1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/cdsConfig.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/codeHeapState.hpp" 32 #include "code/dependencyContext.hpp" 33 #include "compiler/compilationLog.hpp" 34 #include "compiler/compilationMemoryStatistic.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/compileLog.hpp" 38 #include "compiler/compilerEvent.hpp" 39 #include "compiler/compilerOracle.hpp" 40 #include "compiler/directivesParser.hpp" 41 #include "gc/shared/memAllocator.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm.h" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/allocation.inline.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/method.inline.hpp" 51 #include "oops/methodData.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/nativeLookup.hpp" 55 #include "prims/whitebox.hpp" 56 #include "runtime/atomic.hpp" 57 #include "runtime/escapeBarrier.hpp" 58 #include "runtime/globals_extension.hpp" 59 #include "runtime/handles.inline.hpp" 60 #include "runtime/init.hpp" 61 #include "runtime/interfaceSupport.inline.hpp" 62 #include "runtime/java.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/jniHandles.inline.hpp" 65 #include "runtime/os.hpp" 66 #include "runtime/perfData.hpp" 67 #include "runtime/safepointVerifiers.hpp" 68 #include "runtime/sharedRuntime.hpp" 69 #include "runtime/threads.hpp" 70 #include "runtime/threadSMR.hpp" 71 #include "runtime/timerTrace.hpp" 72 #include "runtime/vframe.inline.hpp" 73 #include "utilities/debug.hpp" 74 #include "utilities/dtrace.hpp" 75 #include "utilities/events.hpp" 76 #include "utilities/formatBuffer.hpp" 77 #include "utilities/macros.hpp" 78 #ifdef COMPILER1 79 #include "c1/c1_Compiler.hpp" 80 #endif 81 #ifdef COMPILER2 82 #include "opto/c2compiler.hpp" 83 #endif 84 #if INCLUDE_JVMCI 85 #include "jvmci/jvmciEnv.hpp" 86 #include "jvmci/jvmciRuntime.hpp" 87 #endif 88 89 #ifdef DTRACE_ENABLED 90 91 // Only bother with this argument setup if dtrace is available 92 93 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 94 { \ 95 Symbol* klass_name = (method)->klass_name(); \ 96 Symbol* name = (method)->name(); \ 97 Symbol* signature = (method)->signature(); \ 98 HOTSPOT_METHOD_COMPILE_BEGIN( \ 99 (char *) comp_name, strlen(comp_name), \ 100 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 101 (char *) name->bytes(), name->utf8_length(), \ 102 (char *) signature->bytes(), signature->utf8_length()); \ 103 } 104 105 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 106 { \ 107 Symbol* klass_name = (method)->klass_name(); \ 108 Symbol* name = (method)->name(); \ 109 Symbol* signature = (method)->signature(); \ 110 HOTSPOT_METHOD_COMPILE_END( \ 111 (char *) comp_name, strlen(comp_name), \ 112 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 113 (char *) name->bytes(), name->utf8_length(), \ 114 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 115 } 116 117 #else // ndef DTRACE_ENABLED 118 119 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 120 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 121 122 #endif // ndef DTRACE_ENABLED 123 124 bool CompileBroker::_initialized = false; 125 volatile bool CompileBroker::_should_block = false; 126 volatile int CompileBroker::_print_compilation_warning = 0; 127 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 128 129 // The installed compiler(s) 130 AbstractCompiler* CompileBroker::_compilers[2]; 131 132 // The maximum numbers of compiler threads to be determined during startup. 133 int CompileBroker::_c1_count = 0; 134 int CompileBroker::_c2_count = 0; 135 136 // An array of compiler names as Java String objects 137 jobject* CompileBroker::_compiler1_objects = nullptr; 138 jobject* CompileBroker::_compiler2_objects = nullptr; 139 140 CompileLog** CompileBroker::_compiler1_logs = nullptr; 141 CompileLog** CompileBroker::_compiler2_logs = nullptr; 142 143 // These counters are used to assign an unique ID to each compilation. 144 volatile jint CompileBroker::_compilation_id = 0; 145 volatile jint CompileBroker::_osr_compilation_id = 0; 146 volatile jint CompileBroker::_native_compilation_id = 0; 147 148 // Performance counters 149 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 150 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 151 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 152 153 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 154 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 155 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 156 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 157 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 158 159 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 160 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 161 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 162 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 163 164 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 165 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 166 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 167 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 168 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 169 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 170 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 171 172 // Timers and counters for generating statistics 173 elapsedTimer CompileBroker::_t_total_compilation; 174 elapsedTimer CompileBroker::_t_osr_compilation; 175 elapsedTimer CompileBroker::_t_standard_compilation; 176 elapsedTimer CompileBroker::_t_invalidated_compilation; 177 elapsedTimer CompileBroker::_t_bailedout_compilation; 178 179 uint CompileBroker::_total_bailout_count = 0; 180 uint CompileBroker::_total_invalidated_count = 0; 181 uint CompileBroker::_total_compile_count = 0; 182 uint CompileBroker::_total_osr_compile_count = 0; 183 uint CompileBroker::_total_standard_compile_count = 0; 184 uint CompileBroker::_total_compiler_stopped_count = 0; 185 uint CompileBroker::_total_compiler_restarted_count = 0; 186 187 uint CompileBroker::_sum_osr_bytes_compiled = 0; 188 uint CompileBroker::_sum_standard_bytes_compiled = 0; 189 uint CompileBroker::_sum_nmethod_size = 0; 190 uint CompileBroker::_sum_nmethod_code_size = 0; 191 192 jlong CompileBroker::_peak_compilation_time = 0; 193 194 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 195 196 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 197 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 198 199 bool compileBroker_init() { 200 if (LogEvents) { 201 CompilationLog::init(); 202 } 203 204 // init directives stack, adding default directive 205 DirectivesStack::init(); 206 207 if (DirectivesParser::has_file()) { 208 return DirectivesParser::parse_from_flag(); 209 } else if (CompilerDirectivesPrint) { 210 // Print default directive even when no other was added 211 DirectivesStack::print(tty); 212 } 213 214 return true; 215 } 216 217 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 218 CompilerThread* thread = CompilerThread::current(); 219 thread->set_task(task); 220 CompileLog* log = thread->log(); 221 thread->timeout()->arm(); 222 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 223 } 224 225 CompileTaskWrapper::~CompileTaskWrapper() { 226 CompilerThread* thread = CompilerThread::current(); 227 CompileTask* task = thread->task(); 228 CompileLog* log = thread->log(); 229 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 230 thread->set_task(nullptr); 231 thread->set_env(nullptr); 232 thread->timeout()->disarm(); 233 if (task->is_blocking()) { 234 bool free_task = false; 235 { 236 MutexLocker notifier(thread, CompileTaskWait_lock); 237 task->mark_complete(); 238 #if INCLUDE_JVMCI 239 if (CompileBroker::compiler(task->comp_level())->is_jvmci()) { 240 if (!task->has_waiter()) { 241 // The waiting thread timed out and thus did not delete the task. 242 free_task = true; 243 } 244 task->set_blocking_jvmci_compile_state(nullptr); 245 } 246 #endif 247 if (!free_task) { 248 // Notify the waiting thread that the compilation has completed 249 // so that it can free the task. 250 CompileTaskWait_lock->notify_all(); 251 } 252 } 253 if (free_task) { 254 // The task can only be deleted once the task lock is released. 255 delete task; 256 } 257 } else { 258 task->mark_complete(); 259 260 // By convention, the compiling thread is responsible for deleting 261 // a non-blocking CompileTask. 262 delete task; 263 } 264 } 265 266 /** 267 * Check if a CompilerThread can be removed and update count if requested. 268 */ 269 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 270 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 271 if (!ReduceNumberOfCompilerThreads) return false; 272 273 AbstractCompiler *compiler = ct->compiler(); 274 int compiler_count = compiler->num_compiler_threads(); 275 bool c1 = compiler->is_c1(); 276 277 // Keep at least 1 compiler thread of each type. 278 if (compiler_count < 2) return false; 279 280 // Keep thread alive for at least some time. 281 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 282 283 #if INCLUDE_JVMCI 284 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 285 // Handles for JVMCI thread objects may get released concurrently. 286 if (do_it) { 287 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 288 } else { 289 // Skip check if it's the last thread and let caller check again. 290 return true; 291 } 292 } 293 #endif 294 295 // We only allow the last compiler thread of each type to get removed. 296 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 297 : compiler2_object(compiler_count - 1); 298 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 299 if (do_it) { 300 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 301 compiler->set_num_compiler_threads(compiler_count - 1); 302 #if INCLUDE_JVMCI 303 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 304 // Old j.l.Thread object can die when no longer referenced elsewhere. 305 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 306 _compiler2_objects[compiler_count - 1] = nullptr; 307 } 308 #endif 309 } 310 return true; 311 } 312 return false; 313 } 314 315 /** 316 * Add a CompileTask to a CompileQueue. 317 */ 318 void CompileQueue::add(CompileTask* task) { 319 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 320 321 task->set_next(nullptr); 322 task->set_prev(nullptr); 323 324 if (_last == nullptr) { 325 // The compile queue is empty. 326 assert(_first == nullptr, "queue is empty"); 327 _first = task; 328 _last = task; 329 } else { 330 // Append the task to the queue. 331 assert(_last->next() == nullptr, "not last"); 332 _last->set_next(task); 333 task->set_prev(_last); 334 _last = task; 335 } 336 ++_size; 337 ++_total_added; 338 if (_size > _peak_size) { 339 _peak_size = _size; 340 } 341 342 // Mark the method as being in the compile queue. 343 task->method()->set_queued_for_compilation(); 344 345 if (CIPrintCompileQueue) { 346 print_tty(); 347 } 348 349 if (LogCompilation && xtty != nullptr) { 350 task->log_task_queued(); 351 } 352 353 if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) { 354 CompileTrainingData* ctd = CompileTrainingData::make(task); 355 if (ctd != nullptr) { 356 task->set_training_data(ctd); 357 } 358 } 359 360 // Notify CompilerThreads that a task is available. 361 MethodCompileQueue_lock->notify_all(); 362 } 363 364 /** 365 * Empties compilation queue by deleting all compilation tasks. 366 * Furthermore, the method wakes up all threads that are waiting 367 * on a compilation task to finish. This can happen if background 368 * compilation is disabled. 369 */ 370 void CompileQueue::delete_all() { 371 MutexLocker mu(MethodCompileQueue_lock); 372 CompileTask* current = _first; 373 374 // Iterate over all tasks in the compile queue 375 while (current != nullptr) { 376 CompileTask* next = current->next(); 377 if (!current->is_blocking()) { 378 // Non-blocking task. No one is waiting for it, delete it now. 379 delete current; 380 } else { 381 // Blocking task. By convention, it is the waiters responsibility 382 // to delete the task. We cannot delete it here, because we do not 383 // coordinate with waiters. We will notify the waiters later. 384 } 385 current = next; 386 } 387 _first = nullptr; 388 _last = nullptr; 389 390 // Wake up all blocking task waiters to deal with remaining blocking 391 // tasks. This is not a performance sensitive path, so we do this 392 // unconditionally to simplify coding/testing. 393 { 394 MonitorLocker ml(Thread::current(), CompileTaskWait_lock); 395 ml.notify_all(); 396 } 397 398 // Wake up all threads that block on the queue. 399 MethodCompileQueue_lock->notify_all(); 400 } 401 402 /** 403 * Get the next CompileTask from a CompileQueue 404 */ 405 CompileTask* CompileQueue::get(CompilerThread* thread) { 406 // save methods from RedefineClasses across safepoint 407 // across MethodCompileQueue_lock below. 408 methodHandle save_method; 409 410 MonitorLocker locker(MethodCompileQueue_lock); 411 // If _first is null we have no more compile jobs. There are two reasons for 412 // having no compile jobs: First, we compiled everything we wanted. Second, 413 // we ran out of code cache so compilation has been disabled. In the latter 414 // case we perform code cache sweeps to free memory such that we can re-enable 415 // compilation. 416 while (_first == nullptr) { 417 // Exit loop if compilation is disabled forever 418 if (CompileBroker::is_compilation_disabled_forever()) { 419 return nullptr; 420 } 421 422 AbstractCompiler* compiler = thread->compiler(); 423 guarantee(compiler != nullptr, "Compiler object must exist"); 424 compiler->on_empty_queue(this, thread); 425 if (_first != nullptr) { 426 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 427 // so check again whether any tasks were added to the queue. 428 break; 429 } 430 431 // If there are no compilation tasks and we can compile new jobs 432 // (i.e., there is enough free space in the code cache) there is 433 // no need to invoke the GC. 434 // We need a timed wait here, since compiler threads can exit if compilation 435 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 436 // is not critical and we do not want idle compiler threads to wake up too often. 437 locker.wait(5*1000); 438 439 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 440 // Still nothing to compile. Give caller a chance to stop this thread. 441 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 442 } 443 } 444 445 if (CompileBroker::is_compilation_disabled_forever()) { 446 return nullptr; 447 } 448 449 CompileTask* task; 450 { 451 NoSafepointVerifier nsv; 452 task = CompilationPolicy::select_task(this, thread); 453 if (task != nullptr) { 454 task = task->select_for_compilation(); 455 } 456 } 457 458 if (task != nullptr) { 459 // Save method pointers across unlock safepoint. The task is removed from 460 // the compilation queue, which is walked during RedefineClasses. 461 Thread* thread = Thread::current(); 462 save_method = methodHandle(thread, task->method()); 463 464 remove(task); 465 } 466 purge_stale_tasks(); // may temporarily release MCQ lock 467 return task; 468 } 469 470 // Clean & deallocate stale compile tasks. 471 // Temporarily releases MethodCompileQueue lock. 472 void CompileQueue::purge_stale_tasks() { 473 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 474 if (_first_stale != nullptr) { 475 // Stale tasks are purged when MCQ lock is released, 476 // but _first_stale updates are protected by MCQ lock. 477 // Once task processing starts and MCQ lock is released, 478 // other compiler threads can reuse _first_stale. 479 CompileTask* head = _first_stale; 480 _first_stale = nullptr; 481 { 482 MutexUnlocker ul(MethodCompileQueue_lock); 483 for (CompileTask* task = head; task != nullptr; ) { 484 CompileTask* next_task = task->next(); 485 task->set_next(nullptr); 486 CompileTaskWrapper ctw(task); // Frees the task 487 task->set_failure_reason("stale task"); 488 task = next_task; 489 } 490 } 491 } 492 } 493 494 void CompileQueue::remove(CompileTask* task) { 495 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 496 if (task->prev() != nullptr) { 497 task->prev()->set_next(task->next()); 498 } else { 499 // max is the first element 500 assert(task == _first, "Sanity"); 501 _first = task->next(); 502 } 503 504 if (task->next() != nullptr) { 505 task->next()->set_prev(task->prev()); 506 } else { 507 // max is the last element 508 assert(task == _last, "Sanity"); 509 _last = task->prev(); 510 } 511 task->set_next(nullptr); 512 task->set_prev(nullptr); 513 --_size; 514 ++_total_removed; 515 } 516 517 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 518 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 519 remove(task); 520 521 // Enqueue the task for reclamation (should be done outside MCQ lock) 522 task->set_next(_first_stale); 523 task->set_prev(nullptr); 524 _first_stale = task; 525 } 526 527 // methods in the compile queue need to be marked as used on the stack 528 // so that they don't get reclaimed by Redefine Classes 529 void CompileQueue::mark_on_stack() { 530 CompileTask* task = _first; 531 while (task != nullptr) { 532 task->mark_on_stack(); 533 task = task->next(); 534 } 535 } 536 537 538 CompileQueue* CompileBroker::compile_queue(int comp_level) { 539 if (is_c2_compile(comp_level)) return _c2_compile_queue; 540 if (is_c1_compile(comp_level)) return _c1_compile_queue; 541 return nullptr; 542 } 543 544 CompileQueue* CompileBroker::c1_compile_queue() { 545 return _c1_compile_queue; 546 } 547 548 CompileQueue* CompileBroker::c2_compile_queue() { 549 return _c2_compile_queue; 550 } 551 552 void CompileBroker::print_compile_queues(outputStream* st) { 553 st->print_cr("Current compiles: "); 554 555 char buf[2000]; 556 int buflen = sizeof(buf); 557 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 558 559 st->cr(); 560 if (_c1_compile_queue != nullptr) { 561 _c1_compile_queue->print(st); 562 } 563 if (_c2_compile_queue != nullptr) { 564 _c2_compile_queue->print(st); 565 } 566 } 567 568 void CompileQueue::print(outputStream* st) { 569 assert_locked_or_safepoint(MethodCompileQueue_lock); 570 st->print_cr("%s:", name()); 571 CompileTask* task = _first; 572 if (task == nullptr) { 573 st->print_cr("Empty"); 574 } else { 575 while (task != nullptr) { 576 task->print(st, nullptr, true, true); 577 task = task->next(); 578 } 579 } 580 st->cr(); 581 } 582 583 void CompileQueue::print_tty() { 584 stringStream ss; 585 // Dump the compile queue into a buffer before locking the tty 586 print(&ss); 587 { 588 ttyLocker ttyl; 589 tty->print("%s", ss.freeze()); 590 } 591 } 592 593 CompilerCounters::CompilerCounters() { 594 _current_method[0] = '\0'; 595 _compile_type = CompileBroker::no_compile; 596 } 597 598 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 599 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 600 // in compiler/compilerEvent.cpp) and registers it with its serializer. 601 // 602 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 603 // so if c2 is used, it should be always registered first. 604 // This function is called during vm initialization. 605 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 606 ResourceMark rm; 607 static bool first_registration = true; 608 if (compiler_type == compiler_jvmci) { 609 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 610 first_registration = false; 611 #ifdef COMPILER2 612 } else if (compiler_type == compiler_c2) { 613 assert(first_registration, "invariant"); // c2 must be registered first. 614 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 615 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 616 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 617 } 618 first_registration = false; 619 #endif // COMPILER2 620 } 621 } 622 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 623 624 // ------------------------------------------------------------------ 625 // CompileBroker::compilation_init 626 // 627 // Initialize the Compilation object 628 void CompileBroker::compilation_init(JavaThread* THREAD) { 629 // No need to initialize compilation system if we do not use it. 630 if (!UseCompiler) { 631 return; 632 } 633 // Set the interface to the current compiler(s). 634 _c1_count = CompilationPolicy::c1_count(); 635 _c2_count = CompilationPolicy::c2_count(); 636 637 #if INCLUDE_JVMCI 638 if (EnableJVMCI) { 639 // This is creating a JVMCICompiler singleton. 640 JVMCICompiler* jvmci = new JVMCICompiler(); 641 642 if (UseJVMCICompiler) { 643 _compilers[1] = jvmci; 644 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 645 if (BootstrapJVMCI) { 646 // JVMCI will bootstrap so give it more threads 647 _c2_count = MIN2(32, os::active_processor_count()); 648 } 649 } else { 650 _c2_count = JVMCIThreads; 651 } 652 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 653 } else { 654 #ifdef COMPILER1 655 _c1_count = JVMCIHostThreads; 656 #endif // COMPILER1 657 } 658 } 659 } 660 #endif // INCLUDE_JVMCI 661 662 #ifdef COMPILER1 663 if (_c1_count > 0) { 664 _compilers[0] = new Compiler(); 665 } 666 #endif // COMPILER1 667 668 #ifdef COMPILER2 669 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 670 if (_c2_count > 0) { 671 _compilers[1] = new C2Compiler(); 672 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 673 // idToPhase mapping for c2 is in opto/phasetype.hpp 674 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 675 } 676 } 677 #endif // COMPILER2 678 679 #if INCLUDE_JVMCI 680 // Register after c2 registration. 681 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 682 if (EnableJVMCI) { 683 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 684 } 685 #endif // INCLUDE_JVMCI 686 687 if (CompilerOracle::should_collect_memstat()) { 688 CompilationMemoryStatistic::initialize(); 689 } 690 691 // Start the compiler thread(s) 692 init_compiler_threads(); 693 // totalTime performance counter is always created as it is required 694 // by the implementation of java.lang.management.CompilationMXBean. 695 { 696 // Ensure OOM leads to vm_exit_during_initialization. 697 EXCEPTION_MARK; 698 _perf_total_compilation = 699 PerfDataManager::create_counter(JAVA_CI, "totalTime", 700 PerfData::U_Ticks, CHECK); 701 } 702 703 if (UsePerfData) { 704 705 EXCEPTION_MARK; 706 707 // create the jvmstat performance counters 708 _perf_osr_compilation = 709 PerfDataManager::create_counter(SUN_CI, "osrTime", 710 PerfData::U_Ticks, CHECK); 711 712 _perf_standard_compilation = 713 PerfDataManager::create_counter(SUN_CI, "standardTime", 714 PerfData::U_Ticks, CHECK); 715 716 _perf_total_bailout_count = 717 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 718 PerfData::U_Events, CHECK); 719 720 _perf_total_invalidated_count = 721 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 722 PerfData::U_Events, CHECK); 723 724 _perf_total_compile_count = 725 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 726 PerfData::U_Events, CHECK); 727 _perf_total_osr_compile_count = 728 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 729 PerfData::U_Events, CHECK); 730 731 _perf_total_standard_compile_count = 732 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 733 PerfData::U_Events, CHECK); 734 735 _perf_sum_osr_bytes_compiled = 736 PerfDataManager::create_counter(SUN_CI, "osrBytes", 737 PerfData::U_Bytes, CHECK); 738 739 _perf_sum_standard_bytes_compiled = 740 PerfDataManager::create_counter(SUN_CI, "standardBytes", 741 PerfData::U_Bytes, CHECK); 742 743 _perf_sum_nmethod_size = 744 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 745 PerfData::U_Bytes, CHECK); 746 747 _perf_sum_nmethod_code_size = 748 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 749 PerfData::U_Bytes, CHECK); 750 751 _perf_last_method = 752 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 753 CompilerCounters::cmname_buffer_length, 754 "", CHECK); 755 756 _perf_last_failed_method = 757 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 758 CompilerCounters::cmname_buffer_length, 759 "", CHECK); 760 761 _perf_last_invalidated_method = 762 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 763 CompilerCounters::cmname_buffer_length, 764 "", CHECK); 765 766 _perf_last_compile_type = 767 PerfDataManager::create_variable(SUN_CI, "lastType", 768 PerfData::U_None, 769 (jlong)CompileBroker::no_compile, 770 CHECK); 771 772 _perf_last_compile_size = 773 PerfDataManager::create_variable(SUN_CI, "lastSize", 774 PerfData::U_Bytes, 775 (jlong)CompileBroker::no_compile, 776 CHECK); 777 778 779 _perf_last_failed_type = 780 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 781 PerfData::U_None, 782 (jlong)CompileBroker::no_compile, 783 CHECK); 784 785 _perf_last_invalidated_type = 786 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 787 PerfData::U_None, 788 (jlong)CompileBroker::no_compile, 789 CHECK); 790 } 791 792 _initialized = true; 793 } 794 795 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) { 796 CompilationPolicy::replay_training_at_init_loop(thread); 797 } 798 799 #if defined(ASSERT) && COMPILER2_OR_JVMCI 800 // Entry for DeoptimizeObjectsALotThread. The threads are started in 801 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 802 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 803 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 804 bool enter_single_loop; 805 { 806 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 807 static int single_thread_count = 0; 808 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 809 } 810 if (enter_single_loop) { 811 dt->deoptimize_objects_alot_loop_single(); 812 } else { 813 dt->deoptimize_objects_alot_loop_all(); 814 } 815 } 816 817 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 818 // barrier targets a single thread which is selected round robin. 819 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 820 HandleMark hm(this); 821 while (true) { 822 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 823 { // Begin new scope for escape barrier 824 HandleMarkCleaner hmc(this); 825 ResourceMark rm(this); 826 EscapeBarrier eb(true, this, deoptee_thread); 827 eb.deoptimize_objects(100); 828 } 829 // Now sleep after the escape barriers destructor resumed deoptee_thread. 830 sleep(DeoptimizeObjectsALotInterval); 831 } 832 } 833 } 834 835 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 836 // barrier targets all java threads in the vm at once. 837 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 838 HandleMark hm(this); 839 while (true) { 840 { // Begin new scope for escape barrier 841 HandleMarkCleaner hmc(this); 842 ResourceMark rm(this); 843 EscapeBarrier eb(true, this); 844 eb.deoptimize_objects_all_threads(); 845 } 846 // Now sleep after the escape barriers destructor resumed the java threads. 847 sleep(DeoptimizeObjectsALotInterval); 848 } 849 } 850 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 851 852 853 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 854 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 855 856 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 857 assert(type == compiler_t, "should only happen with reused compiler threads"); 858 // The compiler thread hasn't actually exited yet so don't try to reuse it 859 return nullptr; 860 } 861 862 JavaThread* new_thread = nullptr; 863 switch (type) { 864 case compiler_t: 865 assert(comp != nullptr, "Compiler instance missing."); 866 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 867 CompilerCounters* counters = new CompilerCounters(); 868 new_thread = new CompilerThread(queue, counters); 869 } 870 break; 871 #if defined(ASSERT) && COMPILER2_OR_JVMCI 872 case deoptimizer_t: 873 new_thread = new DeoptimizeObjectsALotThread(); 874 break; 875 #endif // ASSERT 876 case training_replay_t: 877 new_thread = new TrainingReplayThread(); 878 break; 879 default: 880 ShouldNotReachHere(); 881 } 882 883 // At this point the new CompilerThread data-races with this startup 884 // thread (which is the main thread and NOT the VM thread). 885 // This means Java bytecodes being executed at startup can 886 // queue compile jobs which will run at whatever default priority the 887 // newly created CompilerThread runs at. 888 889 890 // At this point it may be possible that no osthread was created for the 891 // JavaThread due to lack of resources. We will handle that failure below. 892 // Also check new_thread so that static analysis is happy. 893 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 894 895 if (type == compiler_t) { 896 CompilerThread::cast(new_thread)->set_compiler(comp); 897 } 898 899 // Note that we cannot call os::set_priority because it expects Java 900 // priorities and we are *explicitly* using OS priorities so that it's 901 // possible to set the compiler thread priority higher than any Java 902 // thread. 903 904 int native_prio = CompilerThreadPriority; 905 if (native_prio == -1) { 906 if (UseCriticalCompilerThreadPriority) { 907 native_prio = os::java_to_os_priority[CriticalPriority]; 908 } else { 909 native_prio = os::java_to_os_priority[NearMaxPriority]; 910 } 911 } 912 os::set_native_priority(new_thread, native_prio); 913 914 // Note that this only sets the JavaThread _priority field, which by 915 // definition is limited to Java priorities and not OS priorities. 916 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 917 918 } else { // osthread initialization failure 919 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 920 && comp->num_compiler_threads() > 0) { 921 // The new thread is not known to Thread-SMR yet so we can just delete. 922 delete new_thread; 923 return nullptr; 924 } else { 925 vm_exit_during_initialization("java.lang.OutOfMemoryError", 926 os::native_thread_creation_failed_msg()); 927 } 928 } 929 930 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 931 932 return new_thread; 933 } 934 935 static bool trace_compiler_threads() { 936 LogTarget(Debug, jit, thread) lt; 937 return TraceCompilerThreads || lt.is_enabled(); 938 } 939 940 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 941 char name_buffer[256]; 942 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 943 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 944 return JNIHandles::make_global(thread_oop); 945 } 946 947 static void print_compiler_threads(stringStream& msg) { 948 if (TraceCompilerThreads) { 949 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 950 } 951 LogTarget(Debug, jit, thread) lt; 952 if (lt.is_enabled()) { 953 LogStream ls(lt); 954 ls.print_cr("%s", msg.as_string()); 955 } 956 } 957 958 void CompileBroker::init_compiler_threads() { 959 // Ensure any exceptions lead to vm_exit_during_initialization. 960 EXCEPTION_MARK; 961 #if !defined(ZERO) 962 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 963 #endif // !ZERO 964 // Initialize the compilation queue 965 if (_c2_count > 0) { 966 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 967 _c2_compile_queue = new CompileQueue(name); 968 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 969 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 970 } 971 if (_c1_count > 0) { 972 _c1_compile_queue = new CompileQueue("C1 compile queue"); 973 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 974 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 975 } 976 977 for (int i = 0; i < _c2_count; i++) { 978 // Create a name for our thread. 979 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 980 _compiler2_objects[i] = thread_handle; 981 _compiler2_logs[i] = nullptr; 982 983 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 984 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 985 assert(ct != nullptr, "should have been handled for initial thread"); 986 _compilers[1]->set_num_compiler_threads(i + 1); 987 if (trace_compiler_threads()) { 988 ResourceMark rm; 989 ThreadsListHandle tlh; // name() depends on the TLH. 990 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 991 stringStream msg; 992 msg.print("Added initial compiler thread %s", ct->name()); 993 print_compiler_threads(msg); 994 } 995 } 996 } 997 998 for (int i = 0; i < _c1_count; i++) { 999 // Create a name for our thread. 1000 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 1001 _compiler1_objects[i] = thread_handle; 1002 _compiler1_logs[i] = nullptr; 1003 1004 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1005 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 1006 assert(ct != nullptr, "should have been handled for initial thread"); 1007 _compilers[0]->set_num_compiler_threads(i + 1); 1008 if (trace_compiler_threads()) { 1009 ResourceMark rm; 1010 ThreadsListHandle tlh; // name() depends on the TLH. 1011 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1012 stringStream msg; 1013 msg.print("Added initial compiler thread %s", ct->name()); 1014 print_compiler_threads(msg); 1015 } 1016 } 1017 } 1018 1019 if (UsePerfData) { 1020 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK); 1021 } 1022 1023 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1024 if (DeoptimizeObjectsALot) { 1025 // Initialize and start the object deoptimizer threads 1026 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1027 for (int count = 0; count < total_count; count++) { 1028 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1029 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1030 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1031 } 1032 } 1033 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1034 } 1035 1036 void CompileBroker::init_training_replay() { 1037 // Ensure any exceptions lead to vm_exit_during_initialization. 1038 EXCEPTION_MARK; 1039 if (TrainingData::have_data()) { 1040 Handle thread_oop = JavaThread::create_system_thread_object("Training replay thread", CHECK); 1041 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1042 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD); 1043 } 1044 } 1045 1046 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1047 1048 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1049 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1050 1051 // Quick check if we already have enough compiler threads without taking the lock. 1052 // Numbers may change concurrently, so we read them again after we have the lock. 1053 if (_c2_compile_queue != nullptr) { 1054 old_c2_count = get_c2_thread_count(); 1055 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1056 } 1057 if (_c1_compile_queue != nullptr) { 1058 old_c1_count = get_c1_thread_count(); 1059 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1060 } 1061 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1062 1063 // Now, we do the more expensive operations. 1064 size_t free_memory = 0; 1065 // Return value ignored - defaulting to 0 on failure. 1066 (void)os::free_memory(free_memory); 1067 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1068 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1069 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1070 1071 // Only attempt to start additional threads if the lock is free. 1072 if (!CompileThread_lock->try_lock()) return; 1073 1074 if (_c2_compile_queue != nullptr) { 1075 old_c2_count = get_c2_thread_count(); 1076 new_c2_count = MIN4(_c2_count, 1077 _c2_compile_queue->size() / c2_tasks_per_thread, 1078 (int)(free_memory / (200*M)), 1079 (int)(available_cc_np / (128*K))); 1080 1081 for (int i = old_c2_count; i < new_c2_count; i++) { 1082 #if INCLUDE_JVMCI 1083 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1084 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1085 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1086 // call Java code to do the creation anyway). 1087 // 1088 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1089 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1090 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1091 // coupling with Java. 1092 if (!THREAD->can_call_java()) break; 1093 char name_buffer[256]; 1094 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1095 Handle thread_oop; 1096 { 1097 // We have to give up the lock temporarily for the Java calls. 1098 MutexUnlocker mu(CompileThread_lock); 1099 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1100 } 1101 if (HAS_PENDING_EXCEPTION) { 1102 if (trace_compiler_threads()) { 1103 ResourceMark rm; 1104 stringStream msg; 1105 msg.print_cr("JVMCI compiler thread creation failed:"); 1106 PENDING_EXCEPTION->print_on(&msg); 1107 print_compiler_threads(msg); 1108 } 1109 CLEAR_PENDING_EXCEPTION; 1110 break; 1111 } 1112 // Check if another thread has beaten us during the Java calls. 1113 if (get_c2_thread_count() != i) break; 1114 jobject thread_handle = JNIHandles::make_global(thread_oop); 1115 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1116 _compiler2_objects[i] = thread_handle; 1117 } 1118 #endif 1119 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1120 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1121 if (ct == nullptr) break; 1122 _compilers[1]->set_num_compiler_threads(i + 1); 1123 if (trace_compiler_threads()) { 1124 ResourceMark rm; 1125 ThreadsListHandle tlh; // name() depends on the TLH. 1126 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1127 stringStream msg; 1128 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1129 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1130 print_compiler_threads(msg); 1131 } 1132 } 1133 } 1134 1135 if (_c1_compile_queue != nullptr) { 1136 old_c1_count = get_c1_thread_count(); 1137 new_c1_count = MIN4(_c1_count, 1138 _c1_compile_queue->size() / c1_tasks_per_thread, 1139 (int)(free_memory / (100*M)), 1140 (int)(available_cc_p / (128*K))); 1141 1142 for (int i = old_c1_count; i < new_c1_count; i++) { 1143 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1144 if (ct == nullptr) break; 1145 _compilers[0]->set_num_compiler_threads(i + 1); 1146 if (trace_compiler_threads()) { 1147 ResourceMark rm; 1148 ThreadsListHandle tlh; // name() depends on the TLH. 1149 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1150 stringStream msg; 1151 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1152 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1153 print_compiler_threads(msg); 1154 } 1155 } 1156 } 1157 1158 CompileThread_lock->unlock(); 1159 } 1160 1161 1162 /** 1163 * Set the methods on the stack as on_stack so that redefine classes doesn't 1164 * reclaim them. This method is executed at a safepoint. 1165 */ 1166 void CompileBroker::mark_on_stack() { 1167 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1168 // Since we are at a safepoint, we do not need a lock to access 1169 // the compile queues. 1170 if (_c2_compile_queue != nullptr) { 1171 _c2_compile_queue->mark_on_stack(); 1172 } 1173 if (_c1_compile_queue != nullptr) { 1174 _c1_compile_queue->mark_on_stack(); 1175 } 1176 } 1177 1178 // ------------------------------------------------------------------ 1179 // CompileBroker::compile_method 1180 // 1181 // Request compilation of a method. 1182 void CompileBroker::compile_method_base(const methodHandle& method, 1183 int osr_bci, 1184 int comp_level, 1185 int hot_count, 1186 CompileTask::CompileReason compile_reason, 1187 bool blocking, 1188 Thread* thread) { 1189 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1190 assert(method->method_holder()->is_instance_klass(), 1191 "sanity check"); 1192 assert(!method->method_holder()->is_not_initialized(), 1193 "method holder must be initialized"); 1194 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1195 1196 if (CIPrintRequests) { 1197 tty->print("request: "); 1198 method->print_short_name(tty); 1199 if (osr_bci != InvocationEntryBci) { 1200 tty->print(" osr_bci: %d", osr_bci); 1201 } 1202 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1203 if (hot_count > 0) { 1204 tty->print(" hot: yes"); 1205 } 1206 tty->cr(); 1207 } 1208 1209 // A request has been made for compilation. Before we do any 1210 // real work, check to see if the method has been compiled 1211 // in the meantime with a definitive result. 1212 if (compilation_is_complete(method, osr_bci, comp_level)) { 1213 return; 1214 } 1215 1216 #ifndef PRODUCT 1217 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1218 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1219 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1220 return; 1221 } 1222 } 1223 #endif 1224 1225 // If this method is already in the compile queue, then 1226 // we do not block the current thread. 1227 if (compilation_is_in_queue(method)) { 1228 // We may want to decay our counter a bit here to prevent 1229 // multiple denied requests for compilation. This is an 1230 // open compilation policy issue. Note: The other possibility, 1231 // in the case that this is a blocking compile request, is to have 1232 // all subsequent blocking requesters wait for completion of 1233 // ongoing compiles. Note that in this case we'll need a protocol 1234 // for freeing the associated compile tasks. [Or we could have 1235 // a single static monitor on which all these waiters sleep.] 1236 return; 1237 } 1238 1239 // Tiered policy requires MethodCounters to exist before adding a method to 1240 // the queue. Create if we don't have them yet. 1241 method->get_method_counters(thread); 1242 1243 // Outputs from the following MutexLocker block: 1244 CompileTask* task = nullptr; 1245 CompileQueue* queue = compile_queue(comp_level); 1246 1247 // Acquire our lock. 1248 { 1249 MutexLocker locker(thread, MethodCompileQueue_lock); 1250 1251 // Make sure the method has not slipped into the queues since 1252 // last we checked; note that those checks were "fast bail-outs". 1253 // Here we need to be more careful, see 14012000 below. 1254 if (compilation_is_in_queue(method)) { 1255 return; 1256 } 1257 1258 // We need to check again to see if the compilation has 1259 // completed. A previous compilation may have registered 1260 // some result. 1261 if (compilation_is_complete(method, osr_bci, comp_level)) { 1262 return; 1263 } 1264 1265 // We now know that this compilation is not pending, complete, 1266 // or prohibited. Assign a compile_id to this compilation 1267 // and check to see if it is in our [Start..Stop) range. 1268 int compile_id = assign_compile_id(method, osr_bci); 1269 if (compile_id == 0) { 1270 // The compilation falls outside the allowed range. 1271 return; 1272 } 1273 1274 #if INCLUDE_JVMCI 1275 if (UseJVMCICompiler && blocking) { 1276 // Don't allow blocking compiles for requests triggered by JVMCI. 1277 if (thread->is_Compiler_thread()) { 1278 blocking = false; 1279 } 1280 1281 // In libjvmci, JVMCI initialization should not deadlock with other threads 1282 if (!UseJVMCINativeLibrary) { 1283 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1284 vframeStream vfst(JavaThread::cast(thread)); 1285 for (; !vfst.at_end(); vfst.next()) { 1286 if (vfst.method()->is_static_initializer() || 1287 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1288 vfst.method()->name() == vmSymbols::loadClass_name())) { 1289 blocking = false; 1290 break; 1291 } 1292 } 1293 1294 // Don't allow blocking compilation requests to JVMCI 1295 // if JVMCI itself is not yet initialized 1296 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1297 blocking = false; 1298 } 1299 } 1300 1301 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1302 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1303 // such as the DestroyJavaVM thread. 1304 if (JVMCI::in_shutdown()) { 1305 blocking = false; 1306 } 1307 } 1308 #endif // INCLUDE_JVMCI 1309 1310 // We will enter the compilation in the queue. 1311 // 14012000: Note that this sets the queued_for_compile bits in 1312 // the target method. We can now reason that a method cannot be 1313 // queued for compilation more than once, as follows: 1314 // Before a thread queues a task for compilation, it first acquires 1315 // the compile queue lock, then checks if the method's queued bits 1316 // are set or it has already been compiled. Thus there can not be two 1317 // instances of a compilation task for the same method on the 1318 // compilation queue. Consider now the case where the compilation 1319 // thread has already removed a task for that method from the queue 1320 // and is in the midst of compiling it. In this case, the 1321 // queued_for_compile bits must be set in the method (and these 1322 // will be visible to the current thread, since the bits were set 1323 // under protection of the compile queue lock, which we hold now. 1324 // When the compilation completes, the compiler thread first sets 1325 // the compilation result and then clears the queued_for_compile 1326 // bits. Neither of these actions are protected by a barrier (or done 1327 // under the protection of a lock), so the only guarantee we have 1328 // (on machines with TSO (Total Store Order)) is that these values 1329 // will update in that order. As a result, the only combinations of 1330 // these bits that the current thread will see are, in temporal order: 1331 // <RESULT, QUEUE> : 1332 // <0, 1> : in compile queue, but not yet compiled 1333 // <1, 1> : compiled but queue bit not cleared 1334 // <1, 0> : compiled and queue bit cleared 1335 // Because we first check the queue bits then check the result bits, 1336 // we are assured that we cannot introduce a duplicate task. 1337 // Note that if we did the tests in the reverse order (i.e. check 1338 // result then check queued bit), we could get the result bit before 1339 // the compilation completed, and the queue bit after the compilation 1340 // completed, and end up introducing a "duplicate" (redundant) task. 1341 // In that case, the compiler thread should first check if a method 1342 // has already been compiled before trying to compile it. 1343 // NOTE: in the event that there are multiple compiler threads and 1344 // there is de-optimization/recompilation, things will get hairy, 1345 // and in that case it's best to protect both the testing (here) of 1346 // these bits, and their updating (here and elsewhere) under a 1347 // common lock. 1348 task = create_compile_task(queue, 1349 compile_id, method, 1350 osr_bci, comp_level, 1351 hot_count, compile_reason, 1352 blocking); 1353 } 1354 1355 if (blocking) { 1356 wait_for_completion(task); 1357 } 1358 } 1359 1360 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1361 int comp_level, 1362 int hot_count, 1363 CompileTask::CompileReason compile_reason, 1364 TRAPS) { 1365 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1366 if (!_initialized || comp_level == CompLevel_none) { 1367 return nullptr; 1368 } 1369 1370 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1371 assert(comp != nullptr, "Ensure we have a compiler"); 1372 1373 #if INCLUDE_JVMCI 1374 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1375 // JVMCI compilation is not yet initializable. 1376 return nullptr; 1377 } 1378 #endif 1379 1380 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1381 // CompileBroker::compile_method can trap and can have pending async exception. 1382 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, compile_reason, directive, THREAD); 1383 DirectivesStack::release(directive); 1384 return nm; 1385 } 1386 1387 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1388 int comp_level, 1389 int hot_count, 1390 CompileTask::CompileReason compile_reason, 1391 DirectiveSet* directive, 1392 TRAPS) { 1393 1394 // make sure arguments make sense 1395 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1396 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1397 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1398 assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized"); 1399 // return quickly if possible 1400 1401 // lock, make sure that the compilation 1402 // isn't prohibited in a straightforward way. 1403 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1404 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1405 return nullptr; 1406 } 1407 1408 if (osr_bci == InvocationEntryBci) { 1409 // standard compilation 1410 nmethod* method_code = method->code(); 1411 if (method_code != nullptr) { 1412 if (compilation_is_complete(method, osr_bci, comp_level)) { 1413 return method_code; 1414 } 1415 } 1416 if (method->is_not_compilable(comp_level)) { 1417 return nullptr; 1418 } 1419 } else { 1420 // osr compilation 1421 // We accept a higher level osr method 1422 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1423 if (nm != nullptr) return nm; 1424 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1425 } 1426 1427 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1428 // some prerequisites that are compiler specific 1429 if (comp->is_c2() || comp->is_jvmci()) { 1430 InternalOOMEMark iom(THREAD); 1431 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1432 // Resolve all classes seen in the signature of the method 1433 // we are compiling. 1434 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1435 } 1436 1437 // If the method is native, do the lookup in the thread requesting 1438 // the compilation. Native lookups can load code, which is not 1439 // permitted during compilation. 1440 // 1441 // Note: A native method implies non-osr compilation which is 1442 // checked with an assertion at the entry of this method. 1443 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1444 address adr = NativeLookup::lookup(method, THREAD); 1445 if (HAS_PENDING_EXCEPTION) { 1446 // In case of an exception looking up the method, we just forget 1447 // about it. The interpreter will kick-in and throw the exception. 1448 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1449 CLEAR_PENDING_EXCEPTION; 1450 return nullptr; 1451 } 1452 assert(method->has_native_function(), "must have native code by now"); 1453 } 1454 1455 // RedefineClasses() has replaced this method; just return 1456 if (method->is_old()) { 1457 return nullptr; 1458 } 1459 1460 // JVMTI -- post_compile_event requires jmethod_id() that may require 1461 // a lock the compiling thread can not acquire. Prefetch it here. 1462 if (JvmtiExport::should_post_compiled_method_load()) { 1463 method->jmethod_id(); 1464 } 1465 1466 // do the compilation 1467 if (method->is_native()) { 1468 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1469 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1470 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1471 // 1472 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1473 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1474 AdapterHandlerLibrary::create_native_wrapper(method); 1475 } else { 1476 return nullptr; 1477 } 1478 } else { 1479 // If the compiler is shut off due to code cache getting full 1480 // fail out now so blocking compiles dont hang the java thread 1481 if (!should_compile_new_jobs()) { 1482 return nullptr; 1483 } 1484 bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles; 1485 compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, is_blocking, THREAD); 1486 } 1487 1488 // return requested nmethod 1489 // We accept a higher level osr method 1490 if (osr_bci == InvocationEntryBci) { 1491 return method->code(); 1492 } 1493 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1494 } 1495 1496 1497 // ------------------------------------------------------------------ 1498 // CompileBroker::compilation_is_complete 1499 // 1500 // See if compilation of this method is already complete. 1501 bool CompileBroker::compilation_is_complete(const methodHandle& method, 1502 int osr_bci, 1503 int comp_level) { 1504 bool is_osr = (osr_bci != standard_entry_bci); 1505 if (is_osr) { 1506 if (method->is_not_osr_compilable(comp_level)) { 1507 return true; 1508 } else { 1509 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1510 return (result != nullptr); 1511 } 1512 } else { 1513 if (method->is_not_compilable(comp_level)) { 1514 return true; 1515 } else { 1516 nmethod* result = method->code(); 1517 if (result == nullptr) return false; 1518 return comp_level == result->comp_level(); 1519 } 1520 } 1521 } 1522 1523 1524 /** 1525 * See if this compilation is already requested. 1526 * 1527 * Implementation note: there is only a single "is in queue" bit 1528 * for each method. This means that the check below is overly 1529 * conservative in the sense that an osr compilation in the queue 1530 * will block a normal compilation from entering the queue (and vice 1531 * versa). This can be remedied by a full queue search to disambiguate 1532 * cases. If it is deemed profitable, this may be done. 1533 */ 1534 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1535 return method->queued_for_compilation(); 1536 } 1537 1538 // ------------------------------------------------------------------ 1539 // CompileBroker::compilation_is_prohibited 1540 // 1541 // See if this compilation is not allowed. 1542 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1543 bool is_native = method->is_native(); 1544 // Some compilers may not support the compilation of natives. 1545 AbstractCompiler *comp = compiler(comp_level); 1546 if (is_native && (!CICompileNatives || comp == nullptr)) { 1547 method->set_not_compilable_quietly("native methods not supported", comp_level); 1548 return true; 1549 } 1550 1551 bool is_osr = (osr_bci != standard_entry_bci); 1552 // Some compilers may not support on stack replacement. 1553 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1554 method->set_not_osr_compilable("OSR not supported", comp_level); 1555 return true; 1556 } 1557 1558 // The method may be explicitly excluded by the user. 1559 double scale; 1560 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1561 bool quietly = CompilerOracle::be_quiet(); 1562 if (PrintCompilation && !quietly) { 1563 // This does not happen quietly... 1564 ResourceMark rm; 1565 tty->print("### Excluding %s:%s", 1566 method->is_native() ? "generation of native wrapper" : "compile", 1567 (method->is_static() ? " static" : "")); 1568 method->print_short_name(tty); 1569 tty->cr(); 1570 } 1571 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1572 } 1573 1574 return false; 1575 } 1576 1577 /** 1578 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1579 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1580 * The function also allows to generate separate compilation IDs for OSR compilations. 1581 */ 1582 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1583 #ifdef ASSERT 1584 bool is_osr = (osr_bci != standard_entry_bci); 1585 int id; 1586 if (method->is_native()) { 1587 assert(!is_osr, "can't be osr"); 1588 // Adapters, native wrappers and method handle intrinsics 1589 // should be generated always. 1590 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1591 } else if (CICountOSR && is_osr) { 1592 id = Atomic::add(&_osr_compilation_id, 1); 1593 if (CIStartOSR <= id && id < CIStopOSR) { 1594 return id; 1595 } 1596 } else { 1597 id = Atomic::add(&_compilation_id, 1); 1598 if (CIStart <= id && id < CIStop) { 1599 return id; 1600 } 1601 } 1602 1603 // Method was not in the appropriate compilation range. 1604 method->set_not_compilable_quietly("Not in requested compile id range"); 1605 return 0; 1606 #else 1607 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1608 // only _compilation_id is incremented. 1609 return Atomic::add(&_compilation_id, 1); 1610 #endif 1611 } 1612 1613 // ------------------------------------------------------------------ 1614 // CompileBroker::assign_compile_id_unlocked 1615 // 1616 // Public wrapper for assign_compile_id that acquires the needed locks 1617 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1618 MutexLocker locker(thread, MethodCompileQueue_lock); 1619 return assign_compile_id(method, osr_bci); 1620 } 1621 1622 // ------------------------------------------------------------------ 1623 // CompileBroker::create_compile_task 1624 // 1625 // Create a CompileTask object representing the current request for 1626 // compilation. Add this task to the queue. 1627 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1628 int compile_id, 1629 const methodHandle& method, 1630 int osr_bci, 1631 int comp_level, 1632 int hot_count, 1633 CompileTask::CompileReason compile_reason, 1634 bool blocking) { 1635 CompileTask* new_task = new CompileTask(compile_id, method, osr_bci, comp_level, 1636 hot_count, compile_reason, blocking); 1637 queue->add(new_task); 1638 return new_task; 1639 } 1640 1641 #if INCLUDE_JVMCI 1642 // The number of milliseconds to wait before checking if 1643 // JVMCI compilation has made progress. 1644 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1645 1646 // The number of JVMCI compilation progress checks that must fail 1647 // before unblocking a thread waiting for a blocking compilation. 1648 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1649 1650 /** 1651 * Waits for a JVMCI compiler to complete a given task. This thread 1652 * waits until either the task completes or it sees no JVMCI compilation 1653 * progress for N consecutive milliseconds where N is 1654 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1655 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1656 * 1657 * @return true if this thread needs to delete the task 1658 */ 1659 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1660 assert(UseJVMCICompiler, "sanity"); 1661 MonitorLocker ml(thread, CompileTaskWait_lock); 1662 int progress_wait_attempts = 0; 1663 jint thread_jvmci_compilation_ticks = 0; 1664 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1665 while (!task->is_complete() && !is_compilation_disabled_forever() && 1666 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1667 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1668 1669 bool progress; 1670 if (jvmci_compile_state != nullptr) { 1671 jint ticks = jvmci_compile_state->compilation_ticks(); 1672 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1673 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1674 thread_jvmci_compilation_ticks = ticks; 1675 } else { 1676 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1677 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1678 // compilation ticks to determine whether JVMCI compilation 1679 // is still making progress through the JVMCI compiler queue. 1680 jint ticks = jvmci->global_compilation_ticks(); 1681 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1682 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1683 global_jvmci_compilation_ticks = ticks; 1684 } 1685 1686 if (!progress) { 1687 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1688 if (PrintCompilation) { 1689 task->print(tty, "wait for blocking compilation timed out"); 1690 } 1691 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1692 break; 1693 } 1694 } else { 1695 progress_wait_attempts = 0; 1696 } 1697 } 1698 task->clear_waiter(); 1699 return task->is_complete(); 1700 } 1701 #endif 1702 1703 /** 1704 * Wait for the compilation task to complete. 1705 */ 1706 void CompileBroker::wait_for_completion(CompileTask* task) { 1707 if (CIPrintCompileQueue) { 1708 ttyLocker ttyl; 1709 tty->print_cr("BLOCKING FOR COMPILE"); 1710 } 1711 1712 assert(task->is_blocking(), "can only wait on blocking task"); 1713 1714 JavaThread* thread = JavaThread::current(); 1715 1716 methodHandle method(thread, task->method()); 1717 bool free_task; 1718 #if INCLUDE_JVMCI 1719 AbstractCompiler* comp = compiler(task->comp_level()); 1720 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1721 // It may return before compilation is completed. 1722 // Note that libjvmci should not pre-emptively unblock 1723 // a thread waiting for a compilation as it does not call 1724 // Java code and so is not deadlock prone like jarjvmci. 1725 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1726 } else 1727 #endif 1728 { 1729 free_task = true; 1730 // Wait until the task is complete or compilation is shut down. 1731 MonitorLocker ml(thread, CompileTaskWait_lock); 1732 while (!task->is_complete() && !is_compilation_disabled_forever()) { 1733 ml.wait(); 1734 } 1735 } 1736 1737 // It is harmless to check this status without the lock, because 1738 // completion is a stable property. 1739 if (!task->is_complete()) { 1740 // Task is not complete, likely because we are exiting for compilation 1741 // shutdown. The task can still be reached through the queue, or executed 1742 // by some compiler thread. There is no coordination with either MCQ lock 1743 // holders or compilers, therefore we cannot delete the task. 1744 // 1745 // This will leave task allocated, which leaks it. At this (degraded) point, 1746 // it is less risky to abandon the task, rather than attempting a more 1747 // complicated deletion protocol. 1748 free_task = false; 1749 } 1750 1751 if (free_task) { 1752 assert(task->is_complete(), "Compilation should have completed"); 1753 assert(task->next() == nullptr && task->prev() == nullptr, 1754 "Completed task should not be in the queue"); 1755 1756 // By convention, the waiter is responsible for deleting a 1757 // blocking CompileTask. Since there is only one waiter ever 1758 // waiting on a CompileTask, we know that no one else will 1759 // be using this CompileTask; we can delete it. 1760 delete task; 1761 } 1762 } 1763 1764 void CompileBroker::wait_for_no_active_tasks() { 1765 CompileTask::wait_for_no_active_tasks(); 1766 } 1767 1768 /** 1769 * Initialize compiler thread(s) + compiler object(s). The postcondition 1770 * of this function is that the compiler runtimes are initialized and that 1771 * compiler threads can start compiling. 1772 */ 1773 bool CompileBroker::init_compiler_runtime() { 1774 CompilerThread* thread = CompilerThread::current(); 1775 AbstractCompiler* comp = thread->compiler(); 1776 // Final sanity check - the compiler object must exist 1777 guarantee(comp != nullptr, "Compiler object must exist"); 1778 1779 { 1780 // Must switch to native to allocate ci_env 1781 ThreadToNativeFromVM ttn(thread); 1782 ciEnv ci_env((CompileTask*)nullptr); 1783 // Cache Jvmti state 1784 ci_env.cache_jvmti_state(); 1785 // Cache DTrace flags 1786 ci_env.cache_dtrace_flags(); 1787 1788 // Switch back to VM state to do compiler initialization 1789 ThreadInVMfromNative tv(thread); 1790 1791 // Perform per-thread and global initializations 1792 comp->initialize(); 1793 } 1794 1795 if (comp->is_failed()) { 1796 disable_compilation_forever(); 1797 // If compiler initialization failed, no compiler thread that is specific to a 1798 // particular compiler runtime will ever start to compile methods. 1799 shutdown_compiler_runtime(comp, thread); 1800 return false; 1801 } 1802 1803 // C1 specific check 1804 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 1805 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 1806 return false; 1807 } 1808 1809 return true; 1810 } 1811 1812 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 1813 BufferBlob* blob = thread->get_buffer_blob(); 1814 if (blob != nullptr) { 1815 blob->purge(); 1816 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1817 CodeCache::free(blob); 1818 } 1819 } 1820 1821 /** 1822 * If C1 and/or C2 initialization failed, we shut down all compilation. 1823 * We do this to keep things simple. This can be changed if it ever turns 1824 * out to be a problem. 1825 */ 1826 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 1827 free_buffer_blob_if_allocated(thread); 1828 1829 if (comp->should_perform_shutdown()) { 1830 // There are two reasons for shutting down the compiler 1831 // 1) compiler runtime initialization failed 1832 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 1833 warning("%s initialization failed. Shutting down all compilers", comp->name()); 1834 1835 // Only one thread per compiler runtime object enters here 1836 // Set state to shut down 1837 comp->set_shut_down(); 1838 1839 // Delete all queued compilation tasks to make compiler threads exit faster. 1840 if (_c1_compile_queue != nullptr) { 1841 _c1_compile_queue->delete_all(); 1842 } 1843 1844 if (_c2_compile_queue != nullptr) { 1845 _c2_compile_queue->delete_all(); 1846 } 1847 1848 // Set flags so that we continue execution with using interpreter only. 1849 UseCompiler = false; 1850 UseInterpreter = true; 1851 1852 // We could delete compiler runtimes also. However, there are references to 1853 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 1854 // fail. This can be done later if necessary. 1855 } 1856 } 1857 1858 /** 1859 * Helper function to create new or reuse old CompileLog. 1860 */ 1861 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 1862 if (!LogCompilation) return nullptr; 1863 1864 AbstractCompiler *compiler = ct->compiler(); 1865 bool c1 = compiler->is_c1(); 1866 jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects; 1867 assert(compiler_objects != nullptr, "must be initialized at this point"); 1868 CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs; 1869 assert(logs != nullptr, "must be initialized at this point"); 1870 int count = c1 ? _c1_count : _c2_count; 1871 1872 // Find Compiler number by its threadObj. 1873 oop compiler_obj = ct->threadObj(); 1874 int compiler_number = 0; 1875 bool found = false; 1876 for (; compiler_number < count; compiler_number++) { 1877 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 1878 found = true; 1879 break; 1880 } 1881 } 1882 assert(found, "Compiler must exist at this point"); 1883 1884 // Determine pointer for this thread's log. 1885 CompileLog** log_ptr = &logs[compiler_number]; 1886 1887 // Return old one if it exists. 1888 CompileLog* log = *log_ptr; 1889 if (log != nullptr) { 1890 ct->init_log(log); 1891 return log; 1892 } 1893 1894 // Create a new one and remember it. 1895 init_compiler_thread_log(); 1896 log = ct->log(); 1897 *log_ptr = log; 1898 return log; 1899 } 1900 1901 // ------------------------------------------------------------------ 1902 // CompileBroker::compiler_thread_loop 1903 // 1904 // The main loop run by a CompilerThread. 1905 void CompileBroker::compiler_thread_loop() { 1906 CompilerThread* thread = CompilerThread::current(); 1907 CompileQueue* queue = thread->queue(); 1908 // For the thread that initializes the ciObjectFactory 1909 // this resource mark holds all the shared objects 1910 ResourceMark rm; 1911 1912 // First thread to get here will initialize the compiler interface 1913 1914 { 1915 ASSERT_IN_VM; 1916 MutexLocker only_one (thread, CompileThread_lock); 1917 if (!ciObjectFactory::is_initialized()) { 1918 ciObjectFactory::initialize(); 1919 } 1920 } 1921 1922 // Open a log. 1923 CompileLog* log = get_log(thread); 1924 if (log != nullptr) { 1925 log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'", 1926 thread->name(), 1927 os::current_thread_id(), 1928 os::current_process_id()); 1929 log->stamp(); 1930 log->end_elem(); 1931 } 1932 1933 if (!thread->init_compilation_timeout()) { 1934 return; 1935 } 1936 1937 // If compiler thread/runtime initialization fails, exit the compiler thread 1938 if (!init_compiler_runtime()) { 1939 return; 1940 } 1941 1942 thread->start_idle_timer(); 1943 1944 // Poll for new compilation tasks as long as the JVM runs. Compilation 1945 // should only be disabled if something went wrong while initializing the 1946 // compiler runtimes. This, in turn, should not happen. The only known case 1947 // when compiler runtime initialization fails is if there is not enough free 1948 // space in the code cache to generate the necessary stubs, etc. 1949 while (!is_compilation_disabled_forever()) { 1950 // We need this HandleMark to avoid leaking VM handles. 1951 HandleMark hm(thread); 1952 1953 CompileTask* task = queue->get(thread); 1954 if (task == nullptr) { 1955 if (UseDynamicNumberOfCompilerThreads) { 1956 // Access compiler_count under lock to enforce consistency. 1957 MutexLocker only_one(CompileThread_lock); 1958 if (can_remove(thread, true)) { 1959 if (trace_compiler_threads()) { 1960 ResourceMark rm; 1961 stringStream msg; 1962 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 1963 thread->name(), thread->idle_time_millis()); 1964 print_compiler_threads(msg); 1965 } 1966 1967 // Notify compiler that the compiler thread is about to stop 1968 thread->compiler()->stopping_compiler_thread(thread); 1969 1970 free_buffer_blob_if_allocated(thread); 1971 return; // Stop this thread. 1972 } 1973 } 1974 } else { 1975 // Assign the task to the current thread. Mark this compilation 1976 // thread as active for the profiler. 1977 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 1978 // occurs after fetching the compile task off the queue. 1979 CompileTaskWrapper ctw(task); 1980 methodHandle method(thread, task->method()); 1981 1982 // Never compile a method if breakpoints are present in it 1983 if (method()->number_of_breakpoints() == 0) { 1984 // Compile the method. 1985 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 1986 invoke_compiler_on_method(task); 1987 thread->start_idle_timer(); 1988 } else { 1989 // After compilation is disabled, remove remaining methods from queue 1990 method->clear_queued_for_compilation(); 1991 task->set_failure_reason("compilation is disabled"); 1992 } 1993 } else { 1994 task->set_failure_reason("breakpoints are present"); 1995 } 1996 1997 if (UseDynamicNumberOfCompilerThreads) { 1998 possibly_add_compiler_threads(thread); 1999 assert(!thread->has_pending_exception(), "should have been handled"); 2000 } 2001 } 2002 } 2003 2004 // Shut down compiler runtime 2005 shutdown_compiler_runtime(thread->compiler(), thread); 2006 } 2007 2008 // ------------------------------------------------------------------ 2009 // CompileBroker::init_compiler_thread_log 2010 // 2011 // Set up state required by +LogCompilation. 2012 void CompileBroker::init_compiler_thread_log() { 2013 CompilerThread* thread = CompilerThread::current(); 2014 char file_name[4*K]; 2015 FILE* fp = nullptr; 2016 intx thread_id = os::current_thread_id(); 2017 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2018 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2019 if (dir == nullptr) { 2020 jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log", 2021 thread_id, os::current_process_id()); 2022 } else { 2023 jio_snprintf(file_name, sizeof(file_name), 2024 "%s%shs_c%zu_pid%u.log", dir, 2025 os::file_separator(), thread_id, os::current_process_id()); 2026 } 2027 2028 fp = os::fopen(file_name, "wt"); 2029 if (fp != nullptr) { 2030 if (LogCompilation && Verbose) { 2031 tty->print_cr("Opening compilation log %s", file_name); 2032 } 2033 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2034 if (log == nullptr) { 2035 fclose(fp); 2036 return; 2037 } 2038 thread->init_log(log); 2039 2040 if (xtty != nullptr) { 2041 ttyLocker ttyl; 2042 // Record any per thread log files 2043 xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name); 2044 } 2045 return; 2046 } 2047 } 2048 warning("Cannot open log file: %s", file_name); 2049 } 2050 2051 void CompileBroker::log_metaspace_failure() { 2052 const char* message = "some methods may not be compiled because metaspace " 2053 "is out of memory"; 2054 if (CompilationLog::log() != nullptr) { 2055 CompilationLog::log()->log_metaspace_failure(message); 2056 } 2057 if (PrintCompilation) { 2058 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2059 } 2060 } 2061 2062 2063 // ------------------------------------------------------------------ 2064 // CompileBroker::set_should_block 2065 // 2066 // Set _should_block. 2067 // Call this from the VM, with Threads_lock held and a safepoint requested. 2068 void CompileBroker::set_should_block() { 2069 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2070 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2071 #ifndef PRODUCT 2072 if (PrintCompilation && (Verbose || WizardMode)) 2073 tty->print_cr("notifying compiler thread pool to block"); 2074 #endif 2075 _should_block = true; 2076 } 2077 2078 // ------------------------------------------------------------------ 2079 // CompileBroker::maybe_block 2080 // 2081 // Call this from the compiler at convenient points, to poll for _should_block. 2082 void CompileBroker::maybe_block() { 2083 if (_should_block) { 2084 #ifndef PRODUCT 2085 if (PrintCompilation && (Verbose || WizardMode)) 2086 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2087 #endif 2088 // If we are executing a task during the request to block, report the task 2089 // before disappearing. 2090 CompilerThread* thread = CompilerThread::current(); 2091 if (thread != nullptr) { 2092 CompileTask* task = thread->task(); 2093 if (task != nullptr) { 2094 if (PrintCompilation) { 2095 task->print(tty, "blocked"); 2096 } 2097 task->print_ul("blocked"); 2098 } 2099 } 2100 // Go to VM state and block for final VM shutdown safepoint. 2101 ThreadInVMfromNative tivfn(JavaThread::current()); 2102 assert(false, "Should never unblock from TIVNM entry"); 2103 } 2104 } 2105 2106 // wrapper for CodeCache::print_summary() 2107 static void codecache_print(bool detailed) 2108 { 2109 stringStream s; 2110 // Dump code cache into a buffer before locking the tty, 2111 { 2112 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2113 CodeCache::print_summary(&s, detailed); 2114 } 2115 ttyLocker ttyl; 2116 tty->print("%s", s.freeze()); 2117 } 2118 2119 // wrapper for CodeCache::print_summary() using outputStream 2120 static void codecache_print(outputStream* out, bool detailed) { 2121 stringStream s; 2122 2123 // Dump code cache into a buffer 2124 { 2125 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2126 CodeCache::print_summary(&s, detailed); 2127 } 2128 2129 char* remaining_log = s.as_string(); 2130 while (*remaining_log != '\0') { 2131 char* eol = strchr(remaining_log, '\n'); 2132 if (eol == nullptr) { 2133 out->print_cr("%s", remaining_log); 2134 remaining_log = remaining_log + strlen(remaining_log); 2135 } else { 2136 *eol = '\0'; 2137 out->print_cr("%s", remaining_log); 2138 remaining_log = eol + 1; 2139 } 2140 } 2141 } 2142 2143 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2144 int compilable, const char* failure_reason) { 2145 if (!AbortVMOnCompilationFailure) { 2146 return; 2147 } 2148 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2149 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2150 } 2151 if (compilable == ciEnv::MethodCompilable_never) { 2152 fatal("Never compilable: %s", failure_reason); 2153 } 2154 } 2155 2156 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2157 assert(task != nullptr, "invariant"); 2158 CompilerEvent::CompilationEvent::post(event, 2159 task->compile_id(), 2160 task->compiler()->type(), 2161 task->method(), 2162 task->comp_level(), 2163 task->is_success(), 2164 task->osr_bci() != CompileBroker::standard_entry_bci, 2165 task->nm_total_size(), 2166 task->num_inlined_bytecodes(), 2167 task->arena_bytes()); 2168 } 2169 2170 int DirectivesStack::_depth = 0; 2171 CompilerDirectives* DirectivesStack::_top = nullptr; 2172 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2173 2174 // Acquires Compilation_lock and waits for it to be notified 2175 // as long as WhiteBox::compilation_locked is true. 2176 static void whitebox_lock_compilation() { 2177 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2178 while (WhiteBox::compilation_locked) { 2179 locker.wait(); 2180 } 2181 } 2182 2183 // ------------------------------------------------------------------ 2184 // CompileBroker::invoke_compiler_on_method 2185 // 2186 // Compile a method. 2187 // 2188 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2189 task->print_ul(); 2190 elapsedTimer time; 2191 2192 DirectiveSet* directive = task->directive(); 2193 if (directive->PrintCompilationOption) { 2194 ResourceMark rm; 2195 task->print_tty(); 2196 } 2197 2198 CompilerThread* thread = CompilerThread::current(); 2199 ResourceMark rm(thread); 2200 2201 if (CompilationLog::log() != nullptr) { 2202 CompilationLog::log()->log_compile(thread, task); 2203 } 2204 2205 // Common flags. 2206 int compile_id = task->compile_id(); 2207 int osr_bci = task->osr_bci(); 2208 bool is_osr = (osr_bci != standard_entry_bci); 2209 bool should_log = (thread->log() != nullptr); 2210 bool should_break = false; 2211 const int task_level = task->comp_level(); 2212 AbstractCompiler* comp = task->compiler(); 2213 { 2214 // create the handle inside it's own block so it can't 2215 // accidentally be referenced once the thread transitions to 2216 // native. The NoHandleMark before the transition should catch 2217 // any cases where this occurs in the future. 2218 methodHandle method(thread, task->method()); 2219 2220 assert(!method->is_native(), "no longer compile natives"); 2221 2222 // Update compile information when using perfdata. 2223 if (UsePerfData) { 2224 update_compile_perf_data(thread, method, is_osr); 2225 } 2226 2227 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2228 } 2229 2230 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2231 if (should_log && !directive->LogOption) { 2232 should_log = false; 2233 } 2234 2235 // Allocate a new set of JNI handles. 2236 JNIHandleMark jhm(thread); 2237 Method* target_handle = task->method(); 2238 int compilable = ciEnv::MethodCompilable; 2239 const char* failure_reason = nullptr; 2240 bool failure_reason_on_C_heap = false; 2241 const char* retry_message = nullptr; 2242 2243 #if INCLUDE_JVMCI 2244 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2245 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2246 2247 TraceTime t1("compilation", &time); 2248 EventCompilation event; 2249 JVMCICompileState compile_state(task, jvmci); 2250 JVMCIRuntime *runtime = nullptr; 2251 2252 if (JVMCI::in_shutdown()) { 2253 failure_reason = "in JVMCI shutdown"; 2254 retry_message = "not retryable"; 2255 compilable = ciEnv::MethodCompilable_never; 2256 } else if (compile_state.target_method_is_old()) { 2257 // Skip redefined methods 2258 failure_reason = "redefined method"; 2259 retry_message = "not retryable"; 2260 compilable = ciEnv::MethodCompilable_never; 2261 } else { 2262 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2263 if (env.init_error() != JNI_OK) { 2264 const char* msg = env.init_error_msg(); 2265 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2266 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2267 bool reason_on_C_heap = true; 2268 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2269 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2270 bool retryable = env.init_error() == JNI_ENOMEM; 2271 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2272 } 2273 if (failure_reason == nullptr) { 2274 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2275 // Must switch to native to block 2276 ThreadToNativeFromVM ttn(thread); 2277 whitebox_lock_compilation(); 2278 } 2279 methodHandle method(thread, target_handle); 2280 runtime = env.runtime(); 2281 runtime->compile_method(&env, jvmci, method, osr_bci); 2282 2283 failure_reason = compile_state.failure_reason(); 2284 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2285 if (!compile_state.retryable()) { 2286 retry_message = "not retryable"; 2287 compilable = ciEnv::MethodCompilable_not_at_tier; 2288 } 2289 if (!task->is_success()) { 2290 assert(failure_reason != nullptr, "must specify failure_reason"); 2291 } 2292 } 2293 } 2294 if (!task->is_success() && !JVMCI::in_shutdown()) { 2295 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2296 } 2297 if (event.should_commit()) { 2298 post_compilation_event(event, task); 2299 } 2300 2301 if (runtime != nullptr) { 2302 runtime->post_compile(thread); 2303 } 2304 } else 2305 #endif // INCLUDE_JVMCI 2306 { 2307 NoHandleMark nhm; 2308 ThreadToNativeFromVM ttn(thread); 2309 2310 ciEnv ci_env(task); 2311 if (should_break) { 2312 ci_env.set_break_at_compile(true); 2313 } 2314 if (should_log) { 2315 ci_env.set_log(thread->log()); 2316 } 2317 assert(thread->env() == &ci_env, "set by ci_env"); 2318 // The thread-env() field is cleared in ~CompileTaskWrapper. 2319 2320 // Cache Jvmti state 2321 bool method_is_old = ci_env.cache_jvmti_state(); 2322 2323 // Skip redefined methods 2324 if (method_is_old) { 2325 ci_env.record_method_not_compilable("redefined method", true); 2326 } 2327 2328 // Cache DTrace flags 2329 ci_env.cache_dtrace_flags(); 2330 2331 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2332 2333 TraceTime t1("compilation", &time); 2334 EventCompilation event; 2335 2336 if (comp == nullptr) { 2337 ci_env.record_method_not_compilable("no compiler"); 2338 } else if (!ci_env.failing()) { 2339 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2340 whitebox_lock_compilation(); 2341 } 2342 comp->compile_method(&ci_env, target, osr_bci, true, directive); 2343 2344 /* Repeat compilation without installing code for profiling purposes */ 2345 int repeat_compilation_count = directive->RepeatCompilationOption; 2346 while (repeat_compilation_count > 0) { 2347 ResourceMark rm(thread); 2348 task->print_ul("NO CODE INSTALLED"); 2349 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2350 repeat_compilation_count--; 2351 } 2352 } 2353 2354 2355 if (!ci_env.failing() && !task->is_success()) { 2356 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2357 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2358 // The compiler elected, without comment, not to register a result. 2359 // Do not attempt further compilations of this method. 2360 ci_env.record_method_not_compilable("compile failed"); 2361 } 2362 2363 // Copy this bit to the enclosing block: 2364 compilable = ci_env.compilable(); 2365 2366 if (ci_env.failing()) { 2367 // Duplicate the failure reason string, so that it outlives ciEnv 2368 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2369 failure_reason_on_C_heap = true; 2370 retry_message = ci_env.retry_message(); 2371 ci_env.report_failure(failure_reason); 2372 } 2373 2374 if (ci_env.failing()) { 2375 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2376 } 2377 if (event.should_commit()) { 2378 post_compilation_event(event, task); 2379 } 2380 } 2381 2382 if (failure_reason != nullptr) { 2383 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2384 if (CompilationLog::log() != nullptr) { 2385 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2386 } 2387 if (PrintCompilation || directive->PrintCompilationOption) { 2388 FormatBufferResource msg = retry_message != nullptr ? 2389 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2390 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2391 task->print(tty, msg); 2392 } 2393 } 2394 2395 DirectivesStack::release(directive); 2396 2397 methodHandle method(thread, task->method()); 2398 2399 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2400 2401 collect_statistics(thread, time, task); 2402 2403 if (PrintCompilation && PrintCompilation2) { 2404 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2405 tty->print("%4d ", compile_id); // print compilation number 2406 tty->print("%s ", (is_osr ? "%" : " ")); 2407 if (task->is_success()) { 2408 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2409 } 2410 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2411 } 2412 2413 Log(compilation, codecache) log; 2414 if (log.is_debug()) { 2415 LogStream ls(log.debug()); 2416 codecache_print(&ls, /* detailed= */ false); 2417 } 2418 if (PrintCodeCacheOnCompilation) { 2419 codecache_print(/* detailed= */ false); 2420 } 2421 // Disable compilation, if required. 2422 switch (compilable) { 2423 case ciEnv::MethodCompilable_never: 2424 if (is_osr) 2425 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2426 else 2427 method->set_not_compilable_quietly("MethodCompilable_never"); 2428 break; 2429 case ciEnv::MethodCompilable_not_at_tier: 2430 if (is_osr) 2431 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2432 else 2433 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2434 break; 2435 } 2436 2437 // Note that the queued_for_compilation bits are cleared without 2438 // protection of a mutex. [They were set by the requester thread, 2439 // when adding the task to the compile queue -- at which time the 2440 // compile queue lock was held. Subsequently, we acquired the compile 2441 // queue lock to get this task off the compile queue; thus (to belabour 2442 // the point somewhat) our clearing of the bits must be occurring 2443 // only after the setting of the bits. See also 14012000 above. 2444 method->clear_queued_for_compilation(); 2445 } 2446 2447 /** 2448 * The CodeCache is full. Print warning and disable compilation. 2449 * Schedule code cache cleaning so compilation can continue later. 2450 * This function needs to be called only from CodeCache::allocate(), 2451 * since we currently handle a full code cache uniformly. 2452 */ 2453 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2454 UseInterpreter = true; 2455 if (UseCompiler || AlwaysCompileLoopMethods ) { 2456 if (xtty != nullptr) { 2457 stringStream s; 2458 // Dump code cache state into a buffer before locking the tty, 2459 // because log_state() will use locks causing lock conflicts. 2460 CodeCache::log_state(&s); 2461 // Lock to prevent tearing 2462 ttyLocker ttyl; 2463 xtty->begin_elem("code_cache_full"); 2464 xtty->print("%s", s.freeze()); 2465 xtty->stamp(); 2466 xtty->end_elem(); 2467 } 2468 2469 #ifndef PRODUCT 2470 if (ExitOnFullCodeCache) { 2471 codecache_print(/* detailed= */ true); 2472 before_exit(JavaThread::current()); 2473 exit_globals(); // will delete tty 2474 vm_direct_exit(1); 2475 } 2476 #endif 2477 if (UseCodeCacheFlushing) { 2478 // Since code cache is full, immediately stop new compiles 2479 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2480 log_info(codecache)("Code cache is full - disabling compilation"); 2481 } 2482 } else { 2483 disable_compilation_forever(); 2484 } 2485 2486 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2487 } 2488 } 2489 2490 // ------------------------------------------------------------------ 2491 // CompileBroker::update_compile_perf_data 2492 // 2493 // Record this compilation for debugging purposes. 2494 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2495 ResourceMark rm; 2496 char* method_name = method->name()->as_C_string(); 2497 char current_method[CompilerCounters::cmname_buffer_length]; 2498 size_t maxLen = CompilerCounters::cmname_buffer_length; 2499 2500 const char* class_name = method->method_holder()->name()->as_C_string(); 2501 2502 size_t s1len = strlen(class_name); 2503 size_t s2len = strlen(method_name); 2504 2505 // check if we need to truncate the string 2506 if (s1len + s2len + 2 > maxLen) { 2507 2508 // the strategy is to lop off the leading characters of the 2509 // class name and the trailing characters of the method name. 2510 2511 if (s2len + 2 > maxLen) { 2512 // lop of the entire class name string, let snprintf handle 2513 // truncation of the method name. 2514 class_name += s1len; // null string 2515 } 2516 else { 2517 // lop off the extra characters from the front of the class name 2518 class_name += ((s1len + s2len + 2) - maxLen); 2519 } 2520 } 2521 2522 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2523 2524 int last_compile_type = normal_compile; 2525 if (CICountOSR && is_osr) { 2526 last_compile_type = osr_compile; 2527 } else if (CICountNative && method->is_native()) { 2528 last_compile_type = native_compile; 2529 } 2530 2531 CompilerCounters* counters = thread->counters(); 2532 counters->set_current_method(current_method); 2533 counters->set_compile_type((jlong) last_compile_type); 2534 } 2535 2536 // ------------------------------------------------------------------ 2537 // CompileBroker::collect_statistics 2538 // 2539 // Collect statistics about the compilation. 2540 2541 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2542 bool success = task->is_success(); 2543 methodHandle method (thread, task->method()); 2544 int compile_id = task->compile_id(); 2545 bool is_osr = (task->osr_bci() != standard_entry_bci); 2546 const int comp_level = task->comp_level(); 2547 CompilerCounters* counters = thread->counters(); 2548 2549 MutexLocker locker(CompileStatistics_lock); 2550 2551 // _perf variables are production performance counters which are 2552 // updated regardless of the setting of the CITime and CITimeEach flags 2553 // 2554 2555 // account all time, including bailouts and failures in this counter; 2556 // C1 and C2 counters are counting both successful and unsuccessful compiles 2557 _t_total_compilation.add(time); 2558 2559 // Update compilation times. Used by the implementation of JFR CompilerStatistics 2560 // and java.lang.management.CompilationMXBean. 2561 _perf_total_compilation->inc(time.ticks()); 2562 _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time); 2563 2564 if (!success) { 2565 _total_bailout_count++; 2566 if (UsePerfData) { 2567 _perf_last_failed_method->set_value(counters->current_method()); 2568 _perf_last_failed_type->set_value(counters->compile_type()); 2569 _perf_total_bailout_count->inc(); 2570 } 2571 _t_bailedout_compilation.add(time); 2572 } else if (!task->is_success()) { 2573 if (UsePerfData) { 2574 _perf_last_invalidated_method->set_value(counters->current_method()); 2575 _perf_last_invalidated_type->set_value(counters->compile_type()); 2576 _perf_total_invalidated_count->inc(); 2577 } 2578 _total_invalidated_count++; 2579 _t_invalidated_compilation.add(time); 2580 } else { 2581 // Compilation succeeded 2582 if (CITime) { 2583 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2584 if (is_osr) { 2585 _t_osr_compilation.add(time); 2586 _sum_osr_bytes_compiled += bytes_compiled; 2587 } else { 2588 _t_standard_compilation.add(time); 2589 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2590 } 2591 2592 // Collect statistic per compilation level 2593 if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2594 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2595 if (is_osr) { 2596 stats->_osr.update(time, bytes_compiled); 2597 } else { 2598 stats->_standard.update(time, bytes_compiled); 2599 } 2600 stats->_nmethods_size += task->nm_total_size(); 2601 stats->_nmethods_code_size += task->nm_insts_size(); 2602 } else { 2603 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2604 } 2605 2606 // Collect statistic per compiler 2607 AbstractCompiler* comp = compiler(comp_level); 2608 if (comp) { 2609 CompilerStatistics* stats = comp->stats(); 2610 if (is_osr) { 2611 stats->_osr.update(time, bytes_compiled); 2612 } else { 2613 stats->_standard.update(time, bytes_compiled); 2614 } 2615 stats->_nmethods_size += task->nm_total_size(); 2616 stats->_nmethods_code_size += task->nm_insts_size(); 2617 } else { // if (!comp) 2618 assert(false, "Compiler object must exist"); 2619 } 2620 } 2621 2622 if (UsePerfData) { 2623 // save the name of the last method compiled 2624 _perf_last_method->set_value(counters->current_method()); 2625 _perf_last_compile_type->set_value(counters->compile_type()); 2626 _perf_last_compile_size->set_value(method->code_size() + 2627 task->num_inlined_bytecodes()); 2628 if (is_osr) { 2629 _perf_osr_compilation->inc(time.ticks()); 2630 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2631 } else { 2632 _perf_standard_compilation->inc(time.ticks()); 2633 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2634 } 2635 } 2636 2637 if (CITimeEach) { 2638 double compile_time = time.seconds(); 2639 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2640 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2641 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2642 } 2643 2644 // Collect counts of successful compilations 2645 _sum_nmethod_size += task->nm_total_size(); 2646 _sum_nmethod_code_size += task->nm_insts_size(); 2647 _total_compile_count++; 2648 2649 if (UsePerfData) { 2650 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2651 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2652 _perf_total_compile_count->inc(); 2653 } 2654 2655 if (is_osr) { 2656 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2657 _total_osr_compile_count++; 2658 } else { 2659 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2660 _total_standard_compile_count++; 2661 } 2662 } 2663 // set the current method for the thread to null 2664 if (UsePerfData) counters->set_current_method(""); 2665 } 2666 2667 const char* CompileBroker::compiler_name(int comp_level) { 2668 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2669 if (comp == nullptr) { 2670 return "no compiler"; 2671 } else { 2672 return (comp->name()); 2673 } 2674 } 2675 2676 jlong CompileBroker::total_compilation_ticks() { 2677 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2678 } 2679 2680 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 2681 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 2682 name, stats->bytes_per_second(), 2683 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 2684 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 2685 stats->_nmethods_size, stats->_nmethods_code_size); 2686 } 2687 2688 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 2689 if (per_compiler) { 2690 if (aggregate) { 2691 tty->cr(); 2692 tty->print_cr("Individual compiler times (for compiled methods only)"); 2693 tty->print_cr("------------------------------------------------"); 2694 tty->cr(); 2695 } 2696 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 2697 AbstractCompiler* comp = _compilers[i]; 2698 if (comp != nullptr) { 2699 print_times(comp->name(), comp->stats()); 2700 } 2701 } 2702 if (aggregate) { 2703 tty->cr(); 2704 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 2705 tty->print_cr("------------------------------------------------"); 2706 tty->cr(); 2707 } 2708 char tier_name[256]; 2709 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 2710 CompilerStatistics* stats = &_stats_per_level[tier-1]; 2711 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 2712 print_times(tier_name, stats); 2713 } 2714 } 2715 2716 if (!aggregate) { 2717 return; 2718 } 2719 2720 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 2721 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 2722 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 2723 2724 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 2725 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 2726 2727 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 2728 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 2729 uint total_compile_count = CompileBroker::_total_compile_count; 2730 uint total_bailout_count = CompileBroker::_total_bailout_count; 2731 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 2732 2733 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 2734 uint nmethods_size = CompileBroker::_sum_nmethod_size; 2735 2736 tty->cr(); 2737 tty->print_cr("Accumulated compiler times"); 2738 tty->print_cr("----------------------------------------------------------"); 2739 //0000000000111111111122222222223333333333444444444455555555556666666666 2740 //0123456789012345678901234567890123456789012345678901234567890123456789 2741 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 2742 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 2743 standard_compilation.seconds(), 2744 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 2745 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 2746 CompileBroker::_t_bailedout_compilation.seconds(), 2747 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 2748 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 2749 osr_compilation.seconds(), 2750 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 2751 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 2752 CompileBroker::_t_invalidated_compilation.seconds(), 2753 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 2754 2755 AbstractCompiler *comp = compiler(CompLevel_simple); 2756 if (comp != nullptr) { 2757 tty->cr(); 2758 comp->print_timers(); 2759 } 2760 comp = compiler(CompLevel_full_optimization); 2761 if (comp != nullptr) { 2762 tty->cr(); 2763 comp->print_timers(); 2764 } 2765 #if INCLUDE_JVMCI 2766 if (EnableJVMCI) { 2767 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 2768 if (jvmci_comp != nullptr && jvmci_comp != comp) { 2769 tty->cr(); 2770 jvmci_comp->print_timers(); 2771 } 2772 } 2773 #endif 2774 2775 tty->cr(); 2776 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 2777 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 2778 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 2779 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 2780 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 2781 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 2782 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 2783 double tcs = total_compilation.seconds(); 2784 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 2785 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 2786 tty->cr(); 2787 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 2788 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 2789 } 2790 2791 // Print general/accumulated JIT information. 2792 void CompileBroker::print_info(outputStream *out) { 2793 if (out == nullptr) out = tty; 2794 out->cr(); 2795 out->print_cr("======================"); 2796 out->print_cr(" General JIT info "); 2797 out->print_cr("======================"); 2798 out->cr(); 2799 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 2800 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 2801 out->cr(); 2802 out->print_cr("CodeCache overview"); 2803 out->print_cr("--------------------------------------------------------"); 2804 out->cr(); 2805 out->print_cr(" Reserved size : %7zu KB", CodeCache::max_capacity() / K); 2806 out->print_cr(" Committed size : %7zu KB", CodeCache::capacity() / K); 2807 out->print_cr(" Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K); 2808 out->cr(); 2809 } 2810 2811 // Note: tty_lock must not be held upon entry to this function. 2812 // Print functions called from herein do "micro-locking" on tty_lock. 2813 // That's a tradeoff which keeps together important blocks of output. 2814 // At the same time, continuous tty_lock hold time is kept in check, 2815 // preventing concurrently printing threads from stalling a long time. 2816 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 2817 TimeStamp ts_total; 2818 TimeStamp ts_global; 2819 TimeStamp ts; 2820 2821 bool allFun = !strcmp(function, "all"); 2822 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 2823 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 2824 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 2825 bool methodCount = !strcmp(function, "MethodCount") || allFun; 2826 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 2827 bool methodAge = !strcmp(function, "MethodAge") || allFun; 2828 bool methodNames = !strcmp(function, "MethodNames") || allFun; 2829 bool discard = !strcmp(function, "discard") || allFun; 2830 2831 if (out == nullptr) { 2832 out = tty; 2833 } 2834 2835 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 2836 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 2837 out->cr(); 2838 return; 2839 } 2840 2841 ts_total.update(); // record starting point 2842 2843 if (aggregate) { 2844 print_info(out); 2845 } 2846 2847 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 2848 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 2849 // When we request individual parts of the analysis via the jcmd interface, it is possible 2850 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 2851 // updated the aggregated data. We will then see a modified, but again consistent, view 2852 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 2853 // a lock across user interaction. 2854 2855 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 2856 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 2857 // leading to an unnecessarily long hold time of the other locks we acquired before. 2858 ts.update(); // record starting point 2859 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 2860 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 2861 2862 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 2863 // Unfortunately, such protection is not sufficient: 2864 // When a new nmethod is created via ciEnv::register_method(), the 2865 // Compile_lock is taken first. After some initializations, 2866 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 2867 // immediately (after finalizing the oop references). To lock out concurrent 2868 // modifiers, we have to grab both locks as well in the described sequence. 2869 // 2870 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 2871 // for the entire duration of aggregation and printing. That makes sure we see 2872 // a consistent picture and do not run into issues caused by concurrent alterations. 2873 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 2874 !Compile_lock->owned_by_self(); 2875 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 2876 !CodeCache_lock->owned_by_self(); 2877 bool take_global_lock_1 = allFun && should_take_Compile_lock; 2878 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 2879 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 2880 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 2881 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 2882 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 2883 2884 ts_global.update(); // record starting point 2885 2886 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 2887 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 2888 if (take_global_locks) { 2889 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 2890 ts_global.update(); // record starting point 2891 } 2892 2893 if (aggregate) { 2894 ts.update(); // record starting point 2895 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 2896 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 2897 if (take_function_locks) { 2898 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 2899 } 2900 2901 ts.update(); // record starting point 2902 CodeCache::aggregate(out, granularity); 2903 if (take_function_locks) { 2904 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 2905 } 2906 } 2907 2908 if (usedSpace) CodeCache::print_usedSpace(out); 2909 if (freeSpace) CodeCache::print_freeSpace(out); 2910 if (methodCount) CodeCache::print_count(out); 2911 if (methodSpace) CodeCache::print_space(out); 2912 if (methodAge) CodeCache::print_age(out); 2913 if (methodNames) { 2914 if (allFun) { 2915 // print_names() can only be used safely if the locks have been continuously held 2916 // since aggregation begin. That is true only for function "all". 2917 CodeCache::print_names(out); 2918 } else { 2919 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 2920 } 2921 } 2922 if (discard) CodeCache::discard(out); 2923 2924 if (take_global_locks) { 2925 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 2926 } 2927 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 2928 }