1 /*
   2  * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "code/aotCodeCache.hpp"
  27 #include "code/scopeDesc.hpp"
  28 #include "compiler/compilationPolicy.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compilerDefinitions.inline.hpp"
  31 #include "compiler/compilerOracle.hpp"
  32 #include "compiler/recompilationPolicy.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/method.inline.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/trainingData.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/globals_extension.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointVerifiers.hpp"
  47 #ifdef COMPILER1
  48 #include "c1/c1_Compiler.hpp"
  49 #endif
  50 #ifdef COMPILER2
  51 #include "opto/c2compiler.hpp"
  52 #endif
  53 #if INCLUDE_JVMCI
  54 #include "jvmci/jvmci.hpp"
  55 #endif
  56 
  57 int64_t CompilationPolicy::_start_time = 0;
  58 int CompilationPolicy::_c1_count = 0;
  59 int CompilationPolicy::_c2_count = 0;
  60 int CompilationPolicy::_ac_count = 0;
  61 double CompilationPolicy::_increase_threshold_at_ratio = 0;
  62 
  63 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
  64 
  65 void compilationPolicy_init() {
  66   CompilationPolicy::initialize();
  67 }
  68 
  69 int CompilationPolicy::compiler_count(CompLevel comp_level) {
  70   if (is_c1_compile(comp_level)) {
  71     return c1_count();
  72   } else if (is_c2_compile(comp_level)) {
  73     return c2_count();
  74   }
  75   return 0;
  76 }
  77 
  78 // Returns true if m must be compiled before executing it
  79 // This is intended to force compiles for methods (usually for
  80 // debugging) that would otherwise be interpreted for some reason.
  81 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
  82   // Don't allow Xcomp to cause compiles in replay mode
  83   if (ReplayCompiles) return false;
  84 
  85   if (m->has_compiled_code()) return false;       // already compiled
  86   if (!can_be_compiled(m, comp_level)) return false;
  87 
  88   return !UseInterpreter ||                                              // must compile all methods
  89          (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
  90 }
  91 
  92 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
  93   if (m->method_holder()->is_not_initialized()) {
  94     // 'is_not_initialized' means not only '!is_initialized', but also that
  95     // initialization has not been started yet ('!being_initialized')
  96     // Do not force compilation of methods in uninitialized classes.
  97     return;
  98   }
  99   if (!m->is_native() && MethodTrainingData::have_data()) {
 100     MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
 101     if (mtd == nullptr) {
 102       return;              // there is no training data recorded for m
 103     }
 104     // AOT Preload code with class init barriers is used,
 105     // consider replacing it with normal (faster) AOT code
 106     bool recompile = m->code_has_clinit_barriers();
 107     CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
 108     CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
 109     if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
 110       bool requires_online_compilation = false;
 111       CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level);
 112       if (ctd != nullptr) {
 113         // Can't load normal AOT code - not all dependancies are ready,
 114         // request normal compilation
 115         requires_online_compilation = (ctd->init_deps_left() > 0);
 116       }
 117       if (requires_online_compilation && recompile) {
 118         // Wait when dependencies are ready to load normal AOT code
 119         // if AOT Preload code is used now.
 120         //
 121         // FIXME. We may never (or it take long time) get all dependencies
 122         // be ready to replace AOT Preload code. Consider using time and how many
 123         // dependencies left to allow normal JIT compilation for replacement.
 124         return;
 125       }
 126       if (PrintTieredEvents) {
 127         print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
 128       }
 129       CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
 130       if (HAS_PENDING_EXCEPTION) {
 131         CLEAR_PENDING_EXCEPTION;
 132       }
 133     }
 134   }
 135 }
 136 
 137 void CompilationPolicy::maybe_compile_early_after_init(const methodHandle& m, TRAPS) {
 138   assert(m->method_holder()->is_initialized(), "Should be called after class initialization");
 139   maybe_compile_early(m, THREAD);
 140 }
 141 
 142 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
 143   if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
 144     // don't force compilation, resolve was on behalf of compiler
 145     return;
 146   }
 147   if (m->method_holder()->is_not_initialized()) {
 148     // 'is_not_initialized' means not only '!is_initialized', but also that
 149     // initialization has not been started yet ('!being_initialized')
 150     // Do not force compilation of methods in uninitialized classes.
 151     // Note that doing this would throw an assert later,
 152     // in CompileBroker::compile_method.
 153     // We sometimes use the link resolver to do reflective lookups
 154     // even before classes are initialized.
 155     return;
 156   }
 157 
 158   if (must_be_compiled(m)) {
 159     // This path is unusual, mostly used by the '-Xcomp' stress test mode.
 160     CompLevel level = initial_compile_level(m);
 161     if (PrintTieredEvents) {
 162       print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
 163     }
 164     // Test AOT code too
 165     bool requires_online_compilation = false;
 166     if (TrainingData::have_data()) {
 167       MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
 168       if (mtd != nullptr) {
 169         CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
 170         if (ctd != nullptr) {
 171           requires_online_compilation = (ctd->init_deps_left() > 0);
 172         }
 173       }
 174     }
 175     CompileBroker::compile_method(m, InvocationEntryBci, level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
 176   }
 177 }
 178 
 179 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) {
 180   if (!klass->has_init_deps_processed()) {
 181     ResourceMark rm;
 182     log_debug(training)("Replay training: %s", klass->external_name());
 183 
 184     KlassTrainingData* ktd = KlassTrainingData::find(klass);
 185     if (ktd != nullptr) {
 186       guarantee(ktd->has_holder(), "");
 187       ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
 188       assert(klass->has_init_deps_processed(), "");
 189 
 190       if (AOTCompileEagerly) {
 191         ktd->iterate_comp_deps([&](CompileTrainingData* ctd) {
 192           if (ctd->init_deps_left() == 0) {
 193             MethodTrainingData* mtd = ctd->method();
 194             if (mtd->has_holder()) {
 195               const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder()));
 196               CompilationPolicy::maybe_compile_early(mh, THREAD);
 197             }
 198           }
 199         });
 200       }
 201     }
 202   }
 203 }
 204 
 205 void CompilationPolicy::flush_replay_training_at_init(TRAPS) {
 206    MonitorLocker locker(THREAD, TrainingReplayQueue_lock);
 207    while (!_training_replay_queue.is_empty_unlocked()) {
 208      locker.wait(); // let the replay training thread drain the queue
 209    }
 210 }
 211 
 212 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) {
 213   assert(klass->is_initialized(), "");
 214   if (TrainingData::have_data() && klass->is_shared()) {
 215     _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD);
 216   }
 217 }
 218 
 219 // For TrainingReplayQueue
 220 template<>
 221 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
 222   int pos = 0;
 223   for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
 224     ResourceMark rm;
 225     InstanceKlass* ik = cur->value();
 226     st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
 227   }
 228 }
 229 
 230 void CompilationPolicy::replay_training_at_init_loop(TRAPS) {
 231   while (!CompileBroker::is_compilation_disabled_forever() || AOTVerifyTrainingData) {
 232     InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD);
 233     if (ik != nullptr) {
 234       replay_training_at_init_impl(ik, THREAD);
 235     }
 236   }
 237 }
 238 
 239 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
 240   if (comp_level == CompLevel_any) {
 241      if (CompilerConfig::is_c1_only()) {
 242        comp_level = CompLevel_simple;
 243      } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
 244        comp_level = CompLevel_full_optimization;
 245      }
 246   }
 247   return comp_level;
 248 }
 249 
 250 // Returns true if m is allowed to be compiled
 251 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
 252   // allow any levels for WhiteBox
 253   assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
 254 
 255   if (m->is_abstract()) return false;
 256   if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
 257 
 258   // Math intrinsics should never be compiled as this can lead to
 259   // monotonicity problems because the interpreter will prefer the
 260   // compiled code to the intrinsic version.  This can't happen in
 261   // production because the invocation counter can't be incremented
 262   // but we shouldn't expose the system to this problem in testing
 263   // modes.
 264   if (!AbstractInterpreter::can_be_compiled(m)) {
 265     return false;
 266   }
 267   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 268   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 269     return !m->is_not_compilable(comp_level);
 270   }
 271   return false;
 272 }
 273 
 274 // Returns true if m is allowed to be osr compiled
 275 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
 276   bool result = false;
 277   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 278   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 279     result = !m->is_not_osr_compilable(comp_level);
 280   }
 281   return (result && can_be_compiled(m, comp_level));
 282 }
 283 
 284 bool CompilationPolicy::is_compilation_enabled() {
 285   // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
 286   return CompileBroker::should_compile_new_jobs();
 287 }
 288 
 289 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
 290   // Remove unloaded methods from the queue
 291   for (CompileTask* task = compile_queue->first(); task != nullptr; ) {
 292     CompileTask* next = task->next();
 293     if (task->is_unloaded()) {
 294       compile_queue->remove_and_mark_stale(task);
 295     }
 296     task = next;
 297   }
 298 #if INCLUDE_JVMCI
 299   if (UseJVMCICompiler && !BackgroundCompilation) {
 300     /*
 301      * In blocking compilation mode, the CompileBroker will make
 302      * compilations submitted by a JVMCI compiler thread non-blocking. These
 303      * compilations should be scheduled after all blocking compilations
 304      * to service non-compiler related compilations sooner and reduce the
 305      * chance of such compilations timing out.
 306      */
 307     for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) {
 308       if (task->is_blocking()) {
 309         return task;
 310       }
 311     }
 312   }
 313 #endif
 314   return compile_queue->first();
 315 }
 316 
 317 // Simple methods are as good being compiled with C1 as C2.
 318 // Determine if a given method is such a case.
 319 bool CompilationPolicy::is_trivial(const methodHandle& method) {
 320   if (method->is_accessor() ||
 321       method->is_constant_getter()) {
 322     return true;
 323   }
 324   return false;
 325 }
 326 
 327 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
 328   if (CompilationModeFlag::quick_internal()) {
 329 #if INCLUDE_JVMCI
 330     if (UseJVMCICompiler) {
 331       AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 332       if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 333         return true;
 334       }
 335     }
 336 #endif
 337   }
 338   return false;
 339 }
 340 
 341 CompLevel CompilationPolicy::comp_level(Method* method) {
 342   nmethod *nm = method->code();
 343   if (nm != nullptr && nm->is_in_use()) {
 344     return (CompLevel)nm->comp_level();
 345   }
 346   return CompLevel_none;
 347 }
 348 
 349 // Call and loop predicates determine whether a transition to a higher
 350 // compilation level should be performed (pointers to predicate functions
 351 // are passed to common()).
 352 // Tier?LoadFeedback is basically a coefficient that determines of
 353 // how many methods per compiler thread can be in the queue before
 354 // the threshold values double.
 355 class LoopPredicate : AllStatic {
 356 public:
 357   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 358     double threshold_scaling;
 359     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 360       scale *= threshold_scaling;
 361     }
 362     switch(cur_level) {
 363     case CompLevel_none:
 364     case CompLevel_limited_profile:
 365       return b >= Tier3BackEdgeThreshold * scale;
 366     case CompLevel_full_profile:
 367       return b >= Tier4BackEdgeThreshold * scale;
 368     default:
 369       return true;
 370     }
 371   }
 372 
 373   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 374     double k = 1;
 375     switch(cur_level) {
 376     case CompLevel_none:
 377     // Fall through
 378     case CompLevel_limited_profile: {
 379       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 380       break;
 381     }
 382     case CompLevel_full_profile: {
 383       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 384       break;
 385     }
 386     default:
 387       return true;
 388     }
 389     return apply_scaled(method, cur_level, i, b, k);
 390   }
 391 };
 392 
 393 class CallPredicate : AllStatic {
 394 public:
 395   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 396     double threshold_scaling;
 397     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 398       scale *= threshold_scaling;
 399     }
 400     switch(cur_level) {
 401     case CompLevel_none:
 402     case CompLevel_limited_profile:
 403       return (i >= Tier3InvocationThreshold * scale) ||
 404              (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
 405     case CompLevel_full_profile:
 406       return (i >= Tier4InvocationThreshold * scale) ||
 407              (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
 408     default:
 409      return true;
 410     }
 411   }
 412 
 413   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 414     double k = 1;
 415     switch(cur_level) {
 416     case CompLevel_none:
 417     case CompLevel_limited_profile: {
 418       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 419       break;
 420     }
 421     case CompLevel_full_profile: {
 422       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 423       break;
 424     }
 425     default:
 426       return true;
 427     }
 428     return apply_scaled(method, cur_level, i, b, k);
 429   }
 430 };
 431 
 432 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
 433   int comp_count = compiler_count(level);
 434   if (comp_count > 0) {
 435     double queue_size = CompileBroker::queue_size(level);
 436     double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1;
 437 
 438     // Increase C1 compile threshold when the code cache is filled more
 439     // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 440     // The main intention is to keep enough free space for C2 compiled code
 441     // to achieve peak performance if the code cache is under stress.
 442     if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level))  {
 443       double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 444       if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 445         k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 446       }
 447     }
 448     return k;
 449   }
 450   return 1;
 451 }
 452 
 453 void CompilationPolicy::print_counters(const char* prefix, Method* m) {
 454   int invocation_count = m->invocation_count();
 455   int backedge_count = m->backedge_count();
 456   MethodData* mdh = m->method_data();
 457   int mdo_invocations = 0, mdo_backedges = 0;
 458   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 459   if (mdh != nullptr) {
 460     mdo_invocations = mdh->invocation_count();
 461     mdo_backedges = mdh->backedge_count();
 462     mdo_invocations_start = mdh->invocation_count_start();
 463     mdo_backedges_start = mdh->backedge_count_start();
 464   }
 465   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 466       invocation_count, backedge_count, prefix,
 467       mdo_invocations, mdo_invocations_start,
 468       mdo_backedges, mdo_backedges_start);
 469   tty->print(" %smax levels=%d,%d", prefix,
 470       m->highest_comp_level(), m->highest_osr_comp_level());
 471 }
 472 
 473 void CompilationPolicy::print_training_data(const char* prefix, Method* method) {
 474   methodHandle m(Thread::current(), method);
 475   tty->print(" %smtd: ", prefix);
 476   MethodTrainingData* mtd = MethodTrainingData::find(m);
 477   if (mtd == nullptr) {
 478     tty->print("null");
 479   } else {
 480     MethodData* md = mtd->final_profile();
 481     tty->print("mdo=");
 482     if (md == nullptr) {
 483       tty->print("null");
 484     } else {
 485       int mdo_invocations = md->invocation_count();
 486       int mdo_backedges = md->backedge_count();
 487       int mdo_invocations_start = md->invocation_count_start();
 488       int mdo_backedges_start = md->backedge_count_start();
 489       tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
 490     }
 491     CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
 492     tty->print(", deps=");
 493     if (ctd == nullptr) {
 494       tty->print("null");
 495     } else {
 496       tty->print("%d", ctd->init_deps_left());
 497     }
 498   }
 499 }
 500 
 501 // Print an event.
 502 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
 503   bool inlinee_event = m != im;
 504 
 505   ttyLocker tty_lock;
 506   tty->print("%lf: [", os::elapsedTime());
 507 
 508   switch(type) {
 509   case CALL:
 510     tty->print("call");
 511     break;
 512   case LOOP:
 513     tty->print("loop");
 514     break;
 515   case COMPILE:
 516     tty->print("compile");
 517     break;
 518   case FORCE_COMPILE:
 519     tty->print("force-compile");
 520     break;
 521   case FORCE_RECOMPILE:
 522     tty->print("force-recompile");
 523     break;
 524   case REMOVE_FROM_QUEUE:
 525     tty->print("remove-from-queue");
 526     break;
 527   case UPDATE_IN_QUEUE:
 528     tty->print("update-in-queue");
 529     break;
 530   case REPROFILE:
 531     tty->print("reprofile");
 532     break;
 533   case MAKE_NOT_ENTRANT:
 534     tty->print("make-not-entrant");
 535     break;
 536   default:
 537     tty->print("unknown");
 538   }
 539 
 540   tty->print(" level=%d ", level);
 541 
 542   ResourceMark rm;
 543   char *method_name = m->name_and_sig_as_C_string();
 544   tty->print("[%s", method_name);
 545   if (inlinee_event) {
 546     char *inlinee_name = im->name_and_sig_as_C_string();
 547     tty->print(" [%s]] ", inlinee_name);
 548   }
 549   else tty->print("] ");
 550   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 551                                       CompileBroker::queue_size(CompLevel_full_optimization));
 552 
 553   tty->print(" rate=");
 554   if (m->prev_time() == 0) tty->print("n/a");
 555   else tty->print("%f", m->rate());
 556 
 557   RecompilationPolicy::print_load_average();
 558 
 559   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 560                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 561 
 562   if (type != COMPILE) {
 563     print_counters("", m);
 564     if (inlinee_event) {
 565       print_counters("inlinee ", im);
 566     }
 567     tty->print(" compilable=");
 568     bool need_comma = false;
 569     if (!m->is_not_compilable(CompLevel_full_profile)) {
 570       tty->print("c1");
 571       need_comma = true;
 572     }
 573     if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
 574       if (need_comma) tty->print(",");
 575       tty->print("c1-osr");
 576       need_comma = true;
 577     }
 578     if (!m->is_not_compilable(CompLevel_full_optimization)) {
 579       if (need_comma) tty->print(",");
 580       tty->print("c2");
 581       need_comma = true;
 582     }
 583     if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
 584       if (need_comma) tty->print(",");
 585       tty->print("c2-osr");
 586     }
 587     tty->print(" status=");
 588     if (m->queued_for_compilation()) {
 589       tty->print("in-queue");
 590     } else tty->print("idle");
 591     print_training_data("", m);
 592     if (inlinee_event) {
 593       print_training_data("inlinee ", im);
 594     }
 595   }
 596   tty->print_cr("]");
 597 }
 598 
 599 void CompilationPolicy::initialize() {
 600   if (!CompilerConfig::is_interpreter_only()) {
 601     int count = CICompilerCount;
 602     bool c1_only = CompilerConfig::is_c1_only();
 603     bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
 604 
 605 #ifdef _LP64
 606     // Turn on ergonomic compiler count selection
 607     if (AOTCodeCache::maybe_dumping_code()) {
 608       // Assembly phase runs C1 and C2 compilation in separate phases,
 609       // and can use all the CPU threads it can reach. Adjust the common
 610       // options before policy starts overwriting them.
 611       FLAG_SET_ERGO_IF_DEFAULT(UseDynamicNumberOfCompilerThreads, false);
 612       FLAG_SET_ERGO_IF_DEFAULT(CICompilerCountPerCPU, false);
 613       if (FLAG_IS_DEFAULT(CICompilerCount)) {
 614         count =  MAX2(count, os::active_processor_count());
 615       }
 616     }
 617     if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 618       FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 619     }
 620     if (CICompilerCountPerCPU) {
 621       // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 622       int log_cpu = log2i(os::active_processor_count());
 623       int loglog_cpu = log2i(MAX2(log_cpu, 1));
 624       count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
 625     }
 626     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 627       // Make sure there is enough space in the code cache to hold all the compiler buffers
 628       size_t c1_size = 0;
 629 #ifdef COMPILER1
 630       c1_size = Compiler::code_buffer_size();
 631 #endif
 632       size_t c2_size = 0;
 633 #ifdef COMPILER2
 634       c2_size = C2Compiler::initial_code_buffer_size();
 635 #endif
 636       size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
 637       int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
 638       if (count > max_count) {
 639         // Lower the compiler count such that all buffers fit into the code cache
 640         count = MAX2(max_count, c1_only ? 1 : 2);
 641       }
 642       FLAG_SET_ERGO(CICompilerCount, count);
 643     }
 644 #else
 645     // On 32-bit systems, the number of compiler threads is limited to 3.
 646     // On these systems, the virtual address space available to the JVM
 647     // is usually limited to 2-4 GB (the exact value depends on the platform).
 648     // As the compilers (especially C2) can consume a large amount of
 649     // memory, scaling the number of compiler threads with the number of
 650     // available cores can result in the exhaustion of the address space
 651     /// available to the VM and thus cause the VM to crash.
 652     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 653       count = 3;
 654       FLAG_SET_ERGO(CICompilerCount, count);
 655     }
 656 #endif
 657 
 658     if (c1_only) {
 659       // No C2 compiler thread required
 660       set_c1_count(count);
 661     } else if (c2_only) {
 662       set_c2_count(count);
 663     } else {
 664 #if INCLUDE_JVMCI
 665       if (UseJVMCICompiler && UseJVMCINativeLibrary) {
 666         int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
 667         int c1_count = MAX2(count - libjvmci_count, 1);
 668         set_c2_count(libjvmci_count);
 669         set_c1_count(c1_count);
 670       } else
 671 #endif
 672       {
 673         set_c1_count(MAX2(count / 3, 1));
 674         set_c2_count(MAX2(count - c1_count(), 1));
 675       }
 676     }
 677     if (AOTCodeCache::is_code_load_thread_on()) {
 678       set_ac_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 AOT code in parallel
 679     }
 680     assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 681     set_increase_threshold_at_ratio();
 682   }
 683 
 684   set_start_time(nanos_to_millis(os::javaTimeNanos()));
 685 }
 686 
 687 
 688 #ifdef ASSERT
 689 bool CompilationPolicy::verify_level(CompLevel level) {
 690   if (TieredCompilation && level > TieredStopAtLevel) {
 691     return false;
 692   }
 693   // Check if there is a compiler to process the requested level
 694   if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
 695     return false;
 696   }
 697   if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
 698     return false;
 699   }
 700 
 701   // Interpreter level is always valid.
 702   if (level == CompLevel_none) {
 703     return true;
 704   }
 705   if (CompilationModeFlag::normal()) {
 706     return true;
 707   } else if (CompilationModeFlag::quick_only()) {
 708     return level == CompLevel_simple;
 709   } else if (CompilationModeFlag::high_only()) {
 710     return level == CompLevel_full_optimization;
 711   } else if (CompilationModeFlag::high_only_quick_internal()) {
 712     return level == CompLevel_full_optimization || level == CompLevel_simple;
 713   }
 714   return false;
 715 }
 716 #endif
 717 
 718 
 719 CompLevel CompilationPolicy::highest_compile_level() {
 720   CompLevel level = CompLevel_none;
 721   // Setup the maximum level available for the current compiler configuration.
 722   if (!CompilerConfig::is_interpreter_only()) {
 723     if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
 724       level = CompLevel_full_optimization;
 725     } else if (CompilerConfig::is_c1_enabled()) {
 726       if (CompilerConfig::is_c1_simple_only()) {
 727         level = CompLevel_simple;
 728       } else {
 729         level = CompLevel_full_profile;
 730       }
 731     }
 732   }
 733   // Clamp the maximum level with TieredStopAtLevel.
 734   if (TieredCompilation) {
 735     level = MIN2(level, (CompLevel) TieredStopAtLevel);
 736   }
 737 
 738   // Fix it up if after the clamping it has become invalid.
 739   // Bring it monotonically down depending on the next available level for
 740   // the compilation mode.
 741   if (!CompilationModeFlag::normal()) {
 742     // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
 743     // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
 744     // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
 745     if (CompilationModeFlag::quick_only()) {
 746       if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
 747         level = CompLevel_simple;
 748       }
 749     } else if (CompilationModeFlag::high_only()) {
 750       if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 751         level = CompLevel_none;
 752       }
 753     } else if (CompilationModeFlag::high_only_quick_internal()) {
 754       if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 755         level = CompLevel_simple;
 756       }
 757     }
 758   }
 759 
 760   assert(verify_level(level), "Invalid highest compilation level: %d", level);
 761   return level;
 762 }
 763 
 764 CompLevel CompilationPolicy::limit_level(CompLevel level) {
 765   level = MIN2(level, highest_compile_level());
 766   assert(verify_level(level), "Invalid compilation level: %d", level);
 767   return level;
 768 }
 769 
 770 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
 771   CompLevel level = CompLevel_any;
 772   if (CompilationModeFlag::normal()) {
 773     level = CompLevel_full_profile;
 774   } else if (CompilationModeFlag::quick_only()) {
 775     level = CompLevel_simple;
 776   } else if (CompilationModeFlag::high_only()) {
 777     level = CompLevel_full_optimization;
 778   } else if (CompilationModeFlag::high_only_quick_internal()) {
 779     if (force_comp_at_level_simple(method)) {
 780       level = CompLevel_simple;
 781     } else {
 782       level = CompLevel_full_optimization;
 783     }
 784   }
 785   assert(level != CompLevel_any, "Unhandled compilation mode");
 786   return limit_level(level);
 787 }
 788 
 789 // Set carry flags on the counters if necessary
 790 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) {
 791   MethodCounters *mcs = method->method_counters();
 792   if (mcs != nullptr) {
 793     mcs->invocation_counter()->set_carry_on_overflow();
 794     mcs->backedge_counter()->set_carry_on_overflow();
 795   }
 796   MethodData* mdo = method->method_data();
 797   if (mdo != nullptr) {
 798     mdo->invocation_counter()->set_carry_on_overflow();
 799     mdo->backedge_counter()->set_carry_on_overflow();
 800   }
 801 }
 802 
 803 // Called with the queue locked and with at least one element
 804 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
 805   CompileTask *max_blocking_task = nullptr;
 806   CompileTask *max_task = nullptr;
 807   Method* max_method = nullptr;
 808 
 809   int64_t t = nanos_to_millis(os::javaTimeNanos());
 810   // Iterate through the queue and find a method with a maximum rate.
 811   for (CompileTask* task = compile_queue->first(); task != nullptr;) {
 812     CompileTask* next_task = task->next();
 813     // If a method was unloaded or has been stale for some time, remove it from the queue.
 814     // Blocking tasks and tasks submitted from whitebox API don't become stale
 815     if (task->is_unloaded()) {
 816       compile_queue->remove_and_mark_stale(task);
 817       task = next_task;
 818       continue;
 819     }
 820     if (task->is_aot_load()) {
 821       // AOTCodeCache tasks are on separate queue, and they should load fast. There is no need to walk
 822       // the rest of the queue, just take the task and go.
 823       return task;
 824     }
 825     if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) {
 826       // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate
 827       // selection and/or any level adjustments. Just return them in order.
 828       return task;
 829     }
 830     Method* method = task->method();
 831     methodHandle mh(THREAD, method);
 832     if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
 833       if (PrintTieredEvents) {
 834         print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 835       }
 836       method->clear_queued_for_compilation();
 837       method->set_pending_queue_processed(false);
 838       compile_queue->remove_and_mark_stale(task);
 839       task = next_task;
 840       continue;
 841     }
 842     update_rate(t, mh);
 843     if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) {
 844       // Select a method with the highest rate
 845       max_task = task;
 846       max_method = method;
 847     }
 848 
 849     if (task->is_blocking()) {
 850       if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) {
 851         max_blocking_task = task;
 852       }
 853     }
 854 
 855     task = next_task;
 856   }
 857 
 858   if (max_blocking_task != nullptr) {
 859     // In blocking compilation mode, the CompileBroker will make
 860     // compilations submitted by a JVMCI compiler thread non-blocking. These
 861     // compilations should be scheduled after all blocking compilations
 862     // to service non-compiler related compilations sooner and reduce the
 863     // chance of such compilations timing out.
 864     max_task = max_blocking_task;
 865     max_method = max_task->method();
 866   }
 867 
 868   methodHandle max_method_h(THREAD, max_method);
 869 
 870   if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
 871       max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
 872     max_task->set_comp_level(CompLevel_limited_profile);
 873 
 874     if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile,
 875                                                false /* requires_online_compilation */,
 876                                                CompileTask::Reason_None)) {
 877       if (PrintTieredEvents) {
 878         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 879       }
 880       compile_queue->remove_and_mark_stale(max_task);
 881       max_method->clear_queued_for_compilation();
 882       return nullptr;
 883     }
 884 
 885     if (PrintTieredEvents) {
 886       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 887     }
 888   }
 889 
 890   return max_task;
 891 }
 892 
 893 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 894   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 895     if (PrintTieredEvents) {
 896       print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
 897     }
 898     MethodData* mdo = sd->method()->method_data();
 899     if (mdo != nullptr) {
 900       mdo->reset_start_counters();
 901     }
 902     if (sd->is_top()) break;
 903   }
 904 }
 905 
 906 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 907                                       int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
 908   if (PrintTieredEvents) {
 909     print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
 910   }
 911 
 912 #if INCLUDE_JVMCI
 913   if (EnableJVMCI && UseJVMCICompiler &&
 914       comp_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
 915     return nullptr;
 916   }
 917 #endif
 918 
 919   if (comp_level == CompLevel_none &&
 920       JvmtiExport::can_post_interpreter_events() &&
 921       THREAD->is_interp_only_mode()) {
 922     return nullptr;
 923   }
 924   if (ReplayCompiles) {
 925     // Don't trigger other compiles in testing mode
 926     return nullptr;
 927   }
 928 
 929   handle_counter_overflow(method);
 930   if (method() != inlinee()) {
 931     handle_counter_overflow(inlinee);
 932   }
 933 
 934   if (bci == InvocationEntryBci) {
 935     method_invocation_event(method, inlinee, comp_level, nm, THREAD);
 936   } else {
 937     // method == inlinee if the event originated in the main method
 938     method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
 939     // Check if event led to a higher level OSR compilation
 940     CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
 941     if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
 942       // It's not possible to reach the expected level so fall back to simple.
 943       expected_comp_level = CompLevel_simple;
 944     }
 945     CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
 946     if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
 947       nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 948       assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 949       if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) {
 950         // Perform OSR with new nmethod
 951         return osr_nm;
 952       }
 953     }
 954   }
 955   return nullptr;
 956 }
 957 
 958 // Check if the method can be compiled, change level if necessary
 959 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
 960   assert(verify_level(level), "Invalid compilation level requested: %d", level);
 961 
 962   if (level == CompLevel_none) {
 963     if (mh->has_compiled_code()) {
 964       // Happens when we switch to interpreter to profile.
 965       MutexLocker ml(Compile_lock);
 966       NoSafepointVerifier nsv;
 967       if (mh->has_compiled_code()) {
 968         mh->code()->make_not_used();
 969       }
 970       // Deoptimize immediately (we don't have to wait for a compile).
 971       JavaThread* jt = THREAD;
 972       RegisterMap map(jt,
 973                       RegisterMap::UpdateMap::skip,
 974                       RegisterMap::ProcessFrames::include,
 975                       RegisterMap::WalkContinuation::skip);
 976       frame fr = jt->last_frame().sender(&map);
 977       Deoptimization::deoptimize_frame(jt, fr.id());
 978     }
 979     return;
 980   }
 981 
 982   if (!CompilationModeFlag::disable_intermediate()) {
 983     // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
 984     // in the interpreter and then compile with C2 (the transition function will request that,
 985     // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 986     // pure C1.
 987     if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 988       if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 989         compile(mh, bci, CompLevel_simple, THREAD);
 990       }
 991       return;
 992     }
 993     if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 994       if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 995         nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
 996         if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) {
 997           // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
 998           osr_nm->make_not_entrant("OSR invalidation for compiling with C1");
 999         }
1000         compile(mh, bci, CompLevel_simple, THREAD);
1001       }
1002       return;
1003     }
1004   }
1005   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
1006     return;
1007   }
1008   if (!CompileBroker::compilation_is_in_queue(mh)) {
1009     if (PrintTieredEvents) {
1010       print_event(COMPILE, mh(), mh(), bci, level);
1011     }
1012     int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
1013     update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
1014     bool requires_online_compilation = false;
1015     if (TrainingData::have_data()) {
1016       MethodTrainingData* mtd = MethodTrainingData::find_fast(mh);
1017       if (mtd != nullptr) {
1018         CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
1019         if (ctd != nullptr) {
1020           requires_online_compilation = (ctd->init_deps_left() > 0);
1021         }
1022       }
1023     }
1024     CompileBroker::compile_method(mh, bci, level, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD);
1025   }
1026 }
1027 
1028 // update_rate() is called from select_task() while holding a compile queue lock.
1029 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
1030   // Skip update if counters are absent.
1031   // Can't allocate them since we are holding compile queue lock.
1032   if (method->method_counters() == nullptr)  return;
1033 
1034   if (is_old(method)) {
1035     // We don't remove old methods from the queue,
1036     // so we can just zero the rate.
1037     method->set_rate(0);
1038     return;
1039   }
1040 
1041   // We don't update the rate if we've just came out of a safepoint.
1042   // delta_s is the time since last safepoint in milliseconds.
1043   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1044   int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
1045   // How many events were there since the last time?
1046   int event_count = method->invocation_count() + method->backedge_count();
1047   int delta_e = event_count - method->prev_event_count();
1048 
1049   // We should be running for at least 1ms.
1050   if (delta_s >= TieredRateUpdateMinTime) {
1051     // And we must've taken the previous point at least 1ms before.
1052     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
1053       method->set_prev_time(t);
1054       method->set_prev_event_count(event_count);
1055       method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
1056     } else {
1057       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
1058         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
1059         method->set_rate(0);
1060       }
1061     }
1062   }
1063 }
1064 
1065 // Check if this method has been stale for a given number of milliseconds.
1066 // See select_task().
1067 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
1068   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1069   int64_t delta_t = t - method->prev_time();
1070   if (delta_t > timeout && delta_s > timeout) {
1071     int event_count = method->invocation_count() + method->backedge_count();
1072     int delta_e = event_count - method->prev_event_count();
1073     // Return true if there were no events.
1074     return delta_e == 0;
1075   }
1076   return false;
1077 }
1078 
1079 // We don't remove old methods from the compile queue even if they have
1080 // very low activity. See select_task().
1081 bool CompilationPolicy::is_old(const methodHandle& method) {
1082   int i = method->invocation_count();
1083   int b = method->backedge_count();
1084   double k = TieredOldPercentage / 100.0;
1085 
1086   return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1087 }
1088 
1089 double CompilationPolicy::weight(Method* method) {
1090   return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1);
1091 }
1092 
1093 // Apply heuristics and return true if x should be compiled before y
1094 bool CompilationPolicy::compare_methods(Method* x, Method* y) {
1095   if (x->highest_comp_level() > y->highest_comp_level()) {
1096     // recompilation after deopt
1097     return true;
1098   } else
1099     if (x->highest_comp_level() == y->highest_comp_level()) {
1100       if (weight(x) > weight(y)) {
1101         return true;
1102       }
1103     }
1104   return false;
1105 }
1106 
1107 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) {
1108   assert(!x->is_aot_load() && !y->is_aot_load(), "AOT code caching tasks are not expected here");
1109   if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) {
1110     return true;
1111   }
1112   return false;
1113 }
1114 
1115 // Is method profiled enough?
1116 bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
1117   MethodData* mdo = method->method_data();
1118   if (mdo != nullptr) {
1119     int i = mdo->invocation_count_delta();
1120     int b = mdo->backedge_count_delta();
1121     return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
1122   }
1123   return false;
1124 }
1125 
1126 
1127 // Determine is a method is mature.
1128 bool CompilationPolicy::is_mature(MethodData* mdo) {
1129   if (Arguments::is_compiler_only()) {
1130     // Always report profiles as immature with -Xcomp
1131     return false;
1132   }
1133   methodHandle mh(Thread::current(), mdo->method());
1134   if (mdo != nullptr) {
1135     int i = mdo->invocation_count();
1136     int b = mdo->backedge_count();
1137     double k = ProfileMaturityPercentage / 100.0;
1138     return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
1139   }
1140   return false;
1141 }
1142 
1143 // If a method is old enough and is still in the interpreter we would want to
1144 // start profiling without waiting for the compiled method to arrive.
1145 // We also take the load on compilers into the account.
1146 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
1147   if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
1148     return false;
1149   }
1150 
1151   if (TrainingData::have_data()) {
1152     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1153     if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
1154       return true;
1155     }
1156   }
1157 
1158   if (is_old(method)) {
1159     return true;
1160   }
1161   int i = method->invocation_count();
1162   int b = method->backedge_count();
1163   double k = Tier0ProfilingStartPercentage / 100.0;
1164 
1165   // If the top level compiler is not keeping up, delay profiling.
1166   if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
1167     return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1168   }
1169   return false;
1170 }
1171 
1172 // Inlining control: if we're compiling a profiled method with C1 and the callee
1173 // is known to have OSRed in a C2 version, don't inline it.
1174 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
1175   CompLevel comp_level = (CompLevel)env->comp_level();
1176   if (comp_level == CompLevel_full_profile ||
1177       comp_level == CompLevel_limited_profile) {
1178     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
1179   }
1180   return false;
1181 }
1182 
1183 // Create MDO if necessary.
1184 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
1185   if (mh->is_native() ||
1186       mh->is_abstract() ||
1187       mh->is_accessor() ||
1188       mh->is_constant_getter()) {
1189     return;
1190   }
1191   if (mh->method_data() == nullptr) {
1192     Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
1193   }
1194   if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
1195     MethodData* mdo = mh->method_data();
1196     if (mdo != nullptr) {
1197       frame last_frame = THREAD->last_frame();
1198       if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
1199         int bci = last_frame.interpreter_frame_bci();
1200         address dp = mdo->bci_to_dp(bci);
1201         last_frame.interpreter_frame_set_mdp(dp);
1202       }
1203     }
1204   }
1205 }
1206 
1207 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1208   precond(mtd != nullptr);
1209   precond(cur_level == CompLevel_none);
1210 
1211   if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
1212     return CompLevel_none;
1213   }
1214 
1215   bool training_has_profile = (mtd->final_profile() != nullptr);
1216   if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
1217     return CompLevel_full_profile;
1218   }
1219 
1220   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1221   switch (highest_training_level) {
1222     case CompLevel_limited_profile:
1223     case CompLevel_full_profile:
1224       return CompLevel_limited_profile;
1225     case CompLevel_simple:
1226       return CompLevel_simple;
1227     case CompLevel_none:
1228       return CompLevel_none;
1229     default:
1230       break;
1231   }
1232 
1233   // Now handle the case of level 4.
1234   assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
1235   if (!training_has_profile) {
1236     // The method was a part of a level 4 compile, but don't have a stored profile,
1237     // we need to profile it.
1238     return CompLevel_full_profile;
1239   }
1240   const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
1241   // If we deopted, then we reprofile
1242   if (deopt && !is_method_profiled(method)) {
1243     return CompLevel_full_profile;
1244   }
1245 
1246   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1247   assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
1248   // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
1249   if (SkipTier2IfPossible && ctd->init_deps_left() == 0) {
1250     if (method->method_data() == nullptr) {
1251       create_mdo(method, THREAD);
1252     }
1253     return CompLevel_full_optimization;
1254   }
1255 
1256   // Otherwise go to level 2
1257   return CompLevel_limited_profile;
1258 }
1259 
1260 
1261 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1262   precond(mtd != nullptr);
1263   precond(cur_level == CompLevel_limited_profile);
1264 
1265   // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
1266 
1267   // But first, check if we have a saved profile
1268   bool training_has_profile = (mtd->final_profile() != nullptr);
1269   if (!training_has_profile) {
1270     return CompLevel_full_profile;
1271   }
1272 
1273 
1274   assert(training_has_profile, "Have to have a profile to be here");
1275   // Check if the method is ready
1276   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1277   if (ctd != nullptr && ctd->init_deps_left() == 0) {
1278     if (method->method_data() == nullptr) {
1279       create_mdo(method, THREAD);
1280     }
1281     return CompLevel_full_optimization;
1282   }
1283 
1284   // Otherwise stay at the current level
1285   return CompLevel_limited_profile;
1286 }
1287 
1288 
1289 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1290   precond(mtd != nullptr);
1291   precond(cur_level == CompLevel_full_profile);
1292 
1293   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1294   // We have method at the full profile level and we also know that it's possibly an important method.
1295   if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
1296     // Check if it is adequately profiled
1297     if (is_method_profiled(method)) {
1298       return CompLevel_full_optimization;
1299     }
1300   }
1301 
1302   // Otherwise stay at the current level
1303   return CompLevel_full_profile;
1304 }
1305 
1306 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1307   precond(MethodTrainingData::have_data());
1308 
1309   // If there is no training data recorded for this method, bail out.
1310   if (mtd == nullptr) {
1311     return cur_level;
1312   }
1313 
1314   CompLevel next_level = cur_level;
1315   switch(cur_level) {
1316     default: break;
1317     case CompLevel_none:
1318       next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
1319       break;
1320     case CompLevel_limited_profile:
1321       next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
1322       break;
1323     case CompLevel_full_profile:
1324       next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
1325       break;
1326   }
1327 
1328   // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
1329   if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
1330     return CompLevel_none;
1331   }
1332   if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
1333     return CompLevel_none;
1334   }
1335   return (cur_level != next_level) ? limit_level(next_level) : cur_level;
1336 }
1337 
1338 /*
1339  * Method states:
1340  *   0 - interpreter (CompLevel_none)
1341  *   1 - pure C1 (CompLevel_simple)
1342  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
1343  *   3 - C1 with full profiling (CompLevel_full_profile)
1344  *   4 - C2 or Graal (CompLevel_full_optimization)
1345  *
1346  * Common state transition patterns:
1347  * a. 0 -> 3 -> 4.
1348  *    The most common path. But note that even in this straightforward case
1349  *    profiling can start at level 0 and finish at level 3.
1350  *
1351  * b. 0 -> 2 -> 3 -> 4.
1352  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
1353  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
1354  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
1355  *
1356  * c. 0 -> (3->2) -> 4.
1357  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
1358  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
1359  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
1360  *    without full profiling while c2 is compiling.
1361  *
1362  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
1363  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
1364  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
1365  *
1366  * e. 0 -> 4.
1367  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
1368  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
1369  *    the compiled version already exists).
1370  *
1371  * Note that since state 0 can be reached from any other state via deoptimization different loops
1372  * are possible.
1373  *
1374  */
1375 
1376 // Common transition function. Given a predicate determines if a method should transition to another level.
1377 template<typename Predicate>
1378 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
1379   CompLevel next_level = cur_level;
1380 
1381   if (force_comp_at_level_simple(method)) {
1382     next_level = CompLevel_simple;
1383   } else if (is_trivial(method) || method->is_native()) {
1384     // We do not care if there is profiling data for these methods, throw them to compiler.
1385     next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
1386   } else if (MethodTrainingData::have_data()) {
1387     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1388     if (mtd == nullptr) {
1389       // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
1390       // Feed it to the standard TF with no profiling delay.
1391       next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1392     } else {
1393       next_level = trained_transition(method, cur_level, mtd, THREAD);
1394       if (cur_level == next_level) {
1395         // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
1396         // In order to catch possible pathologies due to behavior change we feed the event to the regular
1397         // TF but with profiling delay.
1398         next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback);
1399       }
1400     }
1401   } else {
1402     next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1403   }
1404   return (next_level != cur_level) ? limit_level(next_level) : next_level;
1405 }
1406 
1407 
1408 template<typename Predicate>
1409 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1410   CompLevel next_level = cur_level;
1411   switch(cur_level) {
1412   default: break;
1413   case CompLevel_none:
1414     next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1415     break;
1416   case CompLevel_limited_profile:
1417     next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1418     break;
1419   case CompLevel_full_profile:
1420     next_level = transition_from_full_profile<Predicate>(method, cur_level);
1421     break;
1422   }
1423   return next_level;
1424 }
1425 
1426 template<typename Predicate>
1427 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1428   precond(cur_level == CompLevel_none);
1429   CompLevel next_level = cur_level;
1430   int i = method->invocation_count();
1431   int b = method->backedge_count();
1432   double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0;
1433   // If we were at full profile level, would we switch to full opt?
1434   if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
1435     next_level = CompLevel_full_optimization;
1436   } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) {
1437     // C1-generated fully profiled code is about 30% slower than the limited profile
1438     // code that has only invocation and backedge counters. The observation is that
1439     // if C2 queue is large enough we can spend too much time in the fully profiled code
1440     // while waiting for C2 to pick the method from the queue. To alleviate this problem
1441     // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
1442     // we choose to compile a limited profiled version and then recompile with full profiling
1443     // when the load on C2 goes down.
1444     if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) {
1445       next_level = CompLevel_limited_profile;
1446     } else {
1447       next_level = CompLevel_full_profile;
1448     }
1449   }
1450   return next_level;
1451 }
1452 
1453 template<typename Predicate>
1454 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
1455   precond(cur_level == CompLevel_full_profile);
1456   CompLevel next_level = cur_level;
1457   MethodData* mdo = method->method_data();
1458   if (mdo != nullptr) {
1459     if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
1460       int mdo_i = mdo->invocation_count_delta();
1461       int mdo_b = mdo->backedge_count_delta();
1462       if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
1463         next_level = CompLevel_full_optimization;
1464       }
1465     } else {
1466       next_level = CompLevel_full_optimization;
1467     }
1468   }
1469   return next_level;
1470 }
1471 
1472 template<typename Predicate>
1473 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1474   precond(cur_level == CompLevel_limited_profile);
1475   CompLevel next_level = cur_level;
1476   int i = method->invocation_count();
1477   int b = method->backedge_count();
1478   double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0;
1479   MethodData* mdo = method->method_data();
1480   if (mdo != nullptr) {
1481     if (mdo->would_profile()) {
1482       if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1483                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1484                               Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1485         next_level = CompLevel_full_profile;
1486       }
1487     } else {
1488       next_level = CompLevel_full_optimization;
1489     }
1490   } else {
1491     // If there is no MDO we need to profile
1492     if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1493                             Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1494                             Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1495       next_level = CompLevel_full_profile;
1496     }
1497   }
1498   if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
1499     next_level = CompLevel_full_optimization;
1500   }
1501   return next_level;
1502 }
1503 
1504 
1505 // Determine if a method should be compiled with a normal entry point at a different level.
1506 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1507   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
1508   CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
1509 
1510   // If OSR method level is greater than the regular method level, the levels should be
1511   // equalized by raising the regular method level in order to avoid OSRs during each
1512   // invocation of the method.
1513   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
1514     MethodData* mdo = method->method_data();
1515     guarantee(mdo != nullptr, "MDO should not be nullptr");
1516     if (mdo->invocation_count() >= 1) {
1517       next_level = CompLevel_full_optimization;
1518     }
1519   } else {
1520     next_level = MAX2(osr_level, next_level);
1521   }
1522 #if INCLUDE_JVMCI
1523   if (EnableJVMCI && UseJVMCICompiler &&
1524       next_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
1525     next_level = cur_level;
1526   }
1527 #endif
1528   return next_level;
1529 }
1530 
1531 // Determine if we should do an OSR compilation of a given method.
1532 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1533   CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
1534   if (cur_level == CompLevel_none) {
1535     // If there is a live OSR method that means that we deopted to the interpreter
1536     // for the transition.
1537     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
1538     if (osr_level > CompLevel_none) {
1539       return osr_level;
1540     }
1541   }
1542   return next_level;
1543 }
1544 
1545 // Handle the invocation event.
1546 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
1547                                                       CompLevel level, nmethod* nm, TRAPS) {
1548   if (should_create_mdo(mh, level)) {
1549     create_mdo(mh, THREAD);
1550   }
1551   CompLevel next_level = call_event(mh, level, THREAD);
1552   if (next_level != level) {
1553     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
1554       compile(mh, InvocationEntryBci, next_level, THREAD);
1555     }
1556   }
1557 }
1558 
1559 // Handle the back branch event. Notice that we can compile the method
1560 // with a regular entry from here.
1561 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
1562                                                      int bci, CompLevel level, nmethod* nm, TRAPS) {
1563   if (should_create_mdo(mh, level)) {
1564     create_mdo(mh, THREAD);
1565   }
1566   // Check if MDO should be created for the inlined method
1567   if (should_create_mdo(imh, level)) {
1568     create_mdo(imh, THREAD);
1569   }
1570 
1571   if (is_compilation_enabled()) {
1572     CompLevel next_osr_level = loop_event(imh, level, THREAD);
1573     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
1574     // At the very least compile the OSR version
1575     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
1576       compile(imh, bci, next_osr_level, CHECK);
1577     }
1578 
1579     // Use loop event as an opportunity to also check if there's been
1580     // enough calls.
1581     CompLevel cur_level, next_level;
1582     if (mh() != imh()) { // If there is an enclosing method
1583       {
1584         guarantee(nm != nullptr, "Should have nmethod here");
1585         cur_level = comp_level(mh());
1586         next_level = call_event(mh, cur_level, THREAD);
1587 
1588         if (max_osr_level == CompLevel_full_optimization) {
1589           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
1590           bool make_not_entrant = false;
1591           if (nm->is_osr_method()) {
1592             // This is an osr method, just make it not entrant and recompile later if needed
1593             make_not_entrant = true;
1594           } else {
1595             if (next_level != CompLevel_full_optimization) {
1596               // next_level is not full opt, so we need to recompile the
1597               // enclosing method without the inlinee
1598               cur_level = CompLevel_none;
1599               make_not_entrant = true;
1600             }
1601           }
1602           if (make_not_entrant) {
1603             if (PrintTieredEvents) {
1604               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
1605               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
1606             }
1607             nm->make_not_entrant("OSR invalidation, back branch");
1608           }
1609         }
1610         // Fix up next_level if necessary to avoid deopts
1611         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
1612           next_level = CompLevel_full_profile;
1613         }
1614         if (cur_level != next_level) {
1615           if (!CompileBroker::compilation_is_in_queue(mh)) {
1616             compile(mh, InvocationEntryBci, next_level, THREAD);
1617           }
1618         }
1619       }
1620     } else {
1621       cur_level = comp_level(mh());
1622       next_level = call_event(mh, cur_level, THREAD);
1623       if (next_level != cur_level) {
1624         if (!CompileBroker::compilation_is_in_queue(mh)) {
1625           compile(mh, InvocationEntryBci, next_level, THREAD);
1626         }
1627       }
1628     }
1629   }
1630 }
1631