine whether a transition to a higher
 343 // compilation level should be performed (pointers to predicate functions
 344 // are passed to common()).
 345 // Tier?LoadFeedback is basically a coefficient that determines of
 346 // how many methods per compiler thread can be in the queue before
 347 // the threshold values double.
 348 class LoopPredicate : AllStatic {
 349 public:
 350   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 351     double threshold_scaling;
 352     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 353       scale *= threshold_scaling;
 354     }
 355     switch(cur_level) {
 356     case CompLevel_none:
 357     case CompLevel_limited_profile:
 358       return b >= Tier3BackEdgeThreshold * scale;
 359     case CompLevel_full_profile:
 360       return b >= Tier4BackEdgeThreshold * scale;
 361     default:
 362       return true;
 363     }
 364   }
 365 
 366   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 367     double k = 1;
 368     switch(cur_level) {
 369     case CompLevel_none:
 370     // Fall through
 371     case CompLevel_limited_profile: {
 372       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 373       break;
 374     }
 375     case CompLevel_full_profile: {
 376       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 377       break;
 378     }
 379     default:
 380       return true;
 381     }
 382     return apply_scaled(method, cur_level, i, b, k);
 383   }
 384 };
 385 
 386 class CallPredicate : AllStatic {
 387 public:
 388   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 389     double threshold_scaling;
 390     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 391       scale *= threshold_scaling;
 392     }
 393     switch(cur_level) {
 394     case CompLevel_none:
 395     case CompLevel_limited_profile:
 396       return (i >= Tier3InvocationThreshold * scale) ||
 397              (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
 398     case CompLevel_full_profile:
 399       return (i >= Tier4InvocationThreshold * scale) ||
 400              (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
 401     default:
 402      return true;
 403     }
 404   }
 405 
 406   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 407     double k = 1;
 408     switch(cur_level) {
 409     case CompLevel_none:
 410     case CompLevel_limited_profile: {
 411       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 412       break;
 413     }
 414     case CompLevel_full_profile: {
 415       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 416       break;
 417     }
 418     default:
 419       return true;
 420     }
 421     return apply_scaled(method, cur_level, i, b, k);
 422   }
 423 };
 424 
 425 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
 426   int comp_count = compiler_count(level);
 427   if (comp_count > 0 && feedback_k > 0) {
 428     double queue_size = CompileBroker::queue_size(level);
 429     double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1;
 430 
 431     // Increase C1 compile threshold when the code cache is filled more
 432     // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 433     // The main intention is to keep enough free space for C2 compiled code
 434     // to achieve peak performance if the code cache is under stress.
 435     if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level))  {
 436       double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 437       if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 438         k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 439       }
 440     }
 441     return k;
 442   }
 443   return 1;
 444 }
 445 
 446 void CompilationPolicy::print_counters_on(outputStream* st, const char* prefix, Method* m) {
 447   int invocation_count = m->invocation_count();
 448   int backedge_count = m->backedge_count();
 449   MethodData* mdh = m->method_data();
 450   int mdo_invocations = 0, mdo_backedges = 0;
 451   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 452   if (mdh != nullptr) {
 453     mdo_invocations = mdh->invocation_count();
 454     mdo_backedges = mdh->backedge_count();
 455     mdo_invocations_start = mdh->invocation_count_start();
 456     mdo_backedges_start = mdh->backedge_count_start();
 457   }
 458   st->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 459     invocation_count, backedge_count, prefix,
 460     mdo_invocations, mdo_invocations_start,
 461     mdo_backedges, mdo_backedges_start);
 462   st->print(" %smax levels=%d,%d", prefix, m->highest_comp_level(), m->highest_osr_comp_level());
 463 }
 464 
 465 void CompilationPolicy::print_training_data_on(outputStream* st,  const char* prefix, Method* method, CompLevel cur_level) {
 466   methodHandle m(Thread::current(), method);
 467   st->print(" %smtd: ", prefix);
 468   MethodTrainingData* mtd = MethodTrainingData::find(m);
 469   if (mtd == nullptr) {
 470     st->print("null");
 471   } else {
 472     if (should_delay_standard_transition(m, cur_level, mtd)) {
 473       st->print("delayed, ");
 474     }
 475     MethodData* md = mtd->final_profile();
 476     st->print("mdo=");
 477     if (md == nullptr) {
 478       st->print("null");
 479     } else {
 480       int mdo_invocations = md->invocation_count();
 481       int mdo_backedges = md->backedge_count();
 482       int mdo_invocations_start = md->invocation_count_start();
 483       int mdo_backedges_start = md->backedge_count_start();
 484       st->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
 485     }
 486     CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
 487     st->print(", deps=");
 488     if (ctd == nullptr) {
 489       st->print("null");
 490     } else {
 491       st->print("%d", ctd->init_deps_left_acquire());
 492     }
 493   }
 494 }
 495 
 496 // Print an event.
 497 void CompilationPolicy::print_event_on(outputStream *st, EventType type, Method* m, Method* im, int bci, CompLevel level) {
 498   bool inlinee_event = m != im;
 499 
 500   st->print("%lf: [", os::elapsedTime());
 501 
 502   switch(type) {
 503   case CALL:
 504     st->print("call");
 505     break;
 506   case LOOP:
 507     st->print("loop");
 508     break;
 509   case COMPILE:
 510     st->print("compile");
 511     break;
 512   case FORCE_COMPILE:
 513     st->print("force-compile");
 514     break;
 515   case FORCE_RECOMPILE:
 516     st->print("force-recompile");
 517     break;
 518   case REMOVE_FROM_QUEUE:
 519     st->print("remove-from-queue");
 520     break;
 521   case UPDATE_IN_QUEUE:
 522     st->print("update-in-queue");
 523     break;
 524   case REPROFILE:
 525     st->print("reprofile");
 526     break;
 527   case MAKE_NOT_ENTRANT:
 528     st->print("make-not-entrant");
 529     break;
 530   default:
 531     st->print("unknown");
 532   }
 533 
 534   st->print(" level=%d ", level);
 535 
 536   ResourceMark rm;
 537   char *method_name = m->name_and_sig_as_C_string();
 538   st->print("[%s", method_name);
 539   if (inlinee_event) {
 540     char *inlinee_name = im->name_and_sig_as_C_string();
 541     st->print(" [%s]] ", inlinee_name);
 542   }
 543   else st->print("] ");
 544   st->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 545                                      CompileBroker::queue_size(CompLevel_full_optimization));
 546 
 547   st->print(" rate=");
 548   if (m->prev_time() == 0) st->print("n/a");
 549   else st->print("%f", m->rate());
 550 
 551   RecompilationPolicy::print_load_average(st);
 552 
 553   st->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 554                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 555 
 556   if (type != COMPILE) {
 557     print_counters_on(st, "", m);
 558     if (inlinee_event) {
 559       print_counters_on(st, "inlinee ", im);
 560     }
 561     st->print(" compilable=");
 562     bool need_comma = false;
 563     if (!m->is_not_compilable(CompLevel_full_profile)) {
 564       st->print("c1");
 565       need_comma = true;
 566     }
 567     if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
 568       if (need_comma) st->print(",");
 569       st->print("c1-osr");
 570       need_comma = true;
 571     }
 572     if (!m->is_not_compilable(CompLevel_full_optimization)) {
 573       if (need_comma) st->print(",");
 574       st->print("c2");
 575       need_comma = true;
 576     }
 577     if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
 578       if (need_comma) st->print(",");
 579       st->print("c2-osr");
 580     }
 581     st->print(" status=");
 582     if (m->queued_for_compilation()) {
 583       st->print("in-queue");
 584     } else st->print("idle");
 585 
 586     print_training_data_on(st, "", m, level);
 587     if (inlinee_event) {
 588       print_training_data_on(st, "inlinee ", im, level);
 589     }
 590   }
 591   st->print_cr("]");
 592 
 593 }
 594 
 595 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
 596   stringStream s;
 597   print_event_on(&s, type, m, im, bci, level);
 598   ResourceMark rm;
 599   tty->print("%s", s.as_string());
 600 }
 601 
 602 void CompilationPolicy::initialize() {
 603   if (!CompilerConfig::is_interpreter_only()) {
 604     int count = CICompilerCount;
 605     bool c1_only = CompilerConfig::is_c1_only();
 606     bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
 607     int min_count = (c1_only || c2_only) ? 1 : 2;
 608 
 609 #ifdef _LP64
 610     // Turn on ergonomic compiler count selection
 611     if (AOTCodeCache::maybe_dumping_code()) {
 612       // Assembly phase runs C1 and C2 compilation in separate phases,
 613       // and can use all the CPU threads it can reach. Adjust the common
 614       // options before policy starts overwriting them.
 615       FLAG_SET_ERGO_IF_DEFAULT(UseDynamicNumberOfCompilerThreads, false);
 616       FLAG_SET_ERGO_IF_DEFAULT(CICompilerCountPerCPU, false);
 617       if (FLAG_IS_DEFAULT(CICompilerCount)) {
 618         count =  MAX2(count, os::active_processor_count());
 619       }
 620     }
 621     if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 622       FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 623     }
 624     if (CICompilerCountPerCPU) {
 625       // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 626       int log_cpu = log2i(os::active_processor_count());
 627       int loglog_cpu = log2i(MAX2(log_cpu, 1));
 628       count = MAX2(log_cpu * loglog_cpu * 3 / 2, min_count);
 629     }
 630     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 631       // Make sure there is enough space in the code cache to hold all the compiler buffers
 632       size_t c1_size = 0;
 633 #ifdef COMPILER1
 634       c1_size = Compiler::code_buffer_size();
 635 #endif
 636       size_t c2_size = 0;
 637 #ifdef COMPILER2
 638       c2_size = C2Compiler::initial_code_buffer_size();
 639 #endif
 640       size_t buffer_size = 0;
 641       if (c1_only) {
 642         buffer_size = c1_size;
 643       } else if (c2_only) {
 644         buffer_size = c2_size;
 645       } else {
 646         buffer_size = c1_size / 3 + 2 * c2_size / 3;
 647       }
 648       size_t max_count = (NonNMethodCodeHeapSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / buffer_size;
 649       if ((size_t)count > max_count) {
 650         // Lower the compiler count such that all buffers fit into the code cache
 651         count = MAX2((int)max_count, min_count);
 652       }
 653       FLAG_SET_ERGO(CICompilerCount, count);
 654     }
 655 #else
 656     // On 32-bit systems, the number of compiler threads is limited to 3.
 657     // On these systems, the virtual address space available to the JVM
 658     // is usually limited to 2-4 GB (the exact value depends on the platform).
 659     // As the compilers (especially C2) can consume a large amount of
 660     // memory, scaling the number of compiler threads with the number of
 661     // available cores can result in the exhaustion of the address space
 662     /// available to the VM and thus cause the VM to crash.
 663     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 664       count = 3;
 665       FLAG_SET_ERGO(CICompilerCount, count);
 666     }
 667 #endif // _LP64
 668 
 669     if (c1_only) {
 670       // No C2 compiler threads are needed
 671       set_c1_count(count);
 672     } else if (c2_only) {
 673       // No C1 compiler threads are needed
 674       set_c2_count(count);
 675     } else {
 676 #if INCLUDE_JVMCI
 677       if (UseJVMCICompiler && UseJVMCINativeLibrary) {
 678         int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
 679         int c1_count = MAX2(count - libjvmci_count, 1);
 680         set_c2_count(libjvmci_count);
 681         set_c1_count(c1_count);
 682       } else
 683 #endif
 684       {
 685         set_c1_count(MAX2(count / 3, 1));
 686         set_c2_count(MAX2(count - c1_count(), 1));
 687       }
 688     }
 689     if (AOTCodeCache::is_code_load_thread_on()) {
 690       set_ac_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 AOT code in parallel
 691     }
 692     assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 693     set_increase_threshold_at_ratio();
 694   } else {
 695     // Interpreter mode creates no compilers
 696     FLAG_SET_ERGO(CICompilerCount, 0);
 697   }
 698   set_start_time(nanos_to_millis(os::javaTimeNanos()));
 699 }
 700 
 701 
 702 #ifdef ASSERT
 703 bool CompilationPolicy::verify_level(CompLevel level) {
 704   if (TieredCompilation && level > TieredStopAtLevel) {
 705     return false;
 706   }
 707   // Check if there is a compiler to process the requested level
 708   if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
 709     return false;
 710   }
 711   if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
 712     return false;
 713   }
 714 
 715   // Interpreter level is always valid.
 716   if (level == CompLevel_none) {
 717     return true;
 718   }
 719   if (CompilationModeFlag::normal()) {
 720     return true;
 721   } else if (CompilationModeFlag::quick_only()) {
 722     return level == CompLevel_simple;
 723   } else if (CompilationModeFlag::high_only()) {
 724     return level == CompLevel_full_optimization;
 725   } else if (CompilationModeFlag::high_only_quick_internal()) {
 726     return level == CompLevel_full_optimization || level == CompLevel_simple;
 727   }
 728   return false;
 729 }
 730 #endif
 731 
 732 
 733 CompLevel CompilationPolicy::highest_compile_level() {
 734   CompLevel level = CompLevel_none;
 735   // Setup the maximum level available for the current compiler configuration.
 736   if (!CompilerConfig::is_interpreter_only()) {
 737     if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
 738       level = CompLevel_full_optimization;
 739     } else if (CompilerConfig::is_c1_enabled()) {
 740       if (CompilerConfig::is_c1_simple_only()) {
 741         level = CompLevel_simple;
 742       } else {
 743         level = CompLevel_full_profile;
 744       }
 745     }
 746   }
 747   // Clamp the maximum level with TieredStopAtLevel.
 748   if (TieredCompilation) {
 749     level = MIN2(level, (CompLevel) TieredStopAtLevel);
 750   }
 751 
 752   // Fix it up if after the clamping it has become invalid.
 753   // Bring it monotonically down depending on the next available level for
 754   // the compilation mode.
 755   if (!CompilationModeFlag::normal()) {
 756     // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
 757     // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
 758     // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
 759     if (CompilationModeFlag::quick_only()) {
 760       if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
 761         level = CompLevel_simple;
 762       }
 763     } else if (CompilationModeFlag::high_only()) {
 764       if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 765         level = CompLevel_none;
 766       }
 767     } else if (CompilationModeFlag::high_only_quick_internal()) {
 768       if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 769         level = CompLevel_simple;
 770       }
 771     }
 772   }
 773 
 774   assert(verify_level(level), "Invalid highest compilation level: %d", level);
 775   return level;
 776 }
 777 
 778 CompLevel CompilationPolicy::limit_level(CompLevel level) {
 779   level = MIN2(level, highest_compile_level());
 780   assert(verify_level(level), "Invalid compilation level: %d", level);
 781   return level;
 782 }
 783 
 784 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
 785   CompLevel level = CompLevel_any;
 786   if (CompilationModeFlag::normal()) {
 787     level = CompLevel_full_profile;
 788   } else if (CompilationModeFlag::quick_only()) {
 789     level = CompLevel_simple;
 790   } else if (CompilationModeFlag::high_only()) {
 791     level = CompLevel_full_optimization;
 792   } else if (CompilationModeFlag::high_only_quick_internal()) {
 793     if (force_comp_at_level_simple(method)) {
 794       level = CompLevel_simple;
 795     } else {
 796       level = CompLevel_full_optimization;
 797     }
 798   }
 799   assert(level != CompLevel_any, "Unhandled compilation mode");
 800   return limit_level(level);
 801 }
 802 
 803 // Set carry flags on the counters if necessary
 804 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) {
 805   MethodCounters *mcs = method->method_counters();
 806   if (mcs != nullptr) {
 807     mcs->invocation_counter()->set_carry_on_overflow();
 808     mcs->backedge_counter()->set_carry_on_overflow();
 809   }
 810   MethodData* mdo = method->method_data();
 811   if (mdo != nullptr) {
 812     mdo->invocation_counter()->set_carry_on_overflow();
 813     mdo->backedge_counter()->set_carry_on_overflow();
 814   }
 815 }
 816 
 817 // Called with the queue locked and with at least one element
 818 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
 819   CompileTask *max_blocking_task = nullptr;
 820   CompileTask *max_task = nullptr;
 821   Method* max_method = nullptr;
 822 
 823   int64_t t = nanos_to_millis(os::javaTimeNanos());
 824   // Iterate through the queue and find a method with a maximum rate.
 825   for (CompileTask* task = compile_queue->first(); task != nullptr;) {
 826     CompileTask* next_task = task->next();
 827     // If a method was unloaded or has been stale for some time, remove it from the queue.
 828     // Blocking tasks and tasks submitted from whitebox API don't become stale
 829     if (task->is_unloaded()) {
 830       compile_queue->remove_and_mark_stale(task);
 831       task = next_task;
 832       continue;
 833     }
 834     if (task->is_aot_load()) {
 835       // AOTCodeCache tasks are on separate queue, and they should load fast. There is no need to walk
 836       // the rest of the queue, just take the task and go.
 837       return task;
 838     }
 839     if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) {
 840       // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate
 841       // selection and/or any level adjustments. Just return them in order.
 842       return task;
 843     }
 844     Method* method = task->method();
 845     methodHandle mh(THREAD, method);
 846     if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
 847       if (PrintTieredEvents) {
 848         print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 849       }
 850       method->clear_queued_for_compilation();
 851       method->set_pending_queue_processed(false);
 852       compile_queue->remove_and_mark_stale(task);
 853       task = next_task;
 854       continue;
 855     }
 856     update_rate(t, mh);
 857     if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) {
 858       // Select a method with the highest rate
 859       max_task = task;
 860       max_method = method;
 861     }
 862 
 863     if (task->is_blocking()) {
 864       if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) {
 865         max_blocking_task = task;
 866       }
 867     }
 868 
 869     task = next_task;
 870   }
 871 
 872   if (max_blocking_task != nullptr) {
 873     // In blocking compilation mode, the CompileBroker will make
 874     // compilations submitted by a JVMCI compiler thread non-blocking. These
 875     // compilations should be scheduled after all blocking compilations
 876     // to service non-compiler related compilations sooner and reduce the
 877     // chance of such compilations timing out.
 878     max_task = max_blocking_task;
 879     max_method = max_task->method();
 880   }
 881 
 882   methodHandle max_method_h(THREAD, max_method);
 883 
 884   if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
 885       max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
 886     max_task->set_comp_level(CompLevel_limited_profile);
 887 
 888     if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile,
 889                                                false /* requires_online_compilation */,
 890                                                CompileTask::Reason_None)) {
 891       if (PrintTieredEvents) {
 892         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 893       }
 894       compile_queue->remove_and_mark_stale(max_task);
 895       max_method->clear_queued_for_compilation();
 896       return nullptr;
 897     }
 898 
 899     if (PrintTieredEvents) {
 900       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 901     }
 902   }
 903 
 904   return max_task;
 905 }
 906 
 907 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 908   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 909     if (PrintTieredEvents) {
 910       print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
 911     }
 912     MethodData* mdo = sd->method()->method_data();
 913     if (mdo != nullptr) {
 914       mdo->reset_start_counters();
 915     }
 916     if (sd->is_top()) break;
 917   }
 918 }
 919 
 920 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 921                                       int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
 922   if (PrintTieredEvents) {
 923     print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
 924   }
 925 
 926   if (comp_level == CompLevel_none &&
 927       JvmtiExport::can_post_interpreter_events() &&
 928       THREAD->is_interp_only_mode()) {
 929     return nullptr;
 930   }
 931   if (ReplayCompiles) {
 932     // Don't trigger other compiles in testing mode
 933     return nullptr;
 934   }
 935 
 936   handle_counter_overflow(method);
 937   if (method() != inlinee()) {
 938     handle_counter_overflow(inlinee);
 939   }
 940 
 941   if (bci == InvocationEntryBci) {
 942     method_invocation_event(method, inlinee, comp_level, nm, THREAD);
 943   } else {
 944     // method == inlinee if the event originated in the main method
 945     method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
 946     // Check if event led to a higher level OSR compilation
 947     CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
 948     if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
 949       // It's not possible to reach the expected level so fall back to simple.
 950       expected_comp_level = CompLevel_simple;
 951     }
 952     CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
 953     if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
 954       nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 955       assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 956       if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) {
 957         // Perform OSR with new nmethod
 958         return osr_nm;
 959       }
 960     }
 961   }
 962   return nullptr;
 963 }
 964 
 965 // Check if the method can be compiled, change level if necessary
 966 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
 967   assert(verify_level(level), "Invalid compilation level requested: %d", level);
 968 
 969   if (level == CompLevel_none) {
 970     if (mh->has_compiled_code()) {
 971       // Happens when we switch to interpreter to profile.
 972       MutexLocker ml(Compile_lock);
 973       NoSafepointVerifier nsv;
 974       if (mh->has_compiled_code()) {
 975         mh->code()->make_not_used();
 976       }
 977       // Deoptimize immediately (we don't have to wait for a compile).
 978       JavaThread* jt = THREAD;
 979       RegisterMap map(jt,
 980                       RegisterMap::UpdateMap::skip,
 981                       RegisterMap::ProcessFrames::include,
 982                       RegisterMap::WalkContinuation::skip);
 983       frame fr = jt->last_frame().sender(&map);
 984       Deoptimization::deoptimize_frame(jt, fr.id());
 985     }
 986     return;
 987   }
 988 
 989   // Check if the method can be compiled. Additional logic for TieredCompilation:
 990   // If it cannot be compiled with C1, continue profiling in the interpreter
 991   // and then compile with C2 (the transition function will request that,
 992   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 993   // pure C1.
 994   if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 995     if (!CompilationModeFlag::disable_intermediate() &&
 996         level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 997       compile(mh, bci, CompLevel_simple, THREAD);
 998     }
 999     return;
1000   }
1001   if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
1002     if (!CompilationModeFlag::disable_intermediate() &&
1003         level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
1004       nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
1005       if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) {
1006         // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
1007         osr_nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_FOR_COMPILING_WITH_C1);
1008       }
1009       compile(mh, bci, CompLevel_simple, THREAD);
1010     }
1011     return;
1012   }
1013   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
1014     return;
1015   }
1016   if (!CompileBroker::compilation_is_in_queue(mh)) {
1017     if (PrintTieredEvents) {
1018       print_event(COMPILE, mh(), mh(), bci, level);
1019     }
1020     int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
1021     update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
1022     bool requires_online_compilation = false;
1023     if (TrainingData::have_data()) {
1024       MethodTrainingData* mtd = MethodTrainingData::find_fast(mh);
1025       if (mtd != nullptr) {
1026         CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
1027         if (ctd != nullptr) {
1028           requires_online_compilation = (ctd->init_deps_left_acquire() > 0);
1029         }
1030       }
1031     }
1032     CompileBroker::compile_method(mh, bci, level, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD);
1033   }
1034 }
1035 
1036 // update_rate() is called from select_task() while holding a compile queue lock.
1037 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
1038   // Skip update if counters are absent.
1039   // Can't allocate them since we are holding compile queue lock.
1040   if (method->method_counters() == nullptr)  return;
1041 
1042   if (is_old(method)) {
1043     // We don't remove old methods from the queue,
1044     // so we can just zero the rate.
1045     method->set_rate(0);
1046     return;
1047   }
1048 
1049   // We don't update the rate if we've just came out of a safepoint.
1050   // delta_s is the time since last safepoint in milliseconds.
1051   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1052   int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
1053   // How many events were there since the last time?
1054   int event_count = method->invocation_count() + method->backedge_count();
1055   int delta_e = event_count - method->prev_event_count();
1056 
1057   // We should be running for at least 1ms.
1058   if (delta_s >= TieredRateUpdateMinTime) {
1059     // And we must've taken the previous point at least 1ms before.
1060     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
1061       method->set_prev_time(t);
1062       method->set_prev_event_count(event_count);
1063       method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
1064     } else {
1065       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
1066         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
1067         method->set_rate(0);
1068       }
1069     }
1070   }
1071 }
1072 
1073 // Check if this method has been stale for a given number of milliseconds.
1074 // See select_task().
1075 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
1076   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1077   int64_t delta_t = t - method->prev_time();
1078   if (delta_t > timeout && delta_s > timeout) {
1079     int event_count = method->invocation_count() + method->backedge_count();
1080     int delta_e = event_count - method->prev_event_count();
1081     // Return true if there were no events.
1082     return delta_e == 0;
1083   }
1084   return false;
1085 }
1086 
1087 // We don't remove old methods from the compile queue even if they have
1088 // very low activity. See select_task().
1089 bool CompilationPolicy::is_old(const methodHandle& method) {
1090   int i = method->invocation_count();
1091   int b = method->backedge_count();
1092   double k = TieredOldPercentage / 100.0;
1093 
1094   return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1095 }
1096 
1097 double CompilationPolicy::weight(Method* method) {
1098   return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1);
1099 }
1100 
1101 // Apply heuristics and return true if x should be compiled before y
1102 bool CompilationPolicy::compare_methods(Method* x, Method* y) {
1103   if (x->highest_comp_level() > y->highest_comp_level()) {
1104     // recompilation after deopt
1105     return true;
1106   } else
1107     if (x->highest_comp_level() == y->highest_comp_level()) {
1108       if (weight(x) > weight(y)) {
1109         return true;
1110       }
1111     }
1112   return false;
1113 }
1114 
1115 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) {
1116   assert(!x->is_aot_load() && !y->is_aot_load(), "AOT code caching tasks are not expected here");
1117   if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) {
1118     return true;
1119   }
1120   return false;
1121 }
1122 
1123 // Is method profiled enough?
1124 bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
1125   MethodData* mdo = method->method_data();
1126   if (mdo != nullptr) {
1127     int i = mdo->invocation_count_delta();
1128     int b = mdo->backedge_count_delta();
1129     return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
1130   }
1131   return false;
1132 }
1133 
1134 
1135 // Determine is a method is mature.
1136 bool CompilationPolicy::is_mature(MethodData* mdo) {
1137   if (Arguments::is_compiler_only()) {
1138     // Always report profiles as immature with -Xcomp
1139     return false;
1140   }
1141   methodHandle mh(Thread::current(), mdo->method());
1142   if (mdo != nullptr) {
1143     int i = mdo->invocation_count();
1144     int b = mdo->backedge_count();
1145     double k = ProfileMaturityPercentage / 100.0;
1146     return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
1147   }
1148   return false;
1149 }
1150 
1151 // If a method is old enough and is still in the interpreter we would want to
1152 // start profiling without waiting for the compiled method to arrive.
1153 // We also take the load on compilers into the account.
1154 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
1155   if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
1156     return false;
1157   }
1158 
1159   if (TrainingData::have_data()) {
1160     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1161     if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
1162       return true;
1163     }
1164   }
1165 
1166   if (is_old(method)) {
1167     return true;
1168   }
1169   int i = method->invocation_count();
1170   int b = method->backedge_count();
1171   double k = Tier0ProfilingStartPercentage / 100.0;
1172 
1173   // If the top level compiler is not keeping up, delay profiling.
1174   if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
1175     return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1176   }
1177   return false;
1178 }
1179 
1180 // Inlining control: if we're compiling a profiled method with C1 and the callee
1181 // is known to have OSRed in a C2 version, don't inline it.
1182 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
1183   CompLevel comp_level = (CompLevel)env->comp_level();
1184   if (comp_level == CompLevel_full_profile ||
1185       comp_level == CompLevel_limited_profile) {
1186     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
1187   }
1188   return false;
1189 }
1190 
1191 // Create MDO if necessary.
1192 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
1193   if (mh->is_native() ||
1194       mh->is_abstract() ||
1195       mh->is_accessor() ||
1196       mh->is_constant_getter()) {
1197     return;
1198   }
1199   if (mh->method_data() == nullptr) {
1200     Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
1201   }
1202   if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
1203     MethodData* mdo = mh->method_data();
1204     if (mdo != nullptr) {
1205       frame last_frame = THREAD->last_frame();
1206       if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
1207         int bci = last_frame.interpreter_frame_bci();
1208         address dp = mdo->bci_to_dp(bci);
1209         last_frame.interpreter_frame_set_mdp(dp);
1210       }
1211     }
1212   }
1213 }
1214 
1215 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1216   precond(mtd != nullptr);
1217   precond(cur_level == CompLevel_none);
1218 
1219   if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
1220     return CompLevel_none;
1221   }
1222 
1223   bool training_has_profile = (mtd->final_profile() != nullptr);
1224   if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
1225     return CompLevel_full_profile;
1226   }
1227 
1228   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1229   switch (highest_training_level) {
1230     case CompLevel_limited_profile:
1231     case CompLevel_full_profile:
1232       return CompLevel_limited_profile;
1233     case CompLevel_simple:
1234       return CompLevel_simple;
1235     case CompLevel_none:
1236       return CompLevel_none;
1237     default:
1238       break;
1239   }
1240 
1241   // Now handle the case of level 4.
1242   assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
1243   if (!training_has_profile) {
1244     // The method was a part of a level 4 compile, but doesn't have a stored profile,
1245     // we need to profile it.
1246     return CompLevel_full_profile;
1247   }
1248   const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
1249   // If we deopted, then we reprofile
1250   if (deopt && !is_method_profiled(method)) {
1251     return CompLevel_full_profile;
1252   }
1253 
1254   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1255   assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
1256   // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
1257   if (SkipTier2IfPossible && ctd->init_deps_left_acquire() == 0) {
1258     if (method->method_data() == nullptr) {
1259       create_mdo(method, THREAD);
1260     }
1261     return CompLevel_full_optimization;
1262   }
1263 
1264   // Otherwise go to level 2
1265   return CompLevel_limited_profile;
1266 }
1267 
1268 
1269 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1270   precond(mtd != nullptr);
1271   precond(cur_level == CompLevel_limited_profile);
1272 
1273   // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
1274 
1275   // But first, check if we have a saved profile
1276   bool training_has_profile = (mtd->final_profile() != nullptr);
1277   if (!training_has_profile) {
1278     return CompLevel_full_profile;
1279   }
1280 
1281 
1282   assert(training_has_profile, "Have to have a profile to be here");
1283   // Check if the method is ready
1284   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1285   if (ctd != nullptr && ctd->init_deps_left_acquire() == 0) {
1286     if (method->method_data() == nullptr) {
1287       create_mdo(method, THREAD);
1288     }
1289     return CompLevel_full_optimization;
1290   }
1291 
1292   // Otherwise stay at the current level
1293   return CompLevel_limited_profile;
1294 }
1295 
1296 
1297 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1298   precond(mtd != nullptr);
1299   precond(cur_level == CompLevel_full_profile);
1300 
1301   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1302   // We have method at the full profile level and we also know that it's possibly an important method.
1303   if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
1304     // Check if it is adequately profiled
1305     if (is_method_profiled(method)) {
1306       return CompLevel_full_optimization;
1307     }
1308   }
1309 
1310   // Otherwise stay at the current level
1311   return CompLevel_full_profile;
1312 }
1313 
1314 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1315   precond(MethodTrainingData::have_data());
1316 
1317   // If there is no training data recorded for this method, bail out.
1318   if (mtd == nullptr) {
1319     return cur_level;
1320   }
1321 
1322   CompLevel next_level = cur_level;
1323   switch(cur_level) {
1324     default: break;
1325     case CompLevel_none:
1326       next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
1327       break;
1328     case CompLevel_limited_profile:
1329       next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
1330       break;
1331     case CompLevel_full_profile:
1332       next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
1333       break;
1334   }
1335 
1336   // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
1337   if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
1338     return CompLevel_none;
1339   }
1340   if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
1341     return CompLevel_none;
1342   }
1343   return (cur_level != next_level) ? limit_level(next_level) : cur_level;
1344 }
1345 
1346 /*
1347  * Method states:
1348  *   0 - interpreter (CompLevel_none)
1349  *   1 - pure C1 (CompLevel_simple)
1350  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
1351  *   3 - C1 with full profiling (CompLevel_full_profile)
1352  *   4 - C2 or Graal (CompLevel_full_optimization)
1353  *
1354  * Common state transition patterns:
1355  * a. 0 -> 3 -> 4.
1356  *    The most common path. But note that even in this straightforward case
1357  *    profiling can start at level 0 and finish at level 3.
1358  *
1359  * b. 0 -> 2 -> 3 -> 4.
1360  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
1361  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
1362  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
1363  *
1364  * c. 0 -> (3->2) -> 4.
1365  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
1366  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
1367  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
1368  *    without full profiling while c2 is compiling.
1369  *
1370  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
1371  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
1372  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
1373  *
1374  * e. 0 -> 4.
1375  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
1376  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
1377  *    the compiled version already exists).
1378  *
1379  * Note that since state 0 can be reached from any other state via deoptimization different loops
1380  * are possible.
1381  *
1382  */
1383 
1384 // Common transition function. Given a predicate determines if a method should transition to another level.
1385 template<typename Predicate>
1386 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
1387   CompLevel next_level = cur_level;
1388 
1389   if (force_comp_at_level_simple(method)) {
1390     next_level = CompLevel_simple;
1391   } else if (is_trivial(method) || method->is_native()) {
1392     // We do not care if there is profiling data for these methods, throw them to compiler.
1393     next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
1394   } else if (MethodTrainingData::have_data()) {
1395     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1396     if (mtd == nullptr) {
1397       // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
1398       // Feed it to the standard TF with no profiling delay.
1399       next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1400     } else {
1401       next_level = trained_transition(method, cur_level, mtd, THREAD);
1402       if (cur_level == next_level && !should_delay_standard_transition(method, cur_level, mtd)) {
1403         // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
1404         // In order to catch possible pathologies due to behavior change we feed the event to the regular
1405         // TF but with profiling delay.
1406         next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1407       }
1408     }
1409   } else {
1410     next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1411   }
1412   return (next_level != cur_level) ? limit_level(next_level) : next_level;
1413 }
1414 
1415 bool CompilationPolicy::should_delay_standard_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd) {
1416   precond(mtd != nullptr);
1417   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1418   if (highest_training_level != CompLevel_full_optimization && cur_level == CompLevel_limited_profile) {
1419     // This is a lukewarm method - it hasn't been compiled with C2 during the tranining run and is currently
1420     // running at level 2. Delay any further state changes until its counters exceed the training run counts.
1421     MethodCounters* mc = method->method_counters();
1422     if (mc == nullptr) {
1423       return false;
1424     }
1425     if (mc->invocation_counter()->carry() || mc->backedge_counter()->carry()) {
1426       return false;
1427     }
1428     if (static_cast<int>(mc->invocation_counter()->count()) <= mtd->invocation_count() &&
1429         static_cast<int>(mc->backedge_counter()->count()) <= mtd->backedge_count()) {
1430       return true;
1431     }
1432   }
1433   return false;
1434 }
1435 
1436 template<typename Predicate>
1437 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1438   CompLevel next_level = cur_level;
1439   switch(cur_level) {
1440   default: break;
1441   case CompLevel_none:
1442     next_level = transition_from_none<Predicate>(method, cur_level, disable_feedback);
1443     break;
1444   case CompLevel_limited_profile:
1445     next_level = transition_from_limited_profile<Predicate>(method, cur_level, disable_feedback);
1446     break;
1447   case CompLevel_full_profile:
1448     next_level = transition_from_full_profile<Predicate>(method, cur_level);
1449     break;
1450   }
1451   return next_level;
1452 }
1453 
1454 template<typename Predicate>
1455 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1456   precond(cur_level == CompLevel_none);
1457   CompLevel next_level = cur_level;
1458   int i = method->invocation_count();
1459   int b = method->backedge_count();
1460   // If we were at full profile level, would we switch to full opt?
1461   if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
1462     next_level = CompLevel_full_optimization;
1463   } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply(method, cur_level, i, b)) {
1464     // C1-generated fully profiled code is about 30% slower than the limited profile
1465     // code that has only invocation and backedge counters. The observation is that
1466     // if C2 queue is large enough we can spend too much time in the fully profiled code
1467     // while waiting for C2 to pick the method from the queue. To alleviate this problem
1468     // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
1469     // we choose to compile a limited profiled version and then recompile with full profiling
1470     // when the load on C2 goes down.
1471     if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
1472       next_level = CompLevel_limited_profile;
1473     } else {
1474       next_level = CompLevel_full_profile;
1475     }
1476   }
1477   return next_level;
1478 }
1479 
1480 template<typename Predicate>
1481 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
1482   precond(cur_level == CompLevel_full_profile);
1483   CompLevel next_level = cur_level;
1484   MethodData* mdo = method->method_data();
1485   if (mdo != nullptr) {
1486     if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
1487       int mdo_i = mdo->invocation_count_delta();
1488       int mdo_b = mdo->backedge_count_delta();
1489       if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
1490         next_level = CompLevel_full_optimization;
1491       }
1492     } else {
1493       next_level = CompLevel_full_optimization;
1494     }
1495   }
1496   return next_level;
1497 }
1498 
1499 template<typename Predicate>
1500 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1501   precond(cur_level == CompLevel_limited_profile);
1502   CompLevel next_level = cur_level;
1503   int i = method->invocation_count();
1504   int b = method->backedge_count();
1505   MethodData* mdo = method->method_data();
1506   if (mdo != nullptr) {
1507     if (mdo->would_profile()) {
1508       if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1509                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1510                               Predicate::apply(method, cur_level, i, b))) {
1511         next_level = CompLevel_full_profile;
1512       }
1513     } else {
1514       next_level = CompLevel_full_optimization;
1515     }
1516   } else {
1517     // If there is no MDO we need to profile
1518     if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1519                             Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1520                             Predicate::apply(method, cur_level, i, b))) {
1521       next_level = CompLevel_full_profile;
1522     }
1523   }
1524   if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
1525     next_level = CompLevel_full_optimization;
1526   }
1527   return next_level;
1528 }
1529 
1530 
1531 // Determine if a method should be compiled with a normal entry point at a different level.
1532 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1533   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
1534   CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
1535 
1536   // If OSR method level is greater than the regular method level, the levels should be
1537   // equalized by raising the regular method level in order to avoid OSRs during each
1538   // invocation of the method.
1539   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
1540     MethodData* mdo = method->method_data();
1541     guarantee(mdo != nullptr, "MDO should not be nullptr");
1542     if (mdo->invocation_count() >= 1) {
1543       next_level = CompLevel_full_optimization;
1544     }
1545   } else {
1546     next_level = MAX2(osr_level, next_level);
1547   }
1548 
1549   return next_level;
1550 }
1551 
1552 // Determine if we should do an OSR compilation of a given method.
1553 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1554   CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
1555   if (cur_level == CompLevel_none) {
1556     // If there is a live OSR method that means that we deopted to the interpreter
1557     // for the transition.
1558     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
1559     if (osr_level > CompLevel_none) {
1560       return osr_level;
1561     }
1562   }
1563   return next_level;
1564 }
1565 
1566 // Handle the invocation event.
1567 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
1568                                                       CompLevel level, nmethod* nm, TRAPS) {
1569   if (should_create_mdo(mh, level)) {
1570     create_mdo(mh, THREAD);
1571   }
1572   CompLevel next_level = call_event(mh, level, THREAD);
1573   if (next_level != level) {
1574     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
1575       compile(mh, InvocationEntryBci, next_level, THREAD);
1576     }
1577   }
1578 }
1579 
1580 // Handle the back branch event. Notice that we can compile the method
1581 // with a regular entry from here.
1582 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
1583                                                      int bci, CompLevel level, nmethod* nm, TRAPS) {
1584   if (should_create_mdo(mh, level)) {
1585     create_mdo(mh, THREAD);
1586   }
1587   // Check if MDO should be created for the inlined method
1588   if (should_create_mdo(imh, level)) {
1589     create_mdo(imh, THREAD);
1590   }
1591 
1592   if (is_compilation_enabled()) {
1593     CompLevel next_osr_level = loop_event(imh, level, THREAD);
1594     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
1595     // At the very least compile the OSR version
1596     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
1597       compile(imh, bci, next_osr_level, CHECK);
1598     }
1599 
1600     // Use loop event as an opportunity to also check if there's been
1601     // enough calls.
1602     CompLevel cur_level, next_level;
1603     if (mh() != imh()) { // If there is an enclosing method
1604       {
1605         guarantee(nm != nullptr, "Should have nmethod here");
1606         cur_level = comp_level(mh());
1607         next_level = call_event(mh, cur_level, THREAD);
1608 
1609         if (max_osr_level == CompLevel_full_optimization) {
1610           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
1611           bool make_not_entrant = false;
1612           if (nm->is_osr_method()) {
1613             // This is an osr method, just make it not entrant and recompile later if needed
1614             make_not_entrant = true;
1615           } else {
1616             if (next_level != CompLevel_full_optimization) {
1617               // next_level is not full opt, so we need to recompile the
1618               // enclosing method without the inlinee
1619               cur_level = CompLevel_none;
1620               make_not_entrant = true;
1621             }
1622           }
1623           if (make_not_entrant) {
1624             if (PrintTieredEvents) {
1625               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
1626               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
1627             }
1628             nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_BACK_BRANCH);
1629           }
1630         }
1631         // Fix up next_level if necessary to avoid deopts
1632         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
1633           next_level = CompLevel_full_profile;
1634         }
1635         if (cur_level != next_level) {
1636           if (!CompileBroker::compilation_is_in_queue(mh)) {
1637             compile(mh, InvocationEntryBci, next_level, THREAD);
1638           }
1639         }
1640       }
1641     } else {
1642       cur_level = comp_level(mh());
1643       next_level = call_event(mh, cur_level, THREAD);
1644       if (next_level != cur_level) {
1645         if (!CompileBroker::compilation_is_in_queue(mh)) {
1646           compile(mh, InvocationEntryBci, next_level, THREAD);
1647         }
1648       }
1649     }
1650   }
1651 }
1652