1 /* 2 * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotLinkedClassBulkLoader.hpp" 26 #include "code/scopeDesc.hpp" 27 #include "code/SCCache.hpp" 28 #include "compiler/compilationPolicy.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compilerDefinitions.inline.hpp" 31 #include "compiler/compilerOracle.hpp" 32 #include "compiler/recompilationPolicy.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/methodData.hpp" 35 #include "oops/method.inline.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/trainingData.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "runtime/arguments.hpp" 40 #include "runtime/deoptimization.hpp" 41 #include "runtime/frame.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/globals_extension.hpp" 44 #include "runtime/handles.inline.hpp" 45 #include "runtime/safepoint.hpp" 46 #include "runtime/safepointVerifiers.hpp" 47 #ifdef COMPILER1 48 #include "c1/c1_Compiler.hpp" 49 #endif 50 #ifdef COMPILER2 51 #include "opto/c2compiler.hpp" 52 #endif 53 #if INCLUDE_JVMCI 54 #include "jvmci/jvmci.hpp" 55 #endif 56 57 int64_t CompilationPolicy::_start_time = 0; 58 int CompilationPolicy::_c1_count = 0; 59 int CompilationPolicy::_c2_count = 0; 60 int CompilationPolicy::_c3_count = 0; 61 int CompilationPolicy::_sc_count = 0; 62 double CompilationPolicy::_increase_threshold_at_ratio = 0; 63 64 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue; 65 66 void compilationPolicy_init() { 67 CompilationPolicy::initialize(); 68 } 69 70 int CompilationPolicy::compiler_count(CompLevel comp_level) { 71 if (is_c1_compile(comp_level)) { 72 return c1_count(); 73 } else if (is_c2_compile(comp_level)) { 74 return c2_count(); 75 } 76 return 0; 77 } 78 79 // Returns true if m must be compiled before executing it 80 // This is intended to force compiles for methods (usually for 81 // debugging) that would otherwise be interpreted for some reason. 82 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 83 // Don't allow Xcomp to cause compiles in replay mode 84 if (ReplayCompiles) return false; 85 86 if (m->has_compiled_code()) return false; // already compiled 87 if (!can_be_compiled(m, comp_level)) return false; 88 89 return !UseInterpreter || // must compile all methods 90 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 91 } 92 93 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) { 94 if (m->method_holder()->is_not_initialized()) { 95 // 'is_not_initialized' means not only '!is_initialized', but also that 96 // initialization has not been started yet ('!being_initialized') 97 // Do not force compilation of methods in uninitialized classes. 98 return; 99 } 100 if (!m->is_native() && MethodTrainingData::have_data()) { 101 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 102 if (mtd == nullptr) { 103 return; // there is no training data recorded for m 104 } 105 bool recompile = m->code_has_clinit_barriers(); 106 CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level()); 107 CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD); 108 if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) { 109 bool requires_online_compilation = false; 110 CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level); 111 if (ctd != nullptr) { 112 requires_online_compilation = (ctd->init_deps_left() > 0); 113 } 114 if (requires_online_compilation && recompile) { 115 return; 116 } 117 if (PrintTieredEvents) { 118 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level); 119 } 120 CompileBroker::compile_method(m, InvocationEntryBci, next_level, methodHandle(), 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD); 121 if (HAS_PENDING_EXCEPTION) { 122 CLEAR_PENDING_EXCEPTION; 123 } 124 } 125 } 126 } 127 128 void CompilationPolicy::maybe_compile_early_after_init(const methodHandle& m, TRAPS) { 129 assert(m->method_holder()->is_initialized(), "Should be called after class initialization"); 130 maybe_compile_early(m, THREAD); 131 } 132 133 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 134 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 135 // don't force compilation, resolve was on behalf of compiler 136 return; 137 } 138 if (m->method_holder()->is_not_initialized()) { 139 // 'is_not_initialized' means not only '!is_initialized', but also that 140 // initialization has not been started yet ('!being_initialized') 141 // Do not force compilation of methods in uninitialized classes. 142 // Note that doing this would throw an assert later, 143 // in CompileBroker::compile_method. 144 // We sometimes use the link resolver to do reflective lookups 145 // even before classes are initialized. 146 return; 147 } 148 149 if (must_be_compiled(m)) { 150 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 151 CompLevel level = initial_compile_level(m); 152 if (PrintTieredEvents) { 153 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level); 154 } 155 CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, false, CompileTask::Reason_MustBeCompiled, THREAD); 156 } 157 } 158 159 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) { 160 if (!klass->has_init_deps_processed()) { 161 ResourceMark rm; 162 log_debug(training)("Replay training: %s", klass->external_name()); 163 164 KlassTrainingData* ktd = KlassTrainingData::find(klass); 165 if (ktd != nullptr) { 166 guarantee(ktd->has_holder(), ""); 167 ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit 168 assert(klass->has_init_deps_processed(), ""); 169 170 ktd->iterate_all_comp_deps([&](CompileTrainingData* ctd) { 171 if (ctd->init_deps_left() == 0) { 172 MethodTrainingData* mtd = ctd->method(); 173 if (mtd->has_holder()) { 174 const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder())); 175 CompilationPolicy::maybe_compile_early(mh, THREAD); 176 } 177 } 178 }); 179 } 180 Array<Method*>* methods = klass->methods(); 181 for (int i = 0; i < methods->length(); i++) { 182 const methodHandle mh(THREAD, methods->at(i)); 183 CompilationPolicy::maybe_compile_early_after_init(mh, THREAD); 184 } 185 } 186 } 187 188 void CompilationPolicy::replay_training_at_init(bool is_on_shutdown, TRAPS) { 189 // Drain pending queue when no concurrent processing thread is present. 190 if (UseConcurrentTrainingReplay) { 191 if (VerifyTrainingData) { 192 MonitorLocker locker(THREAD, TrainingReplayQueue_lock); 193 while (!_training_replay_queue.is_empty_unlocked()) { 194 locker.wait(); // let the replay training thread drain the queue 195 } 196 } 197 } else { 198 do { 199 InstanceKlass* pending = _training_replay_queue.try_pop(TrainingReplayQueue_lock, THREAD); 200 if (pending == nullptr) { 201 break; // drained the queue 202 } 203 if (is_on_shutdown) { 204 LogStreamHandle(Warning, training) log; 205 if (log.is_enabled()) { 206 ResourceMark rm; 207 log.print("pending training replay request: %s%s", 208 pending->external_name(), (pending->has_aot_initialized_mirror() ? " (preinitialized)" : "")); 209 } 210 } 211 replay_training_at_init_impl(pending, THREAD); 212 } while (true); 213 } 214 215 if (VerifyTrainingData) { 216 TrainingData::verify(); 217 } 218 } 219 220 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) { 221 assert(klass->is_initialized(), ""); 222 if (TrainingData::have_data() && klass->is_shared() && 223 (CompileBroker::replay_initialized() || !klass->has_aot_initialized_mirror())) { // ignore preloaded classes during early startup 224 if (UseConcurrentTrainingReplay || !CompileBroker::replay_initialized()) { 225 _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD); 226 } else { 227 replay_training_at_init_impl(klass, THREAD); 228 } 229 assert(!HAS_PENDING_EXCEPTION, ""); 230 } 231 } 232 233 // For TrainingReplayQueue 234 template<> 235 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) { 236 int pos = 0; 237 for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) { 238 ResourceMark rm; 239 InstanceKlass* ik = cur->value(); 240 st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name()); 241 } 242 } 243 244 void CompilationPolicy::replay_training_at_init_loop(TRAPS) { 245 precond(UseConcurrentTrainingReplay); 246 247 while (!CompileBroker::is_compilation_disabled_forever() || VerifyTrainingData) { 248 InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD); 249 replay_training_at_init_impl(ik, THREAD); 250 } 251 } 252 253 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 254 if (comp_level == CompLevel_any) { 255 if (CompilerConfig::is_c1_only()) { 256 comp_level = CompLevel_simple; 257 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 258 comp_level = CompLevel_full_optimization; 259 } 260 } 261 return comp_level; 262 } 263 264 // Returns true if m is allowed to be compiled 265 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 266 // allow any levels for WhiteBox 267 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level); 268 269 if (m->is_abstract()) return false; 270 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 271 272 // Math intrinsics should never be compiled as this can lead to 273 // monotonicity problems because the interpreter will prefer the 274 // compiled code to the intrinsic version. This can't happen in 275 // production because the invocation counter can't be incremented 276 // but we shouldn't expose the system to this problem in testing 277 // modes. 278 if (!AbstractInterpreter::can_be_compiled(m)) { 279 return false; 280 } 281 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 282 if (comp_level == CompLevel_any || is_compile(comp_level)) { 283 return !m->is_not_compilable(comp_level); 284 } 285 return false; 286 } 287 288 // Returns true if m is allowed to be osr compiled 289 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 290 bool result = false; 291 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 292 if (comp_level == CompLevel_any || is_compile(comp_level)) { 293 result = !m->is_not_osr_compilable(comp_level); 294 } 295 return (result && can_be_compiled(m, comp_level)); 296 } 297 298 bool CompilationPolicy::is_compilation_enabled() { 299 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 300 return CompileBroker::should_compile_new_jobs(); 301 } 302 303 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 304 // Remove unloaded methods from the queue 305 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 306 CompileTask* next = task->next(); 307 if (task->is_unloaded()) { 308 compile_queue->remove_and_mark_stale(task); 309 } 310 task = next; 311 } 312 #if INCLUDE_JVMCI 313 if (UseJVMCICompiler && !BackgroundCompilation) { 314 /* 315 * In blocking compilation mode, the CompileBroker will make 316 * compilations submitted by a JVMCI compiler thread non-blocking. These 317 * compilations should be scheduled after all blocking compilations 318 * to service non-compiler related compilations sooner and reduce the 319 * chance of such compilations timing out. 320 */ 321 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 322 if (task->is_blocking()) { 323 return task; 324 } 325 } 326 } 327 #endif 328 return compile_queue->first(); 329 } 330 331 // Simple methods are as good being compiled with C1 as C2. 332 // Determine if a given method is such a case. 333 bool CompilationPolicy::is_trivial(const methodHandle& method) { 334 if (method->is_accessor() || 335 method->is_constant_getter()) { 336 return true; 337 } 338 return false; 339 } 340 341 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 342 if (CompilationModeFlag::quick_internal()) { 343 #if INCLUDE_JVMCI 344 if (UseJVMCICompiler) { 345 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 346 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 347 return !SCCache::is_C3_on(); 348 } 349 } 350 #endif 351 } 352 return false; 353 } 354 355 CompLevel CompilationPolicy::comp_level(Method* method) { 356 nmethod *nm = method->code(); 357 if (nm != nullptr && nm->is_in_use()) { 358 return (CompLevel)nm->comp_level(); 359 } 360 return CompLevel_none; 361 } 362 363 // Call and loop predicates determine whether a transition to a higher 364 // compilation level should be performed (pointers to predicate functions 365 // are passed to common()). 366 // Tier?LoadFeedback is basically a coefficient that determines of 367 // how many methods per compiler thread can be in the queue before 368 // the threshold values double. 369 class LoopPredicate : AllStatic { 370 public: 371 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 372 double threshold_scaling; 373 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 374 scale *= threshold_scaling; 375 } 376 switch(cur_level) { 377 case CompLevel_none: 378 case CompLevel_limited_profile: 379 return b >= Tier3BackEdgeThreshold * scale; 380 case CompLevel_full_profile: 381 return b >= Tier4BackEdgeThreshold * scale; 382 default: 383 return true; 384 } 385 } 386 387 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 388 double k = 1; 389 switch(cur_level) { 390 case CompLevel_none: 391 // Fall through 392 case CompLevel_limited_profile: { 393 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 394 break; 395 } 396 case CompLevel_full_profile: { 397 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 398 break; 399 } 400 default: 401 return true; 402 } 403 return apply_scaled(method, cur_level, i, b, k); 404 } 405 }; 406 407 class CallPredicate : AllStatic { 408 public: 409 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 410 double threshold_scaling; 411 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 412 scale *= threshold_scaling; 413 } 414 switch(cur_level) { 415 case CompLevel_none: 416 case CompLevel_limited_profile: 417 return (i >= Tier3InvocationThreshold * scale) || 418 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 419 case CompLevel_full_profile: 420 return (i >= Tier4InvocationThreshold * scale) || 421 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 422 default: 423 return true; 424 } 425 } 426 427 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 428 double k = 1; 429 switch(cur_level) { 430 case CompLevel_none: 431 case CompLevel_limited_profile: { 432 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 433 break; 434 } 435 case CompLevel_full_profile: { 436 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 437 break; 438 } 439 default: 440 return true; 441 } 442 return apply_scaled(method, cur_level, i, b, k); 443 } 444 }; 445 446 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 447 int comp_count = compiler_count(level); 448 if (comp_count > 0) { 449 double queue_size = CompileBroker::queue_size(level); 450 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 451 452 // Increase C1 compile threshold when the code cache is filled more 453 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 454 // The main intention is to keep enough free space for C2 compiled code 455 // to achieve peak performance if the code cache is under stress. 456 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 457 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 458 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 459 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 460 } 461 } 462 return k; 463 } 464 return 1; 465 } 466 467 void CompilationPolicy::print_counters(const char* prefix, Method* m) { 468 int invocation_count = m->invocation_count(); 469 int backedge_count = m->backedge_count(); 470 MethodData* mdh = m->method_data(); 471 int mdo_invocations = 0, mdo_backedges = 0; 472 int mdo_invocations_start = 0, mdo_backedges_start = 0; 473 if (mdh != nullptr) { 474 mdo_invocations = mdh->invocation_count(); 475 mdo_backedges = mdh->backedge_count(); 476 mdo_invocations_start = mdh->invocation_count_start(); 477 mdo_backedges_start = mdh->backedge_count_start(); 478 } 479 tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 480 invocation_count, backedge_count, prefix, 481 mdo_invocations, mdo_invocations_start, 482 mdo_backedges, mdo_backedges_start); 483 tty->print(" %smax levels=%d,%d", prefix, 484 m->highest_comp_level(), m->highest_osr_comp_level()); 485 } 486 487 void CompilationPolicy::print_training_data(const char* prefix, Method* method) { 488 methodHandle m(Thread::current(), method); 489 tty->print(" %smtd: ", prefix); 490 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 491 if (mtd == nullptr) { 492 tty->print("null"); 493 } else { 494 MethodData* md = mtd->final_profile(); 495 tty->print("mdo="); 496 if (md == nullptr) { 497 tty->print("null"); 498 } else { 499 int mdo_invocations = md->invocation_count(); 500 int mdo_backedges = md->backedge_count(); 501 int mdo_invocations_start = md->invocation_count_start(); 502 int mdo_backedges_start = md->backedge_count_start(); 503 tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start); 504 } 505 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 506 tty->print(", deps="); 507 if (ctd == nullptr) { 508 tty->print("null"); 509 } else { 510 tty->print("%d", ctd->init_deps_left()); 511 } 512 } 513 } 514 515 // Print an event. 516 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) { 517 bool inlinee_event = m != im; 518 519 ttyLocker tty_lock; 520 tty->print("%lf: [", os::elapsedTime()); 521 522 switch(type) { 523 case CALL: 524 tty->print("call"); 525 break; 526 case LOOP: 527 tty->print("loop"); 528 break; 529 case COMPILE: 530 tty->print("compile"); 531 break; 532 case FORCE_COMPILE: 533 tty->print("force-compile"); 534 break; 535 case FORCE_RECOMPILE: 536 tty->print("force-recompile"); 537 break; 538 case REMOVE_FROM_QUEUE: 539 tty->print("remove-from-queue"); 540 break; 541 case UPDATE_IN_QUEUE: 542 tty->print("update-in-queue"); 543 break; 544 case REPROFILE: 545 tty->print("reprofile"); 546 break; 547 case MAKE_NOT_ENTRANT: 548 tty->print("make-not-entrant"); 549 break; 550 default: 551 tty->print("unknown"); 552 } 553 554 tty->print(" level=%d ", level); 555 556 ResourceMark rm; 557 char *method_name = m->name_and_sig_as_C_string(); 558 tty->print("[%s", method_name); 559 if (inlinee_event) { 560 char *inlinee_name = im->name_and_sig_as_C_string(); 561 tty->print(" [%s]] ", inlinee_name); 562 } 563 else tty->print("] "); 564 tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 565 CompileBroker::queue_size(CompLevel_full_optimization)); 566 567 tty->print(" rate="); 568 if (m->prev_time() == 0) tty->print("n/a"); 569 else tty->print("%f", m->rate()); 570 571 RecompilationPolicy::print_load_average(); 572 573 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 574 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 575 576 if (type != COMPILE) { 577 print_counters("", m); 578 if (inlinee_event) { 579 print_counters("inlinee ", im); 580 } 581 tty->print(" compilable="); 582 bool need_comma = false; 583 if (!m->is_not_compilable(CompLevel_full_profile)) { 584 tty->print("c1"); 585 need_comma = true; 586 } 587 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 588 if (need_comma) tty->print(","); 589 tty->print("c1-osr"); 590 need_comma = true; 591 } 592 if (!m->is_not_compilable(CompLevel_full_optimization)) { 593 if (need_comma) tty->print(","); 594 tty->print("c2"); 595 need_comma = true; 596 } 597 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 598 if (need_comma) tty->print(","); 599 tty->print("c2-osr"); 600 } 601 tty->print(" status="); 602 if (m->queued_for_compilation()) { 603 tty->print("in-queue"); 604 } else tty->print("idle"); 605 print_training_data("", m); 606 if (inlinee_event) { 607 print_training_data("inlinee ", im); 608 } 609 } 610 tty->print_cr("]"); 611 } 612 613 void CompilationPolicy::initialize() { 614 if (!CompilerConfig::is_interpreter_only()) { 615 int count = CICompilerCount; 616 bool c1_only = CompilerConfig::is_c1_only(); 617 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 618 619 #ifdef _LP64 620 // Turn on ergonomic compiler count selection 621 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 622 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 623 } 624 if (CICompilerCountPerCPU) { 625 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 626 int log_cpu = log2i(os::active_processor_count()); 627 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 628 count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); 629 // Make sure there is enough space in the code cache to hold all the compiler buffers 630 size_t c1_size = 0; 631 #ifdef COMPILER1 632 c1_size = Compiler::code_buffer_size(); 633 #endif 634 size_t c2_size = 0; 635 #ifdef COMPILER2 636 c2_size = C2Compiler::initial_code_buffer_size(); 637 #endif 638 size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); 639 int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size; 640 if (count > max_count) { 641 // Lower the compiler count such that all buffers fit into the code cache 642 count = MAX2(max_count, c1_only ? 1 : 2); 643 } 644 FLAG_SET_ERGO(CICompilerCount, count); 645 } 646 #else 647 // On 32-bit systems, the number of compiler threads is limited to 3. 648 // On these systems, the virtual address space available to the JVM 649 // is usually limited to 2-4 GB (the exact value depends on the platform). 650 // As the compilers (especially C2) can consume a large amount of 651 // memory, scaling the number of compiler threads with the number of 652 // available cores can result in the exhaustion of the address space 653 /// available to the VM and thus cause the VM to crash. 654 if (FLAG_IS_DEFAULT(CICompilerCount)) { 655 count = 3; 656 FLAG_SET_ERGO(CICompilerCount, count); 657 } 658 #endif 659 660 if (c1_only) { 661 // No C2 compiler thread required 662 set_c1_count(count); 663 } else if (c2_only) { 664 set_c2_count(count); 665 } else { 666 #if INCLUDE_JVMCI 667 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 668 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 669 int c1_count = MAX2(count - libjvmci_count, 1); 670 set_c2_count(libjvmci_count); 671 set_c1_count(c1_count); 672 } else if (SCCache::is_C3_on()) { 673 set_c1_count(MAX2(count / 3, 1)); 674 set_c2_count(MAX2(count - c1_count(), 1)); 675 set_c3_count(1); 676 } else 677 #endif 678 { 679 set_c1_count(MAX2(count / 3, 1)); 680 set_c2_count(MAX2(count - c1_count(), 1)); 681 } 682 } 683 if (SCCache::is_code_load_thread_on()) { 684 set_sc_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 cached code in parallel 685 } 686 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 687 set_increase_threshold_at_ratio(); 688 } 689 690 set_start_time(nanos_to_millis(os::javaTimeNanos())); 691 } 692 693 694 695 696 #ifdef ASSERT 697 bool CompilationPolicy::verify_level(CompLevel level) { 698 if (TieredCompilation && level > TieredStopAtLevel) { 699 return false; 700 } 701 // Check if there is a compiler to process the requested level 702 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 703 return false; 704 } 705 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 706 return false; 707 } 708 709 // Interpreter level is always valid. 710 if (level == CompLevel_none) { 711 return true; 712 } 713 if (CompilationModeFlag::normal()) { 714 return true; 715 } else if (CompilationModeFlag::quick_only()) { 716 return level == CompLevel_simple; 717 } else if (CompilationModeFlag::high_only()) { 718 return level == CompLevel_full_optimization; 719 } else if (CompilationModeFlag::high_only_quick_internal()) { 720 return level == CompLevel_full_optimization || level == CompLevel_simple; 721 } 722 return false; 723 } 724 #endif 725 726 727 CompLevel CompilationPolicy::highest_compile_level() { 728 CompLevel level = CompLevel_none; 729 // Setup the maximum level available for the current compiler configuration. 730 if (!CompilerConfig::is_interpreter_only()) { 731 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 732 level = CompLevel_full_optimization; 733 } else if (CompilerConfig::is_c1_enabled()) { 734 if (CompilerConfig::is_c1_simple_only()) { 735 level = CompLevel_simple; 736 } else { 737 level = CompLevel_full_profile; 738 } 739 } 740 } 741 // Clamp the maximum level with TieredStopAtLevel. 742 if (TieredCompilation) { 743 level = MIN2(level, (CompLevel) TieredStopAtLevel); 744 } 745 746 // Fix it up if after the clamping it has become invalid. 747 // Bring it monotonically down depending on the next available level for 748 // the compilation mode. 749 if (!CompilationModeFlag::normal()) { 750 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 751 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 752 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 753 if (CompilationModeFlag::quick_only()) { 754 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 755 level = CompLevel_simple; 756 } 757 } else if (CompilationModeFlag::high_only()) { 758 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 759 level = CompLevel_none; 760 } 761 } else if (CompilationModeFlag::high_only_quick_internal()) { 762 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 763 level = CompLevel_simple; 764 } 765 } 766 } 767 768 assert(verify_level(level), "Invalid highest compilation level: %d", level); 769 return level; 770 } 771 772 CompLevel CompilationPolicy::limit_level(CompLevel level) { 773 level = MIN2(level, highest_compile_level()); 774 assert(verify_level(level), "Invalid compilation level: %d", level); 775 return level; 776 } 777 778 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 779 CompLevel level = CompLevel_any; 780 if (CompilationModeFlag::normal()) { 781 level = CompLevel_full_profile; 782 } else if (CompilationModeFlag::quick_only()) { 783 level = CompLevel_simple; 784 } else if (CompilationModeFlag::high_only()) { 785 level = CompLevel_full_optimization; 786 } else if (CompilationModeFlag::high_only_quick_internal()) { 787 if (force_comp_at_level_simple(method)) { 788 level = CompLevel_simple; 789 } else { 790 level = CompLevel_full_optimization; 791 } 792 } 793 assert(level != CompLevel_any, "Unhandled compilation mode"); 794 return limit_level(level); 795 } 796 797 // Set carry flags on the counters if necessary 798 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 799 MethodCounters *mcs = method->method_counters(); 800 if (mcs != nullptr) { 801 mcs->invocation_counter()->set_carry_on_overflow(); 802 mcs->backedge_counter()->set_carry_on_overflow(); 803 } 804 MethodData* mdo = method->method_data(); 805 if (mdo != nullptr) { 806 mdo->invocation_counter()->set_carry_on_overflow(); 807 mdo->backedge_counter()->set_carry_on_overflow(); 808 } 809 } 810 811 // Called with the queue locked and with at least one element 812 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) { 813 CompileTask *max_blocking_task = nullptr; 814 CompileTask *max_task = nullptr; 815 Method* max_method = nullptr; 816 817 int64_t t = nanos_to_millis(os::javaTimeNanos()); 818 // Iterate through the queue and find a method with a maximum rate. 819 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 820 CompileTask* next_task = task->next(); 821 // If a method was unloaded or has been stale for some time, remove it from the queue. 822 // Blocking tasks and tasks submitted from whitebox API don't become stale 823 if (task->is_unloaded()) { 824 compile_queue->remove_and_mark_stale(task); 825 task = next_task; 826 continue; 827 } 828 if (task->is_scc()) { 829 // SCC tasks are on separate queue, and they should load fast. There is no need to walk 830 // the rest of the queue, just take the task and go. 831 return task; 832 } 833 Method* method = task->method(); 834 methodHandle mh(THREAD, method); 835 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 836 if (PrintTieredEvents) { 837 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 838 } 839 method->clear_queued_for_compilation(); 840 method->set_pending_queue_processed(false); 841 compile_queue->remove_and_mark_stale(task); 842 task = next_task; 843 continue; 844 } 845 update_rate(t, mh); 846 if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) { 847 // Select a method with the highest rate 848 max_task = task; 849 max_method = method; 850 } 851 852 if (task->is_blocking()) { 853 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 854 max_blocking_task = task; 855 } 856 } 857 858 task = next_task; 859 } 860 861 if (max_blocking_task != nullptr) { 862 // In blocking compilation mode, the CompileBroker will make 863 // compilations submitted by a JVMCI compiler thread non-blocking. These 864 // compilations should be scheduled after all blocking compilations 865 // to service non-compiler related compilations sooner and reduce the 866 // chance of such compilations timing out. 867 max_task = max_blocking_task; 868 max_method = max_task->method(); 869 } 870 871 methodHandle max_method_h(THREAD, max_method); 872 873 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 874 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 875 max_task->set_comp_level(CompLevel_limited_profile); 876 877 if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile, 878 false /* requires_online_compilation */, 879 CompileTask::Reason_None)) { 880 if (PrintTieredEvents) { 881 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 882 } 883 compile_queue->remove_and_mark_stale(max_task); 884 max_method->clear_queued_for_compilation(); 885 return nullptr; 886 } 887 888 if (PrintTieredEvents) { 889 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 890 } 891 } 892 return max_task; 893 } 894 895 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 896 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 897 if (PrintTieredEvents) { 898 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 899 } 900 MethodData* mdo = sd->method()->method_data(); 901 if (mdo != nullptr) { 902 mdo->reset_start_counters(); 903 } 904 if (sd->is_top()) break; 905 } 906 } 907 908 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 909 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 910 if (PrintTieredEvents) { 911 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 912 } 913 914 #if INCLUDE_JVMCI 915 if (EnableJVMCI && UseJVMCICompiler && 916 comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 917 return nullptr; 918 } 919 #endif 920 921 if (comp_level == CompLevel_none && 922 JvmtiExport::can_post_interpreter_events() && 923 THREAD->is_interp_only_mode()) { 924 return nullptr; 925 } 926 if (ReplayCompiles) { 927 // Don't trigger other compiles in testing mode 928 return nullptr; 929 } 930 931 handle_counter_overflow(method); 932 if (method() != inlinee()) { 933 handle_counter_overflow(inlinee); 934 } 935 936 if (bci == InvocationEntryBci) { 937 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 938 } else { 939 // method == inlinee if the event originated in the main method 940 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 941 // Check if event led to a higher level OSR compilation 942 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 943 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 944 // It's not possible to reach the expected level so fall back to simple. 945 expected_comp_level = CompLevel_simple; 946 } 947 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 948 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 949 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 950 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 951 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 952 // Perform OSR with new nmethod 953 return osr_nm; 954 } 955 } 956 } 957 return nullptr; 958 } 959 960 // Check if the method can be compiled, change level if necessary 961 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 962 assert(verify_level(level), "Invalid compilation level requested: %d", level); 963 964 if (level == CompLevel_none) { 965 if (mh->has_compiled_code()) { 966 // Happens when we switch to interpreter to profile. 967 MutexLocker ml(Compile_lock); 968 NoSafepointVerifier nsv; 969 if (mh->has_compiled_code()) { 970 mh->code()->make_not_used(); 971 } 972 // Deoptimize immediately (we don't have to wait for a compile). 973 JavaThread* jt = THREAD; 974 RegisterMap map(jt, 975 RegisterMap::UpdateMap::skip, 976 RegisterMap::ProcessFrames::include, 977 RegisterMap::WalkContinuation::skip); 978 frame fr = jt->last_frame().sender(&map); 979 Deoptimization::deoptimize_frame(jt, fr.id()); 980 } 981 return; 982 } 983 984 if (!CompilationModeFlag::disable_intermediate()) { 985 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 986 // in the interpreter and then compile with C2 (the transition function will request that, 987 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 988 // pure C1. 989 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 990 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 991 compile(mh, bci, CompLevel_simple, THREAD); 992 } 993 return; 994 } 995 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 996 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 997 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 998 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 999 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 1000 osr_nm->make_not_entrant(); 1001 } 1002 compile(mh, bci, CompLevel_simple, THREAD); 1003 } 1004 return; 1005 } 1006 } 1007 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 1008 return; 1009 } 1010 if (!CompileBroker::compilation_is_in_queue(mh)) { 1011 if (PrintTieredEvents) { 1012 print_event(COMPILE, mh(), mh(), bci, level); 1013 } 1014 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 1015 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 1016 bool requires_online_compilation = false; 1017 if (TrainingData::have_data()) { 1018 MethodTrainingData* mtd = MethodTrainingData::find_fast(mh); 1019 if (mtd != nullptr) { 1020 CompileTrainingData* ctd = mtd->last_toplevel_compile(level); 1021 if (ctd != nullptr) { 1022 requires_online_compilation = (ctd->init_deps_left() > 0); 1023 } 1024 } 1025 } 1026 CompileBroker::compile_method(mh, bci, level, mh, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD); 1027 } 1028 } 1029 1030 // update_rate() is called from select_task() while holding a compile queue lock. 1031 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) { 1032 // Skip update if counters are absent. 1033 // Can't allocate them since we are holding compile queue lock. 1034 if (method->method_counters() == nullptr) return; 1035 1036 if (is_old(method)) { 1037 // We don't remove old methods from the queue, 1038 // so we can just zero the rate. 1039 method->set_rate(0); 1040 return; 1041 } 1042 1043 // We don't update the rate if we've just came out of a safepoint. 1044 // delta_s is the time since last safepoint in milliseconds. 1045 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1046 int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 1047 // How many events were there since the last time? 1048 int event_count = method->invocation_count() + method->backedge_count(); 1049 int delta_e = event_count - method->prev_event_count(); 1050 1051 // We should be running for at least 1ms. 1052 if (delta_s >= TieredRateUpdateMinTime) { 1053 // And we must've taken the previous point at least 1ms before. 1054 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 1055 method->set_prev_time(t); 1056 method->set_prev_event_count(event_count); 1057 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 1058 } else { 1059 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 1060 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 1061 method->set_rate(0); 1062 } 1063 } 1064 } 1065 } 1066 1067 // Check if this method has been stale for a given number of milliseconds. 1068 // See select_task(). 1069 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) { 1070 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1071 int64_t delta_t = t - method->prev_time(); 1072 if (delta_t > timeout && delta_s > timeout) { 1073 int event_count = method->invocation_count() + method->backedge_count(); 1074 int delta_e = event_count - method->prev_event_count(); 1075 // Return true if there were no events. 1076 return delta_e == 0; 1077 } 1078 return false; 1079 } 1080 1081 // We don't remove old methods from the compile queue even if they have 1082 // very low activity. See select_task(). 1083 bool CompilationPolicy::is_old(const methodHandle& method) { 1084 int i = method->invocation_count(); 1085 int b = method->backedge_count(); 1086 double k = TieredOldPercentage / 100.0; 1087 1088 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1089 } 1090 1091 double CompilationPolicy::weight(Method* method) { 1092 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 1093 } 1094 1095 // Apply heuristics and return true if x should be compiled before y 1096 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 1097 if (x->highest_comp_level() > y->highest_comp_level()) { 1098 // recompilation after deopt 1099 return true; 1100 } else 1101 if (x->highest_comp_level() == y->highest_comp_level()) { 1102 if (weight(x) > weight(y)) { 1103 return true; 1104 } 1105 } 1106 return false; 1107 } 1108 1109 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) { 1110 assert(!x->is_scc() && !y->is_scc(), "SC tasks are not expected here"); 1111 if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) { 1112 return true; 1113 } 1114 return false; 1115 } 1116 1117 // Is method profiled enough? 1118 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 1119 MethodData* mdo = method->method_data(); 1120 if (mdo != nullptr) { 1121 int i = mdo->invocation_count_delta(); 1122 int b = mdo->backedge_count_delta(); 1123 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 1124 } 1125 return false; 1126 } 1127 1128 1129 // Determine is a method is mature. 1130 bool CompilationPolicy::is_mature(MethodData* mdo) { 1131 if (Arguments::is_compiler_only()) { 1132 // Always report profiles as immature with -Xcomp 1133 return false; 1134 } 1135 methodHandle mh(Thread::current(), mdo->method()); 1136 if (mdo != nullptr) { 1137 int i = mdo->invocation_count(); 1138 int b = mdo->backedge_count(); 1139 double k = ProfileMaturityPercentage / 100.0; 1140 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 1141 } 1142 return false; 1143 } 1144 1145 // If a method is old enough and is still in the interpreter we would want to 1146 // start profiling without waiting for the compiled method to arrive. 1147 // We also take the load on compilers into the account. 1148 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 1149 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 1150 return false; 1151 } 1152 1153 if (TrainingData::have_data()) { 1154 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1155 if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) { 1156 return true; 1157 } 1158 return false; 1159 } 1160 1161 if (is_old(method)) { 1162 return true; 1163 } 1164 1165 int i = method->invocation_count(); 1166 int b = method->backedge_count(); 1167 double k = Tier0ProfilingStartPercentage / 100.0; 1168 1169 // If the top level compiler is not keeping up, delay profiling. 1170 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 1171 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1172 } 1173 return false; 1174 } 1175 1176 // Inlining control: if we're compiling a profiled method with C1 and the callee 1177 // is known to have OSRed in a C2 version, don't inline it. 1178 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 1179 CompLevel comp_level = (CompLevel)env->comp_level(); 1180 if (comp_level == CompLevel_full_profile || 1181 comp_level == CompLevel_limited_profile) { 1182 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 1183 } 1184 return false; 1185 } 1186 1187 // Create MDO if necessary. 1188 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 1189 if (mh->is_native() || 1190 mh->is_abstract() || 1191 mh->is_accessor() || 1192 mh->is_constant_getter()) { 1193 return; 1194 } 1195 if (mh->method_data() == nullptr) { 1196 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 1197 } 1198 if (ProfileInterpreter && THREAD->has_last_Java_frame()) { 1199 MethodData* mdo = mh->method_data(); 1200 if (mdo != nullptr) { 1201 frame last_frame = THREAD->last_frame(); 1202 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 1203 int bci = last_frame.interpreter_frame_bci(); 1204 address dp = mdo->bci_to_dp(bci); 1205 last_frame.interpreter_frame_set_mdp(dp); 1206 } 1207 } 1208 } 1209 } 1210 1211 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1212 precond(mtd != nullptr); 1213 precond(cur_level == CompLevel_none); 1214 1215 if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) { 1216 return CompLevel_none; 1217 } 1218 1219 bool training_has_profile = (mtd->final_profile() != nullptr); 1220 if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) { 1221 return CompLevel_full_profile; 1222 } 1223 1224 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1225 switch (highest_training_level) { 1226 case CompLevel_limited_profile: 1227 case CompLevel_full_profile: 1228 return CompLevel_limited_profile; 1229 case CompLevel_simple: 1230 return CompLevel_simple; 1231 case CompLevel_none: 1232 return CompLevel_none; 1233 default: 1234 break; 1235 } 1236 1237 // Now handle the case of level 4. 1238 assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level); 1239 if (!training_has_profile) { 1240 // The method was a part of a level 4 compile, but don't have a stored profile, 1241 // we need to profile it. 1242 return CompLevel_full_profile; 1243 } 1244 const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization); 1245 // If we deopted, then we reprofile 1246 if (deopt && !is_method_profiled(method)) { 1247 return CompLevel_full_profile; 1248 } 1249 1250 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1251 assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization"); 1252 // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately 1253 if (SkipTier2IfPossible && ctd->init_deps_left() == 0) { 1254 if (method->method_data() == nullptr) { 1255 create_mdo(method, THREAD); 1256 } 1257 return CompLevel_full_optimization; 1258 } 1259 1260 // Otherwise go to level 2 1261 return CompLevel_limited_profile; 1262 } 1263 1264 1265 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1266 precond(mtd != nullptr); 1267 precond(cur_level == CompLevel_limited_profile); 1268 1269 // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready. 1270 1271 // But first, check if we have a saved profile 1272 bool training_has_profile = (mtd->final_profile() != nullptr); 1273 if (!training_has_profile) { 1274 return CompLevel_full_profile; 1275 } 1276 1277 1278 assert(training_has_profile, "Have to have a profile to be here"); 1279 // Check if the method is ready 1280 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1281 if (ctd != nullptr && ctd->init_deps_left() == 0) { 1282 if (method->method_data() == nullptr) { 1283 create_mdo(method, THREAD); 1284 } 1285 return CompLevel_full_optimization; 1286 } 1287 1288 // Otherwise stay at the current level 1289 return CompLevel_limited_profile; 1290 } 1291 1292 1293 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1294 precond(mtd != nullptr); 1295 precond(cur_level == CompLevel_full_profile); 1296 1297 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1298 // We have method at the full profile level and we also know that it's possibly an important method. 1299 if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) { 1300 // Check if it is adequately profiled 1301 if (is_method_profiled(method)) { 1302 return CompLevel_full_optimization; 1303 } 1304 } 1305 1306 // Otherwise stay at the current level 1307 return CompLevel_full_profile; 1308 } 1309 1310 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1311 precond(MethodTrainingData::have_data()); 1312 1313 // If there is no training data recorded for this method, bail out. 1314 if (mtd == nullptr) { 1315 return cur_level; 1316 } 1317 1318 CompLevel next_level = cur_level; 1319 switch(cur_level) { 1320 default: break; 1321 case CompLevel_none: 1322 next_level = trained_transition_from_none(method, cur_level, mtd, THREAD); 1323 break; 1324 case CompLevel_limited_profile: 1325 next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD); 1326 break; 1327 case CompLevel_full_profile: 1328 next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD); 1329 break; 1330 } 1331 1332 // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now. 1333 if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) { 1334 return CompLevel_none; 1335 } 1336 if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) { 1337 return CompLevel_none; 1338 } 1339 return (cur_level != next_level) ? limit_level(next_level) : cur_level; 1340 } 1341 1342 /* 1343 * Method states: 1344 * 0 - interpreter (CompLevel_none) 1345 * 1 - pure C1 (CompLevel_simple) 1346 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 1347 * 3 - C1 with full profiling (CompLevel_full_profile) 1348 * 4 - C2 or Graal (CompLevel_full_optimization) 1349 * 1350 * Common state transition patterns: 1351 * a. 0 -> 3 -> 4. 1352 * The most common path. But note that even in this straightforward case 1353 * profiling can start at level 0 and finish at level 3. 1354 * 1355 * b. 0 -> 2 -> 3 -> 4. 1356 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 1357 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 1358 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 1359 * 1360 * c. 0 -> (3->2) -> 4. 1361 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1362 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1363 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1364 * without full profiling while c2 is compiling. 1365 * 1366 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1367 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1368 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1369 * 1370 * e. 0 -> 4. 1371 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1372 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1373 * the compiled version already exists). 1374 * 1375 * Note that since state 0 can be reached from any other state via deoptimization different loops 1376 * are possible. 1377 * 1378 */ 1379 1380 // Common transition function. Given a predicate determines if a method should transition to another level. 1381 template<typename Predicate> 1382 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) { 1383 CompLevel next_level = cur_level; 1384 int i = method->invocation_count(); 1385 int b = method->backedge_count(); 1386 1387 if (force_comp_at_level_simple(method)) { 1388 next_level = CompLevel_simple; 1389 } else { 1390 if (MethodTrainingData::have_data()) { 1391 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1392 if (mtd == nullptr) { 1393 // We haven't see compilations of this method in training. It's either very cold or the behavior changed. 1394 // Feed it to the standard TF with no profiling delay. 1395 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1396 } else { 1397 next_level = trained_transition(method, cur_level, mtd, THREAD); 1398 if (cur_level == next_level) { 1399 // trained_transtion() is going to return the same level if no startup/warmup optimizations apply. 1400 // In order to catch possible pathologies due to behavior change we feed the event to the regular 1401 // TF but with profiling delay. 1402 next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback); 1403 } 1404 } 1405 } else if (is_trivial(method) || method->is_native()) { 1406 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1407 } else { 1408 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1409 } 1410 } 1411 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1412 } 1413 1414 1415 template<typename Predicate> 1416 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1417 CompLevel next_level = cur_level; 1418 switch(cur_level) { 1419 default: break; 1420 case CompLevel_none: 1421 next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1422 break; 1423 case CompLevel_limited_profile: 1424 next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1425 break; 1426 case CompLevel_full_profile: 1427 next_level = transition_from_full_profile<Predicate>(method, cur_level); 1428 break; 1429 } 1430 return next_level; 1431 } 1432 1433 template<typename Predicate> 1434 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1435 precond(cur_level == CompLevel_none); 1436 CompLevel next_level = cur_level; 1437 int i = method->invocation_count(); 1438 int b = method->backedge_count(); 1439 double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0; 1440 // If we were at full profile level, would we switch to full opt? 1441 if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) { 1442 next_level = CompLevel_full_optimization; 1443 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) { 1444 // C1-generated fully profiled code is about 30% slower than the limited profile 1445 // code that has only invocation and backedge counters. The observation is that 1446 // if C2 queue is large enough we can spend too much time in the fully profiled code 1447 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1448 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1449 // we choose to compile a limited profiled version and then recompile with full profiling 1450 // when the load on C2 goes down. 1451 if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) { 1452 next_level = CompLevel_limited_profile; 1453 } else { 1454 next_level = CompLevel_full_profile; 1455 } 1456 } 1457 return next_level; 1458 } 1459 1460 template<typename Predicate> 1461 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) { 1462 precond(cur_level == CompLevel_full_profile); 1463 CompLevel next_level = cur_level; 1464 MethodData* mdo = method->method_data(); 1465 if (mdo != nullptr) { 1466 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1467 int mdo_i = mdo->invocation_count_delta(); 1468 int mdo_b = mdo->backedge_count_delta(); 1469 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1470 next_level = CompLevel_full_optimization; 1471 } 1472 } else { 1473 next_level = CompLevel_full_optimization; 1474 } 1475 } 1476 return next_level; 1477 } 1478 1479 template<typename Predicate> 1480 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1481 precond(cur_level == CompLevel_limited_profile); 1482 CompLevel next_level = cur_level; 1483 int i = method->invocation_count(); 1484 int b = method->backedge_count(); 1485 double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0; 1486 MethodData* mdo = method->method_data(); 1487 if (mdo != nullptr) { 1488 if (mdo->would_profile()) { 1489 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1490 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1491 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1492 next_level = CompLevel_full_profile; 1493 } 1494 } else { 1495 next_level = CompLevel_full_optimization; 1496 } 1497 } else { 1498 // If there is no MDO we need to profile 1499 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1500 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1501 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1502 next_level = CompLevel_full_profile; 1503 } 1504 } 1505 if (next_level == CompLevel_full_profile && is_method_profiled(method)) { 1506 next_level = CompLevel_full_optimization; 1507 } 1508 return next_level; 1509 } 1510 1511 1512 // Determine if a method should be compiled with a normal entry point at a different level. 1513 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1514 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true)); 1515 CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method)); 1516 1517 // If OSR method level is greater than the regular method level, the levels should be 1518 // equalized by raising the regular method level in order to avoid OSRs during each 1519 // invocation of the method. 1520 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1521 MethodData* mdo = method->method_data(); 1522 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1523 if (mdo->invocation_count() >= 1) { 1524 next_level = CompLevel_full_optimization; 1525 } 1526 } else { 1527 next_level = MAX2(osr_level, next_level); 1528 } 1529 #if INCLUDE_JVMCI 1530 if (EnableJVMCI && UseJVMCICompiler && 1531 next_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 1532 next_level = cur_level; 1533 } 1534 #endif 1535 return next_level; 1536 } 1537 1538 // Determine if we should do an OSR compilation of a given method. 1539 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1540 CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true); 1541 if (cur_level == CompLevel_none) { 1542 // If there is a live OSR method that means that we deopted to the interpreter 1543 // for the transition. 1544 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1545 if (osr_level > CompLevel_none) { 1546 return osr_level; 1547 } 1548 } 1549 return next_level; 1550 } 1551 1552 // Handle the invocation event. 1553 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1554 CompLevel level, nmethod* nm, TRAPS) { 1555 if (should_create_mdo(mh, level)) { 1556 create_mdo(mh, THREAD); 1557 } 1558 CompLevel next_level = call_event(mh, level, THREAD); 1559 if (next_level != level) { 1560 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1561 compile(mh, InvocationEntryBci, next_level, THREAD); 1562 } 1563 } 1564 } 1565 1566 // Handle the back branch event. Notice that we can compile the method 1567 // with a regular entry from here. 1568 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1569 int bci, CompLevel level, nmethod* nm, TRAPS) { 1570 if (should_create_mdo(mh, level)) { 1571 create_mdo(mh, THREAD); 1572 } 1573 // Check if MDO should be created for the inlined method 1574 if (should_create_mdo(imh, level)) { 1575 create_mdo(imh, THREAD); 1576 } 1577 1578 if (is_compilation_enabled()) { 1579 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1580 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1581 // At the very least compile the OSR version 1582 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1583 compile(imh, bci, next_osr_level, CHECK); 1584 } 1585 1586 // Use loop event as an opportunity to also check if there's been 1587 // enough calls. 1588 CompLevel cur_level, next_level; 1589 if (mh() != imh()) { // If there is an enclosing method 1590 { 1591 guarantee(nm != nullptr, "Should have nmethod here"); 1592 cur_level = comp_level(mh()); 1593 next_level = call_event(mh, cur_level, THREAD); 1594 1595 if (max_osr_level == CompLevel_full_optimization) { 1596 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1597 bool make_not_entrant = false; 1598 if (nm->is_osr_method()) { 1599 // This is an osr method, just make it not entrant and recompile later if needed 1600 make_not_entrant = true; 1601 } else { 1602 if (next_level != CompLevel_full_optimization) { 1603 // next_level is not full opt, so we need to recompile the 1604 // enclosing method without the inlinee 1605 cur_level = CompLevel_none; 1606 make_not_entrant = true; 1607 } 1608 } 1609 if (make_not_entrant) { 1610 if (PrintTieredEvents) { 1611 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1612 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1613 } 1614 nm->make_not_entrant(); 1615 } 1616 } 1617 // Fix up next_level if necessary to avoid deopts 1618 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1619 next_level = CompLevel_full_profile; 1620 } 1621 if (cur_level != next_level) { 1622 if (!CompileBroker::compilation_is_in_queue(mh)) { 1623 compile(mh, InvocationEntryBci, next_level, THREAD); 1624 } 1625 } 1626 } 1627 } else { 1628 cur_level = comp_level(mh()); 1629 next_level = call_event(mh, cur_level, THREAD); 1630 if (next_level != cur_level) { 1631 if (!CompileBroker::compilation_is_in_queue(mh)) { 1632 compile(mh, InvocationEntryBci, next_level, THREAD); 1633 } 1634 } 1635 } 1636 } 1637 } 1638