1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotLinkedClassBulkLoader.hpp" 26 #include "cds/cdsConfig.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/codeHeapState.hpp" 33 #include "code/dependencyContext.hpp" 34 #include "code/SCCache.hpp" 35 #include "compiler/compilationLog.hpp" 36 #include "compiler/compilationMemoryStatistic.hpp" 37 #include "compiler/compilationPolicy.hpp" 38 #include "compiler/compileBroker.hpp" 39 #include "compiler/compileLog.hpp" 40 #include "compiler/compilerDefinitions.inline.hpp" 41 #include "compiler/compilerEvent.hpp" 42 #include "compiler/compilerOracle.hpp" 43 #include "compiler/directivesParser.hpp" 44 #include "compiler/recompilationPolicy.hpp" 45 #include "gc/shared/memAllocator.hpp" 46 #include "interpreter/linkResolver.hpp" 47 #include "jfr/jfrEvents.hpp" 48 #include "jvm.h" 49 #include "logging/log.hpp" 50 #include "logging/logStream.hpp" 51 #include "memory/allocation.inline.hpp" 52 #include "memory/resourceArea.hpp" 53 #include "memory/universe.hpp" 54 #include "oops/method.inline.hpp" 55 #include "oops/methodData.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "prims/whitebox.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/escapeBarrier.hpp" 62 #include "runtime/globals_extension.hpp" 63 #include "runtime/handles.inline.hpp" 64 #include "runtime/init.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/java.hpp" 67 #include "runtime/javaCalls.hpp" 68 #include "runtime/jniHandles.inline.hpp" 69 #include "runtime/os.hpp" 70 #include "runtime/perfData.hpp" 71 #include "runtime/safepointVerifiers.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/threads.hpp" 74 #include "runtime/threadSMR.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "services/management.hpp" 78 #include "utilities/debug.hpp" 79 #include "utilities/dtrace.hpp" 80 #include "utilities/events.hpp" 81 #include "utilities/formatBuffer.hpp" 82 #include "utilities/macros.hpp" 83 #include "utilities/nonblockingQueue.inline.hpp" 84 #ifdef COMPILER1 85 #include "c1/c1_Compiler.hpp" 86 #endif 87 #ifdef COMPILER2 88 #include "opto/c2compiler.hpp" 89 #endif 90 #if INCLUDE_JVMCI 91 #include "jvmci/jvmciEnv.hpp" 92 #include "jvmci/jvmciRuntime.hpp" 93 #endif 94 95 #ifdef DTRACE_ENABLED 96 97 // Only bother with this argument setup if dtrace is available 98 99 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 100 { \ 101 Symbol* klass_name = (method)->klass_name(); \ 102 Symbol* name = (method)->name(); \ 103 Symbol* signature = (method)->signature(); \ 104 HOTSPOT_METHOD_COMPILE_BEGIN( \ 105 (char *) comp_name, strlen(comp_name), \ 106 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 107 (char *) name->bytes(), name->utf8_length(), \ 108 (char *) signature->bytes(), signature->utf8_length()); \ 109 } 110 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 112 { \ 113 Symbol* klass_name = (method)->klass_name(); \ 114 Symbol* name = (method)->name(); \ 115 Symbol* signature = (method)->signature(); \ 116 HOTSPOT_METHOD_COMPILE_END( \ 117 (char *) comp_name, strlen(comp_name), \ 118 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 119 (char *) name->bytes(), name->utf8_length(), \ 120 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 121 } 122 123 #else // ndef DTRACE_ENABLED 124 125 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 126 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 127 128 #endif // ndef DTRACE_ENABLED 129 130 bool CompileBroker::_initialized = false; 131 volatile bool CompileBroker::_should_block = false; 132 volatile int CompileBroker::_print_compilation_warning = 0; 133 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 134 135 // The installed compiler(s) 136 AbstractCompiler* CompileBroker::_compilers[3]; 137 138 // The maximum numbers of compiler threads to be determined during startup. 139 int CompileBroker::_c1_count = 0; 140 int CompileBroker::_c2_count = 0; 141 int CompileBroker::_c3_count = 0; 142 int CompileBroker::_sc_count = 0; 143 144 // An array of compiler names as Java String objects 145 jobject* CompileBroker::_compiler1_objects = nullptr; 146 jobject* CompileBroker::_compiler2_objects = nullptr; 147 jobject* CompileBroker::_compiler3_objects = nullptr; 148 jobject* CompileBroker::_sc_objects = nullptr; 149 150 CompileLog** CompileBroker::_compiler1_logs = nullptr; 151 CompileLog** CompileBroker::_compiler2_logs = nullptr; 152 CompileLog** CompileBroker::_compiler3_logs = nullptr; 153 CompileLog** CompileBroker::_sc_logs = nullptr; 154 155 // These counters are used to assign an unique ID to each compilation. 156 volatile jint CompileBroker::_compilation_id = 0; 157 volatile jint CompileBroker::_osr_compilation_id = 0; 158 volatile jint CompileBroker::_native_compilation_id = 0; 159 160 // Performance counters 161 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 162 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 163 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 164 165 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 166 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 167 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 168 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 169 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 170 171 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 172 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 173 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 174 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 175 176 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 177 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 178 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 179 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 180 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 181 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 182 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 183 184 // Timers and counters for generating statistics 185 elapsedTimer CompileBroker::_t_total_compilation; 186 elapsedTimer CompileBroker::_t_osr_compilation; 187 elapsedTimer CompileBroker::_t_standard_compilation; 188 elapsedTimer CompileBroker::_t_invalidated_compilation; 189 elapsedTimer CompileBroker::_t_bailedout_compilation; 190 191 uint CompileBroker::_total_bailout_count = 0; 192 uint CompileBroker::_total_invalidated_count = 0; 193 uint CompileBroker::_total_not_entrant_count = 0; 194 uint CompileBroker::_total_compile_count = 0; 195 uint CompileBroker::_total_osr_compile_count = 0; 196 uint CompileBroker::_total_standard_compile_count = 0; 197 uint CompileBroker::_total_compiler_stopped_count = 0; 198 uint CompileBroker::_total_compiler_restarted_count = 0; 199 200 uint CompileBroker::_sum_osr_bytes_compiled = 0; 201 uint CompileBroker::_sum_standard_bytes_compiled = 0; 202 uint CompileBroker::_sum_nmethod_size = 0; 203 uint CompileBroker::_sum_nmethod_code_size = 0; 204 205 jlong CompileBroker::_peak_compilation_time = 0; 206 207 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 208 CompilerStatistics CompileBroker::_scc_stats; 209 CompilerStatistics CompileBroker::_scc_stats_per_level[CompLevel_full_optimization + 1]; 210 211 CompileQueue* CompileBroker::_c3_compile_queue = nullptr; 212 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 213 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 214 CompileQueue* CompileBroker::_sc1_compile_queue = nullptr; 215 CompileQueue* CompileBroker::_sc2_compile_queue = nullptr; 216 217 bool compileBroker_init() { 218 if (LogEvents) { 219 CompilationLog::init(); 220 } 221 222 // init directives stack, adding default directive 223 DirectivesStack::init(); 224 225 if (DirectivesParser::has_file()) { 226 return DirectivesParser::parse_from_flag(); 227 } else if (CompilerDirectivesPrint) { 228 // Print default directive even when no other was added 229 DirectivesStack::print(tty); 230 } 231 232 return true; 233 } 234 235 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 236 CompilerThread* thread = CompilerThread::current(); 237 thread->set_task(task); 238 CompileLog* log = thread->log(); 239 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 240 } 241 242 CompileTaskWrapper::~CompileTaskWrapper() { 243 CompilerThread* thread = CompilerThread::current(); 244 CompileTask* task = thread->task(); 245 CompileLog* log = thread->log(); 246 AbstractCompiler* comp = thread->compiler(); 247 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 248 thread->set_task(nullptr); 249 thread->set_env(nullptr); 250 if (task->is_blocking()) { 251 bool free_task = false; 252 { 253 MutexLocker notifier(thread, task->lock()); 254 task->mark_complete(); 255 #if INCLUDE_JVMCI 256 if (comp->is_jvmci()) { 257 if (!task->has_waiter()) { 258 // The waiting thread timed out and thus did not free the task. 259 free_task = true; 260 } 261 task->set_blocking_jvmci_compile_state(nullptr); 262 } 263 #endif 264 if (!free_task) { 265 // Notify the waiting thread that the compilation has completed 266 // so that it can free the task. 267 task->lock()->notify_all(); 268 } 269 } 270 if (free_task) { 271 // The task can only be freed once the task lock is released. 272 CompileTask::free(task); 273 } 274 } else { 275 task->mark_complete(); 276 277 // By convention, the compiling thread is responsible for 278 // recycling a non-blocking CompileTask. 279 CompileTask::free(task); 280 } 281 } 282 283 /** 284 * Check if a CompilerThread can be removed and update count if requested. 285 */ 286 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 287 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 288 if (!ReduceNumberOfCompilerThreads) return false; 289 290 if (RecompilationPolicy::have_recompilation_work()) return false; 291 292 AbstractCompiler *compiler = ct->compiler(); 293 int compiler_count = compiler->num_compiler_threads(); 294 bool c1 = compiler->is_c1(); 295 296 // Keep at least 1 compiler thread of each type. 297 if (compiler_count < 2) return false; 298 299 // Keep thread alive for at least some time. 300 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 301 302 #if INCLUDE_JVMCI 303 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 304 // Handles for JVMCI thread objects may get released concurrently. 305 if (do_it) { 306 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 307 } else { 308 // Skip check if it's the last thread and let caller check again. 309 return true; 310 } 311 } 312 #endif 313 314 // We only allow the last compiler thread of each type to get removed. 315 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 316 : compiler2_object(compiler_count - 1); 317 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 318 if (do_it) { 319 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 320 compiler->set_num_compiler_threads(compiler_count - 1); 321 #if INCLUDE_JVMCI 322 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 323 // Old j.l.Thread object can die when no longer referenced elsewhere. 324 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 325 _compiler2_objects[compiler_count - 1] = nullptr; 326 } 327 #endif 328 } 329 return true; 330 } 331 return false; 332 } 333 334 /** 335 * Add a CompileTask to a CompileQueue. 336 */ 337 void CompileQueue::add(CompileTask* task) { 338 assert(_lock->owned_by_self(), "must own lock"); 339 340 task->set_next(nullptr); 341 task->set_prev(nullptr); 342 343 if (_last == nullptr) { 344 // The compile queue is empty. 345 assert(_first == nullptr, "queue is empty"); 346 _first = task; 347 _last = task; 348 } else { 349 // Append the task to the queue. 350 assert(_last->next() == nullptr, "not last"); 351 _last->set_next(task); 352 task->set_prev(_last); 353 _last = task; 354 } 355 ++_size; 356 ++_total_added; 357 if (_size > _peak_size) { 358 _peak_size = _size; 359 } 360 361 // Mark the method as being in the compile queue. 362 task->method()->set_queued_for_compilation(); 363 364 task->mark_queued(os::elapsed_counter()); 365 366 if (CIPrintCompileQueue) { 367 print_tty(); 368 } 369 370 if (LogCompilation && xtty != nullptr) { 371 task->log_task_queued(); 372 } 373 374 if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) { 375 CompileTrainingData* td = CompileTrainingData::make(task); 376 if (td != nullptr) { 377 task->set_training_data(td); 378 } 379 } 380 381 // Notify CompilerThreads that a task is available. 382 _lock->notify_all(); 383 } 384 385 void CompileQueue::add_pending(CompileTask* task) { 386 assert(_lock->owned_by_self() == false, "must NOT own lock"); 387 assert(UseLockFreeCompileQueues, ""); 388 task->method()->set_queued_for_compilation(); 389 _queue.push(*task); 390 // FIXME: additional coordination needed? e.g., is it possible for compiler thread to block w/o processing pending tasks? 391 if (is_empty()) { 392 MutexLocker ml(_lock); 393 _lock->notify_all(); 394 } 395 } 396 397 static bool process_pending(CompileTask* task) { 398 // guarantee(task->method()->queued_for_compilation(), ""); 399 if (task->is_unloaded()) { 400 return true; // unloaded 401 } 402 task->method()->set_queued_for_compilation(); // FIXME 403 if (task->method()->pending_queue_processed()) { 404 return true; // already queued 405 } 406 // Mark the method as being in the compile queue. 407 task->method()->set_pending_queue_processed(); 408 if (CompileBroker::compilation_is_complete(task->method(), task->osr_bci(), task->comp_level(), 409 task->requires_online_compilation(), task->compile_reason())) { 410 return true; // already compiled 411 } 412 return false; // active 413 } 414 415 void CompileQueue::transfer_pending() { 416 assert(_lock->owned_by_self(), "must own lock"); 417 418 CompileTask* task; 419 while ((task = _queue.pop()) != nullptr) { 420 bool is_stale = process_pending(task); 421 if (is_stale) { 422 task->set_next(_first_stale); 423 task->set_prev(nullptr); 424 _first_stale = task; 425 } else { 426 add(task); 427 } 428 } 429 } 430 431 /** 432 * Empties compilation queue by putting all compilation tasks onto 433 * a freelist. Furthermore, the method wakes up all threads that are 434 * waiting on a compilation task to finish. This can happen if background 435 * compilation is disabled. 436 */ 437 void CompileQueue::free_all() { 438 MutexLocker mu(_lock); 439 transfer_pending(); 440 441 CompileTask* next = _first; 442 443 // Iterate over all tasks in the compile queue 444 while (next != nullptr) { 445 CompileTask* current = next; 446 next = current->next(); 447 bool found_waiter = false; 448 { 449 MutexLocker ct_lock(current->lock()); 450 assert(current->waiting_for_completion_count() <= 1, "more than one thread are waiting for task"); 451 if (current->waiting_for_completion_count() > 0) { 452 // If another thread waits for this task, we must wake them up 453 // so they will stop waiting and free the task. 454 current->lock()->notify(); 455 found_waiter = true; 456 } 457 } 458 if (!found_waiter) { 459 // If no one was waiting for this task, we need to free it ourselves. In this case, the task 460 // is also certainly unlocked, because, again, there is no waiter. 461 // Otherwise, by convention, it's the waiters responsibility to free the task. 462 // Put the task back on the freelist. 463 CompileTask::free(current); 464 } 465 } 466 _first = nullptr; 467 _last = nullptr; 468 469 // Wake up all threads that block on the queue. 470 _lock->notify_all(); 471 } 472 473 /** 474 * Get the next CompileTask from a CompileQueue 475 */ 476 CompileTask* CompileQueue::get(CompilerThread* thread) { 477 // save methods from RedefineClasses across safepoint 478 // across compile queue lock below. 479 methodHandle save_method; 480 methodHandle save_hot_method; 481 482 MonitorLocker locker(_lock); 483 transfer_pending(); 484 485 RecompilationPolicy::sample_load_average(); 486 487 // If _first is null we have no more compile jobs. There are two reasons for 488 // having no compile jobs: First, we compiled everything we wanted. Second, 489 // we ran out of code cache so compilation has been disabled. In the latter 490 // case we perform code cache sweeps to free memory such that we can re-enable 491 // compilation. 492 while (_first == nullptr) { 493 // Exit loop if compilation is disabled forever 494 if (CompileBroker::is_compilation_disabled_forever()) { 495 return nullptr; 496 } 497 498 AbstractCompiler* compiler = thread->compiler(); 499 guarantee(compiler != nullptr, "Compiler object must exist"); 500 compiler->on_empty_queue(this, thread); 501 if (_first != nullptr) { 502 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 503 // so check again whether any tasks were added to the queue. 504 break; 505 } 506 507 // If we have added stale tasks, there might be waiters that want 508 // the notification these tasks have failed. Normally, this would 509 // be done by a compiler thread that would perform the purge at 510 // the end of some compilation. But, if compile queue is empty, 511 // there is no guarantee compilers would run and do the purge. 512 // Do the purge here and now to unblock the waiters. 513 // Perform this until we run out of stale tasks. 514 while (_first_stale != nullptr) { 515 purge_stale_tasks(); 516 } 517 if (_first != nullptr) { 518 // Purge stale tasks may have transferred some new tasks, 519 // so check again. 520 break; 521 } 522 523 // If there are no compilation tasks and we can compile new jobs 524 // (i.e., there is enough free space in the code cache) there is 525 // no need to invoke the GC. 526 // We need a timed wait here, since compiler threads can exit if compilation 527 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 528 // is not critical and we do not want idle compiler threads to wake up too often. 529 locker.wait(5*1000); 530 531 transfer_pending(); // reacquired lock 532 533 if (RecompilationPolicy::have_recompilation_work()) return nullptr; 534 535 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 536 // Still nothing to compile. Give caller a chance to stop this thread. 537 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 538 } 539 } 540 541 if (CompileBroker::is_compilation_disabled_forever()) { 542 return nullptr; 543 } 544 545 CompileTask* task; 546 { 547 NoSafepointVerifier nsv; 548 task = CompilationPolicy::select_task(this, thread); 549 if (task != nullptr) { 550 task = task->select_for_compilation(); 551 } 552 } 553 554 if (task != nullptr) { 555 // Save method pointers across unlock safepoint. The task is removed from 556 // the compilation queue, which is walked during RedefineClasses. 557 Thread* thread = Thread::current(); 558 save_method = methodHandle(thread, task->method()); 559 save_hot_method = methodHandle(thread, task->hot_method()); 560 561 remove(task); 562 } 563 purge_stale_tasks(); // may temporarily release MCQ lock 564 return task; 565 } 566 567 // Clean & deallocate stale compile tasks. 568 // Temporarily releases MethodCompileQueue lock. 569 void CompileQueue::purge_stale_tasks() { 570 assert(_lock->owned_by_self(), "must own lock"); 571 if (_first_stale != nullptr) { 572 // Stale tasks are purged when MCQ lock is released, 573 // but _first_stale updates are protected by MCQ lock. 574 // Once task processing starts and MCQ lock is released, 575 // other compiler threads can reuse _first_stale. 576 CompileTask* head = _first_stale; 577 _first_stale = nullptr; 578 { 579 MutexUnlocker ul(_lock); 580 for (CompileTask* task = head; task != nullptr; ) { 581 CompileTask* next_task = task->next(); 582 CompileTaskWrapper ctw(task); // Frees the task 583 task->set_failure_reason("stale task"); 584 task = next_task; 585 } 586 } 587 transfer_pending(); // transfer pending after reacquiring MCQ lock 588 } 589 } 590 591 void CompileQueue::remove(CompileTask* task) { 592 assert(_lock->owned_by_self(), "must own lock"); 593 if (task->prev() != nullptr) { 594 task->prev()->set_next(task->next()); 595 } else { 596 // max is the first element 597 assert(task == _first, "Sanity"); 598 _first = task->next(); 599 } 600 601 if (task->next() != nullptr) { 602 task->next()->set_prev(task->prev()); 603 } else { 604 // max is the last element 605 assert(task == _last, "Sanity"); 606 _last = task->prev(); 607 } 608 --_size; 609 ++_total_removed; 610 } 611 612 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 613 assert(_lock->owned_by_self(), "must own lock"); 614 remove(task); 615 616 // Enqueue the task for reclamation (should be done outside MCQ lock) 617 task->set_next(_first_stale); 618 task->set_prev(nullptr); 619 _first_stale = task; 620 } 621 622 // methods in the compile queue need to be marked as used on the stack 623 // so that they don't get reclaimed by Redefine Classes 624 void CompileQueue::mark_on_stack() { 625 for (CompileTask* task = _first; task != nullptr; task = task->next()) { 626 task->mark_on_stack(); 627 } 628 for (CompileTask* task = _queue.first(); !_queue.is_end(task); task = task->next()) { 629 assert(task != nullptr, ""); 630 task->mark_on_stack(); 631 } 632 } 633 634 635 CompileQueue* CompileBroker::compile_queue(int comp_level, bool is_scc) { 636 if (is_c2_compile(comp_level)) return ((is_scc && (_sc_count > 0)) ? _sc2_compile_queue : _c2_compile_queue); 637 if (is_c1_compile(comp_level)) return ((is_scc && (_sc_count > 0)) ? _sc1_compile_queue : _c1_compile_queue); 638 return nullptr; 639 } 640 641 CompileQueue* CompileBroker::c1_compile_queue() { 642 return _c1_compile_queue; 643 } 644 645 CompileQueue* CompileBroker::c2_compile_queue() { 646 return _c2_compile_queue; 647 } 648 649 void CompileBroker::print_compile_queues(outputStream* st) { 650 st->print_cr("Current compiles: "); 651 652 char buf[2000]; 653 int buflen = sizeof(buf); 654 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 655 656 st->cr(); 657 if (_c1_compile_queue != nullptr) { 658 _c1_compile_queue->print(st); 659 } 660 if (_c2_compile_queue != nullptr) { 661 _c2_compile_queue->print(st); 662 } 663 if (_c3_compile_queue != nullptr) { 664 _c3_compile_queue->print(st); 665 } 666 if (_sc1_compile_queue != nullptr) { 667 _sc1_compile_queue->print(st); 668 } 669 if (_sc2_compile_queue != nullptr) { 670 _sc2_compile_queue->print(st); 671 } 672 } 673 674 void CompileQueue::print(outputStream* st) { 675 assert_locked_or_safepoint(_lock); 676 st->print_cr("%s:", name()); 677 CompileTask* task = _first; 678 if (task == nullptr) { 679 st->print_cr("Empty"); 680 } else { 681 while (task != nullptr) { 682 task->print(st, nullptr, true, true); 683 task = task->next(); 684 } 685 } 686 st->cr(); 687 } 688 689 void CompileQueue::print_tty() { 690 stringStream ss; 691 // Dump the compile queue into a buffer before locking the tty 692 print(&ss); 693 { 694 ttyLocker ttyl; 695 tty->print("%s", ss.freeze()); 696 } 697 } 698 699 CompilerCounters::CompilerCounters() { 700 _current_method[0] = '\0'; 701 _compile_type = CompileBroker::no_compile; 702 } 703 704 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 705 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 706 // in compiler/compilerEvent.cpp) and registers it with its serializer. 707 // 708 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 709 // so if c2 is used, it should be always registered first. 710 // This function is called during vm initialization. 711 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 712 ResourceMark rm; 713 static bool first_registration = true; 714 if (compiler_type == compiler_jvmci) { 715 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 716 first_registration = false; 717 #ifdef COMPILER2 718 } else if (compiler_type == compiler_c2) { 719 assert(first_registration, "invariant"); // c2 must be registered first. 720 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 721 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 722 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 723 } 724 first_registration = false; 725 #endif // COMPILER2 726 } 727 } 728 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 729 730 // ------------------------------------------------------------------ 731 // CompileBroker::compilation_init 732 // 733 // Initialize the Compilation object 734 void CompileBroker::compilation_init(JavaThread* THREAD) { 735 // No need to initialize compilation system if we do not use it. 736 if (!UseCompiler) { 737 return; 738 } 739 // Set the interface to the current compiler(s). 740 _c1_count = CompilationPolicy::c1_count(); 741 _c2_count = CompilationPolicy::c2_count(); 742 _c3_count = CompilationPolicy::c3_count(); 743 _sc_count = CompilationPolicy::sc_count(); 744 745 #if INCLUDE_JVMCI 746 if (EnableJVMCI) { 747 // This is creating a JVMCICompiler singleton. 748 JVMCICompiler* jvmci = new JVMCICompiler(); 749 750 if (UseJVMCICompiler) { 751 _compilers[1] = jvmci; 752 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 753 if (BootstrapJVMCI) { 754 // JVMCI will bootstrap so give it more threads 755 _c2_count = MIN2(32, os::active_processor_count()); 756 } 757 } else { 758 _c2_count = JVMCIThreads; 759 } 760 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 761 } else { 762 #ifdef COMPILER1 763 _c1_count = JVMCIHostThreads; 764 #endif // COMPILER1 765 } 766 #ifdef COMPILER2 767 if (SCCache::is_on() && (_c3_count > 0)) { 768 _compilers[2] = new C2Compiler(); 769 } 770 #endif 771 } 772 } 773 #endif // INCLUDE_JVMCI 774 775 #ifdef COMPILER1 776 if (_c1_count > 0) { 777 _compilers[0] = new Compiler(); 778 } 779 #endif // COMPILER1 780 781 #ifdef COMPILER2 782 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 783 if (_c2_count > 0) { 784 _compilers[1] = new C2Compiler(); 785 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 786 // idToPhase mapping for c2 is in opto/phasetype.hpp 787 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 788 } 789 } 790 #endif // COMPILER2 791 792 #if INCLUDE_JVMCI 793 // Register after c2 registration. 794 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 795 if (EnableJVMCI) { 796 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 797 } 798 #endif // INCLUDE_JVMCI 799 800 if (CompilerOracle::should_collect_memstat()) { 801 CompilationMemoryStatistic::initialize(); 802 } 803 804 // Start the compiler thread(s) 805 init_compiler_threads(); 806 // totalTime performance counter is always created as it is required 807 // by the implementation of java.lang.management.CompilationMXBean. 808 { 809 // Ensure OOM leads to vm_exit_during_initialization. 810 EXCEPTION_MARK; 811 _perf_total_compilation = 812 PerfDataManager::create_counter(JAVA_CI, "totalTime", 813 PerfData::U_Ticks, CHECK); 814 } 815 816 if (UsePerfData) { 817 818 EXCEPTION_MARK; 819 820 // create the jvmstat performance counters 821 _perf_osr_compilation = 822 PerfDataManager::create_counter(SUN_CI, "osrTime", 823 PerfData::U_Ticks, CHECK); 824 825 _perf_standard_compilation = 826 PerfDataManager::create_counter(SUN_CI, "standardTime", 827 PerfData::U_Ticks, CHECK); 828 829 _perf_total_bailout_count = 830 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 831 PerfData::U_Events, CHECK); 832 833 _perf_total_invalidated_count = 834 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 835 PerfData::U_Events, CHECK); 836 837 _perf_total_compile_count = 838 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 839 PerfData::U_Events, CHECK); 840 _perf_total_osr_compile_count = 841 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 842 PerfData::U_Events, CHECK); 843 844 _perf_total_standard_compile_count = 845 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 846 PerfData::U_Events, CHECK); 847 848 _perf_sum_osr_bytes_compiled = 849 PerfDataManager::create_counter(SUN_CI, "osrBytes", 850 PerfData::U_Bytes, CHECK); 851 852 _perf_sum_standard_bytes_compiled = 853 PerfDataManager::create_counter(SUN_CI, "standardBytes", 854 PerfData::U_Bytes, CHECK); 855 856 _perf_sum_nmethod_size = 857 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 858 PerfData::U_Bytes, CHECK); 859 860 _perf_sum_nmethod_code_size = 861 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 862 PerfData::U_Bytes, CHECK); 863 864 _perf_last_method = 865 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 866 CompilerCounters::cmname_buffer_length, 867 "", CHECK); 868 869 _perf_last_failed_method = 870 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 871 CompilerCounters::cmname_buffer_length, 872 "", CHECK); 873 874 _perf_last_invalidated_method = 875 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 876 CompilerCounters::cmname_buffer_length, 877 "", CHECK); 878 879 _perf_last_compile_type = 880 PerfDataManager::create_variable(SUN_CI, "lastType", 881 PerfData::U_None, 882 (jlong)CompileBroker::no_compile, 883 CHECK); 884 885 _perf_last_compile_size = 886 PerfDataManager::create_variable(SUN_CI, "lastSize", 887 PerfData::U_Bytes, 888 (jlong)CompileBroker::no_compile, 889 CHECK); 890 891 892 _perf_last_failed_type = 893 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 894 PerfData::U_None, 895 (jlong)CompileBroker::no_compile, 896 CHECK); 897 898 _perf_last_invalidated_type = 899 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 900 PerfData::U_None, 901 (jlong)CompileBroker::no_compile, 902 CHECK); 903 } 904 905 log_info(scc, init)("CompileBroker is initialized"); 906 _initialized = true; 907 } 908 909 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) { 910 Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH); 911 return thread_oop; 912 } 913 914 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) { 915 CompilationPolicy::replay_training_at_init_loop(thread); 916 } 917 918 #if defined(ASSERT) && COMPILER2_OR_JVMCI 919 // Entry for DeoptimizeObjectsALotThread. The threads are started in 920 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 921 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 922 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 923 bool enter_single_loop; 924 { 925 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 926 static int single_thread_count = 0; 927 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 928 } 929 if (enter_single_loop) { 930 dt->deoptimize_objects_alot_loop_single(); 931 } else { 932 dt->deoptimize_objects_alot_loop_all(); 933 } 934 } 935 936 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 937 // barrier targets a single thread which is selected round robin. 938 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 939 HandleMark hm(this); 940 while (true) { 941 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 942 { // Begin new scope for escape barrier 943 HandleMarkCleaner hmc(this); 944 ResourceMark rm(this); 945 EscapeBarrier eb(true, this, deoptee_thread); 946 eb.deoptimize_objects(100); 947 } 948 // Now sleep after the escape barriers destructor resumed deoptee_thread. 949 sleep(DeoptimizeObjectsALotInterval); 950 } 951 } 952 } 953 954 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 955 // barrier targets all java threads in the vm at once. 956 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 957 HandleMark hm(this); 958 while (true) { 959 { // Begin new scope for escape barrier 960 HandleMarkCleaner hmc(this); 961 ResourceMark rm(this); 962 EscapeBarrier eb(true, this); 963 eb.deoptimize_objects_all_threads(); 964 } 965 // Now sleep after the escape barriers destructor resumed the java threads. 966 sleep(DeoptimizeObjectsALotInterval); 967 } 968 } 969 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 970 971 972 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 973 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 974 975 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 976 assert(type == compiler_t, "should only happen with reused compiler threads"); 977 // The compiler thread hasn't actually exited yet so don't try to reuse it 978 return nullptr; 979 } 980 981 JavaThread* new_thread = nullptr; 982 switch (type) { 983 case compiler_t: 984 assert(comp != nullptr, "Compiler instance missing."); 985 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 986 CompilerCounters* counters = new CompilerCounters(); 987 new_thread = new CompilerThread(queue, counters); 988 } 989 break; 990 #if defined(ASSERT) && COMPILER2_OR_JVMCI 991 case deoptimizer_t: 992 new_thread = new DeoptimizeObjectsALotThread(); 993 break; 994 #endif // ASSERT 995 case training_replay_t: 996 new_thread = new TrainingReplayThread(); 997 break; 998 default: 999 ShouldNotReachHere(); 1000 } 1001 1002 // At this point the new CompilerThread data-races with this startup 1003 // thread (which is the main thread and NOT the VM thread). 1004 // This means Java bytecodes being executed at startup can 1005 // queue compile jobs which will run at whatever default priority the 1006 // newly created CompilerThread runs at. 1007 1008 1009 // At this point it may be possible that no osthread was created for the 1010 // JavaThread due to lack of resources. We will handle that failure below. 1011 // Also check new_thread so that static analysis is happy. 1012 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 1013 1014 if (type == compiler_t) { 1015 CompilerThread::cast(new_thread)->set_compiler(comp); 1016 } 1017 1018 // Note that we cannot call os::set_priority because it expects Java 1019 // priorities and we are *explicitly* using OS priorities so that it's 1020 // possible to set the compiler thread priority higher than any Java 1021 // thread. 1022 1023 int native_prio = CompilerThreadPriority; 1024 if (native_prio == -1) { 1025 if (UseCriticalCompilerThreadPriority) { 1026 native_prio = os::java_to_os_priority[CriticalPriority]; 1027 } else { 1028 native_prio = os::java_to_os_priority[NearMaxPriority]; 1029 } 1030 } 1031 os::set_native_priority(new_thread, native_prio); 1032 1033 // Note that this only sets the JavaThread _priority field, which by 1034 // definition is limited to Java priorities and not OS priorities. 1035 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 1036 1037 } else { // osthread initialization failure 1038 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 1039 && comp->num_compiler_threads() > 0) { 1040 // The new thread is not known to Thread-SMR yet so we can just delete. 1041 delete new_thread; 1042 return nullptr; 1043 } else { 1044 vm_exit_during_initialization("java.lang.OutOfMemoryError", 1045 os::native_thread_creation_failed_msg()); 1046 } 1047 } 1048 1049 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 1050 1051 return new_thread; 1052 } 1053 1054 static bool trace_compiler_threads() { 1055 LogTarget(Debug, jit, thread) lt; 1056 return TraceCompilerThreads || lt.is_enabled(); 1057 } 1058 1059 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 1060 char name_buffer[256]; 1061 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 1062 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 1063 return JNIHandles::make_global(thread_oop); 1064 } 1065 1066 static void print_compiler_threads(stringStream& msg) { 1067 if (TraceCompilerThreads) { 1068 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 1069 } 1070 LogTarget(Debug, jit, thread) lt; 1071 if (lt.is_enabled()) { 1072 LogStream ls(lt); 1073 ls.print_cr("%s", msg.as_string()); 1074 } 1075 } 1076 1077 static void print_compiler_thread(JavaThread *ct) { 1078 if (trace_compiler_threads()) { 1079 ResourceMark rm; 1080 ThreadsListHandle tlh; // name() depends on the TLH. 1081 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1082 stringStream msg; 1083 msg.print("Added initial compiler thread %s", ct->name()); 1084 print_compiler_threads(msg); 1085 } 1086 } 1087 1088 void CompileBroker::init_compiler_threads() { 1089 // Ensure any exceptions lead to vm_exit_during_initialization. 1090 EXCEPTION_MARK; 1091 #if !defined(ZERO) 1092 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 1093 #endif // !ZERO 1094 // Initialize the compilation queue 1095 if (_c2_count > 0) { 1096 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 1097 _c2_compile_queue = new CompileQueue(name, MethodCompileQueueC2_lock); 1098 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 1099 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 1100 } 1101 if (_c1_count > 0) { 1102 _c1_compile_queue = new CompileQueue("C1 compile queue", MethodCompileQueueC1_lock); 1103 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 1104 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 1105 } 1106 1107 if (_c3_count > 0) { 1108 const char* name = "C2 compile queue"; 1109 _c3_compile_queue = new CompileQueue(name, MethodCompileQueueC3_lock); 1110 _compiler3_objects = NEW_C_HEAP_ARRAY(jobject, _c3_count, mtCompiler); 1111 _compiler3_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c3_count, mtCompiler); 1112 } 1113 if (_sc_count > 0) { 1114 if (_c1_count > 0) { // C1 is present 1115 _sc1_compile_queue = new CompileQueue("C1 SC compile queue", MethodCompileQueueSC1_lock); 1116 } 1117 if (_c2_count > 0) { // C2 is present 1118 _sc2_compile_queue = new CompileQueue("C2 SC compile queue", MethodCompileQueueSC2_lock); 1119 } 1120 _sc_objects = NEW_C_HEAP_ARRAY(jobject, _sc_count, mtCompiler); 1121 _sc_logs = NEW_C_HEAP_ARRAY(CompileLog*, _sc_count, mtCompiler); 1122 } 1123 char name_buffer[256]; 1124 1125 for (int i = 0; i < _c2_count; i++) { 1126 // Create a name for our thread. 1127 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 1128 _compiler2_objects[i] = thread_handle; 1129 _compiler2_logs[i] = nullptr; 1130 1131 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1132 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 1133 assert(ct != nullptr, "should have been handled for initial thread"); 1134 _compilers[1]->set_num_compiler_threads(i + 1); 1135 print_compiler_thread(ct); 1136 } 1137 } 1138 1139 for (int i = 0; i < _c1_count; i++) { 1140 // Create a name for our thread. 1141 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 1142 _compiler1_objects[i] = thread_handle; 1143 _compiler1_logs[i] = nullptr; 1144 1145 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1146 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 1147 assert(ct != nullptr, "should have been handled for initial thread"); 1148 _compilers[0]->set_num_compiler_threads(i + 1); 1149 print_compiler_thread(ct); 1150 } 1151 } 1152 1153 for (int i = 0; i < _c3_count; i++) { 1154 // Create a name for our thread. 1155 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C2 CompilerThread%d", i); 1156 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1157 jobject thread_handle = JNIHandles::make_global(thread_oop); 1158 _compiler3_objects[i] = thread_handle; 1159 _compiler3_logs[i] = nullptr; 1160 1161 JavaThread *ct = make_thread(compiler_t, thread_handle, _c3_compile_queue, _compilers[2], THREAD); 1162 assert(ct != nullptr, "should have been handled for initial thread"); 1163 _compilers[2]->set_num_compiler_threads(i + 1); 1164 print_compiler_thread(ct); 1165 } 1166 1167 if (_sc_count > 0) { 1168 int i = 0; 1169 if (_c1_count > 0) { // C1 is present 1170 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d SC CompilerThread", 1); 1171 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1172 jobject thread_handle = JNIHandles::make_global(thread_oop); 1173 _sc_objects[i] = thread_handle; 1174 _sc_logs[i] = nullptr; 1175 i++; 1176 1177 JavaThread *ct = make_thread(compiler_t, thread_handle, _sc1_compile_queue, _compilers[0], THREAD); 1178 assert(ct != nullptr, "should have been handled for initial thread"); 1179 print_compiler_thread(ct); 1180 } 1181 if (_c2_count > 0) { // C2 is present 1182 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d SC CompilerThread", 2); 1183 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1184 jobject thread_handle = JNIHandles::make_global(thread_oop); 1185 _sc_objects[i] = thread_handle; 1186 _sc_logs[i] = nullptr; 1187 1188 JavaThread *ct = make_thread(compiler_t, thread_handle, _sc2_compile_queue, _compilers[1], THREAD); 1189 assert(ct != nullptr, "should have been handled for initial thread"); 1190 print_compiler_thread(ct); 1191 } 1192 } 1193 1194 if (UsePerfData) { 1195 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count + _c3_count, CHECK); 1196 } 1197 1198 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1199 if (DeoptimizeObjectsALot) { 1200 // Initialize and start the object deoptimizer threads 1201 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1202 for (int count = 0; count < total_count; count++) { 1203 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1204 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1205 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1206 } 1207 } 1208 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1209 } 1210 1211 void CompileBroker::init_training_replay() { 1212 // Ensure any exceptions lead to vm_exit_during_initialization. 1213 EXCEPTION_MARK; 1214 if (TrainingData::have_data()) { 1215 Handle thread_oop = create_thread_oop("Training replay thread", CHECK); 1216 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1217 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD); 1218 } 1219 } 1220 1221 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1222 1223 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1224 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1225 1226 // Quick check if we already have enough compiler threads without taking the lock. 1227 // Numbers may change concurrently, so we read them again after we have the lock. 1228 if (_c2_compile_queue != nullptr) { 1229 old_c2_count = get_c2_thread_count(); 1230 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1231 } 1232 if (_c1_compile_queue != nullptr) { 1233 old_c1_count = get_c1_thread_count(); 1234 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1235 } 1236 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1237 1238 // Now, we do the more expensive operations. 1239 julong free_memory = os::free_memory(); 1240 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1241 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1242 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1243 1244 // Only attempt to start additional threads if the lock is free. 1245 if (!CompileThread_lock->try_lock()) return; 1246 1247 if (_c2_compile_queue != nullptr) { 1248 old_c2_count = get_c2_thread_count(); 1249 new_c2_count = MIN4(_c2_count, 1250 _c2_compile_queue->size() / c2_tasks_per_thread, 1251 (int)(free_memory / (200*M)), 1252 (int)(available_cc_np / (128*K))); 1253 1254 for (int i = old_c2_count; i < new_c2_count; i++) { 1255 #if INCLUDE_JVMCI 1256 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1257 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1258 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1259 // call Java code to do the creation anyway). 1260 // 1261 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1262 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1263 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1264 // coupling with Java. 1265 if (!THREAD->can_call_java()) break; 1266 char name_buffer[256]; 1267 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1268 Handle thread_oop; 1269 { 1270 // We have to give up the lock temporarily for the Java calls. 1271 MutexUnlocker mu(CompileThread_lock); 1272 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1273 } 1274 if (HAS_PENDING_EXCEPTION) { 1275 if (trace_compiler_threads()) { 1276 ResourceMark rm; 1277 stringStream msg; 1278 msg.print_cr("JVMCI compiler thread creation failed:"); 1279 PENDING_EXCEPTION->print_on(&msg); 1280 print_compiler_threads(msg); 1281 } 1282 CLEAR_PENDING_EXCEPTION; 1283 break; 1284 } 1285 // Check if another thread has beaten us during the Java calls. 1286 if (get_c2_thread_count() != i) break; 1287 jobject thread_handle = JNIHandles::make_global(thread_oop); 1288 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1289 _compiler2_objects[i] = thread_handle; 1290 } 1291 #endif 1292 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1293 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1294 if (ct == nullptr) break; 1295 _compilers[1]->set_num_compiler_threads(i + 1); 1296 if (trace_compiler_threads()) { 1297 ResourceMark rm; 1298 ThreadsListHandle tlh; // name() depends on the TLH. 1299 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1300 stringStream msg; 1301 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1302 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1303 print_compiler_threads(msg); 1304 } 1305 } 1306 } 1307 1308 if (_c1_compile_queue != nullptr) { 1309 old_c1_count = get_c1_thread_count(); 1310 new_c1_count = MIN4(_c1_count, 1311 _c1_compile_queue->size() / c1_tasks_per_thread, 1312 (int)(free_memory / (100*M)), 1313 (int)(available_cc_p / (128*K))); 1314 1315 for (int i = old_c1_count; i < new_c1_count; i++) { 1316 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1317 if (ct == nullptr) break; 1318 _compilers[0]->set_num_compiler_threads(i + 1); 1319 if (trace_compiler_threads()) { 1320 ResourceMark rm; 1321 ThreadsListHandle tlh; // name() depends on the TLH. 1322 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1323 stringStream msg; 1324 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1325 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1326 print_compiler_threads(msg); 1327 } 1328 } 1329 } 1330 1331 CompileThread_lock->unlock(); 1332 } 1333 1334 1335 /** 1336 * Set the methods on the stack as on_stack so that redefine classes doesn't 1337 * reclaim them. This method is executed at a safepoint. 1338 */ 1339 void CompileBroker::mark_on_stack() { 1340 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1341 // Since we are at a safepoint, we do not need a lock to access 1342 // the compile queues. 1343 if (_c3_compile_queue != nullptr) { 1344 _c3_compile_queue->mark_on_stack(); 1345 } 1346 if (_c2_compile_queue != nullptr) { 1347 _c2_compile_queue->mark_on_stack(); 1348 } 1349 if (_c1_compile_queue != nullptr) { 1350 _c1_compile_queue->mark_on_stack(); 1351 } 1352 if (_sc1_compile_queue != nullptr) { 1353 _sc1_compile_queue->mark_on_stack(); 1354 } 1355 if (_sc2_compile_queue != nullptr) { 1356 _sc2_compile_queue->mark_on_stack(); 1357 } 1358 } 1359 1360 // ------------------------------------------------------------------ 1361 // CompileBroker::compile_method 1362 // 1363 // Request compilation of a method. 1364 void CompileBroker::compile_method_base(const methodHandle& method, 1365 int osr_bci, 1366 int comp_level, 1367 const methodHandle& hot_method, 1368 int hot_count, 1369 CompileTask::CompileReason compile_reason, 1370 bool requires_online_compilation, 1371 bool blocking, 1372 Thread* thread) { 1373 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1374 assert(method->method_holder()->is_instance_klass(), 1375 "sanity check"); 1376 assert(!method->method_holder()->is_not_initialized() || 1377 compile_reason == CompileTask::Reason_Preload || 1378 compile_reason == CompileTask::Reason_Precompile || 1379 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1380 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1381 1382 if (CIPrintRequests) { 1383 tty->print("request: "); 1384 method->print_short_name(tty); 1385 if (osr_bci != InvocationEntryBci) { 1386 tty->print(" osr_bci: %d", osr_bci); 1387 } 1388 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1389 if (!hot_method.is_null()) { 1390 tty->print(" hot: "); 1391 if (hot_method() != method()) { 1392 hot_method->print_short_name(tty); 1393 } else { 1394 tty->print("yes"); 1395 } 1396 } 1397 tty->cr(); 1398 } 1399 1400 // A request has been made for compilation. Before we do any 1401 // real work, check to see if the method has been compiled 1402 // in the meantime with a definitive result. 1403 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1404 return; 1405 } 1406 1407 #ifndef PRODUCT 1408 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1409 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1410 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1411 return; 1412 } 1413 } 1414 #endif 1415 1416 // If this method is already in the compile queue, then 1417 // we do not block the current thread. 1418 if (compilation_is_in_queue(method)) { 1419 // We may want to decay our counter a bit here to prevent 1420 // multiple denied requests for compilation. This is an 1421 // open compilation policy issue. Note: The other possibility, 1422 // in the case that this is a blocking compile request, is to have 1423 // all subsequent blocking requesters wait for completion of 1424 // ongoing compiles. Note that in this case we'll need a protocol 1425 // for freeing the associated compile tasks. [Or we could have 1426 // a single static monitor on which all these waiters sleep.] 1427 return; 1428 } 1429 1430 // Tiered policy requires MethodCounters to exist before adding a method to 1431 // the queue. Create if we don't have them yet. 1432 if (compile_reason != CompileTask::Reason_Preload) { 1433 method->get_method_counters(thread); 1434 } 1435 1436 SCCEntry* scc_entry = find_scc_entry(method, osr_bci, comp_level, compile_reason, requires_online_compilation); 1437 bool is_scc = (scc_entry != nullptr); 1438 1439 // Outputs from the following MutexLocker block: 1440 CompileTask* task = nullptr; 1441 CompileQueue* queue; 1442 #if INCLUDE_JVMCI 1443 if (is_c2_compile(comp_level) && compiler2()->is_jvmci() && compiler3() != nullptr && 1444 ((JVMCICompiler*)compiler2())->force_comp_at_level_simple(method)) { 1445 assert(_c3_compile_queue != nullptr, "sanity"); 1446 queue = _c3_compile_queue; // JVMCI compiler's methods compilation 1447 } else 1448 #endif 1449 queue = compile_queue(comp_level, is_scc); 1450 1451 // Acquire our lock. 1452 { 1453 ConditionalMutexLocker locker(thread, queue->lock(), !UseLockFreeCompileQueues); 1454 1455 // Make sure the method has not slipped into the queues since 1456 // last we checked; note that those checks were "fast bail-outs". 1457 // Here we need to be more careful, see 14012000 below. 1458 if (compilation_is_in_queue(method)) { 1459 return; 1460 } 1461 1462 // We need to check again to see if the compilation has 1463 // completed. A previous compilation may have registered 1464 // some result. 1465 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1466 return; 1467 } 1468 1469 // We now know that this compilation is not pending, complete, 1470 // or prohibited. Assign a compile_id to this compilation 1471 // and check to see if it is in our [Start..Stop) range. 1472 int compile_id = assign_compile_id(method, osr_bci); 1473 if (compile_id == 0) { 1474 // The compilation falls outside the allowed range. 1475 return; 1476 } 1477 1478 #if INCLUDE_JVMCI 1479 if (UseJVMCICompiler && blocking) { 1480 // Don't allow blocking compiles for requests triggered by JVMCI. 1481 if (thread->is_Compiler_thread()) { 1482 blocking = false; 1483 } 1484 1485 // In libjvmci, JVMCI initialization should not deadlock with other threads 1486 if (!UseJVMCINativeLibrary) { 1487 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1488 vframeStream vfst(JavaThread::cast(thread)); 1489 for (; !vfst.at_end(); vfst.next()) { 1490 if (vfst.method()->is_static_initializer() || 1491 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1492 vfst.method()->name() == vmSymbols::loadClass_name())) { 1493 blocking = false; 1494 break; 1495 } 1496 } 1497 1498 // Don't allow blocking compilation requests to JVMCI 1499 // if JVMCI itself is not yet initialized 1500 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1501 blocking = false; 1502 } 1503 } 1504 1505 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1506 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1507 // such as the DestroyJavaVM thread. 1508 if (JVMCI::in_shutdown()) { 1509 blocking = false; 1510 } 1511 } 1512 #endif // INCLUDE_JVMCI 1513 1514 // We will enter the compilation in the queue. 1515 // 14012000: Note that this sets the queued_for_compile bits in 1516 // the target method. We can now reason that a method cannot be 1517 // queued for compilation more than once, as follows: 1518 // Before a thread queues a task for compilation, it first acquires 1519 // the compile queue lock, then checks if the method's queued bits 1520 // are set or it has already been compiled. Thus there can not be two 1521 // instances of a compilation task for the same method on the 1522 // compilation queue. Consider now the case where the compilation 1523 // thread has already removed a task for that method from the queue 1524 // and is in the midst of compiling it. In this case, the 1525 // queued_for_compile bits must be set in the method (and these 1526 // will be visible to the current thread, since the bits were set 1527 // under protection of the compile queue lock, which we hold now. 1528 // When the compilation completes, the compiler thread first sets 1529 // the compilation result and then clears the queued_for_compile 1530 // bits. Neither of these actions are protected by a barrier (or done 1531 // under the protection of a lock), so the only guarantee we have 1532 // (on machines with TSO (Total Store Order)) is that these values 1533 // will update in that order. As a result, the only combinations of 1534 // these bits that the current thread will see are, in temporal order: 1535 // <RESULT, QUEUE> : 1536 // <0, 1> : in compile queue, but not yet compiled 1537 // <1, 1> : compiled but queue bit not cleared 1538 // <1, 0> : compiled and queue bit cleared 1539 // Because we first check the queue bits then check the result bits, 1540 // we are assured that we cannot introduce a duplicate task. 1541 // Note that if we did the tests in the reverse order (i.e. check 1542 // result then check queued bit), we could get the result bit before 1543 // the compilation completed, and the queue bit after the compilation 1544 // completed, and end up introducing a "duplicate" (redundant) task. 1545 // In that case, the compiler thread should first check if a method 1546 // has already been compiled before trying to compile it. 1547 // NOTE: in the event that there are multiple compiler threads and 1548 // there is de-optimization/recompilation, things will get hairy, 1549 // and in that case it's best to protect both the testing (here) of 1550 // these bits, and their updating (here and elsewhere) under a 1551 // common lock. 1552 task = create_compile_task(queue, 1553 compile_id, method, 1554 osr_bci, comp_level, 1555 hot_method, hot_count, scc_entry, compile_reason, 1556 requires_online_compilation, blocking); 1557 1558 if (task->is_scc() && (_sc_count > 0)) { 1559 // Put it on SC queue 1560 queue = is_c1_compile(comp_level) ? _sc1_compile_queue : _sc2_compile_queue; 1561 } 1562 1563 if (UseLockFreeCompileQueues) { 1564 assert(queue->lock()->owned_by_self() == false, ""); 1565 queue->add_pending(task); 1566 } else { 1567 queue->add(task); 1568 } 1569 } 1570 1571 if (blocking) { 1572 wait_for_completion(task); 1573 } 1574 } 1575 1576 SCCEntry* CompileBroker::find_scc_entry(const methodHandle& method, int osr_bci, int comp_level, 1577 CompileTask::CompileReason compile_reason, 1578 bool requires_online_compilation) { 1579 SCCEntry* scc_entry = nullptr; 1580 if (osr_bci == InvocationEntryBci && !requires_online_compilation && SCCache::is_on_for_read()) { 1581 // Check for cached code. 1582 if (compile_reason == CompileTask::Reason_Preload) { 1583 scc_entry = method->scc_entry(); 1584 assert(scc_entry != nullptr && scc_entry->for_preload(), "sanity"); 1585 } else { 1586 scc_entry = SCCache::find_code_entry(method, comp_level); 1587 } 1588 } 1589 return scc_entry; 1590 } 1591 1592 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1593 int comp_level, 1594 const methodHandle& hot_method, int hot_count, 1595 bool requires_online_compilation, 1596 CompileTask::CompileReason compile_reason, 1597 TRAPS) { 1598 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1599 if (!_initialized || comp_level == CompLevel_none) { 1600 return nullptr; 1601 } 1602 1603 #if INCLUDE_JVMCI 1604 if (EnableJVMCI && UseJVMCICompiler && 1605 comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 1606 return nullptr; 1607 } 1608 #endif 1609 1610 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1611 assert(comp != nullptr, "Ensure we have a compiler"); 1612 1613 #if INCLUDE_JVMCI 1614 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1615 // JVMCI compilation is not yet initializable. 1616 return nullptr; 1617 } 1618 #endif 1619 1620 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1621 // CompileBroker::compile_method can trap and can have pending async exception. 1622 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, requires_online_compilation, compile_reason, directive, THREAD); 1623 DirectivesStack::release(directive); 1624 return nm; 1625 } 1626 1627 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1628 int comp_level, 1629 const methodHandle& hot_method, int hot_count, 1630 bool requires_online_compilation, 1631 CompileTask::CompileReason compile_reason, 1632 DirectiveSet* directive, 1633 TRAPS) { 1634 1635 // make sure arguments make sense 1636 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1637 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1638 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1639 assert(!method->method_holder()->is_not_initialized() || 1640 compile_reason == CompileTask::Reason_Preload || 1641 compile_reason == CompileTask::Reason_Precompile || 1642 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1643 // return quickly if possible 1644 1645 if (PrecompileOnlyAndExit && !CompileTask::reason_is_precompiled(compile_reason)) { 1646 return nullptr; 1647 } 1648 1649 // lock, make sure that the compilation 1650 // isn't prohibited in a straightforward way. 1651 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1652 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1653 return nullptr; 1654 } 1655 1656 if (osr_bci == InvocationEntryBci) { 1657 // standard compilation 1658 nmethod* method_code = method->code(); 1659 if (method_code != nullptr) { 1660 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1661 return method_code; 1662 } 1663 } 1664 if (method->is_not_compilable(comp_level)) { 1665 return nullptr; 1666 } 1667 } else { 1668 // osr compilation 1669 // We accept a higher level osr method 1670 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1671 if (nm != nullptr) return nm; 1672 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1673 } 1674 1675 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1676 // some prerequisites that are compiler specific 1677 if (compile_reason != CompileTask::Reason_Preload && 1678 !CompileTask::reason_is_precompiled(compile_reason) && 1679 (comp->is_c2() || comp->is_jvmci())) { 1680 InternalOOMEMark iom(THREAD); 1681 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1682 // Resolve all classes seen in the signature of the method 1683 // we are compiling. 1684 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1685 } 1686 1687 // If the method is native, do the lookup in the thread requesting 1688 // the compilation. Native lookups can load code, which is not 1689 // permitted during compilation. 1690 // 1691 // Note: A native method implies non-osr compilation which is 1692 // checked with an assertion at the entry of this method. 1693 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1694 address adr = NativeLookup::lookup(method, THREAD); 1695 if (HAS_PENDING_EXCEPTION) { 1696 // In case of an exception looking up the method, we just forget 1697 // about it. The interpreter will kick-in and throw the exception. 1698 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1699 CLEAR_PENDING_EXCEPTION; 1700 return nullptr; 1701 } 1702 assert(method->has_native_function(), "must have native code by now"); 1703 } 1704 1705 // RedefineClasses() has replaced this method; just return 1706 if (method->is_old()) { 1707 return nullptr; 1708 } 1709 1710 // JVMTI -- post_compile_event requires jmethod_id() that may require 1711 // a lock the compiling thread can not acquire. Prefetch it here. 1712 if (JvmtiExport::should_post_compiled_method_load()) { 1713 method->jmethod_id(); 1714 } 1715 1716 // do the compilation 1717 if (method->is_native()) { 1718 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1719 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1720 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1721 // 1722 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1723 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1724 AdapterHandlerLibrary::create_native_wrapper(method); 1725 } else { 1726 return nullptr; 1727 } 1728 } else { 1729 // If the compiler is shut off due to code cache getting full 1730 // fail out now so blocking compiles dont hang the java thread 1731 if (!should_compile_new_jobs()) { 1732 return nullptr; 1733 } 1734 bool is_blocking = ReplayCompiles || 1735 !directive->BackgroundCompilationOption || 1736 (PreloadBlocking && (compile_reason == CompileTask::Reason_Preload)); 1737 compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, requires_online_compilation, is_blocking, THREAD); 1738 } 1739 1740 // return requested nmethod 1741 // We accept a higher level osr method 1742 if (osr_bci == InvocationEntryBci) { 1743 return method->code(); 1744 } 1745 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1746 } 1747 1748 1749 // ------------------------------------------------------------------ 1750 // CompileBroker::compilation_is_complete 1751 // 1752 // See if compilation of this method is already complete. 1753 bool CompileBroker::compilation_is_complete(Method* method, 1754 int osr_bci, 1755 int comp_level, 1756 bool online_only, 1757 CompileTask::CompileReason compile_reason) { 1758 if (compile_reason == CompileTask::Reason_Precompile || 1759 compile_reason == CompileTask::Reason_PrecompileForPreload) { 1760 return false; // FIXME: any restrictions? 1761 } 1762 bool is_osr = (osr_bci != standard_entry_bci); 1763 if (is_osr) { 1764 if (method->is_not_osr_compilable(comp_level)) { 1765 return true; 1766 } else { 1767 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1768 return (result != nullptr); 1769 } 1770 } else { 1771 if (method->is_not_compilable(comp_level)) { 1772 return true; 1773 } else { 1774 nmethod* result = method->code(); 1775 if (result == nullptr) { 1776 return false; 1777 } 1778 if (online_only && result->is_scc()) { 1779 return false; 1780 } 1781 bool same_level = (comp_level == result->comp_level()); 1782 if (result->has_clinit_barriers()) { 1783 return !same_level; // Allow replace preloaded code with new code of the same level 1784 } 1785 return same_level; 1786 } 1787 } 1788 } 1789 1790 1791 /** 1792 * See if this compilation is already requested. 1793 * 1794 * Implementation note: there is only a single "is in queue" bit 1795 * for each method. This means that the check below is overly 1796 * conservative in the sense that an osr compilation in the queue 1797 * will block a normal compilation from entering the queue (and vice 1798 * versa). This can be remedied by a full queue search to disambiguate 1799 * cases. If it is deemed profitable, this may be done. 1800 */ 1801 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1802 return method->queued_for_compilation(); 1803 } 1804 1805 // ------------------------------------------------------------------ 1806 // CompileBroker::compilation_is_prohibited 1807 // 1808 // See if this compilation is not allowed. 1809 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1810 bool is_native = method->is_native(); 1811 // Some compilers may not support the compilation of natives. 1812 AbstractCompiler *comp = compiler(comp_level); 1813 if (is_native && (!CICompileNatives || comp == nullptr)) { 1814 method->set_not_compilable_quietly("native methods not supported", comp_level); 1815 return true; 1816 } 1817 1818 bool is_osr = (osr_bci != standard_entry_bci); 1819 // Some compilers may not support on stack replacement. 1820 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1821 method->set_not_osr_compilable("OSR not supported", comp_level); 1822 return true; 1823 } 1824 1825 // The method may be explicitly excluded by the user. 1826 double scale; 1827 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1828 bool quietly = CompilerOracle::be_quiet(); 1829 if (PrintCompilation && !quietly) { 1830 // This does not happen quietly... 1831 ResourceMark rm; 1832 tty->print("### Excluding %s:%s", 1833 method->is_native() ? "generation of native wrapper" : "compile", 1834 (method->is_static() ? " static" : "")); 1835 method->print_short_name(tty); 1836 tty->cr(); 1837 } 1838 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1839 } 1840 1841 return false; 1842 } 1843 1844 /** 1845 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1846 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1847 * The function also allows to generate separate compilation IDs for OSR compilations. 1848 */ 1849 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1850 #ifdef ASSERT 1851 bool is_osr = (osr_bci != standard_entry_bci); 1852 int id; 1853 if (method->is_native()) { 1854 assert(!is_osr, "can't be osr"); 1855 // Adapters, native wrappers and method handle intrinsics 1856 // should be generated always. 1857 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1858 } else if (CICountOSR && is_osr) { 1859 id = Atomic::add(&_osr_compilation_id, 1); 1860 if (CIStartOSR <= id && id < CIStopOSR) { 1861 return id; 1862 } 1863 } else { 1864 id = Atomic::add(&_compilation_id, 1); 1865 if (CIStart <= id && id < CIStop) { 1866 return id; 1867 } 1868 } 1869 1870 // Method was not in the appropriate compilation range. 1871 method->set_not_compilable_quietly("Not in requested compile id range"); 1872 return 0; 1873 #else 1874 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1875 // only _compilation_id is incremented. 1876 return Atomic::add(&_compilation_id, 1); 1877 #endif 1878 } 1879 1880 // ------------------------------------------------------------------ 1881 // CompileBroker::assign_compile_id_unlocked 1882 // 1883 // Public wrapper for assign_compile_id that acquires the needed locks 1884 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1885 return assign_compile_id(method, osr_bci); 1886 } 1887 1888 // ------------------------------------------------------------------ 1889 // CompileBroker::create_compile_task 1890 // 1891 // Create a CompileTask object representing the current request for 1892 // compilation. Add this task to the queue. 1893 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1894 int compile_id, 1895 const methodHandle& method, 1896 int osr_bci, 1897 int comp_level, 1898 const methodHandle& hot_method, 1899 int hot_count, 1900 SCCEntry* scc_entry, 1901 CompileTask::CompileReason compile_reason, 1902 bool requires_online_compilation, 1903 bool blocking) { 1904 CompileTask* new_task = CompileTask::allocate(); 1905 new_task->initialize(compile_id, method, osr_bci, comp_level, 1906 hot_method, hot_count, scc_entry, compile_reason, queue, 1907 requires_online_compilation, blocking); 1908 return new_task; 1909 } 1910 1911 #if INCLUDE_JVMCI 1912 // The number of milliseconds to wait before checking if 1913 // JVMCI compilation has made progress. 1914 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1915 1916 // The number of JVMCI compilation progress checks that must fail 1917 // before unblocking a thread waiting for a blocking compilation. 1918 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1919 1920 /** 1921 * Waits for a JVMCI compiler to complete a given task. This thread 1922 * waits until either the task completes or it sees no JVMCI compilation 1923 * progress for N consecutive milliseconds where N is 1924 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1925 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1926 * 1927 * @return true if this thread needs to free/recycle the task 1928 */ 1929 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1930 assert(UseJVMCICompiler, "sanity"); 1931 MonitorLocker ml(thread, task->lock()); 1932 int progress_wait_attempts = 0; 1933 jint thread_jvmci_compilation_ticks = 0; 1934 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1935 while (!task->is_complete() && !is_compilation_disabled_forever() && 1936 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1937 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1938 1939 bool progress; 1940 if (jvmci_compile_state != nullptr) { 1941 jint ticks = jvmci_compile_state->compilation_ticks(); 1942 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1943 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1944 thread_jvmci_compilation_ticks = ticks; 1945 } else { 1946 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1947 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1948 // compilation ticks to determine whether JVMCI compilation 1949 // is still making progress through the JVMCI compiler queue. 1950 jint ticks = jvmci->global_compilation_ticks(); 1951 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1952 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1953 global_jvmci_compilation_ticks = ticks; 1954 } 1955 1956 if (!progress) { 1957 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1958 if (PrintCompilation) { 1959 task->print(tty, "wait for blocking compilation timed out"); 1960 } 1961 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1962 break; 1963 } 1964 } else { 1965 progress_wait_attempts = 0; 1966 } 1967 } 1968 task->clear_waiter(); 1969 return task->is_complete(); 1970 } 1971 #endif 1972 1973 /** 1974 * Wait for the compilation task to complete. 1975 */ 1976 void CompileBroker::wait_for_completion(CompileTask* task) { 1977 if (CIPrintCompileQueue) { 1978 ttyLocker ttyl; 1979 tty->print_cr("BLOCKING FOR COMPILE"); 1980 } 1981 1982 assert(task->is_blocking(), "can only wait on blocking task"); 1983 1984 JavaThread* thread = JavaThread::current(); 1985 1986 methodHandle method(thread, task->method()); 1987 bool free_task; 1988 #if INCLUDE_JVMCI 1989 AbstractCompiler* comp = compiler(task->comp_level()); 1990 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1991 // It may return before compilation is completed. 1992 // Note that libjvmci should not pre-emptively unblock 1993 // a thread waiting for a compilation as it does not call 1994 // Java code and so is not deadlock prone like jarjvmci. 1995 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1996 } else 1997 #endif 1998 { 1999 MonitorLocker ml(thread, task->lock()); 2000 free_task = true; 2001 task->inc_waiting_for_completion(); 2002 while (!task->is_complete() && !is_compilation_disabled_forever()) { 2003 ml.wait(); 2004 } 2005 task->dec_waiting_for_completion(); 2006 } 2007 2008 if (free_task) { 2009 if (is_compilation_disabled_forever()) { 2010 CompileTask::free(task); 2011 return; 2012 } 2013 2014 // It is harmless to check this status without the lock, because 2015 // completion is a stable property (until the task object is recycled). 2016 assert(task->is_complete(), "Compilation should have completed"); 2017 2018 // By convention, the waiter is responsible for recycling a 2019 // blocking CompileTask. Since there is only one waiter ever 2020 // waiting on a CompileTask, we know that no one else will 2021 // be using this CompileTask; we can free it. 2022 CompileTask::free(task); 2023 } 2024 } 2025 2026 void CompileBroker::wait_for_no_active_tasks() { 2027 CompileTask::wait_for_no_active_tasks(); 2028 } 2029 2030 /** 2031 * Initialize compiler thread(s) + compiler object(s). The postcondition 2032 * of this function is that the compiler runtimes are initialized and that 2033 * compiler threads can start compiling. 2034 */ 2035 bool CompileBroker::init_compiler_runtime() { 2036 CompilerThread* thread = CompilerThread::current(); 2037 AbstractCompiler* comp = thread->compiler(); 2038 // Final sanity check - the compiler object must exist 2039 guarantee(comp != nullptr, "Compiler object must exist"); 2040 2041 { 2042 // Must switch to native to allocate ci_env 2043 ThreadToNativeFromVM ttn(thread); 2044 ciEnv ci_env((CompileTask*)nullptr); 2045 // Cache Jvmti state 2046 ci_env.cache_jvmti_state(); 2047 // Cache DTrace flags 2048 ci_env.cache_dtrace_flags(); 2049 2050 // Switch back to VM state to do compiler initialization 2051 ThreadInVMfromNative tv(thread); 2052 2053 comp->initialize(); 2054 } 2055 2056 if (comp->is_failed()) { 2057 disable_compilation_forever(); 2058 // If compiler initialization failed, no compiler thread that is specific to a 2059 // particular compiler runtime will ever start to compile methods. 2060 shutdown_compiler_runtime(comp, thread); 2061 return false; 2062 } 2063 2064 // C1 specific check 2065 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 2066 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 2067 return false; 2068 } 2069 2070 return true; 2071 } 2072 2073 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 2074 BufferBlob* blob = thread->get_buffer_blob(); 2075 if (blob != nullptr) { 2076 blob->purge(); 2077 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2078 CodeCache::free(blob); 2079 } 2080 } 2081 2082 /** 2083 * If C1 and/or C2 initialization failed, we shut down all compilation. 2084 * We do this to keep things simple. This can be changed if it ever turns 2085 * out to be a problem. 2086 */ 2087 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 2088 free_buffer_blob_if_allocated(thread); 2089 2090 log_info(compilation)("shutdown_compiler_runtime: " INTPTR_FORMAT, p2i(thread)); 2091 2092 if (comp->should_perform_shutdown()) { 2093 // There are two reasons for shutting down the compiler 2094 // 1) compiler runtime initialization failed 2095 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 2096 warning("%s initialization failed. Shutting down all compilers", comp->name()); 2097 2098 // Only one thread per compiler runtime object enters here 2099 // Set state to shut down 2100 comp->set_shut_down(); 2101 2102 // Delete all queued compilation tasks to make compiler threads exit faster. 2103 if (_c1_compile_queue != nullptr) { 2104 _c1_compile_queue->free_all(); 2105 } 2106 2107 if (_c2_compile_queue != nullptr) { 2108 _c2_compile_queue->free_all(); 2109 } 2110 2111 if (_c3_compile_queue != nullptr) { 2112 _c3_compile_queue->free_all(); 2113 } 2114 2115 // Set flags so that we continue execution with using interpreter only. 2116 UseCompiler = false; 2117 UseInterpreter = true; 2118 2119 // We could delete compiler runtimes also. However, there are references to 2120 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 2121 // fail. This can be done later if necessary. 2122 } 2123 } 2124 2125 /** 2126 * Helper function to create new or reuse old CompileLog. 2127 */ 2128 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 2129 if (!LogCompilation) return nullptr; 2130 2131 AbstractCompiler *compiler = ct->compiler(); 2132 bool jvmci = JVMCI_ONLY( compiler->is_jvmci() ||) false; 2133 bool c1 = compiler->is_c1(); 2134 jobject* compiler_objects = c1 ? _compiler1_objects : (_c3_count == 0 ? _compiler2_objects : (jvmci ? _compiler2_objects : _compiler3_objects)); 2135 assert(compiler_objects != nullptr, "must be initialized at this point"); 2136 CompileLog** logs = c1 ? _compiler1_logs : (_c3_count == 0 ? _compiler2_logs : (jvmci ? _compiler2_logs : _compiler3_logs)); 2137 assert(logs != nullptr, "must be initialized at this point"); 2138 int count = c1 ? _c1_count : (_c3_count == 0 ? _c2_count : (jvmci ? _c2_count : _c3_count)); 2139 2140 if (ct->queue() == _sc1_compile_queue || ct->queue() == _sc2_compile_queue) { 2141 compiler_objects = _sc_objects; 2142 logs = _sc_logs; 2143 count = _sc_count; 2144 } 2145 // Find Compiler number by its threadObj. 2146 oop compiler_obj = ct->threadObj(); 2147 int compiler_number = 0; 2148 bool found = false; 2149 for (; compiler_number < count; compiler_number++) { 2150 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 2151 found = true; 2152 break; 2153 } 2154 } 2155 assert(found, "Compiler must exist at this point"); 2156 2157 // Determine pointer for this thread's log. 2158 CompileLog** log_ptr = &logs[compiler_number]; 2159 2160 // Return old one if it exists. 2161 CompileLog* log = *log_ptr; 2162 if (log != nullptr) { 2163 ct->init_log(log); 2164 return log; 2165 } 2166 2167 // Create a new one and remember it. 2168 init_compiler_thread_log(); 2169 log = ct->log(); 2170 *log_ptr = log; 2171 return log; 2172 } 2173 2174 // ------------------------------------------------------------------ 2175 // CompileBroker::compiler_thread_loop 2176 // 2177 // The main loop run by a CompilerThread. 2178 void CompileBroker::compiler_thread_loop() { 2179 CompilerThread* thread = CompilerThread::current(); 2180 CompileQueue* queue = thread->queue(); 2181 // For the thread that initializes the ciObjectFactory 2182 // this resource mark holds all the shared objects 2183 ResourceMark rm; 2184 2185 // First thread to get here will initialize the compiler interface 2186 2187 { 2188 ASSERT_IN_VM; 2189 MutexLocker only_one (thread, CompileThread_lock); 2190 if (!ciObjectFactory::is_initialized()) { 2191 ciObjectFactory::initialize(); 2192 } 2193 } 2194 2195 // Open a log. 2196 CompileLog* log = get_log(thread); 2197 if (log != nullptr) { 2198 log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'", 2199 thread->name(), 2200 os::current_thread_id(), 2201 os::current_process_id()); 2202 log->stamp(); 2203 log->end_elem(); 2204 } 2205 2206 // If compiler thread/runtime initialization fails, exit the compiler thread 2207 if (!init_compiler_runtime()) { 2208 return; 2209 } 2210 2211 thread->start_idle_timer(); 2212 2213 // Poll for new compilation tasks as long as the JVM runs. Compilation 2214 // should only be disabled if something went wrong while initializing the 2215 // compiler runtimes. This, in turn, should not happen. The only known case 2216 // when compiler runtime initialization fails is if there is not enough free 2217 // space in the code cache to generate the necessary stubs, etc. 2218 while (!is_compilation_disabled_forever()) { 2219 // We need this HandleMark to avoid leaking VM handles. 2220 HandleMark hm(thread); 2221 2222 RecompilationPolicy::recompilation_step(AOTRecompilationWorkUnitSize, thread); 2223 2224 CompileTask* task = queue->get(thread); 2225 2226 if (task == nullptr) { 2227 if (UseDynamicNumberOfCompilerThreads) { 2228 // Access compiler_count under lock to enforce consistency. 2229 MutexLocker only_one(CompileThread_lock); 2230 if (can_remove(thread, true)) { 2231 if (trace_compiler_threads()) { 2232 ResourceMark rm; 2233 stringStream msg; 2234 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 2235 thread->name(), thread->idle_time_millis()); 2236 print_compiler_threads(msg); 2237 } 2238 2239 // Notify compiler that the compiler thread is about to stop 2240 thread->compiler()->stopping_compiler_thread(thread); 2241 2242 free_buffer_blob_if_allocated(thread); 2243 return; // Stop this thread. 2244 } 2245 } 2246 } else { 2247 // Assign the task to the current thread. Mark this compilation 2248 // thread as active for the profiler. 2249 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 2250 // occurs after fetching the compile task off the queue. 2251 CompileTaskWrapper ctw(task); 2252 methodHandle method(thread, task->method()); 2253 2254 // Never compile a method if breakpoints are present in it 2255 if (method()->number_of_breakpoints() == 0) { 2256 // Compile the method. 2257 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 2258 invoke_compiler_on_method(task); 2259 thread->start_idle_timer(); 2260 } else { 2261 // After compilation is disabled, remove remaining methods from queue 2262 method->clear_queued_for_compilation(); 2263 method->set_pending_queue_processed(false); 2264 task->set_failure_reason("compilation is disabled"); 2265 } 2266 } else { 2267 task->set_failure_reason("breakpoints are present"); 2268 } 2269 2270 if (UseDynamicNumberOfCompilerThreads) { 2271 possibly_add_compiler_threads(thread); 2272 assert(!thread->has_pending_exception(), "should have been handled"); 2273 } 2274 } 2275 } 2276 2277 // Shut down compiler runtime 2278 shutdown_compiler_runtime(thread->compiler(), thread); 2279 } 2280 2281 // ------------------------------------------------------------------ 2282 // CompileBroker::init_compiler_thread_log 2283 // 2284 // Set up state required by +LogCompilation. 2285 void CompileBroker::init_compiler_thread_log() { 2286 CompilerThread* thread = CompilerThread::current(); 2287 char file_name[4*K]; 2288 FILE* fp = nullptr; 2289 intx thread_id = os::current_thread_id(); 2290 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2291 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2292 if (dir == nullptr) { 2293 jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log", 2294 thread_id, os::current_process_id()); 2295 } else { 2296 jio_snprintf(file_name, sizeof(file_name), 2297 "%s%shs_c%zu_pid%u.log", dir, 2298 os::file_separator(), thread_id, os::current_process_id()); 2299 } 2300 2301 fp = os::fopen(file_name, "wt"); 2302 if (fp != nullptr) { 2303 if (LogCompilation && Verbose) { 2304 tty->print_cr("Opening compilation log %s", file_name); 2305 } 2306 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2307 if (log == nullptr) { 2308 fclose(fp); 2309 return; 2310 } 2311 thread->init_log(log); 2312 2313 if (xtty != nullptr) { 2314 ttyLocker ttyl; 2315 // Record any per thread log files 2316 xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name); 2317 } 2318 return; 2319 } 2320 } 2321 warning("Cannot open log file: %s", file_name); 2322 } 2323 2324 void CompileBroker::log_metaspace_failure() { 2325 const char* message = "some methods may not be compiled because metaspace " 2326 "is out of memory"; 2327 if (CompilationLog::log() != nullptr) { 2328 CompilationLog::log()->log_metaspace_failure(message); 2329 } 2330 if (PrintCompilation) { 2331 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2332 } 2333 } 2334 2335 2336 // ------------------------------------------------------------------ 2337 // CompileBroker::set_should_block 2338 // 2339 // Set _should_block. 2340 // Call this from the VM, with Threads_lock held and a safepoint requested. 2341 void CompileBroker::set_should_block() { 2342 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2343 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2344 #ifndef PRODUCT 2345 if (PrintCompilation && (Verbose || WizardMode)) 2346 tty->print_cr("notifying compiler thread pool to block"); 2347 #endif 2348 _should_block = true; 2349 } 2350 2351 // ------------------------------------------------------------------ 2352 // CompileBroker::maybe_block 2353 // 2354 // Call this from the compiler at convenient points, to poll for _should_block. 2355 void CompileBroker::maybe_block() { 2356 if (_should_block) { 2357 #ifndef PRODUCT 2358 if (PrintCompilation && (Verbose || WizardMode)) 2359 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2360 #endif 2361 // If we are executing a task during the request to block, report the task 2362 // before disappearing. 2363 CompilerThread* thread = CompilerThread::current(); 2364 if (thread != nullptr) { 2365 CompileTask* task = thread->task(); 2366 if (task != nullptr) { 2367 if (PrintCompilation) { 2368 task->print(tty, "blocked"); 2369 } 2370 task->print_ul("blocked"); 2371 } 2372 } 2373 // Go to VM state and block for final VM shutdown safepoint. 2374 ThreadInVMfromNative tivfn(JavaThread::current()); 2375 assert(false, "Should never unblock from TIVNM entry"); 2376 } 2377 } 2378 2379 // wrapper for CodeCache::print_summary() 2380 static void codecache_print(bool detailed) 2381 { 2382 stringStream s; 2383 // Dump code cache into a buffer before locking the tty, 2384 { 2385 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2386 CodeCache::print_summary(&s, detailed); 2387 } 2388 ttyLocker ttyl; 2389 tty->print("%s", s.freeze()); 2390 } 2391 2392 // wrapper for CodeCache::print_summary() using outputStream 2393 static void codecache_print(outputStream* out, bool detailed) { 2394 stringStream s; 2395 2396 // Dump code cache into a buffer 2397 { 2398 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2399 CodeCache::print_summary(&s, detailed); 2400 } 2401 2402 char* remaining_log = s.as_string(); 2403 while (*remaining_log != '\0') { 2404 char* eol = strchr(remaining_log, '\n'); 2405 if (eol == nullptr) { 2406 out->print_cr("%s", remaining_log); 2407 remaining_log = remaining_log + strlen(remaining_log); 2408 } else { 2409 *eol = '\0'; 2410 out->print_cr("%s", remaining_log); 2411 remaining_log = eol + 1; 2412 } 2413 } 2414 } 2415 2416 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2417 int compilable, const char* failure_reason) { 2418 if (!AbortVMOnCompilationFailure) { 2419 return; 2420 } 2421 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2422 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2423 } 2424 if (compilable == ciEnv::MethodCompilable_never) { 2425 fatal("Never compilable: %s", failure_reason); 2426 } 2427 } 2428 2429 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2430 assert(task != nullptr, "invariant"); 2431 CompilerEvent::CompilationEvent::post(event, 2432 task->compile_id(), 2433 task->compiler()->type(), 2434 task->method(), 2435 task->comp_level(), 2436 task->is_success(), 2437 task->osr_bci() != CompileBroker::standard_entry_bci, 2438 task->nm_total_size(), 2439 task->num_inlined_bytecodes(), 2440 task->arena_bytes()); 2441 } 2442 2443 int DirectivesStack::_depth = 0; 2444 CompilerDirectives* DirectivesStack::_top = nullptr; 2445 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2446 2447 // Acquires Compilation_lock and waits for it to be notified 2448 // as long as WhiteBox::compilation_locked is true. 2449 static void whitebox_lock_compilation() { 2450 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2451 while (WhiteBox::compilation_locked) { 2452 locker.wait(); 2453 } 2454 } 2455 2456 // ------------------------------------------------------------------ 2457 // CompileBroker::invoke_compiler_on_method 2458 // 2459 // Compile a method. 2460 // 2461 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2462 task->print_ul(); 2463 elapsedTimer time; 2464 2465 DirectiveSet* directive = task->directive(); 2466 2467 CompilerThread* thread = CompilerThread::current(); 2468 ResourceMark rm(thread); 2469 2470 if (CompilationLog::log() != nullptr) { 2471 CompilationLog::log()->log_compile(thread, task); 2472 } 2473 2474 // Common flags. 2475 int compile_id = task->compile_id(); 2476 int osr_bci = task->osr_bci(); 2477 bool is_osr = (osr_bci != standard_entry_bci); 2478 bool should_log = (thread->log() != nullptr); 2479 bool should_break = false; 2480 bool should_print_compilation = PrintCompilation || directive->PrintCompilationOption; 2481 const int task_level = task->comp_level(); 2482 AbstractCompiler* comp = task->compiler(); 2483 { 2484 // create the handle inside it's own block so it can't 2485 // accidentally be referenced once the thread transitions to 2486 // native. The NoHandleMark before the transition should catch 2487 // any cases where this occurs in the future. 2488 methodHandle method(thread, task->method()); 2489 2490 assert(!method->is_native(), "no longer compile natives"); 2491 2492 // Update compile information when using perfdata. 2493 if (UsePerfData) { 2494 update_compile_perf_data(thread, method, is_osr); 2495 } 2496 2497 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2498 } 2499 2500 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2501 if (should_log && !directive->LogOption) { 2502 should_log = false; 2503 } 2504 2505 // Allocate a new set of JNI handles. 2506 JNIHandleMark jhm(thread); 2507 Method* target_handle = task->method(); 2508 int compilable = ciEnv::MethodCompilable; 2509 const char* failure_reason = nullptr; 2510 bool failure_reason_on_C_heap = false; 2511 const char* retry_message = nullptr; 2512 2513 #if INCLUDE_JVMCI 2514 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2515 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2516 2517 TraceTime t1("compilation", &time); 2518 EventCompilation event; 2519 JVMCICompileState compile_state(task, jvmci); 2520 JVMCIRuntime *runtime = nullptr; 2521 2522 if (JVMCI::in_shutdown()) { 2523 failure_reason = "in JVMCI shutdown"; 2524 retry_message = "not retryable"; 2525 compilable = ciEnv::MethodCompilable_never; 2526 } else if (compile_state.target_method_is_old()) { 2527 // Skip redefined methods 2528 failure_reason = "redefined method"; 2529 retry_message = "not retryable"; 2530 compilable = ciEnv::MethodCompilable_never; 2531 } else { 2532 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2533 if (env.init_error() != JNI_OK) { 2534 const char* msg = env.init_error_msg(); 2535 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2536 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2537 bool reason_on_C_heap = true; 2538 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2539 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2540 bool retryable = env.init_error() == JNI_ENOMEM; 2541 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2542 } 2543 if (failure_reason == nullptr) { 2544 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2545 // Must switch to native to block 2546 ThreadToNativeFromVM ttn(thread); 2547 whitebox_lock_compilation(); 2548 } 2549 methodHandle method(thread, target_handle); 2550 runtime = env.runtime(); 2551 runtime->compile_method(&env, jvmci, method, osr_bci); 2552 2553 failure_reason = compile_state.failure_reason(); 2554 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2555 if (!compile_state.retryable()) { 2556 retry_message = "not retryable"; 2557 compilable = ciEnv::MethodCompilable_not_at_tier; 2558 } 2559 if (!task->is_success()) { 2560 assert(failure_reason != nullptr, "must specify failure_reason"); 2561 } 2562 } 2563 } 2564 if (!task->is_success() && !JVMCI::in_shutdown()) { 2565 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2566 } 2567 if (event.should_commit()) { 2568 post_compilation_event(event, task); 2569 } 2570 2571 if (runtime != nullptr) { 2572 runtime->post_compile(thread); 2573 } 2574 } else 2575 #endif // INCLUDE_JVMCI 2576 { 2577 NoHandleMark nhm; 2578 ThreadToNativeFromVM ttn(thread); 2579 2580 ciEnv ci_env(task); 2581 if (should_break) { 2582 ci_env.set_break_at_compile(true); 2583 } 2584 if (should_log) { 2585 ci_env.set_log(thread->log()); 2586 } 2587 assert(thread->env() == &ci_env, "set by ci_env"); 2588 // The thread-env() field is cleared in ~CompileTaskWrapper. 2589 2590 // Cache Jvmti state 2591 bool method_is_old = ci_env.cache_jvmti_state(); 2592 2593 // Skip redefined methods 2594 if (method_is_old) { 2595 ci_env.record_method_not_compilable("redefined method", true); 2596 } 2597 2598 // Cache DTrace flags 2599 ci_env.cache_dtrace_flags(); 2600 2601 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2602 2603 TraceTime t1("compilation", &time); 2604 EventCompilation event; 2605 2606 if (comp == nullptr) { 2607 ci_env.record_method_not_compilable("no compiler"); 2608 } else if (!ci_env.failing()) { 2609 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2610 whitebox_lock_compilation(); 2611 } 2612 comp->compile_method(&ci_env, target, osr_bci, true, directive); 2613 2614 /* Repeat compilation without installing code for profiling purposes */ 2615 int repeat_compilation_count = directive->RepeatCompilationOption; 2616 while (repeat_compilation_count > 0) { 2617 ResourceMark rm(thread); 2618 task->print_ul("NO CODE INSTALLED"); 2619 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2620 repeat_compilation_count--; 2621 } 2622 } 2623 2624 2625 if (!ci_env.failing() && !task->is_success() && !task->is_precompiled()) { 2626 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2627 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2628 // The compiler elected, without comment, not to register a result. 2629 // Do not attempt further compilations of this method. 2630 ci_env.record_method_not_compilable("compile failed"); 2631 } 2632 2633 // Copy this bit to the enclosing block: 2634 compilable = ci_env.compilable(); 2635 2636 if (ci_env.failing()) { 2637 // Duplicate the failure reason string, so that it outlives ciEnv 2638 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2639 failure_reason_on_C_heap = true; 2640 retry_message = ci_env.retry_message(); 2641 ci_env.report_failure(failure_reason); 2642 } 2643 2644 if (ci_env.failing()) { 2645 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2646 } 2647 if (event.should_commit()) { 2648 post_compilation_event(event, task); 2649 } 2650 } 2651 2652 if (failure_reason != nullptr) { 2653 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2654 if (CompilationLog::log() != nullptr) { 2655 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2656 } 2657 if (PrintCompilation || directive->PrintCompilationOption) { 2658 FormatBufferResource msg = retry_message != nullptr ? 2659 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2660 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2661 task->print(tty, msg); 2662 } 2663 } 2664 2665 task->mark_finished(os::elapsed_counter()); 2666 DirectivesStack::release(directive); 2667 2668 methodHandle method(thread, task->method()); 2669 2670 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2671 2672 collect_statistics(thread, time, task); 2673 2674 if (PrintCompilation && PrintCompilation2) { 2675 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2676 tty->print("%4d ", compile_id); // print compilation number 2677 tty->print("%s ", (is_osr ? "%" : (task->is_scc() ? "A" : " "))); 2678 if (task->is_success()) { 2679 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2680 } 2681 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2682 } 2683 2684 Log(compilation, codecache) log; 2685 if (log.is_debug()) { 2686 LogStream ls(log.debug()); 2687 codecache_print(&ls, /* detailed= */ false); 2688 } 2689 if (PrintCodeCacheOnCompilation) { 2690 codecache_print(/* detailed= */ false); 2691 } 2692 // Disable compilation, if required. 2693 switch (compilable) { 2694 case ciEnv::MethodCompilable_never: 2695 if (is_osr) 2696 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2697 else 2698 method->set_not_compilable_quietly("MethodCompilable_never"); 2699 break; 2700 case ciEnv::MethodCompilable_not_at_tier: 2701 if (is_osr) 2702 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2703 else 2704 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2705 break; 2706 } 2707 2708 // Note that the queued_for_compilation bits are cleared without 2709 // protection of a mutex. [They were set by the requester thread, 2710 // when adding the task to the compile queue -- at which time the 2711 // compile queue lock was held. Subsequently, we acquired the compile 2712 // queue lock to get this task off the compile queue; thus (to belabour 2713 // the point somewhat) our clearing of the bits must be occurring 2714 // only after the setting of the bits. See also 14012000 above. 2715 method->clear_queued_for_compilation(); 2716 method->set_pending_queue_processed(false); 2717 2718 if (should_print_compilation) { 2719 ResourceMark rm; 2720 task->print_tty(); 2721 } 2722 } 2723 2724 /** 2725 * The CodeCache is full. Print warning and disable compilation. 2726 * Schedule code cache cleaning so compilation can continue later. 2727 * This function needs to be called only from CodeCache::allocate(), 2728 * since we currently handle a full code cache uniformly. 2729 */ 2730 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2731 UseInterpreter = true; 2732 if (UseCompiler || AlwaysCompileLoopMethods ) { 2733 if (xtty != nullptr) { 2734 stringStream s; 2735 // Dump code cache state into a buffer before locking the tty, 2736 // because log_state() will use locks causing lock conflicts. 2737 CodeCache::log_state(&s); 2738 // Lock to prevent tearing 2739 ttyLocker ttyl; 2740 xtty->begin_elem("code_cache_full"); 2741 xtty->print("%s", s.freeze()); 2742 xtty->stamp(); 2743 xtty->end_elem(); 2744 } 2745 2746 #ifndef PRODUCT 2747 if (ExitOnFullCodeCache) { 2748 codecache_print(/* detailed= */ true); 2749 before_exit(JavaThread::current()); 2750 exit_globals(); // will delete tty 2751 vm_direct_exit(1); 2752 } 2753 #endif 2754 if (UseCodeCacheFlushing) { 2755 // Since code cache is full, immediately stop new compiles 2756 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2757 log_info(codecache)("Code cache is full - disabling compilation"); 2758 } 2759 } else { 2760 disable_compilation_forever(); 2761 } 2762 2763 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2764 } 2765 } 2766 2767 // ------------------------------------------------------------------ 2768 // CompileBroker::update_compile_perf_data 2769 // 2770 // Record this compilation for debugging purposes. 2771 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2772 ResourceMark rm; 2773 char* method_name = method->name()->as_C_string(); 2774 char current_method[CompilerCounters::cmname_buffer_length]; 2775 size_t maxLen = CompilerCounters::cmname_buffer_length; 2776 2777 const char* class_name = method->method_holder()->name()->as_C_string(); 2778 2779 size_t s1len = strlen(class_name); 2780 size_t s2len = strlen(method_name); 2781 2782 // check if we need to truncate the string 2783 if (s1len + s2len + 2 > maxLen) { 2784 2785 // the strategy is to lop off the leading characters of the 2786 // class name and the trailing characters of the method name. 2787 2788 if (s2len + 2 > maxLen) { 2789 // lop of the entire class name string, let snprintf handle 2790 // truncation of the method name. 2791 class_name += s1len; // null string 2792 } 2793 else { 2794 // lop off the extra characters from the front of the class name 2795 class_name += ((s1len + s2len + 2) - maxLen); 2796 } 2797 } 2798 2799 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2800 2801 int last_compile_type = normal_compile; 2802 if (CICountOSR && is_osr) { 2803 last_compile_type = osr_compile; 2804 } else if (CICountNative && method->is_native()) { 2805 last_compile_type = native_compile; 2806 } 2807 2808 CompilerCounters* counters = thread->counters(); 2809 counters->set_current_method(current_method); 2810 counters->set_compile_type((jlong) last_compile_type); 2811 } 2812 2813 // ------------------------------------------------------------------ 2814 // CompileBroker::collect_statistics 2815 // 2816 // Collect statistics about the compilation. 2817 2818 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2819 bool success = task->is_success(); 2820 methodHandle method (thread, task->method()); 2821 int compile_id = task->compile_id(); 2822 bool is_osr = (task->osr_bci() != standard_entry_bci); 2823 const int comp_level = task->comp_level(); 2824 CompilerCounters* counters = thread->counters(); 2825 2826 MutexLocker locker(CompileStatistics_lock); 2827 2828 // _perf variables are production performance counters which are 2829 // updated regardless of the setting of the CITime and CITimeEach flags 2830 // 2831 2832 // account all time, including bailouts and failures in this counter; 2833 // C1 and C2 counters are counting both successful and unsuccessful compiles 2834 _t_total_compilation.add(&time); 2835 2836 // Update compilation times. Used by the implementation of JFR CompilerStatistics 2837 // and java.lang.management.CompilationMXBean. 2838 _perf_total_compilation->inc(time.ticks()); 2839 _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time); 2840 2841 if (!success) { 2842 _total_bailout_count++; 2843 if (UsePerfData) { 2844 _perf_last_failed_method->set_value(counters->current_method()); 2845 _perf_last_failed_type->set_value(counters->compile_type()); 2846 _perf_total_bailout_count->inc(); 2847 } 2848 _t_bailedout_compilation.add(&time); 2849 2850 if (CITime || log_is_enabled(Info, init)) { 2851 CompilerStatistics* stats = nullptr; 2852 if (task->is_scc()) { 2853 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2854 stats = &_scc_stats_per_level[level]; 2855 } else { 2856 stats = &_stats_per_level[comp_level-1]; 2857 } 2858 stats->_bailout.update(time, 0); 2859 } 2860 } else if (!task->is_success()) { 2861 if (UsePerfData) { 2862 _perf_last_invalidated_method->set_value(counters->current_method()); 2863 _perf_last_invalidated_type->set_value(counters->compile_type()); 2864 _perf_total_invalidated_count->inc(); 2865 } 2866 _total_invalidated_count++; 2867 _t_invalidated_compilation.add(&time); 2868 2869 if (CITime || log_is_enabled(Info, init)) { 2870 CompilerStatistics* stats = nullptr; 2871 if (task->is_scc()) { 2872 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2873 stats = &_scc_stats_per_level[level]; 2874 } else { 2875 stats = &_stats_per_level[comp_level-1]; 2876 } 2877 stats->_invalidated.update(time, 0); 2878 } 2879 } else { 2880 // Compilation succeeded 2881 if (CITime || log_is_enabled(Info, init)) { 2882 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2883 if (is_osr) { 2884 _t_osr_compilation.add(&time); 2885 _sum_osr_bytes_compiled += bytes_compiled; 2886 } else { 2887 _t_standard_compilation.add(&time); 2888 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2889 } 2890 2891 // Collect statistic per compilation level 2892 if (task->is_scc()) { 2893 _scc_stats._standard.update(time, bytes_compiled); 2894 _scc_stats._nmethods_size += task->nm_total_size(); 2895 _scc_stats._nmethods_code_size += task->nm_insts_size(); 2896 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2897 CompilerStatistics* stats = &_scc_stats_per_level[level]; 2898 stats->_standard.update(time, bytes_compiled); 2899 stats->_nmethods_size += task->nm_total_size(); 2900 stats->_nmethods_code_size += task->nm_insts_size(); 2901 } else if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2902 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2903 if (is_osr) { 2904 stats->_osr.update(time, bytes_compiled); 2905 } else { 2906 stats->_standard.update(time, bytes_compiled); 2907 } 2908 stats->_nmethods_size += task->nm_total_size(); 2909 stats->_nmethods_code_size += task->nm_insts_size(); 2910 } else { 2911 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2912 } 2913 2914 // Collect statistic per compiler 2915 AbstractCompiler* comp = task->compiler(); 2916 if (comp && !task->is_scc()) { 2917 CompilerStatistics* stats = comp->stats(); 2918 if (is_osr) { 2919 stats->_osr.update(time, bytes_compiled); 2920 } else { 2921 stats->_standard.update(time, bytes_compiled); 2922 } 2923 stats->_nmethods_size += task->nm_total_size(); 2924 stats->_nmethods_code_size += task->nm_insts_size(); 2925 } else if (!task->is_scc()) { // if (!comp) 2926 assert(false, "Compiler object must exist"); 2927 } 2928 } 2929 2930 if (UsePerfData) { 2931 // save the name of the last method compiled 2932 _perf_last_method->set_value(counters->current_method()); 2933 _perf_last_compile_type->set_value(counters->compile_type()); 2934 _perf_last_compile_size->set_value(method->code_size() + 2935 task->num_inlined_bytecodes()); 2936 if (is_osr) { 2937 _perf_osr_compilation->inc(time.ticks()); 2938 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2939 } else { 2940 _perf_standard_compilation->inc(time.ticks()); 2941 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2942 } 2943 } 2944 2945 if (CITimeEach) { 2946 double compile_time = time.seconds(); 2947 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2948 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2949 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2950 } 2951 2952 // Collect counts of successful compilations 2953 _sum_nmethod_size += task->nm_total_size(); 2954 _sum_nmethod_code_size += task->nm_insts_size(); 2955 _total_compile_count++; 2956 2957 if (UsePerfData) { 2958 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2959 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2960 _perf_total_compile_count->inc(); 2961 } 2962 2963 if (is_osr) { 2964 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2965 _total_osr_compile_count++; 2966 } else { 2967 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2968 _total_standard_compile_count++; 2969 } 2970 } 2971 // set the current method for the thread to null 2972 if (UsePerfData) counters->set_current_method(""); 2973 } 2974 2975 const char* CompileBroker::compiler_name(int comp_level) { 2976 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2977 if (comp == nullptr) { 2978 return "no compiler"; 2979 } else { 2980 return (comp->name()); 2981 } 2982 } 2983 2984 jlong CompileBroker::total_compilation_ticks() { 2985 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2986 } 2987 2988 void CompileBroker::log_not_entrant(nmethod* nm) { 2989 _total_not_entrant_count++; 2990 if (CITime || log_is_enabled(Info, init)) { 2991 CompilerStatistics* stats = nullptr; 2992 int level = nm->comp_level(); 2993 if (nm->is_scc()) { 2994 if (nm->preloaded()) { 2995 assert(level == CompLevel_full_optimization, "%d", level); 2996 level = CompLevel_full_optimization + 1; 2997 } 2998 stats = &_scc_stats_per_level[level - 1]; 2999 } else { 3000 stats = &_stats_per_level[level - 1]; 3001 } 3002 stats->_made_not_entrant._count++; 3003 } 3004 } 3005 3006 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 3007 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 3008 name, stats->bytes_per_second(), 3009 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 3010 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 3011 stats->_nmethods_size, stats->_nmethods_code_size); 3012 } 3013 3014 static void print_helper(outputStream* st, const char* name, CompilerStatistics::Data data, bool print_time = true) { 3015 if (data._count > 0) { 3016 st->print("; %s: %4u methods", name, data._count); 3017 if (print_time) { 3018 st->print(" (in %.3fs)", data._time.seconds()); 3019 } 3020 } 3021 } 3022 3023 static void print_tier_helper(outputStream* st, const char* prefix, int tier, CompilerStatistics* stats) { 3024 st->print(" %s%d: %5u methods", prefix, tier, stats->_standard._count); 3025 if (stats->_standard._count > 0) { 3026 st->print(" (in %.3fs)", stats->_standard._time.seconds()); 3027 } 3028 print_helper(st, "osr", stats->_osr); 3029 print_helper(st, "bailout", stats->_bailout); 3030 print_helper(st, "invalid", stats->_invalidated); 3031 print_helper(st, "not_entrant", stats->_made_not_entrant, false); 3032 st->cr(); 3033 } 3034 3035 static void print_queue_info(outputStream* st, CompileQueue* queue) { 3036 if (queue != nullptr) { 3037 MutexLocker ml(queue->lock()); 3038 3039 uint total_cnt = 0; 3040 uint active_cnt = 0; 3041 for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3042 guarantee(jt != nullptr, ""); 3043 if (jt->is_Compiler_thread()) { 3044 CompilerThread* ct = (CompilerThread*)jt; 3045 3046 guarantee(ct != nullptr, ""); 3047 if (ct->queue() == queue) { 3048 ++total_cnt; 3049 CompileTask* task = ct->task(); 3050 if (task != nullptr) { 3051 ++active_cnt; 3052 } 3053 } 3054 } 3055 } 3056 3057 st->print(" %s (%d active / %d total threads): %u tasks", 3058 queue->name(), active_cnt, total_cnt, queue->size()); 3059 if (queue->size() > 0) { 3060 uint counts[] = {0, 0, 0, 0, 0}; // T1 ... T5 3061 for (CompileTask* task = queue->first(); task != nullptr; task = task->next()) { 3062 int tier = task->comp_level(); 3063 if (task->is_scc() && task->preload()) { 3064 assert(tier == CompLevel_full_optimization, "%d", tier); 3065 tier = CompLevel_full_optimization + 1; 3066 } 3067 counts[tier-1]++; 3068 } 3069 st->print(":"); 3070 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3071 uint cnt = counts[tier-1]; 3072 if (cnt > 0) { 3073 st->print(" T%d: %u tasks;", tier, cnt); 3074 } 3075 } 3076 } 3077 st->cr(); 3078 3079 // for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3080 // guarantee(jt != nullptr, ""); 3081 // if (jt->is_Compiler_thread()) { 3082 // CompilerThread* ct = (CompilerThread*)jt; 3083 // 3084 // guarantee(ct != nullptr, ""); 3085 // if (ct->queue() == queue) { 3086 // ResourceMark rm; 3087 // CompileTask* task = ct->task(); 3088 // st->print(" %s: ", ct->name_raw()); 3089 // if (task != nullptr) { 3090 // task->print(st, nullptr, true /*short_form*/, false /*cr*/); 3091 // } 3092 // st->cr(); 3093 // } 3094 // } 3095 // } 3096 } 3097 } 3098 void CompileBroker::print_statistics_on(outputStream* st) { 3099 st->print_cr(" Total: %u methods; %u bailouts, %u invalidated, %u non_entrant", 3100 _total_compile_count, _total_bailout_count, _total_invalidated_count, _total_not_entrant_count); 3101 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3102 print_tier_helper(st, "Tier", tier, &_stats_per_level[tier-1]); 3103 } 3104 st->cr(); 3105 3106 if (LoadCachedCode || StoreCachedCode) { 3107 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3108 if (tier != CompLevel_full_profile) { 3109 print_tier_helper(st, "SC T", tier, &_scc_stats_per_level[tier - 1]); 3110 } 3111 } 3112 st->cr(); 3113 } 3114 3115 print_queue_info(st, _c1_compile_queue); 3116 print_queue_info(st, _c2_compile_queue); 3117 print_queue_info(st, _c3_compile_queue); 3118 print_queue_info(st, _sc1_compile_queue); 3119 print_queue_info(st, _sc2_compile_queue); 3120 } 3121 3122 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 3123 if (per_compiler) { 3124 if (aggregate) { 3125 tty->cr(); 3126 tty->print_cr("[%dms] Individual compiler times (for compiled methods only)", (int)tty->time_stamp().milliseconds()); 3127 tty->print_cr("------------------------------------------------"); 3128 tty->cr(); 3129 } 3130 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 3131 AbstractCompiler* comp = _compilers[i]; 3132 if (comp != nullptr) { 3133 print_times(comp->name(), comp->stats()); 3134 } 3135 } 3136 if (_scc_stats._standard._count > 0) { 3137 print_times("SC", &_scc_stats); 3138 } 3139 if (aggregate) { 3140 tty->cr(); 3141 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 3142 tty->print_cr("------------------------------------------------"); 3143 tty->cr(); 3144 } 3145 char tier_name[256]; 3146 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3147 CompilerStatistics* stats = &_stats_per_level[tier-1]; 3148 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 3149 print_times(tier_name, stats); 3150 } 3151 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3152 CompilerStatistics* stats = &_scc_stats_per_level[tier-1]; 3153 if (stats->_standard._bytes > 0) { 3154 os::snprintf_checked(tier_name, sizeof(tier_name), "SC T%d", tier); 3155 print_times(tier_name, stats); 3156 } 3157 } 3158 } 3159 3160 if (!aggregate) { 3161 return; 3162 } 3163 3164 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 3165 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 3166 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 3167 3168 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 3169 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 3170 3171 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 3172 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 3173 uint total_compile_count = CompileBroker::_total_compile_count; 3174 uint total_bailout_count = CompileBroker::_total_bailout_count; 3175 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 3176 3177 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 3178 uint nmethods_size = CompileBroker::_sum_nmethod_size; 3179 3180 tty->cr(); 3181 tty->print_cr("Accumulated compiler times"); 3182 tty->print_cr("----------------------------------------------------------"); 3183 //0000000000111111111122222222223333333333444444444455555555556666666666 3184 //0123456789012345678901234567890123456789012345678901234567890123456789 3185 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 3186 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 3187 standard_compilation.seconds(), 3188 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 3189 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 3190 CompileBroker::_t_bailedout_compilation.seconds(), 3191 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 3192 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 3193 osr_compilation.seconds(), 3194 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 3195 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 3196 CompileBroker::_t_invalidated_compilation.seconds(), 3197 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 3198 3199 if (StoreCachedCode || LoadCachedCode) { // Check flags because SC cache could be closed already 3200 tty->cr(); 3201 SCCache::print_timers_on(tty); 3202 } 3203 AbstractCompiler *comp = compiler(CompLevel_simple); 3204 if (comp != nullptr) { 3205 tty->cr(); 3206 comp->print_timers(); 3207 } 3208 comp = compiler(CompLevel_full_optimization); 3209 if (comp != nullptr) { 3210 tty->cr(); 3211 comp->print_timers(); 3212 } 3213 comp = _compilers[2]; 3214 if (comp != nullptr) { 3215 tty->cr(); 3216 comp->print_timers(); 3217 } 3218 #if INCLUDE_JVMCI 3219 if (EnableJVMCI) { 3220 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 3221 if (jvmci_comp != nullptr && jvmci_comp != comp) { 3222 tty->cr(); 3223 jvmci_comp->print_timers(); 3224 } 3225 } 3226 #endif 3227 3228 tty->cr(); 3229 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 3230 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 3231 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 3232 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 3233 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 3234 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 3235 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 3236 double tcs = total_compilation.seconds(); 3237 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 3238 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 3239 tty->cr(); 3240 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 3241 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 3242 } 3243 3244 // Print general/accumulated JIT information. 3245 void CompileBroker::print_info(outputStream *out) { 3246 if (out == nullptr) out = tty; 3247 out->cr(); 3248 out->print_cr("======================"); 3249 out->print_cr(" General JIT info "); 3250 out->print_cr("======================"); 3251 out->cr(); 3252 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 3253 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 3254 out->cr(); 3255 out->print_cr("CodeCache overview"); 3256 out->print_cr("--------------------------------------------------------"); 3257 out->cr(); 3258 out->print_cr(" Reserved size : %7zu KB", CodeCache::max_capacity() / K); 3259 out->print_cr(" Committed size : %7zu KB", CodeCache::capacity() / K); 3260 out->print_cr(" Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K); 3261 out->cr(); 3262 } 3263 3264 // Note: tty_lock must not be held upon entry to this function. 3265 // Print functions called from herein do "micro-locking" on tty_lock. 3266 // That's a tradeoff which keeps together important blocks of output. 3267 // At the same time, continuous tty_lock hold time is kept in check, 3268 // preventing concurrently printing threads from stalling a long time. 3269 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 3270 TimeStamp ts_total; 3271 TimeStamp ts_global; 3272 TimeStamp ts; 3273 3274 bool allFun = !strcmp(function, "all"); 3275 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 3276 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 3277 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 3278 bool methodCount = !strcmp(function, "MethodCount") || allFun; 3279 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 3280 bool methodAge = !strcmp(function, "MethodAge") || allFun; 3281 bool methodNames = !strcmp(function, "MethodNames") || allFun; 3282 bool discard = !strcmp(function, "discard") || allFun; 3283 3284 if (out == nullptr) { 3285 out = tty; 3286 } 3287 3288 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 3289 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 3290 out->cr(); 3291 return; 3292 } 3293 3294 ts_total.update(); // record starting point 3295 3296 if (aggregate) { 3297 print_info(out); 3298 } 3299 3300 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 3301 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 3302 // When we request individual parts of the analysis via the jcmd interface, it is possible 3303 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 3304 // updated the aggregated data. We will then see a modified, but again consistent, view 3305 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 3306 // a lock across user interaction. 3307 3308 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 3309 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 3310 // leading to an unnecessarily long hold time of the other locks we acquired before. 3311 ts.update(); // record starting point 3312 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 3313 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 3314 3315 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 3316 // Unfortunately, such protection is not sufficient: 3317 // When a new nmethod is created via ciEnv::register_method(), the 3318 // Compile_lock is taken first. After some initializations, 3319 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 3320 // immediately (after finalizing the oop references). To lock out concurrent 3321 // modifiers, we have to grab both locks as well in the described sequence. 3322 // 3323 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 3324 // for the entire duration of aggregation and printing. That makes sure we see 3325 // a consistent picture and do not run into issues caused by concurrent alterations. 3326 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 3327 !Compile_lock->owned_by_self(); 3328 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 3329 !CodeCache_lock->owned_by_self(); 3330 bool take_global_lock_1 = allFun && should_take_Compile_lock; 3331 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 3332 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 3333 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 3334 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 3335 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 3336 3337 ts_global.update(); // record starting point 3338 3339 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 3340 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 3341 if (take_global_locks) { 3342 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 3343 ts_global.update(); // record starting point 3344 } 3345 3346 if (aggregate) { 3347 ts.update(); // record starting point 3348 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 3349 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 3350 if (take_function_locks) { 3351 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 3352 } 3353 3354 ts.update(); // record starting point 3355 CodeCache::aggregate(out, granularity); 3356 if (take_function_locks) { 3357 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 3358 } 3359 } 3360 3361 if (usedSpace) CodeCache::print_usedSpace(out); 3362 if (freeSpace) CodeCache::print_freeSpace(out); 3363 if (methodCount) CodeCache::print_count(out); 3364 if (methodSpace) CodeCache::print_space(out); 3365 if (methodAge) CodeCache::print_age(out); 3366 if (methodNames) { 3367 if (allFun) { 3368 // print_names() can only be used safely if the locks have been continuously held 3369 // since aggregation begin. That is true only for function "all". 3370 CodeCache::print_names(out); 3371 } else { 3372 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 3373 } 3374 } 3375 if (discard) CodeCache::discard(out); 3376 3377 if (take_global_locks) { 3378 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 3379 } 3380 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 3381 }