1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/codeHeapState.hpp" 32 #include "code/dependencyContext.hpp" 33 #include "compiler/compilationLog.hpp" 34 #include "compiler/compilationMemoryStatistic.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/compileLog.hpp" 38 #include "compiler/compilerEvent.hpp" 39 #include "compiler/compilerOracle.hpp" 40 #include "compiler/directivesParser.hpp" 41 #include "gc/shared/memAllocator.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "jvm.h" 44 #include "jfr/jfrEvents.hpp" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/allocation.inline.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/methodData.hpp" 51 #include "oops/method.inline.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/nativeLookup.hpp" 55 #include "prims/whitebox.hpp" 56 #include "runtime/atomic.hpp" 57 #include "runtime/escapeBarrier.hpp" 58 #include "runtime/globals_extension.hpp" 59 #include "runtime/handles.inline.hpp" 60 #include "runtime/init.hpp" 61 #include "runtime/interfaceSupport.inline.hpp" 62 #include "runtime/java.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/jniHandles.inline.hpp" 65 #include "runtime/os.hpp" 66 #include "runtime/perfData.hpp" 67 #include "runtime/safepointVerifiers.hpp" 68 #include "runtime/sharedRuntime.hpp" 69 #include "runtime/threads.hpp" 70 #include "runtime/threadSMR.hpp" 71 #include "runtime/timerTrace.hpp" 72 #include "runtime/vframe.inline.hpp" 73 #include "utilities/debug.hpp" 74 #include "utilities/dtrace.hpp" 75 #include "utilities/events.hpp" 76 #include "utilities/formatBuffer.hpp" 77 #include "utilities/macros.hpp" 78 #ifdef COMPILER1 79 #include "c1/c1_Compiler.hpp" 80 #endif 81 #ifdef COMPILER2 82 #include "opto/c2compiler.hpp" 83 #endif 84 #if INCLUDE_JVMCI 85 #include "jvmci/jvmciEnv.hpp" 86 #include "jvmci/jvmciRuntime.hpp" 87 #endif 88 89 #ifdef DTRACE_ENABLED 90 91 // Only bother with this argument setup if dtrace is available 92 93 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 94 { \ 95 Symbol* klass_name = (method)->klass_name(); \ 96 Symbol* name = (method)->name(); \ 97 Symbol* signature = (method)->signature(); \ 98 HOTSPOT_METHOD_COMPILE_BEGIN( \ 99 (char *) comp_name, strlen(comp_name), \ 100 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 101 (char *) name->bytes(), name->utf8_length(), \ 102 (char *) signature->bytes(), signature->utf8_length()); \ 103 } 104 105 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 106 { \ 107 Symbol* klass_name = (method)->klass_name(); \ 108 Symbol* name = (method)->name(); \ 109 Symbol* signature = (method)->signature(); \ 110 HOTSPOT_METHOD_COMPILE_END( \ 111 (char *) comp_name, strlen(comp_name), \ 112 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 113 (char *) name->bytes(), name->utf8_length(), \ 114 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 115 } 116 117 #else // ndef DTRACE_ENABLED 118 119 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 120 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 121 122 #endif // ndef DTRACE_ENABLED 123 124 bool CompileBroker::_initialized = false; 125 volatile bool CompileBroker::_should_block = false; 126 volatile int CompileBroker::_print_compilation_warning = 0; 127 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 128 129 // The installed compiler(s) 130 AbstractCompiler* CompileBroker::_compilers[2]; 131 132 // The maximum numbers of compiler threads to be determined during startup. 133 int CompileBroker::_c1_count = 0; 134 int CompileBroker::_c2_count = 0; 135 136 // An array of compiler names as Java String objects 137 jobject* CompileBroker::_compiler1_objects = nullptr; 138 jobject* CompileBroker::_compiler2_objects = nullptr; 139 140 CompileLog** CompileBroker::_compiler1_logs = nullptr; 141 CompileLog** CompileBroker::_compiler2_logs = nullptr; 142 143 // These counters are used to assign an unique ID to each compilation. 144 volatile jint CompileBroker::_compilation_id = 0; 145 volatile jint CompileBroker::_osr_compilation_id = 0; 146 volatile jint CompileBroker::_native_compilation_id = 0; 147 148 // Performance counters 149 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 150 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 151 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 152 153 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 154 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 155 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 156 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 157 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 158 159 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 160 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 161 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 162 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 163 164 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 165 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 166 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 167 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 168 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 169 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 170 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 171 172 // Timers and counters for generating statistics 173 elapsedTimer CompileBroker::_t_total_compilation; 174 elapsedTimer CompileBroker::_t_osr_compilation; 175 elapsedTimer CompileBroker::_t_standard_compilation; 176 elapsedTimer CompileBroker::_t_invalidated_compilation; 177 elapsedTimer CompileBroker::_t_bailedout_compilation; 178 179 uint CompileBroker::_total_bailout_count = 0; 180 uint CompileBroker::_total_invalidated_count = 0; 181 uint CompileBroker::_total_compile_count = 0; 182 uint CompileBroker::_total_osr_compile_count = 0; 183 uint CompileBroker::_total_standard_compile_count = 0; 184 uint CompileBroker::_total_compiler_stopped_count = 0; 185 uint CompileBroker::_total_compiler_restarted_count = 0; 186 187 uint CompileBroker::_sum_osr_bytes_compiled = 0; 188 uint CompileBroker::_sum_standard_bytes_compiled = 0; 189 uint CompileBroker::_sum_nmethod_size = 0; 190 uint CompileBroker::_sum_nmethod_code_size = 0; 191 192 jlong CompileBroker::_peak_compilation_time = 0; 193 194 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 195 196 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 197 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 198 199 bool compileBroker_init() { 200 if (LogEvents) { 201 CompilationLog::init(); 202 } 203 204 // init directives stack, adding default directive 205 DirectivesStack::init(); 206 207 if (DirectivesParser::has_file()) { 208 return DirectivesParser::parse_from_flag(); 209 } else if (CompilerDirectivesPrint) { 210 // Print default directive even when no other was added 211 DirectivesStack::print(tty); 212 } 213 214 return true; 215 } 216 217 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 218 CompilerThread* thread = CompilerThread::current(); 219 thread->set_task(task); 220 CompileLog* log = thread->log(); 221 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 222 } 223 224 CompileTaskWrapper::~CompileTaskWrapper() { 225 CompilerThread* thread = CompilerThread::current(); 226 CompileTask* task = thread->task(); 227 CompileLog* log = thread->log(); 228 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 229 thread->set_task(nullptr); 230 thread->set_env(nullptr); 231 if (task->is_blocking()) { 232 bool free_task = false; 233 { 234 MutexLocker notifier(thread, task->lock()); 235 task->mark_complete(); 236 #if INCLUDE_JVMCI 237 if (CompileBroker::compiler(task->comp_level())->is_jvmci()) { 238 if (!task->has_waiter()) { 239 // The waiting thread timed out and thus did not free the task. 240 free_task = true; 241 } 242 task->set_blocking_jvmci_compile_state(nullptr); 243 } 244 #endif 245 if (!free_task) { 246 // Notify the waiting thread that the compilation has completed 247 // so that it can free the task. 248 task->lock()->notify_all(); 249 } 250 } 251 if (free_task) { 252 // The task can only be freed once the task lock is released. 253 CompileTask::free(task); 254 } 255 } else { 256 task->mark_complete(); 257 258 // By convention, the compiling thread is responsible for 259 // recycling a non-blocking CompileTask. 260 CompileTask::free(task); 261 } 262 } 263 264 /** 265 * Check if a CompilerThread can be removed and update count if requested. 266 */ 267 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 268 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 269 if (!ReduceNumberOfCompilerThreads) return false; 270 271 AbstractCompiler *compiler = ct->compiler(); 272 int compiler_count = compiler->num_compiler_threads(); 273 bool c1 = compiler->is_c1(); 274 275 // Keep at least 1 compiler thread of each type. 276 if (compiler_count < 2) return false; 277 278 // Keep thread alive for at least some time. 279 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 280 281 #if INCLUDE_JVMCI 282 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 283 // Handles for JVMCI thread objects may get released concurrently. 284 if (do_it) { 285 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 286 } else { 287 // Skip check if it's the last thread and let caller check again. 288 return true; 289 } 290 } 291 #endif 292 293 // We only allow the last compiler thread of each type to get removed. 294 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 295 : compiler2_object(compiler_count - 1); 296 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 297 if (do_it) { 298 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 299 compiler->set_num_compiler_threads(compiler_count - 1); 300 #if INCLUDE_JVMCI 301 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 302 // Old j.l.Thread object can die when no longer referenced elsewhere. 303 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 304 _compiler2_objects[compiler_count - 1] = nullptr; 305 } 306 #endif 307 } 308 return true; 309 } 310 return false; 311 } 312 313 /** 314 * Add a CompileTask to a CompileQueue. 315 */ 316 void CompileQueue::add(CompileTask* task) { 317 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 318 319 task->set_next(nullptr); 320 task->set_prev(nullptr); 321 322 if (_last == nullptr) { 323 // The compile queue is empty. 324 assert(_first == nullptr, "queue is empty"); 325 _first = task; 326 _last = task; 327 } else { 328 // Append the task to the queue. 329 assert(_last->next() == nullptr, "not last"); 330 _last->set_next(task); 331 task->set_prev(_last); 332 _last = task; 333 } 334 ++_size; 335 ++_total_added; 336 if (_size > _peak_size) { 337 _peak_size = _size; 338 } 339 340 // Mark the method as being in the compile queue. 341 task->method()->set_queued_for_compilation(); 342 343 if (CIPrintCompileQueue) { 344 print_tty(); 345 } 346 347 if (LogCompilation && xtty != nullptr) { 348 task->log_task_queued(); 349 } 350 351 // Notify CompilerThreads that a task is available. 352 MethodCompileQueue_lock->notify_all(); 353 } 354 355 /** 356 * Empties compilation queue by putting all compilation tasks onto 357 * a freelist. Furthermore, the method wakes up all threads that are 358 * waiting on a compilation task to finish. This can happen if background 359 * compilation is disabled. 360 */ 361 void CompileQueue::free_all() { 362 MutexLocker mu(MethodCompileQueue_lock); 363 CompileTask* next = _first; 364 365 // Iterate over all tasks in the compile queue 366 while (next != nullptr) { 367 CompileTask* current = next; 368 next = current->next(); 369 { 370 // Wake up thread that blocks on the compile task. 371 MutexLocker ct_lock(current->lock()); 372 current->lock()->notify(); 373 } 374 // Put the task back on the freelist. 375 CompileTask::free(current); 376 } 377 _first = nullptr; 378 _last = nullptr; 379 380 // Wake up all threads that block on the queue. 381 MethodCompileQueue_lock->notify_all(); 382 } 383 384 /** 385 * Get the next CompileTask from a CompileQueue 386 */ 387 CompileTask* CompileQueue::get(CompilerThread* thread) { 388 // save methods from RedefineClasses across safepoint 389 // across MethodCompileQueue_lock below. 390 methodHandle save_method; 391 methodHandle save_hot_method; 392 393 MonitorLocker locker(MethodCompileQueue_lock); 394 // If _first is null we have no more compile jobs. There are two reasons for 395 // having no compile jobs: First, we compiled everything we wanted. Second, 396 // we ran out of code cache so compilation has been disabled. In the latter 397 // case we perform code cache sweeps to free memory such that we can re-enable 398 // compilation. 399 while (_first == nullptr) { 400 // Exit loop if compilation is disabled forever 401 if (CompileBroker::is_compilation_disabled_forever()) { 402 return nullptr; 403 } 404 405 AbstractCompiler* compiler = thread->compiler(); 406 guarantee(compiler != nullptr, "Compiler object must exist"); 407 compiler->on_empty_queue(this, thread); 408 if (_first != nullptr) { 409 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 410 // so check again whether any tasks were added to the queue. 411 break; 412 } 413 414 // If there are no compilation tasks and we can compile new jobs 415 // (i.e., there is enough free space in the code cache) there is 416 // no need to invoke the GC. 417 // We need a timed wait here, since compiler threads can exit if compilation 418 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 419 // is not critical and we do not want idle compiler threads to wake up too often. 420 locker.wait(5*1000); 421 422 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 423 // Still nothing to compile. Give caller a chance to stop this thread. 424 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 425 } 426 } 427 428 if (CompileBroker::is_compilation_disabled_forever()) { 429 return nullptr; 430 } 431 432 CompileTask* task; 433 { 434 NoSafepointVerifier nsv; 435 task = CompilationPolicy::select_task(this); 436 if (task != nullptr) { 437 task = task->select_for_compilation(); 438 } 439 } 440 441 if (task != nullptr) { 442 // Save method pointers across unlock safepoint. The task is removed from 443 // the compilation queue, which is walked during RedefineClasses. 444 Thread* thread = Thread::current(); 445 save_method = methodHandle(thread, task->method()); 446 save_hot_method = methodHandle(thread, task->hot_method()); 447 448 remove(task); 449 } 450 purge_stale_tasks(); // may temporarily release MCQ lock 451 return task; 452 } 453 454 // Clean & deallocate stale compile tasks. 455 // Temporarily releases MethodCompileQueue lock. 456 void CompileQueue::purge_stale_tasks() { 457 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 458 if (_first_stale != nullptr) { 459 // Stale tasks are purged when MCQ lock is released, 460 // but _first_stale updates are protected by MCQ lock. 461 // Once task processing starts and MCQ lock is released, 462 // other compiler threads can reuse _first_stale. 463 CompileTask* head = _first_stale; 464 _first_stale = nullptr; 465 { 466 MutexUnlocker ul(MethodCompileQueue_lock); 467 for (CompileTask* task = head; task != nullptr; ) { 468 CompileTask* next_task = task->next(); 469 CompileTaskWrapper ctw(task); // Frees the task 470 task->set_failure_reason("stale task"); 471 task = next_task; 472 } 473 } 474 } 475 } 476 477 void CompileQueue::remove(CompileTask* task) { 478 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 479 if (task->prev() != nullptr) { 480 task->prev()->set_next(task->next()); 481 } else { 482 // max is the first element 483 assert(task == _first, "Sanity"); 484 _first = task->next(); 485 } 486 487 if (task->next() != nullptr) { 488 task->next()->set_prev(task->prev()); 489 } else { 490 // max is the last element 491 assert(task == _last, "Sanity"); 492 _last = task->prev(); 493 } 494 --_size; 495 ++_total_removed; 496 } 497 498 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 499 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 500 remove(task); 501 502 // Enqueue the task for reclamation (should be done outside MCQ lock) 503 task->set_next(_first_stale); 504 task->set_prev(nullptr); 505 _first_stale = task; 506 } 507 508 // methods in the compile queue need to be marked as used on the stack 509 // so that they don't get reclaimed by Redefine Classes 510 void CompileQueue::mark_on_stack() { 511 CompileTask* task = _first; 512 while (task != nullptr) { 513 task->mark_on_stack(); 514 task = task->next(); 515 } 516 } 517 518 519 CompileQueue* CompileBroker::compile_queue(int comp_level) { 520 if (is_c2_compile(comp_level)) return _c2_compile_queue; 521 if (is_c1_compile(comp_level)) return _c1_compile_queue; 522 return nullptr; 523 } 524 525 CompileQueue* CompileBroker::c1_compile_queue() { 526 return _c1_compile_queue; 527 } 528 529 CompileQueue* CompileBroker::c2_compile_queue() { 530 return _c2_compile_queue; 531 } 532 533 void CompileBroker::print_compile_queues(outputStream* st) { 534 st->print_cr("Current compiles: "); 535 536 char buf[2000]; 537 int buflen = sizeof(buf); 538 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 539 540 st->cr(); 541 if (_c1_compile_queue != nullptr) { 542 _c1_compile_queue->print(st); 543 } 544 if (_c2_compile_queue != nullptr) { 545 _c2_compile_queue->print(st); 546 } 547 } 548 549 void CompileQueue::print(outputStream* st) { 550 assert_locked_or_safepoint(MethodCompileQueue_lock); 551 st->print_cr("%s:", name()); 552 CompileTask* task = _first; 553 if (task == nullptr) { 554 st->print_cr("Empty"); 555 } else { 556 while (task != nullptr) { 557 task->print(st, nullptr, true, true); 558 task = task->next(); 559 } 560 } 561 st->cr(); 562 } 563 564 void CompileQueue::print_tty() { 565 stringStream ss; 566 // Dump the compile queue into a buffer before locking the tty 567 print(&ss); 568 { 569 ttyLocker ttyl; 570 tty->print("%s", ss.freeze()); 571 } 572 } 573 574 CompilerCounters::CompilerCounters() { 575 _current_method[0] = '\0'; 576 _compile_type = CompileBroker::no_compile; 577 } 578 579 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 580 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 581 // in compiler/compilerEvent.cpp) and registers it with its serializer. 582 // 583 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 584 // so if c2 is used, it should be always registered first. 585 // This function is called during vm initialization. 586 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 587 ResourceMark rm; 588 static bool first_registration = true; 589 if (compiler_type == compiler_jvmci) { 590 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 591 first_registration = false; 592 #ifdef COMPILER2 593 } else if (compiler_type == compiler_c2) { 594 assert(first_registration, "invariant"); // c2 must be registered first. 595 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 596 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 597 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 598 } 599 first_registration = false; 600 #endif // COMPILER2 601 } 602 } 603 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 604 605 // ------------------------------------------------------------------ 606 // CompileBroker::compilation_init 607 // 608 // Initialize the Compilation object 609 void CompileBroker::compilation_init(JavaThread* THREAD) { 610 // No need to initialize compilation system if we do not use it. 611 if (!UseCompiler) { 612 return; 613 } 614 // Set the interface to the current compiler(s). 615 _c1_count = CompilationPolicy::c1_count(); 616 _c2_count = CompilationPolicy::c2_count(); 617 618 #if INCLUDE_JVMCI 619 if (EnableJVMCI) { 620 // This is creating a JVMCICompiler singleton. 621 JVMCICompiler* jvmci = new JVMCICompiler(); 622 623 if (UseJVMCICompiler) { 624 _compilers[1] = jvmci; 625 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 626 if (BootstrapJVMCI) { 627 // JVMCI will bootstrap so give it more threads 628 _c2_count = MIN2(32, os::active_processor_count()); 629 } 630 } else { 631 _c2_count = JVMCIThreads; 632 } 633 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 634 } else { 635 #ifdef COMPILER1 636 _c1_count = JVMCIHostThreads; 637 #endif // COMPILER1 638 } 639 } 640 } 641 #endif // INCLUDE_JVMCI 642 643 #ifdef COMPILER1 644 if (_c1_count > 0) { 645 _compilers[0] = new Compiler(); 646 } 647 #endif // COMPILER1 648 649 #ifdef COMPILER2 650 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 651 if (_c2_count > 0) { 652 _compilers[1] = new C2Compiler(); 653 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 654 // idToPhase mapping for c2 is in opto/phasetype.hpp 655 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 656 } 657 } 658 #endif // COMPILER2 659 660 #if INCLUDE_JVMCI 661 // Register after c2 registration. 662 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 663 if (EnableJVMCI) { 664 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 665 } 666 #endif // INCLUDE_JVMCI 667 668 if (CompilerOracle::should_collect_memstat()) { 669 CompilationMemoryStatistic::initialize(); 670 } 671 672 // Start the compiler thread(s) 673 init_compiler_threads(); 674 // totalTime performance counter is always created as it is required 675 // by the implementation of java.lang.management.CompilationMXBean. 676 { 677 // Ensure OOM leads to vm_exit_during_initialization. 678 EXCEPTION_MARK; 679 _perf_total_compilation = 680 PerfDataManager::create_counter(JAVA_CI, "totalTime", 681 PerfData::U_Ticks, CHECK); 682 } 683 684 if (UsePerfData) { 685 686 EXCEPTION_MARK; 687 688 // create the jvmstat performance counters 689 _perf_osr_compilation = 690 PerfDataManager::create_counter(SUN_CI, "osrTime", 691 PerfData::U_Ticks, CHECK); 692 693 _perf_standard_compilation = 694 PerfDataManager::create_counter(SUN_CI, "standardTime", 695 PerfData::U_Ticks, CHECK); 696 697 _perf_total_bailout_count = 698 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 699 PerfData::U_Events, CHECK); 700 701 _perf_total_invalidated_count = 702 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 703 PerfData::U_Events, CHECK); 704 705 _perf_total_compile_count = 706 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 707 PerfData::U_Events, CHECK); 708 _perf_total_osr_compile_count = 709 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 710 PerfData::U_Events, CHECK); 711 712 _perf_total_standard_compile_count = 713 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 714 PerfData::U_Events, CHECK); 715 716 _perf_sum_osr_bytes_compiled = 717 PerfDataManager::create_counter(SUN_CI, "osrBytes", 718 PerfData::U_Bytes, CHECK); 719 720 _perf_sum_standard_bytes_compiled = 721 PerfDataManager::create_counter(SUN_CI, "standardBytes", 722 PerfData::U_Bytes, CHECK); 723 724 _perf_sum_nmethod_size = 725 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 726 PerfData::U_Bytes, CHECK); 727 728 _perf_sum_nmethod_code_size = 729 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 730 PerfData::U_Bytes, CHECK); 731 732 _perf_last_method = 733 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 734 CompilerCounters::cmname_buffer_length, 735 "", CHECK); 736 737 _perf_last_failed_method = 738 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 739 CompilerCounters::cmname_buffer_length, 740 "", CHECK); 741 742 _perf_last_invalidated_method = 743 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 744 CompilerCounters::cmname_buffer_length, 745 "", CHECK); 746 747 _perf_last_compile_type = 748 PerfDataManager::create_variable(SUN_CI, "lastType", 749 PerfData::U_None, 750 (jlong)CompileBroker::no_compile, 751 CHECK); 752 753 _perf_last_compile_size = 754 PerfDataManager::create_variable(SUN_CI, "lastSize", 755 PerfData::U_Bytes, 756 (jlong)CompileBroker::no_compile, 757 CHECK); 758 759 760 _perf_last_failed_type = 761 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 762 PerfData::U_None, 763 (jlong)CompileBroker::no_compile, 764 CHECK); 765 766 _perf_last_invalidated_type = 767 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 768 PerfData::U_None, 769 (jlong)CompileBroker::no_compile, 770 CHECK); 771 } 772 773 _initialized = true; 774 } 775 776 #if defined(ASSERT) && COMPILER2_OR_JVMCI 777 // Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to 778 // the running java application. Configured with vm options DeoptimizeObjectsALot*. 779 class DeoptimizeObjectsALotThread : public JavaThread { 780 781 static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS); 782 void deoptimize_objects_alot_loop_single(); 783 void deoptimize_objects_alot_loop_all(); 784 785 public: 786 DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { } 787 788 bool is_hidden_from_external_view() const { return true; } 789 }; 790 791 // Entry for DeoptimizeObjectsALotThread. The threads are started in 792 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 793 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 794 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 795 bool enter_single_loop; 796 { 797 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 798 static int single_thread_count = 0; 799 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 800 } 801 if (enter_single_loop) { 802 dt->deoptimize_objects_alot_loop_single(); 803 } else { 804 dt->deoptimize_objects_alot_loop_all(); 805 } 806 } 807 808 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 809 // barrier targets a single thread which is selected round robin. 810 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 811 HandleMark hm(this); 812 while (true) { 813 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 814 { // Begin new scope for escape barrier 815 HandleMarkCleaner hmc(this); 816 ResourceMark rm(this); 817 EscapeBarrier eb(true, this, deoptee_thread); 818 eb.deoptimize_objects(100); 819 } 820 // Now sleep after the escape barriers destructor resumed deoptee_thread. 821 sleep(DeoptimizeObjectsALotInterval); 822 } 823 } 824 } 825 826 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 827 // barrier targets all java threads in the vm at once. 828 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 829 HandleMark hm(this); 830 while (true) { 831 { // Begin new scope for escape barrier 832 HandleMarkCleaner hmc(this); 833 ResourceMark rm(this); 834 EscapeBarrier eb(true, this); 835 eb.deoptimize_objects_all_threads(); 836 } 837 // Now sleep after the escape barriers destructor resumed the java threads. 838 sleep(DeoptimizeObjectsALotInterval); 839 } 840 } 841 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 842 843 844 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 845 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 846 847 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 848 assert(type == compiler_t, "should only happen with reused compiler threads"); 849 // The compiler thread hasn't actually exited yet so don't try to reuse it 850 return nullptr; 851 } 852 853 JavaThread* new_thread = nullptr; 854 switch (type) { 855 case compiler_t: 856 assert(comp != nullptr, "Compiler instance missing."); 857 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 858 CompilerCounters* counters = new CompilerCounters(); 859 new_thread = new CompilerThread(queue, counters); 860 } 861 break; 862 #if defined(ASSERT) && COMPILER2_OR_JVMCI 863 case deoptimizer_t: 864 new_thread = new DeoptimizeObjectsALotThread(); 865 break; 866 #endif // ASSERT 867 default: 868 ShouldNotReachHere(); 869 } 870 871 // At this point the new CompilerThread data-races with this startup 872 // thread (which is the main thread and NOT the VM thread). 873 // This means Java bytecodes being executed at startup can 874 // queue compile jobs which will run at whatever default priority the 875 // newly created CompilerThread runs at. 876 877 878 // At this point it may be possible that no osthread was created for the 879 // JavaThread due to lack of resources. We will handle that failure below. 880 // Also check new_thread so that static analysis is happy. 881 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 882 883 if (type == compiler_t) { 884 CompilerThread::cast(new_thread)->set_compiler(comp); 885 } 886 887 // Note that we cannot call os::set_priority because it expects Java 888 // priorities and we are *explicitly* using OS priorities so that it's 889 // possible to set the compiler thread priority higher than any Java 890 // thread. 891 892 int native_prio = CompilerThreadPriority; 893 if (native_prio == -1) { 894 if (UseCriticalCompilerThreadPriority) { 895 native_prio = os::java_to_os_priority[CriticalPriority]; 896 } else { 897 native_prio = os::java_to_os_priority[NearMaxPriority]; 898 } 899 } 900 os::set_native_priority(new_thread, native_prio); 901 902 // Note that this only sets the JavaThread _priority field, which by 903 // definition is limited to Java priorities and not OS priorities. 904 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 905 906 } else { // osthread initialization failure 907 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 908 && comp->num_compiler_threads() > 0) { 909 // The new thread is not known to Thread-SMR yet so we can just delete. 910 delete new_thread; 911 return nullptr; 912 } else { 913 vm_exit_during_initialization("java.lang.OutOfMemoryError", 914 os::native_thread_creation_failed_msg()); 915 } 916 } 917 918 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 919 920 return new_thread; 921 } 922 923 static bool trace_compiler_threads() { 924 LogTarget(Debug, jit, thread) lt; 925 return TraceCompilerThreads || lt.is_enabled(); 926 } 927 928 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 929 char name_buffer[256]; 930 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 931 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 932 return JNIHandles::make_global(thread_oop); 933 } 934 935 static void print_compiler_threads(stringStream& msg) { 936 if (TraceCompilerThreads) { 937 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 938 } 939 LogTarget(Debug, jit, thread) lt; 940 if (lt.is_enabled()) { 941 LogStream ls(lt); 942 ls.print_cr("%s", msg.as_string()); 943 } 944 } 945 946 void CompileBroker::init_compiler_threads() { 947 // Ensure any exceptions lead to vm_exit_during_initialization. 948 EXCEPTION_MARK; 949 #if !defined(ZERO) 950 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 951 #endif // !ZERO 952 // Initialize the compilation queue 953 if (_c2_count > 0) { 954 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 955 _c2_compile_queue = new CompileQueue(name); 956 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 957 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 958 } 959 if (_c1_count > 0) { 960 _c1_compile_queue = new CompileQueue("C1 compile queue"); 961 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 962 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 963 } 964 965 for (int i = 0; i < _c2_count; i++) { 966 // Create a name for our thread. 967 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 968 _compiler2_objects[i] = thread_handle; 969 _compiler2_logs[i] = nullptr; 970 971 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 972 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 973 assert(ct != nullptr, "should have been handled for initial thread"); 974 _compilers[1]->set_num_compiler_threads(i + 1); 975 if (trace_compiler_threads()) { 976 ResourceMark rm; 977 ThreadsListHandle tlh; // name() depends on the TLH. 978 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 979 stringStream msg; 980 msg.print("Added initial compiler thread %s", ct->name()); 981 print_compiler_threads(msg); 982 } 983 } 984 } 985 986 for (int i = 0; i < _c1_count; i++) { 987 // Create a name for our thread. 988 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 989 _compiler1_objects[i] = thread_handle; 990 _compiler1_logs[i] = nullptr; 991 992 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 993 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 994 assert(ct != nullptr, "should have been handled for initial thread"); 995 _compilers[0]->set_num_compiler_threads(i + 1); 996 if (trace_compiler_threads()) { 997 ResourceMark rm; 998 ThreadsListHandle tlh; // name() depends on the TLH. 999 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1000 stringStream msg; 1001 msg.print("Added initial compiler thread %s", ct->name()); 1002 print_compiler_threads(msg); 1003 } 1004 } 1005 } 1006 1007 if (UsePerfData) { 1008 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK); 1009 } 1010 1011 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1012 if (DeoptimizeObjectsALot) { 1013 // Initialize and start the object deoptimizer threads 1014 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1015 for (int count = 0; count < total_count; count++) { 1016 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1017 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1018 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1019 } 1020 } 1021 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1022 } 1023 1024 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1025 1026 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1027 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1028 1029 // Quick check if we already have enough compiler threads without taking the lock. 1030 // Numbers may change concurrently, so we read them again after we have the lock. 1031 if (_c2_compile_queue != nullptr) { 1032 old_c2_count = get_c2_thread_count(); 1033 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1034 } 1035 if (_c1_compile_queue != nullptr) { 1036 old_c1_count = get_c1_thread_count(); 1037 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1038 } 1039 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1040 1041 // Now, we do the more expensive operations. 1042 julong free_memory = os::free_memory(); 1043 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1044 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1045 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1046 1047 // Only attempt to start additional threads if the lock is free. 1048 if (!CompileThread_lock->try_lock()) return; 1049 1050 if (_c2_compile_queue != nullptr) { 1051 old_c2_count = get_c2_thread_count(); 1052 new_c2_count = MIN4(_c2_count, 1053 _c2_compile_queue->size() / c2_tasks_per_thread, 1054 (int)(free_memory / (200*M)), 1055 (int)(available_cc_np / (128*K))); 1056 1057 for (int i = old_c2_count; i < new_c2_count; i++) { 1058 #if INCLUDE_JVMCI 1059 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1060 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1061 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1062 // call Java code to do the creation anyway). 1063 // 1064 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1065 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1066 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1067 // coupling with Java. 1068 if (!THREAD->can_call_java()) break; 1069 char name_buffer[256]; 1070 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1071 Handle thread_oop; 1072 { 1073 // We have to give up the lock temporarily for the Java calls. 1074 MutexUnlocker mu(CompileThread_lock); 1075 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1076 } 1077 if (HAS_PENDING_EXCEPTION) { 1078 if (trace_compiler_threads()) { 1079 ResourceMark rm; 1080 stringStream msg; 1081 msg.print_cr("JVMCI compiler thread creation failed:"); 1082 PENDING_EXCEPTION->print_on(&msg); 1083 print_compiler_threads(msg); 1084 } 1085 CLEAR_PENDING_EXCEPTION; 1086 break; 1087 } 1088 // Check if another thread has beaten us during the Java calls. 1089 if (get_c2_thread_count() != i) break; 1090 jobject thread_handle = JNIHandles::make_global(thread_oop); 1091 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1092 _compiler2_objects[i] = thread_handle; 1093 } 1094 #endif 1095 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1096 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1097 if (ct == nullptr) break; 1098 _compilers[1]->set_num_compiler_threads(i + 1); 1099 if (trace_compiler_threads()) { 1100 ResourceMark rm; 1101 ThreadsListHandle tlh; // name() depends on the TLH. 1102 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1103 stringStream msg; 1104 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1105 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1106 print_compiler_threads(msg); 1107 } 1108 } 1109 } 1110 1111 if (_c1_compile_queue != nullptr) { 1112 old_c1_count = get_c1_thread_count(); 1113 new_c1_count = MIN4(_c1_count, 1114 _c1_compile_queue->size() / c1_tasks_per_thread, 1115 (int)(free_memory / (100*M)), 1116 (int)(available_cc_p / (128*K))); 1117 1118 for (int i = old_c1_count; i < new_c1_count; i++) { 1119 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1120 if (ct == nullptr) break; 1121 _compilers[0]->set_num_compiler_threads(i + 1); 1122 if (trace_compiler_threads()) { 1123 ResourceMark rm; 1124 ThreadsListHandle tlh; // name() depends on the TLH. 1125 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1126 stringStream msg; 1127 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1128 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1129 print_compiler_threads(msg); 1130 } 1131 } 1132 } 1133 1134 CompileThread_lock->unlock(); 1135 } 1136 1137 1138 /** 1139 * Set the methods on the stack as on_stack so that redefine classes doesn't 1140 * reclaim them. This method is executed at a safepoint. 1141 */ 1142 void CompileBroker::mark_on_stack() { 1143 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1144 // Since we are at a safepoint, we do not need a lock to access 1145 // the compile queues. 1146 if (_c2_compile_queue != nullptr) { 1147 _c2_compile_queue->mark_on_stack(); 1148 } 1149 if (_c1_compile_queue != nullptr) { 1150 _c1_compile_queue->mark_on_stack(); 1151 } 1152 } 1153 1154 // ------------------------------------------------------------------ 1155 // CompileBroker::compile_method 1156 // 1157 // Request compilation of a method. 1158 void CompileBroker::compile_method_base(const methodHandle& method, 1159 int osr_bci, 1160 int comp_level, 1161 const methodHandle& hot_method, 1162 int hot_count, 1163 CompileTask::CompileReason compile_reason, 1164 bool blocking, 1165 Thread* thread) { 1166 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1167 assert(method->method_holder()->is_instance_klass(), 1168 "sanity check"); 1169 assert(!method->method_holder()->is_not_initialized(), 1170 "method holder must be initialized"); 1171 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1172 1173 if (CIPrintRequests) { 1174 tty->print("request: "); 1175 method->print_short_name(tty); 1176 if (osr_bci != InvocationEntryBci) { 1177 tty->print(" osr_bci: %d", osr_bci); 1178 } 1179 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1180 if (!hot_method.is_null()) { 1181 tty->print(" hot: "); 1182 if (hot_method() != method()) { 1183 hot_method->print_short_name(tty); 1184 } else { 1185 tty->print("yes"); 1186 } 1187 } 1188 tty->cr(); 1189 } 1190 1191 // A request has been made for compilation. Before we do any 1192 // real work, check to see if the method has been compiled 1193 // in the meantime with a definitive result. 1194 if (compilation_is_complete(method, osr_bci, comp_level)) { 1195 return; 1196 } 1197 1198 #ifndef PRODUCT 1199 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1200 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1201 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1202 return; 1203 } 1204 } 1205 #endif 1206 1207 // If this method is already in the compile queue, then 1208 // we do not block the current thread. 1209 if (compilation_is_in_queue(method)) { 1210 // We may want to decay our counter a bit here to prevent 1211 // multiple denied requests for compilation. This is an 1212 // open compilation policy issue. Note: The other possibility, 1213 // in the case that this is a blocking compile request, is to have 1214 // all subsequent blocking requesters wait for completion of 1215 // ongoing compiles. Note that in this case we'll need a protocol 1216 // for freeing the associated compile tasks. [Or we could have 1217 // a single static monitor on which all these waiters sleep.] 1218 return; 1219 } 1220 1221 // Tiered policy requires MethodCounters to exist before adding a method to 1222 // the queue. Create if we don't have them yet. 1223 method->get_method_counters(thread); 1224 1225 // Outputs from the following MutexLocker block: 1226 CompileTask* task = nullptr; 1227 CompileQueue* queue = compile_queue(comp_level); 1228 1229 // Acquire our lock. 1230 { 1231 MutexLocker locker(thread, MethodCompileQueue_lock); 1232 1233 // Make sure the method has not slipped into the queues since 1234 // last we checked; note that those checks were "fast bail-outs". 1235 // Here we need to be more careful, see 14012000 below. 1236 if (compilation_is_in_queue(method)) { 1237 return; 1238 } 1239 1240 // We need to check again to see if the compilation has 1241 // completed. A previous compilation may have registered 1242 // some result. 1243 if (compilation_is_complete(method, osr_bci, comp_level)) { 1244 return; 1245 } 1246 1247 // We now know that this compilation is not pending, complete, 1248 // or prohibited. Assign a compile_id to this compilation 1249 // and check to see if it is in our [Start..Stop) range. 1250 int compile_id = assign_compile_id(method, osr_bci); 1251 if (compile_id == 0) { 1252 // The compilation falls outside the allowed range. 1253 return; 1254 } 1255 1256 #if INCLUDE_JVMCI 1257 if (UseJVMCICompiler && blocking) { 1258 // Don't allow blocking compiles for requests triggered by JVMCI. 1259 if (thread->is_Compiler_thread()) { 1260 blocking = false; 1261 } 1262 1263 // In libjvmci, JVMCI initialization should not deadlock with other threads 1264 if (!UseJVMCINativeLibrary) { 1265 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1266 vframeStream vfst(JavaThread::cast(thread)); 1267 for (; !vfst.at_end(); vfst.next()) { 1268 if (vfst.method()->is_static_initializer() || 1269 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1270 vfst.method()->name() == vmSymbols::loadClass_name())) { 1271 blocking = false; 1272 break; 1273 } 1274 } 1275 1276 // Don't allow blocking compilation requests to JVMCI 1277 // if JVMCI itself is not yet initialized 1278 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1279 blocking = false; 1280 } 1281 } 1282 1283 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1284 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1285 // such as the DestroyJavaVM thread. 1286 if (JVMCI::in_shutdown()) { 1287 blocking = false; 1288 } 1289 } 1290 #endif // INCLUDE_JVMCI 1291 1292 // We will enter the compilation in the queue. 1293 // 14012000: Note that this sets the queued_for_compile bits in 1294 // the target method. We can now reason that a method cannot be 1295 // queued for compilation more than once, as follows: 1296 // Before a thread queues a task for compilation, it first acquires 1297 // the compile queue lock, then checks if the method's queued bits 1298 // are set or it has already been compiled. Thus there can not be two 1299 // instances of a compilation task for the same method on the 1300 // compilation queue. Consider now the case where the compilation 1301 // thread has already removed a task for that method from the queue 1302 // and is in the midst of compiling it. In this case, the 1303 // queued_for_compile bits must be set in the method (and these 1304 // will be visible to the current thread, since the bits were set 1305 // under protection of the compile queue lock, which we hold now. 1306 // When the compilation completes, the compiler thread first sets 1307 // the compilation result and then clears the queued_for_compile 1308 // bits. Neither of these actions are protected by a barrier (or done 1309 // under the protection of a lock), so the only guarantee we have 1310 // (on machines with TSO (Total Store Order)) is that these values 1311 // will update in that order. As a result, the only combinations of 1312 // these bits that the current thread will see are, in temporal order: 1313 // <RESULT, QUEUE> : 1314 // <0, 1> : in compile queue, but not yet compiled 1315 // <1, 1> : compiled but queue bit not cleared 1316 // <1, 0> : compiled and queue bit cleared 1317 // Because we first check the queue bits then check the result bits, 1318 // we are assured that we cannot introduce a duplicate task. 1319 // Note that if we did the tests in the reverse order (i.e. check 1320 // result then check queued bit), we could get the result bit before 1321 // the compilation completed, and the queue bit after the compilation 1322 // completed, and end up introducing a "duplicate" (redundant) task. 1323 // In that case, the compiler thread should first check if a method 1324 // has already been compiled before trying to compile it. 1325 // NOTE: in the event that there are multiple compiler threads and 1326 // there is de-optimization/recompilation, things will get hairy, 1327 // and in that case it's best to protect both the testing (here) of 1328 // these bits, and their updating (here and elsewhere) under a 1329 // common lock. 1330 task = create_compile_task(queue, 1331 compile_id, method, 1332 osr_bci, comp_level, 1333 hot_method, hot_count, compile_reason, 1334 blocking); 1335 } 1336 1337 if (blocking) { 1338 wait_for_completion(task); 1339 } 1340 } 1341 1342 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1343 int comp_level, 1344 const methodHandle& hot_method, int hot_count, 1345 CompileTask::CompileReason compile_reason, 1346 TRAPS) { 1347 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1348 if (!_initialized || comp_level == CompLevel_none) { 1349 return nullptr; 1350 } 1351 1352 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1353 assert(comp != nullptr, "Ensure we have a compiler"); 1354 1355 #if INCLUDE_JVMCI 1356 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1357 // JVMCI compilation is not yet initializable. 1358 return nullptr; 1359 } 1360 #endif 1361 1362 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1363 // CompileBroker::compile_method can trap and can have pending async exception. 1364 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD); 1365 DirectivesStack::release(directive); 1366 return nm; 1367 } 1368 1369 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1370 int comp_level, 1371 const methodHandle& hot_method, int hot_count, 1372 CompileTask::CompileReason compile_reason, 1373 DirectiveSet* directive, 1374 TRAPS) { 1375 1376 // make sure arguments make sense 1377 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1378 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1379 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1380 assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized"); 1381 // return quickly if possible 1382 1383 // lock, make sure that the compilation 1384 // isn't prohibited in a straightforward way. 1385 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1386 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1387 return nullptr; 1388 } 1389 1390 if (osr_bci == InvocationEntryBci) { 1391 // standard compilation 1392 nmethod* method_code = method->code(); 1393 if (method_code != nullptr) { 1394 if (compilation_is_complete(method, osr_bci, comp_level)) { 1395 return method_code; 1396 } 1397 } 1398 if (method->is_not_compilable(comp_level)) { 1399 return nullptr; 1400 } 1401 } else { 1402 // osr compilation 1403 // We accept a higher level osr method 1404 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1405 if (nm != nullptr) return nm; 1406 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1407 } 1408 1409 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1410 // some prerequisites that are compiler specific 1411 if (comp->is_c2() || comp->is_jvmci()) { 1412 InternalOOMEMark iom(THREAD); 1413 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1414 // Resolve all classes seen in the signature of the method 1415 // we are compiling. 1416 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1417 } 1418 1419 // If the method is native, do the lookup in the thread requesting 1420 // the compilation. Native lookups can load code, which is not 1421 // permitted during compilation. 1422 // 1423 // Note: A native method implies non-osr compilation which is 1424 // checked with an assertion at the entry of this method. 1425 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1426 address adr = NativeLookup::lookup(method, THREAD); 1427 if (HAS_PENDING_EXCEPTION) { 1428 // In case of an exception looking up the method, we just forget 1429 // about it. The interpreter will kick-in and throw the exception. 1430 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1431 CLEAR_PENDING_EXCEPTION; 1432 return nullptr; 1433 } 1434 assert(method->has_native_function(), "must have native code by now"); 1435 } 1436 1437 // RedefineClasses() has replaced this method; just return 1438 if (method->is_old()) { 1439 return nullptr; 1440 } 1441 1442 // JVMTI -- post_compile_event requires jmethod_id() that may require 1443 // a lock the compiling thread can not acquire. Prefetch it here. 1444 if (JvmtiExport::should_post_compiled_method_load()) { 1445 method->jmethod_id(); 1446 } 1447 1448 // do the compilation 1449 if (method->is_native()) { 1450 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1451 #if defined(X86) && !defined(ZERO) 1452 // The following native methods: 1453 // 1454 // java.lang.Float.intBitsToFloat 1455 // java.lang.Float.floatToRawIntBits 1456 // java.lang.Double.longBitsToDouble 1457 // java.lang.Double.doubleToRawLongBits 1458 // 1459 // are called through the interpreter even if interpreter native stubs 1460 // are not preferred (i.e., calling through adapter handlers is preferred). 1461 // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved 1462 // if the version of the methods from the native libraries is called. 1463 // As the interpreter and the C2-intrinsified version of the methods preserves 1464 // sNaNs, that would result in an inconsistent way of handling of sNaNs. 1465 if ((UseSSE >= 1 && 1466 (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat || 1467 method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) || 1468 (UseSSE >= 2 && 1469 (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble || 1470 method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) { 1471 return nullptr; 1472 } 1473 #endif // X86 && !ZERO 1474 1475 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1476 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1477 // 1478 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1479 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1480 AdapterHandlerLibrary::create_native_wrapper(method); 1481 } else { 1482 return nullptr; 1483 } 1484 } else { 1485 // If the compiler is shut off due to code cache getting full 1486 // fail out now so blocking compiles dont hang the java thread 1487 if (!should_compile_new_jobs()) { 1488 return nullptr; 1489 } 1490 bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles; 1491 compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD); 1492 } 1493 1494 // return requested nmethod 1495 // We accept a higher level osr method 1496 if (osr_bci == InvocationEntryBci) { 1497 return method->code(); 1498 } 1499 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1500 } 1501 1502 1503 // ------------------------------------------------------------------ 1504 // CompileBroker::compilation_is_complete 1505 // 1506 // See if compilation of this method is already complete. 1507 bool CompileBroker::compilation_is_complete(const methodHandle& method, 1508 int osr_bci, 1509 int comp_level) { 1510 bool is_osr = (osr_bci != standard_entry_bci); 1511 if (is_osr) { 1512 if (method->is_not_osr_compilable(comp_level)) { 1513 return true; 1514 } else { 1515 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1516 return (result != nullptr); 1517 } 1518 } else { 1519 if (method->is_not_compilable(comp_level)) { 1520 return true; 1521 } else { 1522 nmethod* result = method->code(); 1523 if (result == nullptr) return false; 1524 return comp_level == result->comp_level(); 1525 } 1526 } 1527 } 1528 1529 1530 /** 1531 * See if this compilation is already requested. 1532 * 1533 * Implementation note: there is only a single "is in queue" bit 1534 * for each method. This means that the check below is overly 1535 * conservative in the sense that an osr compilation in the queue 1536 * will block a normal compilation from entering the queue (and vice 1537 * versa). This can be remedied by a full queue search to disambiguate 1538 * cases. If it is deemed profitable, this may be done. 1539 */ 1540 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1541 return method->queued_for_compilation(); 1542 } 1543 1544 // ------------------------------------------------------------------ 1545 // CompileBroker::compilation_is_prohibited 1546 // 1547 // See if this compilation is not allowed. 1548 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1549 bool is_native = method->is_native(); 1550 // Some compilers may not support the compilation of natives. 1551 AbstractCompiler *comp = compiler(comp_level); 1552 if (is_native && (!CICompileNatives || comp == nullptr)) { 1553 method->set_not_compilable_quietly("native methods not supported", comp_level); 1554 return true; 1555 } 1556 1557 bool is_osr = (osr_bci != standard_entry_bci); 1558 // Some compilers may not support on stack replacement. 1559 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1560 method->set_not_osr_compilable("OSR not supported", comp_level); 1561 return true; 1562 } 1563 1564 // The method may be explicitly excluded by the user. 1565 double scale; 1566 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1567 bool quietly = CompilerOracle::be_quiet(); 1568 if (PrintCompilation && !quietly) { 1569 // This does not happen quietly... 1570 ResourceMark rm; 1571 tty->print("### Excluding %s:%s", 1572 method->is_native() ? "generation of native wrapper" : "compile", 1573 (method->is_static() ? " static" : "")); 1574 method->print_short_name(tty); 1575 tty->cr(); 1576 } 1577 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1578 } 1579 1580 return false; 1581 } 1582 1583 /** 1584 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1585 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1586 * The function also allows to generate separate compilation IDs for OSR compilations. 1587 */ 1588 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1589 #ifdef ASSERT 1590 bool is_osr = (osr_bci != standard_entry_bci); 1591 int id; 1592 if (method->is_native()) { 1593 assert(!is_osr, "can't be osr"); 1594 // Adapters, native wrappers and method handle intrinsics 1595 // should be generated always. 1596 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1597 } else if (CICountOSR && is_osr) { 1598 id = Atomic::add(&_osr_compilation_id, 1); 1599 if (CIStartOSR <= id && id < CIStopOSR) { 1600 return id; 1601 } 1602 } else { 1603 id = Atomic::add(&_compilation_id, 1); 1604 if (CIStart <= id && id < CIStop) { 1605 return id; 1606 } 1607 } 1608 1609 // Method was not in the appropriate compilation range. 1610 method->set_not_compilable_quietly("Not in requested compile id range"); 1611 return 0; 1612 #else 1613 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1614 // only _compilation_id is incremented. 1615 return Atomic::add(&_compilation_id, 1); 1616 #endif 1617 } 1618 1619 // ------------------------------------------------------------------ 1620 // CompileBroker::assign_compile_id_unlocked 1621 // 1622 // Public wrapper for assign_compile_id that acquires the needed locks 1623 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1624 MutexLocker locker(thread, MethodCompileQueue_lock); 1625 return assign_compile_id(method, osr_bci); 1626 } 1627 1628 // ------------------------------------------------------------------ 1629 // CompileBroker::create_compile_task 1630 // 1631 // Create a CompileTask object representing the current request for 1632 // compilation. Add this task to the queue. 1633 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1634 int compile_id, 1635 const methodHandle& method, 1636 int osr_bci, 1637 int comp_level, 1638 const methodHandle& hot_method, 1639 int hot_count, 1640 CompileTask::CompileReason compile_reason, 1641 bool blocking) { 1642 CompileTask* new_task = CompileTask::allocate(); 1643 new_task->initialize(compile_id, method, osr_bci, comp_level, 1644 hot_method, hot_count, compile_reason, 1645 blocking); 1646 queue->add(new_task); 1647 return new_task; 1648 } 1649 1650 #if INCLUDE_JVMCI 1651 // The number of milliseconds to wait before checking if 1652 // JVMCI compilation has made progress. 1653 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1654 1655 // The number of JVMCI compilation progress checks that must fail 1656 // before unblocking a thread waiting for a blocking compilation. 1657 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1658 1659 /** 1660 * Waits for a JVMCI compiler to complete a given task. This thread 1661 * waits until either the task completes or it sees no JVMCI compilation 1662 * progress for N consecutive milliseconds where N is 1663 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1664 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1665 * 1666 * @return true if this thread needs to free/recycle the task 1667 */ 1668 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1669 assert(UseJVMCICompiler, "sanity"); 1670 MonitorLocker ml(thread, task->lock()); 1671 int progress_wait_attempts = 0; 1672 jint thread_jvmci_compilation_ticks = 0; 1673 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1674 while (!task->is_complete() && !is_compilation_disabled_forever() && 1675 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1676 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1677 1678 bool progress; 1679 if (jvmci_compile_state != nullptr) { 1680 jint ticks = jvmci_compile_state->compilation_ticks(); 1681 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1682 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1683 thread_jvmci_compilation_ticks = ticks; 1684 } else { 1685 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1686 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1687 // compilation ticks to determine whether JVMCI compilation 1688 // is still making progress through the JVMCI compiler queue. 1689 jint ticks = jvmci->global_compilation_ticks(); 1690 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1691 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1692 global_jvmci_compilation_ticks = ticks; 1693 } 1694 1695 if (!progress) { 1696 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1697 if (PrintCompilation) { 1698 task->print(tty, "wait for blocking compilation timed out"); 1699 } 1700 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1701 break; 1702 } 1703 } else { 1704 progress_wait_attempts = 0; 1705 } 1706 } 1707 task->clear_waiter(); 1708 return task->is_complete(); 1709 } 1710 #endif 1711 1712 /** 1713 * Wait for the compilation task to complete. 1714 */ 1715 void CompileBroker::wait_for_completion(CompileTask* task) { 1716 if (CIPrintCompileQueue) { 1717 ttyLocker ttyl; 1718 tty->print_cr("BLOCKING FOR COMPILE"); 1719 } 1720 1721 assert(task->is_blocking(), "can only wait on blocking task"); 1722 1723 JavaThread* thread = JavaThread::current(); 1724 1725 methodHandle method(thread, task->method()); 1726 bool free_task; 1727 #if INCLUDE_JVMCI 1728 AbstractCompiler* comp = compiler(task->comp_level()); 1729 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1730 // It may return before compilation is completed. 1731 // Note that libjvmci should not pre-emptively unblock 1732 // a thread waiting for a compilation as it does not call 1733 // Java code and so is not deadlock prone like jarjvmci. 1734 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1735 } else 1736 #endif 1737 { 1738 MonitorLocker ml(thread, task->lock()); 1739 free_task = true; 1740 while (!task->is_complete() && !is_compilation_disabled_forever()) { 1741 ml.wait(); 1742 } 1743 } 1744 1745 if (free_task) { 1746 if (is_compilation_disabled_forever()) { 1747 CompileTask::free(task); 1748 return; 1749 } 1750 1751 // It is harmless to check this status without the lock, because 1752 // completion is a stable property (until the task object is recycled). 1753 assert(task->is_complete(), "Compilation should have completed"); 1754 1755 // By convention, the waiter is responsible for recycling a 1756 // blocking CompileTask. Since there is only one waiter ever 1757 // waiting on a CompileTask, we know that no one else will 1758 // be using this CompileTask; we can free it. 1759 CompileTask::free(task); 1760 } 1761 } 1762 1763 /** 1764 * Initialize compiler thread(s) + compiler object(s). The postcondition 1765 * of this function is that the compiler runtimes are initialized and that 1766 * compiler threads can start compiling. 1767 */ 1768 bool CompileBroker::init_compiler_runtime() { 1769 CompilerThread* thread = CompilerThread::current(); 1770 AbstractCompiler* comp = thread->compiler(); 1771 // Final sanity check - the compiler object must exist 1772 guarantee(comp != nullptr, "Compiler object must exist"); 1773 1774 { 1775 // Must switch to native to allocate ci_env 1776 ThreadToNativeFromVM ttn(thread); 1777 ciEnv ci_env((CompileTask*)nullptr); 1778 // Cache Jvmti state 1779 ci_env.cache_jvmti_state(); 1780 // Cache DTrace flags 1781 ci_env.cache_dtrace_flags(); 1782 1783 // Switch back to VM state to do compiler initialization 1784 ThreadInVMfromNative tv(thread); 1785 1786 // Perform per-thread and global initializations 1787 comp->initialize(); 1788 } 1789 1790 if (comp->is_failed()) { 1791 disable_compilation_forever(); 1792 // If compiler initialization failed, no compiler thread that is specific to a 1793 // particular compiler runtime will ever start to compile methods. 1794 shutdown_compiler_runtime(comp, thread); 1795 return false; 1796 } 1797 1798 // C1 specific check 1799 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 1800 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 1801 return false; 1802 } 1803 1804 return true; 1805 } 1806 1807 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 1808 BufferBlob* blob = thread->get_buffer_blob(); 1809 if (blob != nullptr) { 1810 blob->purge(); 1811 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1812 CodeCache::free(blob); 1813 } 1814 } 1815 1816 /** 1817 * If C1 and/or C2 initialization failed, we shut down all compilation. 1818 * We do this to keep things simple. This can be changed if it ever turns 1819 * out to be a problem. 1820 */ 1821 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 1822 free_buffer_blob_if_allocated(thread); 1823 1824 if (comp->should_perform_shutdown()) { 1825 // There are two reasons for shutting down the compiler 1826 // 1) compiler runtime initialization failed 1827 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 1828 warning("%s initialization failed. Shutting down all compilers", comp->name()); 1829 1830 // Only one thread per compiler runtime object enters here 1831 // Set state to shut down 1832 comp->set_shut_down(); 1833 1834 // Delete all queued compilation tasks to make compiler threads exit faster. 1835 if (_c1_compile_queue != nullptr) { 1836 _c1_compile_queue->free_all(); 1837 } 1838 1839 if (_c2_compile_queue != nullptr) { 1840 _c2_compile_queue->free_all(); 1841 } 1842 1843 // Set flags so that we continue execution with using interpreter only. 1844 UseCompiler = false; 1845 UseInterpreter = true; 1846 1847 // We could delete compiler runtimes also. However, there are references to 1848 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 1849 // fail. This can be done later if necessary. 1850 } 1851 } 1852 1853 /** 1854 * Helper function to create new or reuse old CompileLog. 1855 */ 1856 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 1857 if (!LogCompilation) return nullptr; 1858 1859 AbstractCompiler *compiler = ct->compiler(); 1860 bool c1 = compiler->is_c1(); 1861 jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects; 1862 assert(compiler_objects != nullptr, "must be initialized at this point"); 1863 CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs; 1864 assert(logs != nullptr, "must be initialized at this point"); 1865 int count = c1 ? _c1_count : _c2_count; 1866 1867 // Find Compiler number by its threadObj. 1868 oop compiler_obj = ct->threadObj(); 1869 int compiler_number = 0; 1870 bool found = false; 1871 for (; compiler_number < count; compiler_number++) { 1872 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 1873 found = true; 1874 break; 1875 } 1876 } 1877 assert(found, "Compiler must exist at this point"); 1878 1879 // Determine pointer for this thread's log. 1880 CompileLog** log_ptr = &logs[compiler_number]; 1881 1882 // Return old one if it exists. 1883 CompileLog* log = *log_ptr; 1884 if (log != nullptr) { 1885 ct->init_log(log); 1886 return log; 1887 } 1888 1889 // Create a new one and remember it. 1890 init_compiler_thread_log(); 1891 log = ct->log(); 1892 *log_ptr = log; 1893 return log; 1894 } 1895 1896 // ------------------------------------------------------------------ 1897 // CompileBroker::compiler_thread_loop 1898 // 1899 // The main loop run by a CompilerThread. 1900 void CompileBroker::compiler_thread_loop() { 1901 CompilerThread* thread = CompilerThread::current(); 1902 CompileQueue* queue = thread->queue(); 1903 // For the thread that initializes the ciObjectFactory 1904 // this resource mark holds all the shared objects 1905 ResourceMark rm; 1906 1907 // First thread to get here will initialize the compiler interface 1908 1909 { 1910 ASSERT_IN_VM; 1911 MutexLocker only_one (thread, CompileThread_lock); 1912 if (!ciObjectFactory::is_initialized()) { 1913 ciObjectFactory::initialize(); 1914 } 1915 } 1916 1917 // Open a log. 1918 CompileLog* log = get_log(thread); 1919 if (log != nullptr) { 1920 log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'", 1921 thread->name(), 1922 os::current_thread_id(), 1923 os::current_process_id()); 1924 log->stamp(); 1925 log->end_elem(); 1926 } 1927 1928 // If compiler thread/runtime initialization fails, exit the compiler thread 1929 if (!init_compiler_runtime()) { 1930 return; 1931 } 1932 1933 thread->start_idle_timer(); 1934 1935 // Poll for new compilation tasks as long as the JVM runs. Compilation 1936 // should only be disabled if something went wrong while initializing the 1937 // compiler runtimes. This, in turn, should not happen. The only known case 1938 // when compiler runtime initialization fails is if there is not enough free 1939 // space in the code cache to generate the necessary stubs, etc. 1940 while (!is_compilation_disabled_forever()) { 1941 // We need this HandleMark to avoid leaking VM handles. 1942 HandleMark hm(thread); 1943 1944 CompileTask* task = queue->get(thread); 1945 if (task == nullptr) { 1946 if (UseDynamicNumberOfCompilerThreads) { 1947 // Access compiler_count under lock to enforce consistency. 1948 MutexLocker only_one(CompileThread_lock); 1949 if (can_remove(thread, true)) { 1950 if (trace_compiler_threads()) { 1951 ResourceMark rm; 1952 stringStream msg; 1953 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 1954 thread->name(), thread->idle_time_millis()); 1955 print_compiler_threads(msg); 1956 } 1957 1958 // Notify compiler that the compiler thread is about to stop 1959 thread->compiler()->stopping_compiler_thread(thread); 1960 1961 free_buffer_blob_if_allocated(thread); 1962 return; // Stop this thread. 1963 } 1964 } 1965 } else { 1966 // Assign the task to the current thread. Mark this compilation 1967 // thread as active for the profiler. 1968 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 1969 // occurs after fetching the compile task off the queue. 1970 CompileTaskWrapper ctw(task); 1971 methodHandle method(thread, task->method()); 1972 1973 // Never compile a method if breakpoints are present in it 1974 if (method()->number_of_breakpoints() == 0) { 1975 // Compile the method. 1976 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 1977 invoke_compiler_on_method(task); 1978 thread->start_idle_timer(); 1979 } else { 1980 // After compilation is disabled, remove remaining methods from queue 1981 method->clear_queued_for_compilation(); 1982 task->set_failure_reason("compilation is disabled"); 1983 } 1984 } else { 1985 task->set_failure_reason("breakpoints are present"); 1986 } 1987 1988 if (UseDynamicNumberOfCompilerThreads) { 1989 possibly_add_compiler_threads(thread); 1990 assert(!thread->has_pending_exception(), "should have been handled"); 1991 } 1992 } 1993 } 1994 1995 // Shut down compiler runtime 1996 shutdown_compiler_runtime(thread->compiler(), thread); 1997 } 1998 1999 // ------------------------------------------------------------------ 2000 // CompileBroker::init_compiler_thread_log 2001 // 2002 // Set up state required by +LogCompilation. 2003 void CompileBroker::init_compiler_thread_log() { 2004 CompilerThread* thread = CompilerThread::current(); 2005 char file_name[4*K]; 2006 FILE* fp = nullptr; 2007 intx thread_id = os::current_thread_id(); 2008 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2009 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2010 if (dir == nullptr) { 2011 jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log", 2012 thread_id, os::current_process_id()); 2013 } else { 2014 jio_snprintf(file_name, sizeof(file_name), 2015 "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir, 2016 os::file_separator(), thread_id, os::current_process_id()); 2017 } 2018 2019 fp = os::fopen(file_name, "wt"); 2020 if (fp != nullptr) { 2021 if (LogCompilation && Verbose) { 2022 tty->print_cr("Opening compilation log %s", file_name); 2023 } 2024 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2025 if (log == nullptr) { 2026 fclose(fp); 2027 return; 2028 } 2029 thread->init_log(log); 2030 2031 if (xtty != nullptr) { 2032 ttyLocker ttyl; 2033 // Record any per thread log files 2034 xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name); 2035 } 2036 return; 2037 } 2038 } 2039 warning("Cannot open log file: %s", file_name); 2040 } 2041 2042 void CompileBroker::log_metaspace_failure() { 2043 const char* message = "some methods may not be compiled because metaspace " 2044 "is out of memory"; 2045 if (CompilationLog::log() != nullptr) { 2046 CompilationLog::log()->log_metaspace_failure(message); 2047 } 2048 if (PrintCompilation) { 2049 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2050 } 2051 } 2052 2053 2054 // ------------------------------------------------------------------ 2055 // CompileBroker::set_should_block 2056 // 2057 // Set _should_block. 2058 // Call this from the VM, with Threads_lock held and a safepoint requested. 2059 void CompileBroker::set_should_block() { 2060 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2061 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2062 #ifndef PRODUCT 2063 if (PrintCompilation && (Verbose || WizardMode)) 2064 tty->print_cr("notifying compiler thread pool to block"); 2065 #endif 2066 _should_block = true; 2067 } 2068 2069 // ------------------------------------------------------------------ 2070 // CompileBroker::maybe_block 2071 // 2072 // Call this from the compiler at convenient points, to poll for _should_block. 2073 void CompileBroker::maybe_block() { 2074 if (_should_block) { 2075 #ifndef PRODUCT 2076 if (PrintCompilation && (Verbose || WizardMode)) 2077 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2078 #endif 2079 ThreadInVMfromNative tivfn(JavaThread::current()); 2080 } 2081 } 2082 2083 // wrapper for CodeCache::print_summary() 2084 static void codecache_print(bool detailed) 2085 { 2086 stringStream s; 2087 // Dump code cache into a buffer before locking the tty, 2088 { 2089 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2090 CodeCache::print_summary(&s, detailed); 2091 } 2092 ttyLocker ttyl; 2093 tty->print("%s", s.freeze()); 2094 } 2095 2096 // wrapper for CodeCache::print_summary() using outputStream 2097 static void codecache_print(outputStream* out, bool detailed) { 2098 stringStream s; 2099 2100 // Dump code cache into a buffer 2101 { 2102 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2103 CodeCache::print_summary(&s, detailed); 2104 } 2105 2106 char* remaining_log = s.as_string(); 2107 while (*remaining_log != '\0') { 2108 char* eol = strchr(remaining_log, '\n'); 2109 if (eol == nullptr) { 2110 out->print_cr("%s", remaining_log); 2111 remaining_log = remaining_log + strlen(remaining_log); 2112 } else { 2113 *eol = '\0'; 2114 out->print_cr("%s", remaining_log); 2115 remaining_log = eol + 1; 2116 } 2117 } 2118 } 2119 2120 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2121 int compilable, const char* failure_reason) { 2122 if (!AbortVMOnCompilationFailure) { 2123 return; 2124 } 2125 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2126 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2127 } 2128 if (compilable == ciEnv::MethodCompilable_never) { 2129 fatal("Never compilable: %s", failure_reason); 2130 } 2131 } 2132 2133 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2134 assert(task != nullptr, "invariant"); 2135 CompilerEvent::CompilationEvent::post(event, 2136 task->compile_id(), 2137 task->compiler()->type(), 2138 task->method(), 2139 task->comp_level(), 2140 task->is_success(), 2141 task->osr_bci() != CompileBroker::standard_entry_bci, 2142 task->nm_total_size(), 2143 task->num_inlined_bytecodes(), 2144 task->arena_bytes()); 2145 } 2146 2147 int DirectivesStack::_depth = 0; 2148 CompilerDirectives* DirectivesStack::_top = nullptr; 2149 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2150 2151 // Acquires Compilation_lock and waits for it to be notified 2152 // as long as WhiteBox::compilation_locked is true. 2153 static void whitebox_lock_compilation() { 2154 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2155 while (WhiteBox::compilation_locked) { 2156 locker.wait(); 2157 } 2158 } 2159 2160 // ------------------------------------------------------------------ 2161 // CompileBroker::invoke_compiler_on_method 2162 // 2163 // Compile a method. 2164 // 2165 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2166 task->print_ul(); 2167 elapsedTimer time; 2168 2169 DirectiveSet* directive = task->directive(); 2170 if (directive->PrintCompilationOption) { 2171 ResourceMark rm; 2172 task->print_tty(); 2173 } 2174 2175 CompilerThread* thread = CompilerThread::current(); 2176 ResourceMark rm(thread); 2177 2178 if (CompilationLog::log() != nullptr) { 2179 CompilationLog::log()->log_compile(thread, task); 2180 } 2181 2182 // Common flags. 2183 int compile_id = task->compile_id(); 2184 int osr_bci = task->osr_bci(); 2185 bool is_osr = (osr_bci != standard_entry_bci); 2186 bool should_log = (thread->log() != nullptr); 2187 bool should_break = false; 2188 const int task_level = task->comp_level(); 2189 AbstractCompiler* comp = task->compiler(); 2190 { 2191 // create the handle inside it's own block so it can't 2192 // accidentally be referenced once the thread transitions to 2193 // native. The NoHandleMark before the transition should catch 2194 // any cases where this occurs in the future. 2195 methodHandle method(thread, task->method()); 2196 2197 assert(!method->is_native(), "no longer compile natives"); 2198 2199 // Update compile information when using perfdata. 2200 if (UsePerfData) { 2201 update_compile_perf_data(thread, method, is_osr); 2202 } 2203 2204 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2205 } 2206 2207 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2208 if (should_log && !directive->LogOption) { 2209 should_log = false; 2210 } 2211 2212 // Allocate a new set of JNI handles. 2213 JNIHandleMark jhm(thread); 2214 Method* target_handle = task->method(); 2215 int compilable = ciEnv::MethodCompilable; 2216 const char* failure_reason = nullptr; 2217 bool failure_reason_on_C_heap = false; 2218 const char* retry_message = nullptr; 2219 2220 #if INCLUDE_JVMCI 2221 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2222 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2223 2224 TraceTime t1("compilation", &time); 2225 EventCompilation event; 2226 JVMCICompileState compile_state(task, jvmci); 2227 JVMCIRuntime *runtime = nullptr; 2228 2229 if (JVMCI::in_shutdown()) { 2230 failure_reason = "in JVMCI shutdown"; 2231 retry_message = "not retryable"; 2232 compilable = ciEnv::MethodCompilable_never; 2233 } else if (compile_state.target_method_is_old()) { 2234 // Skip redefined methods 2235 failure_reason = "redefined method"; 2236 retry_message = "not retryable"; 2237 compilable = ciEnv::MethodCompilable_never; 2238 } else { 2239 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2240 if (env.init_error() != JNI_OK) { 2241 const char* msg = env.init_error_msg(); 2242 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2243 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2244 bool reason_on_C_heap = true; 2245 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2246 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2247 bool retryable = env.init_error() == JNI_ENOMEM; 2248 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2249 } 2250 if (failure_reason == nullptr) { 2251 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2252 // Must switch to native to block 2253 ThreadToNativeFromVM ttn(thread); 2254 whitebox_lock_compilation(); 2255 } 2256 methodHandle method(thread, target_handle); 2257 runtime = env.runtime(); 2258 runtime->compile_method(&env, jvmci, method, osr_bci); 2259 2260 failure_reason = compile_state.failure_reason(); 2261 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2262 if (!compile_state.retryable()) { 2263 retry_message = "not retryable"; 2264 compilable = ciEnv::MethodCompilable_not_at_tier; 2265 } 2266 if (!task->is_success()) { 2267 assert(failure_reason != nullptr, "must specify failure_reason"); 2268 } 2269 } 2270 } 2271 if (!task->is_success() && !JVMCI::in_shutdown()) { 2272 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2273 } 2274 if (event.should_commit()) { 2275 post_compilation_event(event, task); 2276 } 2277 2278 if (runtime != nullptr) { 2279 runtime->post_compile(thread); 2280 } 2281 } else 2282 #endif // INCLUDE_JVMCI 2283 { 2284 NoHandleMark nhm; 2285 ThreadToNativeFromVM ttn(thread); 2286 2287 ciEnv ci_env(task); 2288 if (should_break) { 2289 ci_env.set_break_at_compile(true); 2290 } 2291 if (should_log) { 2292 ci_env.set_log(thread->log()); 2293 } 2294 assert(thread->env() == &ci_env, "set by ci_env"); 2295 // The thread-env() field is cleared in ~CompileTaskWrapper. 2296 2297 // Cache Jvmti state 2298 bool method_is_old = ci_env.cache_jvmti_state(); 2299 2300 // Skip redefined methods 2301 if (method_is_old) { 2302 ci_env.record_method_not_compilable("redefined method", true); 2303 } 2304 2305 // Cache DTrace flags 2306 ci_env.cache_dtrace_flags(); 2307 2308 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2309 2310 TraceTime t1("compilation", &time); 2311 EventCompilation event; 2312 2313 if (comp == nullptr) { 2314 ci_env.record_method_not_compilable("no compiler"); 2315 } else if (!ci_env.failing()) { 2316 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2317 whitebox_lock_compilation(); 2318 } 2319 comp->compile_method(&ci_env, target, osr_bci, true, directive); 2320 2321 /* Repeat compilation without installing code for profiling purposes */ 2322 int repeat_compilation_count = directive->RepeatCompilationOption; 2323 while (repeat_compilation_count > 0) { 2324 ResourceMark rm(thread); 2325 task->print_ul("NO CODE INSTALLED"); 2326 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2327 repeat_compilation_count--; 2328 } 2329 } 2330 2331 DirectivesStack::release(directive); 2332 2333 if (!ci_env.failing() && !task->is_success()) { 2334 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2335 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2336 // The compiler elected, without comment, not to register a result. 2337 // Do not attempt further compilations of this method. 2338 ci_env.record_method_not_compilable("compile failed"); 2339 } 2340 2341 // Copy this bit to the enclosing block: 2342 compilable = ci_env.compilable(); 2343 2344 if (ci_env.failing()) { 2345 // Duplicate the failure reason string, so that it outlives ciEnv 2346 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2347 failure_reason_on_C_heap = true; 2348 retry_message = ci_env.retry_message(); 2349 ci_env.report_failure(failure_reason); 2350 } 2351 2352 if (ci_env.failing()) { 2353 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2354 } 2355 if (event.should_commit()) { 2356 post_compilation_event(event, task); 2357 } 2358 } 2359 2360 if (failure_reason != nullptr) { 2361 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2362 if (CompilationLog::log() != nullptr) { 2363 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2364 } 2365 if (PrintCompilation) { 2366 FormatBufferResource msg = retry_message != nullptr ? 2367 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2368 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2369 task->print(tty, msg); 2370 } 2371 } 2372 2373 methodHandle method(thread, task->method()); 2374 2375 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2376 2377 collect_statistics(thread, time, task); 2378 2379 if (PrintCompilation && PrintCompilation2) { 2380 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2381 tty->print("%4d ", compile_id); // print compilation number 2382 tty->print("%s ", (is_osr ? "%" : " ")); 2383 if (task->is_success()) { 2384 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2385 } 2386 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2387 } 2388 2389 Log(compilation, codecache) log; 2390 if (log.is_debug()) { 2391 LogStream ls(log.debug()); 2392 codecache_print(&ls, /* detailed= */ false); 2393 } 2394 if (PrintCodeCacheOnCompilation) { 2395 codecache_print(/* detailed= */ false); 2396 } 2397 // Disable compilation, if required. 2398 switch (compilable) { 2399 case ciEnv::MethodCompilable_never: 2400 if (is_osr) 2401 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2402 else 2403 method->set_not_compilable_quietly("MethodCompilable_never"); 2404 break; 2405 case ciEnv::MethodCompilable_not_at_tier: 2406 if (is_osr) 2407 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2408 else 2409 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2410 break; 2411 } 2412 2413 // Note that the queued_for_compilation bits are cleared without 2414 // protection of a mutex. [They were set by the requester thread, 2415 // when adding the task to the compile queue -- at which time the 2416 // compile queue lock was held. Subsequently, we acquired the compile 2417 // queue lock to get this task off the compile queue; thus (to belabour 2418 // the point somewhat) our clearing of the bits must be occurring 2419 // only after the setting of the bits. See also 14012000 above. 2420 method->clear_queued_for_compilation(); 2421 } 2422 2423 /** 2424 * The CodeCache is full. Print warning and disable compilation. 2425 * Schedule code cache cleaning so compilation can continue later. 2426 * This function needs to be called only from CodeCache::allocate(), 2427 * since we currently handle a full code cache uniformly. 2428 */ 2429 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2430 UseInterpreter = true; 2431 if (UseCompiler || AlwaysCompileLoopMethods ) { 2432 if (xtty != nullptr) { 2433 stringStream s; 2434 // Dump code cache state into a buffer before locking the tty, 2435 // because log_state() will use locks causing lock conflicts. 2436 CodeCache::log_state(&s); 2437 // Lock to prevent tearing 2438 ttyLocker ttyl; 2439 xtty->begin_elem("code_cache_full"); 2440 xtty->print("%s", s.freeze()); 2441 xtty->stamp(); 2442 xtty->end_elem(); 2443 } 2444 2445 #ifndef PRODUCT 2446 if (ExitOnFullCodeCache) { 2447 codecache_print(/* detailed= */ true); 2448 before_exit(JavaThread::current()); 2449 exit_globals(); // will delete tty 2450 vm_direct_exit(1); 2451 } 2452 #endif 2453 if (UseCodeCacheFlushing) { 2454 // Since code cache is full, immediately stop new compiles 2455 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2456 log_info(codecache)("Code cache is full - disabling compilation"); 2457 } 2458 } else { 2459 disable_compilation_forever(); 2460 } 2461 2462 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2463 } 2464 } 2465 2466 // ------------------------------------------------------------------ 2467 // CompileBroker::update_compile_perf_data 2468 // 2469 // Record this compilation for debugging purposes. 2470 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2471 ResourceMark rm; 2472 char* method_name = method->name()->as_C_string(); 2473 char current_method[CompilerCounters::cmname_buffer_length]; 2474 size_t maxLen = CompilerCounters::cmname_buffer_length; 2475 2476 const char* class_name = method->method_holder()->name()->as_C_string(); 2477 2478 size_t s1len = strlen(class_name); 2479 size_t s2len = strlen(method_name); 2480 2481 // check if we need to truncate the string 2482 if (s1len + s2len + 2 > maxLen) { 2483 2484 // the strategy is to lop off the leading characters of the 2485 // class name and the trailing characters of the method name. 2486 2487 if (s2len + 2 > maxLen) { 2488 // lop of the entire class name string, let snprintf handle 2489 // truncation of the method name. 2490 class_name += s1len; // null string 2491 } 2492 else { 2493 // lop off the extra characters from the front of the class name 2494 class_name += ((s1len + s2len + 2) - maxLen); 2495 } 2496 } 2497 2498 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2499 2500 int last_compile_type = normal_compile; 2501 if (CICountOSR && is_osr) { 2502 last_compile_type = osr_compile; 2503 } else if (CICountNative && method->is_native()) { 2504 last_compile_type = native_compile; 2505 } 2506 2507 CompilerCounters* counters = thread->counters(); 2508 counters->set_current_method(current_method); 2509 counters->set_compile_type((jlong) last_compile_type); 2510 } 2511 2512 // ------------------------------------------------------------------ 2513 // CompileBroker::collect_statistics 2514 // 2515 // Collect statistics about the compilation. 2516 2517 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2518 bool success = task->is_success(); 2519 methodHandle method (thread, task->method()); 2520 int compile_id = task->compile_id(); 2521 bool is_osr = (task->osr_bci() != standard_entry_bci); 2522 const int comp_level = task->comp_level(); 2523 CompilerCounters* counters = thread->counters(); 2524 2525 MutexLocker locker(CompileStatistics_lock); 2526 2527 // _perf variables are production performance counters which are 2528 // updated regardless of the setting of the CITime and CITimeEach flags 2529 // 2530 2531 // account all time, including bailouts and failures in this counter; 2532 // C1 and C2 counters are counting both successful and unsuccessful compiles 2533 _t_total_compilation.add(time); 2534 2535 if (!success) { 2536 _total_bailout_count++; 2537 if (UsePerfData) { 2538 _perf_last_failed_method->set_value(counters->current_method()); 2539 _perf_last_failed_type->set_value(counters->compile_type()); 2540 _perf_total_bailout_count->inc(); 2541 } 2542 _t_bailedout_compilation.add(time); 2543 } else if (!task->is_success()) { 2544 if (UsePerfData) { 2545 _perf_last_invalidated_method->set_value(counters->current_method()); 2546 _perf_last_invalidated_type->set_value(counters->compile_type()); 2547 _perf_total_invalidated_count->inc(); 2548 } 2549 _total_invalidated_count++; 2550 _t_invalidated_compilation.add(time); 2551 } else { 2552 // Compilation succeeded 2553 2554 // update compilation ticks - used by the implementation of 2555 // java.lang.management.CompilationMXBean 2556 _perf_total_compilation->inc(time.ticks()); 2557 _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time; 2558 2559 if (CITime) { 2560 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2561 if (is_osr) { 2562 _t_osr_compilation.add(time); 2563 _sum_osr_bytes_compiled += bytes_compiled; 2564 } else { 2565 _t_standard_compilation.add(time); 2566 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2567 } 2568 2569 // Collect statistic per compilation level 2570 if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2571 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2572 if (is_osr) { 2573 stats->_osr.update(time, bytes_compiled); 2574 } else { 2575 stats->_standard.update(time, bytes_compiled); 2576 } 2577 stats->_nmethods_size += task->nm_total_size(); 2578 stats->_nmethods_code_size += task->nm_insts_size(); 2579 } else { 2580 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2581 } 2582 2583 // Collect statistic per compiler 2584 AbstractCompiler* comp = compiler(comp_level); 2585 if (comp) { 2586 CompilerStatistics* stats = comp->stats(); 2587 if (is_osr) { 2588 stats->_osr.update(time, bytes_compiled); 2589 } else { 2590 stats->_standard.update(time, bytes_compiled); 2591 } 2592 stats->_nmethods_size += task->nm_total_size(); 2593 stats->_nmethods_code_size += task->nm_insts_size(); 2594 } else { // if (!comp) 2595 assert(false, "Compiler object must exist"); 2596 } 2597 } 2598 2599 if (UsePerfData) { 2600 // save the name of the last method compiled 2601 _perf_last_method->set_value(counters->current_method()); 2602 _perf_last_compile_type->set_value(counters->compile_type()); 2603 _perf_last_compile_size->set_value(method->code_size() + 2604 task->num_inlined_bytecodes()); 2605 if (is_osr) { 2606 _perf_osr_compilation->inc(time.ticks()); 2607 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2608 } else { 2609 _perf_standard_compilation->inc(time.ticks()); 2610 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2611 } 2612 } 2613 2614 if (CITimeEach) { 2615 double compile_time = time.seconds(); 2616 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2617 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2618 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2619 } 2620 2621 // Collect counts of successful compilations 2622 _sum_nmethod_size += task->nm_total_size(); 2623 _sum_nmethod_code_size += task->nm_insts_size(); 2624 _total_compile_count++; 2625 2626 if (UsePerfData) { 2627 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2628 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2629 _perf_total_compile_count->inc(); 2630 } 2631 2632 if (is_osr) { 2633 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2634 _total_osr_compile_count++; 2635 } else { 2636 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2637 _total_standard_compile_count++; 2638 } 2639 } 2640 // set the current method for the thread to null 2641 if (UsePerfData) counters->set_current_method(""); 2642 } 2643 2644 const char* CompileBroker::compiler_name(int comp_level) { 2645 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2646 if (comp == nullptr) { 2647 return "no compiler"; 2648 } else { 2649 return (comp->name()); 2650 } 2651 } 2652 2653 jlong CompileBroker::total_compilation_ticks() { 2654 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2655 } 2656 2657 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 2658 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 2659 name, stats->bytes_per_second(), 2660 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 2661 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 2662 stats->_nmethods_size, stats->_nmethods_code_size); 2663 } 2664 2665 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 2666 if (per_compiler) { 2667 if (aggregate) { 2668 tty->cr(); 2669 tty->print_cr("Individual compiler times (for compiled methods only)"); 2670 tty->print_cr("------------------------------------------------"); 2671 tty->cr(); 2672 } 2673 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 2674 AbstractCompiler* comp = _compilers[i]; 2675 if (comp != nullptr) { 2676 print_times(comp->name(), comp->stats()); 2677 } 2678 } 2679 if (aggregate) { 2680 tty->cr(); 2681 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 2682 tty->print_cr("------------------------------------------------"); 2683 tty->cr(); 2684 } 2685 char tier_name[256]; 2686 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 2687 CompilerStatistics* stats = &_stats_per_level[tier-1]; 2688 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 2689 print_times(tier_name, stats); 2690 } 2691 } 2692 2693 if (!aggregate) { 2694 return; 2695 } 2696 2697 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 2698 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 2699 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 2700 2701 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 2702 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 2703 2704 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 2705 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 2706 uint total_compile_count = CompileBroker::_total_compile_count; 2707 uint total_bailout_count = CompileBroker::_total_bailout_count; 2708 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 2709 2710 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 2711 uint nmethods_size = CompileBroker::_sum_nmethod_size; 2712 2713 tty->cr(); 2714 tty->print_cr("Accumulated compiler times"); 2715 tty->print_cr("----------------------------------------------------------"); 2716 //0000000000111111111122222222223333333333444444444455555555556666666666 2717 //0123456789012345678901234567890123456789012345678901234567890123456789 2718 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 2719 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 2720 standard_compilation.seconds(), 2721 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 2722 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 2723 CompileBroker::_t_bailedout_compilation.seconds(), 2724 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 2725 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 2726 osr_compilation.seconds(), 2727 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 2728 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 2729 CompileBroker::_t_invalidated_compilation.seconds(), 2730 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 2731 2732 AbstractCompiler *comp = compiler(CompLevel_simple); 2733 if (comp != nullptr) { 2734 tty->cr(); 2735 comp->print_timers(); 2736 } 2737 comp = compiler(CompLevel_full_optimization); 2738 if (comp != nullptr) { 2739 tty->cr(); 2740 comp->print_timers(); 2741 } 2742 #if INCLUDE_JVMCI 2743 if (EnableJVMCI) { 2744 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 2745 if (jvmci_comp != nullptr && jvmci_comp != comp) { 2746 tty->cr(); 2747 jvmci_comp->print_timers(); 2748 } 2749 } 2750 #endif 2751 2752 tty->cr(); 2753 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 2754 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 2755 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 2756 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 2757 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 2758 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 2759 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 2760 double tcs = total_compilation.seconds(); 2761 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 2762 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 2763 tty->cr(); 2764 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 2765 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 2766 } 2767 2768 // Print general/accumulated JIT information. 2769 void CompileBroker::print_info(outputStream *out) { 2770 if (out == nullptr) out = tty; 2771 out->cr(); 2772 out->print_cr("======================"); 2773 out->print_cr(" General JIT info "); 2774 out->print_cr("======================"); 2775 out->cr(); 2776 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 2777 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 2778 out->cr(); 2779 out->print_cr("CodeCache overview"); 2780 out->print_cr("--------------------------------------------------------"); 2781 out->cr(); 2782 out->print_cr(" Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K); 2783 out->print_cr(" Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K); 2784 out->print_cr(" Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K); 2785 out->cr(); 2786 } 2787 2788 // Note: tty_lock must not be held upon entry to this function. 2789 // Print functions called from herein do "micro-locking" on tty_lock. 2790 // That's a tradeoff which keeps together important blocks of output. 2791 // At the same time, continuous tty_lock hold time is kept in check, 2792 // preventing concurrently printing threads from stalling a long time. 2793 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 2794 TimeStamp ts_total; 2795 TimeStamp ts_global; 2796 TimeStamp ts; 2797 2798 bool allFun = !strcmp(function, "all"); 2799 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 2800 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 2801 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 2802 bool methodCount = !strcmp(function, "MethodCount") || allFun; 2803 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 2804 bool methodAge = !strcmp(function, "MethodAge") || allFun; 2805 bool methodNames = !strcmp(function, "MethodNames") || allFun; 2806 bool discard = !strcmp(function, "discard") || allFun; 2807 2808 if (out == nullptr) { 2809 out = tty; 2810 } 2811 2812 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 2813 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 2814 out->cr(); 2815 return; 2816 } 2817 2818 ts_total.update(); // record starting point 2819 2820 if (aggregate) { 2821 print_info(out); 2822 } 2823 2824 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 2825 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 2826 // When we request individual parts of the analysis via the jcmd interface, it is possible 2827 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 2828 // updated the aggregated data. We will then see a modified, but again consistent, view 2829 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 2830 // a lock across user interaction. 2831 2832 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 2833 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 2834 // leading to an unnecessarily long hold time of the other locks we acquired before. 2835 ts.update(); // record starting point 2836 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 2837 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 2838 2839 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 2840 // Unfortunately, such protection is not sufficient: 2841 // When a new nmethod is created via ciEnv::register_method(), the 2842 // Compile_lock is taken first. After some initializations, 2843 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 2844 // immediately (after finalizing the oop references). To lock out concurrent 2845 // modifiers, we have to grab both locks as well in the described sequence. 2846 // 2847 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 2848 // for the entire duration of aggregation and printing. That makes sure we see 2849 // a consistent picture and do not run into issues caused by concurrent alterations. 2850 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 2851 !Compile_lock->owned_by_self(); 2852 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 2853 !CodeCache_lock->owned_by_self(); 2854 bool take_global_lock_1 = allFun && should_take_Compile_lock; 2855 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 2856 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 2857 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 2858 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 2859 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 2860 2861 ts_global.update(); // record starting point 2862 2863 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 2864 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 2865 if (take_global_locks) { 2866 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 2867 ts_global.update(); // record starting point 2868 } 2869 2870 if (aggregate) { 2871 ts.update(); // record starting point 2872 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 2873 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 2874 if (take_function_locks) { 2875 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 2876 } 2877 2878 ts.update(); // record starting point 2879 CodeCache::aggregate(out, granularity); 2880 if (take_function_locks) { 2881 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 2882 } 2883 } 2884 2885 if (usedSpace) CodeCache::print_usedSpace(out); 2886 if (freeSpace) CodeCache::print_freeSpace(out); 2887 if (methodCount) CodeCache::print_count(out); 2888 if (methodSpace) CodeCache::print_space(out); 2889 if (methodAge) CodeCache::print_age(out); 2890 if (methodNames) { 2891 if (allFun) { 2892 // print_names() can only be used safely if the locks have been continuously held 2893 // since aggregation begin. That is true only for function "all". 2894 CodeCache::print_names(out); 2895 } else { 2896 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 2897 } 2898 } 2899 if (discard) CodeCache::discard(out); 2900 2901 if (take_global_locks) { 2902 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 2903 } 2904 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 2905 }