1 /*
   2  * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "code/aotCodeCache.hpp"
  27 #include "code/scopeDesc.hpp"
  28 #include "compiler/compilationPolicy.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compilerDefinitions.inline.hpp"
  31 #include "compiler/compilerOracle.hpp"
  32 #include "compiler/recompilationPolicy.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/method.inline.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/trainingData.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/globals_extension.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointVerifiers.hpp"
  47 #ifdef COMPILER1
  48 #include "c1/c1_Compiler.hpp"
  49 #endif
  50 #ifdef COMPILER2
  51 #include "opto/c2compiler.hpp"
  52 #endif
  53 #if INCLUDE_JVMCI
  54 #include "jvmci/jvmci.hpp"
  55 #endif
  56 
  57 int64_t CompilationPolicy::_start_time = 0;
  58 int CompilationPolicy::_c1_count = 0;
  59 int CompilationPolicy::_c2_count = 0;
  60 int CompilationPolicy::_ac_count = 0;
  61 double CompilationPolicy::_increase_threshold_at_ratio = 0;
  62 
  63 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
  64 
  65 void compilationPolicy_init() {
  66   CompilationPolicy::initialize();
  67 }
  68 
  69 int CompilationPolicy::compiler_count(CompLevel comp_level) {
  70   if (is_c1_compile(comp_level)) {
  71     return c1_count();
  72   } else if (is_c2_compile(comp_level)) {
  73     return c2_count();
  74   }
  75   return 0;
  76 }
  77 
  78 // Returns true if m must be compiled before executing it
  79 // This is intended to force compiles for methods (usually for
  80 // debugging) that would otherwise be interpreted for some reason.
  81 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
  82   // Don't allow Xcomp to cause compiles in replay mode
  83   if (ReplayCompiles) return false;
  84 
  85   if (m->has_compiled_code()) return false;       // already compiled
  86   if (!can_be_compiled(m, comp_level)) return false;
  87 
  88   return !UseInterpreter ||                                              // must compile all methods
  89          (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
  90 }
  91 
  92 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
  93   if (m->method_holder()->is_not_initialized()) {
  94     // 'is_not_initialized' means not only '!is_initialized', but also that
  95     // initialization has not been started yet ('!being_initialized')
  96     // Do not force compilation of methods in uninitialized classes.
  97     return;
  98   }
  99   if (!m->is_native() && MethodTrainingData::have_data()) {
 100     MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
 101     if (mtd == nullptr) {
 102       return;              // there is no training data recorded for m
 103     }
 104     // Consider replacing conservatively compiled AOT Preload code with faster AOT code
 105     nmethod* nm = m->code();
 106     bool recompile = (nm != nullptr) && nm->preloaded();
 107     CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
 108     CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
 109     if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
 110       bool requires_online_compilation = false;
 111       CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level);
 112       if (ctd != nullptr) {
 113         // Can't load normal AOT code - not all dependancies are ready,
 114         // request normal compilation
 115         requires_online_compilation = (ctd->init_deps_left_acquire() > 0);
 116       }
 117       if (requires_online_compilation && recompile) {
 118         // Wait when dependencies are ready to load normal AOT code
 119         // if AOT Preload code is used now.
 120         //
 121         // FIXME. We may never (or it take long time) get all dependencies
 122         // be ready to replace AOT Preload code. Consider using time and how many
 123         // dependencies left to allow normal JIT compilation for replacement.
 124         return;
 125       }
 126       if (PrintTieredEvents) {
 127         print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
 128       }
 129       CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
 130       if (HAS_PENDING_EXCEPTION) {
 131         CLEAR_PENDING_EXCEPTION;
 132       }
 133     }
 134   }
 135 }
 136 
 137 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
 138   if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
 139     // don't force compilation, resolve was on behalf of compiler
 140     return;
 141   }
 142   if (m->method_holder()->is_not_initialized()) {
 143     // 'is_not_initialized' means not only '!is_initialized', but also that
 144     // initialization has not been started yet ('!being_initialized')
 145     // Do not force compilation of methods in uninitialized classes.
 146     // Note that doing this would throw an assert later,
 147     // in CompileBroker::compile_method.
 148     // We sometimes use the link resolver to do reflective lookups
 149     // even before classes are initialized.
 150     return;
 151   }
 152 
 153   if (must_be_compiled(m)) {
 154     // This path is unusual, mostly used by the '-Xcomp' stress test mode.
 155     CompLevel level = initial_compile_level(m);
 156     if (PrintTieredEvents) {
 157       print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
 158     }
 159     // Test AOT code too
 160     bool requires_online_compilation = false;
 161     if (TrainingData::have_data()) {
 162       MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
 163       if (mtd != nullptr) {
 164         CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
 165         if (ctd != nullptr) {
 166           requires_online_compilation = (ctd->init_deps_left_acquire() > 0);
 167         }
 168       }
 169     }
 170     CompileBroker::compile_method(m, InvocationEntryBci, level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
 171   }
 172 }
 173 
 174 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, JavaThread* current) {
 175   if (!klass->has_init_deps_processed()) {
 176     ResourceMark rm;
 177     log_debug(training)("Replay training: %s", klass->external_name());
 178 
 179     KlassTrainingData* ktd = KlassTrainingData::find(klass);
 180     if (ktd != nullptr) {
 181       guarantee(ktd->has_holder(), "");
 182       ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
 183       assert(klass->has_init_deps_processed(), "");
 184 
 185       if (AOTCompileEagerly) {
 186         ktd->iterate_comp_deps([&](CompileTrainingData* ctd) {
 187           if (ctd->init_deps_left_acquire() == 0) {
 188             MethodTrainingData* mtd = ctd->method();
 189             if (mtd->has_holder()) {
 190               const methodHandle mh(current, const_cast<Method*>(mtd->holder()));
 191               CompilationPolicy::maybe_compile_early(mh, current);
 192             }
 193           }
 194         });
 195       }
 196     }
 197   }
 198 }
 199 
 200 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, JavaThread* current) {
 201   assert(klass->is_initialized(), "");
 202   if (TrainingData::have_data() && klass->in_aot_cache()) {
 203     _training_replay_queue.push(klass, TrainingReplayQueue_lock, current);
 204   }
 205 }
 206 
 207 // For TrainingReplayQueue
 208 template<>
 209 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
 210   int pos = 0;
 211   for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
 212     ResourceMark rm;
 213     InstanceKlass* ik = cur->value();
 214     st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
 215   }
 216 }
 217 
 218 void CompilationPolicy::replay_training_at_init_loop(JavaThread* current) {
 219   while (!CompileBroker::is_compilation_disabled_forever()) {
 220     InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, current);
 221     if (ik != nullptr) {
 222       replay_training_at_init_impl(ik, current);
 223     }
 224   }
 225 }
 226 
 227 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
 228   if (comp_level == CompLevel_any) {
 229      if (CompilerConfig::is_c1_only()) {
 230        comp_level = CompLevel_simple;
 231      } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
 232        comp_level = CompLevel_full_optimization;
 233      }
 234   }
 235   return comp_level;
 236 }
 237 
 238 // Returns true if m is allowed to be compiled
 239 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
 240   // allow any levels for WhiteBox
 241   assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
 242 
 243   if (m->is_abstract()) return false;
 244   if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
 245 
 246   // Math intrinsics should never be compiled as this can lead to
 247   // monotonicity problems because the interpreter will prefer the
 248   // compiled code to the intrinsic version.  This can't happen in
 249   // production because the invocation counter can't be incremented
 250   // but we shouldn't expose the system to this problem in testing
 251   // modes.
 252   if (!AbstractInterpreter::can_be_compiled(m)) {
 253     return false;
 254   }
 255   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 256   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 257     return !m->is_not_compilable(comp_level);
 258   }
 259   return false;
 260 }
 261 
 262 // Returns true if m is allowed to be osr compiled
 263 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
 264   bool result = false;
 265   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 266   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 267     result = !m->is_not_osr_compilable(comp_level);
 268   }
 269   return (result && can_be_compiled(m, comp_level));
 270 }
 271 
 272 bool CompilationPolicy::is_compilation_enabled() {
 273   // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
 274   return CompileBroker::should_compile_new_jobs();
 275 }
 276 
 277 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
 278   // Remove unloaded methods from the queue
 279   for (CompileTask* task = compile_queue->first(); task != nullptr; ) {
 280     CompileTask* next = task->next();
 281     if (task->is_unloaded()) {
 282       compile_queue->remove_and_mark_stale(task);
 283     }
 284     task = next;
 285   }
 286 #if INCLUDE_JVMCI
 287   if (UseJVMCICompiler && !BackgroundCompilation) {
 288     /*
 289      * In blocking compilation mode, the CompileBroker will make
 290      * compilations submitted by a JVMCI compiler thread non-blocking. These
 291      * compilations should be scheduled after all blocking compilations
 292      * to service non-compiler related compilations sooner and reduce the
 293      * chance of such compilations timing out.
 294      */
 295     for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) {
 296       if (task->is_blocking()) {
 297         return task;
 298       }
 299     }
 300   }
 301 #endif
 302   return compile_queue->first();
 303 }
 304 
 305 // Simple methods are as good being compiled with C1 as C2.
 306 // Determine if a given method is such a case.
 307 bool CompilationPolicy::is_trivial(const methodHandle& method) {
 308   if (method->is_accessor() ||
 309       method->is_constant_getter()) {
 310     return true;
 311   }
 312   return false;
 313 }
 314 
 315 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
 316   if (CompilationModeFlag::quick_internal()) {
 317 #if INCLUDE_JVMCI
 318     if (UseJVMCICompiler) {
 319       AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 320       if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 321         return true;
 322       }
 323     }
 324 #endif
 325   }
 326   return false;
 327 }
 328 
 329 CompLevel CompilationPolicy::comp_level(Method* method) {
 330   nmethod *nm = method->code();
 331   if (nm != nullptr && nm->is_in_use()) {
 332     return (CompLevel)nm->comp_level();
 333   }
 334   return CompLevel_none;
 335 }
 336 
 337 // Call and loop predicates determine whether a transition to a higher
 338 // compilation level should be performed (pointers to predicate functions
 339 // are passed to common()).
 340 // Tier?LoadFeedback is basically a coefficient that determines of
 341 // how many methods per compiler thread can be in the queue before
 342 // the threshold values double.
 343 class LoopPredicate : AllStatic {
 344 public:
 345   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 346     double threshold_scaling;
 347     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 348       scale *= threshold_scaling;
 349     }
 350     switch(cur_level) {
 351     case CompLevel_none:
 352     case CompLevel_limited_profile:
 353       return b >= Tier3BackEdgeThreshold * scale;
 354     case CompLevel_full_profile:
 355       return b >= Tier4BackEdgeThreshold * scale;
 356     default:
 357       return true;
 358     }
 359   }
 360 
 361   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 362     double k = 1;
 363     switch(cur_level) {
 364     case CompLevel_none:
 365     // Fall through
 366     case CompLevel_limited_profile: {
 367       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 368       break;
 369     }
 370     case CompLevel_full_profile: {
 371       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 372       break;
 373     }
 374     default:
 375       return true;
 376     }
 377     return apply_scaled(method, cur_level, i, b, k);
 378   }
 379 };
 380 
 381 class CallPredicate : AllStatic {
 382 public:
 383   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 384     double threshold_scaling;
 385     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 386       scale *= threshold_scaling;
 387     }
 388     switch(cur_level) {
 389     case CompLevel_none:
 390     case CompLevel_limited_profile:
 391       return (i >= Tier3InvocationThreshold * scale) ||
 392              (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
 393     case CompLevel_full_profile:
 394       return (i >= Tier4InvocationThreshold * scale) ||
 395              (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
 396     default:
 397      return true;
 398     }
 399   }
 400 
 401   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 402     double k = 1;
 403     switch(cur_level) {
 404     case CompLevel_none:
 405     case CompLevel_limited_profile: {
 406       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 407       break;
 408     }
 409     case CompLevel_full_profile: {
 410       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 411       break;
 412     }
 413     default:
 414       return true;
 415     }
 416     return apply_scaled(method, cur_level, i, b, k);
 417   }
 418 };
 419 
 420 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
 421   int comp_count = compiler_count(level);
 422   if (comp_count > 0 && feedback_k > 0) {
 423     double queue_size = CompileBroker::queue_size(level);
 424     double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1;
 425 
 426     // Increase C1 compile threshold when the code cache is filled more
 427     // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 428     // The main intention is to keep enough free space for C2 compiled code
 429     // to achieve peak performance if the code cache is under stress.
 430     if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level))  {
 431       double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 432       if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 433         k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 434       }
 435     }
 436     return k;
 437   }
 438   return 1;
 439 }
 440 
 441 void CompilationPolicy::print_counters_on(outputStream* st, const char* prefix, Method* m) {
 442   int invocation_count = m->invocation_count();
 443   int backedge_count = m->backedge_count();
 444   MethodData* mdh = m->method_data();
 445   int mdo_invocations = 0, mdo_backedges = 0;
 446   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 447   if (mdh != nullptr) {
 448     mdo_invocations = mdh->invocation_count();
 449     mdo_backedges = mdh->backedge_count();
 450     mdo_invocations_start = mdh->invocation_count_start();
 451     mdo_backedges_start = mdh->backedge_count_start();
 452   }
 453   st->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 454     invocation_count, backedge_count, prefix,
 455     mdo_invocations, mdo_invocations_start,
 456     mdo_backedges, mdo_backedges_start);
 457   st->print(" %smax levels=%d,%d", prefix, m->highest_comp_level(), m->highest_osr_comp_level());
 458 }
 459 
 460 void CompilationPolicy::print_training_data_on(outputStream* st,  const char* prefix, Method* method, CompLevel cur_level) {
 461   methodHandle m(Thread::current(), method);
 462   st->print(" %smtd: ", prefix);
 463   MethodTrainingData* mtd = MethodTrainingData::find(m);
 464   if (mtd == nullptr) {
 465     st->print("null");
 466   } else {
 467     if (should_delay_standard_transition(m, cur_level, mtd)) {
 468       st->print("delayed, ");
 469     }
 470     MethodData* md = mtd->final_profile();
 471     st->print("mdo=");
 472     if (md == nullptr) {
 473       st->print("null");
 474     } else {
 475       int mdo_invocations = md->invocation_count();
 476       int mdo_backedges = md->backedge_count();
 477       int mdo_invocations_start = md->invocation_count_start();
 478       int mdo_backedges_start = md->backedge_count_start();
 479       st->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
 480     }
 481     CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
 482     st->print(", deps=");
 483     if (ctd == nullptr) {
 484       st->print("null");
 485     } else {
 486       st->print("%d", ctd->init_deps_left_acquire());
 487     }
 488   }
 489 }
 490 
 491 // Print an event.
 492 void CompilationPolicy::print_event_on(outputStream *st, EventType type, Method* m, Method* im, int bci, CompLevel level) {
 493   bool inlinee_event = m != im;
 494 
 495   st->print("%lf: [", os::elapsedTime());
 496 
 497   switch(type) {
 498   case CALL:
 499     st->print("call");
 500     break;
 501   case LOOP:
 502     st->print("loop");
 503     break;
 504   case COMPILE:
 505     st->print("compile");
 506     break;
 507   case FORCE_COMPILE:
 508     st->print("force-compile");
 509     break;
 510   case FORCE_RECOMPILE:
 511     st->print("force-recompile");
 512     break;
 513   case REMOVE_FROM_QUEUE:
 514     st->print("remove-from-queue");
 515     break;
 516   case UPDATE_IN_QUEUE:
 517     st->print("update-in-queue");
 518     break;
 519   case REPROFILE:
 520     st->print("reprofile");
 521     break;
 522   case MAKE_NOT_ENTRANT:
 523     st->print("make-not-entrant");
 524     break;
 525   default:
 526     st->print("unknown");
 527   }
 528 
 529   st->print(" level=%d ", level);
 530 
 531   ResourceMark rm;
 532   char *method_name = m->name_and_sig_as_C_string();
 533   st->print("[%s", method_name);
 534   if (inlinee_event) {
 535     char *inlinee_name = im->name_and_sig_as_C_string();
 536     st->print(" [%s]] ", inlinee_name);
 537   }
 538   else st->print("] ");
 539   st->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 540                                      CompileBroker::queue_size(CompLevel_full_optimization));
 541 
 542   st->print(" rate=");
 543   if (m->prev_time() == 0) st->print("n/a");
 544   else st->print("%f", m->rate());
 545 
 546   RecompilationPolicy::print_load_average(st);
 547 
 548   st->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 549                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 550 
 551   if (type != COMPILE) {
 552     print_counters_on(st, "", m);
 553     if (inlinee_event) {
 554       print_counters_on(st, "inlinee ", im);
 555     }
 556     st->print(" compilable=");
 557     bool need_comma = false;
 558     if (!m->is_not_compilable(CompLevel_full_profile)) {
 559       st->print("c1");
 560       need_comma = true;
 561     }
 562     if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
 563       if (need_comma) st->print(",");
 564       st->print("c1-osr");
 565       need_comma = true;
 566     }
 567     if (!m->is_not_compilable(CompLevel_full_optimization)) {
 568       if (need_comma) st->print(",");
 569       st->print("c2");
 570       need_comma = true;
 571     }
 572     if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
 573       if (need_comma) st->print(",");
 574       st->print("c2-osr");
 575     }
 576     st->print(" status=");
 577     if (m->queued_for_compilation()) {
 578       st->print("in-queue");
 579     } else st->print("idle");
 580 
 581     print_training_data_on(st, "", m, level);
 582     if (inlinee_event) {
 583       print_training_data_on(st, "inlinee ", im, level);
 584     }
 585   }
 586   st->print_cr("]");
 587 
 588 }
 589 
 590 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
 591   stringStream s;
 592   print_event_on(&s, type, m, im, bci, level);
 593   ResourceMark rm;
 594   tty->print("%s", s.as_string());
 595 }
 596 
 597 void CompilationPolicy::initialize() {
 598   if (!CompilerConfig::is_interpreter_only()) {
 599     int count = CICompilerCount;
 600     bool c1_only = CompilerConfig::is_c1_only();
 601     bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
 602     int min_count = (c1_only || c2_only) ? 1 : 2;
 603 
 604 #ifdef _LP64
 605     // Turn on ergonomic compiler count selection
 606     if (AOTCodeCache::maybe_dumping_code()) {
 607       // Assembly phase runs C1 and C2 compilation in separate phases,
 608       // and can use all the CPU threads it can reach. Adjust the common
 609       // options before policy starts overwriting them.
 610       FLAG_SET_ERGO_IF_DEFAULT(UseDynamicNumberOfCompilerThreads, false);
 611       FLAG_SET_ERGO_IF_DEFAULT(CICompilerCountPerCPU, false);
 612       if (FLAG_IS_DEFAULT(CICompilerCount)) {
 613         count =  MAX2(count, os::active_processor_count());
 614       }
 615     }
 616     if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 617       FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 618     }
 619     if (CICompilerCountPerCPU) {
 620       // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 621       int log_cpu = log2i(os::active_processor_count());
 622       int loglog_cpu = log2i(MAX2(log_cpu, 1));
 623       count = MAX2(log_cpu * loglog_cpu * 3 / 2, min_count);
 624     }
 625     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 626       // Make sure there is enough space in the code cache to hold all the compiler buffers
 627       size_t c1_size = 0;
 628 #ifdef COMPILER1
 629       c1_size = Compiler::code_buffer_size();
 630 #endif
 631       size_t c2_size = 0;
 632 #ifdef COMPILER2
 633       c2_size = C2Compiler::initial_code_buffer_size();
 634 #endif
 635       size_t buffer_size = 0;
 636       if (c1_only) {
 637         buffer_size = c1_size;
 638       } else if (c2_only) {
 639         buffer_size = c2_size;
 640       } else {
 641         buffer_size = c1_size / 3 + 2 * c2_size / 3;
 642       }
 643       size_t max_count = (NonNMethodCodeHeapSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / buffer_size;
 644       if ((size_t)count > max_count) {
 645         // Lower the compiler count such that all buffers fit into the code cache
 646         count = MAX2((int)max_count, min_count);
 647       }
 648       FLAG_SET_ERGO(CICompilerCount, count);
 649     }
 650 #else
 651     // On 32-bit systems, the number of compiler threads is limited to 3.
 652     // On these systems, the virtual address space available to the JVM
 653     // is usually limited to 2-4 GB (the exact value depends on the platform).
 654     // As the compilers (especially C2) can consume a large amount of
 655     // memory, scaling the number of compiler threads with the number of
 656     // available cores can result in the exhaustion of the address space
 657     /// available to the VM and thus cause the VM to crash.
 658     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 659       count = 3;
 660       FLAG_SET_ERGO(CICompilerCount, count);
 661     }
 662 #endif // _LP64
 663 
 664     if (c1_only) {
 665       // No C2 compiler threads are needed
 666       set_c1_count(count);
 667     } else if (c2_only) {
 668       // No C1 compiler threads are needed
 669       set_c2_count(count);
 670     } else {
 671 #if INCLUDE_JVMCI
 672       if (UseJVMCICompiler && UseJVMCINativeLibrary) {
 673         int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
 674         int c1_count = MAX2(count - libjvmci_count, 1);
 675         set_c2_count(libjvmci_count);
 676         set_c1_count(c1_count);
 677       } else
 678 #endif
 679       {
 680         set_c1_count(MAX2(count / 3, 1));
 681         set_c2_count(MAX2(count - c1_count(), 1));
 682       }
 683     }
 684     if (AOTCodeCache::is_code_load_thread_on()) {
 685       set_ac_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 AOT code in parallel
 686     }
 687     assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 688     set_increase_threshold_at_ratio();
 689   } else {
 690     // Interpreter mode creates no compilers
 691     FLAG_SET_ERGO(CICompilerCount, 0);
 692   }
 693   set_start_time(nanos_to_millis(os::javaTimeNanos()));
 694 }
 695 
 696 
 697 #ifdef ASSERT
 698 bool CompilationPolicy::verify_level(CompLevel level) {
 699   if (TieredCompilation && level > TieredStopAtLevel) {
 700     return false;
 701   }
 702   // Check if there is a compiler to process the requested level
 703   if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
 704     return false;
 705   }
 706   if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
 707     return false;
 708   }
 709 
 710   // Interpreter level is always valid.
 711   if (level == CompLevel_none) {
 712     return true;
 713   }
 714   if (CompilationModeFlag::normal()) {
 715     return true;
 716   } else if (CompilationModeFlag::quick_only()) {
 717     return level == CompLevel_simple;
 718   } else if (CompilationModeFlag::high_only()) {
 719     return level == CompLevel_full_optimization;
 720   } else if (CompilationModeFlag::high_only_quick_internal()) {
 721     return level == CompLevel_full_optimization || level == CompLevel_simple;
 722   }
 723   return false;
 724 }
 725 #endif
 726 
 727 
 728 CompLevel CompilationPolicy::highest_compile_level() {
 729   CompLevel level = CompLevel_none;
 730   // Setup the maximum level available for the current compiler configuration.
 731   if (!CompilerConfig::is_interpreter_only()) {
 732     if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
 733       level = CompLevel_full_optimization;
 734     } else if (CompilerConfig::is_c1_enabled()) {
 735       if (CompilerConfig::is_c1_simple_only()) {
 736         level = CompLevel_simple;
 737       } else {
 738         level = CompLevel_full_profile;
 739       }
 740     }
 741   }
 742   // Clamp the maximum level with TieredStopAtLevel.
 743   if (TieredCompilation) {
 744     level = MIN2(level, (CompLevel) TieredStopAtLevel);
 745   }
 746 
 747   // Fix it up if after the clamping it has become invalid.
 748   // Bring it monotonically down depending on the next available level for
 749   // the compilation mode.
 750   if (!CompilationModeFlag::normal()) {
 751     // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
 752     // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
 753     // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
 754     if (CompilationModeFlag::quick_only()) {
 755       if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
 756         level = CompLevel_simple;
 757       }
 758     } else if (CompilationModeFlag::high_only()) {
 759       if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 760         level = CompLevel_none;
 761       }
 762     } else if (CompilationModeFlag::high_only_quick_internal()) {
 763       if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 764         level = CompLevel_simple;
 765       }
 766     }
 767   }
 768 
 769   assert(verify_level(level), "Invalid highest compilation level: %d", level);
 770   return level;
 771 }
 772 
 773 CompLevel CompilationPolicy::limit_level(CompLevel level) {
 774   level = MIN2(level, highest_compile_level());
 775   assert(verify_level(level), "Invalid compilation level: %d", level);
 776   return level;
 777 }
 778 
 779 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
 780   CompLevel level = CompLevel_any;
 781   if (CompilationModeFlag::normal()) {
 782     level = CompLevel_full_profile;
 783   } else if (CompilationModeFlag::quick_only()) {
 784     level = CompLevel_simple;
 785   } else if (CompilationModeFlag::high_only()) {
 786     level = CompLevel_full_optimization;
 787   } else if (CompilationModeFlag::high_only_quick_internal()) {
 788     if (force_comp_at_level_simple(method)) {
 789       level = CompLevel_simple;
 790     } else {
 791       level = CompLevel_full_optimization;
 792     }
 793   }
 794   assert(level != CompLevel_any, "Unhandled compilation mode");
 795   return limit_level(level);
 796 }
 797 
 798 // Set carry flags on the counters if necessary
 799 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) {
 800   MethodCounters *mcs = method->method_counters();
 801   if (mcs != nullptr) {
 802     mcs->invocation_counter()->set_carry_on_overflow();
 803     mcs->backedge_counter()->set_carry_on_overflow();
 804   }
 805   MethodData* mdo = method->method_data();
 806   if (mdo != nullptr) {
 807     mdo->invocation_counter()->set_carry_on_overflow();
 808     mdo->backedge_counter()->set_carry_on_overflow();
 809   }
 810 }
 811 
 812 // Called with the queue locked and with at least one element
 813 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
 814   CompileTask *max_blocking_task = nullptr;
 815   CompileTask *max_task = nullptr;
 816   Method* max_method = nullptr;
 817 
 818   int64_t t = nanos_to_millis(os::javaTimeNanos());
 819   // Iterate through the queue and find a method with a maximum rate.
 820   for (CompileTask* task = compile_queue->first(); task != nullptr;) {
 821     CompileTask* next_task = task->next();
 822     // If a method was unloaded or has been stale for some time, remove it from the queue.
 823     // Blocking tasks and tasks submitted from whitebox API don't become stale
 824     if (task->is_unloaded()) {
 825       compile_queue->remove_and_mark_stale(task);
 826       task = next_task;
 827       continue;
 828     }
 829     if (task->is_aot_load()) {
 830       // AOTCodeCache tasks are on separate queue, and they should load fast. There is no need to walk
 831       // the rest of the queue, just take the task and go.
 832       return task;
 833     }
 834     if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) {
 835       // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate
 836       // selection and/or any level adjustments. Just return them in order.
 837       return task;
 838     }
 839     Method* method = task->method();
 840     methodHandle mh(THREAD, method);
 841     if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
 842       if (PrintTieredEvents) {
 843         print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 844       }
 845       method->clear_queued_for_compilation();
 846       method->set_pending_queue_processed(false);
 847       compile_queue->remove_and_mark_stale(task);
 848       task = next_task;
 849       continue;
 850     }
 851     update_rate(t, mh);
 852     if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) {
 853       // Select a method with the highest rate
 854       max_task = task;
 855       max_method = method;
 856     }
 857 
 858     if (task->is_blocking()) {
 859       if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) {
 860         max_blocking_task = task;
 861       }
 862     }
 863 
 864     task = next_task;
 865   }
 866 
 867   if (max_blocking_task != nullptr) {
 868     // In blocking compilation mode, the CompileBroker will make
 869     // compilations submitted by a JVMCI compiler thread non-blocking. These
 870     // compilations should be scheduled after all blocking compilations
 871     // to service non-compiler related compilations sooner and reduce the
 872     // chance of such compilations timing out.
 873     max_task = max_blocking_task;
 874     max_method = max_task->method();
 875   }
 876 
 877   methodHandle max_method_h(THREAD, max_method);
 878 
 879   if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
 880       max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
 881     max_task->set_comp_level(CompLevel_limited_profile);
 882 
 883     if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile,
 884                                                false /* requires_online_compilation */,
 885                                                CompileTask::Reason_None)) {
 886       if (PrintTieredEvents) {
 887         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 888       }
 889       compile_queue->remove_and_mark_stale(max_task);
 890       max_method->clear_queued_for_compilation();
 891       return nullptr;
 892     }
 893 
 894     if (PrintTieredEvents) {
 895       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 896     }
 897   }
 898 
 899   return max_task;
 900 }
 901 
 902 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 903   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 904     if (PrintTieredEvents) {
 905       print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
 906     }
 907     MethodData* mdo = sd->method()->method_data();
 908     if (mdo != nullptr) {
 909       mdo->reset_start_counters();
 910     }
 911     if (sd->is_top()) break;
 912   }
 913 }
 914 
 915 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 916                                       int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
 917   if (PrintTieredEvents) {
 918     print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
 919   }
 920 
 921   if (comp_level == CompLevel_none &&
 922       JvmtiExport::can_post_interpreter_events() &&
 923       THREAD->is_interp_only_mode()) {
 924     return nullptr;
 925   }
 926   if (ReplayCompiles) {
 927     // Don't trigger other compiles in testing mode
 928     return nullptr;
 929   }
 930 
 931   handle_counter_overflow(method);
 932   if (method() != inlinee()) {
 933     handle_counter_overflow(inlinee);
 934   }
 935 
 936   if (bci == InvocationEntryBci) {
 937     method_invocation_event(method, inlinee, comp_level, nm, THREAD);
 938   } else {
 939     // method == inlinee if the event originated in the main method
 940     method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
 941     // Check if event led to a higher level OSR compilation
 942     CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
 943     if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
 944       // It's not possible to reach the expected level so fall back to simple.
 945       expected_comp_level = CompLevel_simple;
 946     }
 947     CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
 948     if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
 949       nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 950       assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 951       if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) {
 952         // Perform OSR with new nmethod
 953         return osr_nm;
 954       }
 955     }
 956   }
 957   return nullptr;
 958 }
 959 
 960 // Check if the method can be compiled, change level if necessary
 961 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
 962   assert(verify_level(level), "Invalid compilation level requested: %d", level);
 963 
 964   if (level == CompLevel_none) {
 965     if (mh->has_compiled_code()) {
 966       // Happens when we switch to interpreter to profile.
 967       MutexLocker ml(Compile_lock);
 968       NoSafepointVerifier nsv;
 969       if (mh->has_compiled_code()) {
 970         mh->code()->make_not_used();
 971       }
 972       // Deoptimize immediately (we don't have to wait for a compile).
 973       JavaThread* jt = THREAD;
 974       RegisterMap map(jt,
 975                       RegisterMap::UpdateMap::skip,
 976                       RegisterMap::ProcessFrames::include,
 977                       RegisterMap::WalkContinuation::skip);
 978       frame fr = jt->last_frame().sender(&map);
 979       Deoptimization::deoptimize_frame(jt, fr.id());
 980     }
 981     return;
 982   }
 983 
 984   // Check if the method can be compiled. Additional logic for TieredCompilation:
 985   // If it cannot be compiled with C1, continue profiling in the interpreter
 986   // and then compile with C2 (the transition function will request that,
 987   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 988   // pure C1.
 989   if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 990     if (!CompilationModeFlag::disable_intermediate() &&
 991         level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 992       compile(mh, bci, CompLevel_simple, THREAD);
 993     }
 994     return;
 995   }
 996   if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 997     if (!CompilationModeFlag::disable_intermediate() &&
 998         level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 999       nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
1000       if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) {
1001         // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
1002         osr_nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_FOR_COMPILING_WITH_C1);
1003       }
1004       compile(mh, bci, CompLevel_simple, THREAD);
1005     }
1006     return;
1007   }
1008   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
1009     return;
1010   }
1011   if (!CompileBroker::compilation_is_in_queue(mh)) {
1012     if (PrintTieredEvents) {
1013       print_event(COMPILE, mh(), mh(), bci, level);
1014     }
1015     int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
1016     update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
1017     bool requires_online_compilation = false;
1018     if (TrainingData::have_data()) {
1019       MethodTrainingData* mtd = MethodTrainingData::find_fast(mh);
1020       if (mtd != nullptr) {
1021         CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
1022         if (ctd != nullptr) {
1023           requires_online_compilation = (ctd->init_deps_left_acquire() > 0);
1024         }
1025       }
1026     }
1027     CompileBroker::compile_method(mh, bci, level, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD);
1028   }
1029 }
1030 
1031 // update_rate() is called from select_task() while holding a compile queue lock.
1032 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
1033   // Skip update if counters are absent.
1034   // Can't allocate them since we are holding compile queue lock.
1035   if (method->method_counters() == nullptr)  return;
1036 
1037   if (is_old(method)) {
1038     // We don't remove old methods from the queue,
1039     // so we can just zero the rate.
1040     method->set_rate(0);
1041     return;
1042   }
1043 
1044   // We don't update the rate if we've just came out of a safepoint.
1045   // delta_s is the time since last safepoint in milliseconds.
1046   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1047   int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
1048   // How many events were there since the last time?
1049   int event_count = method->invocation_count() + method->backedge_count();
1050   int delta_e = event_count - method->prev_event_count();
1051 
1052   // We should be running for at least 1ms.
1053   if (delta_s >= TieredRateUpdateMinTime) {
1054     // And we must've taken the previous point at least 1ms before.
1055     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
1056       method->set_prev_time(t);
1057       method->set_prev_event_count(event_count);
1058       method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
1059     } else {
1060       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
1061         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
1062         method->set_rate(0);
1063       }
1064     }
1065   }
1066 }
1067 
1068 // Check if this method has been stale for a given number of milliseconds.
1069 // See select_task().
1070 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
1071   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1072   int64_t delta_t = t - method->prev_time();
1073   if (delta_t > timeout && delta_s > timeout) {
1074     int event_count = method->invocation_count() + method->backedge_count();
1075     int delta_e = event_count - method->prev_event_count();
1076     // Return true if there were no events.
1077     return delta_e == 0;
1078   }
1079   return false;
1080 }
1081 
1082 // We don't remove old methods from the compile queue even if they have
1083 // very low activity. See select_task().
1084 bool CompilationPolicy::is_old(const methodHandle& method) {
1085   int i = method->invocation_count();
1086   int b = method->backedge_count();
1087   double k = TieredOldPercentage / 100.0;
1088 
1089   return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1090 }
1091 
1092 double CompilationPolicy::weight(Method* method) {
1093   return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1);
1094 }
1095 
1096 // Apply heuristics and return true if x should be compiled before y
1097 bool CompilationPolicy::compare_methods(Method* x, Method* y) {
1098   if (x->highest_comp_level() > y->highest_comp_level()) {
1099     // recompilation after deopt
1100     return true;
1101   } else
1102     if (x->highest_comp_level() == y->highest_comp_level()) {
1103       if (weight(x) > weight(y)) {
1104         return true;
1105       }
1106     }
1107   return false;
1108 }
1109 
1110 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) {
1111   assert(!x->is_aot_load() && !y->is_aot_load(), "AOT code caching tasks are not expected here");
1112   if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) {
1113     return true;
1114   }
1115   return false;
1116 }
1117 
1118 // Is method profiled enough?
1119 bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
1120   MethodData* mdo = method->method_data();
1121   if (mdo != nullptr) {
1122     int i = mdo->invocation_count_delta();
1123     int b = mdo->backedge_count_delta();
1124     return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
1125   }
1126   return false;
1127 }
1128 
1129 
1130 // Determine is a method is mature.
1131 bool CompilationPolicy::is_mature(MethodData* mdo) {
1132   if (Arguments::is_compiler_only()) {
1133     // Always report profiles as immature with -Xcomp
1134     return false;
1135   }
1136   methodHandle mh(Thread::current(), mdo->method());
1137   if (mdo != nullptr) {
1138     int i = mdo->invocation_count();
1139     int b = mdo->backedge_count();
1140     double k = ProfileMaturityPercentage / 100.0;
1141     return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
1142   }
1143   return false;
1144 }
1145 
1146 // If a method is old enough and is still in the interpreter we would want to
1147 // start profiling without waiting for the compiled method to arrive.
1148 // We also take the load on compilers into the account.
1149 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
1150   if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
1151     return false;
1152   }
1153 
1154   if (TrainingData::have_data()) {
1155     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1156     if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
1157       return true;
1158     }
1159   }
1160 
1161   if (is_old(method)) {
1162     return true;
1163   }
1164   int i = method->invocation_count();
1165   int b = method->backedge_count();
1166   double k = Tier0ProfilingStartPercentage / 100.0;
1167 
1168   // If the top level compiler is not keeping up, delay profiling.
1169   if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
1170     return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1171   }
1172   return false;
1173 }
1174 
1175 // Inlining control: if we're compiling a profiled method with C1 and the callee
1176 // is known to have OSRed in a C2 version, don't inline it.
1177 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
1178   CompLevel comp_level = (CompLevel)env->comp_level();
1179   if (comp_level == CompLevel_full_profile ||
1180       comp_level == CompLevel_limited_profile) {
1181     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
1182   }
1183   return false;
1184 }
1185 
1186 // Create MDO if necessary.
1187 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
1188   if (mh->is_native() ||
1189       mh->is_abstract() ||
1190       mh->is_accessor() ||
1191       mh->is_constant_getter()) {
1192     return;
1193   }
1194   if (mh->method_data() == nullptr) {
1195     Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
1196   }
1197   if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
1198     MethodData* mdo = mh->method_data();
1199     if (mdo != nullptr) {
1200       frame last_frame = THREAD->last_frame();
1201       if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
1202         int bci = last_frame.interpreter_frame_bci();
1203         address dp = mdo->bci_to_dp(bci);
1204         last_frame.interpreter_frame_set_mdp(dp);
1205       }
1206     }
1207   }
1208 }
1209 
1210 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1211   precond(mtd != nullptr);
1212   precond(cur_level == CompLevel_none);
1213 
1214   if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
1215     return CompLevel_none;
1216   }
1217 
1218   bool training_has_profile = (mtd->final_profile() != nullptr);
1219   if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
1220     return CompLevel_full_profile;
1221   }
1222 
1223   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1224   switch (highest_training_level) {
1225     case CompLevel_limited_profile:
1226     case CompLevel_full_profile:
1227       return CompLevel_limited_profile;
1228     case CompLevel_simple:
1229       return CompLevel_simple;
1230     case CompLevel_none:
1231       return CompLevel_none;
1232     default:
1233       break;
1234   }
1235 
1236   // Now handle the case of level 4.
1237   assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
1238   if (!training_has_profile) {
1239     // The method was a part of a level 4 compile, but doesn't have a stored profile,
1240     // we need to profile it.
1241     return CompLevel_full_profile;
1242   }
1243   const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
1244   // If we deopted, then we reprofile
1245   if (deopt && !is_method_profiled(method)) {
1246     return CompLevel_full_profile;
1247   }
1248 
1249   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1250   assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
1251   // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
1252   if (SkipTier2IfPossible && ctd->init_deps_left_acquire() == 0) {
1253     if (method->method_data() == nullptr) {
1254       create_mdo(method, THREAD);
1255     }
1256     return CompLevel_full_optimization;
1257   }
1258 
1259   // Otherwise go to level 2
1260   return CompLevel_limited_profile;
1261 }
1262 
1263 
1264 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1265   precond(mtd != nullptr);
1266   precond(cur_level == CompLevel_limited_profile);
1267 
1268   // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
1269 
1270   // But first, check if we have a saved profile
1271   bool training_has_profile = (mtd->final_profile() != nullptr);
1272   if (!training_has_profile) {
1273     return CompLevel_full_profile;
1274   }
1275 
1276 
1277   assert(training_has_profile, "Have to have a profile to be here");
1278   // Check if the method is ready
1279   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1280   if (ctd != nullptr && ctd->init_deps_left_acquire() == 0) {
1281     if (method->method_data() == nullptr) {
1282       create_mdo(method, THREAD);
1283     }
1284     return CompLevel_full_optimization;
1285   }
1286 
1287   // Otherwise stay at the current level
1288   return CompLevel_limited_profile;
1289 }
1290 
1291 
1292 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1293   precond(mtd != nullptr);
1294   precond(cur_level == CompLevel_full_profile);
1295 
1296   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1297   // We have method at the full profile level and we also know that it's possibly an important method.
1298   if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
1299     // Check if it is adequately profiled
1300     if (is_method_profiled(method)) {
1301       return CompLevel_full_optimization;
1302     }
1303   }
1304 
1305   // Otherwise stay at the current level
1306   return CompLevel_full_profile;
1307 }
1308 
1309 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1310   precond(MethodTrainingData::have_data());
1311 
1312   // If there is no training data recorded for this method, bail out.
1313   if (mtd == nullptr) {
1314     return cur_level;
1315   }
1316 
1317   CompLevel next_level = cur_level;
1318   switch(cur_level) {
1319     default: break;
1320     case CompLevel_none:
1321       next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
1322       break;
1323     case CompLevel_limited_profile:
1324       next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
1325       break;
1326     case CompLevel_full_profile:
1327       next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
1328       break;
1329   }
1330 
1331   // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
1332   if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
1333     return CompLevel_none;
1334   }
1335   if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
1336     return CompLevel_none;
1337   }
1338   return (cur_level != next_level) ? limit_level(next_level) : cur_level;
1339 }
1340 
1341 /*
1342  * Method states:
1343  *   0 - interpreter (CompLevel_none)
1344  *   1 - pure C1 (CompLevel_simple)
1345  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
1346  *   3 - C1 with full profiling (CompLevel_full_profile)
1347  *   4 - C2 or Graal (CompLevel_full_optimization)
1348  *
1349  * Common state transition patterns:
1350  * a. 0 -> 3 -> 4.
1351  *    The most common path. But note that even in this straightforward case
1352  *    profiling can start at level 0 and finish at level 3.
1353  *
1354  * b. 0 -> 2 -> 3 -> 4.
1355  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
1356  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
1357  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
1358  *
1359  * c. 0 -> (3->2) -> 4.
1360  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
1361  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
1362  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
1363  *    without full profiling while c2 is compiling.
1364  *
1365  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
1366  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
1367  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
1368  *
1369  * e. 0 -> 4.
1370  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
1371  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
1372  *    the compiled version already exists).
1373  *
1374  * Note that since state 0 can be reached from any other state via deoptimization different loops
1375  * are possible.
1376  *
1377  */
1378 
1379 // Common transition function. Given a predicate determines if a method should transition to another level.
1380 template<typename Predicate>
1381 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
1382   CompLevel next_level = cur_level;
1383 
1384   if (force_comp_at_level_simple(method)) {
1385     next_level = CompLevel_simple;
1386   } else if (is_trivial(method) || method->is_native()) {
1387     // We do not care if there is profiling data for these methods, throw them to compiler.
1388     next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
1389   } else if (MethodTrainingData::have_data()) {
1390     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1391     if (mtd == nullptr) {
1392       // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
1393       // Feed it to the standard TF with no profiling delay.
1394       next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1395     } else {
1396       next_level = trained_transition(method, cur_level, mtd, THREAD);
1397       if (cur_level == next_level && !should_delay_standard_transition(method, cur_level, mtd)) {
1398         // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
1399         // In order to catch possible pathologies due to behavior change we feed the event to the regular
1400         // TF but with profiling delay.
1401         next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1402       }
1403     }
1404   } else {
1405     next_level = standard_transition<Predicate>(method, cur_level, disable_feedback);
1406   }
1407   return (next_level != cur_level) ? limit_level(next_level) : next_level;
1408 }
1409 
1410 bool CompilationPolicy::should_delay_standard_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd) {
1411   precond(mtd != nullptr);
1412   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1413   if (highest_training_level != CompLevel_full_optimization && cur_level == CompLevel_limited_profile) {
1414     // This is a lukewarm method - it hasn't been compiled with C2 during the tranining run and is currently
1415     // running at level 2. Delay any further state changes until its counters exceed the training run counts.
1416     MethodCounters* mc = method->method_counters();
1417     if (mc == nullptr) {
1418       return false;
1419     }
1420     if (mc->invocation_counter()->carry() || mc->backedge_counter()->carry()) {
1421       return false;
1422     }
1423     if (static_cast<int>(mc->invocation_counter()->count()) <= mtd->invocation_count() &&
1424         static_cast<int>(mc->backedge_counter()->count()) <= mtd->backedge_count()) {
1425       return true;
1426     }
1427   }
1428   return false;
1429 }
1430 
1431 template<typename Predicate>
1432 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1433   CompLevel next_level = cur_level;
1434   switch(cur_level) {
1435   default: break;
1436   case CompLevel_none:
1437     next_level = transition_from_none<Predicate>(method, cur_level, disable_feedback);
1438     break;
1439   case CompLevel_limited_profile:
1440     next_level = transition_from_limited_profile<Predicate>(method, cur_level, disable_feedback);
1441     break;
1442   case CompLevel_full_profile:
1443     next_level = transition_from_full_profile<Predicate>(method, cur_level);
1444     break;
1445   }
1446   return next_level;
1447 }
1448 
1449 template<typename Predicate>
1450 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1451   precond(cur_level == CompLevel_none);
1452   CompLevel next_level = cur_level;
1453   int i = method->invocation_count();
1454   int b = method->backedge_count();
1455   // If we were at full profile level, would we switch to full opt?
1456   if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
1457     next_level = CompLevel_full_optimization;
1458   } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply(method, cur_level, i, b)) {
1459     // C1-generated fully profiled code is about 30% slower than the limited profile
1460     // code that has only invocation and backedge counters. The observation is that
1461     // if C2 queue is large enough we can spend too much time in the fully profiled code
1462     // while waiting for C2 to pick the method from the queue. To alleviate this problem
1463     // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
1464     // we choose to compile a limited profiled version and then recompile with full profiling
1465     // when the load on C2 goes down.
1466     if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
1467       next_level = CompLevel_limited_profile;
1468     } else {
1469       next_level = CompLevel_full_profile;
1470     }
1471   }
1472   return next_level;
1473 }
1474 
1475 template<typename Predicate>
1476 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
1477   precond(cur_level == CompLevel_full_profile);
1478   CompLevel next_level = cur_level;
1479   MethodData* mdo = method->method_data();
1480   if (mdo != nullptr) {
1481     if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
1482       int mdo_i = mdo->invocation_count_delta();
1483       int mdo_b = mdo->backedge_count_delta();
1484       if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
1485         next_level = CompLevel_full_optimization;
1486       }
1487     } else {
1488       next_level = CompLevel_full_optimization;
1489     }
1490   }
1491   return next_level;
1492 }
1493 
1494 template<typename Predicate>
1495 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
1496   precond(cur_level == CompLevel_limited_profile);
1497   CompLevel next_level = cur_level;
1498   int i = method->invocation_count();
1499   int b = method->backedge_count();
1500   MethodData* mdo = method->method_data();
1501   if (mdo != nullptr) {
1502     if (mdo->would_profile()) {
1503       if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1504                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1505                               Predicate::apply(method, cur_level, i, b))) {
1506         next_level = CompLevel_full_profile;
1507       }
1508     } else {
1509       next_level = CompLevel_full_optimization;
1510     }
1511   } else {
1512     // If there is no MDO we need to profile
1513     if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1514                             Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1515                             Predicate::apply(method, cur_level, i, b))) {
1516       next_level = CompLevel_full_profile;
1517     }
1518   }
1519   if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
1520     next_level = CompLevel_full_optimization;
1521   }
1522   return next_level;
1523 }
1524 
1525 
1526 // Determine if a method should be compiled with a normal entry point at a different level.
1527 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1528   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
1529   CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
1530 
1531   // If OSR method level is greater than the regular method level, the levels should be
1532   // equalized by raising the regular method level in order to avoid OSRs during each
1533   // invocation of the method.
1534   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
1535     MethodData* mdo = method->method_data();
1536     guarantee(mdo != nullptr, "MDO should not be nullptr");
1537     if (mdo->invocation_count() >= 1) {
1538       next_level = CompLevel_full_optimization;
1539     }
1540   } else {
1541     next_level = MAX2(osr_level, next_level);
1542   }
1543 
1544   return next_level;
1545 }
1546 
1547 // Determine if we should do an OSR compilation of a given method.
1548 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1549   CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
1550   if (cur_level == CompLevel_none) {
1551     // If there is a live OSR method that means that we deopted to the interpreter
1552     // for the transition.
1553     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
1554     if (osr_level > CompLevel_none) {
1555       return osr_level;
1556     }
1557   }
1558   return next_level;
1559 }
1560 
1561 // Handle the invocation event.
1562 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
1563                                                       CompLevel level, nmethod* nm, TRAPS) {
1564   if (should_create_mdo(mh, level)) {
1565     create_mdo(mh, THREAD);
1566   }
1567   CompLevel next_level = call_event(mh, level, THREAD);
1568   if (next_level != level) {
1569     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
1570       compile(mh, InvocationEntryBci, next_level, THREAD);
1571     }
1572   }
1573 }
1574 
1575 // Handle the back branch event. Notice that we can compile the method
1576 // with a regular entry from here.
1577 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
1578                                                      int bci, CompLevel level, nmethod* nm, TRAPS) {
1579   if (should_create_mdo(mh, level)) {
1580     create_mdo(mh, THREAD);
1581   }
1582   // Check if MDO should be created for the inlined method
1583   if (should_create_mdo(imh, level)) {
1584     create_mdo(imh, THREAD);
1585   }
1586 
1587   if (is_compilation_enabled()) {
1588     CompLevel next_osr_level = loop_event(imh, level, THREAD);
1589     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
1590     // At the very least compile the OSR version
1591     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
1592       compile(imh, bci, next_osr_level, CHECK);
1593     }
1594 
1595     // Use loop event as an opportunity to also check if there's been
1596     // enough calls.
1597     CompLevel cur_level, next_level;
1598     if (mh() != imh()) { // If there is an enclosing method
1599       {
1600         guarantee(nm != nullptr, "Should have nmethod here");
1601         cur_level = comp_level(mh());
1602         next_level = call_event(mh, cur_level, THREAD);
1603 
1604         if (max_osr_level == CompLevel_full_optimization) {
1605           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
1606           bool make_not_entrant = false;
1607           if (nm->is_osr_method()) {
1608             // This is an osr method, just make it not entrant and recompile later if needed
1609             make_not_entrant = true;
1610           } else {
1611             if (next_level != CompLevel_full_optimization) {
1612               // next_level is not full opt, so we need to recompile the
1613               // enclosing method without the inlinee
1614               cur_level = CompLevel_none;
1615               make_not_entrant = true;
1616             }
1617           }
1618           if (make_not_entrant) {
1619             if (PrintTieredEvents) {
1620               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
1621               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
1622             }
1623             nm->make_not_entrant(nmethod::InvalidationReason::OSR_INVALIDATION_BACK_BRANCH);
1624           }
1625         }
1626         // Fix up next_level if necessary to avoid deopts
1627         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
1628           next_level = CompLevel_full_profile;
1629         }
1630         if (cur_level != next_level) {
1631           if (!CompileBroker::compilation_is_in_queue(mh)) {
1632             compile(mh, InvocationEntryBci, next_level, THREAD);
1633           }
1634         }
1635       }
1636     } else {
1637       cur_level = comp_level(mh());
1638       next_level = call_event(mh, cur_level, THREAD);
1639       if (next_level != cur_level) {
1640         if (!CompileBroker::compilation_is_in_queue(mh)) {
1641           compile(mh, InvocationEntryBci, next_level, THREAD);
1642         }
1643       }
1644     }
1645   }
1646 }
1647