1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/cdsConfig.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compilationLog.hpp"
  34 #include "compiler/compilationMemoryStatistic.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/compileLog.hpp"
  38 #include "compiler/compilerEvent.hpp"
  39 #include "compiler/compilerOracle.hpp"
  40 #include "compiler/directivesParser.hpp"
  41 #include "gc/shared/memAllocator.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvm.h"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/methodData.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/nativeLookup.hpp"
  55 #include "prims/whitebox.hpp"
  56 #include "runtime/atomicAccess.hpp"
  57 #include "runtime/escapeBarrier.hpp"
  58 #include "runtime/globals_extension.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/init.hpp"
  61 #include "runtime/interfaceSupport.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/jniHandles.inline.hpp"
  65 #include "runtime/os.hpp"
  66 #include "runtime/perfData.hpp"
  67 #include "runtime/safepointVerifiers.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/threads.hpp"
  70 #include "runtime/threadSMR.hpp"
  71 #include "runtime/timerTrace.hpp"
  72 #include "runtime/vframe.inline.hpp"
  73 #include "utilities/debug.hpp"
  74 #include "utilities/dtrace.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/formatBuffer.hpp"
  77 #include "utilities/macros.hpp"
  78 #ifdef COMPILER1
  79 #include "c1/c1_Compiler.hpp"
  80 #endif
  81 #ifdef COMPILER2
  82 #include "opto/c2compiler.hpp"
  83 #endif
  84 #if INCLUDE_JVMCI
  85 #include "jvmci/jvmciEnv.hpp"
  86 #include "jvmci/jvmciRuntime.hpp"
  87 #endif
  88 
  89 #ifdef DTRACE_ENABLED
  90 
  91 // Only bother with this argument setup if dtrace is available
  92 
  93 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  94   {                                                                      \
  95     Symbol* klass_name = (method)->klass_name();                         \
  96     Symbol* name = (method)->name();                                     \
  97     Symbol* signature = (method)->signature();                           \
  98     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  99       (char *) comp_name, strlen(comp_name),                             \
 100       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 101       (char *) name->bytes(), name->utf8_length(),                       \
 102       (char *) signature->bytes(), signature->utf8_length());            \
 103   }
 104 
 105 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
 106   {                                                                      \
 107     Symbol* klass_name = (method)->klass_name();                         \
 108     Symbol* name = (method)->name();                                     \
 109     Symbol* signature = (method)->signature();                           \
 110     HOTSPOT_METHOD_COMPILE_END(                                          \
 111       (char *) comp_name, strlen(comp_name),                             \
 112       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 113       (char *) name->bytes(), name->utf8_length(),                       \
 114       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 115   }
 116 
 117 #else //  ndef DTRACE_ENABLED
 118 
 119 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 120 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 121 
 122 #endif // ndef DTRACE_ENABLED
 123 
 124 bool CompileBroker::_initialized = false;
 125 volatile bool CompileBroker::_should_block = false;
 126 volatile int  CompileBroker::_print_compilation_warning = 0;
 127 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 128 
 129 // The installed compiler(s)
 130 AbstractCompiler* CompileBroker::_compilers[2];
 131 
 132 // The maximum numbers of compiler threads to be determined during startup.
 133 int CompileBroker::_c1_count = 0;
 134 int CompileBroker::_c2_count = 0;
 135 
 136 // An array of compiler names as Java String objects
 137 jobject* CompileBroker::_compiler1_objects = nullptr;
 138 jobject* CompileBroker::_compiler2_objects = nullptr;
 139 
 140 CompileLog** CompileBroker::_compiler1_logs = nullptr;
 141 CompileLog** CompileBroker::_compiler2_logs = nullptr;
 142 
 143 // These counters are used to assign an unique ID to each compilation.
 144 volatile jint CompileBroker::_compilation_id     = 0;
 145 volatile jint CompileBroker::_osr_compilation_id = 0;
 146 volatile jint CompileBroker::_native_compilation_id = 0;
 147 
 148 // Performance counters
 149 PerfCounter* CompileBroker::_perf_total_compilation = nullptr;
 150 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr;
 151 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr;
 152 
 153 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr;
 154 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr;
 155 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr;
 156 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr;
 157 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr;
 158 
 159 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr;
 160 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr;
 161 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr;
 162 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr;
 163 
 164 PerfStringVariable* CompileBroker::_perf_last_method = nullptr;
 165 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr;
 166 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr;
 167 PerfVariable*       CompileBroker::_perf_last_compile_type = nullptr;
 168 PerfVariable*       CompileBroker::_perf_last_compile_size = nullptr;
 169 PerfVariable*       CompileBroker::_perf_last_failed_type = nullptr;
 170 PerfVariable*       CompileBroker::_perf_last_invalidated_type = nullptr;
 171 
 172 // Timers and counters for generating statistics
 173 elapsedTimer CompileBroker::_t_total_compilation;
 174 elapsedTimer CompileBroker::_t_osr_compilation;
 175 elapsedTimer CompileBroker::_t_standard_compilation;
 176 elapsedTimer CompileBroker::_t_invalidated_compilation;
 177 elapsedTimer CompileBroker::_t_bailedout_compilation;
 178 
 179 uint CompileBroker::_total_bailout_count            = 0;
 180 uint CompileBroker::_total_invalidated_count        = 0;
 181 uint CompileBroker::_total_compile_count            = 0;
 182 uint CompileBroker::_total_osr_compile_count        = 0;
 183 uint CompileBroker::_total_standard_compile_count   = 0;
 184 uint CompileBroker::_total_compiler_stopped_count   = 0;
 185 uint CompileBroker::_total_compiler_restarted_count = 0;
 186 
 187 uint CompileBroker::_sum_osr_bytes_compiled         = 0;
 188 uint CompileBroker::_sum_standard_bytes_compiled    = 0;
 189 uint CompileBroker::_sum_nmethod_size               = 0;
 190 uint CompileBroker::_sum_nmethod_code_size          = 0;
 191 
 192 jlong CompileBroker::_peak_compilation_time        = 0;
 193 
 194 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 195 
 196 CompileQueue* CompileBroker::_c2_compile_queue     = nullptr;
 197 CompileQueue* CompileBroker::_c1_compile_queue     = nullptr;
 198 
 199 bool compileBroker_init() {
 200   if (LogEvents) {
 201     CompilationLog::init();
 202   }
 203 
 204   // init directives stack, adding default directive
 205   DirectivesStack::init();
 206 
 207   if (DirectivesParser::has_file()) {
 208     return DirectivesParser::parse_from_flag();
 209   } else if (CompilerDirectivesPrint) {
 210     // Print default directive even when no other was added
 211     DirectivesStack::print(tty);
 212   }
 213 
 214   return true;
 215 }
 216 
 217 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 218   CompilerThread* thread = CompilerThread::current();
 219   thread->set_task(task);
 220   CompileLog*     log  = thread->log();
 221   thread->timeout()->arm();
 222   if (log != nullptr && !task->is_unloaded())  task->log_task_start(log);
 223 }
 224 
 225 CompileTaskWrapper::~CompileTaskWrapper() {
 226   CompilerThread* thread = CompilerThread::current();
 227 
 228   // First, disarm the timeout. This still relies on the underlying task.
 229   thread->timeout()->disarm();
 230 
 231   CompileTask* task = thread->task();
 232   CompileLog*  log  = thread->log();
 233   if (log != nullptr && !task->is_unloaded())  task->log_task_done(log);
 234   thread->set_task(nullptr);
 235   thread->set_env(nullptr);
 236   if (task->is_blocking()) {
 237     bool free_task = false;
 238     {
 239       MutexLocker notifier(thread, CompileTaskWait_lock);
 240       task->mark_complete();
 241 #if INCLUDE_JVMCI
 242       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 243         if (!task->has_waiter()) {
 244           // The waiting thread timed out and thus did not delete the task.
 245           free_task = true;
 246         }
 247         task->set_blocking_jvmci_compile_state(nullptr);
 248       }
 249 #endif
 250       if (!free_task) {
 251         // Notify the waiting thread that the compilation has completed
 252         // so that it can free the task.
 253         CompileTaskWait_lock->notify_all();
 254       }
 255     }
 256     if (free_task) {
 257       // The task can only be deleted once the task lock is released.
 258       delete task;
 259     }
 260   } else {
 261     task->mark_complete();
 262 
 263     // By convention, the compiling thread is responsible for deleting
 264     // a non-blocking CompileTask.
 265     delete task;
 266   }
 267 }
 268 
 269 /**
 270  * Check if a CompilerThread can be removed and update count if requested.
 271  */
 272 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 273   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 274   if (!ReduceNumberOfCompilerThreads) return false;
 275 
 276   AbstractCompiler *compiler = ct->compiler();
 277   int compiler_count = compiler->num_compiler_threads();
 278   bool c1 = compiler->is_c1();
 279 
 280   // Keep at least 1 compiler thread of each type.
 281   if (compiler_count < 2) return false;
 282 
 283   // Keep thread alive for at least some time.
 284   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 285 
 286 #if INCLUDE_JVMCI
 287   if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 288     // Handles for JVMCI thread objects may get released concurrently.
 289     if (do_it) {
 290       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 291     } else {
 292       // Skip check if it's the last thread and let caller check again.
 293       return true;
 294     }
 295   }
 296 #endif
 297 
 298   // We only allow the last compiler thread of each type to get removed.
 299   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 300                              : compiler2_object(compiler_count - 1);
 301   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 302     if (do_it) {
 303       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 304       compiler->set_num_compiler_threads(compiler_count - 1);
 305 #if INCLUDE_JVMCI
 306       if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 307         // Old j.l.Thread object can die when no longer referenced elsewhere.
 308         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 309         _compiler2_objects[compiler_count - 1] = nullptr;
 310       }
 311 #endif
 312     }
 313     return true;
 314   }
 315   return false;
 316 }
 317 
 318 /**
 319  * Add a CompileTask to a CompileQueue.
 320  */
 321 void CompileQueue::add(CompileTask* task) {
 322   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 323 
 324   task->set_next(nullptr);
 325   task->set_prev(nullptr);
 326 
 327   if (_last == nullptr) {
 328     // The compile queue is empty.
 329     assert(_first == nullptr, "queue is empty");
 330     _first = task;
 331     _last = task;
 332   } else {
 333     // Append the task to the queue.
 334     assert(_last->next() == nullptr, "not last");
 335     _last->set_next(task);
 336     task->set_prev(_last);
 337     _last = task;
 338   }
 339   ++_size;
 340   ++_total_added;
 341   if (_size > _peak_size) {
 342     _peak_size = _size;
 343   }
 344 
 345   // Mark the method as being in the compile queue.
 346   task->method()->set_queued_for_compilation();
 347 
 348   if (CIPrintCompileQueue) {
 349     print_tty();
 350   }
 351 
 352   if (LogCompilation && xtty != nullptr) {
 353     task->log_task_queued();
 354   }
 355 
 356   if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) {
 357     CompileTrainingData* ctd = CompileTrainingData::make(task);
 358     if (ctd != nullptr) {
 359       task->set_training_data(ctd);
 360     }
 361   }
 362 
 363   // Notify CompilerThreads that a task is available.
 364   MethodCompileQueue_lock->notify_all();
 365 }
 366 
 367 /**
 368  * Empties compilation queue by deleting all compilation tasks.
 369  * Furthermore, the method wakes up all threads that are waiting
 370  * on a compilation task to finish. This can happen if background
 371  * compilation is disabled.
 372  */
 373 void CompileQueue::delete_all() {
 374   MutexLocker mu(MethodCompileQueue_lock);
 375   CompileTask* current = _first;
 376 
 377   // Iterate over all tasks in the compile queue
 378   while (current != nullptr) {
 379     CompileTask* next = current->next();
 380     if (!current->is_blocking()) {
 381       // Non-blocking task. No one is waiting for it, delete it now.
 382       delete current;
 383     } else {
 384       // Blocking task. By convention, it is the waiters responsibility
 385       // to delete the task. We cannot delete it here, because we do not
 386       // coordinate with waiters. We will notify the waiters later.
 387     }
 388     current = next;
 389   }
 390   _first = nullptr;
 391   _last = nullptr;
 392 
 393   // Wake up all blocking task waiters to deal with remaining blocking
 394   // tasks. This is not a performance sensitive path, so we do this
 395   // unconditionally to simplify coding/testing.
 396   {
 397     MonitorLocker ml(Thread::current(), CompileTaskWait_lock);
 398     ml.notify_all();
 399   }
 400 
 401   // Wake up all threads that block on the queue.
 402   MethodCompileQueue_lock->notify_all();
 403 }
 404 
 405 /**
 406  * Get the next CompileTask from a CompileQueue
 407  */
 408 CompileTask* CompileQueue::get(CompilerThread* thread) {
 409   // save methods from RedefineClasses across safepoint
 410   // across MethodCompileQueue_lock below.
 411   methodHandle save_method;
 412 
 413   MonitorLocker locker(MethodCompileQueue_lock);
 414   // If _first is null we have no more compile jobs. There are two reasons for
 415   // having no compile jobs: First, we compiled everything we wanted. Second,
 416   // we ran out of code cache so compilation has been disabled. In the latter
 417   // case we perform code cache sweeps to free memory such that we can re-enable
 418   // compilation.
 419   while (_first == nullptr) {
 420     // Exit loop if compilation is disabled forever
 421     if (CompileBroker::is_compilation_disabled_forever()) {
 422       return nullptr;
 423     }
 424 
 425     AbstractCompiler* compiler = thread->compiler();
 426     guarantee(compiler != nullptr, "Compiler object must exist");
 427     compiler->on_empty_queue(this, thread);
 428     if (_first != nullptr) {
 429       // The call to on_empty_queue may have temporarily unlocked the MCQ lock
 430       // so check again whether any tasks were added to the queue.
 431       break;
 432     }
 433 
 434     // If there are no compilation tasks and we can compile new jobs
 435     // (i.e., there is enough free space in the code cache) there is
 436     // no need to invoke the GC.
 437     // We need a timed wait here, since compiler threads can exit if compilation
 438     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 439     // is not critical and we do not want idle compiler threads to wake up too often.
 440     locker.wait(5*1000);
 441 
 442     if (UseDynamicNumberOfCompilerThreads && _first == nullptr) {
 443       // Still nothing to compile. Give caller a chance to stop this thread.
 444       if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr;
 445     }
 446   }
 447 
 448   if (CompileBroker::is_compilation_disabled_forever()) {
 449     return nullptr;
 450   }
 451 
 452   CompileTask* task;
 453   {
 454     NoSafepointVerifier nsv;
 455     task = CompilationPolicy::select_task(this, thread);
 456     if (task != nullptr) {
 457       task = task->select_for_compilation();
 458     }
 459   }
 460 
 461   if (task != nullptr) {
 462     // Save method pointers across unlock safepoint.  The task is removed from
 463     // the compilation queue, which is walked during RedefineClasses.
 464     Thread* thread = Thread::current();
 465     save_method = methodHandle(thread, task->method());
 466 
 467     remove(task);
 468   }
 469   purge_stale_tasks(); // may temporarily release MCQ lock
 470   return task;
 471 }
 472 
 473 // Clean & deallocate stale compile tasks.
 474 // Temporarily releases MethodCompileQueue lock.
 475 void CompileQueue::purge_stale_tasks() {
 476   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 477   if (_first_stale != nullptr) {
 478     // Stale tasks are purged when MCQ lock is released,
 479     // but _first_stale updates are protected by MCQ lock.
 480     // Once task processing starts and MCQ lock is released,
 481     // other compiler threads can reuse _first_stale.
 482     CompileTask* head = _first_stale;
 483     _first_stale = nullptr;
 484     {
 485       MutexUnlocker ul(MethodCompileQueue_lock);
 486       for (CompileTask* task = head; task != nullptr; ) {
 487         CompileTask* next_task = task->next();
 488         task->set_next(nullptr);
 489         CompileTaskWrapper ctw(task); // Frees the task
 490         task->set_failure_reason("stale task");
 491         task = next_task;
 492       }
 493     }
 494   }
 495 }
 496 
 497 void CompileQueue::remove(CompileTask* task) {
 498   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 499   if (task->prev() != nullptr) {
 500     task->prev()->set_next(task->next());
 501   } else {
 502     // max is the first element
 503     assert(task == _first, "Sanity");
 504     _first = task->next();
 505   }
 506 
 507   if (task->next() != nullptr) {
 508     task->next()->set_prev(task->prev());
 509   } else {
 510     // max is the last element
 511     assert(task == _last, "Sanity");
 512     _last = task->prev();
 513   }
 514   task->set_next(nullptr);
 515   task->set_prev(nullptr);
 516   --_size;
 517   ++_total_removed;
 518 }
 519 
 520 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 521   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 522   remove(task);
 523 
 524   // Enqueue the task for reclamation (should be done outside MCQ lock)
 525   task->set_next(_first_stale);
 526   task->set_prev(nullptr);
 527   _first_stale = task;
 528 }
 529 
 530 // methods in the compile queue need to be marked as used on the stack
 531 // so that they don't get reclaimed by Redefine Classes
 532 void CompileQueue::mark_on_stack() {
 533   CompileTask* task = _first;
 534   while (task != nullptr) {
 535     task->mark_on_stack();
 536     task = task->next();
 537   }
 538 }
 539 
 540 
 541 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 542   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 543   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 544   return nullptr;
 545 }
 546 
 547 CompileQueue* CompileBroker::c1_compile_queue() {
 548   return _c1_compile_queue;
 549 }
 550 
 551 CompileQueue* CompileBroker::c2_compile_queue() {
 552   return _c2_compile_queue;
 553 }
 554 
 555 void CompileBroker::print_compile_queues(outputStream* st) {
 556   st->print_cr("Current compiles: ");
 557 
 558   char buf[2000];
 559   int buflen = sizeof(buf);
 560   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 561 
 562   st->cr();
 563   if (_c1_compile_queue != nullptr) {
 564     _c1_compile_queue->print(st);
 565   }
 566   if (_c2_compile_queue != nullptr) {
 567     _c2_compile_queue->print(st);
 568   }
 569 }
 570 
 571 void CompileQueue::print(outputStream* st) {
 572   assert_locked_or_safepoint(MethodCompileQueue_lock);
 573   st->print_cr("%s:", name());
 574   CompileTask* task = _first;
 575   if (task == nullptr) {
 576     st->print_cr("Empty");
 577   } else {
 578     while (task != nullptr) {
 579       task->print(st, nullptr, true, true);
 580       task = task->next();
 581     }
 582   }
 583   st->cr();
 584 }
 585 
 586 void CompileQueue::print_tty() {
 587   stringStream ss;
 588   // Dump the compile queue into a buffer before locking the tty
 589   print(&ss);
 590   {
 591     ttyLocker ttyl;
 592     tty->print("%s", ss.freeze());
 593   }
 594 }
 595 
 596 CompilerCounters::CompilerCounters() {
 597   _current_method[0] = '\0';
 598   _compile_type = CompileBroker::no_compile;
 599 }
 600 
 601 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 602 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 603 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 604 //
 605 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 606 // so if c2 is used, it should be always registered first.
 607 // This function is called during vm initialization.
 608 static void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 609   ResourceMark rm;
 610   static bool first_registration = true;
 611   if (compiler_type == compiler_jvmci) {
 612     CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
 613     first_registration = false;
 614 #ifdef COMPILER2
 615   } else if (compiler_type == compiler_c2) {
 616     assert(first_registration, "invariant"); // c2 must be registered first.
 617     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 618       const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
 619       CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
 620     }
 621     first_registration = false;
 622 #endif // COMPILER2
 623   }
 624 }
 625 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 626 
 627 // ------------------------------------------------------------------
 628 // CompileBroker::compilation_init
 629 //
 630 // Initialize the Compilation object
 631 void CompileBroker::compilation_init(JavaThread* THREAD) {
 632   // No need to initialize compilation system if we do not use it.
 633   if (!UseCompiler) {
 634     return;
 635   }
 636   // Set the interface to the current compiler(s).
 637   _c1_count = CompilationPolicy::c1_count();
 638   _c2_count = CompilationPolicy::c2_count();
 639 
 640 #if INCLUDE_JVMCI
 641   if (EnableJVMCI) {
 642     // This is creating a JVMCICompiler singleton.
 643     JVMCICompiler* jvmci = new JVMCICompiler();
 644 
 645     if (UseJVMCICompiler) {
 646       _compilers[1] = jvmci;
 647       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 648         if (BootstrapJVMCI) {
 649           // JVMCI will bootstrap so give it more threads
 650           _c2_count = MIN2(32, os::active_processor_count());
 651         }
 652       } else {
 653         _c2_count = JVMCIThreads;
 654       }
 655       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 656       } else {
 657 #ifdef COMPILER1
 658         _c1_count = JVMCIHostThreads;
 659 #endif // COMPILER1
 660       }
 661     }
 662   }
 663 #endif // INCLUDE_JVMCI
 664 
 665 #ifdef COMPILER1
 666   if (_c1_count > 0) {
 667     _compilers[0] = new Compiler();
 668   }
 669 #endif // COMPILER1
 670 
 671 #ifdef COMPILER2
 672   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 673     if (_c2_count > 0) {
 674       _compilers[1] = new C2Compiler();
 675       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 676       // idToPhase mapping for c2 is in opto/phasetype.hpp
 677       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 678     }
 679   }
 680 #endif // COMPILER2
 681 
 682 #if INCLUDE_JVMCI
 683    // Register after c2 registration.
 684    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 685    if (EnableJVMCI) {
 686      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 687    }
 688 #endif // INCLUDE_JVMCI
 689 
 690   if (CompilerOracle::should_collect_memstat()) {
 691     CompilationMemoryStatistic::initialize();
 692   }
 693 
 694   // Start the compiler thread(s)
 695   init_compiler_threads();
 696   // totalTime performance counter is always created as it is required
 697   // by the implementation of java.lang.management.CompilationMXBean.
 698   {
 699     // Ensure OOM leads to vm_exit_during_initialization.
 700     EXCEPTION_MARK;
 701     _perf_total_compilation =
 702                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 703                                                  PerfData::U_Ticks, CHECK);
 704   }
 705 
 706   if (UsePerfData) {
 707 
 708     EXCEPTION_MARK;
 709 
 710     // create the jvmstat performance counters
 711     _perf_osr_compilation =
 712                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 713                                                  PerfData::U_Ticks, CHECK);
 714 
 715     _perf_standard_compilation =
 716                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 717                                                  PerfData::U_Ticks, CHECK);
 718 
 719     _perf_total_bailout_count =
 720                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 721                                                  PerfData::U_Events, CHECK);
 722 
 723     _perf_total_invalidated_count =
 724                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 725                                                  PerfData::U_Events, CHECK);
 726 
 727     _perf_total_compile_count =
 728                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 729                                                  PerfData::U_Events, CHECK);
 730     _perf_total_osr_compile_count =
 731                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 732                                                  PerfData::U_Events, CHECK);
 733 
 734     _perf_total_standard_compile_count =
 735                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 736                                                  PerfData::U_Events, CHECK);
 737 
 738     _perf_sum_osr_bytes_compiled =
 739                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 740                                                  PerfData::U_Bytes, CHECK);
 741 
 742     _perf_sum_standard_bytes_compiled =
 743                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 744                                                  PerfData::U_Bytes, CHECK);
 745 
 746     _perf_sum_nmethod_size =
 747                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 748                                                  PerfData::U_Bytes, CHECK);
 749 
 750     _perf_sum_nmethod_code_size =
 751                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 752                                                  PerfData::U_Bytes, CHECK);
 753 
 754     _perf_last_method =
 755                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 756                                        CompilerCounters::cmname_buffer_length,
 757                                        "", CHECK);
 758 
 759     _perf_last_failed_method =
 760             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 761                                        CompilerCounters::cmname_buffer_length,
 762                                        "", CHECK);
 763 
 764     _perf_last_invalidated_method =
 765         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 766                                      CompilerCounters::cmname_buffer_length,
 767                                      "", CHECK);
 768 
 769     _perf_last_compile_type =
 770              PerfDataManager::create_variable(SUN_CI, "lastType",
 771                                               PerfData::U_None,
 772                                               (jlong)CompileBroker::no_compile,
 773                                               CHECK);
 774 
 775     _perf_last_compile_size =
 776              PerfDataManager::create_variable(SUN_CI, "lastSize",
 777                                               PerfData::U_Bytes,
 778                                               (jlong)CompileBroker::no_compile,
 779                                               CHECK);
 780 
 781 
 782     _perf_last_failed_type =
 783              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 784                                               PerfData::U_None,
 785                                               (jlong)CompileBroker::no_compile,
 786                                               CHECK);
 787 
 788     _perf_last_invalidated_type =
 789          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 790                                           PerfData::U_None,
 791                                           (jlong)CompileBroker::no_compile,
 792                                           CHECK);
 793   }
 794 
 795   _initialized = true;
 796 }
 797 
 798 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) {
 799   CompilationPolicy::replay_training_at_init_loop(thread);
 800 }
 801 
 802 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 803 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 804 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
 805 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 806     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 807     bool enter_single_loop;
 808     {
 809       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 810       static int single_thread_count = 0;
 811       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 812     }
 813     if (enter_single_loop) {
 814       dt->deoptimize_objects_alot_loop_single();
 815     } else {
 816       dt->deoptimize_objects_alot_loop_all();
 817     }
 818   }
 819 
 820 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 821 // barrier targets a single thread which is selected round robin.
 822 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 823   HandleMark hm(this);
 824   while (true) {
 825     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 826       { // Begin new scope for escape barrier
 827         HandleMarkCleaner hmc(this);
 828         ResourceMark rm(this);
 829         EscapeBarrier eb(true, this, deoptee_thread);
 830         eb.deoptimize_objects(100);
 831       }
 832       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 833       sleep(DeoptimizeObjectsALotInterval);
 834     }
 835   }
 836 }
 837 
 838 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 839 // barrier targets all java threads in the vm at once.
 840 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 841   HandleMark hm(this);
 842   while (true) {
 843     { // Begin new scope for escape barrier
 844       HandleMarkCleaner hmc(this);
 845       ResourceMark rm(this);
 846       EscapeBarrier eb(true, this);
 847       eb.deoptimize_objects_all_threads();
 848     }
 849     // Now sleep after the escape barriers destructor resumed the java threads.
 850     sleep(DeoptimizeObjectsALotInterval);
 851   }
 852 }
 853 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 854 
 855 
 856 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
 857   Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
 858 
 859   if (java_lang_Thread::thread(thread_oop()) != nullptr) {
 860     assert(type == compiler_t, "should only happen with reused compiler threads");
 861     // The compiler thread hasn't actually exited yet so don't try to reuse it
 862     return nullptr;
 863   }
 864 
 865   JavaThread* new_thread = nullptr;
 866   switch (type) {
 867     case compiler_t:
 868       assert(comp != nullptr, "Compiler instance missing.");
 869       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 870         CompilerCounters* counters = new CompilerCounters();
 871         new_thread = new CompilerThread(queue, counters);
 872       }
 873       break;
 874 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 875     case deoptimizer_t:
 876       new_thread = new DeoptimizeObjectsALotThread();
 877       break;
 878 #endif // ASSERT
 879     case training_replay_t:
 880       new_thread = new TrainingReplayThread();
 881       break;
 882     default:
 883       ShouldNotReachHere();
 884   }
 885 
 886   // At this point the new CompilerThread data-races with this startup
 887   // thread (which is the main thread and NOT the VM thread).
 888   // This means Java bytecodes being executed at startup can
 889   // queue compile jobs which will run at whatever default priority the
 890   // newly created CompilerThread runs at.
 891 
 892 
 893   // At this point it may be possible that no osthread was created for the
 894   // JavaThread due to lack of resources. We will handle that failure below.
 895   // Also check new_thread so that static analysis is happy.
 896   if (new_thread != nullptr && new_thread->osthread() != nullptr) {
 897 
 898     if (type == compiler_t) {
 899       CompilerThread::cast(new_thread)->set_compiler(comp);
 900     }
 901 
 902     // Note that we cannot call os::set_priority because it expects Java
 903     // priorities and we are *explicitly* using OS priorities so that it's
 904     // possible to set the compiler thread priority higher than any Java
 905     // thread.
 906 
 907     int native_prio = CompilerThreadPriority;
 908     if (native_prio == -1) {
 909       if (UseCriticalCompilerThreadPriority) {
 910         native_prio = os::java_to_os_priority[CriticalPriority];
 911       } else {
 912         native_prio = os::java_to_os_priority[NearMaxPriority];
 913       }
 914     }
 915     os::set_native_priority(new_thread, native_prio);
 916 
 917     // Note that this only sets the JavaThread _priority field, which by
 918     // definition is limited to Java priorities and not OS priorities.
 919     JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
 920 
 921   } else { // osthread initialization failure
 922     if (UseDynamicNumberOfCompilerThreads && type == compiler_t
 923         && comp->num_compiler_threads() > 0) {
 924       // The new thread is not known to Thread-SMR yet so we can just delete.
 925       delete new_thread;
 926       return nullptr;
 927     } else {
 928       vm_exit_during_initialization("java.lang.OutOfMemoryError",
 929                                     os::native_thread_creation_failed_msg());
 930     }
 931   }
 932 
 933   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 934 
 935   return new_thread;
 936 }
 937 
 938 static bool trace_compiler_threads() {
 939   LogTarget(Debug, jit, thread) lt;
 940   return TraceCompilerThreads || lt.is_enabled();
 941 }
 942 
 943 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) {
 944   char name_buffer[256];
 945   os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i);
 946   Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL);
 947   return JNIHandles::make_global(thread_oop);
 948 }
 949 
 950 static void print_compiler_threads(stringStream& msg) {
 951   if (TraceCompilerThreads) {
 952     tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string());
 953   }
 954   LogTarget(Debug, jit, thread) lt;
 955   if (lt.is_enabled()) {
 956     LogStream ls(lt);
 957     ls.print_cr("%s", msg.as_string());
 958   }
 959 }
 960 
 961 void CompileBroker::init_compiler_threads() {
 962   // Ensure any exceptions lead to vm_exit_during_initialization.
 963   EXCEPTION_MARK;
 964 #if !defined(ZERO)
 965   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 966 #endif // !ZERO
 967   // Initialize the compilation queue
 968   if (_c2_count > 0) {
 969     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 970     _c2_compile_queue  = new CompileQueue(name);
 971     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 972     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 973   }
 974   if (_c1_count > 0) {
 975     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 976     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 977     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 978   }
 979 
 980   for (int i = 0; i < _c2_count; i++) {
 981     // Create a name for our thread.
 982     jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK);
 983     _compiler2_objects[i] = thread_handle;
 984     _compiler2_logs[i] = nullptr;
 985 
 986     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 987       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
 988       assert(ct != nullptr, "should have been handled for initial thread");
 989       _compilers[1]->set_num_compiler_threads(i + 1);
 990       if (trace_compiler_threads()) {
 991         ResourceMark rm;
 992         ThreadsListHandle tlh;  // name() depends on the TLH.
 993         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
 994         stringStream msg;
 995         msg.print("Added initial compiler thread %s", ct->name());
 996         print_compiler_threads(msg);
 997       }
 998     }
 999   }
1000 
1001   for (int i = 0; i < _c1_count; i++) {
1002     // Create a name for our thread.
1003     jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK);
1004     _compiler1_objects[i] = thread_handle;
1005     _compiler1_logs[i] = nullptr;
1006 
1007     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1008       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
1009       assert(ct != nullptr, "should have been handled for initial thread");
1010       _compilers[0]->set_num_compiler_threads(i + 1);
1011       if (trace_compiler_threads()) {
1012         ResourceMark rm;
1013         ThreadsListHandle tlh;  // name() depends on the TLH.
1014         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1015         stringStream msg;
1016         msg.print("Added initial compiler thread %s", ct->name());
1017         print_compiler_threads(msg);
1018       }
1019     }
1020   }
1021 
1022   if (UsePerfData) {
1023     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
1024   }
1025 
1026 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1027   if (DeoptimizeObjectsALot) {
1028     // Initialize and start the object deoptimizer threads
1029     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1030     for (int count = 0; count < total_count; count++) {
1031       Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK);
1032       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1033       make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD);
1034     }
1035   }
1036 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1037 }
1038 
1039 void CompileBroker::init_training_replay() {
1040   // Ensure any exceptions lead to vm_exit_during_initialization.
1041   EXCEPTION_MARK;
1042   if (TrainingData::have_data()) {
1043     Handle thread_oop = JavaThread::create_system_thread_object("Training replay thread", CHECK);
1044     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1045     make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD);
1046   }
1047 }
1048 
1049 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1050 
1051   int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0;
1052   const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4;
1053 
1054   // Quick check if we already have enough compiler threads without taking the lock.
1055   // Numbers may change concurrently, so we read them again after we have the lock.
1056   if (_c2_compile_queue != nullptr) {
1057     old_c2_count = get_c2_thread_count();
1058     new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread);
1059   }
1060   if (_c1_compile_queue != nullptr) {
1061     old_c1_count = get_c1_thread_count();
1062     new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread);
1063   }
1064   if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return;
1065 
1066   // Now, we do the more expensive operations.
1067   size_t free_memory = 0;
1068   // Return value ignored - defaulting to 0 on failure.
1069   (void)os::free_memory(free_memory);
1070   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1071   size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1072          available_cc_p  = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1073 
1074   // Only attempt to start additional threads if the lock is free.
1075   if (!CompileThread_lock->try_lock()) return;
1076 
1077   if (_c2_compile_queue != nullptr) {
1078     old_c2_count = get_c2_thread_count();
1079     new_c2_count = MIN4(_c2_count,
1080         _c2_compile_queue->size() / c2_tasks_per_thread,
1081         (int)(free_memory / (200*M)),
1082         (int)(available_cc_np / (128*K)));
1083 
1084     for (int i = old_c2_count; i < new_c2_count; i++) {
1085 #if INCLUDE_JVMCI
1086       if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) {
1087         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their
1088         // existence is completely hidden from the rest of the VM (and those compiler threads can't
1089         // call Java code to do the creation anyway).
1090         //
1091         // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we
1092         // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads.  For
1093         // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary
1094         // coupling with Java.
1095         if (!THREAD->can_call_java()) break;
1096         char name_buffer[256];
1097         os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1098         Handle thread_oop;
1099         {
1100           // We have to give up the lock temporarily for the Java calls.
1101           MutexUnlocker mu(CompileThread_lock);
1102           thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD);
1103         }
1104         if (HAS_PENDING_EXCEPTION) {
1105           if (trace_compiler_threads()) {
1106             ResourceMark rm;
1107             stringStream msg;
1108             msg.print_cr("JVMCI compiler thread creation failed:");
1109             PENDING_EXCEPTION->print_on(&msg);
1110             print_compiler_threads(msg);
1111           }
1112           CLEAR_PENDING_EXCEPTION;
1113           break;
1114         }
1115         // Check if another thread has beaten us during the Java calls.
1116         if (get_c2_thread_count() != i) break;
1117         jobject thread_handle = JNIHandles::make_global(thread_oop);
1118         assert(compiler2_object(i) == nullptr, "Old one must be released!");
1119         _compiler2_objects[i] = thread_handle;
1120       }
1121 #endif
1122       guarantee(compiler2_object(i) != nullptr, "Thread oop must exist");
1123       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1124       if (ct == nullptr) break;
1125       _compilers[1]->set_num_compiler_threads(i + 1);
1126       if (trace_compiler_threads()) {
1127         ResourceMark rm;
1128         ThreadsListHandle tlh;  // name() depends on the TLH.
1129         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1130         stringStream msg;
1131         msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)",
1132                   ct->name(), (int)(free_memory/M), (int)(available_cc_np/M));
1133         print_compiler_threads(msg);
1134       }
1135     }
1136   }
1137 
1138   if (_c1_compile_queue != nullptr) {
1139     old_c1_count = get_c1_thread_count();
1140     new_c1_count = MIN4(_c1_count,
1141         _c1_compile_queue->size() / c1_tasks_per_thread,
1142         (int)(free_memory / (100*M)),
1143         (int)(available_cc_p / (128*K)));
1144 
1145     for (int i = old_c1_count; i < new_c1_count; i++) {
1146       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1147       if (ct == nullptr) break;
1148       _compilers[0]->set_num_compiler_threads(i + 1);
1149       if (trace_compiler_threads()) {
1150         ResourceMark rm;
1151         ThreadsListHandle tlh;  // name() depends on the TLH.
1152         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1153         stringStream msg;
1154         msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)",
1155                   ct->name(), (int)(free_memory/M), (int)(available_cc_p/M));
1156         print_compiler_threads(msg);
1157       }
1158     }
1159   }
1160 
1161   CompileThread_lock->unlock();
1162 }
1163 
1164 
1165 /**
1166  * Set the methods on the stack as on_stack so that redefine classes doesn't
1167  * reclaim them. This method is executed at a safepoint.
1168  */
1169 void CompileBroker::mark_on_stack() {
1170   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1171   // Since we are at a safepoint, we do not need a lock to access
1172   // the compile queues.
1173   if (_c2_compile_queue != nullptr) {
1174     _c2_compile_queue->mark_on_stack();
1175   }
1176   if (_c1_compile_queue != nullptr) {
1177     _c1_compile_queue->mark_on_stack();
1178   }
1179 }
1180 
1181 // ------------------------------------------------------------------
1182 // CompileBroker::compile_method
1183 //
1184 // Request compilation of a method.
1185 void CompileBroker::compile_method_base(const methodHandle& method,
1186                                         int osr_bci,
1187                                         int comp_level,
1188                                         int hot_count,
1189                                         CompileTask::CompileReason compile_reason,
1190                                         bool blocking,
1191                                         Thread* thread) {
1192   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1193   assert(method->method_holder()->is_instance_klass(),
1194          "sanity check");
1195   assert(!method->method_holder()->is_not_initialized(),
1196          "method holder must be initialized");
1197   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1198 
1199   if (CIPrintRequests) {
1200     tty->print("request: ");
1201     method->print_short_name(tty);
1202     if (osr_bci != InvocationEntryBci) {
1203       tty->print(" osr_bci: %d", osr_bci);
1204     }
1205     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1206     if (hot_count > 0) {
1207       tty->print(" hot: yes");
1208     }
1209     tty->cr();
1210   }
1211 
1212   // A request has been made for compilation.  Before we do any
1213   // real work, check to see if the method has been compiled
1214   // in the meantime with a definitive result.
1215   if (compilation_is_complete(method, osr_bci, comp_level)) {
1216     return;
1217   }
1218 
1219 #ifndef PRODUCT
1220   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1221     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1222       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1223       return;
1224     }
1225   }
1226 #endif
1227 
1228   // If this method is already in the compile queue, then
1229   // we do not block the current thread.
1230   if (compilation_is_in_queue(method)) {
1231     // We may want to decay our counter a bit here to prevent
1232     // multiple denied requests for compilation.  This is an
1233     // open compilation policy issue. Note: The other possibility,
1234     // in the case that this is a blocking compile request, is to have
1235     // all subsequent blocking requesters wait for completion of
1236     // ongoing compiles. Note that in this case we'll need a protocol
1237     // for freeing the associated compile tasks. [Or we could have
1238     // a single static monitor on which all these waiters sleep.]
1239     return;
1240   }
1241 
1242   // Tiered policy requires MethodCounters to exist before adding a method to
1243   // the queue. Create if we don't have them yet.
1244   method->get_method_counters(thread);
1245 
1246   // Outputs from the following MutexLocker block:
1247   CompileTask* task     = nullptr;
1248   CompileQueue* queue  = compile_queue(comp_level);
1249 
1250   // Acquire our lock.
1251   {
1252     MutexLocker locker(thread, MethodCompileQueue_lock);
1253 
1254     // Make sure the method has not slipped into the queues since
1255     // last we checked; note that those checks were "fast bail-outs".
1256     // Here we need to be more careful, see 14012000 below.
1257     if (compilation_is_in_queue(method)) {
1258       return;
1259     }
1260 
1261     // We need to check again to see if the compilation has
1262     // completed.  A previous compilation may have registered
1263     // some result.
1264     if (compilation_is_complete(method, osr_bci, comp_level)) {
1265       return;
1266     }
1267 
1268     // We now know that this compilation is not pending, complete,
1269     // or prohibited.  Assign a compile_id to this compilation
1270     // and check to see if it is in our [Start..Stop) range.
1271     int compile_id = assign_compile_id(method, osr_bci);
1272     if (compile_id == 0) {
1273       // The compilation falls outside the allowed range.
1274       return;
1275     }
1276 
1277 #if INCLUDE_JVMCI
1278     if (UseJVMCICompiler && blocking) {
1279       // Don't allow blocking compiles for requests triggered by JVMCI.
1280       if (thread->is_Compiler_thread()) {
1281         blocking = false;
1282       }
1283 
1284       // In libjvmci, JVMCI initialization should not deadlock with other threads
1285       if (!UseJVMCINativeLibrary) {
1286         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1287         vframeStream vfst(JavaThread::cast(thread));
1288         for (; !vfst.at_end(); vfst.next()) {
1289           if (vfst.method()->is_static_initializer() ||
1290               (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1291                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1292             blocking = false;
1293             break;
1294           }
1295         }
1296 
1297         // Don't allow blocking compilation requests to JVMCI
1298         // if JVMCI itself is not yet initialized
1299         if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1300           blocking = false;
1301         }
1302       }
1303 
1304       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1305       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1306       // such as the DestroyJavaVM thread.
1307       if (JVMCI::in_shutdown()) {
1308         blocking = false;
1309       }
1310     }
1311 #endif // INCLUDE_JVMCI
1312 
1313     // We will enter the compilation in the queue.
1314     // 14012000: Note that this sets the queued_for_compile bits in
1315     // the target method. We can now reason that a method cannot be
1316     // queued for compilation more than once, as follows:
1317     // Before a thread queues a task for compilation, it first acquires
1318     // the compile queue lock, then checks if the method's queued bits
1319     // are set or it has already been compiled. Thus there can not be two
1320     // instances of a compilation task for the same method on the
1321     // compilation queue. Consider now the case where the compilation
1322     // thread has already removed a task for that method from the queue
1323     // and is in the midst of compiling it. In this case, the
1324     // queued_for_compile bits must be set in the method (and these
1325     // will be visible to the current thread, since the bits were set
1326     // under protection of the compile queue lock, which we hold now.
1327     // When the compilation completes, the compiler thread first sets
1328     // the compilation result and then clears the queued_for_compile
1329     // bits. Neither of these actions are protected by a barrier (or done
1330     // under the protection of a lock), so the only guarantee we have
1331     // (on machines with TSO (Total Store Order)) is that these values
1332     // will update in that order. As a result, the only combinations of
1333     // these bits that the current thread will see are, in temporal order:
1334     // <RESULT, QUEUE> :
1335     //     <0, 1> : in compile queue, but not yet compiled
1336     //     <1, 1> : compiled but queue bit not cleared
1337     //     <1, 0> : compiled and queue bit cleared
1338     // Because we first check the queue bits then check the result bits,
1339     // we are assured that we cannot introduce a duplicate task.
1340     // Note that if we did the tests in the reverse order (i.e. check
1341     // result then check queued bit), we could get the result bit before
1342     // the compilation completed, and the queue bit after the compilation
1343     // completed, and end up introducing a "duplicate" (redundant) task.
1344     // In that case, the compiler thread should first check if a method
1345     // has already been compiled before trying to compile it.
1346     // NOTE: in the event that there are multiple compiler threads and
1347     // there is de-optimization/recompilation, things will get hairy,
1348     // and in that case it's best to protect both the testing (here) of
1349     // these bits, and their updating (here and elsewhere) under a
1350     // common lock.
1351     task = create_compile_task(queue,
1352                                compile_id, method,
1353                                osr_bci, comp_level,
1354                                hot_count, compile_reason,
1355                                blocking);
1356   }
1357 
1358   if (blocking) {
1359     wait_for_completion(task);
1360   }
1361 }
1362 
1363 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1364                                        int comp_level,
1365                                        int hot_count,
1366                                        CompileTask::CompileReason compile_reason,
1367                                        TRAPS) {
1368   // Do nothing if compilebroker is not initialized or compiles are submitted on level none
1369   if (!_initialized || comp_level == CompLevel_none) {
1370     return nullptr;
1371   }
1372 
1373   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1374   assert(comp != nullptr, "Ensure we have a compiler");
1375 
1376 #if INCLUDE_JVMCI
1377   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1378     // JVMCI compilation is not yet initializable.
1379     return nullptr;
1380   }
1381 #endif
1382 
1383   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1384   // CompileBroker::compile_method can trap and can have pending async exception.
1385   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, compile_reason, directive, THREAD);
1386   DirectivesStack::release(directive);
1387   return nm;
1388 }
1389 
1390 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1391                                          int comp_level,
1392                                          int hot_count,
1393                                          CompileTask::CompileReason compile_reason,
1394                                          DirectiveSet* directive,
1395                                          TRAPS) {
1396 
1397   // make sure arguments make sense
1398   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1399   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1400   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1401   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1402   // return quickly if possible
1403 
1404   // lock, make sure that the compilation
1405   // isn't prohibited in a straightforward way.
1406   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1407   if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1408     return nullptr;
1409   }
1410 
1411   if (osr_bci == InvocationEntryBci) {
1412     // standard compilation
1413     nmethod* method_code = method->code();
1414     if (method_code != nullptr) {
1415       if (compilation_is_complete(method, osr_bci, comp_level)) {
1416         return method_code;
1417       }
1418     }
1419     if (method->is_not_compilable(comp_level)) {
1420       return nullptr;
1421     }
1422   } else {
1423     // osr compilation
1424     // We accept a higher level osr method
1425     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1426     if (nm != nullptr) return nm;
1427     if (method->is_not_osr_compilable(comp_level)) return nullptr;
1428   }
1429 
1430   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1431   // some prerequisites that are compiler specific
1432   if (comp->is_c2() || comp->is_jvmci()) {
1433     InternalOOMEMark iom(THREAD);
1434     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1435     // Resolve all classes seen in the signature of the method
1436     // we are compiling.
1437     Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1438   }
1439 
1440   // If the method is native, do the lookup in the thread requesting
1441   // the compilation. Native lookups can load code, which is not
1442   // permitted during compilation.
1443   //
1444   // Note: A native method implies non-osr compilation which is
1445   //       checked with an assertion at the entry of this method.
1446   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1447     address adr = NativeLookup::lookup(method, THREAD);
1448     if (HAS_PENDING_EXCEPTION) {
1449       // In case of an exception looking up the method, we just forget
1450       // about it. The interpreter will kick-in and throw the exception.
1451       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1452       CLEAR_PENDING_EXCEPTION;
1453       return nullptr;
1454     }
1455     assert(method->has_native_function(), "must have native code by now");
1456   }
1457 
1458   // RedefineClasses() has replaced this method; just return
1459   if (method->is_old()) {
1460     return nullptr;
1461   }
1462 
1463   // JVMTI -- post_compile_event requires jmethod_id() that may require
1464   // a lock the compiling thread can not acquire. Prefetch it here.
1465   if (JvmtiExport::should_post_compiled_method_load()) {
1466     method->jmethod_id();
1467   }
1468 
1469   // do the compilation
1470   if (method->is_native()) {
1471     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1472       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1473       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1474       //
1475       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1476       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1477       AdapterHandlerLibrary::create_native_wrapper(method);
1478     } else {
1479       return nullptr;
1480     }
1481   } else {
1482     // If the compiler is shut off due to code cache getting full
1483     // fail out now so blocking compiles dont hang the java thread
1484     if (!should_compile_new_jobs()) {
1485       return nullptr;
1486     }
1487     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1488     compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, is_blocking, THREAD);
1489   }
1490 
1491   // return requested nmethod
1492   // We accept a higher level osr method
1493   if (osr_bci == InvocationEntryBci) {
1494     return method->code();
1495   }
1496   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1497 }
1498 
1499 
1500 // ------------------------------------------------------------------
1501 // CompileBroker::compilation_is_complete
1502 //
1503 // See if compilation of this method is already complete.
1504 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1505                                             int                 osr_bci,
1506                                             int                 comp_level) {
1507   bool is_osr = (osr_bci != standard_entry_bci);
1508   if (is_osr) {
1509     if (method->is_not_osr_compilable(comp_level)) {
1510       return true;
1511     } else {
1512       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1513       return (result != nullptr);
1514     }
1515   } else {
1516     if (method->is_not_compilable(comp_level)) {
1517       return true;
1518     } else {
1519       nmethod* result = method->code();
1520       if (result == nullptr) return false;
1521       return comp_level == result->comp_level();
1522     }
1523   }
1524 }
1525 
1526 
1527 /**
1528  * See if this compilation is already requested.
1529  *
1530  * Implementation note: there is only a single "is in queue" bit
1531  * for each method.  This means that the check below is overly
1532  * conservative in the sense that an osr compilation in the queue
1533  * will block a normal compilation from entering the queue (and vice
1534  * versa).  This can be remedied by a full queue search to disambiguate
1535  * cases.  If it is deemed profitable, this may be done.
1536  */
1537 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1538   return method->queued_for_compilation();
1539 }
1540 
1541 // ------------------------------------------------------------------
1542 // CompileBroker::compilation_is_prohibited
1543 //
1544 // See if this compilation is not allowed.
1545 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1546   bool is_native = method->is_native();
1547   // Some compilers may not support the compilation of natives.
1548   AbstractCompiler *comp = compiler(comp_level);
1549   if (is_native && (!CICompileNatives || comp == nullptr)) {
1550     method->set_not_compilable_quietly("native methods not supported", comp_level);
1551     return true;
1552   }
1553 
1554   bool is_osr = (osr_bci != standard_entry_bci);
1555   // Some compilers may not support on stack replacement.
1556   if (is_osr && (!CICompileOSR || comp == nullptr)) {
1557     method->set_not_osr_compilable("OSR not supported", comp_level);
1558     return true;
1559   }
1560 
1561   // The method may be explicitly excluded by the user.
1562   double scale;
1563   if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) {
1564     bool quietly = CompilerOracle::be_quiet();
1565     if (PrintCompilation && !quietly) {
1566       // This does not happen quietly...
1567       ResourceMark rm;
1568       tty->print("### Excluding %s:%s",
1569                  method->is_native() ? "generation of native wrapper" : "compile",
1570                  (method->is_static() ? " static" : ""));
1571       method->print_short_name(tty);
1572       tty->cr();
1573     }
1574     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1575   }
1576 
1577   return false;
1578 }
1579 
1580 /**
1581  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1582  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1583  * The function also allows to generate separate compilation IDs for OSR compilations.
1584  */
1585 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1586 #ifdef ASSERT
1587   bool is_osr = (osr_bci != standard_entry_bci);
1588   int id;
1589   if (method->is_native()) {
1590     assert(!is_osr, "can't be osr");
1591     // Adapters, native wrappers and method handle intrinsics
1592     // should be generated always.
1593     return AtomicAccess::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1594   } else if (CICountOSR && is_osr) {
1595     id = AtomicAccess::add(&_osr_compilation_id, 1);
1596     if (CIStartOSR <= id && id < CIStopOSR) {
1597       return id;
1598     }
1599   } else {
1600     id = AtomicAccess::add(&_compilation_id, 1);
1601     if (CIStart <= id && id < CIStop) {
1602       return id;
1603     }
1604   }
1605 
1606   // Method was not in the appropriate compilation range.
1607   method->set_not_compilable_quietly("Not in requested compile id range");
1608   return 0;
1609 #else
1610   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1611   // only _compilation_id is incremented.
1612   return AtomicAccess::add(&_compilation_id, 1);
1613 #endif
1614 }
1615 
1616 // ------------------------------------------------------------------
1617 // CompileBroker::assign_compile_id_unlocked
1618 //
1619 // Public wrapper for assign_compile_id that acquires the needed locks
1620 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1621   MutexLocker locker(thread, MethodCompileQueue_lock);
1622   return assign_compile_id(method, osr_bci);
1623 }
1624 
1625 // ------------------------------------------------------------------
1626 // CompileBroker::create_compile_task
1627 //
1628 // Create a CompileTask object representing the current request for
1629 // compilation.  Add this task to the queue.
1630 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1631                                                 int                 compile_id,
1632                                                 const methodHandle& method,
1633                                                 int                 osr_bci,
1634                                                 int                 comp_level,
1635                                                 int                 hot_count,
1636                                                 CompileTask::CompileReason compile_reason,
1637                                                 bool                blocking) {
1638   CompileTask* new_task = new CompileTask(compile_id, method, osr_bci, comp_level,
1639                                           hot_count, compile_reason, blocking);
1640   queue->add(new_task);
1641   return new_task;
1642 }
1643 
1644 #if INCLUDE_JVMCI
1645 // The number of milliseconds to wait before checking if
1646 // JVMCI compilation has made progress.
1647 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1648 
1649 // The number of JVMCI compilation progress checks that must fail
1650 // before unblocking a thread waiting for a blocking compilation.
1651 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1652 
1653 /**
1654  * Waits for a JVMCI compiler to complete a given task. This thread
1655  * waits until either the task completes or it sees no JVMCI compilation
1656  * progress for N consecutive milliseconds where N is
1657  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1658  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1659  *
1660  * @return true if this thread needs to delete the task
1661  */
1662 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1663   assert(UseJVMCICompiler, "sanity");
1664   MonitorLocker ml(thread, CompileTaskWait_lock);
1665   int progress_wait_attempts = 0;
1666   jint thread_jvmci_compilation_ticks = 0;
1667   jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1668   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1669          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1670     JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1671 
1672     bool progress;
1673     if (jvmci_compile_state != nullptr) {
1674       jint ticks = jvmci_compile_state->compilation_ticks();
1675       progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1676       JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1677       thread_jvmci_compilation_ticks = ticks;
1678     } else {
1679       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1680       // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1681       // compilation ticks to determine whether JVMCI compilation
1682       // is still making progress through the JVMCI compiler queue.
1683       jint ticks = jvmci->global_compilation_ticks();
1684       progress = (ticks - global_jvmci_compilation_ticks) != 0;
1685       JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1686       global_jvmci_compilation_ticks = ticks;
1687     }
1688 
1689     if (!progress) {
1690       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1691         if (PrintCompilation) {
1692           task->print(tty, "wait for blocking compilation timed out");
1693         }
1694         JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1695         break;
1696       }
1697     } else {
1698       progress_wait_attempts = 0;
1699     }
1700   }
1701   task->clear_waiter();
1702   return task->is_complete();
1703 }
1704 #endif
1705 
1706 /**
1707  *  Wait for the compilation task to complete.
1708  */
1709 void CompileBroker::wait_for_completion(CompileTask* task) {
1710   if (CIPrintCompileQueue) {
1711     ttyLocker ttyl;
1712     tty->print_cr("BLOCKING FOR COMPILE");
1713   }
1714 
1715   assert(task->is_blocking(), "can only wait on blocking task");
1716 
1717   JavaThread* thread = JavaThread::current();
1718 
1719   methodHandle method(thread, task->method());
1720   bool free_task;
1721 #if INCLUDE_JVMCI
1722   AbstractCompiler* comp = compiler(task->comp_level());
1723   if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) {
1724     // It may return before compilation is completed.
1725     // Note that libjvmci should not pre-emptively unblock
1726     // a thread waiting for a compilation as it does not call
1727     // Java code and so is not deadlock prone like jarjvmci.
1728     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1729   } else
1730 #endif
1731   {
1732     free_task = true;
1733     // Wait until the task is complete or compilation is shut down.
1734     MonitorLocker ml(thread, CompileTaskWait_lock);
1735     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1736       ml.wait();
1737     }
1738   }
1739 
1740   // It is harmless to check this status without the lock, because
1741   // completion is a stable property.
1742   if (!task->is_complete()) {
1743     // Task is not complete, likely because we are exiting for compilation
1744     // shutdown. The task can still be reached through the queue, or executed
1745     // by some compiler thread. There is no coordination with either MCQ lock
1746     // holders or compilers, therefore we cannot delete the task.
1747     //
1748     // This will leave task allocated, which leaks it. At this (degraded) point,
1749     // it is less risky to abandon the task, rather than attempting a more
1750     // complicated deletion protocol.
1751     free_task = false;
1752   }
1753 
1754   if (free_task) {
1755     assert(task->is_complete(), "Compilation should have completed");
1756     assert(task->next() == nullptr && task->prev() == nullptr,
1757            "Completed task should not be in the queue");
1758 
1759     // By convention, the waiter is responsible for deleting a
1760     // blocking CompileTask. Since there is only one waiter ever
1761     // waiting on a CompileTask, we know that no one else will
1762     // be using this CompileTask; we can delete it.
1763     delete task;
1764   }
1765 }
1766 
1767 void CompileBroker::wait_for_no_active_tasks() {
1768   CompileTask::wait_for_no_active_tasks();
1769 }
1770 
1771 /**
1772  * Initialize compiler thread(s) + compiler object(s). The postcondition
1773  * of this function is that the compiler runtimes are initialized and that
1774  * compiler threads can start compiling.
1775  */
1776 bool CompileBroker::init_compiler_runtime() {
1777   CompilerThread* thread = CompilerThread::current();
1778   AbstractCompiler* comp = thread->compiler();
1779   // Final sanity check - the compiler object must exist
1780   guarantee(comp != nullptr, "Compiler object must exist");
1781 
1782   {
1783     // Must switch to native to allocate ci_env
1784     ThreadToNativeFromVM ttn(thread);
1785     ciEnv ci_env((CompileTask*)nullptr);
1786     // Cache Jvmti state
1787     ci_env.cache_jvmti_state();
1788     // Cache DTrace flags
1789     ci_env.cache_dtrace_flags();
1790 
1791     // Switch back to VM state to do compiler initialization
1792     ThreadInVMfromNative tv(thread);
1793 
1794     // Perform per-thread and global initializations
1795     comp->initialize();
1796   }
1797 
1798   if (comp->is_failed()) {
1799     disable_compilation_forever();
1800     // If compiler initialization failed, no compiler thread that is specific to a
1801     // particular compiler runtime will ever start to compile methods.
1802     shutdown_compiler_runtime(comp, thread);
1803     return false;
1804   }
1805 
1806   // C1 specific check
1807   if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) {
1808     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1809     return false;
1810   }
1811 
1812   return true;
1813 }
1814 
1815 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) {
1816   BufferBlob* blob = thread->get_buffer_blob();
1817   if (blob != nullptr) {
1818     blob->purge();
1819     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1820     CodeCache::free(blob);
1821   }
1822 }
1823 
1824 /**
1825  * If C1 and/or C2 initialization failed, we shut down all compilation.
1826  * We do this to keep things simple. This can be changed if it ever turns
1827  * out to be a problem.
1828  */
1829 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1830   free_buffer_blob_if_allocated(thread);
1831 
1832   if (comp->should_perform_shutdown()) {
1833     // There are two reasons for shutting down the compiler
1834     // 1) compiler runtime initialization failed
1835     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1836     warning("%s initialization failed. Shutting down all compilers", comp->name());
1837 
1838     // Only one thread per compiler runtime object enters here
1839     // Set state to shut down
1840     comp->set_shut_down();
1841 
1842     // Delete all queued compilation tasks to make compiler threads exit faster.
1843     if (_c1_compile_queue != nullptr) {
1844       _c1_compile_queue->delete_all();
1845     }
1846 
1847     if (_c2_compile_queue != nullptr) {
1848       _c2_compile_queue->delete_all();
1849     }
1850 
1851     // Set flags so that we continue execution with using interpreter only.
1852     UseCompiler    = false;
1853     UseInterpreter = true;
1854 
1855     // We could delete compiler runtimes also. However, there are references to
1856     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1857     // fail. This can be done later if necessary.
1858   }
1859 }
1860 
1861 /**
1862  * Helper function to create new or reuse old CompileLog.
1863  */
1864 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1865   if (!LogCompilation) return nullptr;
1866 
1867   AbstractCompiler *compiler = ct->compiler();
1868   bool c1 = compiler->is_c1();
1869   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1870   assert(compiler_objects != nullptr, "must be initialized at this point");
1871   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1872   assert(logs != nullptr, "must be initialized at this point");
1873   int count = c1 ? _c1_count : _c2_count;
1874 
1875   // Find Compiler number by its threadObj.
1876   oop compiler_obj = ct->threadObj();
1877   int compiler_number = 0;
1878   bool found = false;
1879   for (; compiler_number < count; compiler_number++) {
1880     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1881       found = true;
1882       break;
1883     }
1884   }
1885   assert(found, "Compiler must exist at this point");
1886 
1887   // Determine pointer for this thread's log.
1888   CompileLog** log_ptr = &logs[compiler_number];
1889 
1890   // Return old one if it exists.
1891   CompileLog* log = *log_ptr;
1892   if (log != nullptr) {
1893     ct->init_log(log);
1894     return log;
1895   }
1896 
1897   // Create a new one and remember it.
1898   init_compiler_thread_log();
1899   log = ct->log();
1900   *log_ptr = log;
1901   return log;
1902 }
1903 
1904 // ------------------------------------------------------------------
1905 // CompileBroker::compiler_thread_loop
1906 //
1907 // The main loop run by a CompilerThread.
1908 void CompileBroker::compiler_thread_loop() {
1909   CompilerThread* thread = CompilerThread::current();
1910   CompileQueue* queue = thread->queue();
1911   // For the thread that initializes the ciObjectFactory
1912   // this resource mark holds all the shared objects
1913   ResourceMark rm;
1914 
1915   // First thread to get here will initialize the compiler interface
1916 
1917   {
1918     ASSERT_IN_VM;
1919     MutexLocker only_one (thread, CompileThread_lock);
1920     if (!ciObjectFactory::is_initialized()) {
1921       ciObjectFactory::initialize();
1922     }
1923   }
1924 
1925   // Open a log.
1926   CompileLog* log = get_log(thread);
1927   if (log != nullptr) {
1928     log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'",
1929                     thread->name(),
1930                     os::current_thread_id(),
1931                     os::current_process_id());
1932     log->stamp();
1933     log->end_elem();
1934   }
1935 
1936   if (!thread->init_compilation_timeout()) {
1937     return;
1938   }
1939 
1940   // If compiler thread/runtime initialization fails, exit the compiler thread
1941   if (!init_compiler_runtime()) {
1942     return;
1943   }
1944 
1945   thread->start_idle_timer();
1946 
1947   // Poll for new compilation tasks as long as the JVM runs. Compilation
1948   // should only be disabled if something went wrong while initializing the
1949   // compiler runtimes. This, in turn, should not happen. The only known case
1950   // when compiler runtime initialization fails is if there is not enough free
1951   // space in the code cache to generate the necessary stubs, etc.
1952   while (!is_compilation_disabled_forever()) {
1953     // We need this HandleMark to avoid leaking VM handles.
1954     HandleMark hm(thread);
1955 
1956     CompileTask* task = queue->get(thread);
1957     if (task == nullptr) {
1958       if (UseDynamicNumberOfCompilerThreads) {
1959         // Access compiler_count under lock to enforce consistency.
1960         MutexLocker only_one(CompileThread_lock);
1961         if (can_remove(thread, true)) {
1962           if (trace_compiler_threads()) {
1963             ResourceMark rm;
1964             stringStream msg;
1965             msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1966                       thread->name(), thread->idle_time_millis());
1967             print_compiler_threads(msg);
1968           }
1969 
1970           // Notify compiler that the compiler thread is about to stop
1971           thread->compiler()->stopping_compiler_thread(thread);
1972 
1973           free_buffer_blob_if_allocated(thread);
1974           return; // Stop this thread.
1975         }
1976       }
1977     } else {
1978       // Assign the task to the current thread.  Mark this compilation
1979       // thread as active for the profiler.
1980       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1981       // occurs after fetching the compile task off the queue.
1982       CompileTaskWrapper ctw(task);
1983       methodHandle method(thread, task->method());
1984 
1985       // Never compile a method if breakpoints are present in it
1986       if (method()->number_of_breakpoints() == 0) {
1987         // Compile the method.
1988         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1989           invoke_compiler_on_method(task);
1990           thread->start_idle_timer();
1991         } else {
1992           // After compilation is disabled, remove remaining methods from queue
1993           method->clear_queued_for_compilation();
1994           task->set_failure_reason("compilation is disabled");
1995         }
1996       } else {
1997         task->set_failure_reason("breakpoints are present");
1998       }
1999 
2000       if (UseDynamicNumberOfCompilerThreads) {
2001         possibly_add_compiler_threads(thread);
2002         assert(!thread->has_pending_exception(), "should have been handled");
2003       }
2004     }
2005   }
2006 
2007   // Shut down compiler runtime
2008   shutdown_compiler_runtime(thread->compiler(), thread);
2009 }
2010 
2011 // ------------------------------------------------------------------
2012 // CompileBroker::init_compiler_thread_log
2013 //
2014 // Set up state required by +LogCompilation.
2015 void CompileBroker::init_compiler_thread_log() {
2016     CompilerThread* thread = CompilerThread::current();
2017     char  file_name[4*K];
2018     FILE* fp = nullptr;
2019     intx thread_id = os::current_thread_id();
2020     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
2021       const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr);
2022       if (dir == nullptr) {
2023         jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log",
2024                      thread_id, os::current_process_id());
2025       } else {
2026         jio_snprintf(file_name, sizeof(file_name),
2027                      "%s%shs_c%zu_pid%u.log", dir,
2028                      os::file_separator(), thread_id, os::current_process_id());
2029       }
2030 
2031       fp = os::fopen(file_name, "wt");
2032       if (fp != nullptr) {
2033         if (LogCompilation && Verbose) {
2034           tty->print_cr("Opening compilation log %s", file_name);
2035         }
2036         CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
2037         if (log == nullptr) {
2038           fclose(fp);
2039           return;
2040         }
2041         thread->init_log(log);
2042 
2043         if (xtty != nullptr) {
2044           ttyLocker ttyl;
2045           // Record any per thread log files
2046           xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name);
2047         }
2048         return;
2049       }
2050     }
2051     warning("Cannot open log file: %s", file_name);
2052 }
2053 
2054 void CompileBroker::log_metaspace_failure() {
2055   const char* message = "some methods may not be compiled because metaspace "
2056                         "is out of memory";
2057   if (CompilationLog::log() != nullptr) {
2058     CompilationLog::log()->log_metaspace_failure(message);
2059   }
2060   if (PrintCompilation) {
2061     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2062   }
2063 }
2064 
2065 
2066 // ------------------------------------------------------------------
2067 // CompileBroker::set_should_block
2068 //
2069 // Set _should_block.
2070 // Call this from the VM, with Threads_lock held and a safepoint requested.
2071 void CompileBroker::set_should_block() {
2072   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2073   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2074 #ifndef PRODUCT
2075   if (PrintCompilation && (Verbose || WizardMode))
2076     tty->print_cr("notifying compiler thread pool to block");
2077 #endif
2078   _should_block = true;
2079 }
2080 
2081 // ------------------------------------------------------------------
2082 // CompileBroker::maybe_block
2083 //
2084 // Call this from the compiler at convenient points, to poll for _should_block.
2085 void CompileBroker::maybe_block() {
2086   if (_should_block) {
2087 #ifndef PRODUCT
2088     if (PrintCompilation && (Verbose || WizardMode))
2089       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2090 #endif
2091     // If we are executing a task during the request to block, report the task
2092     // before disappearing.
2093     CompilerThread* thread = CompilerThread::current();
2094     if (thread != nullptr) {
2095       CompileTask* task = thread->task();
2096       if (task != nullptr) {
2097         if (PrintCompilation) {
2098           task->print(tty, "blocked");
2099         }
2100         task->print_ul("blocked");
2101       }
2102     }
2103     // Go to VM state and block for final VM shutdown safepoint.
2104     ThreadInVMfromNative tivfn(JavaThread::current());
2105     assert(false, "Should never unblock from TIVNM entry");
2106   }
2107 }
2108 
2109 // wrapper for CodeCache::print_summary()
2110 static void codecache_print(bool detailed)
2111 {
2112   stringStream s;
2113   // Dump code cache  into a buffer before locking the tty,
2114   {
2115     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2116     CodeCache::print_summary(&s, detailed);
2117   }
2118   ttyLocker ttyl;
2119   tty->print("%s", s.freeze());
2120 }
2121 
2122 // wrapper for CodeCache::print_summary() using outputStream
2123 static void codecache_print(outputStream* out, bool detailed) {
2124   stringStream s;
2125 
2126   // Dump code cache into a buffer
2127   {
2128     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2129     CodeCache::print_summary(&s, detailed);
2130   }
2131 
2132   char* remaining_log = s.as_string();
2133   while (*remaining_log != '\0') {
2134     char* eol = strchr(remaining_log, '\n');
2135     if (eol == nullptr) {
2136       out->print_cr("%s", remaining_log);
2137       remaining_log = remaining_log + strlen(remaining_log);
2138     } else {
2139       *eol = '\0';
2140       out->print_cr("%s", remaining_log);
2141       remaining_log = eol + 1;
2142     }
2143   }
2144 }
2145 
2146 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2147                                          int compilable, const char* failure_reason) {
2148   if (!AbortVMOnCompilationFailure) {
2149     return;
2150   }
2151   if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2152     fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2153   }
2154   if (compilable == ciEnv::MethodCompilable_never) {
2155     fatal("Never compilable: %s", failure_reason);
2156   }
2157 }
2158 
2159 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2160   assert(task != nullptr, "invariant");
2161   CompilerEvent::CompilationEvent::post(event,
2162                                         task->compile_id(),
2163                                         task->compiler()->type(),
2164                                         task->method(),
2165                                         task->comp_level(),
2166                                         task->is_success(),
2167                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2168                                         task->nm_total_size(),
2169                                         task->num_inlined_bytecodes(),
2170                                         task->arena_bytes());
2171 }
2172 
2173 int DirectivesStack::_depth = 0;
2174 CompilerDirectives* DirectivesStack::_top = nullptr;
2175 CompilerDirectives* DirectivesStack::_bottom = nullptr;
2176 
2177 // Acquires Compilation_lock and waits for it to be notified
2178 // as long as WhiteBox::compilation_locked is true.
2179 static void whitebox_lock_compilation() {
2180   MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2181   while (WhiteBox::compilation_locked) {
2182     locker.wait();
2183   }
2184 }
2185 
2186 // ------------------------------------------------------------------
2187 // CompileBroker::invoke_compiler_on_method
2188 //
2189 // Compile a method.
2190 //
2191 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2192   task->print_ul();
2193   elapsedTimer time;
2194 
2195   DirectiveSet* directive = task->directive();
2196   if (directive->PrintCompilationOption) {
2197     ResourceMark rm;
2198     task->print_tty();
2199   }
2200 
2201   CompilerThread* thread = CompilerThread::current();
2202   ResourceMark rm(thread);
2203 
2204   if (CompilationLog::log() != nullptr) {
2205     CompilationLog::log()->log_compile(thread, task);
2206   }
2207 
2208   // Common flags.
2209   int compile_id = task->compile_id();
2210   int osr_bci = task->osr_bci();
2211   bool is_osr = (osr_bci != standard_entry_bci);
2212   bool should_log = (thread->log() != nullptr);
2213   bool should_break = false;
2214   const int task_level = task->comp_level();
2215   AbstractCompiler* comp = task->compiler();
2216   {
2217     // create the handle inside it's own block so it can't
2218     // accidentally be referenced once the thread transitions to
2219     // native.  The NoHandleMark before the transition should catch
2220     // any cases where this occurs in the future.
2221     methodHandle method(thread, task->method());
2222 
2223     assert(!method->is_native(), "no longer compile natives");
2224 
2225     // Update compile information when using perfdata.
2226     if (UsePerfData) {
2227       update_compile_perf_data(thread, method, is_osr);
2228     }
2229 
2230     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2231   }
2232 
2233   should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2234   if (should_log && !directive->LogOption) {
2235     should_log = false;
2236   }
2237 
2238   // Allocate a new set of JNI handles.
2239   JNIHandleMark jhm(thread);
2240   Method* target_handle = task->method();
2241   int compilable = ciEnv::MethodCompilable;
2242   const char* failure_reason = nullptr;
2243   bool failure_reason_on_C_heap = false;
2244   const char* retry_message = nullptr;
2245 
2246 #if INCLUDE_JVMCI
2247   if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) {
2248     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2249 
2250     TraceTime t1("compilation", &time);
2251     EventCompilation event;
2252     JVMCICompileState compile_state(task, jvmci);
2253     JVMCIRuntime *runtime = nullptr;
2254 
2255     if (JVMCI::in_shutdown()) {
2256       failure_reason = "in JVMCI shutdown";
2257       retry_message = "not retryable";
2258       compilable = ciEnv::MethodCompilable_never;
2259     } else if (compile_state.target_method_is_old()) {
2260       // Skip redefined methods
2261       failure_reason = "redefined method";
2262       retry_message = "not retryable";
2263       compilable = ciEnv::MethodCompilable_never;
2264     } else {
2265       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2266       if (env.init_error() != JNI_OK) {
2267         const char* msg = env.init_error_msg();
2268         failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)",
2269                                     env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI);
2270         bool reason_on_C_heap = true;
2271         // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it
2272         // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime.
2273         bool retryable = env.init_error() == JNI_ENOMEM;
2274         compile_state.set_failure(retryable, failure_reason, reason_on_C_heap);
2275       }
2276       if (failure_reason == nullptr) {
2277         if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2278           // Must switch to native to block
2279           ThreadToNativeFromVM ttn(thread);
2280           whitebox_lock_compilation();
2281         }
2282         methodHandle method(thread, target_handle);
2283         runtime = env.runtime();
2284         runtime->compile_method(&env, jvmci, method, osr_bci);
2285 
2286         failure_reason = compile_state.failure_reason();
2287         failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2288         if (!compile_state.retryable()) {
2289           retry_message = "not retryable";
2290           compilable = ciEnv::MethodCompilable_not_at_tier;
2291         }
2292         if (!task->is_success()) {
2293           assert(failure_reason != nullptr, "must specify failure_reason");
2294         }
2295       }
2296     }
2297     if (!task->is_success() && !JVMCI::in_shutdown()) {
2298       handle_compile_error(thread, task, nullptr, compilable, failure_reason);
2299     }
2300     if (event.should_commit()) {
2301       post_compilation_event(event, task);
2302     }
2303 
2304     if (runtime != nullptr) {
2305       runtime->post_compile(thread);
2306     }
2307   } else
2308 #endif // INCLUDE_JVMCI
2309   {
2310     NoHandleMark  nhm;
2311     ThreadToNativeFromVM ttn(thread);
2312 
2313     ciEnv ci_env(task);
2314     if (should_break) {
2315       ci_env.set_break_at_compile(true);
2316     }
2317     if (should_log) {
2318       ci_env.set_log(thread->log());
2319     }
2320     assert(thread->env() == &ci_env, "set by ci_env");
2321     // The thread-env() field is cleared in ~CompileTaskWrapper.
2322 
2323     // Cache Jvmti state
2324     bool method_is_old = ci_env.cache_jvmti_state();
2325 
2326     // Skip redefined methods
2327     if (method_is_old) {
2328       ci_env.record_method_not_compilable("redefined method", true);
2329     }
2330 
2331     // Cache DTrace flags
2332     ci_env.cache_dtrace_flags();
2333 
2334     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2335 
2336     TraceTime t1("compilation", &time);
2337     EventCompilation event;
2338 
2339     if (comp == nullptr) {
2340       ci_env.record_method_not_compilable("no compiler");
2341     } else if (!ci_env.failing()) {
2342       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2343         whitebox_lock_compilation();
2344       }
2345       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2346 
2347       /* Repeat compilation without installing code for profiling purposes */
2348       int repeat_compilation_count = directive->RepeatCompilationOption;
2349       while (repeat_compilation_count > 0) {
2350         ResourceMark rm(thread);
2351         task->print_ul("NO CODE INSTALLED");
2352         thread->timeout()->reset();
2353         comp->compile_method(&ci_env, target, osr_bci, false, directive);
2354         repeat_compilation_count--;
2355       }
2356     }
2357 
2358 
2359     if (!ci_env.failing() && !task->is_success()) {
2360       assert(ci_env.failure_reason() != nullptr, "expect failure reason");
2361       assert(false, "compiler should always document failure: %s", ci_env.failure_reason());
2362       // The compiler elected, without comment, not to register a result.
2363       // Do not attempt further compilations of this method.
2364       ci_env.record_method_not_compilable("compile failed");
2365     }
2366 
2367     // Copy this bit to the enclosing block:
2368     compilable = ci_env.compilable();
2369 
2370     if (ci_env.failing()) {
2371       // Duplicate the failure reason string, so that it outlives ciEnv
2372       failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler);
2373       failure_reason_on_C_heap = true;
2374       retry_message = ci_env.retry_message();
2375       ci_env.report_failure(failure_reason);
2376     }
2377 
2378     if (ci_env.failing()) {
2379       handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2380     }
2381     if (event.should_commit()) {
2382       post_compilation_event(event, task);
2383     }
2384   }
2385 
2386   if (failure_reason != nullptr) {
2387     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2388     if (CompilationLog::log() != nullptr) {
2389       CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2390     }
2391     if (PrintCompilation || directive->PrintCompilationOption) {
2392       FormatBufferResource msg = retry_message != nullptr ?
2393         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2394         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2395       task->print(tty, msg);
2396     }
2397   }
2398 
2399   DirectivesStack::release(directive);
2400 
2401   methodHandle method(thread, task->method());
2402 
2403   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2404 
2405   collect_statistics(thread, time, task);
2406 
2407   if (PrintCompilation && PrintCompilation2) {
2408     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2409     tty->print("%4d ", compile_id);    // print compilation number
2410     tty->print("%s ", (is_osr ? "%" : " "));
2411     if (task->is_success()) {
2412       tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2413     }
2414     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2415   }
2416 
2417   Log(compilation, codecache) log;
2418   if (log.is_debug()) {
2419     LogStream ls(log.debug());
2420     codecache_print(&ls, /* detailed= */ false);
2421   }
2422   if (PrintCodeCacheOnCompilation) {
2423     codecache_print(/* detailed= */ false);
2424   }
2425   // Disable compilation, if required.
2426   switch (compilable) {
2427   case ciEnv::MethodCompilable_never:
2428     if (is_osr)
2429       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2430     else
2431       method->set_not_compilable_quietly("MethodCompilable_never");
2432     break;
2433   case ciEnv::MethodCompilable_not_at_tier:
2434     if (is_osr)
2435       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2436     else
2437       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2438     break;
2439   }
2440 
2441   // Note that the queued_for_compilation bits are cleared without
2442   // protection of a mutex. [They were set by the requester thread,
2443   // when adding the task to the compile queue -- at which time the
2444   // compile queue lock was held. Subsequently, we acquired the compile
2445   // queue lock to get this task off the compile queue; thus (to belabour
2446   // the point somewhat) our clearing of the bits must be occurring
2447   // only after the setting of the bits. See also 14012000 above.
2448   method->clear_queued_for_compilation();
2449 }
2450 
2451 /**
2452  * The CodeCache is full. Print warning and disable compilation.
2453  * Schedule code cache cleaning so compilation can continue later.
2454  * This function needs to be called only from CodeCache::allocate(),
2455  * since we currently handle a full code cache uniformly.
2456  */
2457 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2458   UseInterpreter = true;
2459   if (UseCompiler || AlwaysCompileLoopMethods ) {
2460     if (xtty != nullptr) {
2461       stringStream s;
2462       // Dump code cache state into a buffer before locking the tty,
2463       // because log_state() will use locks causing lock conflicts.
2464       CodeCache::log_state(&s);
2465       // Lock to prevent tearing
2466       ttyLocker ttyl;
2467       xtty->begin_elem("code_cache_full");
2468       xtty->print("%s", s.freeze());
2469       xtty->stamp();
2470       xtty->end_elem();
2471     }
2472 
2473 #ifndef PRODUCT
2474     if (ExitOnFullCodeCache) {
2475       codecache_print(/* detailed= */ true);
2476       before_exit(JavaThread::current());
2477       exit_globals(); // will delete tty
2478       vm_direct_exit(1);
2479     }
2480 #endif
2481     if (UseCodeCacheFlushing) {
2482       // Since code cache is full, immediately stop new compiles
2483       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2484         log_info(codecache)("Code cache is full - disabling compilation");
2485       }
2486     } else {
2487       disable_compilation_forever();
2488     }
2489 
2490     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2491   }
2492 }
2493 
2494 // ------------------------------------------------------------------
2495 // CompileBroker::update_compile_perf_data
2496 //
2497 // Record this compilation for debugging purposes.
2498 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2499   ResourceMark rm;
2500   char* method_name = method->name()->as_C_string();
2501   char current_method[CompilerCounters::cmname_buffer_length];
2502   size_t maxLen = CompilerCounters::cmname_buffer_length;
2503 
2504   const char* class_name = method->method_holder()->name()->as_C_string();
2505 
2506   size_t s1len = strlen(class_name);
2507   size_t s2len = strlen(method_name);
2508 
2509   // check if we need to truncate the string
2510   if (s1len + s2len + 2 > maxLen) {
2511 
2512     // the strategy is to lop off the leading characters of the
2513     // class name and the trailing characters of the method name.
2514 
2515     if (s2len + 2 > maxLen) {
2516       // lop of the entire class name string, let snprintf handle
2517       // truncation of the method name.
2518       class_name += s1len; // null string
2519     }
2520     else {
2521       // lop off the extra characters from the front of the class name
2522       class_name += ((s1len + s2len + 2) - maxLen);
2523     }
2524   }
2525 
2526   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2527 
2528   int last_compile_type = normal_compile;
2529   if (CICountOSR && is_osr) {
2530     last_compile_type = osr_compile;
2531   } else if (CICountNative && method->is_native()) {
2532     last_compile_type = native_compile;
2533   }
2534 
2535   CompilerCounters* counters = thread->counters();
2536   counters->set_current_method(current_method);
2537   counters->set_compile_type((jlong) last_compile_type);
2538 }
2539 
2540 // ------------------------------------------------------------------
2541 // CompileBroker::collect_statistics
2542 //
2543 // Collect statistics about the compilation.
2544 
2545 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2546   bool success = task->is_success();
2547   methodHandle method (thread, task->method());
2548   int compile_id = task->compile_id();
2549   bool is_osr = (task->osr_bci() != standard_entry_bci);
2550   const int comp_level = task->comp_level();
2551   CompilerCounters* counters = thread->counters();
2552 
2553   MutexLocker locker(CompileStatistics_lock);
2554 
2555   // _perf variables are production performance counters which are
2556   // updated regardless of the setting of the CITime and CITimeEach flags
2557   //
2558 
2559   // account all time, including bailouts and failures in this counter;
2560   // C1 and C2 counters are counting both successful and unsuccessful compiles
2561   _t_total_compilation.add(time);
2562 
2563   // Update compilation times. Used by the implementation of JFR CompilerStatistics
2564   // and java.lang.management.CompilationMXBean.
2565   _perf_total_compilation->inc(time.ticks());
2566   _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time);
2567 
2568   if (!success) {
2569     _total_bailout_count++;
2570     if (UsePerfData) {
2571       _perf_last_failed_method->set_value(counters->current_method());
2572       _perf_last_failed_type->set_value(counters->compile_type());
2573       _perf_total_bailout_count->inc();
2574     }
2575     _t_bailedout_compilation.add(time);
2576   } else if (!task->is_success()) {
2577     if (UsePerfData) {
2578       _perf_last_invalidated_method->set_value(counters->current_method());
2579       _perf_last_invalidated_type->set_value(counters->compile_type());
2580       _perf_total_invalidated_count->inc();
2581     }
2582     _total_invalidated_count++;
2583     _t_invalidated_compilation.add(time);
2584   } else {
2585     // Compilation succeeded
2586     if (CITime) {
2587       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2588       if (is_osr) {
2589         _t_osr_compilation.add(time);
2590         _sum_osr_bytes_compiled += bytes_compiled;
2591       } else {
2592         _t_standard_compilation.add(time);
2593         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2594       }
2595 
2596       // Collect statistic per compilation level
2597       if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2598         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2599         if (is_osr) {
2600           stats->_osr.update(time, bytes_compiled);
2601         } else {
2602           stats->_standard.update(time, bytes_compiled);
2603         }
2604         stats->_nmethods_size += task->nm_total_size();
2605         stats->_nmethods_code_size += task->nm_insts_size();
2606       } else {
2607         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2608       }
2609 
2610       // Collect statistic per compiler
2611       AbstractCompiler* comp = compiler(comp_level);
2612       if (comp) {
2613         CompilerStatistics* stats = comp->stats();
2614         if (is_osr) {
2615           stats->_osr.update(time, bytes_compiled);
2616         } else {
2617           stats->_standard.update(time, bytes_compiled);
2618         }
2619         stats->_nmethods_size += task->nm_total_size();
2620         stats->_nmethods_code_size += task->nm_insts_size();
2621       } else { // if (!comp)
2622         assert(false, "Compiler object must exist");
2623       }
2624     }
2625 
2626     if (UsePerfData) {
2627       // save the name of the last method compiled
2628       _perf_last_method->set_value(counters->current_method());
2629       _perf_last_compile_type->set_value(counters->compile_type());
2630       _perf_last_compile_size->set_value(method->code_size() +
2631                                          task->num_inlined_bytecodes());
2632       if (is_osr) {
2633         _perf_osr_compilation->inc(time.ticks());
2634         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2635       } else {
2636         _perf_standard_compilation->inc(time.ticks());
2637         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2638       }
2639     }
2640 
2641     if (CITimeEach) {
2642       double compile_time = time.seconds();
2643       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2644       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2645                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2646     }
2647 
2648     // Collect counts of successful compilations
2649     _sum_nmethod_size      += task->nm_total_size();
2650     _sum_nmethod_code_size += task->nm_insts_size();
2651     _total_compile_count++;
2652 
2653     if (UsePerfData) {
2654       _perf_sum_nmethod_size->inc(     task->nm_total_size());
2655       _perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2656       _perf_total_compile_count->inc();
2657     }
2658 
2659     if (is_osr) {
2660       if (UsePerfData) _perf_total_osr_compile_count->inc();
2661       _total_osr_compile_count++;
2662     } else {
2663       if (UsePerfData) _perf_total_standard_compile_count->inc();
2664       _total_standard_compile_count++;
2665     }
2666   }
2667   // set the current method for the thread to null
2668   if (UsePerfData) counters->set_current_method("");
2669 }
2670 
2671 const char* CompileBroker::compiler_name(int comp_level) {
2672   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2673   if (comp == nullptr) {
2674     return "no compiler";
2675   } else {
2676     return (comp->name());
2677   }
2678 }
2679 
2680 jlong CompileBroker::total_compilation_ticks() {
2681   return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0;
2682 }
2683 
2684 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2685   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}",
2686                 name, stats->bytes_per_second(),
2687                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2688                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2689                 stats->_nmethods_size, stats->_nmethods_code_size);
2690 }
2691 
2692 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2693   if (per_compiler) {
2694     if (aggregate) {
2695       tty->cr();
2696       tty->print_cr("Individual compiler times (for compiled methods only)");
2697       tty->print_cr("------------------------------------------------");
2698       tty->cr();
2699     }
2700     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2701       AbstractCompiler* comp = _compilers[i];
2702       if (comp != nullptr) {
2703         print_times(comp->name(), comp->stats());
2704       }
2705     }
2706     if (aggregate) {
2707       tty->cr();
2708       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2709       tty->print_cr("------------------------------------------------");
2710       tty->cr();
2711     }
2712     char tier_name[256];
2713     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
2714       CompilerStatistics* stats = &_stats_per_level[tier-1];
2715       os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
2716       print_times(tier_name, stats);
2717     }
2718   }
2719 
2720   if (!aggregate) {
2721     return;
2722   }
2723 
2724   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2725   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2726   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2727 
2728   uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2729   uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2730 
2731   uint standard_compile_count = CompileBroker::_total_standard_compile_count;
2732   uint osr_compile_count = CompileBroker::_total_osr_compile_count;
2733   uint total_compile_count = CompileBroker::_total_compile_count;
2734   uint total_bailout_count = CompileBroker::_total_bailout_count;
2735   uint total_invalidated_count = CompileBroker::_total_invalidated_count;
2736 
2737   uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size;
2738   uint nmethods_size = CompileBroker::_sum_nmethod_size;
2739 
2740   tty->cr();
2741   tty->print_cr("Accumulated compiler times");
2742   tty->print_cr("----------------------------------------------------------");
2743                //0000000000111111111122222222223333333333444444444455555555556666666666
2744                //0123456789012345678901234567890123456789012345678901234567890123456789
2745   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2746   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2747                 standard_compilation.seconds(),
2748                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2749   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2750                 CompileBroker::_t_bailedout_compilation.seconds(),
2751                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2752   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2753                 osr_compilation.seconds(),
2754                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2755   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2756                 CompileBroker::_t_invalidated_compilation.seconds(),
2757                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2758 
2759   AbstractCompiler *comp = compiler(CompLevel_simple);
2760   if (comp != nullptr) {
2761     tty->cr();
2762     comp->print_timers();
2763   }
2764   comp = compiler(CompLevel_full_optimization);
2765   if (comp != nullptr) {
2766     tty->cr();
2767     comp->print_timers();
2768   }
2769 #if INCLUDE_JVMCI
2770   if (EnableJVMCI) {
2771     JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
2772     if (jvmci_comp != nullptr && jvmci_comp != comp) {
2773       tty->cr();
2774       jvmci_comp->print_timers();
2775     }
2776   }
2777 #endif
2778 
2779   tty->cr();
2780   tty->print_cr("  Total compiled methods    : %8u methods", total_compile_count);
2781   tty->print_cr("    Standard compilation    : %8u methods", standard_compile_count);
2782   tty->print_cr("    On stack replacement    : %8u methods", osr_compile_count);
2783   uint tcb = osr_bytes_compiled + standard_bytes_compiled;
2784   tty->print_cr("  Total compiled bytecodes  : %8u bytes", tcb);
2785   tty->print_cr("    Standard compilation    : %8u bytes", standard_bytes_compiled);
2786   tty->print_cr("    On stack replacement    : %8u bytes", osr_bytes_compiled);
2787   double tcs = total_compilation.seconds();
2788   uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs);
2789   tty->print_cr("  Average compilation speed : %8u bytes/s", bps);
2790   tty->cr();
2791   tty->print_cr("  nmethod code size         : %8u bytes", nmethods_code_size);
2792   tty->print_cr("  nmethod total size        : %8u bytes", nmethods_size);
2793 }
2794 
2795 // Print general/accumulated JIT information.
2796 void CompileBroker::print_info(outputStream *out) {
2797   if (out == nullptr) out = tty;
2798   out->cr();
2799   out->print_cr("======================");
2800   out->print_cr("   General JIT info   ");
2801   out->print_cr("======================");
2802   out->cr();
2803   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2804   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2805   out->cr();
2806   out->print_cr("CodeCache overview");
2807   out->print_cr("--------------------------------------------------------");
2808   out->cr();
2809   out->print_cr("         Reserved size : %7zu KB", CodeCache::max_capacity() / K);
2810   out->print_cr("        Committed size : %7zu KB", CodeCache::capacity() / K);
2811   out->print_cr("  Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K);
2812   out->cr();
2813 }
2814 
2815 // Note: tty_lock must not be held upon entry to this function.
2816 //       Print functions called from herein do "micro-locking" on tty_lock.
2817 //       That's a tradeoff which keeps together important blocks of output.
2818 //       At the same time, continuous tty_lock hold time is kept in check,
2819 //       preventing concurrently printing threads from stalling a long time.
2820 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2821   TimeStamp ts_total;
2822   TimeStamp ts_global;
2823   TimeStamp ts;
2824 
2825   bool allFun = !strcmp(function, "all");
2826   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2827   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2828   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2829   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2830   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2831   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2832   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2833   bool discard = !strcmp(function, "discard") || allFun;
2834 
2835   if (out == nullptr) {
2836     out = tty;
2837   }
2838 
2839   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2840     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2841     out->cr();
2842     return;
2843   }
2844 
2845   ts_total.update(); // record starting point
2846 
2847   if (aggregate) {
2848     print_info(out);
2849   }
2850 
2851   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2852   // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
2853   // When we request individual parts of the analysis via the jcmd interface, it is possible
2854   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2855   // updated the aggregated data. We will then see a modified, but again consistent, view
2856   // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
2857   // a lock across user interaction.
2858 
2859   // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
2860   // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
2861   // leading to an unnecessarily long hold time of the other locks we acquired before.
2862   ts.update(); // record starting point
2863   MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
2864   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2865 
2866   // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
2867   // Unfortunately, such protection is not sufficient:
2868   // When a new nmethod is created via ciEnv::register_method(), the
2869   // Compile_lock is taken first. After some initializations,
2870   // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
2871   // immediately (after finalizing the oop references). To lock out concurrent
2872   // modifiers, we have to grab both locks as well in the described sequence.
2873   //
2874   // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
2875   // for the entire duration of aggregation and printing. That makes sure we see
2876   // a consistent picture and do not run into issues caused by concurrent alterations.
2877   bool should_take_Compile_lock   = !SafepointSynchronize::is_at_safepoint() &&
2878                                     !Compile_lock->owned_by_self();
2879   bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
2880                                     !CodeCache_lock->owned_by_self();
2881   bool take_global_lock_1   =  allFun && should_take_Compile_lock;
2882   bool take_global_lock_2   =  allFun && should_take_CodeCache_lock;
2883   bool take_function_lock_1 = !allFun && should_take_Compile_lock;
2884   bool take_function_lock_2 = !allFun && should_take_CodeCache_lock;
2885   bool take_global_locks    = take_global_lock_1 || take_global_lock_2;
2886   bool take_function_locks  = take_function_lock_1 || take_function_lock_2;
2887 
2888   ts_global.update(); // record starting point
2889 
2890   ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag);
2891   ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag);
2892   if (take_global_locks) {
2893     out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2894     ts_global.update(); // record starting point
2895   }
2896 
2897   if (aggregate) {
2898     ts.update(); // record starting point
2899     ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1,  Mutex::_safepoint_check_flag);
2900     ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag);
2901     if (take_function_locks) {
2902       out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2903     }
2904 
2905     ts.update(); // record starting point
2906     CodeCache::aggregate(out, granularity);
2907     if (take_function_locks) {
2908       out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2909     }
2910   }
2911 
2912   if (usedSpace) CodeCache::print_usedSpace(out);
2913   if (freeSpace) CodeCache::print_freeSpace(out);
2914   if (methodCount) CodeCache::print_count(out);
2915   if (methodSpace) CodeCache::print_space(out);
2916   if (methodAge) CodeCache::print_age(out);
2917   if (methodNames) {
2918     if (allFun) {
2919       // print_names() can only be used safely if the locks have been continuously held
2920       // since aggregation begin. That is true only for function "all".
2921       CodeCache::print_names(out);
2922     } else {
2923       out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
2924     }
2925   }
2926   if (discard) CodeCache::discard(out);
2927 
2928   if (take_global_locks) {
2929     out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2930   }
2931   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2932 }