1 /*
   2  * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "code/aotCodeCache.hpp"
  27 #include "code/scopeDesc.hpp"
  28 #include "compiler/compilationPolicy.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compilerDefinitions.inline.hpp"
  31 #include "compiler/compilerOracle.hpp"
  32 #include "compiler/recompilationPolicy.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/method.inline.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/trainingData.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/globals_extension.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointVerifiers.hpp"
  47 #ifdef COMPILER1
  48 #include "c1/c1_Compiler.hpp"
  49 #endif
  50 #ifdef COMPILER2
  51 #include "opto/c2compiler.hpp"
  52 #endif
  53 #if INCLUDE_JVMCI
  54 #include "jvmci/jvmci.hpp"
  55 #endif
  56 
  57 int64_t CompilationPolicy::_start_time = 0;
  58 int CompilationPolicy::_c1_count = 0;
  59 int CompilationPolicy::_c2_count = 0;
  60 int CompilationPolicy::_c3_count = 0;
  61 int CompilationPolicy::_ac_count = 0;
  62 double CompilationPolicy::_increase_threshold_at_ratio = 0;
  63 
  64 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
  65 
  66 void compilationPolicy_init() {
  67   CompilationPolicy::initialize();
  68 }
  69 
  70 int CompilationPolicy::compiler_count(CompLevel comp_level) {
  71   if (is_c1_compile(comp_level)) {
  72     return c1_count();
  73   } else if (is_c2_compile(comp_level)) {
  74     return c2_count();
  75   }
  76   return 0;
  77 }
  78 
  79 // Returns true if m must be compiled before executing it
  80 // This is intended to force compiles for methods (usually for
  81 // debugging) that would otherwise be interpreted for some reason.
  82 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
  83   // Don't allow Xcomp to cause compiles in replay mode
  84   if (ReplayCompiles) return false;
  85 
  86   if (m->has_compiled_code()) return false;       // already compiled
  87   if (!can_be_compiled(m, comp_level)) return false;
  88 
  89   return !UseInterpreter ||                                                                        // must compile all methods
  90          (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
  91 }
  92 
  93 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
  94   if (m->method_holder()->is_not_initialized()) {
  95     // 'is_not_initialized' means not only '!is_initialized', but also that
  96     // initialization has not been started yet ('!being_initialized')
  97     // Do not force compilation of methods in uninitialized classes.
  98     return;
  99   }
 100   if (!m->is_native() && MethodTrainingData::have_data()) {
 101     MethodTrainingData* mtd = MethodTrainingData::find_fast(m);
 102     if (mtd == nullptr) {
 103       return;              // there is no training data recorded for m
 104     }
 105     bool recompile = m->code_has_clinit_barriers();
 106     CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
 107     CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
 108     if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
 109       bool requires_online_compilation = false;
 110       CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level);
 111       if (ctd != nullptr) {
 112         requires_online_compilation = (ctd->init_deps_left() > 0);
 113       }
 114       if (requires_online_compilation && recompile) {
 115         return;
 116       }
 117       if (PrintTieredEvents) {
 118         print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
 119       }
 120       CompileBroker::compile_method(m, InvocationEntryBci, next_level, methodHandle(), 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
 121       if (HAS_PENDING_EXCEPTION) {
 122         CLEAR_PENDING_EXCEPTION;
 123       }
 124     }
 125   }
 126 }
 127 
 128 void CompilationPolicy::maybe_compile_early_after_init(const methodHandle& m, TRAPS) {
 129   assert(m->method_holder()->is_initialized(), "Should be called after class initialization");
 130   maybe_compile_early(m, THREAD);
 131 }
 132 
 133 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
 134   if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
 135     // don't force compilation, resolve was on behalf of compiler
 136     return;
 137   }
 138   if (m->method_holder()->is_not_initialized()) {
 139     // 'is_not_initialized' means not only '!is_initialized', but also that
 140     // initialization has not been started yet ('!being_initialized')
 141     // Do not force compilation of methods in uninitialized classes.
 142     // Note that doing this would throw an assert later,
 143     // in CompileBroker::compile_method.
 144     // We sometimes use the link resolver to do reflective lookups
 145     // even before classes are initialized.
 146     return;
 147   }
 148 
 149   if (must_be_compiled(m)) {
 150     // This path is unusual, mostly used by the '-Xcomp' stress test mode.
 151     CompLevel level = initial_compile_level(m);
 152     if (PrintTieredEvents) {
 153       print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
 154     }
 155     CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, false, CompileTask::Reason_MustBeCompiled, THREAD);
 156   }
 157 }
 158 
 159 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) {
 160   if (!klass->has_init_deps_processed()) {
 161     ResourceMark rm;
 162     log_debug(training)("Replay training: %s", klass->external_name());
 163 
 164     KlassTrainingData* ktd = KlassTrainingData::find(klass);
 165     if (ktd != nullptr) {
 166       guarantee(ktd->has_holder(), "");
 167       ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
 168       assert(klass->has_init_deps_processed(), "");
 169 
 170       if (AOTCompileEagerly) {
 171         ktd->iterate_comp_deps([&](CompileTrainingData* ctd) {
 172           if (ctd->init_deps_left() == 0) {
 173             MethodTrainingData* mtd = ctd->method();
 174             if (mtd->has_holder()) {
 175               const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder()));
 176               CompilationPolicy::maybe_compile_early(mh, THREAD);
 177             }
 178           }
 179         });
 180       }
 181     }
 182   }
 183 }
 184 
 185 void CompilationPolicy::flush_replay_training_at_init(TRAPS) {
 186    MonitorLocker locker(THREAD, TrainingReplayQueue_lock);
 187    while (!_training_replay_queue.is_empty_unlocked()) {
 188      locker.wait(); // let the replay training thread drain the queue
 189    }
 190 }
 191 
 192 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) {
 193   assert(klass->is_initialized(), "");
 194   if (TrainingData::have_data() && klass->is_shared()) {
 195     _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD);
 196   }
 197 }
 198 
 199 // For TrainingReplayQueue
 200 template<>
 201 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
 202   int pos = 0;
 203   for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
 204     ResourceMark rm;
 205     InstanceKlass* ik = cur->value();
 206     st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
 207   }
 208 }
 209 
 210 void CompilationPolicy::replay_training_at_init_loop(TRAPS) {
 211   while (!CompileBroker::is_compilation_disabled_forever() || AOTVerifyTrainingData) {
 212     InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD);
 213     if (ik != nullptr) {
 214       replay_training_at_init_impl(ik, THREAD);
 215     }
 216   }
 217 }
 218 
 219 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
 220   if (comp_level == CompLevel_any) {
 221      if (CompilerConfig::is_c1_only()) {
 222        comp_level = CompLevel_simple;
 223      } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
 224        comp_level = CompLevel_full_optimization;
 225      }
 226   }
 227   return comp_level;
 228 }
 229 
 230 // Returns true if m is allowed to be compiled
 231 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
 232   // allow any levels for WhiteBox
 233   assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
 234 
 235   if (m->is_abstract()) return false;
 236   if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
 237 
 238   // Math intrinsics should never be compiled as this can lead to
 239   // monotonicity problems because the interpreter will prefer the
 240   // compiled code to the intrinsic version.  This can't happen in
 241   // production because the invocation counter can't be incremented
 242   // but we shouldn't expose the system to this problem in testing
 243   // modes.
 244   if (!AbstractInterpreter::can_be_compiled(m)) {
 245     return false;
 246   }
 247   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 248   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 249     return !m->is_not_compilable(comp_level);
 250   }
 251   return false;
 252 }
 253 
 254 // Returns true if m is allowed to be osr compiled
 255 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
 256   bool result = false;
 257   comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
 258   if (comp_level == CompLevel_any || is_compile(comp_level)) {
 259     result = !m->is_not_osr_compilable(comp_level);
 260   }
 261   return (result && can_be_compiled(m, comp_level));
 262 }
 263 
 264 bool CompilationPolicy::is_compilation_enabled() {
 265   // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
 266   return CompileBroker::should_compile_new_jobs();
 267 }
 268 
 269 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
 270   // Remove unloaded methods from the queue
 271   for (CompileTask* task = compile_queue->first(); task != nullptr; ) {
 272     CompileTask* next = task->next();
 273     if (task->is_unloaded()) {
 274       compile_queue->remove_and_mark_stale(task);
 275     }
 276     task = next;
 277   }
 278 #if INCLUDE_JVMCI
 279   if (UseJVMCICompiler && !BackgroundCompilation) {
 280     /*
 281      * In blocking compilation mode, the CompileBroker will make
 282      * compilations submitted by a JVMCI compiler thread non-blocking. These
 283      * compilations should be scheduled after all blocking compilations
 284      * to service non-compiler related compilations sooner and reduce the
 285      * chance of such compilations timing out.
 286      */
 287     for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) {
 288       if (task->is_blocking()) {
 289         return task;
 290       }
 291     }
 292   }
 293 #endif
 294   return compile_queue->first();
 295 }
 296 
 297 // Simple methods are as good being compiled with C1 as C2.
 298 // Determine if a given method is such a case.
 299 bool CompilationPolicy::is_trivial(const methodHandle& method) {
 300   if (method->is_accessor() ||
 301       method->is_constant_getter()) {
 302     return true;
 303   }
 304   return false;
 305 }
 306 
 307 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
 308   if (CompilationModeFlag::quick_internal()) {
 309 #if INCLUDE_JVMCI
 310     if (UseJVMCICompiler) {
 311       AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 312       if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 313         return !AOTCodeCache::is_C3_on();
 314       }
 315     }
 316 #endif
 317   }
 318   return false;
 319 }
 320 
 321 CompLevel CompilationPolicy::comp_level(Method* method) {
 322   nmethod *nm = method->code();
 323   if (nm != nullptr && nm->is_in_use()) {
 324     return (CompLevel)nm->comp_level();
 325   }
 326   return CompLevel_none;
 327 }
 328 
 329 // Call and loop predicates determine whether a transition to a higher
 330 // compilation level should be performed (pointers to predicate functions
 331 // are passed to common()).
 332 // Tier?LoadFeedback is basically a coefficient that determines of
 333 // how many methods per compiler thread can be in the queue before
 334 // the threshold values double.
 335 class LoopPredicate : AllStatic {
 336 public:
 337   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 338     double threshold_scaling;
 339     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 340       scale *= threshold_scaling;
 341     }
 342     switch(cur_level) {
 343     case CompLevel_none:
 344     case CompLevel_limited_profile:
 345       return b >= Tier3BackEdgeThreshold * scale;
 346     case CompLevel_full_profile:
 347       return b >= Tier4BackEdgeThreshold * scale;
 348     default:
 349       return true;
 350     }
 351   }
 352 
 353   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 354     double k = 1;
 355     switch(cur_level) {
 356     case CompLevel_none:
 357     // Fall through
 358     case CompLevel_limited_profile: {
 359       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 360       break;
 361     }
 362     case CompLevel_full_profile: {
 363       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 364       break;
 365     }
 366     default:
 367       return true;
 368     }
 369     return apply_scaled(method, cur_level, i, b, k);
 370   }
 371 };
 372 
 373 class CallPredicate : AllStatic {
 374 public:
 375   static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
 376     double threshold_scaling;
 377     if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) {
 378       scale *= threshold_scaling;
 379     }
 380     switch(cur_level) {
 381     case CompLevel_none:
 382     case CompLevel_limited_profile:
 383       return (i >= Tier3InvocationThreshold * scale) ||
 384              (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
 385     case CompLevel_full_profile:
 386       return (i >= Tier4InvocationThreshold * scale) ||
 387              (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
 388     default:
 389      return true;
 390     }
 391   }
 392 
 393   static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) {
 394     double k = 1;
 395     switch(cur_level) {
 396     case CompLevel_none:
 397     case CompLevel_limited_profile: {
 398       k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 399       break;
 400     }
 401     case CompLevel_full_profile: {
 402       k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 403       break;
 404     }
 405     default:
 406       return true;
 407     }
 408     return apply_scaled(method, cur_level, i, b, k);
 409   }
 410 };
 411 
 412 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
 413   int comp_count = compiler_count(level);
 414   if (comp_count > 0) {
 415     double queue_size = CompileBroker::queue_size(level);
 416     double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1;
 417 
 418     // Increase C1 compile threshold when the code cache is filled more
 419     // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 420     // The main intention is to keep enough free space for C2 compiled code
 421     // to achieve peak performance if the code cache is under stress.
 422     if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level))  {
 423       double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 424       if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 425         k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 426       }
 427     }
 428     return k;
 429   }
 430   return 1;
 431 }
 432 
 433 void CompilationPolicy::print_counters(const char* prefix, Method* m) {
 434   int invocation_count = m->invocation_count();
 435   int backedge_count = m->backedge_count();
 436   MethodData* mdh = m->method_data();
 437   int mdo_invocations = 0, mdo_backedges = 0;
 438   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 439   if (mdh != nullptr) {
 440     mdo_invocations = mdh->invocation_count();
 441     mdo_backedges = mdh->backedge_count();
 442     mdo_invocations_start = mdh->invocation_count_start();
 443     mdo_backedges_start = mdh->backedge_count_start();
 444   }
 445   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 446       invocation_count, backedge_count, prefix,
 447       mdo_invocations, mdo_invocations_start,
 448       mdo_backedges, mdo_backedges_start);
 449   tty->print(" %smax levels=%d,%d", prefix,
 450       m->highest_comp_level(), m->highest_osr_comp_level());
 451 }
 452 
 453 void CompilationPolicy::print_training_data(const char* prefix, Method* method) {
 454   methodHandle m(Thread::current(), method);
 455   tty->print(" %smtd: ", prefix);
 456   MethodTrainingData* mtd = MethodTrainingData::find(m);
 457   if (mtd == nullptr) {
 458     tty->print("null");
 459   } else {
 460     MethodData* md = mtd->final_profile();
 461     tty->print("mdo=");
 462     if (md == nullptr) {
 463       tty->print("null");
 464     } else {
 465       int mdo_invocations = md->invocation_count();
 466       int mdo_backedges = md->backedge_count();
 467       int mdo_invocations_start = md->invocation_count_start();
 468       int mdo_backedges_start = md->backedge_count_start();
 469       tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
 470     }
 471     CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
 472     tty->print(", deps=");
 473     if (ctd == nullptr) {
 474       tty->print("null");
 475     } else {
 476       tty->print("%d", ctd->init_deps_left());
 477     }
 478   }
 479 }
 480 
 481 // Print an event.
 482 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
 483   bool inlinee_event = m != im;
 484 
 485   ttyLocker tty_lock;
 486   tty->print("%lf: [", os::elapsedTime());
 487 
 488   switch(type) {
 489   case CALL:
 490     tty->print("call");
 491     break;
 492   case LOOP:
 493     tty->print("loop");
 494     break;
 495   case COMPILE:
 496     tty->print("compile");
 497     break;
 498   case FORCE_COMPILE:
 499     tty->print("force-compile");
 500     break;
 501   case FORCE_RECOMPILE:
 502     tty->print("force-recompile");
 503     break;
 504   case REMOVE_FROM_QUEUE:
 505     tty->print("remove-from-queue");
 506     break;
 507   case UPDATE_IN_QUEUE:
 508     tty->print("update-in-queue");
 509     break;
 510   case REPROFILE:
 511     tty->print("reprofile");
 512     break;
 513   case MAKE_NOT_ENTRANT:
 514     tty->print("make-not-entrant");
 515     break;
 516   default:
 517     tty->print("unknown");
 518   }
 519 
 520   tty->print(" level=%d ", level);
 521 
 522   ResourceMark rm;
 523   char *method_name = m->name_and_sig_as_C_string();
 524   tty->print("[%s", method_name);
 525   if (inlinee_event) {
 526     char *inlinee_name = im->name_and_sig_as_C_string();
 527     tty->print(" [%s]] ", inlinee_name);
 528   }
 529   else tty->print("] ");
 530   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 531                                       CompileBroker::queue_size(CompLevel_full_optimization));
 532 
 533   tty->print(" rate=");
 534   if (m->prev_time() == 0) tty->print("n/a");
 535   else tty->print("%f", m->rate());
 536 
 537   RecompilationPolicy::print_load_average();
 538 
 539   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 540                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 541 
 542   if (type != COMPILE) {
 543     print_counters("", m);
 544     if (inlinee_event) {
 545       print_counters("inlinee ", im);
 546     }
 547     tty->print(" compilable=");
 548     bool need_comma = false;
 549     if (!m->is_not_compilable(CompLevel_full_profile)) {
 550       tty->print("c1");
 551       need_comma = true;
 552     }
 553     if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
 554       if (need_comma) tty->print(",");
 555       tty->print("c1-osr");
 556       need_comma = true;
 557     }
 558     if (!m->is_not_compilable(CompLevel_full_optimization)) {
 559       if (need_comma) tty->print(",");
 560       tty->print("c2");
 561       need_comma = true;
 562     }
 563     if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
 564       if (need_comma) tty->print(",");
 565       tty->print("c2-osr");
 566     }
 567     tty->print(" status=");
 568     if (m->queued_for_compilation()) {
 569       tty->print("in-queue");
 570     } else tty->print("idle");
 571     print_training_data("", m);
 572     if (inlinee_event) {
 573       print_training_data("inlinee ", im);
 574     }
 575   }
 576   tty->print_cr("]");
 577 }
 578 
 579 void CompilationPolicy::initialize() {
 580   if (!CompilerConfig::is_interpreter_only()) {
 581     if (AOTCodeCache::is_dumping_code()) {
 582       // Assembly phase runs C1 and C2 compilation in separate phases,
 583       // and can use all the CPU threads it can reach. Adjust the common
 584       // options before policy starts overwriting them. There is a block
 585       // at the very end that overrides final thread counts.
 586       if (FLAG_IS_DEFAULT(UseDynamicNumberOfCompilerThreads)) {
 587         FLAG_SET_ERGO(UseDynamicNumberOfCompilerThreads, false);
 588       }
 589       if (FLAG_IS_DEFAULT(CICompilerCount)) {
 590         FLAG_SET_ERGO(CICompilerCount, MAX2(2, os::active_processor_count()));
 591       }
 592     }
 593     int count = CICompilerCount;
 594     bool c1_only = CompilerConfig::is_c1_only();
 595     bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
 596 
 597 #ifdef _LP64
 598     // Turn on ergonomic compiler count selection
 599     if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 600       FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 601     }
 602     if (CICompilerCountPerCPU) {
 603       // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 604       int log_cpu = log2i(os::active_processor_count());
 605       int loglog_cpu = log2i(MAX2(log_cpu, 1));
 606       count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
 607       // Make sure there is enough space in the code cache to hold all the compiler buffers
 608       size_t c1_size = 0;
 609 #ifdef COMPILER1
 610       c1_size = Compiler::code_buffer_size();
 611 #endif
 612       size_t c2_size = 0;
 613 #ifdef COMPILER2
 614       c2_size = C2Compiler::initial_code_buffer_size();
 615 #endif
 616       size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
 617       int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
 618       if (count > max_count) {
 619         // Lower the compiler count such that all buffers fit into the code cache
 620         count = MAX2(max_count, c1_only ? 1 : 2);
 621       }
 622       FLAG_SET_ERGO(CICompilerCount, count);
 623     }
 624 #else
 625     // On 32-bit systems, the number of compiler threads is limited to 3.
 626     // On these systems, the virtual address space available to the JVM
 627     // is usually limited to 2-4 GB (the exact value depends on the platform).
 628     // As the compilers (especially C2) can consume a large amount of
 629     // memory, scaling the number of compiler threads with the number of
 630     // available cores can result in the exhaustion of the address space
 631     /// available to the VM and thus cause the VM to crash.
 632     if (FLAG_IS_DEFAULT(CICompilerCount)) {
 633       count = 3;
 634       FLAG_SET_ERGO(CICompilerCount, count);
 635     }
 636 #endif
 637 
 638     if (c1_only) {
 639       // No C2 compiler thread required
 640       set_c1_count(count);
 641     } else if (c2_only) {
 642       set_c2_count(count);
 643     } else {
 644 #if INCLUDE_JVMCI
 645       if (UseJVMCICompiler && UseJVMCINativeLibrary) {
 646         int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
 647         int c1_count = MAX2(count - libjvmci_count, 1);
 648         set_c2_count(libjvmci_count);
 649         set_c1_count(c1_count);
 650       } else if (AOTCodeCache::is_C3_on()) {
 651         set_c1_count(MAX2(count / 3, 1));
 652         set_c2_count(MAX2(count - c1_count(), 1));
 653         set_c3_count(1);
 654       } else
 655 #endif
 656       {
 657         set_c1_count(MAX2(count / 3, 1));
 658         set_c2_count(MAX2(count - c1_count(), 1));
 659       }
 660     }
 661     if (AOTCodeCache::is_dumping_code()) {
 662       set_c1_count(count);
 663       set_c2_count(count);
 664       count *= 2; // satisfy the assert below
 665     }
 666     if (AOTCodeCache::is_code_load_thread_on()) {
 667       set_ac_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 cached code in parallel
 668     }
 669     assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 670     set_increase_threshold_at_ratio();
 671   }
 672 
 673   set_start_time(nanos_to_millis(os::javaTimeNanos()));
 674 }
 675 
 676 
 677 
 678 
 679 #ifdef ASSERT
 680 bool CompilationPolicy::verify_level(CompLevel level) {
 681   if (TieredCompilation && level > TieredStopAtLevel) {
 682     return false;
 683   }
 684   // Check if there is a compiler to process the requested level
 685   if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
 686     return false;
 687   }
 688   if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
 689     return false;
 690   }
 691 
 692   // Interpreter level is always valid.
 693   if (level == CompLevel_none) {
 694     return true;
 695   }
 696   if (CompilationModeFlag::normal()) {
 697     return true;
 698   } else if (CompilationModeFlag::quick_only()) {
 699     return level == CompLevel_simple;
 700   } else if (CompilationModeFlag::high_only()) {
 701     return level == CompLevel_full_optimization;
 702   } else if (CompilationModeFlag::high_only_quick_internal()) {
 703     return level == CompLevel_full_optimization || level == CompLevel_simple;
 704   }
 705   return false;
 706 }
 707 #endif
 708 
 709 
 710 CompLevel CompilationPolicy::highest_compile_level() {
 711   CompLevel level = CompLevel_none;
 712   // Setup the maximum level available for the current compiler configuration.
 713   if (!CompilerConfig::is_interpreter_only()) {
 714     if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
 715       level = CompLevel_full_optimization;
 716     } else if (CompilerConfig::is_c1_enabled()) {
 717       if (CompilerConfig::is_c1_simple_only()) {
 718         level = CompLevel_simple;
 719       } else {
 720         level = CompLevel_full_profile;
 721       }
 722     }
 723   }
 724   // Clamp the maximum level with TieredStopAtLevel.
 725   if (TieredCompilation) {
 726     level = MIN2(level, (CompLevel) TieredStopAtLevel);
 727   }
 728 
 729   // Fix it up if after the clamping it has become invalid.
 730   // Bring it monotonically down depending on the next available level for
 731   // the compilation mode.
 732   if (!CompilationModeFlag::normal()) {
 733     // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
 734     // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
 735     // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
 736     if (CompilationModeFlag::quick_only()) {
 737       if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
 738         level = CompLevel_simple;
 739       }
 740     } else if (CompilationModeFlag::high_only()) {
 741       if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 742         level = CompLevel_none;
 743       }
 744     } else if (CompilationModeFlag::high_only_quick_internal()) {
 745       if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
 746         level = CompLevel_simple;
 747       }
 748     }
 749   }
 750 
 751   assert(verify_level(level), "Invalid highest compilation level: %d", level);
 752   return level;
 753 }
 754 
 755 CompLevel CompilationPolicy::limit_level(CompLevel level) {
 756   level = MIN2(level, highest_compile_level());
 757   assert(verify_level(level), "Invalid compilation level: %d", level);
 758   return level;
 759 }
 760 
 761 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
 762   CompLevel level = CompLevel_any;
 763   if (CompilationModeFlag::normal()) {
 764     level = CompLevel_full_profile;
 765   } else if (CompilationModeFlag::quick_only()) {
 766     level = CompLevel_simple;
 767   } else if (CompilationModeFlag::high_only()) {
 768     level = CompLevel_full_optimization;
 769   } else if (CompilationModeFlag::high_only_quick_internal()) {
 770     if (force_comp_at_level_simple(method)) {
 771       level = CompLevel_simple;
 772     } else {
 773       level = CompLevel_full_optimization;
 774     }
 775   }
 776   assert(level != CompLevel_any, "Unhandled compilation mode");
 777   return limit_level(level);
 778 }
 779 
 780 // Set carry flags on the counters if necessary
 781 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) {
 782   MethodCounters *mcs = method->method_counters();
 783   if (mcs != nullptr) {
 784     mcs->invocation_counter()->set_carry_on_overflow();
 785     mcs->backedge_counter()->set_carry_on_overflow();
 786   }
 787   MethodData* mdo = method->method_data();
 788   if (mdo != nullptr) {
 789     mdo->invocation_counter()->set_carry_on_overflow();
 790     mdo->backedge_counter()->set_carry_on_overflow();
 791   }
 792 }
 793 
 794 // Called with the queue locked and with at least one element
 795 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
 796   CompileTask *max_blocking_task = nullptr;
 797   CompileTask *max_task = nullptr;
 798   Method* max_method = nullptr;
 799 
 800   int64_t t = nanos_to_millis(os::javaTimeNanos());
 801   // Iterate through the queue and find a method with a maximum rate.
 802   for (CompileTask* task = compile_queue->first(); task != nullptr;) {
 803     CompileTask* next_task = task->next();
 804     // If a method was unloaded or has been stale for some time, remove it from the queue.
 805     // Blocking tasks and tasks submitted from whitebox API don't become stale
 806     if (task->is_unloaded()) {
 807       compile_queue->remove_and_mark_stale(task);
 808       task = next_task;
 809       continue;
 810     }
 811     if (task->is_aot()) {
 812       // AOTCodeCache tasks are on separate queue, and they should load fast. There is no need to walk
 813       // the rest of the queue, just take the task and go.
 814       return task;
 815     }
 816     if (task->is_blocking() && task->compile_reason() == CompileTask::Reason_Whitebox) {
 817       // CTW tasks, submitted as blocking Whitebox requests, do not participate in rate
 818       // selection and/or any level adjustments. Just return them in order.
 819       return task;
 820     }
 821     Method* method = task->method();
 822     methodHandle mh(THREAD, method);
 823     if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
 824       if (PrintTieredEvents) {
 825         print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 826       }
 827       method->clear_queued_for_compilation();
 828       method->set_pending_queue_processed(false);
 829       compile_queue->remove_and_mark_stale(task);
 830       task = next_task;
 831       continue;
 832     }
 833     update_rate(t, mh);
 834     if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) {
 835       // Select a method with the highest rate
 836       max_task = task;
 837       max_method = method;
 838     }
 839 
 840     if (task->is_blocking()) {
 841       if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) {
 842         max_blocking_task = task;
 843       }
 844     }
 845 
 846     task = next_task;
 847   }
 848 
 849   if (max_blocking_task != nullptr) {
 850     // In blocking compilation mode, the CompileBroker will make
 851     // compilations submitted by a JVMCI compiler thread non-blocking. These
 852     // compilations should be scheduled after all blocking compilations
 853     // to service non-compiler related compilations sooner and reduce the
 854     // chance of such compilations timing out.
 855     max_task = max_blocking_task;
 856     max_method = max_task->method();
 857   }
 858 
 859   methodHandle max_method_h(THREAD, max_method);
 860 
 861   if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
 862       max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
 863     max_task->set_comp_level(CompLevel_limited_profile);
 864 
 865     if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile,
 866                                                false /* requires_online_compilation */,
 867                                                CompileTask::Reason_None)) {
 868       if (PrintTieredEvents) {
 869         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 870       }
 871       compile_queue->remove_and_mark_stale(max_task);
 872       max_method->clear_queued_for_compilation();
 873       return nullptr;
 874     }
 875 
 876     if (PrintTieredEvents) {
 877       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 878     }
 879   }
 880   return max_task;
 881 }
 882 
 883 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 884   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 885     if (PrintTieredEvents) {
 886       print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
 887     }
 888     MethodData* mdo = sd->method()->method_data();
 889     if (mdo != nullptr) {
 890       mdo->reset_start_counters();
 891     }
 892     if (sd->is_top()) break;
 893   }
 894 }
 895 
 896 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 897                                       int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
 898   if (PrintTieredEvents) {
 899     print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
 900   }
 901 
 902 #if INCLUDE_JVMCI
 903   if (EnableJVMCI && UseJVMCICompiler &&
 904       comp_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
 905     return nullptr;
 906   }
 907 #endif
 908 
 909   if (comp_level == CompLevel_none &&
 910       JvmtiExport::can_post_interpreter_events() &&
 911       THREAD->is_interp_only_mode()) {
 912     return nullptr;
 913   }
 914   if (ReplayCompiles) {
 915     // Don't trigger other compiles in testing mode
 916     return nullptr;
 917   }
 918 
 919   handle_counter_overflow(method);
 920   if (method() != inlinee()) {
 921     handle_counter_overflow(inlinee);
 922   }
 923 
 924   if (bci == InvocationEntryBci) {
 925     method_invocation_event(method, inlinee, comp_level, nm, THREAD);
 926   } else {
 927     // method == inlinee if the event originated in the main method
 928     method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
 929     // Check if event led to a higher level OSR compilation
 930     CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
 931     if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
 932       // It's not possible to reach the expected level so fall back to simple.
 933       expected_comp_level = CompLevel_simple;
 934     }
 935     CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
 936     if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
 937       nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 938       assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 939       if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) {
 940         // Perform OSR with new nmethod
 941         return osr_nm;
 942       }
 943     }
 944   }
 945   return nullptr;
 946 }
 947 
 948 // Check if the method can be compiled, change level if necessary
 949 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
 950   assert(verify_level(level), "Invalid compilation level requested: %d", level);
 951 
 952   if (level == CompLevel_none) {
 953     if (mh->has_compiled_code()) {
 954       // Happens when we switch to interpreter to profile.
 955       MutexLocker ml(Compile_lock);
 956       NoSafepointVerifier nsv;
 957       if (mh->has_compiled_code()) {
 958         mh->code()->make_not_used();
 959       }
 960       // Deoptimize immediately (we don't have to wait for a compile).
 961       JavaThread* jt = THREAD;
 962       RegisterMap map(jt,
 963                       RegisterMap::UpdateMap::skip,
 964                       RegisterMap::ProcessFrames::include,
 965                       RegisterMap::WalkContinuation::skip);
 966       frame fr = jt->last_frame().sender(&map);
 967       Deoptimization::deoptimize_frame(jt, fr.id());
 968     }
 969     return;
 970   }
 971 
 972   if (!CompilationModeFlag::disable_intermediate()) {
 973     // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
 974     // in the interpreter and then compile with C2 (the transition function will request that,
 975     // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 976     // pure C1.
 977     if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 978       if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 979         compile(mh, bci, CompLevel_simple, THREAD);
 980       }
 981       return;
 982     }
 983     if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 984       if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 985         nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
 986         if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) {
 987           // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
 988           osr_nm->make_not_entrant("OSR invalidation for compiling with C1");
 989         }
 990         compile(mh, bci, CompLevel_simple, THREAD);
 991       }
 992       return;
 993     }
 994   }
 995   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
 996     return;
 997   }
 998   if (!CompileBroker::compilation_is_in_queue(mh)) {
 999     if (PrintTieredEvents) {
1000       print_event(COMPILE, mh(), mh(), bci, level);
1001     }
1002     int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
1003     update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
1004     bool requires_online_compilation = false;
1005     if (TrainingData::have_data()) {
1006       MethodTrainingData* mtd = MethodTrainingData::find_fast(mh);
1007       if (mtd != nullptr) {
1008         CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
1009         if (ctd != nullptr) {
1010           requires_online_compilation = (ctd->init_deps_left() > 0);
1011         }
1012       }
1013     }
1014     CompileBroker::compile_method(mh, bci, level, mh, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD);
1015   }
1016 }
1017 
1018 // update_rate() is called from select_task() while holding a compile queue lock.
1019 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
1020   // Skip update if counters are absent.
1021   // Can't allocate them since we are holding compile queue lock.
1022   if (method->method_counters() == nullptr)  return;
1023 
1024   if (is_old(method)) {
1025     // We don't remove old methods from the queue,
1026     // so we can just zero the rate.
1027     method->set_rate(0);
1028     return;
1029   }
1030 
1031   // We don't update the rate if we've just came out of a safepoint.
1032   // delta_s is the time since last safepoint in milliseconds.
1033   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1034   int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
1035   // How many events were there since the last time?
1036   int event_count = method->invocation_count() + method->backedge_count();
1037   int delta_e = event_count - method->prev_event_count();
1038 
1039   // We should be running for at least 1ms.
1040   if (delta_s >= TieredRateUpdateMinTime) {
1041     // And we must've taken the previous point at least 1ms before.
1042     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
1043       method->set_prev_time(t);
1044       method->set_prev_event_count(event_count);
1045       method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
1046     } else {
1047       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
1048         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
1049         method->set_rate(0);
1050       }
1051     }
1052   }
1053 }
1054 
1055 // Check if this method has been stale for a given number of milliseconds.
1056 // See select_task().
1057 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
1058   int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
1059   int64_t delta_t = t - method->prev_time();
1060   if (delta_t > timeout && delta_s > timeout) {
1061     int event_count = method->invocation_count() + method->backedge_count();
1062     int delta_e = event_count - method->prev_event_count();
1063     // Return true if there were no events.
1064     return delta_e == 0;
1065   }
1066   return false;
1067 }
1068 
1069 // We don't remove old methods from the compile queue even if they have
1070 // very low activity. See select_task().
1071 bool CompilationPolicy::is_old(const methodHandle& method) {
1072   int i = method->invocation_count();
1073   int b = method->backedge_count();
1074   double k = TieredOldPercentage / 100.0;
1075 
1076   return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1077 }
1078 
1079 double CompilationPolicy::weight(Method* method) {
1080   return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1);
1081 }
1082 
1083 // Apply heuristics and return true if x should be compiled before y
1084 bool CompilationPolicy::compare_methods(Method* x, Method* y) {
1085   if (x->highest_comp_level() > y->highest_comp_level()) {
1086     // recompilation after deopt
1087     return true;
1088   } else
1089     if (x->highest_comp_level() == y->highest_comp_level()) {
1090       if (weight(x) > weight(y)) {
1091         return true;
1092       }
1093     }
1094   return false;
1095 }
1096 
1097 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) {
1098   assert(!x->is_aot() && !y->is_aot(), "AOT code caching tasks are not expected here");
1099   if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) {
1100     return true;
1101   }
1102   return false;
1103 }
1104 
1105 // Is method profiled enough?
1106 bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
1107   MethodData* mdo = method->method_data();
1108   if (mdo != nullptr) {
1109     int i = mdo->invocation_count_delta();
1110     int b = mdo->backedge_count_delta();
1111     return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
1112   }
1113   return false;
1114 }
1115 
1116 
1117 // Determine is a method is mature.
1118 bool CompilationPolicy::is_mature(MethodData* mdo) {
1119   if (Arguments::is_compiler_only()) {
1120     // Always report profiles as immature with -Xcomp
1121     return false;
1122   }
1123   methodHandle mh(Thread::current(), mdo->method());
1124   if (mdo != nullptr) {
1125     int i = mdo->invocation_count();
1126     int b = mdo->backedge_count();
1127     double k = ProfileMaturityPercentage / 100.0;
1128     return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
1129   }
1130   return false;
1131 }
1132 
1133 // If a method is old enough and is still in the interpreter we would want to
1134 // start profiling without waiting for the compiled method to arrive.
1135 // We also take the load on compilers into the account.
1136 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
1137   if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
1138     return false;
1139   }
1140 
1141   if (TrainingData::have_data()) {
1142     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1143     if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
1144       return true;
1145     }
1146   }
1147 
1148   if (is_old(method)) {
1149     return true;
1150   }
1151 
1152   int i = method->invocation_count();
1153   int b = method->backedge_count();
1154   double k = Tier0ProfilingStartPercentage / 100.0;
1155 
1156   // If the top level compiler is not keeping up, delay profiling.
1157   if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
1158     return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k);
1159   }
1160   return false;
1161 }
1162 
1163 // Inlining control: if we're compiling a profiled method with C1 and the callee
1164 // is known to have OSRed in a C2 version, don't inline it.
1165 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
1166   CompLevel comp_level = (CompLevel)env->comp_level();
1167   if (comp_level == CompLevel_full_profile ||
1168       comp_level == CompLevel_limited_profile) {
1169     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
1170   }
1171   return false;
1172 }
1173 
1174 // Create MDO if necessary.
1175 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
1176   if (mh->is_native() ||
1177       mh->is_abstract() ||
1178       mh->is_accessor() ||
1179       mh->is_constant_getter()) {
1180     return;
1181   }
1182   if (mh->method_data() == nullptr) {
1183     Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
1184   }
1185   if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
1186     MethodData* mdo = mh->method_data();
1187     if (mdo != nullptr) {
1188       frame last_frame = THREAD->last_frame();
1189       if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
1190         int bci = last_frame.interpreter_frame_bci();
1191         address dp = mdo->bci_to_dp(bci);
1192         last_frame.interpreter_frame_set_mdp(dp);
1193       }
1194     }
1195   }
1196 }
1197 
1198 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1199   precond(mtd != nullptr);
1200   precond(cur_level == CompLevel_none);
1201 
1202   if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
1203     return CompLevel_none;
1204   }
1205 
1206   bool training_has_profile = (mtd->final_profile() != nullptr);
1207   if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
1208     return CompLevel_full_profile;
1209   }
1210 
1211   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1212   switch (highest_training_level) {
1213     case CompLevel_limited_profile:
1214     case CompLevel_full_profile:
1215       return CompLevel_limited_profile;
1216     case CompLevel_simple:
1217       return CompLevel_simple;
1218     case CompLevel_none:
1219       return CompLevel_none;
1220     default:
1221       break;
1222   }
1223 
1224   // Now handle the case of level 4.
1225   assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
1226   if (!training_has_profile) {
1227     // The method was a part of a level 4 compile, but don't have a stored profile,
1228     // we need to profile it.
1229     return CompLevel_full_profile;
1230   }
1231   const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
1232   // If we deopted, then we reprofile
1233   if (deopt && !is_method_profiled(method)) {
1234     return CompLevel_full_profile;
1235   }
1236 
1237   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1238   assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
1239   // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
1240   if (SkipTier2IfPossible && ctd->init_deps_left() == 0) {
1241     if (method->method_data() == nullptr) {
1242       create_mdo(method, THREAD);
1243     }
1244     return CompLevel_full_optimization;
1245   }
1246 
1247   // Otherwise go to level 2
1248   return CompLevel_limited_profile;
1249 }
1250 
1251 
1252 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1253   precond(mtd != nullptr);
1254   precond(cur_level == CompLevel_limited_profile);
1255 
1256   // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
1257 
1258   // But first, check if we have a saved profile
1259   bool training_has_profile = (mtd->final_profile() != nullptr);
1260   if (!training_has_profile) {
1261     return CompLevel_full_profile;
1262   }
1263 
1264 
1265   assert(training_has_profile, "Have to have a profile to be here");
1266   // Check if the method is ready
1267   CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
1268   if (ctd != nullptr && ctd->init_deps_left() == 0) {
1269     if (method->method_data() == nullptr) {
1270       create_mdo(method, THREAD);
1271     }
1272     return CompLevel_full_optimization;
1273   }
1274 
1275   // Otherwise stay at the current level
1276   return CompLevel_limited_profile;
1277 }
1278 
1279 
1280 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1281   precond(mtd != nullptr);
1282   precond(cur_level == CompLevel_full_profile);
1283 
1284   CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
1285   // We have method at the full profile level and we also know that it's possibly an important method.
1286   if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
1287     // Check if it is adequately profiled
1288     if (is_method_profiled(method)) {
1289       return CompLevel_full_optimization;
1290     }
1291   }
1292 
1293   // Otherwise stay at the current level
1294   return CompLevel_full_profile;
1295 }
1296 
1297 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
1298   precond(MethodTrainingData::have_data());
1299 
1300   // If there is no training data recorded for this method, bail out.
1301   if (mtd == nullptr) {
1302     return cur_level;
1303   }
1304 
1305   CompLevel next_level = cur_level;
1306   switch(cur_level) {
1307     default: break;
1308     case CompLevel_none:
1309       next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
1310       break;
1311     case CompLevel_limited_profile:
1312       next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
1313       break;
1314     case CompLevel_full_profile:
1315       next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
1316       break;
1317   }
1318 
1319   // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
1320   if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
1321     return CompLevel_none;
1322   }
1323   if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
1324     return CompLevel_none;
1325   }
1326   return (cur_level != next_level) ? limit_level(next_level) : cur_level;
1327 }
1328 
1329 /*
1330  * Method states:
1331  *   0 - interpreter (CompLevel_none)
1332  *   1 - pure C1 (CompLevel_simple)
1333  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
1334  *   3 - C1 with full profiling (CompLevel_full_profile)
1335  *   4 - C2 or Graal (CompLevel_full_optimization)
1336  *
1337  * Common state transition patterns:
1338  * a. 0 -> 3 -> 4.
1339  *    The most common path. But note that even in this straightforward case
1340  *    profiling can start at level 0 and finish at level 3.
1341  *
1342  * b. 0 -> 2 -> 3 -> 4.
1343  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
1344  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
1345  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
1346  *
1347  * c. 0 -> (3->2) -> 4.
1348  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
1349  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
1350  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
1351  *    without full profiling while c2 is compiling.
1352  *
1353  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
1354  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
1355  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
1356  *
1357  * e. 0 -> 4.
1358  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
1359  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
1360  *    the compiled version already exists).
1361  *
1362  * Note that since state 0 can be reached from any other state via deoptimization different loops
1363  * are possible.
1364  *
1365  */
1366 
1367 // Common transition function. Given a predicate determines if a method should transition to another level.
1368 template<typename Predicate>
1369 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
1370   CompLevel next_level = cur_level;
1371 
1372   if (force_comp_at_level_simple(method)) {
1373     next_level = CompLevel_simple;
1374   } else if (is_trivial(method) || method->is_native()) {
1375     // We do not care if there is profiling data for these methods, throw them to compiler.
1376     next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
1377   } else if (MethodTrainingData::have_data()) {
1378     MethodTrainingData* mtd = MethodTrainingData::find_fast(method);
1379     if (mtd == nullptr) {
1380       // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
1381       // Feed it to the standard TF with no profiling delay.
1382       next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1383     } else {
1384       next_level = trained_transition(method, cur_level, mtd, THREAD);
1385       if (cur_level == next_level) {
1386         // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
1387         // In order to catch possible pathologies due to behavior change we feed the event to the regular
1388         // TF but with profiling delay.
1389         next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback);
1390       }
1391     }
1392   } else {
1393     next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
1394   }
1395   return (next_level != cur_level) ? limit_level(next_level) : next_level;
1396 }
1397 
1398 
1399 template<typename Predicate>
1400 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1401   CompLevel next_level = cur_level;
1402   switch(cur_level) {
1403   default: break;
1404   case CompLevel_none:
1405     next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1406     break;
1407   case CompLevel_limited_profile:
1408     next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback);
1409     break;
1410   case CompLevel_full_profile:
1411     next_level = transition_from_full_profile<Predicate>(method, cur_level);
1412     break;
1413   }
1414   return next_level;
1415 }
1416 
1417 template<typename Predicate>
1418 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1419   precond(cur_level == CompLevel_none);
1420   CompLevel next_level = cur_level;
1421   int i = method->invocation_count();
1422   int b = method->backedge_count();
1423   double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0;
1424   // If we were at full profile level, would we switch to full opt?
1425   if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
1426     next_level = CompLevel_full_optimization;
1427   } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) {
1428     // C1-generated fully profiled code is about 30% slower than the limited profile
1429     // code that has only invocation and backedge counters. The observation is that
1430     // if C2 queue is large enough we can spend too much time in the fully profiled code
1431     // while waiting for C2 to pick the method from the queue. To alleviate this problem
1432     // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
1433     // we choose to compile a limited profiled version and then recompile with full profiling
1434     // when the load on C2 goes down.
1435     if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) {
1436       next_level = CompLevel_limited_profile;
1437     } else {
1438       next_level = CompLevel_full_profile;
1439     }
1440   }
1441   return next_level;
1442 }
1443 
1444 template<typename Predicate>
1445 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
1446   precond(cur_level == CompLevel_full_profile);
1447   CompLevel next_level = cur_level;
1448   MethodData* mdo = method->method_data();
1449   if (mdo != nullptr) {
1450     if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
1451       int mdo_i = mdo->invocation_count_delta();
1452       int mdo_b = mdo->backedge_count_delta();
1453       if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
1454         next_level = CompLevel_full_optimization;
1455       }
1456     } else {
1457       next_level = CompLevel_full_optimization;
1458     }
1459   }
1460   return next_level;
1461 }
1462 
1463 template<typename Predicate>
1464 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
1465   precond(cur_level == CompLevel_limited_profile);
1466   CompLevel next_level = cur_level;
1467   int i = method->invocation_count();
1468   int b = method->backedge_count();
1469   double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0;
1470   MethodData* mdo = method->method_data();
1471   if (mdo != nullptr) {
1472     if (mdo->would_profile()) {
1473       if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1474                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1475                               Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1476         next_level = CompLevel_full_profile;
1477       }
1478     } else {
1479       next_level = CompLevel_full_optimization;
1480     }
1481   } else {
1482     // If there is no MDO we need to profile
1483     if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
1484                             Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
1485                             Predicate::apply_scaled(method, cur_level, i, b, scale))) {
1486       next_level = CompLevel_full_profile;
1487     }
1488   }
1489   if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
1490     next_level = CompLevel_full_optimization;
1491   }
1492   return next_level;
1493 }
1494 
1495 
1496 // Determine if a method should be compiled with a normal entry point at a different level.
1497 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1498   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
1499   CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
1500 
1501   // If OSR method level is greater than the regular method level, the levels should be
1502   // equalized by raising the regular method level in order to avoid OSRs during each
1503   // invocation of the method.
1504   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
1505     MethodData* mdo = method->method_data();
1506     guarantee(mdo != nullptr, "MDO should not be nullptr");
1507     if (mdo->invocation_count() >= 1) {
1508       next_level = CompLevel_full_optimization;
1509     }
1510   } else {
1511     next_level = MAX2(osr_level, next_level);
1512   }
1513 #if INCLUDE_JVMCI
1514   if (EnableJVMCI && UseJVMCICompiler &&
1515       next_level == CompLevel_full_optimization CDS_ONLY(&& !AOTLinkedClassBulkLoader::class_preloading_finished())) {
1516     next_level = cur_level;
1517   }
1518 #endif
1519   return next_level;
1520 }
1521 
1522 // Determine if we should do an OSR compilation of a given method.
1523 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
1524   CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
1525   if (cur_level == CompLevel_none) {
1526     // If there is a live OSR method that means that we deopted to the interpreter
1527     // for the transition.
1528     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
1529     if (osr_level > CompLevel_none) {
1530       return osr_level;
1531     }
1532   }
1533   return next_level;
1534 }
1535 
1536 // Handle the invocation event.
1537 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
1538                                                       CompLevel level, nmethod* nm, TRAPS) {
1539   if (should_create_mdo(mh, level)) {
1540     create_mdo(mh, THREAD);
1541   }
1542   CompLevel next_level = call_event(mh, level, THREAD);
1543   if (next_level != level) {
1544     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
1545       compile(mh, InvocationEntryBci, next_level, THREAD);
1546     }
1547   }
1548 }
1549 
1550 // Handle the back branch event. Notice that we can compile the method
1551 // with a regular entry from here.
1552 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
1553                                                      int bci, CompLevel level, nmethod* nm, TRAPS) {
1554   if (should_create_mdo(mh, level)) {
1555     create_mdo(mh, THREAD);
1556   }
1557   // Check if MDO should be created for the inlined method
1558   if (should_create_mdo(imh, level)) {
1559     create_mdo(imh, THREAD);
1560   }
1561 
1562   if (is_compilation_enabled()) {
1563     CompLevel next_osr_level = loop_event(imh, level, THREAD);
1564     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
1565     // At the very least compile the OSR version
1566     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
1567       compile(imh, bci, next_osr_level, CHECK);
1568     }
1569 
1570     // Use loop event as an opportunity to also check if there's been
1571     // enough calls.
1572     CompLevel cur_level, next_level;
1573     if (mh() != imh()) { // If there is an enclosing method
1574       {
1575         guarantee(nm != nullptr, "Should have nmethod here");
1576         cur_level = comp_level(mh());
1577         next_level = call_event(mh, cur_level, THREAD);
1578 
1579         if (max_osr_level == CompLevel_full_optimization) {
1580           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
1581           bool make_not_entrant = false;
1582           if (nm->is_osr_method()) {
1583             // This is an osr method, just make it not entrant and recompile later if needed
1584             make_not_entrant = true;
1585           } else {
1586             if (next_level != CompLevel_full_optimization) {
1587               // next_level is not full opt, so we need to recompile the
1588               // enclosing method without the inlinee
1589               cur_level = CompLevel_none;
1590               make_not_entrant = true;
1591             }
1592           }
1593           if (make_not_entrant) {
1594             if (PrintTieredEvents) {
1595               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
1596               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
1597             }
1598             nm->make_not_entrant("OSR invalidation, back branch");
1599           }
1600         }
1601         // Fix up next_level if necessary to avoid deopts
1602         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
1603           next_level = CompLevel_full_profile;
1604         }
1605         if (cur_level != next_level) {
1606           if (!CompileBroker::compilation_is_in_queue(mh)) {
1607             compile(mh, InvocationEntryBci, next_level, THREAD);
1608           }
1609         }
1610       }
1611     } else {
1612       cur_level = comp_level(mh());
1613       next_level = call_event(mh, cur_level, THREAD);
1614       if (next_level != cur_level) {
1615         if (!CompileBroker::compilation_is_in_queue(mh)) {
1616           compile(mh, InvocationEntryBci, next_level, THREAD);
1617         }
1618       }
1619     }
1620   }
1621 }
1622