1 /* 2 * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotLinkedClassBulkLoader.hpp" 26 #include "code/aotCodeCache.hpp" 27 #include "code/scopeDesc.hpp" 28 #include "compiler/compilationPolicy.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compilerDefinitions.inline.hpp" 31 #include "compiler/compilerOracle.hpp" 32 #include "compiler/recompilationPolicy.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/method.inline.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/trainingData.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "runtime/arguments.hpp" 40 #include "runtime/deoptimization.hpp" 41 #include "runtime/frame.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/globals_extension.hpp" 44 #include "runtime/handles.inline.hpp" 45 #include "runtime/safepoint.hpp" 46 #include "runtime/safepointVerifiers.hpp" 47 #ifdef COMPILER1 48 #include "c1/c1_Compiler.hpp" 49 #endif 50 #ifdef COMPILER2 51 #include "opto/c2compiler.hpp" 52 #endif 53 #if INCLUDE_JVMCI 54 #include "jvmci/jvmci.hpp" 55 #endif 56 57 int64_t CompilationPolicy::_start_time = 0; 58 int CompilationPolicy::_c1_count = 0; 59 int CompilationPolicy::_c2_count = 0; 60 int CompilationPolicy::_ac_count = 0; 61 double CompilationPolicy::_increase_threshold_at_ratio = 0; 62 63 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue; 64 65 void compilationPolicy_init() { 66 CompilationPolicy::initialize(); 67 } 68 69 int CompilationPolicy::compiler_count(CompLevel comp_level) { 70 if (is_c1_compile(comp_level)) { 71 return c1_count(); 72 } else if (is_c2_compile(comp_level)) { 73 return c2_count(); 74 } 75 return 0; 76 } 77 78 // Returns true if m must be compiled before executing it 79 // This is intended to force compiles for methods (usually for 80 // debugging) that would otherwise be interpreted for some reason. 81 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 82 // Don't allow Xcomp to cause compiles in replay mode 83 if (ReplayCompiles) return false; 84 85 if (m->has_compiled_code()) return false; // already compiled 86 if (!can_be_compiled(m, comp_level)) return false; 87 88 return !UseInterpreter || // must compile all methods 89 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 90 } 91 92 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) { 93 if (m->method_holder()->is_not_initialized()) { 94 // 'is_not_initialized' means not only '!is_initialized', but also that 95 // initialization has not been started yet ('!being_initialized') 96 // Do not force compilation of methods in uninitialized classes. 97 return; 98 } 99 if (!m->is_native() && MethodTrainingData::have_data()) { 100 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 101 if (mtd == nullptr) { 102 return; // there is no training data recorded for m 103 } 104 // AOT Preload code with class init barriers is used, 105 // consider replacing it with normal (faster) AOT code 106 bool recompile = m->code_has_clinit_barriers(); 107 CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level()); 108 CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD); 109 if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) { 110 bool requires_online_compilation = false; 111 CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level); 112 if (ctd != nullptr) { 113 // Can't load normal AOT code - not all dependancies are ready, 114 // request normal compilation 115 requires_online_compilation = (ctd->init_deps_left() > 0); 116 } 117 if (requires_online_compilation && recompile) { 118 // Wait when dependencies are ready to load normal AOT code 119 // if AOT Preload code is used now. 120 // 121 // FIXME. We may never (or it take long time) get all dependencies 122 // be ready to replace AOT Preload code. Consider using time and how many 123 // dependencies left to allow normal JIT compilation for replacement. 124 return; 125 } 126 if (PrintTieredEvents) { 127 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level); 128 } 129 CompileBroker::compile_method(m, InvocationEntryBci, next_level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD); 130 if (HAS_PENDING_EXCEPTION) { 131 CLEAR_PENDING_EXCEPTION; 132 } 133 } 134 } 135 } 136 137 void CompilationPolicy::maybe_compile_early_after_init(const methodHandle& m, TRAPS) { 138 assert(m->method_holder()->is_initialized(), "Should be called after class initialization"); 139 maybe_compile_early(m, THREAD); 140 } 141 142 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 143 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 144 // don't force compilation, resolve was on behalf of compiler 145 return; 146 } 147 if (m->method_holder()->is_not_initialized()) { 148 // 'is_not_initialized' means not only '!is_initialized', but also that 149 // initialization has not been started yet ('!being_initialized') 150 // Do not force compilation of methods in uninitialized classes. 151 // Note that doing this would throw an assert later, 152 // in CompileBroker::compile_method. 153 // We sometimes use the link resolver to do reflective lookups 154 // even before classes are initialized. 155 return; 156 } 157 158 if (must_be_compiled(m)) { 159 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 160 CompLevel level = initial_compile_level(m); 161 if (PrintTieredEvents) { 162 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level); 163 } 164 // Test AOT code too 165 bool requires_online_compilation = false; 166 if (TrainingData::have_data()) { 167 MethodTrainingData* mtd = MethodTrainingData::find_fast(m); 168 if (mtd != nullptr) { 169 CompileTrainingData* ctd = mtd->last_toplevel_compile(level); 170 if (ctd != nullptr) { 171 requires_online_compilation = (ctd->init_deps_left() > 0); 172 } 173 } 174 } 175 CompileBroker::compile_method(m, InvocationEntryBci, level, 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD); 176 } 177 } 178 179 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) { 180 if (!klass->has_init_deps_processed()) { 181 ResourceMark rm; 182 log_debug(training)("Replay training: %s", klass->external_name()); 183 184 KlassTrainingData* ktd = KlassTrainingData::find(klass); 185 if (ktd != nullptr) { 186 guarantee(ktd->has_holder(), ""); 187 ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit 188 assert(klass->has_init_deps_processed(), ""); 189 190 if (AOTCompileEagerly) { 191 ktd->iterate_comp_deps([&](CompileTrainingData* ctd) { 192 if (ctd->init_deps_left() == 0) { 193 MethodTrainingData* mtd = ctd->method(); 194 if (mtd->has_holder()) { 195 const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder())); 196 CompilationPolicy::maybe_compile_early(mh, THREAD); 197 } 198 } 199 }); 200 } 201 } 202 } 203 } 204 205 void CompilationPolicy::flush_replay_training_at_init(TRAPS) { 206 MonitorLocker locker(THREAD, TrainingReplayQueue_lock); 207 while (!_training_replay_queue.is_empty_unlocked()) { 208 locker.wait(); // let the replay training thread drain the queue 209 } 210 } 211 212 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) { 213 assert(klass->is_initialized(), ""); 214 if (TrainingData::have_data() && klass->is_shared()) { 215 _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD); 216 } 217 } 218 219 // For TrainingReplayQueue 220 template<> 221 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) { 222 int pos = 0; 223 for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) { 224 ResourceMark rm; 225 InstanceKlass* ik = cur->value(); 226 st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name()); 227 } 228 } 229 230 void CompilationPolicy::replay_training_at_init_loop(TRAPS) { 231 while (!CompileBroker::is_compilation_disabled_forever() || AOTVerifyTrainingData) { 232 InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD); 233 if (ik != nullptr) { 234 replay_training_at_init_impl(ik, THREAD); 235 } 236 } 237 } 238 239 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 240 if (comp_level == CompLevel_any) { 241 if (CompilerConfig::is_c1_only()) { 242 comp_level = CompLevel_simple; 243 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 244 comp_level = CompLevel_full_optimization; 245 } 246 } 247 return comp_level; 248 } 249 250 // Returns true if m is allowed to be compiled 251 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 252 // allow any levels for WhiteBox 253 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level); 254 255 if (m->is_abstract()) return false; 256 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 257 258 // Math intrinsics should never be compiled as this can lead to 259 // monotonicity problems because the interpreter will prefer the 260 // compiled code to the intrinsic version. This can't happen in 261 // production because the invocation counter can't be incremented 262 // but we shouldn't expose the system to this problem in testing 263 // modes. 264 if (!AbstractInterpreter::can_be_compiled(m)) { 265 return false; 266 } 267 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 268 if (comp_level == CompLevel_any || is_compile(comp_level)) { 269 return !m->is_not_compilable(comp_level); 270 } 271 return false; 272 } 273 274 // Returns true if m is allowed to be osr compiled 275 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 276 bool result = false; 277 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 278 if (comp_level == CompLevel_any || is_compile(comp_level)) { 279 result = !m->is_not_osr_compilable(comp_level); 280 } 281 return (result && can_be_compiled(m, comp_level)); 282 } 283 284 bool CompilationPolicy::is_compilation_enabled() { 285 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 286 return CompileBroker::should_compile_new_jobs(); 287 } 288 289 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 290 // Remove unloaded methods from the queue 291 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 292 CompileTask* next = task->next(); 293 if (task->is_unloaded()) { 294 compile_queue->remove_and_mark_stale(task); 295 } 296 task = next; 297 } 298 #if INCLUDE_JVMCI 299 if (UseJVMCICompiler && !BackgroundCompilation) { 300 /* 301 * In blocking compilation mode, the CompileBroker will make 302 * compilations submitted by a JVMCI compiler thread non-blocking. These 303 * compilations should be scheduled after all blocking compilations 304 * to service non-compiler related compilations sooner and reduce the 305 * chance of such compilations timing out. 306 */ 307 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 308 if (task->is_blocking()) { 309 return task; 310 } 311 } 312 } 313 #endif 314 return compile_queue->first(); 315 } 316 317 // Simple methods are as good being compiled with C1 as C2. 318 // Determine if a given method is such a case. 319 bool CompilationPolicy::is_trivial(const methodHandle& method) { 320 if (method->is_accessor() || 321 method->is_constant_getter()) { 322 return true; 323 } 324 return false; 325 } 326 327 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 328 if (CompilationModeFlag::quick_internal()) { 329 #if INCLUDE_JVMCI 330 if (UseJVMCICompiler) { 331 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 332 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 333 return true; 334 } 335 } 336 #endif 337 } 338 return false; 339 } 340 341 CompLevel CompilationPolicy::comp_level(Method* method) { 342 nmethod *nm = method->code(); 343 if (nm != nullptr && nm->is_in_use()) { 344 return (CompLevel)nm->comp_level(); 345 } 346 return CompLevel_none; 347 } 348 349 // Call and loop predicates determine whether a transition to a higher 350 // compilation level should be performed (pointers to predicate functions 351 // are passed to common()). 352 // Tier?LoadFeedback is basically a coefficient that determines of 353 // how many methods per compiler thread can be in the queue before 354 // the threshold values double. 355 class LoopPredicate : AllStatic { 356 public: 357 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 358 double threshold_scaling; 359 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 360 scale *= threshold_scaling; 361 } 362 switch(cur_level) { 363 case CompLevel_none: 364 case CompLevel_limited_profile: 365 return b >= Tier3BackEdgeThreshold * scale; 366 case CompLevel_full_profile: 367 return b >= Tier4BackEdgeThreshold * scale; 368 default: 369 return true; 370 } 371 } 372 373 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 374 double k = 1; 375 switch(cur_level) { 376 case CompLevel_none: 377 // Fall through 378 case CompLevel_limited_profile: { 379 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 380 break; 381 } 382 case CompLevel_full_profile: { 383 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 384 break; 385 } 386 default: 387 return true; 388 } 389 return apply_scaled(method, cur_level, i, b, k); 390 } 391 }; 392 393 class CallPredicate : AllStatic { 394 public: 395 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 396 double threshold_scaling; 397 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 398 scale *= threshold_scaling; 399 } 400 switch(cur_level) { 401 case CompLevel_none: 402 case CompLevel_limited_profile: 403 return (i >= Tier3InvocationThreshold * scale) || 404 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 405 case CompLevel_full_profile: 406 return (i >= Tier4InvocationThreshold * scale) || 407 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 408 default: 409 return true; 410 } 411 } 412 413 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 414 double k = 1; 415 switch(cur_level) { 416 case CompLevel_none: 417 case CompLevel_limited_profile: { 418 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 419 break; 420 } 421 case CompLevel_full_profile: { 422 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 423 break; 424 } 425 default: 426 return true; 427 } 428 return apply_scaled(method, cur_level, i, b, k); 429 } 430 }; 431 432 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 433 int comp_count = compiler_count(level); 434 if (comp_count > 0) { 435 double queue_size = CompileBroker::queue_size(level); 436 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 437 438 // Increase C1 compile threshold when the code cache is filled more 439 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 440 // The main intention is to keep enough free space for C2 compiled code 441 // to achieve peak performance if the code cache is under stress. 442 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 443 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 444 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 445 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 446 } 447 } 448 return k; 449 } 450 return 1; 451 } 452 453 void CompilationPolicy::print_counters(const char* prefix, Method* m) { 454 int invocation_count = m->invocation_count(); 455 int backedge_count = m->backedge_count(); 456 MethodData* mdh = m->method_data(); 457 int mdo_invocations = 0, mdo_backedges = 0; 458 int mdo_invocations_start = 0, mdo_backedges_start = 0; 459 if (mdh != nullptr) { 460 mdo_invocations = mdh->invocation_count(); 461 mdo_backedges = mdh->backedge_count(); 462 mdo_invocations_start = mdh->invocation_count_start(); 463 mdo_backedges_start = mdh->backedge_count_start(); 464 } 465 tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 466 invocation_count, backedge_count, prefix, 467 mdo_invocations, mdo_invocations_start, 468 mdo_backedges, mdo_backedges_start); 469 tty->print(" %smax levels=%d,%d", prefix, 470 m->highest_comp_level(), m->highest_osr_comp_level()); 471 } 472 473 void CompilationPolicy::print_training_data(const char* prefix, Method* method) { 474 methodHandle m(Thread::current(), method); 475 tty->print(" %smtd: ", prefix); 476 MethodTrainingData* mtd = MethodTrainingData::find(m); 477 if (mtd == nullptr) { 478 tty->print("null"); 479 } else { 480 MethodData* md = mtd->final_profile(); 481 tty->print("mdo="); 482 if (md == nullptr) { 483 tty->print("null"); 484 } else { 485 int mdo_invocations = md->invocation_count(); 486 int mdo_backedges = md->backedge_count(); 487 int mdo_invocations_start = md->invocation_count_start(); 488 int mdo_backedges_start = md->backedge_count_start(); 489 tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start); 490 } 491 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 492 tty->print(", deps="); 493 if (ctd == nullptr) { 494 tty->print("null"); 495 } else { 496 tty->print("%d", ctd->init_deps_left()); 497 } 498 } 499 } 500 501 // Print an event. 502 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) { 503 bool inlinee_event = m != im; 504 505 ttyLocker tty_lock; 506 tty->print("%lf: [", os::elapsedTime()); 507 508 switch(type) { 509 case CALL: 510 tty->print("call"); 511 break; 512 case LOOP: 513 tty->print("loop"); 514 break; 515 case COMPILE: 516 tty->print("compile"); 517 break; 518 case FORCE_COMPILE: 519 tty->print("force-compile"); 520 break; 521 case FORCE_RECOMPILE: 522 tty->print("force-recompile"); 523 break; 524 case REMOVE_FROM_QUEUE: 525 tty->print("remove-from-queue"); 526 break; 527 case UPDATE_IN_QUEUE: 528 tty->print("update-in-queue"); 529 break; 530 case REPROFILE: 531 tty->print("reprofile"); 532 break; 533 case MAKE_NOT_ENTRANT: 534 tty->print("make-not-entrant"); 535 break; 536 default: 537 tty->print("unknown"); 538 } 539 540 tty->print(" level=%d ", level); 541 542 ResourceMark rm; 543 char *method_name = m->name_and_sig_as_C_string(); 544 tty->print("[%s", method_name); 545 if (inlinee_event) { 546 char *inlinee_name = im->name_and_sig_as_C_string(); 547 tty->print(" [%s]] ", inlinee_name); 548 } 549 else tty->print("] "); 550 tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 551 CompileBroker::queue_size(CompLevel_full_optimization)); 552 553 tty->print(" rate="); 554 if (m->prev_time() == 0) tty->print("n/a"); 555 else tty->print("%f", m->rate()); 556 557 RecompilationPolicy::print_load_average(); 558 559 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 560 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 561 562 if (type != COMPILE) { 563 print_counters("", m); 564 if (inlinee_event) { 565 print_counters("inlinee ", im); 566 } 567 tty->print(" compilable="); 568 bool need_comma = false; 569 if (!m->is_not_compilable(CompLevel_full_profile)) { 570 tty->print("c1"); 571 need_comma = true; 572 } 573 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 574 if (need_comma) tty->print(","); 575 tty->print("c1-osr"); 576 need_comma = true; 577 } 578 if (!m->is_not_compilable(CompLevel_full_optimization)) { 579 if (need_comma) tty->print(","); 580 tty->print("c2"); 581 need_comma = true; 582 } 583 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 584 if (need_comma) tty->print(","); 585 tty->print("c2-osr"); 586 } 587 tty->print(" status="); 588 if (m->queued_for_compilation()) { 589 tty->print("in-queue"); 590 } else tty->print("idle"); 591 print_training_data("", m); 592 if (inlinee_event) { 593 print_training_data("inlinee ", im); 594 } 595 } 596 tty->print_cr("]"); 597 } 598 599 void CompilationPolicy::initialize() { 600 if (!CompilerConfig::is_interpreter_only()) { 601 int count = CICompilerCount; 602 bool c1_only = CompilerConfig::is_c1_only(); 603 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 604 605 #ifdef _LP64 606 // Turn on ergonomic compiler count selection 607 if (AOTCodeCache::maybe_dumping_code()) { 608 // Assembly phase runs C1 and C2 compilation in separate phases, 609 // and can use all the CPU threads it can reach. Adjust the common 610 // options before policy starts overwriting them. 611 FLAG_SET_ERGO_IF_DEFAULT(UseDynamicNumberOfCompilerThreads, false); 612 FLAG_SET_ERGO_IF_DEFAULT(CICompilerCountPerCPU, false); 613 if (FLAG_IS_DEFAULT(CICompilerCount)) { 614 count = MAX2(count, os::active_processor_count()); 615 } 616 } 617 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 618 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 619 } 620 if (CICompilerCountPerCPU) { 621 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 622 int log_cpu = log2i(os::active_processor_count()); 623 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 624 count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); 625 } 626 if (FLAG_IS_DEFAULT(CICompilerCount)) { 627 // Make sure there is enough space in the code cache to hold all the compiler buffers 628 size_t c1_size = 0; 629 #ifdef COMPILER1 630 c1_size = Compiler::code_buffer_size(); 631 #endif 632 size_t c2_size = 0; 633 #ifdef COMPILER2 634 c2_size = C2Compiler::initial_code_buffer_size(); 635 #endif 636 size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); 637 int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size; 638 if (count > max_count) { 639 // Lower the compiler count such that all buffers fit into the code cache 640 count = MAX2(max_count, c1_only ? 1 : 2); 641 } 642 FLAG_SET_ERGO(CICompilerCount, count); 643 } 644 #else 645 // On 32-bit systems, the number of compiler threads is limited to 3. 646 // On these systems, the virtual address space available to the JVM 647 // is usually limited to 2-4 GB (the exact value depends on the platform). 648 // As the compilers (especially C2) can consume a large amount of 649 // memory, scaling the number of compiler threads with the number of 650 // available cores can result in the exhaustion of the address space 651 /// available to the VM and thus cause the VM to crash. 652 if (FLAG_IS_DEFAULT(CICompilerCount)) { 653 count = 3; 654 FLAG_SET_ERGO(CICompilerCount, count); 655 } 656 #endif 657 658 if (c1_only) { 659 // No C2 compiler thread required 660 set_c1_count(count); 661 } else if (c2_only) { 662 set_c2_count(count); 663 } else { 664 #if INCLUDE_JVMCI 665 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 666 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 667 int c1_count = MAX2(count - libjvmci_count, 1); 668 set_c2_count(libjvmci_count); 669 set_c1_count(c1_count); 670 } else 671 #endif 672 { 673 set_c1_count(MAX2(count / 3, 1)); 674 set_c2_count(MAX2(count - c1_count(), 1)); 675 } 676 } 677 if (AOTCodeCache::is_code_load_thread_on()) { 678 set_ac_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 AOT code in parallel 679 } 680 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 681 set_increase_threshold_at_ratio(); 682 } 683 684 set_start_time(nanos_to_millis(os::javaTimeNanos())); 685 } 686 687 688 #ifdef ASSERT 689 bool CompilationPolicy::verify_level(CompLevel level) { 690 if (TieredCompilation && level > TieredStopAtLevel) { 691 return false; 692 } 693 // Check if there is a compiler to process the requested level 694 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 695 return false; 696 } 697 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 698 return false; 699 } 700 701 // Interpreter level is always valid. 702 if (level == CompLevel_none) { 703 return true; 704 } 705 if (CompilationModeFlag::normal()) { 706 return true; 707 } else if (CompilationModeFlag::quick_only()) { 708 return level == CompLevel_simple; 709 } else if (CompilationModeFlag::high_only()) { 710 return level == CompLevel_full_optimization; 711 } else if (CompilationModeFlag::high_only_quick_internal()) { 712 return level == CompLevel_full_optimization || level == CompLevel_simple; 713 } 714 return false; 715 } 716 #endif 717 718 719 CompLevel CompilationPolicy::highest_compile_level() { 720 CompLevel level = CompLevel_none; 721 // Setup the maximum level available for the current compiler configuration. 722 if (!CompilerConfig::is_interpreter_only()) { 723 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 724 level = CompLevel_full_optimization; 725 } else if (CompilerConfig::is_c1_enabled()) { 726 if (CompilerConfig::is_c1_simple_only()) { 727 level = CompLevel_simple; 728 } else { 729 level = CompLevel_full_profile; 730 } 731 } 732 } 733 // Clamp the maximum level with TieredStopAtLevel. 734 if (TieredCompilation) { 735 level = MIN2(level, (CompLevel) TieredStopAtLevel); 736 } 737 738 // Fix it up if after the clamping it has become invalid. 739 // Bring it monotonically down depending on the next available level for 740 // the compilation mode. 741 if (!CompilationModeFlag::normal()) { 742 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 743 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 744 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 745 if (CompilationModeFlag::quick_only()) { 746 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 747 level = CompLevel_simple; 748 } 749 } else if (CompilationModeFlag::high_only()) { 750 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 751 level = CompLevel_none; 752 } 753 } else if (CompilationModeFlag::high_only_quick_internal()) { 754 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 755 level = CompLevel_simple; 756 } 757 } 758 } 759 760 assert(verify_level(level), "Invalid highest compilation level: %d", level); 761 return level; 762 } 763 764 CompLevel CompilationPolicy::limit_level(CompLevel level) { 765 level = MIN2(level, highest_compile_level()); 766 assert(verify_level(level), "Invalid compilation level: %d", level); 767 return level; 768 } 769 770 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 771 CompLevel level = CompLevel_any; 772 if (CompilationModeFlag::normal()) { 773 level = CompLevel_full_profile; 774 } else if (CompilationModeFlag::quick_only()) { 775 level = CompLevel_simple; 776 } else if (CompilationModeFlag::high_only()) { 777 level = CompLevel_full_optimization; 778 } else if (CompilationModeFlag::high_only_quick_internal()) { 779 if (force_comp_at_level_simple(method)) { 780 level = CompLevel_simple; 781 } else { 782 level = CompLevel_full_optimization; 783 } 784 } 785 assert(level != CompLevel_any, "Unhandled compilation mode"); 786 return limit_level(level); 787 } 788 789 // Set carry flags on the counters if necessary 790 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 791 MethodCounters *mcs = method->method_counters(); 792 if (mcs != nullptr) { 793 mcs->invocation_counter()->set_carry_on_overflow(); 794 mcs->backedge_counter()->set_carry_on_overflow(); 795 } 796 MethodData* mdo = method->method_data(); 797 if (mdo != nullptr) { 798 mdo->invocation_counter()->set_carry_on_overflow(); 799 mdo->backedge_counter()->set_carry_on_overflow(); 800 } 801 } 802 803 // Called with the queue locked and with at least one element 804 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) { 805 CompileTask *max_blocking_task = nullptr; 806 CompileTask *max_task = nullptr; 807 Method* max_method = nullptr; 808 809 int64_t t = nanos_to_millis(os::javaTimeNanos()); 810 // Iterate through the queue and find a method with a maximum rate. 811 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 812 CompileTask* next_task = task->next(); 813 // If a method was unloaded or has been stale for some time, remove it from the queue. 814 // Blocking tasks and tasks submitted from whitebox API don't become stale 815 if (task->is_unloaded()) { 816 compile_queue->remove_and_mark_stale(task); 817 task = next_task; 818 continue; 819 } 820 if (task->is_aot_load()) { 821 // AOTCodeCache tasks are on separate queue, and they should load fast. There is no need to walk 822 // the rest of the queue, just take the task and go. 823 return task; 824 } 825 if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) { 826 // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate 827 // selection and/or any level adjustments. Just return them in order. 828 return task; 829 } 830 Method* method = task->method(); 831 methodHandle mh(THREAD, method); 832 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 833 if (PrintTieredEvents) { 834 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 835 } 836 method->clear_queued_for_compilation(); 837 method->set_pending_queue_processed(false); 838 compile_queue->remove_and_mark_stale(task); 839 task = next_task; 840 continue; 841 } 842 update_rate(t, mh); 843 if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) { 844 // Select a method with the highest rate 845 max_task = task; 846 max_method = method; 847 } 848 849 if (task->is_blocking()) { 850 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 851 max_blocking_task = task; 852 } 853 } 854 855 task = next_task; 856 } 857 858 if (max_blocking_task != nullptr) { 859 // In blocking compilation mode, the CompileBroker will make 860 // compilations submitted by a JVMCI compiler thread non-blocking. These 861 // compilations should be scheduled after all blocking compilations 862 // to service non-compiler related compilations sooner and reduce the 863 // chance of such compilations timing out. 864 max_task = max_blocking_task; 865 max_method = max_task->method(); 866 } 867 868 methodHandle max_method_h(THREAD, max_method); 869 870 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 871 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 872 max_task->set_comp_level(CompLevel_limited_profile); 873 874 if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile, 875 false /* requires_online_compilation */, 876 CompileTask::Reason_None)) { 877 if (PrintTieredEvents) { 878 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 879 } 880 compile_queue->remove_and_mark_stale(max_task); 881 max_method->clear_queued_for_compilation(); 882 return nullptr; 883 } 884 885 if (PrintTieredEvents) { 886 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 887 } 888 } 889 890 return max_task; 891 } 892 893 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 894 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 895 if (PrintTieredEvents) { 896 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 897 } 898 MethodData* mdo = sd->method()->method_data(); 899 if (mdo != nullptr) { 900 mdo->reset_start_counters(); 901 } 902 if (sd->is_top()) break; 903 } 904 } 905 906 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 907 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 908 if (PrintTieredEvents) { 909 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 910 } 911 912 #if INCLUDE_JVMCI 913 if (EnableJVMCI && UseJVMCICompiler && 914 comp_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) { 915 return nullptr; 916 } 917 #endif 918 919 if (comp_level == CompLevel_none && 920 JvmtiExport::can_post_interpreter_events() && 921 THREAD->is_interp_only_mode()) { 922 return nullptr; 923 } 924 if (ReplayCompiles) { 925 // Don't trigger other compiles in testing mode 926 return nullptr; 927 } 928 929 handle_counter_overflow(method); 930 if (method() != inlinee()) { 931 handle_counter_overflow(inlinee); 932 } 933 934 if (bci == InvocationEntryBci) { 935 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 936 } else { 937 // method == inlinee if the event originated in the main method 938 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 939 // Check if event led to a higher level OSR compilation 940 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 941 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 942 // It's not possible to reach the expected level so fall back to simple. 943 expected_comp_level = CompLevel_simple; 944 } 945 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 946 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 947 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 948 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 949 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 950 // Perform OSR with new nmethod 951 return osr_nm; 952 } 953 } 954 } 955 return nullptr; 956 } 957 958 // Check if the method can be compiled, change level if necessary 959 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 960 assert(verify_level(level), "Invalid compilation level requested: %d", level); 961 962 if (level == CompLevel_none) { 963 if (mh->has_compiled_code()) { 964 // Happens when we switch to interpreter to profile. 965 MutexLocker ml(Compile_lock); 966 NoSafepointVerifier nsv; 967 if (mh->has_compiled_code()) { 968 mh->code()->make_not_used(); 969 } 970 // Deoptimize immediately (we don't have to wait for a compile). 971 JavaThread* jt = THREAD; 972 RegisterMap map(jt, 973 RegisterMap::UpdateMap::skip, 974 RegisterMap::ProcessFrames::include, 975 RegisterMap::WalkContinuation::skip); 976 frame fr = jt->last_frame().sender(&map); 977 Deoptimization::deoptimize_frame(jt, fr.id()); 978 } 979 return; 980 } 981 982 if (!CompilationModeFlag::disable_intermediate()) { 983 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 984 // in the interpreter and then compile with C2 (the transition function will request that, 985 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 986 // pure C1. 987 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 988 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 989 compile(mh, bci, CompLevel_simple, THREAD); 990 } 991 return; 992 } 993 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 994 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 995 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 996 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 997 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 998 osr_nm->make_not_entrant("OSR invalidation for compiling with C1"); 999 } 1000 compile(mh, bci, CompLevel_simple, THREAD); 1001 } 1002 return; 1003 } 1004 } 1005 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 1006 return; 1007 } 1008 if (!CompileBroker::compilation_is_in_queue(mh)) { 1009 if (PrintTieredEvents) { 1010 print_event(COMPILE, mh(), mh(), bci, level); 1011 } 1012 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 1013 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 1014 bool requires_online_compilation = false; 1015 if (TrainingData::have_data()) { 1016 MethodTrainingData* mtd = MethodTrainingData::find_fast(mh); 1017 if (mtd != nullptr) { 1018 CompileTrainingData* ctd = mtd->last_toplevel_compile(level); 1019 if (ctd != nullptr) { 1020 requires_online_compilation = (ctd->init_deps_left() > 0); 1021 } 1022 } 1023 } 1024 CompileBroker::compile_method(mh, bci, level, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD); 1025 } 1026 } 1027 1028 // update_rate() is called from select_task() while holding a compile queue lock. 1029 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) { 1030 // Skip update if counters are absent. 1031 // Can't allocate them since we are holding compile queue lock. 1032 if (method->method_counters() == nullptr) return; 1033 1034 if (is_old(method)) { 1035 // We don't remove old methods from the queue, 1036 // so we can just zero the rate. 1037 method->set_rate(0); 1038 return; 1039 } 1040 1041 // We don't update the rate if we've just came out of a safepoint. 1042 // delta_s is the time since last safepoint in milliseconds. 1043 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1044 int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 1045 // How many events were there since the last time? 1046 int event_count = method->invocation_count() + method->backedge_count(); 1047 int delta_e = event_count - method->prev_event_count(); 1048 1049 // We should be running for at least 1ms. 1050 if (delta_s >= TieredRateUpdateMinTime) { 1051 // And we must've taken the previous point at least 1ms before. 1052 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 1053 method->set_prev_time(t); 1054 method->set_prev_event_count(event_count); 1055 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 1056 } else { 1057 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 1058 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 1059 method->set_rate(0); 1060 } 1061 } 1062 } 1063 } 1064 1065 // Check if this method has been stale for a given number of milliseconds. 1066 // See select_task(). 1067 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) { 1068 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1069 int64_t delta_t = t - method->prev_time(); 1070 if (delta_t > timeout && delta_s > timeout) { 1071 int event_count = method->invocation_count() + method->backedge_count(); 1072 int delta_e = event_count - method->prev_event_count(); 1073 // Return true if there were no events. 1074 return delta_e == 0; 1075 } 1076 return false; 1077 } 1078 1079 // We don't remove old methods from the compile queue even if they have 1080 // very low activity. See select_task(). 1081 bool CompilationPolicy::is_old(const methodHandle& method) { 1082 int i = method->invocation_count(); 1083 int b = method->backedge_count(); 1084 double k = TieredOldPercentage / 100.0; 1085 1086 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1087 } 1088 1089 double CompilationPolicy::weight(Method* method) { 1090 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 1091 } 1092 1093 // Apply heuristics and return true if x should be compiled before y 1094 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 1095 if (x->highest_comp_level() > y->highest_comp_level()) { 1096 // recompilation after deopt 1097 return true; 1098 } else 1099 if (x->highest_comp_level() == y->highest_comp_level()) { 1100 if (weight(x) > weight(y)) { 1101 return true; 1102 } 1103 } 1104 return false; 1105 } 1106 1107 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) { 1108 assert(!x->is_aot_load() && !y->is_aot_load(), "AOT code caching tasks are not expected here"); 1109 if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) { 1110 return true; 1111 } 1112 return false; 1113 } 1114 1115 // Is method profiled enough? 1116 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 1117 MethodData* mdo = method->method_data(); 1118 if (mdo != nullptr) { 1119 int i = mdo->invocation_count_delta(); 1120 int b = mdo->backedge_count_delta(); 1121 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 1122 } 1123 return false; 1124 } 1125 1126 1127 // Determine is a method is mature. 1128 bool CompilationPolicy::is_mature(MethodData* mdo) { 1129 if (Arguments::is_compiler_only()) { 1130 // Always report profiles as immature with -Xcomp 1131 return false; 1132 } 1133 methodHandle mh(Thread::current(), mdo->method()); 1134 if (mdo != nullptr) { 1135 int i = mdo->invocation_count(); 1136 int b = mdo->backedge_count(); 1137 double k = ProfileMaturityPercentage / 100.0; 1138 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 1139 } 1140 return false; 1141 } 1142 1143 // If a method is old enough and is still in the interpreter we would want to 1144 // start profiling without waiting for the compiled method to arrive. 1145 // We also take the load on compilers into the account. 1146 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 1147 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 1148 return false; 1149 } 1150 1151 if (TrainingData::have_data()) { 1152 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1153 if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) { 1154 return true; 1155 } 1156 } 1157 1158 if (is_old(method)) { 1159 return true; 1160 } 1161 int i = method->invocation_count(); 1162 int b = method->backedge_count(); 1163 double k = Tier0ProfilingStartPercentage / 100.0; 1164 1165 // If the top level compiler is not keeping up, delay profiling. 1166 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 1167 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1168 } 1169 return false; 1170 } 1171 1172 // Inlining control: if we're compiling a profiled method with C1 and the callee 1173 // is known to have OSRed in a C2 version, don't inline it. 1174 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 1175 CompLevel comp_level = (CompLevel)env->comp_level(); 1176 if (comp_level == CompLevel_full_profile || 1177 comp_level == CompLevel_limited_profile) { 1178 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 1179 } 1180 return false; 1181 } 1182 1183 // Create MDO if necessary. 1184 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 1185 if (mh->is_native() || 1186 mh->is_abstract() || 1187 mh->is_accessor() || 1188 mh->is_constant_getter()) { 1189 return; 1190 } 1191 if (mh->method_data() == nullptr) { 1192 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 1193 } 1194 if (ProfileInterpreter && THREAD->has_last_Java_frame()) { 1195 MethodData* mdo = mh->method_data(); 1196 if (mdo != nullptr) { 1197 frame last_frame = THREAD->last_frame(); 1198 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 1199 int bci = last_frame.interpreter_frame_bci(); 1200 address dp = mdo->bci_to_dp(bci); 1201 last_frame.interpreter_frame_set_mdp(dp); 1202 } 1203 } 1204 } 1205 } 1206 1207 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1208 precond(mtd != nullptr); 1209 precond(cur_level == CompLevel_none); 1210 1211 if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) { 1212 return CompLevel_none; 1213 } 1214 1215 bool training_has_profile = (mtd->final_profile() != nullptr); 1216 if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) { 1217 return CompLevel_full_profile; 1218 } 1219 1220 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1221 switch (highest_training_level) { 1222 case CompLevel_limited_profile: 1223 case CompLevel_full_profile: 1224 return CompLevel_limited_profile; 1225 case CompLevel_simple: 1226 return CompLevel_simple; 1227 case CompLevel_none: 1228 return CompLevel_none; 1229 default: 1230 break; 1231 } 1232 1233 // Now handle the case of level 4. 1234 assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level); 1235 if (!training_has_profile) { 1236 // The method was a part of a level 4 compile, but don't have a stored profile, 1237 // we need to profile it. 1238 return CompLevel_full_profile; 1239 } 1240 const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization); 1241 // If we deopted, then we reprofile 1242 if (deopt && !is_method_profiled(method)) { 1243 return CompLevel_full_profile; 1244 } 1245 1246 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1247 assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization"); 1248 // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately 1249 if (SkipTier2IfPossible && ctd->init_deps_left() == 0) { 1250 if (method->method_data() == nullptr) { 1251 create_mdo(method, THREAD); 1252 } 1253 return CompLevel_full_optimization; 1254 } 1255 1256 // Otherwise go to level 2 1257 return CompLevel_limited_profile; 1258 } 1259 1260 1261 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1262 precond(mtd != nullptr); 1263 precond(cur_level == CompLevel_limited_profile); 1264 1265 // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready. 1266 1267 // But first, check if we have a saved profile 1268 bool training_has_profile = (mtd->final_profile() != nullptr); 1269 if (!training_has_profile) { 1270 return CompLevel_full_profile; 1271 } 1272 1273 1274 assert(training_has_profile, "Have to have a profile to be here"); 1275 // Check if the method is ready 1276 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1277 if (ctd != nullptr && ctd->init_deps_left() == 0) { 1278 if (method->method_data() == nullptr) { 1279 create_mdo(method, THREAD); 1280 } 1281 return CompLevel_full_optimization; 1282 } 1283 1284 // Otherwise stay at the current level 1285 return CompLevel_limited_profile; 1286 } 1287 1288 1289 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1290 precond(mtd != nullptr); 1291 precond(cur_level == CompLevel_full_profile); 1292 1293 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1294 // We have method at the full profile level and we also know that it's possibly an important method. 1295 if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) { 1296 // Check if it is adequately profiled 1297 if (is_method_profiled(method)) { 1298 return CompLevel_full_optimization; 1299 } 1300 } 1301 1302 // Otherwise stay at the current level 1303 return CompLevel_full_profile; 1304 } 1305 1306 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1307 precond(MethodTrainingData::have_data()); 1308 1309 // If there is no training data recorded for this method, bail out. 1310 if (mtd == nullptr) { 1311 return cur_level; 1312 } 1313 1314 CompLevel next_level = cur_level; 1315 switch(cur_level) { 1316 default: break; 1317 case CompLevel_none: 1318 next_level = trained_transition_from_none(method, cur_level, mtd, THREAD); 1319 break; 1320 case CompLevel_limited_profile: 1321 next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD); 1322 break; 1323 case CompLevel_full_profile: 1324 next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD); 1325 break; 1326 } 1327 1328 // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now. 1329 if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) { 1330 return CompLevel_none; 1331 } 1332 if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) { 1333 return CompLevel_none; 1334 } 1335 return (cur_level != next_level) ? limit_level(next_level) : cur_level; 1336 } 1337 1338 /* 1339 * Method states: 1340 * 0 - interpreter (CompLevel_none) 1341 * 1 - pure C1 (CompLevel_simple) 1342 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 1343 * 3 - C1 with full profiling (CompLevel_full_profile) 1344 * 4 - C2 or Graal (CompLevel_full_optimization) 1345 * 1346 * Common state transition patterns: 1347 * a. 0 -> 3 -> 4. 1348 * The most common path. But note that even in this straightforward case 1349 * profiling can start at level 0 and finish at level 3. 1350 * 1351 * b. 0 -> 2 -> 3 -> 4. 1352 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 1353 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 1354 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 1355 * 1356 * c. 0 -> (3->2) -> 4. 1357 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1358 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1359 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1360 * without full profiling while c2 is compiling. 1361 * 1362 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1363 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1364 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1365 * 1366 * e. 0 -> 4. 1367 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1368 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1369 * the compiled version already exists). 1370 * 1371 * Note that since state 0 can be reached from any other state via deoptimization different loops 1372 * are possible. 1373 * 1374 */ 1375 1376 // Common transition function. Given a predicate determines if a method should transition to another level. 1377 template<typename Predicate> 1378 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) { 1379 CompLevel next_level = cur_level; 1380 1381 if (force_comp_at_level_simple(method)) { 1382 next_level = CompLevel_simple; 1383 } else if (is_trivial(method) || method->is_native()) { 1384 // We do not care if there is profiling data for these methods, throw them to compiler. 1385 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1386 } else if (MethodTrainingData::have_data()) { 1387 MethodTrainingData* mtd = MethodTrainingData::find_fast(method); 1388 if (mtd == nullptr) { 1389 // We haven't see compilations of this method in training. It's either very cold or the behavior changed. 1390 // Feed it to the standard TF with no profiling delay. 1391 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1392 } else { 1393 next_level = trained_transition(method, cur_level, mtd, THREAD); 1394 if (cur_level == next_level) { 1395 // trained_transtion() is going to return the same level if no startup/warmup optimizations apply. 1396 // In order to catch possible pathologies due to behavior change we feed the event to the regular 1397 // TF but with profiling delay. 1398 next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback); 1399 } 1400 } 1401 } else { 1402 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1403 } 1404 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1405 } 1406 1407 1408 template<typename Predicate> 1409 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1410 CompLevel next_level = cur_level; 1411 switch(cur_level) { 1412 default: break; 1413 case CompLevel_none: 1414 next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1415 break; 1416 case CompLevel_limited_profile: 1417 next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1418 break; 1419 case CompLevel_full_profile: 1420 next_level = transition_from_full_profile<Predicate>(method, cur_level); 1421 break; 1422 } 1423 return next_level; 1424 } 1425 1426 template<typename Predicate> 1427 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1428 precond(cur_level == CompLevel_none); 1429 CompLevel next_level = cur_level; 1430 int i = method->invocation_count(); 1431 int b = method->backedge_count(); 1432 double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0; 1433 // If we were at full profile level, would we switch to full opt? 1434 if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) { 1435 next_level = CompLevel_full_optimization; 1436 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) { 1437 // C1-generated fully profiled code is about 30% slower than the limited profile 1438 // code that has only invocation and backedge counters. The observation is that 1439 // if C2 queue is large enough we can spend too much time in the fully profiled code 1440 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1441 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1442 // we choose to compile a limited profiled version and then recompile with full profiling 1443 // when the load on C2 goes down. 1444 if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) { 1445 next_level = CompLevel_limited_profile; 1446 } else { 1447 next_level = CompLevel_full_profile; 1448 } 1449 } 1450 return next_level; 1451 } 1452 1453 template<typename Predicate> 1454 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) { 1455 precond(cur_level == CompLevel_full_profile); 1456 CompLevel next_level = cur_level; 1457 MethodData* mdo = method->method_data(); 1458 if (mdo != nullptr) { 1459 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1460 int mdo_i = mdo->invocation_count_delta(); 1461 int mdo_b = mdo->backedge_count_delta(); 1462 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1463 next_level = CompLevel_full_optimization; 1464 } 1465 } else { 1466 next_level = CompLevel_full_optimization; 1467 } 1468 } 1469 return next_level; 1470 } 1471 1472 template<typename Predicate> 1473 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1474 precond(cur_level == CompLevel_limited_profile); 1475 CompLevel next_level = cur_level; 1476 int i = method->invocation_count(); 1477 int b = method->backedge_count(); 1478 double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0; 1479 MethodData* mdo = method->method_data(); 1480 if (mdo != nullptr) { 1481 if (mdo->would_profile()) { 1482 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1483 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1484 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1485 next_level = CompLevel_full_profile; 1486 } 1487 } else { 1488 next_level = CompLevel_full_optimization; 1489 } 1490 } else { 1491 // If there is no MDO we need to profile 1492 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1493 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1494 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1495 next_level = CompLevel_full_profile; 1496 } 1497 } 1498 if (next_level == CompLevel_full_profile && is_method_profiled(method)) { 1499 next_level = CompLevel_full_optimization; 1500 } 1501 return next_level; 1502 } 1503 1504 1505 // Determine if a method should be compiled with a normal entry point at a different level. 1506 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1507 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true)); 1508 CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method)); 1509 1510 // If OSR method level is greater than the regular method level, the levels should be 1511 // equalized by raising the regular method level in order to avoid OSRs during each 1512 // invocation of the method. 1513 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1514 MethodData* mdo = method->method_data(); 1515 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1516 if (mdo->invocation_count() >= 1) { 1517 next_level = CompLevel_full_optimization; 1518 } 1519 } else { 1520 next_level = MAX2(osr_level, next_level); 1521 } 1522 #if INCLUDE_JVMCI 1523 if (EnableJVMCI && UseJVMCICompiler && 1524 next_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) { 1525 next_level = cur_level; 1526 } 1527 #endif 1528 return next_level; 1529 } 1530 1531 // Determine if we should do an OSR compilation of a given method. 1532 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1533 CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true); 1534 if (cur_level == CompLevel_none) { 1535 // If there is a live OSR method that means that we deopted to the interpreter 1536 // for the transition. 1537 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1538 if (osr_level > CompLevel_none) { 1539 return osr_level; 1540 } 1541 } 1542 return next_level; 1543 } 1544 1545 // Handle the invocation event. 1546 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1547 CompLevel level, nmethod* nm, TRAPS) { 1548 if (should_create_mdo(mh, level)) { 1549 create_mdo(mh, THREAD); 1550 } 1551 CompLevel next_level = call_event(mh, level, THREAD); 1552 if (next_level != level) { 1553 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1554 compile(mh, InvocationEntryBci, next_level, THREAD); 1555 } 1556 } 1557 } 1558 1559 // Handle the back branch event. Notice that we can compile the method 1560 // with a regular entry from here. 1561 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1562 int bci, CompLevel level, nmethod* nm, TRAPS) { 1563 if (should_create_mdo(mh, level)) { 1564 create_mdo(mh, THREAD); 1565 } 1566 // Check if MDO should be created for the inlined method 1567 if (should_create_mdo(imh, level)) { 1568 create_mdo(imh, THREAD); 1569 } 1570 1571 if (is_compilation_enabled()) { 1572 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1573 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1574 // At the very least compile the OSR version 1575 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1576 compile(imh, bci, next_osr_level, CHECK); 1577 } 1578 1579 // Use loop event as an opportunity to also check if there's been 1580 // enough calls. 1581 CompLevel cur_level, next_level; 1582 if (mh() != imh()) { // If there is an enclosing method 1583 { 1584 guarantee(nm != nullptr, "Should have nmethod here"); 1585 cur_level = comp_level(mh()); 1586 next_level = call_event(mh, cur_level, THREAD); 1587 1588 if (max_osr_level == CompLevel_full_optimization) { 1589 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1590 bool make_not_entrant = false; 1591 if (nm->is_osr_method()) { 1592 // This is an osr method, just make it not entrant and recompile later if needed 1593 make_not_entrant = true; 1594 } else { 1595 if (next_level != CompLevel_full_optimization) { 1596 // next_level is not full opt, so we need to recompile the 1597 // enclosing method without the inlinee 1598 cur_level = CompLevel_none; 1599 make_not_entrant = true; 1600 } 1601 } 1602 if (make_not_entrant) { 1603 if (PrintTieredEvents) { 1604 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1605 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1606 } 1607 nm->make_not_entrant("OSR invalidation, back branch"); 1608 } 1609 } 1610 // Fix up next_level if necessary to avoid deopts 1611 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1612 next_level = CompLevel_full_profile; 1613 } 1614 if (cur_level != next_level) { 1615 if (!CompileBroker::compilation_is_in_queue(mh)) { 1616 compile(mh, InvocationEntryBci, next_level, THREAD); 1617 } 1618 } 1619 } 1620 } else { 1621 cur_level = comp_level(mh()); 1622 next_level = call_event(mh, cur_level, THREAD); 1623 if (next_level != cur_level) { 1624 if (!CompileBroker::compilation_is_in_queue(mh)) { 1625 compile(mh, InvocationEntryBci, next_level, THREAD); 1626 } 1627 } 1628 } 1629 } 1630 } 1631