1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/cdsConfig.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/codeHeapState.hpp" 32 #include "code/dependencyContext.hpp" 33 #include "compiler/compilationLog.hpp" 34 #include "compiler/compilationMemoryStatistic.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/compileLog.hpp" 38 #include "compiler/compilerEvent.hpp" 39 #include "compiler/compilerOracle.hpp" 40 #include "compiler/directivesParser.hpp" 41 #include "gc/shared/memAllocator.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "jvm.h" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/allocation.inline.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/method.inline.hpp" 51 #include "oops/methodData.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/nativeLookup.hpp" 55 #include "prims/whitebox.hpp" 56 #include "runtime/atomicAccess.hpp" 57 #include "runtime/escapeBarrier.hpp" 58 #include "runtime/globals_extension.hpp" 59 #include "runtime/handles.inline.hpp" 60 #include "runtime/init.hpp" 61 #include "runtime/interfaceSupport.inline.hpp" 62 #include "runtime/java.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/jniHandles.inline.hpp" 65 #include "runtime/os.hpp" 66 #include "runtime/perfData.hpp" 67 #include "runtime/safepointVerifiers.hpp" 68 #include "runtime/sharedRuntime.hpp" 69 #include "runtime/threads.hpp" 70 #include "runtime/threadSMR.hpp" 71 #include "runtime/timerTrace.hpp" 72 #include "runtime/vframe.inline.hpp" 73 #include "utilities/debug.hpp" 74 #include "utilities/dtrace.hpp" 75 #include "utilities/events.hpp" 76 #include "utilities/formatBuffer.hpp" 77 #include "utilities/macros.hpp" 78 #ifdef COMPILER1 79 #include "c1/c1_Compiler.hpp" 80 #endif 81 #ifdef COMPILER2 82 #include "opto/c2compiler.hpp" 83 #endif 84 #if INCLUDE_JVMCI 85 #include "jvmci/jvmciEnv.hpp" 86 #include "jvmci/jvmciRuntime.hpp" 87 #endif 88 89 #ifdef DTRACE_ENABLED 90 91 // Only bother with this argument setup if dtrace is available 92 93 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 94 { \ 95 Symbol* klass_name = (method)->klass_name(); \ 96 Symbol* name = (method)->name(); \ 97 Symbol* signature = (method)->signature(); \ 98 HOTSPOT_METHOD_COMPILE_BEGIN( \ 99 (char *) comp_name, strlen(comp_name), \ 100 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 101 (char *) name->bytes(), name->utf8_length(), \ 102 (char *) signature->bytes(), signature->utf8_length()); \ 103 } 104 105 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 106 { \ 107 Symbol* klass_name = (method)->klass_name(); \ 108 Symbol* name = (method)->name(); \ 109 Symbol* signature = (method)->signature(); \ 110 HOTSPOT_METHOD_COMPILE_END( \ 111 (char *) comp_name, strlen(comp_name), \ 112 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 113 (char *) name->bytes(), name->utf8_length(), \ 114 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 115 } 116 117 #else // ndef DTRACE_ENABLED 118 119 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 120 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 121 122 #endif // ndef DTRACE_ENABLED 123 124 bool CompileBroker::_initialized = false; 125 volatile bool CompileBroker::_should_block = false; 126 volatile int CompileBroker::_print_compilation_warning = 0; 127 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 128 129 // The installed compiler(s) 130 AbstractCompiler* CompileBroker::_compilers[2]; 131 132 // The maximum numbers of compiler threads to be determined during startup. 133 int CompileBroker::_c1_count = 0; 134 int CompileBroker::_c2_count = 0; 135 136 // An array of compiler names as Java String objects 137 jobject* CompileBroker::_compiler1_objects = nullptr; 138 jobject* CompileBroker::_compiler2_objects = nullptr; 139 140 CompileLog** CompileBroker::_compiler1_logs = nullptr; 141 CompileLog** CompileBroker::_compiler2_logs = nullptr; 142 143 // These counters are used to assign an unique ID to each compilation. 144 volatile jint CompileBroker::_compilation_id = 0; 145 volatile jint CompileBroker::_osr_compilation_id = 0; 146 volatile jint CompileBroker::_native_compilation_id = 0; 147 148 // Performance counters 149 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 150 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 151 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 152 153 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 154 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 155 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 156 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 157 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 158 159 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 160 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 161 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 162 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 163 164 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 165 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 166 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 167 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 168 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 169 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 170 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 171 172 // Timers and counters for generating statistics 173 elapsedTimer CompileBroker::_t_total_compilation; 174 elapsedTimer CompileBroker::_t_osr_compilation; 175 elapsedTimer CompileBroker::_t_standard_compilation; 176 elapsedTimer CompileBroker::_t_invalidated_compilation; 177 elapsedTimer CompileBroker::_t_bailedout_compilation; 178 179 uint CompileBroker::_total_bailout_count = 0; 180 uint CompileBroker::_total_invalidated_count = 0; 181 uint CompileBroker::_total_compile_count = 0; 182 uint CompileBroker::_total_osr_compile_count = 0; 183 uint CompileBroker::_total_standard_compile_count = 0; 184 uint CompileBroker::_total_compiler_stopped_count = 0; 185 uint CompileBroker::_total_compiler_restarted_count = 0; 186 187 uint CompileBroker::_sum_osr_bytes_compiled = 0; 188 uint CompileBroker::_sum_standard_bytes_compiled = 0; 189 uint CompileBroker::_sum_nmethod_size = 0; 190 uint CompileBroker::_sum_nmethod_code_size = 0; 191 192 jlong CompileBroker::_peak_compilation_time = 0; 193 194 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 195 196 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 197 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 198 199 bool compileBroker_init() { 200 if (LogEvents) { 201 CompilationLog::init(); 202 } 203 204 // init directives stack, adding default directive 205 DirectivesStack::init(); 206 207 if (DirectivesParser::has_file()) { 208 return DirectivesParser::parse_from_flag(); 209 } else if (CompilerDirectivesPrint) { 210 // Print default directive even when no other was added 211 DirectivesStack::print(tty); 212 } 213 214 return true; 215 } 216 217 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 218 CompilerThread* thread = CompilerThread::current(); 219 thread->set_task(task); 220 CompileLog* log = thread->log(); 221 thread->timeout()->arm(); 222 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 223 } 224 225 CompileTaskWrapper::~CompileTaskWrapper() { 226 CompilerThread* thread = CompilerThread::current(); 227 228 // First, disarm the timeout. This still relies on the underlying task. 229 thread->timeout()->disarm(); 230 231 CompileTask* task = thread->task(); 232 CompileLog* log = thread->log(); 233 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 234 thread->set_task(nullptr); 235 thread->set_env(nullptr); 236 if (task->is_blocking()) { 237 bool free_task = false; 238 { 239 MutexLocker notifier(thread, CompileTaskWait_lock); 240 task->mark_complete(); 241 #if INCLUDE_JVMCI 242 if (CompileBroker::compiler(task->comp_level())->is_jvmci()) { 243 if (!task->has_waiter()) { 244 // The waiting thread timed out and thus did not delete the task. 245 free_task = true; 246 } 247 task->set_blocking_jvmci_compile_state(nullptr); 248 } 249 #endif 250 if (!free_task) { 251 // Notify the waiting thread that the compilation has completed 252 // so that it can free the task. 253 CompileTaskWait_lock->notify_all(); 254 } 255 } 256 if (free_task) { 257 // The task can only be deleted once the task lock is released. 258 delete task; 259 } 260 } else { 261 task->mark_complete(); 262 263 // By convention, the compiling thread is responsible for deleting 264 // a non-blocking CompileTask. 265 delete task; 266 } 267 } 268 269 /** 270 * Check if a CompilerThread can be removed and update count if requested. 271 */ 272 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 273 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 274 if (!ReduceNumberOfCompilerThreads) return false; 275 276 AbstractCompiler *compiler = ct->compiler(); 277 int compiler_count = compiler->num_compiler_threads(); 278 bool c1 = compiler->is_c1(); 279 280 // Keep at least 1 compiler thread of each type. 281 if (compiler_count < 2) return false; 282 283 // Keep thread alive for at least some time. 284 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 285 286 #if INCLUDE_JVMCI 287 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 288 // Handles for JVMCI thread objects may get released concurrently. 289 if (do_it) { 290 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 291 } else { 292 // Skip check if it's the last thread and let caller check again. 293 return true; 294 } 295 } 296 #endif 297 298 // We only allow the last compiler thread of each type to get removed. 299 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 300 : compiler2_object(compiler_count - 1); 301 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 302 if (do_it) { 303 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 304 compiler->set_num_compiler_threads(compiler_count - 1); 305 #if INCLUDE_JVMCI 306 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 307 // Old j.l.Thread object can die when no longer referenced elsewhere. 308 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 309 _compiler2_objects[compiler_count - 1] = nullptr; 310 } 311 #endif 312 } 313 return true; 314 } 315 return false; 316 } 317 318 /** 319 * Add a CompileTask to a CompileQueue. 320 */ 321 void CompileQueue::add(CompileTask* task) { 322 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 323 324 task->set_next(nullptr); 325 task->set_prev(nullptr); 326 327 if (_last == nullptr) { 328 // The compile queue is empty. 329 assert(_first == nullptr, "queue is empty"); 330 _first = task; 331 _last = task; 332 } else { 333 // Append the task to the queue. 334 assert(_last->next() == nullptr, "not last"); 335 _last->set_next(task); 336 task->set_prev(_last); 337 _last = task; 338 } 339 ++_size; 340 ++_total_added; 341 if (_size > _peak_size) { 342 _peak_size = _size; 343 } 344 345 // Mark the method as being in the compile queue. 346 task->method()->set_queued_for_compilation(); 347 348 if (CIPrintCompileQueue) { 349 print_tty(); 350 } 351 352 if (LogCompilation && xtty != nullptr) { 353 task->log_task_queued(); 354 } 355 356 if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) { 357 CompileTrainingData* ctd = CompileTrainingData::make(task); 358 if (ctd != nullptr) { 359 task->set_training_data(ctd); 360 } 361 } 362 363 // Notify CompilerThreads that a task is available. 364 MethodCompileQueue_lock->notify_all(); 365 } 366 367 /** 368 * Empties compilation queue by deleting all compilation tasks. 369 * Furthermore, the method wakes up all threads that are waiting 370 * on a compilation task to finish. This can happen if background 371 * compilation is disabled. 372 */ 373 void CompileQueue::delete_all() { 374 MutexLocker mu(MethodCompileQueue_lock); 375 CompileTask* current = _first; 376 377 // Iterate over all tasks in the compile queue 378 while (current != nullptr) { 379 CompileTask* next = current->next(); 380 if (!current->is_blocking()) { 381 // Non-blocking task. No one is waiting for it, delete it now. 382 delete current; 383 } else { 384 // Blocking task. By convention, it is the waiters responsibility 385 // to delete the task. We cannot delete it here, because we do not 386 // coordinate with waiters. We will notify the waiters later. 387 } 388 current = next; 389 } 390 _first = nullptr; 391 _last = nullptr; 392 393 // Wake up all blocking task waiters to deal with remaining blocking 394 // tasks. This is not a performance sensitive path, so we do this 395 // unconditionally to simplify coding/testing. 396 { 397 MonitorLocker ml(Thread::current(), CompileTaskWait_lock); 398 ml.notify_all(); 399 } 400 401 // Wake up all threads that block on the queue. 402 MethodCompileQueue_lock->notify_all(); 403 } 404 405 /** 406 * Get the next CompileTask from a CompileQueue 407 */ 408 CompileTask* CompileQueue::get(CompilerThread* thread) { 409 // save methods from RedefineClasses across safepoint 410 // across MethodCompileQueue_lock below. 411 methodHandle save_method; 412 413 MonitorLocker locker(MethodCompileQueue_lock); 414 // If _first is null we have no more compile jobs. There are two reasons for 415 // having no compile jobs: First, we compiled everything we wanted. Second, 416 // we ran out of code cache so compilation has been disabled. In the latter 417 // case we perform code cache sweeps to free memory such that we can re-enable 418 // compilation. 419 while (_first == nullptr) { 420 // Exit loop if compilation is disabled forever 421 if (CompileBroker::is_compilation_disabled_forever()) { 422 return nullptr; 423 } 424 425 AbstractCompiler* compiler = thread->compiler(); 426 guarantee(compiler != nullptr, "Compiler object must exist"); 427 compiler->on_empty_queue(this, thread); 428 if (_first != nullptr) { 429 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 430 // so check again whether any tasks were added to the queue. 431 break; 432 } 433 434 // If there are no compilation tasks and we can compile new jobs 435 // (i.e., there is enough free space in the code cache) there is 436 // no need to invoke the GC. 437 // We need a timed wait here, since compiler threads can exit if compilation 438 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 439 // is not critical and we do not want idle compiler threads to wake up too often. 440 locker.wait(5*1000); 441 442 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 443 // Still nothing to compile. Give caller a chance to stop this thread. 444 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 445 } 446 } 447 448 if (CompileBroker::is_compilation_disabled_forever()) { 449 return nullptr; 450 } 451 452 CompileTask* task; 453 { 454 NoSafepointVerifier nsv; 455 task = CompilationPolicy::select_task(this, thread); 456 if (task != nullptr) { 457 task = task->select_for_compilation(); 458 } 459 } 460 461 if (task != nullptr) { 462 // Save method pointers across unlock safepoint. The task is removed from 463 // the compilation queue, which is walked during RedefineClasses. 464 Thread* thread = Thread::current(); 465 save_method = methodHandle(thread, task->method()); 466 467 remove(task); 468 } 469 purge_stale_tasks(); // may temporarily release MCQ lock 470 return task; 471 } 472 473 // Clean & deallocate stale compile tasks. 474 // Temporarily releases MethodCompileQueue lock. 475 void CompileQueue::purge_stale_tasks() { 476 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 477 if (_first_stale != nullptr) { 478 // Stale tasks are purged when MCQ lock is released, 479 // but _first_stale updates are protected by MCQ lock. 480 // Once task processing starts and MCQ lock is released, 481 // other compiler threads can reuse _first_stale. 482 CompileTask* head = _first_stale; 483 _first_stale = nullptr; 484 { 485 MutexUnlocker ul(MethodCompileQueue_lock); 486 for (CompileTask* task = head; task != nullptr; ) { 487 CompileTask* next_task = task->next(); 488 task->set_next(nullptr); 489 CompileTaskWrapper ctw(task); // Frees the task 490 task->set_failure_reason("stale task"); 491 task = next_task; 492 } 493 } 494 } 495 } 496 497 void CompileQueue::remove(CompileTask* task) { 498 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 499 if (task->prev() != nullptr) { 500 task->prev()->set_next(task->next()); 501 } else { 502 // max is the first element 503 assert(task == _first, "Sanity"); 504 _first = task->next(); 505 } 506 507 if (task->next() != nullptr) { 508 task->next()->set_prev(task->prev()); 509 } else { 510 // max is the last element 511 assert(task == _last, "Sanity"); 512 _last = task->prev(); 513 } 514 task->set_next(nullptr); 515 task->set_prev(nullptr); 516 --_size; 517 ++_total_removed; 518 } 519 520 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 521 assert(MethodCompileQueue_lock->owned_by_self(), "must own lock"); 522 remove(task); 523 524 // Enqueue the task for reclamation (should be done outside MCQ lock) 525 task->set_next(_first_stale); 526 task->set_prev(nullptr); 527 _first_stale = task; 528 } 529 530 // methods in the compile queue need to be marked as used on the stack 531 // so that they don't get reclaimed by Redefine Classes 532 void CompileQueue::mark_on_stack() { 533 CompileTask* task = _first; 534 while (task != nullptr) { 535 task->mark_on_stack(); 536 task = task->next(); 537 } 538 } 539 540 541 CompileQueue* CompileBroker::compile_queue(int comp_level) { 542 if (is_c2_compile(comp_level)) return _c2_compile_queue; 543 if (is_c1_compile(comp_level)) return _c1_compile_queue; 544 return nullptr; 545 } 546 547 CompileQueue* CompileBroker::c1_compile_queue() { 548 return _c1_compile_queue; 549 } 550 551 CompileQueue* CompileBroker::c2_compile_queue() { 552 return _c2_compile_queue; 553 } 554 555 void CompileBroker::print_compile_queues(outputStream* st) { 556 st->print_cr("Current compiles: "); 557 558 char buf[2000]; 559 int buflen = sizeof(buf); 560 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 561 562 st->cr(); 563 if (_c1_compile_queue != nullptr) { 564 _c1_compile_queue->print(st); 565 } 566 if (_c2_compile_queue != nullptr) { 567 _c2_compile_queue->print(st); 568 } 569 } 570 571 void CompileQueue::print(outputStream* st) { 572 assert_locked_or_safepoint(MethodCompileQueue_lock); 573 st->print_cr("%s:", name()); 574 CompileTask* task = _first; 575 if (task == nullptr) { 576 st->print_cr("Empty"); 577 } else { 578 while (task != nullptr) { 579 task->print(st, nullptr, true, true); 580 task = task->next(); 581 } 582 } 583 st->cr(); 584 } 585 586 void CompileQueue::print_tty() { 587 stringStream ss; 588 // Dump the compile queue into a buffer before locking the tty 589 print(&ss); 590 { 591 ttyLocker ttyl; 592 tty->print("%s", ss.freeze()); 593 } 594 } 595 596 CompilerCounters::CompilerCounters() { 597 _current_method[0] = '\0'; 598 _compile_type = CompileBroker::no_compile; 599 } 600 601 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 602 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 603 // in compiler/compilerEvent.cpp) and registers it with its serializer. 604 // 605 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 606 // so if c2 is used, it should be always registered first. 607 // This function is called during vm initialization. 608 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 609 ResourceMark rm; 610 static bool first_registration = true; 611 if (compiler_type == compiler_jvmci) { 612 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 613 first_registration = false; 614 #ifdef COMPILER2 615 } else if (compiler_type == compiler_c2) { 616 assert(first_registration, "invariant"); // c2 must be registered first. 617 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 618 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 619 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 620 } 621 first_registration = false; 622 #endif // COMPILER2 623 } 624 } 625 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 626 627 // ------------------------------------------------------------------ 628 // CompileBroker::compilation_init 629 // 630 // Initialize the Compilation object 631 void CompileBroker::compilation_init(JavaThread* THREAD) { 632 // No need to initialize compilation system if we do not use it. 633 if (!UseCompiler) { 634 return; 635 } 636 // Set the interface to the current compiler(s). 637 _c1_count = CompilationPolicy::c1_count(); 638 _c2_count = CompilationPolicy::c2_count(); 639 640 #if INCLUDE_JVMCI 641 if (EnableJVMCI) { 642 // This is creating a JVMCICompiler singleton. 643 JVMCICompiler* jvmci = new JVMCICompiler(); 644 645 if (UseJVMCICompiler) { 646 _compilers[1] = jvmci; 647 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 648 if (BootstrapJVMCI) { 649 // JVMCI will bootstrap so give it more threads 650 _c2_count = MIN2(32, os::active_processor_count()); 651 } 652 } else { 653 _c2_count = JVMCIThreads; 654 } 655 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 656 } else { 657 #ifdef COMPILER1 658 _c1_count = JVMCIHostThreads; 659 #endif // COMPILER1 660 } 661 } 662 } 663 #endif // INCLUDE_JVMCI 664 665 #ifdef COMPILER1 666 if (_c1_count > 0) { 667 _compilers[0] = new Compiler(); 668 } 669 #endif // COMPILER1 670 671 #ifdef COMPILER2 672 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 673 if (_c2_count > 0) { 674 _compilers[1] = new C2Compiler(); 675 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 676 // idToPhase mapping for c2 is in opto/phasetype.hpp 677 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 678 } 679 } 680 #endif // COMPILER2 681 682 #if INCLUDE_JVMCI 683 // Register after c2 registration. 684 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 685 if (EnableJVMCI) { 686 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 687 } 688 #endif // INCLUDE_JVMCI 689 690 if (CompilerOracle::should_collect_memstat()) { 691 CompilationMemoryStatistic::initialize(); 692 } 693 694 // Start the compiler thread(s) 695 init_compiler_threads(); 696 // totalTime performance counter is always created as it is required 697 // by the implementation of java.lang.management.CompilationMXBean. 698 { 699 // Ensure OOM leads to vm_exit_during_initialization. 700 EXCEPTION_MARK; 701 _perf_total_compilation = 702 PerfDataManager::create_counter(JAVA_CI, "totalTime", 703 PerfData::U_Ticks, CHECK); 704 } 705 706 if (UsePerfData) { 707 708 EXCEPTION_MARK; 709 710 // create the jvmstat performance counters 711 _perf_osr_compilation = 712 PerfDataManager::create_counter(SUN_CI, "osrTime", 713 PerfData::U_Ticks, CHECK); 714 715 _perf_standard_compilation = 716 PerfDataManager::create_counter(SUN_CI, "standardTime", 717 PerfData::U_Ticks, CHECK); 718 719 _perf_total_bailout_count = 720 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 721 PerfData::U_Events, CHECK); 722 723 _perf_total_invalidated_count = 724 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 725 PerfData::U_Events, CHECK); 726 727 _perf_total_compile_count = 728 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 729 PerfData::U_Events, CHECK); 730 _perf_total_osr_compile_count = 731 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 732 PerfData::U_Events, CHECK); 733 734 _perf_total_standard_compile_count = 735 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 736 PerfData::U_Events, CHECK); 737 738 _perf_sum_osr_bytes_compiled = 739 PerfDataManager::create_counter(SUN_CI, "osrBytes", 740 PerfData::U_Bytes, CHECK); 741 742 _perf_sum_standard_bytes_compiled = 743 PerfDataManager::create_counter(SUN_CI, "standardBytes", 744 PerfData::U_Bytes, CHECK); 745 746 _perf_sum_nmethod_size = 747 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 748 PerfData::U_Bytes, CHECK); 749 750 _perf_sum_nmethod_code_size = 751 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 752 PerfData::U_Bytes, CHECK); 753 754 _perf_last_method = 755 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 756 CompilerCounters::cmname_buffer_length, 757 "", CHECK); 758 759 _perf_last_failed_method = 760 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 761 CompilerCounters::cmname_buffer_length, 762 "", CHECK); 763 764 _perf_last_invalidated_method = 765 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 766 CompilerCounters::cmname_buffer_length, 767 "", CHECK); 768 769 _perf_last_compile_type = 770 PerfDataManager::create_variable(SUN_CI, "lastType", 771 PerfData::U_None, 772 (jlong)CompileBroker::no_compile, 773 CHECK); 774 775 _perf_last_compile_size = 776 PerfDataManager::create_variable(SUN_CI, "lastSize", 777 PerfData::U_Bytes, 778 (jlong)CompileBroker::no_compile, 779 CHECK); 780 781 782 _perf_last_failed_type = 783 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 784 PerfData::U_None, 785 (jlong)CompileBroker::no_compile, 786 CHECK); 787 788 _perf_last_invalidated_type = 789 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 790 PerfData::U_None, 791 (jlong)CompileBroker::no_compile, 792 CHECK); 793 } 794 795 _initialized = true; 796 } 797 798 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) { 799 CompilationPolicy::replay_training_at_init_loop(thread); 800 } 801 802 #if defined(ASSERT) && COMPILER2_OR_JVMCI 803 // Entry for DeoptimizeObjectsALotThread. The threads are started in 804 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 805 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 806 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 807 bool enter_single_loop; 808 { 809 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 810 static int single_thread_count = 0; 811 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 812 } 813 if (enter_single_loop) { 814 dt->deoptimize_objects_alot_loop_single(); 815 } else { 816 dt->deoptimize_objects_alot_loop_all(); 817 } 818 } 819 820 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 821 // barrier targets a single thread which is selected round robin. 822 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 823 HandleMark hm(this); 824 while (true) { 825 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 826 { // Begin new scope for escape barrier 827 HandleMarkCleaner hmc(this); 828 ResourceMark rm(this); 829 EscapeBarrier eb(true, this, deoptee_thread); 830 eb.deoptimize_objects(100); 831 } 832 // Now sleep after the escape barriers destructor resumed deoptee_thread. 833 sleep(DeoptimizeObjectsALotInterval); 834 } 835 } 836 } 837 838 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 839 // barrier targets all java threads in the vm at once. 840 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 841 HandleMark hm(this); 842 while (true) { 843 { // Begin new scope for escape barrier 844 HandleMarkCleaner hmc(this); 845 ResourceMark rm(this); 846 EscapeBarrier eb(true, this); 847 eb.deoptimize_objects_all_threads(); 848 } 849 // Now sleep after the escape barriers destructor resumed the java threads. 850 sleep(DeoptimizeObjectsALotInterval); 851 } 852 } 853 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 854 855 856 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 857 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 858 859 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 860 assert(type == compiler_t, "should only happen with reused compiler threads"); 861 // The compiler thread hasn't actually exited yet so don't try to reuse it 862 return nullptr; 863 } 864 865 JavaThread* new_thread = nullptr; 866 switch (type) { 867 case compiler_t: 868 assert(comp != nullptr, "Compiler instance missing."); 869 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 870 CompilerCounters* counters = new CompilerCounters(); 871 new_thread = new CompilerThread(queue, counters); 872 } 873 break; 874 #if defined(ASSERT) && COMPILER2_OR_JVMCI 875 case deoptimizer_t: 876 new_thread = new DeoptimizeObjectsALotThread(); 877 break; 878 #endif // ASSERT 879 case training_replay_t: 880 new_thread = new TrainingReplayThread(); 881 break; 882 default: 883 ShouldNotReachHere(); 884 } 885 886 // At this point the new CompilerThread data-races with this startup 887 // thread (which is the main thread and NOT the VM thread). 888 // This means Java bytecodes being executed at startup can 889 // queue compile jobs which will run at whatever default priority the 890 // newly created CompilerThread runs at. 891 892 893 // At this point it may be possible that no osthread was created for the 894 // JavaThread due to lack of resources. We will handle that failure below. 895 // Also check new_thread so that static analysis is happy. 896 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 897 898 if (type == compiler_t) { 899 CompilerThread::cast(new_thread)->set_compiler(comp); 900 } 901 902 // Note that we cannot call os::set_priority because it expects Java 903 // priorities and we are *explicitly* using OS priorities so that it's 904 // possible to set the compiler thread priority higher than any Java 905 // thread. 906 907 int native_prio = CompilerThreadPriority; 908 if (native_prio == -1) { 909 if (UseCriticalCompilerThreadPriority) { 910 native_prio = os::java_to_os_priority[CriticalPriority]; 911 } else { 912 native_prio = os::java_to_os_priority[NearMaxPriority]; 913 } 914 } 915 os::set_native_priority(new_thread, native_prio); 916 917 // Note that this only sets the JavaThread _priority field, which by 918 // definition is limited to Java priorities and not OS priorities. 919 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 920 921 } else { // osthread initialization failure 922 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 923 && comp->num_compiler_threads() > 0) { 924 // The new thread is not known to Thread-SMR yet so we can just delete. 925 delete new_thread; 926 return nullptr; 927 } else { 928 vm_exit_during_initialization("java.lang.OutOfMemoryError", 929 os::native_thread_creation_failed_msg()); 930 } 931 } 932 933 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 934 935 return new_thread; 936 } 937 938 static bool trace_compiler_threads() { 939 LogTarget(Debug, jit, thread) lt; 940 return TraceCompilerThreads || lt.is_enabled(); 941 } 942 943 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 944 char name_buffer[256]; 945 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 946 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 947 return JNIHandles::make_global(thread_oop); 948 } 949 950 static void print_compiler_threads(stringStream& msg) { 951 if (TraceCompilerThreads) { 952 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 953 } 954 LogTarget(Debug, jit, thread) lt; 955 if (lt.is_enabled()) { 956 LogStream ls(lt); 957 ls.print_cr("%s", msg.as_string()); 958 } 959 } 960 961 void CompileBroker::init_compiler_threads() { 962 // Ensure any exceptions lead to vm_exit_during_initialization. 963 EXCEPTION_MARK; 964 #if !defined(ZERO) 965 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 966 #endif // !ZERO 967 // Initialize the compilation queue 968 if (_c2_count > 0) { 969 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 970 _c2_compile_queue = new CompileQueue(name); 971 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 972 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 973 } 974 if (_c1_count > 0) { 975 _c1_compile_queue = new CompileQueue("C1 compile queue"); 976 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 977 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 978 } 979 980 for (int i = 0; i < _c2_count; i++) { 981 // Create a name for our thread. 982 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 983 _compiler2_objects[i] = thread_handle; 984 _compiler2_logs[i] = nullptr; 985 986 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 987 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 988 assert(ct != nullptr, "should have been handled for initial thread"); 989 _compilers[1]->set_num_compiler_threads(i + 1); 990 if (trace_compiler_threads()) { 991 ResourceMark rm; 992 ThreadsListHandle tlh; // name() depends on the TLH. 993 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 994 stringStream msg; 995 msg.print("Added initial compiler thread %s", ct->name()); 996 print_compiler_threads(msg); 997 } 998 } 999 } 1000 1001 for (int i = 0; i < _c1_count; i++) { 1002 // Create a name for our thread. 1003 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 1004 _compiler1_objects[i] = thread_handle; 1005 _compiler1_logs[i] = nullptr; 1006 1007 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1008 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 1009 assert(ct != nullptr, "should have been handled for initial thread"); 1010 _compilers[0]->set_num_compiler_threads(i + 1); 1011 if (trace_compiler_threads()) { 1012 ResourceMark rm; 1013 ThreadsListHandle tlh; // name() depends on the TLH. 1014 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1015 stringStream msg; 1016 msg.print("Added initial compiler thread %s", ct->name()); 1017 print_compiler_threads(msg); 1018 } 1019 } 1020 } 1021 1022 if (UsePerfData) { 1023 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK); 1024 } 1025 1026 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1027 if (DeoptimizeObjectsALot) { 1028 // Initialize and start the object deoptimizer threads 1029 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1030 for (int count = 0; count < total_count; count++) { 1031 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1032 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1033 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1034 } 1035 } 1036 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1037 } 1038 1039 void CompileBroker::init_training_replay() { 1040 // Ensure any exceptions lead to vm_exit_during_initialization. 1041 EXCEPTION_MARK; 1042 if (TrainingData::have_data()) { 1043 Handle thread_oop = JavaThread::create_system_thread_object("Training replay thread", CHECK); 1044 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1045 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD); 1046 } 1047 } 1048 1049 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1050 1051 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1052 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1053 1054 // Quick check if we already have enough compiler threads without taking the lock. 1055 // Numbers may change concurrently, so we read them again after we have the lock. 1056 if (_c2_compile_queue != nullptr) { 1057 old_c2_count = get_c2_thread_count(); 1058 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1059 } 1060 if (_c1_compile_queue != nullptr) { 1061 old_c1_count = get_c1_thread_count(); 1062 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1063 } 1064 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1065 1066 // Now, we do the more expensive operations. 1067 size_t free_memory = 0; 1068 // Return value ignored - defaulting to 0 on failure. 1069 (void)os::free_memory(free_memory); 1070 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1071 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1072 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1073 1074 // Only attempt to start additional threads if the lock is free. 1075 if (!CompileThread_lock->try_lock()) return; 1076 1077 if (_c2_compile_queue != nullptr) { 1078 old_c2_count = get_c2_thread_count(); 1079 new_c2_count = MIN4(_c2_count, 1080 _c2_compile_queue->size() / c2_tasks_per_thread, 1081 (int)(free_memory / (200*M)), 1082 (int)(available_cc_np / (128*K))); 1083 1084 for (int i = old_c2_count; i < new_c2_count; i++) { 1085 #if INCLUDE_JVMCI 1086 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1087 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1088 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1089 // call Java code to do the creation anyway). 1090 // 1091 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1092 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1093 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1094 // coupling with Java. 1095 if (!THREAD->can_call_java()) break; 1096 char name_buffer[256]; 1097 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1098 Handle thread_oop; 1099 { 1100 // We have to give up the lock temporarily for the Java calls. 1101 MutexUnlocker mu(CompileThread_lock); 1102 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1103 } 1104 if (HAS_PENDING_EXCEPTION) { 1105 if (trace_compiler_threads()) { 1106 ResourceMark rm; 1107 stringStream msg; 1108 msg.print_cr("JVMCI compiler thread creation failed:"); 1109 PENDING_EXCEPTION->print_on(&msg); 1110 print_compiler_threads(msg); 1111 } 1112 CLEAR_PENDING_EXCEPTION; 1113 break; 1114 } 1115 // Check if another thread has beaten us during the Java calls. 1116 if (get_c2_thread_count() != i) break; 1117 jobject thread_handle = JNIHandles::make_global(thread_oop); 1118 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1119 _compiler2_objects[i] = thread_handle; 1120 } 1121 #endif 1122 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1123 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1124 if (ct == nullptr) break; 1125 _compilers[1]->set_num_compiler_threads(i + 1); 1126 if (trace_compiler_threads()) { 1127 ResourceMark rm; 1128 ThreadsListHandle tlh; // name() depends on the TLH. 1129 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1130 stringStream msg; 1131 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1132 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1133 print_compiler_threads(msg); 1134 } 1135 } 1136 } 1137 1138 if (_c1_compile_queue != nullptr) { 1139 old_c1_count = get_c1_thread_count(); 1140 new_c1_count = MIN4(_c1_count, 1141 _c1_compile_queue->size() / c1_tasks_per_thread, 1142 (int)(free_memory / (100*M)), 1143 (int)(available_cc_p / (128*K))); 1144 1145 for (int i = old_c1_count; i < new_c1_count; i++) { 1146 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1147 if (ct == nullptr) break; 1148 _compilers[0]->set_num_compiler_threads(i + 1); 1149 if (trace_compiler_threads()) { 1150 ResourceMark rm; 1151 ThreadsListHandle tlh; // name() depends on the TLH. 1152 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1153 stringStream msg; 1154 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1155 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1156 print_compiler_threads(msg); 1157 } 1158 } 1159 } 1160 1161 CompileThread_lock->unlock(); 1162 } 1163 1164 1165 /** 1166 * Set the methods on the stack as on_stack so that redefine classes doesn't 1167 * reclaim them. This method is executed at a safepoint. 1168 */ 1169 void CompileBroker::mark_on_stack() { 1170 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1171 // Since we are at a safepoint, we do not need a lock to access 1172 // the compile queues. 1173 if (_c2_compile_queue != nullptr) { 1174 _c2_compile_queue->mark_on_stack(); 1175 } 1176 if (_c1_compile_queue != nullptr) { 1177 _c1_compile_queue->mark_on_stack(); 1178 } 1179 } 1180 1181 // ------------------------------------------------------------------ 1182 // CompileBroker::compile_method 1183 // 1184 // Request compilation of a method. 1185 void CompileBroker::compile_method_base(const methodHandle& method, 1186 int osr_bci, 1187 int comp_level, 1188 int hot_count, 1189 CompileTask::CompileReason compile_reason, 1190 bool blocking, 1191 Thread* thread) { 1192 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1193 assert(method->method_holder()->is_instance_klass(), 1194 "sanity check"); 1195 assert(!method->method_holder()->is_not_initialized(), 1196 "method holder must be initialized"); 1197 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1198 1199 if (CIPrintRequests) { 1200 tty->print("request: "); 1201 method->print_short_name(tty); 1202 if (osr_bci != InvocationEntryBci) { 1203 tty->print(" osr_bci: %d", osr_bci); 1204 } 1205 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1206 if (hot_count > 0) { 1207 tty->print(" hot: yes"); 1208 } 1209 tty->cr(); 1210 } 1211 1212 // A request has been made for compilation. Before we do any 1213 // real work, check to see if the method has been compiled 1214 // in the meantime with a definitive result. 1215 if (compilation_is_complete(method, osr_bci, comp_level)) { 1216 return; 1217 } 1218 1219 #ifndef PRODUCT 1220 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1221 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1222 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1223 return; 1224 } 1225 } 1226 #endif 1227 1228 // If this method is already in the compile queue, then 1229 // we do not block the current thread. 1230 if (compilation_is_in_queue(method)) { 1231 // We may want to decay our counter a bit here to prevent 1232 // multiple denied requests for compilation. This is an 1233 // open compilation policy issue. Note: The other possibility, 1234 // in the case that this is a blocking compile request, is to have 1235 // all subsequent blocking requesters wait for completion of 1236 // ongoing compiles. Note that in this case we'll need a protocol 1237 // for freeing the associated compile tasks. [Or we could have 1238 // a single static monitor on which all these waiters sleep.] 1239 return; 1240 } 1241 1242 // Tiered policy requires MethodCounters to exist before adding a method to 1243 // the queue. Create if we don't have them yet. 1244 method->get_method_counters(thread); 1245 1246 // Outputs from the following MutexLocker block: 1247 CompileTask* task = nullptr; 1248 CompileQueue* queue = compile_queue(comp_level); 1249 1250 // Acquire our lock. 1251 { 1252 MutexLocker locker(thread, MethodCompileQueue_lock); 1253 1254 // Make sure the method has not slipped into the queues since 1255 // last we checked; note that those checks were "fast bail-outs". 1256 // Here we need to be more careful, see 14012000 below. 1257 if (compilation_is_in_queue(method)) { 1258 return; 1259 } 1260 1261 // We need to check again to see if the compilation has 1262 // completed. A previous compilation may have registered 1263 // some result. 1264 if (compilation_is_complete(method, osr_bci, comp_level)) { 1265 return; 1266 } 1267 1268 // We now know that this compilation is not pending, complete, 1269 // or prohibited. Assign a compile_id to this compilation 1270 // and check to see if it is in our [Start..Stop) range. 1271 int compile_id = assign_compile_id(method, osr_bci); 1272 if (compile_id == 0) { 1273 // The compilation falls outside the allowed range. 1274 return; 1275 } 1276 1277 #if INCLUDE_JVMCI 1278 if (UseJVMCICompiler && blocking) { 1279 // Don't allow blocking compiles for requests triggered by JVMCI. 1280 if (thread->is_Compiler_thread()) { 1281 blocking = false; 1282 } 1283 1284 // In libjvmci, JVMCI initialization should not deadlock with other threads 1285 if (!UseJVMCINativeLibrary) { 1286 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1287 vframeStream vfst(JavaThread::cast(thread)); 1288 for (; !vfst.at_end(); vfst.next()) { 1289 if (vfst.method()->is_static_initializer() || 1290 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1291 vfst.method()->name() == vmSymbols::loadClass_name())) { 1292 blocking = false; 1293 break; 1294 } 1295 } 1296 1297 // Don't allow blocking compilation requests to JVMCI 1298 // if JVMCI itself is not yet initialized 1299 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1300 blocking = false; 1301 } 1302 } 1303 1304 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1305 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1306 // such as the DestroyJavaVM thread. 1307 if (JVMCI::in_shutdown()) { 1308 blocking = false; 1309 } 1310 } 1311 #endif // INCLUDE_JVMCI 1312 1313 // We will enter the compilation in the queue. 1314 // 14012000: Note that this sets the queued_for_compile bits in 1315 // the target method. We can now reason that a method cannot be 1316 // queued for compilation more than once, as follows: 1317 // Before a thread queues a task for compilation, it first acquires 1318 // the compile queue lock, then checks if the method's queued bits 1319 // are set or it has already been compiled. Thus there can not be two 1320 // instances of a compilation task for the same method on the 1321 // compilation queue. Consider now the case where the compilation 1322 // thread has already removed a task for that method from the queue 1323 // and is in the midst of compiling it. In this case, the 1324 // queued_for_compile bits must be set in the method (and these 1325 // will be visible to the current thread, since the bits were set 1326 // under protection of the compile queue lock, which we hold now. 1327 // When the compilation completes, the compiler thread first sets 1328 // the compilation result and then clears the queued_for_compile 1329 // bits. Neither of these actions are protected by a barrier (or done 1330 // under the protection of a lock), so the only guarantee we have 1331 // (on machines with TSO (Total Store Order)) is that these values 1332 // will update in that order. As a result, the only combinations of 1333 // these bits that the current thread will see are, in temporal order: 1334 // <RESULT, QUEUE> : 1335 // <0, 1> : in compile queue, but not yet compiled 1336 // <1, 1> : compiled but queue bit not cleared 1337 // <1, 0> : compiled and queue bit cleared 1338 // Because we first check the queue bits then check the result bits, 1339 // we are assured that we cannot introduce a duplicate task. 1340 // Note that if we did the tests in the reverse order (i.e. check 1341 // result then check queued bit), we could get the result bit before 1342 // the compilation completed, and the queue bit after the compilation 1343 // completed, and end up introducing a "duplicate" (redundant) task. 1344 // In that case, the compiler thread should first check if a method 1345 // has already been compiled before trying to compile it. 1346 // NOTE: in the event that there are multiple compiler threads and 1347 // there is de-optimization/recompilation, things will get hairy, 1348 // and in that case it's best to protect both the testing (here) of 1349 // these bits, and their updating (here and elsewhere) under a 1350 // common lock. 1351 task = create_compile_task(queue, 1352 compile_id, method, 1353 osr_bci, comp_level, 1354 hot_count, compile_reason, 1355 blocking); 1356 } 1357 1358 if (blocking) { 1359 wait_for_completion(task); 1360 } 1361 } 1362 1363 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1364 int comp_level, 1365 int hot_count, 1366 CompileTask::CompileReason compile_reason, 1367 TRAPS) { 1368 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1369 if (!_initialized || comp_level == CompLevel_none) { 1370 return nullptr; 1371 } 1372 1373 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1374 assert(comp != nullptr, "Ensure we have a compiler"); 1375 1376 #if INCLUDE_JVMCI 1377 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1378 // JVMCI compilation is not yet initializable. 1379 return nullptr; 1380 } 1381 #endif 1382 1383 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1384 // CompileBroker::compile_method can trap and can have pending async exception. 1385 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, compile_reason, directive, THREAD); 1386 DirectivesStack::release(directive); 1387 return nm; 1388 } 1389 1390 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1391 int comp_level, 1392 int hot_count, 1393 CompileTask::CompileReason compile_reason, 1394 DirectiveSet* directive, 1395 TRAPS) { 1396 1397 // make sure arguments make sense 1398 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1399 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1400 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1401 assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized"); 1402 // return quickly if possible 1403 1404 // lock, make sure that the compilation 1405 // isn't prohibited in a straightforward way. 1406 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1407 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1408 return nullptr; 1409 } 1410 1411 if (osr_bci == InvocationEntryBci) { 1412 // standard compilation 1413 nmethod* method_code = method->code(); 1414 if (method_code != nullptr) { 1415 if (compilation_is_complete(method, osr_bci, comp_level)) { 1416 return method_code; 1417 } 1418 } 1419 if (method->is_not_compilable(comp_level)) { 1420 return nullptr; 1421 } 1422 } else { 1423 // osr compilation 1424 // We accept a higher level osr method 1425 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1426 if (nm != nullptr) return nm; 1427 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1428 } 1429 1430 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1431 // some prerequisites that are compiler specific 1432 if (comp->is_c2() || comp->is_jvmci()) { 1433 InternalOOMEMark iom(THREAD); 1434 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1435 // Resolve all classes seen in the signature of the method 1436 // we are compiling. 1437 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1438 } 1439 1440 // If the method is native, do the lookup in the thread requesting 1441 // the compilation. Native lookups can load code, which is not 1442 // permitted during compilation. 1443 // 1444 // Note: A native method implies non-osr compilation which is 1445 // checked with an assertion at the entry of this method. 1446 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1447 address adr = NativeLookup::lookup(method, THREAD); 1448 if (HAS_PENDING_EXCEPTION) { 1449 // In case of an exception looking up the method, we just forget 1450 // about it. The interpreter will kick-in and throw the exception. 1451 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1452 CLEAR_PENDING_EXCEPTION; 1453 return nullptr; 1454 } 1455 assert(method->has_native_function(), "must have native code by now"); 1456 } 1457 1458 // RedefineClasses() has replaced this method; just return 1459 if (method->is_old()) { 1460 return nullptr; 1461 } 1462 1463 // JVMTI -- post_compile_event requires jmethod_id() that may require 1464 // a lock the compiling thread can not acquire. Prefetch it here. 1465 if (JvmtiExport::should_post_compiled_method_load()) { 1466 method->jmethod_id(); 1467 } 1468 1469 // do the compilation 1470 if (method->is_native()) { 1471 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1472 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1473 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1474 // 1475 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1476 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1477 AdapterHandlerLibrary::create_native_wrapper(method); 1478 } else { 1479 return nullptr; 1480 } 1481 } else { 1482 // If the compiler is shut off due to code cache getting full 1483 // fail out now so blocking compiles dont hang the java thread 1484 if (!should_compile_new_jobs()) { 1485 return nullptr; 1486 } 1487 bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles; 1488 compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, is_blocking, THREAD); 1489 } 1490 1491 // return requested nmethod 1492 // We accept a higher level osr method 1493 if (osr_bci == InvocationEntryBci) { 1494 return method->code(); 1495 } 1496 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1497 } 1498 1499 1500 // ------------------------------------------------------------------ 1501 // CompileBroker::compilation_is_complete 1502 // 1503 // See if compilation of this method is already complete. 1504 bool CompileBroker::compilation_is_complete(const methodHandle& method, 1505 int osr_bci, 1506 int comp_level) { 1507 bool is_osr = (osr_bci != standard_entry_bci); 1508 if (is_osr) { 1509 if (method->is_not_osr_compilable(comp_level)) { 1510 return true; 1511 } else { 1512 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1513 return (result != nullptr); 1514 } 1515 } else { 1516 if (method->is_not_compilable(comp_level)) { 1517 return true; 1518 } else { 1519 nmethod* result = method->code(); 1520 if (result == nullptr) return false; 1521 return comp_level == result->comp_level(); 1522 } 1523 } 1524 } 1525 1526 1527 /** 1528 * See if this compilation is already requested. 1529 * 1530 * Implementation note: there is only a single "is in queue" bit 1531 * for each method. This means that the check below is overly 1532 * conservative in the sense that an osr compilation in the queue 1533 * will block a normal compilation from entering the queue (and vice 1534 * versa). This can be remedied by a full queue search to disambiguate 1535 * cases. If it is deemed profitable, this may be done. 1536 */ 1537 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1538 return method->queued_for_compilation(); 1539 } 1540 1541 // ------------------------------------------------------------------ 1542 // CompileBroker::compilation_is_prohibited 1543 // 1544 // See if this compilation is not allowed. 1545 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1546 bool is_native = method->is_native(); 1547 // Some compilers may not support the compilation of natives. 1548 AbstractCompiler *comp = compiler(comp_level); 1549 if (is_native && (!CICompileNatives || comp == nullptr)) { 1550 method->set_not_compilable_quietly("native methods not supported", comp_level); 1551 return true; 1552 } 1553 1554 bool is_osr = (osr_bci != standard_entry_bci); 1555 // Some compilers may not support on stack replacement. 1556 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1557 method->set_not_osr_compilable("OSR not supported", comp_level); 1558 return true; 1559 } 1560 1561 // The method may be explicitly excluded by the user. 1562 double scale; 1563 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1564 bool quietly = CompilerOracle::be_quiet(); 1565 if (PrintCompilation && !quietly) { 1566 // This does not happen quietly... 1567 ResourceMark rm; 1568 tty->print("### Excluding %s:%s", 1569 method->is_native() ? "generation of native wrapper" : "compile", 1570 (method->is_static() ? " static" : "")); 1571 method->print_short_name(tty); 1572 tty->cr(); 1573 } 1574 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1575 } 1576 1577 return false; 1578 } 1579 1580 /** 1581 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1582 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1583 * The function also allows to generate separate compilation IDs for OSR compilations. 1584 */ 1585 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1586 #ifdef ASSERT 1587 bool is_osr = (osr_bci != standard_entry_bci); 1588 int id; 1589 if (method->is_native()) { 1590 assert(!is_osr, "can't be osr"); 1591 // Adapters, native wrappers and method handle intrinsics 1592 // should be generated always. 1593 return AtomicAccess::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1594 } else if (CICountOSR && is_osr) { 1595 id = AtomicAccess::add(&_osr_compilation_id, 1); 1596 if (CIStartOSR <= id && id < CIStopOSR) { 1597 return id; 1598 } 1599 } else { 1600 id = AtomicAccess::add(&_compilation_id, 1); 1601 if (CIStart <= id && id < CIStop) { 1602 return id; 1603 } 1604 } 1605 1606 // Method was not in the appropriate compilation range. 1607 method->set_not_compilable_quietly("Not in requested compile id range"); 1608 return 0; 1609 #else 1610 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1611 // only _compilation_id is incremented. 1612 return AtomicAccess::add(&_compilation_id, 1); 1613 #endif 1614 } 1615 1616 // ------------------------------------------------------------------ 1617 // CompileBroker::assign_compile_id_unlocked 1618 // 1619 // Public wrapper for assign_compile_id that acquires the needed locks 1620 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1621 MutexLocker locker(thread, MethodCompileQueue_lock); 1622 return assign_compile_id(method, osr_bci); 1623 } 1624 1625 // ------------------------------------------------------------------ 1626 // CompileBroker::create_compile_task 1627 // 1628 // Create a CompileTask object representing the current request for 1629 // compilation. Add this task to the queue. 1630 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1631 int compile_id, 1632 const methodHandle& method, 1633 int osr_bci, 1634 int comp_level, 1635 int hot_count, 1636 CompileTask::CompileReason compile_reason, 1637 bool blocking) { 1638 CompileTask* new_task = new CompileTask(compile_id, method, osr_bci, comp_level, 1639 hot_count, compile_reason, blocking); 1640 queue->add(new_task); 1641 return new_task; 1642 } 1643 1644 #if INCLUDE_JVMCI 1645 // The number of milliseconds to wait before checking if 1646 // JVMCI compilation has made progress. 1647 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1648 1649 // The number of JVMCI compilation progress checks that must fail 1650 // before unblocking a thread waiting for a blocking compilation. 1651 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1652 1653 /** 1654 * Waits for a JVMCI compiler to complete a given task. This thread 1655 * waits until either the task completes or it sees no JVMCI compilation 1656 * progress for N consecutive milliseconds where N is 1657 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1658 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1659 * 1660 * @return true if this thread needs to delete the task 1661 */ 1662 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1663 assert(UseJVMCICompiler, "sanity"); 1664 MonitorLocker ml(thread, CompileTaskWait_lock); 1665 int progress_wait_attempts = 0; 1666 jint thread_jvmci_compilation_ticks = 0; 1667 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1668 while (!task->is_complete() && !is_compilation_disabled_forever() && 1669 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1670 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1671 1672 bool progress; 1673 if (jvmci_compile_state != nullptr) { 1674 jint ticks = jvmci_compile_state->compilation_ticks(); 1675 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1676 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1677 thread_jvmci_compilation_ticks = ticks; 1678 } else { 1679 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1680 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1681 // compilation ticks to determine whether JVMCI compilation 1682 // is still making progress through the JVMCI compiler queue. 1683 jint ticks = jvmci->global_compilation_ticks(); 1684 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1685 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1686 global_jvmci_compilation_ticks = ticks; 1687 } 1688 1689 if (!progress) { 1690 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1691 if (PrintCompilation) { 1692 task->print(tty, "wait for blocking compilation timed out"); 1693 } 1694 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1695 break; 1696 } 1697 } else { 1698 progress_wait_attempts = 0; 1699 } 1700 } 1701 task->clear_waiter(); 1702 return task->is_complete(); 1703 } 1704 #endif 1705 1706 /** 1707 * Wait for the compilation task to complete. 1708 */ 1709 void CompileBroker::wait_for_completion(CompileTask* task) { 1710 if (CIPrintCompileQueue) { 1711 ttyLocker ttyl; 1712 tty->print_cr("BLOCKING FOR COMPILE"); 1713 } 1714 1715 assert(task->is_blocking(), "can only wait on blocking task"); 1716 1717 JavaThread* thread = JavaThread::current(); 1718 1719 methodHandle method(thread, task->method()); 1720 bool free_task; 1721 #if INCLUDE_JVMCI 1722 AbstractCompiler* comp = compiler(task->comp_level()); 1723 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1724 // It may return before compilation is completed. 1725 // Note that libjvmci should not pre-emptively unblock 1726 // a thread waiting for a compilation as it does not call 1727 // Java code and so is not deadlock prone like jarjvmci. 1728 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1729 } else 1730 #endif 1731 { 1732 free_task = true; 1733 // Wait until the task is complete or compilation is shut down. 1734 MonitorLocker ml(thread, CompileTaskWait_lock); 1735 while (!task->is_complete() && !is_compilation_disabled_forever()) { 1736 ml.wait(); 1737 } 1738 } 1739 1740 // It is harmless to check this status without the lock, because 1741 // completion is a stable property. 1742 if (!task->is_complete()) { 1743 // Task is not complete, likely because we are exiting for compilation 1744 // shutdown. The task can still be reached through the queue, or executed 1745 // by some compiler thread. There is no coordination with either MCQ lock 1746 // holders or compilers, therefore we cannot delete the task. 1747 // 1748 // This will leave task allocated, which leaks it. At this (degraded) point, 1749 // it is less risky to abandon the task, rather than attempting a more 1750 // complicated deletion protocol. 1751 free_task = false; 1752 } 1753 1754 if (free_task) { 1755 assert(task->is_complete(), "Compilation should have completed"); 1756 assert(task->next() == nullptr && task->prev() == nullptr, 1757 "Completed task should not be in the queue"); 1758 1759 // By convention, the waiter is responsible for deleting a 1760 // blocking CompileTask. Since there is only one waiter ever 1761 // waiting on a CompileTask, we know that no one else will 1762 // be using this CompileTask; we can delete it. 1763 delete task; 1764 } 1765 } 1766 1767 void CompileBroker::wait_for_no_active_tasks() { 1768 CompileTask::wait_for_no_active_tasks(); 1769 } 1770 1771 /** 1772 * Initialize compiler thread(s) + compiler object(s). The postcondition 1773 * of this function is that the compiler runtimes are initialized and that 1774 * compiler threads can start compiling. 1775 */ 1776 bool CompileBroker::init_compiler_runtime() { 1777 CompilerThread* thread = CompilerThread::current(); 1778 AbstractCompiler* comp = thread->compiler(); 1779 // Final sanity check - the compiler object must exist 1780 guarantee(comp != nullptr, "Compiler object must exist"); 1781 1782 { 1783 // Must switch to native to allocate ci_env 1784 ThreadToNativeFromVM ttn(thread); 1785 ciEnv ci_env((CompileTask*)nullptr); 1786 // Cache Jvmti state 1787 ci_env.cache_jvmti_state(); 1788 // Cache DTrace flags 1789 ci_env.cache_dtrace_flags(); 1790 1791 // Switch back to VM state to do compiler initialization 1792 ThreadInVMfromNative tv(thread); 1793 1794 // Perform per-thread and global initializations 1795 comp->initialize(); 1796 } 1797 1798 if (comp->is_failed()) { 1799 disable_compilation_forever(); 1800 // If compiler initialization failed, no compiler thread that is specific to a 1801 // particular compiler runtime will ever start to compile methods. 1802 shutdown_compiler_runtime(comp, thread); 1803 return false; 1804 } 1805 1806 // C1 specific check 1807 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 1808 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 1809 return false; 1810 } 1811 1812 return true; 1813 } 1814 1815 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 1816 BufferBlob* blob = thread->get_buffer_blob(); 1817 if (blob != nullptr) { 1818 blob->purge(); 1819 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1820 CodeCache::free(blob); 1821 } 1822 } 1823 1824 /** 1825 * If C1 and/or C2 initialization failed, we shut down all compilation. 1826 * We do this to keep things simple. This can be changed if it ever turns 1827 * out to be a problem. 1828 */ 1829 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 1830 free_buffer_blob_if_allocated(thread); 1831 1832 if (comp->should_perform_shutdown()) { 1833 // There are two reasons for shutting down the compiler 1834 // 1) compiler runtime initialization failed 1835 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 1836 warning("%s initialization failed. Shutting down all compilers", comp->name()); 1837 1838 // Only one thread per compiler runtime object enters here 1839 // Set state to shut down 1840 comp->set_shut_down(); 1841 1842 // Delete all queued compilation tasks to make compiler threads exit faster. 1843 if (_c1_compile_queue != nullptr) { 1844 _c1_compile_queue->delete_all(); 1845 } 1846 1847 if (_c2_compile_queue != nullptr) { 1848 _c2_compile_queue->delete_all(); 1849 } 1850 1851 // Set flags so that we continue execution with using interpreter only. 1852 UseCompiler = false; 1853 UseInterpreter = true; 1854 1855 // We could delete compiler runtimes also. However, there are references to 1856 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 1857 // fail. This can be done later if necessary. 1858 } 1859 } 1860 1861 /** 1862 * Helper function to create new or reuse old CompileLog. 1863 */ 1864 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 1865 if (!LogCompilation) return nullptr; 1866 1867 AbstractCompiler *compiler = ct->compiler(); 1868 bool c1 = compiler->is_c1(); 1869 jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects; 1870 assert(compiler_objects != nullptr, "must be initialized at this point"); 1871 CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs; 1872 assert(logs != nullptr, "must be initialized at this point"); 1873 int count = c1 ? _c1_count : _c2_count; 1874 1875 // Find Compiler number by its threadObj. 1876 oop compiler_obj = ct->threadObj(); 1877 int compiler_number = 0; 1878 bool found = false; 1879 for (; compiler_number < count; compiler_number++) { 1880 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 1881 found = true; 1882 break; 1883 } 1884 } 1885 assert(found, "Compiler must exist at this point"); 1886 1887 // Determine pointer for this thread's log. 1888 CompileLog** log_ptr = &logs[compiler_number]; 1889 1890 // Return old one if it exists. 1891 CompileLog* log = *log_ptr; 1892 if (log != nullptr) { 1893 ct->init_log(log); 1894 return log; 1895 } 1896 1897 // Create a new one and remember it. 1898 init_compiler_thread_log(); 1899 log = ct->log(); 1900 *log_ptr = log; 1901 return log; 1902 } 1903 1904 // ------------------------------------------------------------------ 1905 // CompileBroker::compiler_thread_loop 1906 // 1907 // The main loop run by a CompilerThread. 1908 void CompileBroker::compiler_thread_loop() { 1909 CompilerThread* thread = CompilerThread::current(); 1910 CompileQueue* queue = thread->queue(); 1911 // For the thread that initializes the ciObjectFactory 1912 // this resource mark holds all the shared objects 1913 ResourceMark rm; 1914 1915 // First thread to get here will initialize the compiler interface 1916 1917 { 1918 ASSERT_IN_VM; 1919 MutexLocker only_one (thread, CompileThread_lock); 1920 if (!ciObjectFactory::is_initialized()) { 1921 ciObjectFactory::initialize(); 1922 } 1923 } 1924 1925 // Open a log. 1926 CompileLog* log = get_log(thread); 1927 if (log != nullptr) { 1928 log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'", 1929 thread->name(), 1930 os::current_thread_id(), 1931 os::current_process_id()); 1932 log->stamp(); 1933 log->end_elem(); 1934 } 1935 1936 if (!thread->init_compilation_timeout()) { 1937 return; 1938 } 1939 1940 // If compiler thread/runtime initialization fails, exit the compiler thread 1941 if (!init_compiler_runtime()) { 1942 return; 1943 } 1944 1945 thread->start_idle_timer(); 1946 1947 // Poll for new compilation tasks as long as the JVM runs. Compilation 1948 // should only be disabled if something went wrong while initializing the 1949 // compiler runtimes. This, in turn, should not happen. The only known case 1950 // when compiler runtime initialization fails is if there is not enough free 1951 // space in the code cache to generate the necessary stubs, etc. 1952 while (!is_compilation_disabled_forever()) { 1953 // We need this HandleMark to avoid leaking VM handles. 1954 HandleMark hm(thread); 1955 1956 CompileTask* task = queue->get(thread); 1957 if (task == nullptr) { 1958 if (UseDynamicNumberOfCompilerThreads) { 1959 // Access compiler_count under lock to enforce consistency. 1960 MutexLocker only_one(CompileThread_lock); 1961 if (can_remove(thread, true)) { 1962 if (trace_compiler_threads()) { 1963 ResourceMark rm; 1964 stringStream msg; 1965 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 1966 thread->name(), thread->idle_time_millis()); 1967 print_compiler_threads(msg); 1968 } 1969 1970 // Notify compiler that the compiler thread is about to stop 1971 thread->compiler()->stopping_compiler_thread(thread); 1972 1973 free_buffer_blob_if_allocated(thread); 1974 return; // Stop this thread. 1975 } 1976 } 1977 } else { 1978 // Assign the task to the current thread. Mark this compilation 1979 // thread as active for the profiler. 1980 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 1981 // occurs after fetching the compile task off the queue. 1982 CompileTaskWrapper ctw(task); 1983 methodHandle method(thread, task->method()); 1984 1985 // Never compile a method if breakpoints are present in it 1986 if (method()->number_of_breakpoints() == 0) { 1987 // Compile the method. 1988 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 1989 invoke_compiler_on_method(task); 1990 thread->start_idle_timer(); 1991 } else { 1992 // After compilation is disabled, remove remaining methods from queue 1993 method->clear_queued_for_compilation(); 1994 task->set_failure_reason("compilation is disabled"); 1995 } 1996 } else { 1997 task->set_failure_reason("breakpoints are present"); 1998 } 1999 2000 if (UseDynamicNumberOfCompilerThreads) { 2001 possibly_add_compiler_threads(thread); 2002 assert(!thread->has_pending_exception(), "should have been handled"); 2003 } 2004 } 2005 } 2006 2007 // Shut down compiler runtime 2008 shutdown_compiler_runtime(thread->compiler(), thread); 2009 } 2010 2011 // ------------------------------------------------------------------ 2012 // CompileBroker::init_compiler_thread_log 2013 // 2014 // Set up state required by +LogCompilation. 2015 void CompileBroker::init_compiler_thread_log() { 2016 CompilerThread* thread = CompilerThread::current(); 2017 char file_name[4*K]; 2018 FILE* fp = nullptr; 2019 intx thread_id = os::current_thread_id(); 2020 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2021 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2022 if (dir == nullptr) { 2023 jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log", 2024 thread_id, os::current_process_id()); 2025 } else { 2026 jio_snprintf(file_name, sizeof(file_name), 2027 "%s%shs_c%zu_pid%u.log", dir, 2028 os::file_separator(), thread_id, os::current_process_id()); 2029 } 2030 2031 fp = os::fopen(file_name, "wt"); 2032 if (fp != nullptr) { 2033 if (LogCompilation && Verbose) { 2034 tty->print_cr("Opening compilation log %s", file_name); 2035 } 2036 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2037 if (log == nullptr) { 2038 fclose(fp); 2039 return; 2040 } 2041 thread->init_log(log); 2042 2043 if (xtty != nullptr) { 2044 ttyLocker ttyl; 2045 // Record any per thread log files 2046 xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name); 2047 } 2048 return; 2049 } 2050 } 2051 warning("Cannot open log file: %s", file_name); 2052 } 2053 2054 void CompileBroker::log_metaspace_failure() { 2055 const char* message = "some methods may not be compiled because metaspace " 2056 "is out of memory"; 2057 if (CompilationLog::log() != nullptr) { 2058 CompilationLog::log()->log_metaspace_failure(message); 2059 } 2060 if (PrintCompilation) { 2061 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2062 } 2063 } 2064 2065 2066 // ------------------------------------------------------------------ 2067 // CompileBroker::set_should_block 2068 // 2069 // Set _should_block. 2070 // Call this from the VM, with Threads_lock held and a safepoint requested. 2071 void CompileBroker::set_should_block() { 2072 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2073 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2074 #ifndef PRODUCT 2075 if (PrintCompilation && (Verbose || WizardMode)) 2076 tty->print_cr("notifying compiler thread pool to block"); 2077 #endif 2078 _should_block = true; 2079 } 2080 2081 // ------------------------------------------------------------------ 2082 // CompileBroker::maybe_block 2083 // 2084 // Call this from the compiler at convenient points, to poll for _should_block. 2085 void CompileBroker::maybe_block() { 2086 if (_should_block) { 2087 #ifndef PRODUCT 2088 if (PrintCompilation && (Verbose || WizardMode)) 2089 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2090 #endif 2091 // If we are executing a task during the request to block, report the task 2092 // before disappearing. 2093 CompilerThread* thread = CompilerThread::current(); 2094 if (thread != nullptr) { 2095 CompileTask* task = thread->task(); 2096 if (task != nullptr) { 2097 if (PrintCompilation) { 2098 task->print(tty, "blocked"); 2099 } 2100 task->print_ul("blocked"); 2101 } 2102 } 2103 // Go to VM state and block for final VM shutdown safepoint. 2104 ThreadInVMfromNative tivfn(JavaThread::current()); 2105 assert(false, "Should never unblock from TIVNM entry"); 2106 } 2107 } 2108 2109 // wrapper for CodeCache::print_summary() 2110 static void codecache_print(bool detailed) 2111 { 2112 stringStream s; 2113 // Dump code cache into a buffer before locking the tty, 2114 { 2115 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2116 CodeCache::print_summary(&s, detailed); 2117 } 2118 ttyLocker ttyl; 2119 tty->print("%s", s.freeze()); 2120 } 2121 2122 // wrapper for CodeCache::print_summary() using outputStream 2123 static void codecache_print(outputStream* out, bool detailed) { 2124 stringStream s; 2125 2126 // Dump code cache into a buffer 2127 { 2128 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2129 CodeCache::print_summary(&s, detailed); 2130 } 2131 2132 char* remaining_log = s.as_string(); 2133 while (*remaining_log != '\0') { 2134 char* eol = strchr(remaining_log, '\n'); 2135 if (eol == nullptr) { 2136 out->print_cr("%s", remaining_log); 2137 remaining_log = remaining_log + strlen(remaining_log); 2138 } else { 2139 *eol = '\0'; 2140 out->print_cr("%s", remaining_log); 2141 remaining_log = eol + 1; 2142 } 2143 } 2144 } 2145 2146 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2147 int compilable, const char* failure_reason) { 2148 if (!AbortVMOnCompilationFailure) { 2149 return; 2150 } 2151 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2152 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2153 } 2154 if (compilable == ciEnv::MethodCompilable_never) { 2155 fatal("Never compilable: %s", failure_reason); 2156 } 2157 } 2158 2159 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2160 assert(task != nullptr, "invariant"); 2161 CompilerEvent::CompilationEvent::post(event, 2162 task->compile_id(), 2163 task->compiler()->type(), 2164 task->method(), 2165 task->comp_level(), 2166 task->is_success(), 2167 task->osr_bci() != CompileBroker::standard_entry_bci, 2168 task->nm_total_size(), 2169 task->num_inlined_bytecodes(), 2170 task->arena_bytes()); 2171 } 2172 2173 int DirectivesStack::_depth = 0; 2174 CompilerDirectives* DirectivesStack::_top = nullptr; 2175 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2176 2177 // Acquires Compilation_lock and waits for it to be notified 2178 // as long as WhiteBox::compilation_locked is true. 2179 static void whitebox_lock_compilation() { 2180 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2181 while (WhiteBox::compilation_locked) { 2182 locker.wait(); 2183 } 2184 } 2185 2186 // ------------------------------------------------------------------ 2187 // CompileBroker::invoke_compiler_on_method 2188 // 2189 // Compile a method. 2190 // 2191 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2192 task->print_ul(); 2193 elapsedTimer time; 2194 2195 DirectiveSet* directive = task->directive(); 2196 if (directive->PrintCompilationOption) { 2197 ResourceMark rm; 2198 task->print_tty(); 2199 } 2200 2201 CompilerThread* thread = CompilerThread::current(); 2202 ResourceMark rm(thread); 2203 2204 if (CompilationLog::log() != nullptr) { 2205 CompilationLog::log()->log_compile(thread, task); 2206 } 2207 2208 // Common flags. 2209 int compile_id = task->compile_id(); 2210 int osr_bci = task->osr_bci(); 2211 bool is_osr = (osr_bci != standard_entry_bci); 2212 bool should_log = (thread->log() != nullptr); 2213 bool should_break = false; 2214 const int task_level = task->comp_level(); 2215 AbstractCompiler* comp = task->compiler(); 2216 { 2217 // create the handle inside it's own block so it can't 2218 // accidentally be referenced once the thread transitions to 2219 // native. The NoHandleMark before the transition should catch 2220 // any cases where this occurs in the future. 2221 methodHandle method(thread, task->method()); 2222 2223 assert(!method->is_native(), "no longer compile natives"); 2224 2225 // Update compile information when using perfdata. 2226 if (UsePerfData) { 2227 update_compile_perf_data(thread, method, is_osr); 2228 } 2229 2230 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2231 } 2232 2233 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2234 if (should_log && !directive->LogOption) { 2235 should_log = false; 2236 } 2237 2238 // Allocate a new set of JNI handles. 2239 JNIHandleMark jhm(thread); 2240 Method* target_handle = task->method(); 2241 int compilable = ciEnv::MethodCompilable; 2242 const char* failure_reason = nullptr; 2243 bool failure_reason_on_C_heap = false; 2244 const char* retry_message = nullptr; 2245 2246 #if INCLUDE_JVMCI 2247 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2248 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2249 2250 TraceTime t1("compilation", &time); 2251 EventCompilation event; 2252 JVMCICompileState compile_state(task, jvmci); 2253 JVMCIRuntime *runtime = nullptr; 2254 2255 if (JVMCI::in_shutdown()) { 2256 failure_reason = "in JVMCI shutdown"; 2257 retry_message = "not retryable"; 2258 compilable = ciEnv::MethodCompilable_never; 2259 } else if (compile_state.target_method_is_old()) { 2260 // Skip redefined methods 2261 failure_reason = "redefined method"; 2262 retry_message = "not retryable"; 2263 compilable = ciEnv::MethodCompilable_never; 2264 } else { 2265 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2266 if (env.init_error() != JNI_OK) { 2267 const char* msg = env.init_error_msg(); 2268 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2269 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2270 bool reason_on_C_heap = true; 2271 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2272 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2273 bool retryable = env.init_error() == JNI_ENOMEM; 2274 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2275 } 2276 if (failure_reason == nullptr) { 2277 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2278 // Must switch to native to block 2279 ThreadToNativeFromVM ttn(thread); 2280 whitebox_lock_compilation(); 2281 } 2282 methodHandle method(thread, target_handle); 2283 runtime = env.runtime(); 2284 runtime->compile_method(&env, jvmci, method, osr_bci); 2285 2286 failure_reason = compile_state.failure_reason(); 2287 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2288 if (!compile_state.retryable()) { 2289 retry_message = "not retryable"; 2290 compilable = ciEnv::MethodCompilable_not_at_tier; 2291 } 2292 if (!task->is_success()) { 2293 assert(failure_reason != nullptr, "must specify failure_reason"); 2294 } 2295 } 2296 } 2297 if (!task->is_success() && !JVMCI::in_shutdown()) { 2298 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2299 } 2300 if (event.should_commit()) { 2301 post_compilation_event(event, task); 2302 } 2303 2304 if (runtime != nullptr) { 2305 runtime->post_compile(thread); 2306 } 2307 } else 2308 #endif // INCLUDE_JVMCI 2309 { 2310 NoHandleMark nhm; 2311 ThreadToNativeFromVM ttn(thread); 2312 2313 ciEnv ci_env(task); 2314 if (should_break) { 2315 ci_env.set_break_at_compile(true); 2316 } 2317 if (should_log) { 2318 ci_env.set_log(thread->log()); 2319 } 2320 assert(thread->env() == &ci_env, "set by ci_env"); 2321 // The thread-env() field is cleared in ~CompileTaskWrapper. 2322 2323 // Cache Jvmti state 2324 bool method_is_old = ci_env.cache_jvmti_state(); 2325 2326 // Skip redefined methods 2327 if (method_is_old) { 2328 ci_env.record_method_not_compilable("redefined method", true); 2329 } 2330 2331 // Cache DTrace flags 2332 ci_env.cache_dtrace_flags(); 2333 2334 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2335 2336 TraceTime t1("compilation", &time); 2337 EventCompilation event; 2338 2339 if (comp == nullptr) { 2340 ci_env.record_method_not_compilable("no compiler"); 2341 } else if (!ci_env.failing()) { 2342 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2343 whitebox_lock_compilation(); 2344 } 2345 comp->compile_method(&ci_env, target, osr_bci, true, directive); 2346 2347 /* Repeat compilation without installing code for profiling purposes */ 2348 int repeat_compilation_count = directive->RepeatCompilationOption; 2349 while (repeat_compilation_count > 0) { 2350 ResourceMark rm(thread); 2351 task->print_ul("NO CODE INSTALLED"); 2352 thread->timeout()->reset(); 2353 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2354 repeat_compilation_count--; 2355 } 2356 } 2357 2358 2359 if (!ci_env.failing() && !task->is_success()) { 2360 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2361 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2362 // The compiler elected, without comment, not to register a result. 2363 // Do not attempt further compilations of this method. 2364 ci_env.record_method_not_compilable("compile failed"); 2365 } 2366 2367 // Copy this bit to the enclosing block: 2368 compilable = ci_env.compilable(); 2369 2370 if (ci_env.failing()) { 2371 // Duplicate the failure reason string, so that it outlives ciEnv 2372 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2373 failure_reason_on_C_heap = true; 2374 retry_message = ci_env.retry_message(); 2375 ci_env.report_failure(failure_reason); 2376 } 2377 2378 if (ci_env.failing()) { 2379 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2380 } 2381 if (event.should_commit()) { 2382 post_compilation_event(event, task); 2383 } 2384 } 2385 2386 if (failure_reason != nullptr) { 2387 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2388 if (CompilationLog::log() != nullptr) { 2389 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2390 } 2391 if (PrintCompilation || directive->PrintCompilationOption) { 2392 FormatBufferResource msg = retry_message != nullptr ? 2393 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2394 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2395 task->print(tty, msg); 2396 } 2397 } 2398 2399 DirectivesStack::release(directive); 2400 2401 methodHandle method(thread, task->method()); 2402 2403 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2404 2405 collect_statistics(thread, time, task); 2406 2407 if (PrintCompilation && PrintCompilation2) { 2408 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2409 tty->print("%4d ", compile_id); // print compilation number 2410 tty->print("%s ", (is_osr ? "%" : " ")); 2411 if (task->is_success()) { 2412 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2413 } 2414 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2415 } 2416 2417 Log(compilation, codecache) log; 2418 if (log.is_debug()) { 2419 LogStream ls(log.debug()); 2420 codecache_print(&ls, /* detailed= */ false); 2421 } 2422 if (PrintCodeCacheOnCompilation) { 2423 codecache_print(/* detailed= */ false); 2424 } 2425 // Disable compilation, if required. 2426 switch (compilable) { 2427 case ciEnv::MethodCompilable_never: 2428 if (is_osr) 2429 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2430 else 2431 method->set_not_compilable_quietly("MethodCompilable_never"); 2432 break; 2433 case ciEnv::MethodCompilable_not_at_tier: 2434 if (is_osr) 2435 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2436 else 2437 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2438 break; 2439 } 2440 2441 // Note that the queued_for_compilation bits are cleared without 2442 // protection of a mutex. [They were set by the requester thread, 2443 // when adding the task to the compile queue -- at which time the 2444 // compile queue lock was held. Subsequently, we acquired the compile 2445 // queue lock to get this task off the compile queue; thus (to belabour 2446 // the point somewhat) our clearing of the bits must be occurring 2447 // only after the setting of the bits. See also 14012000 above. 2448 method->clear_queued_for_compilation(); 2449 } 2450 2451 /** 2452 * The CodeCache is full. Print warning and disable compilation. 2453 * Schedule code cache cleaning so compilation can continue later. 2454 * This function needs to be called only from CodeCache::allocate(), 2455 * since we currently handle a full code cache uniformly. 2456 */ 2457 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2458 UseInterpreter = true; 2459 if (UseCompiler || AlwaysCompileLoopMethods ) { 2460 if (xtty != nullptr) { 2461 stringStream s; 2462 // Dump code cache state into a buffer before locking the tty, 2463 // because log_state() will use locks causing lock conflicts. 2464 CodeCache::log_state(&s); 2465 // Lock to prevent tearing 2466 ttyLocker ttyl; 2467 xtty->begin_elem("code_cache_full"); 2468 xtty->print("%s", s.freeze()); 2469 xtty->stamp(); 2470 xtty->end_elem(); 2471 } 2472 2473 #ifndef PRODUCT 2474 if (ExitOnFullCodeCache) { 2475 codecache_print(/* detailed= */ true); 2476 before_exit(JavaThread::current()); 2477 exit_globals(); // will delete tty 2478 vm_direct_exit(1); 2479 } 2480 #endif 2481 if (UseCodeCacheFlushing) { 2482 // Since code cache is full, immediately stop new compiles 2483 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2484 log_info(codecache)("Code cache is full - disabling compilation"); 2485 } 2486 } else { 2487 disable_compilation_forever(); 2488 } 2489 2490 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2491 } 2492 } 2493 2494 // ------------------------------------------------------------------ 2495 // CompileBroker::update_compile_perf_data 2496 // 2497 // Record this compilation for debugging purposes. 2498 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2499 ResourceMark rm; 2500 char* method_name = method->name()->as_C_string(); 2501 char current_method[CompilerCounters::cmname_buffer_length]; 2502 size_t maxLen = CompilerCounters::cmname_buffer_length; 2503 2504 const char* class_name = method->method_holder()->name()->as_C_string(); 2505 2506 size_t s1len = strlen(class_name); 2507 size_t s2len = strlen(method_name); 2508 2509 // check if we need to truncate the string 2510 if (s1len + s2len + 2 > maxLen) { 2511 2512 // the strategy is to lop off the leading characters of the 2513 // class name and the trailing characters of the method name. 2514 2515 if (s2len + 2 > maxLen) { 2516 // lop of the entire class name string, let snprintf handle 2517 // truncation of the method name. 2518 class_name += s1len; // null string 2519 } 2520 else { 2521 // lop off the extra characters from the front of the class name 2522 class_name += ((s1len + s2len + 2) - maxLen); 2523 } 2524 } 2525 2526 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2527 2528 int last_compile_type = normal_compile; 2529 if (CICountOSR && is_osr) { 2530 last_compile_type = osr_compile; 2531 } else if (CICountNative && method->is_native()) { 2532 last_compile_type = native_compile; 2533 } 2534 2535 CompilerCounters* counters = thread->counters(); 2536 counters->set_current_method(current_method); 2537 counters->set_compile_type((jlong) last_compile_type); 2538 } 2539 2540 // ------------------------------------------------------------------ 2541 // CompileBroker::collect_statistics 2542 // 2543 // Collect statistics about the compilation. 2544 2545 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2546 bool success = task->is_success(); 2547 methodHandle method (thread, task->method()); 2548 int compile_id = task->compile_id(); 2549 bool is_osr = (task->osr_bci() != standard_entry_bci); 2550 const int comp_level = task->comp_level(); 2551 CompilerCounters* counters = thread->counters(); 2552 2553 MutexLocker locker(CompileStatistics_lock); 2554 2555 // _perf variables are production performance counters which are 2556 // updated regardless of the setting of the CITime and CITimeEach flags 2557 // 2558 2559 // account all time, including bailouts and failures in this counter; 2560 // C1 and C2 counters are counting both successful and unsuccessful compiles 2561 _t_total_compilation.add(time); 2562 2563 // Update compilation times. Used by the implementation of JFR CompilerStatistics 2564 // and java.lang.management.CompilationMXBean. 2565 _perf_total_compilation->inc(time.ticks()); 2566 _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time); 2567 2568 if (!success) { 2569 _total_bailout_count++; 2570 if (UsePerfData) { 2571 _perf_last_failed_method->set_value(counters->current_method()); 2572 _perf_last_failed_type->set_value(counters->compile_type()); 2573 _perf_total_bailout_count->inc(); 2574 } 2575 _t_bailedout_compilation.add(time); 2576 } else if (!task->is_success()) { 2577 if (UsePerfData) { 2578 _perf_last_invalidated_method->set_value(counters->current_method()); 2579 _perf_last_invalidated_type->set_value(counters->compile_type()); 2580 _perf_total_invalidated_count->inc(); 2581 } 2582 _total_invalidated_count++; 2583 _t_invalidated_compilation.add(time); 2584 } else { 2585 // Compilation succeeded 2586 if (CITime) { 2587 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2588 if (is_osr) { 2589 _t_osr_compilation.add(time); 2590 _sum_osr_bytes_compiled += bytes_compiled; 2591 } else { 2592 _t_standard_compilation.add(time); 2593 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2594 } 2595 2596 // Collect statistic per compilation level 2597 if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2598 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2599 if (is_osr) { 2600 stats->_osr.update(time, bytes_compiled); 2601 } else { 2602 stats->_standard.update(time, bytes_compiled); 2603 } 2604 stats->_nmethods_size += task->nm_total_size(); 2605 stats->_nmethods_code_size += task->nm_insts_size(); 2606 } else { 2607 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2608 } 2609 2610 // Collect statistic per compiler 2611 AbstractCompiler* comp = compiler(comp_level); 2612 if (comp) { 2613 CompilerStatistics* stats = comp->stats(); 2614 if (is_osr) { 2615 stats->_osr.update(time, bytes_compiled); 2616 } else { 2617 stats->_standard.update(time, bytes_compiled); 2618 } 2619 stats->_nmethods_size += task->nm_total_size(); 2620 stats->_nmethods_code_size += task->nm_insts_size(); 2621 } else { // if (!comp) 2622 assert(false, "Compiler object must exist"); 2623 } 2624 } 2625 2626 if (UsePerfData) { 2627 // save the name of the last method compiled 2628 _perf_last_method->set_value(counters->current_method()); 2629 _perf_last_compile_type->set_value(counters->compile_type()); 2630 _perf_last_compile_size->set_value(method->code_size() + 2631 task->num_inlined_bytecodes()); 2632 if (is_osr) { 2633 _perf_osr_compilation->inc(time.ticks()); 2634 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2635 } else { 2636 _perf_standard_compilation->inc(time.ticks()); 2637 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2638 } 2639 } 2640 2641 if (CITimeEach) { 2642 double compile_time = time.seconds(); 2643 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2644 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2645 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2646 } 2647 2648 // Collect counts of successful compilations 2649 _sum_nmethod_size += task->nm_total_size(); 2650 _sum_nmethod_code_size += task->nm_insts_size(); 2651 _total_compile_count++; 2652 2653 if (UsePerfData) { 2654 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2655 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2656 _perf_total_compile_count->inc(); 2657 } 2658 2659 if (is_osr) { 2660 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2661 _total_osr_compile_count++; 2662 } else { 2663 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2664 _total_standard_compile_count++; 2665 } 2666 } 2667 // set the current method for the thread to null 2668 if (UsePerfData) counters->set_current_method(""); 2669 } 2670 2671 const char* CompileBroker::compiler_name(int comp_level) { 2672 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2673 if (comp == nullptr) { 2674 return "no compiler"; 2675 } else { 2676 return (comp->name()); 2677 } 2678 } 2679 2680 jlong CompileBroker::total_compilation_ticks() { 2681 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2682 } 2683 2684 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 2685 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 2686 name, stats->bytes_per_second(), 2687 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 2688 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 2689 stats->_nmethods_size, stats->_nmethods_code_size); 2690 } 2691 2692 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 2693 if (per_compiler) { 2694 if (aggregate) { 2695 tty->cr(); 2696 tty->print_cr("Individual compiler times (for compiled methods only)"); 2697 tty->print_cr("------------------------------------------------"); 2698 tty->cr(); 2699 } 2700 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 2701 AbstractCompiler* comp = _compilers[i]; 2702 if (comp != nullptr) { 2703 print_times(comp->name(), comp->stats()); 2704 } 2705 } 2706 if (aggregate) { 2707 tty->cr(); 2708 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 2709 tty->print_cr("------------------------------------------------"); 2710 tty->cr(); 2711 } 2712 char tier_name[256]; 2713 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 2714 CompilerStatistics* stats = &_stats_per_level[tier-1]; 2715 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 2716 print_times(tier_name, stats); 2717 } 2718 } 2719 2720 if (!aggregate) { 2721 return; 2722 } 2723 2724 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 2725 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 2726 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 2727 2728 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 2729 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 2730 2731 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 2732 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 2733 uint total_compile_count = CompileBroker::_total_compile_count; 2734 uint total_bailout_count = CompileBroker::_total_bailout_count; 2735 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 2736 2737 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 2738 uint nmethods_size = CompileBroker::_sum_nmethod_size; 2739 2740 tty->cr(); 2741 tty->print_cr("Accumulated compiler times"); 2742 tty->print_cr("----------------------------------------------------------"); 2743 //0000000000111111111122222222223333333333444444444455555555556666666666 2744 //0123456789012345678901234567890123456789012345678901234567890123456789 2745 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 2746 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 2747 standard_compilation.seconds(), 2748 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 2749 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 2750 CompileBroker::_t_bailedout_compilation.seconds(), 2751 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 2752 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 2753 osr_compilation.seconds(), 2754 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 2755 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 2756 CompileBroker::_t_invalidated_compilation.seconds(), 2757 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 2758 2759 AbstractCompiler *comp = compiler(CompLevel_simple); 2760 if (comp != nullptr) { 2761 tty->cr(); 2762 comp->print_timers(); 2763 } 2764 comp = compiler(CompLevel_full_optimization); 2765 if (comp != nullptr) { 2766 tty->cr(); 2767 comp->print_timers(); 2768 } 2769 #if INCLUDE_JVMCI 2770 if (EnableJVMCI) { 2771 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 2772 if (jvmci_comp != nullptr && jvmci_comp != comp) { 2773 tty->cr(); 2774 jvmci_comp->print_timers(); 2775 } 2776 } 2777 #endif 2778 2779 tty->cr(); 2780 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 2781 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 2782 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 2783 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 2784 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 2785 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 2786 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 2787 double tcs = total_compilation.seconds(); 2788 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 2789 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 2790 tty->cr(); 2791 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 2792 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 2793 } 2794 2795 // Print general/accumulated JIT information. 2796 void CompileBroker::print_info(outputStream *out) { 2797 if (out == nullptr) out = tty; 2798 out->cr(); 2799 out->print_cr("======================"); 2800 out->print_cr(" General JIT info "); 2801 out->print_cr("======================"); 2802 out->cr(); 2803 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 2804 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 2805 out->cr(); 2806 out->print_cr("CodeCache overview"); 2807 out->print_cr("--------------------------------------------------------"); 2808 out->cr(); 2809 out->print_cr(" Reserved size : %7zu KB", CodeCache::max_capacity() / K); 2810 out->print_cr(" Committed size : %7zu KB", CodeCache::capacity() / K); 2811 out->print_cr(" Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K); 2812 out->cr(); 2813 } 2814 2815 // Note: tty_lock must not be held upon entry to this function. 2816 // Print functions called from herein do "micro-locking" on tty_lock. 2817 // That's a tradeoff which keeps together important blocks of output. 2818 // At the same time, continuous tty_lock hold time is kept in check, 2819 // preventing concurrently printing threads from stalling a long time. 2820 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 2821 TimeStamp ts_total; 2822 TimeStamp ts_global; 2823 TimeStamp ts; 2824 2825 bool allFun = !strcmp(function, "all"); 2826 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 2827 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 2828 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 2829 bool methodCount = !strcmp(function, "MethodCount") || allFun; 2830 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 2831 bool methodAge = !strcmp(function, "MethodAge") || allFun; 2832 bool methodNames = !strcmp(function, "MethodNames") || allFun; 2833 bool discard = !strcmp(function, "discard") || allFun; 2834 2835 if (out == nullptr) { 2836 out = tty; 2837 } 2838 2839 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 2840 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 2841 out->cr(); 2842 return; 2843 } 2844 2845 ts_total.update(); // record starting point 2846 2847 if (aggregate) { 2848 print_info(out); 2849 } 2850 2851 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 2852 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 2853 // When we request individual parts of the analysis via the jcmd interface, it is possible 2854 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 2855 // updated the aggregated data. We will then see a modified, but again consistent, view 2856 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 2857 // a lock across user interaction. 2858 2859 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 2860 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 2861 // leading to an unnecessarily long hold time of the other locks we acquired before. 2862 ts.update(); // record starting point 2863 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 2864 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 2865 2866 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 2867 // Unfortunately, such protection is not sufficient: 2868 // When a new nmethod is created via ciEnv::register_method(), the 2869 // Compile_lock is taken first. After some initializations, 2870 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 2871 // immediately (after finalizing the oop references). To lock out concurrent 2872 // modifiers, we have to grab both locks as well in the described sequence. 2873 // 2874 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 2875 // for the entire duration of aggregation and printing. That makes sure we see 2876 // a consistent picture and do not run into issues caused by concurrent alterations. 2877 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 2878 !Compile_lock->owned_by_self(); 2879 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 2880 !CodeCache_lock->owned_by_self(); 2881 bool take_global_lock_1 = allFun && should_take_Compile_lock; 2882 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 2883 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 2884 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 2885 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 2886 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 2887 2888 ts_global.update(); // record starting point 2889 2890 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 2891 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 2892 if (take_global_locks) { 2893 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 2894 ts_global.update(); // record starting point 2895 } 2896 2897 if (aggregate) { 2898 ts.update(); // record starting point 2899 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 2900 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 2901 if (take_function_locks) { 2902 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 2903 } 2904 2905 ts.update(); // record starting point 2906 CodeCache::aggregate(out, granularity); 2907 if (take_function_locks) { 2908 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 2909 } 2910 } 2911 2912 if (usedSpace) CodeCache::print_usedSpace(out); 2913 if (freeSpace) CodeCache::print_freeSpace(out); 2914 if (methodCount) CodeCache::print_count(out); 2915 if (methodSpace) CodeCache::print_space(out); 2916 if (methodAge) CodeCache::print_age(out); 2917 if (methodNames) { 2918 if (allFun) { 2919 // print_names() can only be used safely if the locks have been continuously held 2920 // since aggregation begin. That is true only for function "all". 2921 CodeCache::print_names(out); 2922 } else { 2923 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 2924 } 2925 } 2926 if (discard) CodeCache::discard(out); 2927 2928 if (take_global_locks) { 2929 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 2930 } 2931 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 2932 }