1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/aotLinkedClassBulkLoader.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/codeCache.hpp" 33 #include "code/codeHeapState.hpp" 34 #include "code/dependencyContext.hpp" 35 #include "code/SCCache.hpp" 36 #include "compiler/compilationLog.hpp" 37 #include "compiler/compilationMemoryStatistic.hpp" 38 #include "compiler/compilationPolicy.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/compilerDefinitions.inline.hpp" 41 #include "compiler/compileLog.hpp" 42 #include "compiler/compilerEvent.hpp" 43 #include "compiler/compilerOracle.hpp" 44 #include "compiler/directivesParser.hpp" 45 #include "gc/shared/memAllocator.hpp" 46 #include "interpreter/linkResolver.hpp" 47 #include "jvm.h" 48 #include "jfr/jfrEvents.hpp" 49 #include "logging/log.hpp" 50 #include "logging/logStream.hpp" 51 #include "memory/allocation.inline.hpp" 52 #include "memory/resourceArea.hpp" 53 #include "memory/universe.hpp" 54 #include "oops/methodData.hpp" 55 #include "oops/method.inline.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "prims/whitebox.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/escapeBarrier.hpp" 62 #include "runtime/globals_extension.hpp" 63 #include "runtime/handles.inline.hpp" 64 #include "runtime/init.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/java.hpp" 67 #include "runtime/javaCalls.hpp" 68 #include "runtime/jniHandles.inline.hpp" 69 #include "runtime/os.hpp" 70 #include "runtime/perfData.hpp" 71 #include "runtime/safepointVerifiers.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/threads.hpp" 74 #include "runtime/threadSMR.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "services/management.hpp" 78 #include "utilities/debug.hpp" 79 #include "utilities/dtrace.hpp" 80 #include "utilities/events.hpp" 81 #include "utilities/formatBuffer.hpp" 82 #include "utilities/macros.hpp" 83 #include "utilities/nonblockingQueue.inline.hpp" 84 #ifdef COMPILER1 85 #include "c1/c1_Compiler.hpp" 86 #endif 87 #ifdef COMPILER2 88 #include "opto/c2compiler.hpp" 89 #endif 90 #if INCLUDE_JVMCI 91 #include "jvmci/jvmciEnv.hpp" 92 #include "jvmci/jvmciRuntime.hpp" 93 #endif 94 95 #ifdef DTRACE_ENABLED 96 97 // Only bother with this argument setup if dtrace is available 98 99 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 100 { \ 101 Symbol* klass_name = (method)->klass_name(); \ 102 Symbol* name = (method)->name(); \ 103 Symbol* signature = (method)->signature(); \ 104 HOTSPOT_METHOD_COMPILE_BEGIN( \ 105 (char *) comp_name, strlen(comp_name), \ 106 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 107 (char *) name->bytes(), name->utf8_length(), \ 108 (char *) signature->bytes(), signature->utf8_length()); \ 109 } 110 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 112 { \ 113 Symbol* klass_name = (method)->klass_name(); \ 114 Symbol* name = (method)->name(); \ 115 Symbol* signature = (method)->signature(); \ 116 HOTSPOT_METHOD_COMPILE_END( \ 117 (char *) comp_name, strlen(comp_name), \ 118 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 119 (char *) name->bytes(), name->utf8_length(), \ 120 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 121 } 122 123 #else // ndef DTRACE_ENABLED 124 125 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 126 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 127 128 #endif // ndef DTRACE_ENABLED 129 130 bool CompileBroker::_initialized = false; 131 bool CompileBroker::_replay_initialized = false; 132 volatile bool CompileBroker::_should_block = false; 133 volatile int CompileBroker::_print_compilation_warning = 0; 134 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 135 136 // The installed compiler(s) 137 AbstractCompiler* CompileBroker::_compilers[3]; 138 139 // The maximum numbers of compiler threads to be determined during startup. 140 int CompileBroker::_c1_count = 0; 141 int CompileBroker::_c2_count = 0; 142 int CompileBroker::_c3_count = 0; 143 int CompileBroker::_sc_count = 0; 144 145 // An array of compiler names as Java String objects 146 jobject* CompileBroker::_compiler1_objects = nullptr; 147 jobject* CompileBroker::_compiler2_objects = nullptr; 148 jobject* CompileBroker::_compiler3_objects = nullptr; 149 jobject* CompileBroker::_sc_objects = nullptr; 150 151 CompileLog** CompileBroker::_compiler1_logs = nullptr; 152 CompileLog** CompileBroker::_compiler2_logs = nullptr; 153 CompileLog** CompileBroker::_compiler3_logs = nullptr; 154 CompileLog** CompileBroker::_sc_logs = nullptr; 155 156 // These counters are used to assign an unique ID to each compilation. 157 volatile jint CompileBroker::_compilation_id = 0; 158 volatile jint CompileBroker::_osr_compilation_id = 0; 159 volatile jint CompileBroker::_native_compilation_id = 0; 160 161 // Performance counters 162 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 163 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 164 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 165 166 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 167 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 168 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 169 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 170 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 171 172 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 173 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 174 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 175 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 176 177 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 178 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 179 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 180 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 181 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 182 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 183 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 184 185 // Timers and counters for generating statistics 186 elapsedTimer CompileBroker::_t_total_compilation; 187 elapsedTimer CompileBroker::_t_osr_compilation; 188 elapsedTimer CompileBroker::_t_standard_compilation; 189 elapsedTimer CompileBroker::_t_invalidated_compilation; 190 elapsedTimer CompileBroker::_t_bailedout_compilation; 191 192 uint CompileBroker::_total_bailout_count = 0; 193 uint CompileBroker::_total_invalidated_count = 0; 194 uint CompileBroker::_total_not_entrant_count = 0; 195 uint CompileBroker::_total_compile_count = 0; 196 uint CompileBroker::_total_osr_compile_count = 0; 197 uint CompileBroker::_total_standard_compile_count = 0; 198 uint CompileBroker::_total_compiler_stopped_count = 0; 199 uint CompileBroker::_total_compiler_restarted_count = 0; 200 201 uint CompileBroker::_sum_osr_bytes_compiled = 0; 202 uint CompileBroker::_sum_standard_bytes_compiled = 0; 203 uint CompileBroker::_sum_nmethod_size = 0; 204 uint CompileBroker::_sum_nmethod_code_size = 0; 205 206 jlong CompileBroker::_peak_compilation_time = 0; 207 208 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 209 CompilerStatistics CompileBroker::_scc_stats; 210 CompilerStatistics CompileBroker::_scc_stats_per_level[CompLevel_full_optimization + 1]; 211 212 CompileQueue* CompileBroker::_c3_compile_queue = nullptr; 213 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 214 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 215 CompileQueue* CompileBroker::_sc1_compile_queue = nullptr; 216 CompileQueue* CompileBroker::_sc2_compile_queue = nullptr; 217 218 bool compileBroker_init() { 219 if (LogEvents) { 220 CompilationLog::init(); 221 } 222 223 // init directives stack, adding default directive 224 DirectivesStack::init(); 225 226 if (DirectivesParser::has_file()) { 227 return DirectivesParser::parse_from_flag(); 228 } else if (CompilerDirectivesPrint) { 229 // Print default directive even when no other was added 230 DirectivesStack::print(tty); 231 } 232 233 return true; 234 } 235 236 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 237 CompilerThread* thread = CompilerThread::current(); 238 thread->set_task(task); 239 CompileLog* log = thread->log(); 240 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 241 } 242 243 CompileTaskWrapper::~CompileTaskWrapper() { 244 CompilerThread* thread = CompilerThread::current(); 245 CompileTask* task = thread->task(); 246 CompileLog* log = thread->log(); 247 AbstractCompiler* comp = thread->compiler(); 248 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 249 thread->set_task(nullptr); 250 thread->set_env(nullptr); 251 if (task->is_blocking()) { 252 bool free_task = false; 253 { 254 MutexLocker notifier(thread, task->lock()); 255 task->mark_complete(); 256 #if INCLUDE_JVMCI 257 if (comp->is_jvmci()) { 258 if (!task->has_waiter()) { 259 // The waiting thread timed out and thus did not free the task. 260 free_task = true; 261 } 262 task->set_blocking_jvmci_compile_state(nullptr); 263 } 264 #endif 265 if (!free_task) { 266 // Notify the waiting thread that the compilation has completed 267 // so that it can free the task. 268 task->lock()->notify_all(); 269 } 270 } 271 if (free_task) { 272 // The task can only be freed once the task lock is released. 273 CompileTask::free(task); 274 } 275 } else { 276 task->mark_complete(); 277 278 // By convention, the compiling thread is responsible for 279 // recycling a non-blocking CompileTask. 280 CompileTask::free(task); 281 } 282 } 283 284 /** 285 * Check if a CompilerThread can be removed and update count if requested. 286 */ 287 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 288 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 289 if (!ReduceNumberOfCompilerThreads) return false; 290 291 if (CompilationPolicy::have_recompilation_work()) return false; 292 293 AbstractCompiler *compiler = ct->compiler(); 294 int compiler_count = compiler->num_compiler_threads(); 295 bool c1 = compiler->is_c1(); 296 297 // Keep at least 1 compiler thread of each type. 298 if (compiler_count < 2) return false; 299 300 // Keep thread alive for at least some time. 301 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 302 303 #if INCLUDE_JVMCI 304 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 305 // Handles for JVMCI thread objects may get released concurrently. 306 if (do_it) { 307 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 308 } else { 309 // Skip check if it's the last thread and let caller check again. 310 return true; 311 } 312 } 313 #endif 314 315 // We only allow the last compiler thread of each type to get removed. 316 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 317 : compiler2_object(compiler_count - 1); 318 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 319 if (do_it) { 320 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 321 compiler->set_num_compiler_threads(compiler_count - 1); 322 #if INCLUDE_JVMCI 323 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 324 // Old j.l.Thread object can die when no longer referenced elsewhere. 325 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 326 _compiler2_objects[compiler_count - 1] = nullptr; 327 } 328 #endif 329 } 330 return true; 331 } 332 return false; 333 } 334 335 /** 336 * Add a CompileTask to a CompileQueue. 337 */ 338 void CompileQueue::add(CompileTask* task) { 339 assert(_lock->owned_by_self(), "must own lock"); 340 341 task->set_next(nullptr); 342 task->set_prev(nullptr); 343 344 if (_last == nullptr) { 345 // The compile queue is empty. 346 assert(_first == nullptr, "queue is empty"); 347 _first = task; 348 _last = task; 349 } else { 350 // Append the task to the queue. 351 assert(_last->next() == nullptr, "not last"); 352 _last->set_next(task); 353 task->set_prev(_last); 354 _last = task; 355 } 356 ++_size; 357 ++_total_added; 358 if (_size > _peak_size) { 359 _peak_size = _size; 360 } 361 362 // Mark the method as being in the compile queue. 363 task->method()->set_queued_for_compilation(); 364 365 task->mark_queued(os::elapsed_counter()); 366 367 if (CIPrintCompileQueue) { 368 print_tty(); 369 } 370 371 if (LogCompilation && xtty != nullptr) { 372 task->log_task_queued(); 373 } 374 375 if (TrainingData::need_data() && 376 !CDSConfig::is_dumping_final_static_archive()) { // FIXME: !!! MetaspaceShared::preload_and_dump() temporarily enables RecordTraining !!! 377 CompileTrainingData* tdata = CompileTrainingData::make(task); 378 if (tdata != nullptr) { 379 tdata->record_compilation_queued(task); 380 task->set_training_data(tdata); 381 } 382 } 383 384 // Notify CompilerThreads that a task is available. 385 _lock->notify_all(); 386 } 387 388 void CompileQueue::add_pending(CompileTask* task) { 389 assert(_lock->owned_by_self() == false, "must NOT own lock"); 390 assert(UseLockFreeCompileQueues, ""); 391 task->method()->set_queued_for_compilation(); 392 _queue.push(*task); 393 // FIXME: additional coordination needed? e.g., is it possible for compiler thread to block w/o processing pending tasks? 394 if (is_empty()) { 395 MutexLocker ml(_lock); 396 _lock->notify_all(); 397 } 398 } 399 400 static bool process_pending(CompileTask* task) { 401 // guarantee(task->method()->queued_for_compilation(), ""); 402 if (task->is_unloaded()) { 403 return true; // unloaded 404 } 405 task->method()->set_queued_for_compilation(); // FIXME 406 if (task->method()->pending_queue_processed()) { 407 return true; // already queued 408 } 409 // Mark the method as being in the compile queue. 410 task->method()->set_pending_queue_processed(); 411 if (CompileBroker::compilation_is_complete(task->method(), task->osr_bci(), task->comp_level(), 412 task->requires_online_compilation(), task->compile_reason())) { 413 return true; // already compiled 414 } 415 return false; // active 416 } 417 418 void CompileQueue::transfer_pending() { 419 assert(_lock->owned_by_self(), "must own lock"); 420 while (!_queue.empty()) { 421 CompileTask* task = _queue.pop(); 422 bool is_stale = process_pending(task); 423 if (is_stale) { 424 task->set_next(_first_stale); 425 task->set_prev(nullptr); 426 _first_stale = task; 427 } else { 428 add(task); 429 } 430 } 431 } 432 433 /** 434 * Empties compilation queue by putting all compilation tasks onto 435 * a freelist. Furthermore, the method wakes up all threads that are 436 * waiting on a compilation task to finish. This can happen if background 437 * compilation is disabled. 438 */ 439 void CompileQueue::free_all() { 440 MutexLocker mu(_lock); 441 transfer_pending(); 442 443 CompileTask* next = _first; 444 445 // Iterate over all tasks in the compile queue 446 while (next != nullptr) { 447 CompileTask* current = next; 448 next = current->next(); 449 { 450 // Wake up thread that blocks on the compile task. 451 MutexLocker ct_lock(current->lock()); 452 current->lock()->notify(); 453 } 454 // Put the task back on the freelist. 455 CompileTask::free(current); 456 } 457 _first = nullptr; 458 _last = nullptr; 459 460 // Wake up all threads that block on the queue. 461 _lock->notify_all(); 462 } 463 464 /** 465 * Get the next CompileTask from a CompileQueue 466 */ 467 CompileTask* CompileQueue::get(CompilerThread* thread) { 468 // save methods from RedefineClasses across safepoint 469 // across compile queue lock below. 470 methodHandle save_method; 471 methodHandle save_hot_method; 472 473 MonitorLocker locker(_lock); 474 transfer_pending(); 475 476 CompilationPolicy::sample_load_average(); 477 478 // If _first is null we have no more compile jobs. There are two reasons for 479 // having no compile jobs: First, we compiled everything we wanted. Second, 480 // we ran out of code cache so compilation has been disabled. In the latter 481 // case we perform code cache sweeps to free memory such that we can re-enable 482 // compilation. 483 while (_first == nullptr) { 484 // Exit loop if compilation is disabled forever 485 if (CompileBroker::is_compilation_disabled_forever()) { 486 return nullptr; 487 } 488 489 AbstractCompiler* compiler = thread->compiler(); 490 guarantee(compiler != nullptr, "Compiler object must exist"); 491 compiler->on_empty_queue(this, thread); 492 if (_first != nullptr) { 493 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 494 // so check again whether any tasks were added to the queue. 495 break; 496 } 497 498 // If there are no compilation tasks and we can compile new jobs 499 // (i.e., there is enough free space in the code cache) there is 500 // no need to invoke the GC. 501 // We need a timed wait here, since compiler threads can exit if compilation 502 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 503 // is not critical and we do not want idle compiler threads to wake up too often. 504 locker.wait(5*1000); 505 506 transfer_pending(); // reacquired lock 507 508 if (CompilationPolicy::have_recompilation_work()) return nullptr; 509 510 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 511 // Still nothing to compile. Give caller a chance to stop this thread. 512 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 513 } 514 } 515 516 if (CompileBroker::is_compilation_disabled_forever()) { 517 return nullptr; 518 } 519 520 CompileTask* task; 521 { 522 NoSafepointVerifier nsv; 523 task = CompilationPolicy::select_task(this, thread); 524 if (task != nullptr) { 525 task = task->select_for_compilation(); 526 } 527 } 528 529 if (task != nullptr) { 530 // Save method pointers across unlock safepoint. The task is removed from 531 // the compilation queue, which is walked during RedefineClasses. 532 Thread* thread = Thread::current(); 533 save_method = methodHandle(thread, task->method()); 534 save_hot_method = methodHandle(thread, task->hot_method()); 535 536 remove(task); 537 } 538 purge_stale_tasks(); // may temporarily release MCQ lock 539 return task; 540 } 541 542 // Clean & deallocate stale compile tasks. 543 // Temporarily releases MethodCompileQueue lock. 544 void CompileQueue::purge_stale_tasks() { 545 assert(_lock->owned_by_self(), "must own lock"); 546 if (_first_stale != nullptr) { 547 // Stale tasks are purged when MCQ lock is released, 548 // but _first_stale updates are protected by MCQ lock. 549 // Once task processing starts and MCQ lock is released, 550 // other compiler threads can reuse _first_stale. 551 CompileTask* head = _first_stale; 552 _first_stale = nullptr; 553 { 554 MutexUnlocker ul(_lock); 555 for (CompileTask* task = head; task != nullptr; ) { 556 CompileTask* next_task = task->next(); 557 CompileTaskWrapper ctw(task); // Frees the task 558 task->set_failure_reason("stale task"); 559 task = next_task; 560 } 561 } 562 transfer_pending(); // transfer pending after reacquiring MCQ lock 563 } 564 } 565 566 void CompileQueue::remove(CompileTask* task) { 567 assert(_lock->owned_by_self(), "must own lock"); 568 if (task->prev() != nullptr) { 569 task->prev()->set_next(task->next()); 570 } else { 571 // max is the first element 572 assert(task == _first, "Sanity"); 573 _first = task->next(); 574 } 575 576 if (task->next() != nullptr) { 577 task->next()->set_prev(task->prev()); 578 } else { 579 // max is the last element 580 assert(task == _last, "Sanity"); 581 _last = task->prev(); 582 } 583 --_size; 584 ++_total_removed; 585 } 586 587 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 588 assert(_lock->owned_by_self(), "must own lock"); 589 remove(task); 590 591 // Enqueue the task for reclamation (should be done outside MCQ lock) 592 task->set_next(_first_stale); 593 task->set_prev(nullptr); 594 _first_stale = task; 595 } 596 597 // methods in the compile queue need to be marked as used on the stack 598 // so that they don't get reclaimed by Redefine Classes 599 void CompileQueue::mark_on_stack() { 600 for (CompileTask* task = _first; task != nullptr; task = task->next()) { 601 task->mark_on_stack(); 602 } 603 for (CompileTask* task = _queue.first(); !_queue.is_end(task); task = task->next()) { 604 assert(task != nullptr, ""); 605 task->mark_on_stack(); 606 } 607 } 608 609 610 CompileQueue* CompileBroker::compile_queue(int comp_level, bool is_scc) { 611 if (is_c2_compile(comp_level)) return ((is_scc && (_sc_count > 0)) ? _sc2_compile_queue : _c2_compile_queue); 612 if (is_c1_compile(comp_level)) return ((is_scc && (_sc_count > 0)) ? _sc1_compile_queue : _c1_compile_queue); 613 return nullptr; 614 } 615 616 CompileQueue* CompileBroker::c1_compile_queue() { 617 return _c1_compile_queue; 618 } 619 620 CompileQueue* CompileBroker::c2_compile_queue() { 621 return _c2_compile_queue; 622 } 623 624 void CompileBroker::print_compile_queues(outputStream* st) { 625 st->print_cr("Current compiles: "); 626 627 char buf[2000]; 628 int buflen = sizeof(buf); 629 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 630 631 st->cr(); 632 if (_c1_compile_queue != nullptr) { 633 _c1_compile_queue->print(st); 634 } 635 if (_c2_compile_queue != nullptr) { 636 _c2_compile_queue->print(st); 637 } 638 if (_c3_compile_queue != nullptr) { 639 _c3_compile_queue->print(st); 640 } 641 if (_sc1_compile_queue != nullptr) { 642 _sc1_compile_queue->print(st); 643 } 644 if (_sc2_compile_queue != nullptr) { 645 _sc2_compile_queue->print(st); 646 } 647 } 648 649 void CompileQueue::print(outputStream* st) { 650 assert_locked_or_safepoint(_lock); 651 st->print_cr("%s:", name()); 652 CompileTask* task = _first; 653 if (task == nullptr) { 654 st->print_cr("Empty"); 655 } else { 656 while (task != nullptr) { 657 task->print(st, nullptr, true, true); 658 task = task->next(); 659 } 660 } 661 st->cr(); 662 } 663 664 void CompileQueue::print_tty() { 665 stringStream ss; 666 // Dump the compile queue into a buffer before locking the tty 667 print(&ss); 668 { 669 ttyLocker ttyl; 670 tty->print("%s", ss.freeze()); 671 } 672 } 673 674 CompilerCounters::CompilerCounters() { 675 _current_method[0] = '\0'; 676 _compile_type = CompileBroker::no_compile; 677 } 678 679 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 680 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 681 // in compiler/compilerEvent.cpp) and registers it with its serializer. 682 // 683 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 684 // so if c2 is used, it should be always registered first. 685 // This function is called during vm initialization. 686 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 687 ResourceMark rm; 688 static bool first_registration = true; 689 if (compiler_type == compiler_jvmci) { 690 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 691 first_registration = false; 692 #ifdef COMPILER2 693 } else if (compiler_type == compiler_c2) { 694 assert(first_registration, "invariant"); // c2 must be registered first. 695 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 696 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 697 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 698 } 699 first_registration = false; 700 #endif // COMPILER2 701 } 702 } 703 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 704 705 // ------------------------------------------------------------------ 706 // CompileBroker::compilation_init 707 // 708 // Initialize the Compilation object 709 void CompileBroker::compilation_init(JavaThread* THREAD) { 710 // No need to initialize compilation system if we do not use it. 711 if (!UseCompiler) { 712 return; 713 } 714 // Set the interface to the current compiler(s). 715 _c1_count = CompilationPolicy::c1_count(); 716 _c2_count = CompilationPolicy::c2_count(); 717 _c3_count = CompilationPolicy::c3_count(); 718 _sc_count = CompilationPolicy::sc_count(); 719 720 #if INCLUDE_JVMCI 721 if (EnableJVMCI) { 722 // This is creating a JVMCICompiler singleton. 723 JVMCICompiler* jvmci = new JVMCICompiler(); 724 725 if (UseJVMCICompiler) { 726 _compilers[1] = jvmci; 727 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 728 if (BootstrapJVMCI) { 729 // JVMCI will bootstrap so give it more threads 730 _c2_count = MIN2(32, os::active_processor_count()); 731 } 732 } else { 733 _c2_count = JVMCIThreads; 734 } 735 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 736 } else { 737 #ifdef COMPILER1 738 _c1_count = JVMCIHostThreads; 739 #endif // COMPILER1 740 } 741 #ifdef COMPILER2 742 if (SCCache::is_on() && (_c3_count > 0)) { 743 _compilers[2] = new C2Compiler(); 744 } 745 #endif 746 } 747 } 748 #endif // INCLUDE_JVMCI 749 750 #ifdef COMPILER1 751 if (_c1_count > 0) { 752 _compilers[0] = new Compiler(); 753 } 754 #endif // COMPILER1 755 756 #ifdef COMPILER2 757 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 758 if (_c2_count > 0) { 759 _compilers[1] = new C2Compiler(); 760 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 761 // idToPhase mapping for c2 is in opto/phasetype.hpp 762 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 763 } 764 } 765 #endif // COMPILER2 766 767 #if INCLUDE_JVMCI 768 // Register after c2 registration. 769 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 770 if (EnableJVMCI) { 771 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 772 } 773 #endif // INCLUDE_JVMCI 774 775 if (CompilerOracle::should_collect_memstat()) { 776 CompilationMemoryStatistic::initialize(); 777 } 778 779 // Start the compiler thread(s) 780 init_compiler_threads(); 781 // totalTime performance counter is always created as it is required 782 // by the implementation of java.lang.management.CompilationMXBean. 783 { 784 // Ensure OOM leads to vm_exit_during_initialization. 785 EXCEPTION_MARK; 786 _perf_total_compilation = 787 PerfDataManager::create_counter(JAVA_CI, "totalTime", 788 PerfData::U_Ticks, CHECK); 789 } 790 791 if (UsePerfData) { 792 793 EXCEPTION_MARK; 794 795 // create the jvmstat performance counters 796 _perf_osr_compilation = 797 PerfDataManager::create_counter(SUN_CI, "osrTime", 798 PerfData::U_Ticks, CHECK); 799 800 _perf_standard_compilation = 801 PerfDataManager::create_counter(SUN_CI, "standardTime", 802 PerfData::U_Ticks, CHECK); 803 804 _perf_total_bailout_count = 805 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 806 PerfData::U_Events, CHECK); 807 808 _perf_total_invalidated_count = 809 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 810 PerfData::U_Events, CHECK); 811 812 _perf_total_compile_count = 813 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 814 PerfData::U_Events, CHECK); 815 _perf_total_osr_compile_count = 816 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 817 PerfData::U_Events, CHECK); 818 819 _perf_total_standard_compile_count = 820 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 821 PerfData::U_Events, CHECK); 822 823 _perf_sum_osr_bytes_compiled = 824 PerfDataManager::create_counter(SUN_CI, "osrBytes", 825 PerfData::U_Bytes, CHECK); 826 827 _perf_sum_standard_bytes_compiled = 828 PerfDataManager::create_counter(SUN_CI, "standardBytes", 829 PerfData::U_Bytes, CHECK); 830 831 _perf_sum_nmethod_size = 832 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 833 PerfData::U_Bytes, CHECK); 834 835 _perf_sum_nmethod_code_size = 836 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 837 PerfData::U_Bytes, CHECK); 838 839 _perf_last_method = 840 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 841 CompilerCounters::cmname_buffer_length, 842 "", CHECK); 843 844 _perf_last_failed_method = 845 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 846 CompilerCounters::cmname_buffer_length, 847 "", CHECK); 848 849 _perf_last_invalidated_method = 850 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 851 CompilerCounters::cmname_buffer_length, 852 "", CHECK); 853 854 _perf_last_compile_type = 855 PerfDataManager::create_variable(SUN_CI, "lastType", 856 PerfData::U_None, 857 (jlong)CompileBroker::no_compile, 858 CHECK); 859 860 _perf_last_compile_size = 861 PerfDataManager::create_variable(SUN_CI, "lastSize", 862 PerfData::U_Bytes, 863 (jlong)CompileBroker::no_compile, 864 CHECK); 865 866 867 _perf_last_failed_type = 868 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 869 PerfData::U_None, 870 (jlong)CompileBroker::no_compile, 871 CHECK); 872 873 _perf_last_invalidated_type = 874 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 875 PerfData::U_None, 876 (jlong)CompileBroker::no_compile, 877 CHECK); 878 } 879 880 log_info(scc, init)("CompileBroker is initialized"); 881 _initialized = true; 882 } 883 884 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) { 885 Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH); 886 return thread_oop; 887 } 888 889 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) { 890 CompilationPolicy::replay_training_at_init_loop(thread); 891 } 892 893 #if defined(ASSERT) && COMPILER2_OR_JVMCI 894 // Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to 895 // the running java application. Configured with vm options DeoptimizeObjectsALot*. 896 class DeoptimizeObjectsALotThread : public JavaThread { 897 898 static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS); 899 void deoptimize_objects_alot_loop_single(); 900 void deoptimize_objects_alot_loop_all(); 901 902 public: 903 DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { } 904 905 bool is_hidden_from_external_view() const { return true; } 906 }; 907 908 // Entry for DeoptimizeObjectsALotThread. The threads are started in 909 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 910 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 911 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 912 bool enter_single_loop; 913 { 914 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 915 static int single_thread_count = 0; 916 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 917 } 918 if (enter_single_loop) { 919 dt->deoptimize_objects_alot_loop_single(); 920 } else { 921 dt->deoptimize_objects_alot_loop_all(); 922 } 923 } 924 925 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 926 // barrier targets a single thread which is selected round robin. 927 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 928 HandleMark hm(this); 929 while (true) { 930 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 931 { // Begin new scope for escape barrier 932 HandleMarkCleaner hmc(this); 933 ResourceMark rm(this); 934 EscapeBarrier eb(true, this, deoptee_thread); 935 eb.deoptimize_objects(100); 936 } 937 // Now sleep after the escape barriers destructor resumed deoptee_thread. 938 sleep(DeoptimizeObjectsALotInterval); 939 } 940 } 941 } 942 943 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 944 // barrier targets all java threads in the vm at once. 945 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 946 HandleMark hm(this); 947 while (true) { 948 { // Begin new scope for escape barrier 949 HandleMarkCleaner hmc(this); 950 ResourceMark rm(this); 951 EscapeBarrier eb(true, this); 952 eb.deoptimize_objects_all_threads(); 953 } 954 // Now sleep after the escape barriers destructor resumed the java threads. 955 sleep(DeoptimizeObjectsALotInterval); 956 } 957 } 958 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 959 960 961 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 962 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 963 964 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 965 assert(type == compiler_t, "should only happen with reused compiler threads"); 966 // The compiler thread hasn't actually exited yet so don't try to reuse it 967 return nullptr; 968 } 969 970 JavaThread* new_thread = nullptr; 971 switch (type) { 972 case compiler_t: 973 assert(comp != nullptr, "Compiler instance missing."); 974 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 975 CompilerCounters* counters = new CompilerCounters(); 976 new_thread = new CompilerThread(queue, counters); 977 } 978 break; 979 #if defined(ASSERT) && COMPILER2_OR_JVMCI 980 case deoptimizer_t: 981 new_thread = new DeoptimizeObjectsALotThread(); 982 break; 983 #endif // ASSERT 984 case training_replay_t: 985 new_thread = new TrainingReplayThread(); 986 break; 987 default: 988 ShouldNotReachHere(); 989 } 990 991 // At this point the new CompilerThread data-races with this startup 992 // thread (which is the main thread and NOT the VM thread). 993 // This means Java bytecodes being executed at startup can 994 // queue compile jobs which will run at whatever default priority the 995 // newly created CompilerThread runs at. 996 997 998 // At this point it may be possible that no osthread was created for the 999 // JavaThread due to lack of resources. We will handle that failure below. 1000 // Also check new_thread so that static analysis is happy. 1001 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 1002 1003 if (type == compiler_t) { 1004 CompilerThread::cast(new_thread)->set_compiler(comp); 1005 } 1006 1007 // Note that we cannot call os::set_priority because it expects Java 1008 // priorities and we are *explicitly* using OS priorities so that it's 1009 // possible to set the compiler thread priority higher than any Java 1010 // thread. 1011 1012 int native_prio = CompilerThreadPriority; 1013 if (native_prio == -1) { 1014 if (UseCriticalCompilerThreadPriority) { 1015 native_prio = os::java_to_os_priority[CriticalPriority]; 1016 } else { 1017 native_prio = os::java_to_os_priority[NearMaxPriority]; 1018 } 1019 } 1020 os::set_native_priority(new_thread, native_prio); 1021 1022 // Note that this only sets the JavaThread _priority field, which by 1023 // definition is limited to Java priorities and not OS priorities. 1024 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 1025 1026 } else { // osthread initialization failure 1027 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 1028 && comp->num_compiler_threads() > 0) { 1029 // The new thread is not known to Thread-SMR yet so we can just delete. 1030 delete new_thread; 1031 return nullptr; 1032 } else { 1033 vm_exit_during_initialization("java.lang.OutOfMemoryError", 1034 os::native_thread_creation_failed_msg()); 1035 } 1036 } 1037 1038 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 1039 1040 return new_thread; 1041 } 1042 1043 static bool trace_compiler_threads() { 1044 LogTarget(Debug, jit, thread) lt; 1045 return TraceCompilerThreads || lt.is_enabled(); 1046 } 1047 1048 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 1049 char name_buffer[256]; 1050 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 1051 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 1052 return JNIHandles::make_global(thread_oop); 1053 } 1054 1055 static void print_compiler_threads(stringStream& msg) { 1056 if (TraceCompilerThreads) { 1057 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 1058 } 1059 LogTarget(Debug, jit, thread) lt; 1060 if (lt.is_enabled()) { 1061 LogStream ls(lt); 1062 ls.print_cr("%s", msg.as_string()); 1063 } 1064 } 1065 1066 static void print_compiler_thread(JavaThread *ct) { 1067 if (trace_compiler_threads()) { 1068 ResourceMark rm; 1069 ThreadsListHandle tlh; // name() depends on the TLH. 1070 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1071 stringStream msg; 1072 msg.print("Added initial compiler thread %s", ct->name()); 1073 print_compiler_threads(msg); 1074 } 1075 } 1076 1077 void CompileBroker::init_compiler_threads() { 1078 // Ensure any exceptions lead to vm_exit_during_initialization. 1079 EXCEPTION_MARK; 1080 #if !defined(ZERO) 1081 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 1082 #endif // !ZERO 1083 // Initialize the compilation queue 1084 if (_c2_count > 0) { 1085 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 1086 _c2_compile_queue = new CompileQueue(name, MethodCompileQueueC2_lock); 1087 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 1088 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 1089 } 1090 if (_c1_count > 0) { 1091 _c1_compile_queue = new CompileQueue("C1 compile queue", MethodCompileQueueC1_lock); 1092 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 1093 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 1094 } 1095 1096 if (_c3_count > 0) { 1097 const char* name = "C2 compile queue"; 1098 _c3_compile_queue = new CompileQueue(name, MethodCompileQueueC3_lock); 1099 _compiler3_objects = NEW_C_HEAP_ARRAY(jobject, _c3_count, mtCompiler); 1100 _compiler3_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c3_count, mtCompiler); 1101 } 1102 if (_sc_count > 0) { 1103 if (_c1_count > 0) { // C1 is present 1104 _sc1_compile_queue = new CompileQueue("C1 SC compile queue", MethodCompileQueueSC1_lock); 1105 } 1106 if (_c2_count > 0) { // C2 is present 1107 _sc2_compile_queue = new CompileQueue("C2 SC compile queue", MethodCompileQueueSC2_lock); 1108 } 1109 _sc_objects = NEW_C_HEAP_ARRAY(jobject, _sc_count, mtCompiler); 1110 _sc_logs = NEW_C_HEAP_ARRAY(CompileLog*, _sc_count, mtCompiler); 1111 } 1112 char name_buffer[256]; 1113 1114 for (int i = 0; i < _c2_count; i++) { 1115 // Create a name for our thread. 1116 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 1117 _compiler2_objects[i] = thread_handle; 1118 _compiler2_logs[i] = nullptr; 1119 1120 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1121 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 1122 assert(ct != nullptr, "should have been handled for initial thread"); 1123 _compilers[1]->set_num_compiler_threads(i + 1); 1124 print_compiler_thread(ct); 1125 } 1126 } 1127 1128 for (int i = 0; i < _c1_count; i++) { 1129 // Create a name for our thread. 1130 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 1131 _compiler1_objects[i] = thread_handle; 1132 _compiler1_logs[i] = nullptr; 1133 1134 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1135 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 1136 assert(ct != nullptr, "should have been handled for initial thread"); 1137 _compilers[0]->set_num_compiler_threads(i + 1); 1138 print_compiler_thread(ct); 1139 } 1140 } 1141 1142 for (int i = 0; i < _c3_count; i++) { 1143 // Create a name for our thread. 1144 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C2 CompilerThread%d", i); 1145 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1146 jobject thread_handle = JNIHandles::make_global(thread_oop); 1147 _compiler3_objects[i] = thread_handle; 1148 _compiler3_logs[i] = nullptr; 1149 1150 JavaThread *ct = make_thread(compiler_t, thread_handle, _c3_compile_queue, _compilers[2], THREAD); 1151 assert(ct != nullptr, "should have been handled for initial thread"); 1152 _compilers[2]->set_num_compiler_threads(i + 1); 1153 print_compiler_thread(ct); 1154 } 1155 1156 if (_sc_count > 0) { 1157 int i = 0; 1158 if (_c1_count > 0) { // C1 is present 1159 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d SC CompilerThread", 1); 1160 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1161 jobject thread_handle = JNIHandles::make_global(thread_oop); 1162 _sc_objects[i] = thread_handle; 1163 _sc_logs[i] = nullptr; 1164 i++; 1165 1166 JavaThread *ct = make_thread(compiler_t, thread_handle, _sc1_compile_queue, _compilers[0], THREAD); 1167 assert(ct != nullptr, "should have been handled for initial thread"); 1168 print_compiler_thread(ct); 1169 } 1170 if (_c2_count > 0) { // C2 is present 1171 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d SC CompilerThread", 2); 1172 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1173 jobject thread_handle = JNIHandles::make_global(thread_oop); 1174 _sc_objects[i] = thread_handle; 1175 _sc_logs[i] = nullptr; 1176 1177 JavaThread *ct = make_thread(compiler_t, thread_handle, _sc2_compile_queue, _compilers[1], THREAD); 1178 assert(ct != nullptr, "should have been handled for initial thread"); 1179 print_compiler_thread(ct); 1180 } 1181 } 1182 1183 if (UsePerfData) { 1184 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count + _c3_count, CHECK); 1185 } 1186 1187 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1188 if (DeoptimizeObjectsALot) { 1189 // Initialize and start the object deoptimizer threads 1190 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1191 for (int count = 0; count < total_count; count++) { 1192 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1193 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1194 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1195 } 1196 } 1197 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1198 } 1199 1200 void CompileBroker::init_training_replay() { 1201 // Ensure any exceptions lead to vm_exit_during_initialization. 1202 EXCEPTION_MARK; 1203 if (TrainingData::have_data()) { 1204 if (UseConcurrentTrainingReplay) { 1205 Handle thread_oop = create_thread_oop("Training replay thread", CHECK); 1206 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1207 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD); 1208 } 1209 _replay_initialized = true; 1210 } 1211 } 1212 1213 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1214 1215 julong free_memory = os::free_memory(); 1216 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1217 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1218 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1219 1220 // Only do attempt to start additional threads if the lock is free. 1221 if (!CompileThread_lock->try_lock()) return; 1222 1223 if (_c2_compile_queue != nullptr) { 1224 int old_c2_count = _compilers[1]->num_compiler_threads(); 1225 int new_c2_count = MIN4(_c2_count, 1226 _c2_compile_queue->size() / 2, 1227 (int)(free_memory / (200*M)), 1228 (int)(available_cc_np / (128*K))); 1229 1230 for (int i = old_c2_count; i < new_c2_count; i++) { 1231 #if INCLUDE_JVMCI 1232 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1233 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1234 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1235 // call Java code to do the creation anyway). 1236 // 1237 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1238 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1239 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1240 // coupling with Java. 1241 if (!THREAD->can_call_java()) break; 1242 char name_buffer[256]; 1243 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1244 Handle thread_oop; 1245 { 1246 // We have to give up the lock temporarily for the Java calls. 1247 MutexUnlocker mu(CompileThread_lock); 1248 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1249 } 1250 if (HAS_PENDING_EXCEPTION) { 1251 if (trace_compiler_threads()) { 1252 ResourceMark rm; 1253 stringStream msg; 1254 msg.print_cr("JVMCI compiler thread creation failed:"); 1255 PENDING_EXCEPTION->print_on(&msg); 1256 print_compiler_threads(msg); 1257 } 1258 CLEAR_PENDING_EXCEPTION; 1259 break; 1260 } 1261 // Check if another thread has beaten us during the Java calls. 1262 if (_compilers[1]->num_compiler_threads() != i) break; 1263 jobject thread_handle = JNIHandles::make_global(thread_oop); 1264 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1265 _compiler2_objects[i] = thread_handle; 1266 } 1267 #endif 1268 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1269 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1270 if (ct == nullptr) break; 1271 _compilers[1]->set_num_compiler_threads(i + 1); 1272 if (trace_compiler_threads()) { 1273 ResourceMark rm; 1274 ThreadsListHandle tlh; // name() depends on the TLH. 1275 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1276 stringStream msg; 1277 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1278 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1279 print_compiler_threads(msg); 1280 } 1281 } 1282 } 1283 1284 if (_c1_compile_queue != nullptr) { 1285 int old_c1_count = _compilers[0]->num_compiler_threads(); 1286 int new_c1_count = MIN4(_c1_count, 1287 _c1_compile_queue->size() / 4, 1288 (int)(free_memory / (100*M)), 1289 (int)(available_cc_p / (128*K))); 1290 1291 for (int i = old_c1_count; i < new_c1_count; i++) { 1292 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1293 if (ct == nullptr) break; 1294 _compilers[0]->set_num_compiler_threads(i + 1); 1295 if (trace_compiler_threads()) { 1296 ResourceMark rm; 1297 ThreadsListHandle tlh; // name() depends on the TLH. 1298 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1299 stringStream msg; 1300 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1301 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1302 print_compiler_threads(msg); 1303 } 1304 } 1305 } 1306 1307 CompileThread_lock->unlock(); 1308 } 1309 1310 1311 /** 1312 * Set the methods on the stack as on_stack so that redefine classes doesn't 1313 * reclaim them. This method is executed at a safepoint. 1314 */ 1315 void CompileBroker::mark_on_stack() { 1316 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1317 // Since we are at a safepoint, we do not need a lock to access 1318 // the compile queues. 1319 if (_c3_compile_queue != nullptr) { 1320 _c3_compile_queue->mark_on_stack(); 1321 } 1322 if (_c2_compile_queue != nullptr) { 1323 _c2_compile_queue->mark_on_stack(); 1324 } 1325 if (_c1_compile_queue != nullptr) { 1326 _c1_compile_queue->mark_on_stack(); 1327 } 1328 if (_sc1_compile_queue != nullptr) { 1329 _sc1_compile_queue->mark_on_stack(); 1330 } 1331 if (_sc2_compile_queue != nullptr) { 1332 _sc2_compile_queue->mark_on_stack(); 1333 } 1334 } 1335 1336 // ------------------------------------------------------------------ 1337 // CompileBroker::compile_method 1338 // 1339 // Request compilation of a method. 1340 void CompileBroker::compile_method_base(const methodHandle& method, 1341 int osr_bci, 1342 int comp_level, 1343 const methodHandle& hot_method, 1344 int hot_count, 1345 CompileTask::CompileReason compile_reason, 1346 bool requires_online_compilation, 1347 bool blocking, 1348 Thread* thread) { 1349 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1350 assert(method->method_holder()->is_instance_klass(), 1351 "sanity check"); 1352 assert(!method->method_holder()->is_not_initialized() || 1353 compile_reason == CompileTask::Reason_Preload || 1354 compile_reason == CompileTask::Reason_Precompile || 1355 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1356 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1357 1358 if (CIPrintRequests) { 1359 tty->print("request: "); 1360 method->print_short_name(tty); 1361 if (osr_bci != InvocationEntryBci) { 1362 tty->print(" osr_bci: %d", osr_bci); 1363 } 1364 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1365 if (!hot_method.is_null()) { 1366 tty->print(" hot: "); 1367 if (hot_method() != method()) { 1368 hot_method->print_short_name(tty); 1369 } else { 1370 tty->print("yes"); 1371 } 1372 } 1373 tty->cr(); 1374 } 1375 1376 // A request has been made for compilation. Before we do any 1377 // real work, check to see if the method has been compiled 1378 // in the meantime with a definitive result. 1379 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1380 return; 1381 } 1382 1383 #ifndef PRODUCT 1384 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1385 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1386 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1387 return; 1388 } 1389 } 1390 #endif 1391 1392 // If this method is already in the compile queue, then 1393 // we do not block the current thread. 1394 if (compilation_is_in_queue(method)) { 1395 // We may want to decay our counter a bit here to prevent 1396 // multiple denied requests for compilation. This is an 1397 // open compilation policy issue. Note: The other possibility, 1398 // in the case that this is a blocking compile request, is to have 1399 // all subsequent blocking requesters wait for completion of 1400 // ongoing compiles. Note that in this case we'll need a protocol 1401 // for freeing the associated compile tasks. [Or we could have 1402 // a single static monitor on which all these waiters sleep.] 1403 return; 1404 } 1405 1406 // Tiered policy requires MethodCounters to exist before adding a method to 1407 // the queue. Create if we don't have them yet. 1408 if (compile_reason != CompileTask::Reason_Preload) { 1409 method->get_method_counters(thread); 1410 } 1411 1412 SCCEntry* scc_entry = find_scc_entry(method, osr_bci, comp_level, compile_reason, requires_online_compilation); 1413 bool is_scc = (scc_entry != nullptr); 1414 1415 // Outputs from the following MutexLocker block: 1416 CompileTask* task = nullptr; 1417 CompileQueue* queue; 1418 #if INCLUDE_JVMCI 1419 if (is_c2_compile(comp_level) && compiler2()->is_jvmci() && compiler3() != nullptr && 1420 ((JVMCICompiler*)compiler2())->force_comp_at_level_simple(method)) { 1421 assert(_c3_compile_queue != nullptr, "sanity"); 1422 queue = _c3_compile_queue; // JVMCI compiler's methods compilation 1423 } else 1424 #endif 1425 queue = compile_queue(comp_level, is_scc); 1426 1427 // Acquire our lock. 1428 { 1429 ConditionalMutexLocker locker(thread, queue->lock(), !UseLockFreeCompileQueues); 1430 1431 // Make sure the method has not slipped into the queues since 1432 // last we checked; note that those checks were "fast bail-outs". 1433 // Here we need to be more careful, see 14012000 below. 1434 if (compilation_is_in_queue(method)) { 1435 return; 1436 } 1437 1438 // We need to check again to see if the compilation has 1439 // completed. A previous compilation may have registered 1440 // some result. 1441 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1442 return; 1443 } 1444 1445 // We now know that this compilation is not pending, complete, 1446 // or prohibited. Assign a compile_id to this compilation 1447 // and check to see if it is in our [Start..Stop) range. 1448 int compile_id = assign_compile_id(method, osr_bci); 1449 if (compile_id == 0) { 1450 // The compilation falls outside the allowed range. 1451 return; 1452 } 1453 1454 #if INCLUDE_JVMCI 1455 if (UseJVMCICompiler && blocking) { 1456 // Don't allow blocking compiles for requests triggered by JVMCI. 1457 if (thread->is_Compiler_thread()) { 1458 blocking = false; 1459 } 1460 1461 // In libjvmci, JVMCI initialization should not deadlock with other threads 1462 if (!UseJVMCINativeLibrary) { 1463 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1464 vframeStream vfst(JavaThread::cast(thread)); 1465 for (; !vfst.at_end(); vfst.next()) { 1466 if (vfst.method()->is_static_initializer() || 1467 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1468 vfst.method()->name() == vmSymbols::loadClass_name())) { 1469 blocking = false; 1470 break; 1471 } 1472 } 1473 1474 // Don't allow blocking compilation requests to JVMCI 1475 // if JVMCI itself is not yet initialized 1476 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1477 blocking = false; 1478 } 1479 } 1480 1481 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1482 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1483 // such as the DestroyJavaVM thread. 1484 if (JVMCI::in_shutdown()) { 1485 blocking = false; 1486 } 1487 } 1488 #endif // INCLUDE_JVMCI 1489 1490 // We will enter the compilation in the queue. 1491 // 14012000: Note that this sets the queued_for_compile bits in 1492 // the target method. We can now reason that a method cannot be 1493 // queued for compilation more than once, as follows: 1494 // Before a thread queues a task for compilation, it first acquires 1495 // the compile queue lock, then checks if the method's queued bits 1496 // are set or it has already been compiled. Thus there can not be two 1497 // instances of a compilation task for the same method on the 1498 // compilation queue. Consider now the case where the compilation 1499 // thread has already removed a task for that method from the queue 1500 // and is in the midst of compiling it. In this case, the 1501 // queued_for_compile bits must be set in the method (and these 1502 // will be visible to the current thread, since the bits were set 1503 // under protection of the compile queue lock, which we hold now. 1504 // When the compilation completes, the compiler thread first sets 1505 // the compilation result and then clears the queued_for_compile 1506 // bits. Neither of these actions are protected by a barrier (or done 1507 // under the protection of a lock), so the only guarantee we have 1508 // (on machines with TSO (Total Store Order)) is that these values 1509 // will update in that order. As a result, the only combinations of 1510 // these bits that the current thread will see are, in temporal order: 1511 // <RESULT, QUEUE> : 1512 // <0, 1> : in compile queue, but not yet compiled 1513 // <1, 1> : compiled but queue bit not cleared 1514 // <1, 0> : compiled and queue bit cleared 1515 // Because we first check the queue bits then check the result bits, 1516 // we are assured that we cannot introduce a duplicate task. 1517 // Note that if we did the tests in the reverse order (i.e. check 1518 // result then check queued bit), we could get the result bit before 1519 // the compilation completed, and the queue bit after the compilation 1520 // completed, and end up introducing a "duplicate" (redundant) task. 1521 // In that case, the compiler thread should first check if a method 1522 // has already been compiled before trying to compile it. 1523 // NOTE: in the event that there are multiple compiler threads and 1524 // there is de-optimization/recompilation, things will get hairy, 1525 // and in that case it's best to protect both the testing (here) of 1526 // these bits, and their updating (here and elsewhere) under a 1527 // common lock. 1528 task = create_compile_task(queue, 1529 compile_id, method, 1530 osr_bci, comp_level, 1531 hot_method, hot_count, scc_entry, compile_reason, 1532 requires_online_compilation, blocking); 1533 1534 if (task->is_scc() && (_sc_count > 0)) { 1535 // Put it on SC queue 1536 queue = is_c1_compile(comp_level) ? _sc1_compile_queue : _sc2_compile_queue; 1537 } 1538 1539 if (UseLockFreeCompileQueues) { 1540 assert(queue->lock()->owned_by_self() == false, ""); 1541 queue->add_pending(task); 1542 } else { 1543 queue->add(task); 1544 } 1545 } 1546 1547 if (blocking) { 1548 wait_for_completion(task); 1549 } 1550 } 1551 1552 SCCEntry* CompileBroker::find_scc_entry(const methodHandle& method, int osr_bci, int comp_level, 1553 CompileTask::CompileReason compile_reason, 1554 bool requires_online_compilation) { 1555 SCCEntry* scc_entry = nullptr; 1556 if (osr_bci == InvocationEntryBci && !requires_online_compilation && SCCache::is_on_for_read()) { 1557 // Check for cached code. 1558 if (compile_reason == CompileTask::Reason_Preload) { 1559 scc_entry = method->scc_entry(); 1560 assert(scc_entry != nullptr && scc_entry->for_preload(), "sanity"); 1561 } else { 1562 scc_entry = SCCache::find_code_entry(method, comp_level); 1563 } 1564 } 1565 return scc_entry; 1566 } 1567 1568 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1569 int comp_level, 1570 const methodHandle& hot_method, int hot_count, 1571 bool requires_online_compilation, 1572 CompileTask::CompileReason compile_reason, 1573 TRAPS) { 1574 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1575 if (!_initialized || comp_level == CompLevel_none) { 1576 return nullptr; 1577 } 1578 1579 #if INCLUDE_JVMCI 1580 if (EnableJVMCI && UseJVMCICompiler && 1581 comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 1582 return nullptr; 1583 } 1584 #endif 1585 1586 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1587 assert(comp != nullptr, "Ensure we have a compiler"); 1588 1589 #if INCLUDE_JVMCI 1590 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1591 // JVMCI compilation is not yet initializable. 1592 return nullptr; 1593 } 1594 #endif 1595 1596 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1597 // CompileBroker::compile_method can trap and can have pending async exception. 1598 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, requires_online_compilation, compile_reason, directive, THREAD); 1599 DirectivesStack::release(directive); 1600 return nm; 1601 } 1602 1603 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1604 int comp_level, 1605 const methodHandle& hot_method, int hot_count, 1606 bool requires_online_compilation, 1607 CompileTask::CompileReason compile_reason, 1608 DirectiveSet* directive, 1609 TRAPS) { 1610 1611 // make sure arguments make sense 1612 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1613 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1614 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1615 assert(!method->method_holder()->is_not_initialized() || 1616 compile_reason == CompileTask::Reason_Preload || 1617 compile_reason == CompileTask::Reason_Precompile || 1618 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1619 // return quickly if possible 1620 1621 if (PrecompileOnlyAndExit && !CompileTask::reason_is_precompiled(compile_reason)) { 1622 return nullptr; 1623 } 1624 1625 // lock, make sure that the compilation 1626 // isn't prohibited in a straightforward way. 1627 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1628 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1629 return nullptr; 1630 } 1631 1632 if (osr_bci == InvocationEntryBci) { 1633 // standard compilation 1634 nmethod* method_code = method->code(); 1635 if (method_code != nullptr) { 1636 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1637 return method_code; 1638 } 1639 } 1640 if (method->is_not_compilable(comp_level)) { 1641 return nullptr; 1642 } 1643 } else { 1644 // osr compilation 1645 // We accept a higher level osr method 1646 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1647 if (nm != nullptr) return nm; 1648 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1649 } 1650 1651 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1652 // some prerequisites that are compiler specific 1653 if (compile_reason != CompileTask::Reason_Preload && (comp->is_c2() || comp->is_jvmci())) { 1654 InternalOOMEMark iom(THREAD); 1655 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1656 // Resolve all classes seen in the signature of the method 1657 // we are compiling. 1658 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1659 } 1660 1661 // If the method is native, do the lookup in the thread requesting 1662 // the compilation. Native lookups can load code, which is not 1663 // permitted during compilation. 1664 // 1665 // Note: A native method implies non-osr compilation which is 1666 // checked with an assertion at the entry of this method. 1667 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1668 address adr = NativeLookup::lookup(method, THREAD); 1669 if (HAS_PENDING_EXCEPTION) { 1670 // In case of an exception looking up the method, we just forget 1671 // about it. The interpreter will kick-in and throw the exception. 1672 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1673 CLEAR_PENDING_EXCEPTION; 1674 return nullptr; 1675 } 1676 assert(method->has_native_function(), "must have native code by now"); 1677 } 1678 1679 // RedefineClasses() has replaced this method; just return 1680 if (method->is_old()) { 1681 return nullptr; 1682 } 1683 1684 // JVMTI -- post_compile_event requires jmethod_id() that may require 1685 // a lock the compiling thread can not acquire. Prefetch it here. 1686 if (JvmtiExport::should_post_compiled_method_load()) { 1687 method->jmethod_id(); 1688 } 1689 1690 // do the compilation 1691 if (method->is_native()) { 1692 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1693 #if defined(X86) && !defined(ZERO) 1694 // The following native methods: 1695 // 1696 // java.lang.Float.intBitsToFloat 1697 // java.lang.Float.floatToRawIntBits 1698 // java.lang.Double.longBitsToDouble 1699 // java.lang.Double.doubleToRawLongBits 1700 // 1701 // are called through the interpreter even if interpreter native stubs 1702 // are not preferred (i.e., calling through adapter handlers is preferred). 1703 // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved 1704 // if the version of the methods from the native libraries is called. 1705 // As the interpreter and the C2-intrinsified version of the methods preserves 1706 // sNaNs, that would result in an inconsistent way of handling of sNaNs. 1707 if ((UseSSE >= 1 && 1708 (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat || 1709 method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) || 1710 (UseSSE >= 2 && 1711 (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble || 1712 method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) { 1713 return nullptr; 1714 } 1715 #endif // X86 && !ZERO 1716 1717 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1718 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1719 // 1720 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1721 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1722 AdapterHandlerLibrary::create_native_wrapper(method); 1723 } else { 1724 return nullptr; 1725 } 1726 } else { 1727 // If the compiler is shut off due to code cache getting full 1728 // fail out now so blocking compiles dont hang the java thread 1729 if (!should_compile_new_jobs()) { 1730 return nullptr; 1731 } 1732 bool is_blocking = ReplayCompiles || 1733 !directive->BackgroundCompilationOption || 1734 (compile_reason == CompileTask::Reason_Precompile) || 1735 (compile_reason == CompileTask::Reason_PrecompileForPreload); 1736 compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, requires_online_compilation, is_blocking, THREAD); 1737 } 1738 1739 // return requested nmethod 1740 // We accept a higher level osr method 1741 if (osr_bci == InvocationEntryBci) { 1742 return method->code(); 1743 } 1744 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1745 } 1746 1747 1748 // ------------------------------------------------------------------ 1749 // CompileBroker::compilation_is_complete 1750 // 1751 // See if compilation of this method is already complete. 1752 bool CompileBroker::compilation_is_complete(Method* method, 1753 int osr_bci, 1754 int comp_level, 1755 bool online_only, 1756 CompileTask::CompileReason compile_reason) { 1757 if (compile_reason == CompileTask::Reason_Precompile || 1758 compile_reason == CompileTask::Reason_PrecompileForPreload) { 1759 return false; // FIXME: any restrictions? 1760 } 1761 bool is_osr = (osr_bci != standard_entry_bci); 1762 if (is_osr) { 1763 if (method->is_not_osr_compilable(comp_level)) { 1764 return true; 1765 } else { 1766 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1767 return (result != nullptr); 1768 } 1769 } else { 1770 if (method->is_not_compilable(comp_level)) { 1771 return true; 1772 } else { 1773 nmethod* result = method->code(); 1774 if (result == nullptr) { 1775 return false; 1776 } 1777 if (online_only && result->is_scc()) { 1778 return false; 1779 } 1780 bool same_level = (comp_level == result->comp_level()); 1781 if (result->has_clinit_barriers()) { 1782 return !same_level; // Allow replace preloaded code with new code of the same level 1783 } 1784 return same_level; 1785 } 1786 } 1787 } 1788 1789 1790 /** 1791 * See if this compilation is already requested. 1792 * 1793 * Implementation note: there is only a single "is in queue" bit 1794 * for each method. This means that the check below is overly 1795 * conservative in the sense that an osr compilation in the queue 1796 * will block a normal compilation from entering the queue (and vice 1797 * versa). This can be remedied by a full queue search to disambiguate 1798 * cases. If it is deemed profitable, this may be done. 1799 */ 1800 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1801 return method->queued_for_compilation(); 1802 } 1803 1804 // ------------------------------------------------------------------ 1805 // CompileBroker::compilation_is_prohibited 1806 // 1807 // See if this compilation is not allowed. 1808 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1809 bool is_native = method->is_native(); 1810 // Some compilers may not support the compilation of natives. 1811 AbstractCompiler *comp = compiler(comp_level); 1812 if (is_native && (!CICompileNatives || comp == nullptr)) { 1813 method->set_not_compilable_quietly("native methods not supported", comp_level); 1814 return true; 1815 } 1816 1817 bool is_osr = (osr_bci != standard_entry_bci); 1818 // Some compilers may not support on stack replacement. 1819 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1820 method->set_not_osr_compilable("OSR not supported", comp_level); 1821 return true; 1822 } 1823 1824 // The method may be explicitly excluded by the user. 1825 double scale; 1826 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1827 bool quietly = CompilerOracle::be_quiet(); 1828 if (PrintCompilation && !quietly) { 1829 // This does not happen quietly... 1830 ResourceMark rm; 1831 tty->print("### Excluding %s:%s", 1832 method->is_native() ? "generation of native wrapper" : "compile", 1833 (method->is_static() ? " static" : "")); 1834 method->print_short_name(tty); 1835 tty->cr(); 1836 } 1837 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1838 } 1839 1840 return false; 1841 } 1842 1843 /** 1844 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1845 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1846 * The function also allows to generate separate compilation IDs for OSR compilations. 1847 */ 1848 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1849 #ifdef ASSERT 1850 bool is_osr = (osr_bci != standard_entry_bci); 1851 int id; 1852 if (method->is_native()) { 1853 assert(!is_osr, "can't be osr"); 1854 // Adapters, native wrappers and method handle intrinsics 1855 // should be generated always. 1856 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1857 } else if (CICountOSR && is_osr) { 1858 id = Atomic::add(&_osr_compilation_id, 1); 1859 if (CIStartOSR <= id && id < CIStopOSR) { 1860 return id; 1861 } 1862 } else { 1863 id = Atomic::add(&_compilation_id, 1); 1864 if (CIStart <= id && id < CIStop) { 1865 return id; 1866 } 1867 } 1868 1869 // Method was not in the appropriate compilation range. 1870 method->set_not_compilable_quietly("Not in requested compile id range"); 1871 return 0; 1872 #else 1873 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1874 // only _compilation_id is incremented. 1875 return Atomic::add(&_compilation_id, 1); 1876 #endif 1877 } 1878 1879 // ------------------------------------------------------------------ 1880 // CompileBroker::assign_compile_id_unlocked 1881 // 1882 // Public wrapper for assign_compile_id that acquires the needed locks 1883 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1884 return assign_compile_id(method, osr_bci); 1885 } 1886 1887 // ------------------------------------------------------------------ 1888 // CompileBroker::create_compile_task 1889 // 1890 // Create a CompileTask object representing the current request for 1891 // compilation. Add this task to the queue. 1892 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1893 int compile_id, 1894 const methodHandle& method, 1895 int osr_bci, 1896 int comp_level, 1897 const methodHandle& hot_method, 1898 int hot_count, 1899 SCCEntry* scc_entry, 1900 CompileTask::CompileReason compile_reason, 1901 bool requires_online_compilation, 1902 bool blocking) { 1903 CompileTask* new_task = CompileTask::allocate(); 1904 new_task->initialize(compile_id, method, osr_bci, comp_level, 1905 hot_method, hot_count, scc_entry, compile_reason, queue, 1906 requires_online_compilation, blocking); 1907 return new_task; 1908 } 1909 1910 #if INCLUDE_JVMCI 1911 // The number of milliseconds to wait before checking if 1912 // JVMCI compilation has made progress. 1913 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1914 1915 // The number of JVMCI compilation progress checks that must fail 1916 // before unblocking a thread waiting for a blocking compilation. 1917 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1918 1919 /** 1920 * Waits for a JVMCI compiler to complete a given task. This thread 1921 * waits until either the task completes or it sees no JVMCI compilation 1922 * progress for N consecutive milliseconds where N is 1923 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1924 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1925 * 1926 * @return true if this thread needs to free/recycle the task 1927 */ 1928 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1929 assert(UseJVMCICompiler, "sanity"); 1930 MonitorLocker ml(thread, task->lock()); 1931 int progress_wait_attempts = 0; 1932 jint thread_jvmci_compilation_ticks = 0; 1933 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1934 while (!task->is_complete() && !is_compilation_disabled_forever() && 1935 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1936 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1937 1938 bool progress; 1939 if (jvmci_compile_state != nullptr) { 1940 jint ticks = jvmci_compile_state->compilation_ticks(); 1941 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1942 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1943 thread_jvmci_compilation_ticks = ticks; 1944 } else { 1945 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1946 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1947 // compilation ticks to determine whether JVMCI compilation 1948 // is still making progress through the JVMCI compiler queue. 1949 jint ticks = jvmci->global_compilation_ticks(); 1950 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1951 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1952 global_jvmci_compilation_ticks = ticks; 1953 } 1954 1955 if (!progress) { 1956 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1957 if (PrintCompilation) { 1958 task->print(tty, "wait for blocking compilation timed out"); 1959 } 1960 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1961 break; 1962 } 1963 } else { 1964 progress_wait_attempts = 0; 1965 } 1966 } 1967 task->clear_waiter(); 1968 return task->is_complete(); 1969 } 1970 #endif 1971 1972 /** 1973 * Wait for the compilation task to complete. 1974 */ 1975 void CompileBroker::wait_for_completion(CompileTask* task) { 1976 if (CIPrintCompileQueue) { 1977 ttyLocker ttyl; 1978 tty->print_cr("BLOCKING FOR COMPILE"); 1979 } 1980 1981 assert(task->is_blocking(), "can only wait on blocking task"); 1982 1983 JavaThread* thread = JavaThread::current(); 1984 1985 methodHandle method(thread, task->method()); 1986 bool free_task; 1987 #if INCLUDE_JVMCI 1988 AbstractCompiler* comp = compiler(task->comp_level()); 1989 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1990 // It may return before compilation is completed. 1991 // Note that libjvmci should not pre-emptively unblock 1992 // a thread waiting for a compilation as it does not call 1993 // Java code and so is not deadlock prone like jarjvmci. 1994 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1995 } else 1996 #endif 1997 { 1998 MonitorLocker ml(thread, task->lock()); 1999 free_task = true; 2000 while (!task->is_complete() && !is_compilation_disabled_forever()) { 2001 ml.wait(); 2002 } 2003 } 2004 2005 if (free_task) { 2006 if (is_compilation_disabled_forever()) { 2007 CompileTask::free(task); 2008 return; 2009 } 2010 2011 // It is harmless to check this status without the lock, because 2012 // completion is a stable property (until the task object is recycled). 2013 assert(task->is_complete(), "Compilation should have completed"); 2014 2015 // By convention, the waiter is responsible for recycling a 2016 // blocking CompileTask. Since there is only one waiter ever 2017 // waiting on a CompileTask, we know that no one else will 2018 // be using this CompileTask; we can free it. 2019 CompileTask::free(task); 2020 } 2021 } 2022 2023 /** 2024 * Initialize compiler thread(s) + compiler object(s). The postcondition 2025 * of this function is that the compiler runtimes are initialized and that 2026 * compiler threads can start compiling. 2027 */ 2028 bool CompileBroker::init_compiler_runtime() { 2029 CompilerThread* thread = CompilerThread::current(); 2030 AbstractCompiler* comp = thread->compiler(); 2031 // Final sanity check - the compiler object must exist 2032 guarantee(comp != nullptr, "Compiler object must exist"); 2033 2034 { 2035 // Must switch to native to allocate ci_env 2036 ThreadToNativeFromVM ttn(thread); 2037 ciEnv ci_env((CompileTask*)nullptr); 2038 // Cache Jvmti state 2039 ci_env.cache_jvmti_state(); 2040 // Cache DTrace flags 2041 ci_env.cache_dtrace_flags(); 2042 2043 // Switch back to VM state to do compiler initialization 2044 ThreadInVMfromNative tv(thread); 2045 2046 // Perform per-thread and global initializations 2047 { 2048 MutexLocker only_one (thread, CompileThread_lock); 2049 SCCache::init_table(); 2050 } 2051 comp->initialize(); 2052 } 2053 2054 if (comp->is_failed()) { 2055 disable_compilation_forever(); 2056 // If compiler initialization failed, no compiler thread that is specific to a 2057 // particular compiler runtime will ever start to compile methods. 2058 shutdown_compiler_runtime(comp, thread); 2059 return false; 2060 } 2061 2062 // C1 specific check 2063 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 2064 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 2065 return false; 2066 } 2067 2068 return true; 2069 } 2070 2071 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 2072 BufferBlob* blob = thread->get_buffer_blob(); 2073 if (blob != nullptr) { 2074 blob->purge(); 2075 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2076 CodeCache::free(blob); 2077 } 2078 } 2079 2080 /** 2081 * If C1 and/or C2 initialization failed, we shut down all compilation. 2082 * We do this to keep things simple. This can be changed if it ever turns 2083 * out to be a problem. 2084 */ 2085 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 2086 free_buffer_blob_if_allocated(thread); 2087 2088 log_info(compilation)("shutdown_compiler_runtime: " INTPTR_FORMAT, p2i(thread)); 2089 2090 if (comp->should_perform_shutdown()) { 2091 // There are two reasons for shutting down the compiler 2092 // 1) compiler runtime initialization failed 2093 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 2094 warning("%s initialization failed. Shutting down all compilers", comp->name()); 2095 2096 // Only one thread per compiler runtime object enters here 2097 // Set state to shut down 2098 comp->set_shut_down(); 2099 2100 // Delete all queued compilation tasks to make compiler threads exit faster. 2101 if (_c1_compile_queue != nullptr) { 2102 _c1_compile_queue->free_all(); 2103 } 2104 2105 if (_c2_compile_queue != nullptr) { 2106 _c2_compile_queue->free_all(); 2107 } 2108 2109 if (_c3_compile_queue != nullptr) { 2110 _c3_compile_queue->free_all(); 2111 } 2112 2113 // Set flags so that we continue execution with using interpreter only. 2114 UseCompiler = false; 2115 UseInterpreter = true; 2116 2117 // We could delete compiler runtimes also. However, there are references to 2118 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 2119 // fail. This can be done later if necessary. 2120 } 2121 } 2122 2123 /** 2124 * Helper function to create new or reuse old CompileLog. 2125 */ 2126 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 2127 if (!LogCompilation) return nullptr; 2128 2129 AbstractCompiler *compiler = ct->compiler(); 2130 bool jvmci = JVMCI_ONLY( compiler->is_jvmci() ||) false; 2131 bool c1 = compiler->is_c1(); 2132 jobject* compiler_objects = c1 ? _compiler1_objects : (_c3_count == 0 ? _compiler2_objects : (jvmci ? _compiler2_objects : _compiler3_objects)); 2133 assert(compiler_objects != nullptr, "must be initialized at this point"); 2134 CompileLog** logs = c1 ? _compiler1_logs : (_c3_count == 0 ? _compiler2_logs : (jvmci ? _compiler2_logs : _compiler3_logs)); 2135 assert(logs != nullptr, "must be initialized at this point"); 2136 int count = c1 ? _c1_count : (_c3_count == 0 ? _c2_count : (jvmci ? _c2_count : _c3_count)); 2137 2138 if (ct->queue() == _sc1_compile_queue || ct->queue() == _sc2_compile_queue) { 2139 compiler_objects = _sc_objects; 2140 logs = _sc_logs; 2141 count = _sc_count; 2142 } 2143 // Find Compiler number by its threadObj. 2144 oop compiler_obj = ct->threadObj(); 2145 int compiler_number = 0; 2146 bool found = false; 2147 for (; compiler_number < count; compiler_number++) { 2148 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 2149 found = true; 2150 break; 2151 } 2152 } 2153 assert(found, "Compiler must exist at this point"); 2154 2155 // Determine pointer for this thread's log. 2156 CompileLog** log_ptr = &logs[compiler_number]; 2157 2158 // Return old one if it exists. 2159 CompileLog* log = *log_ptr; 2160 if (log != nullptr) { 2161 ct->init_log(log); 2162 return log; 2163 } 2164 2165 // Create a new one and remember it. 2166 init_compiler_thread_log(); 2167 log = ct->log(); 2168 *log_ptr = log; 2169 return log; 2170 } 2171 2172 // ------------------------------------------------------------------ 2173 // CompileBroker::compiler_thread_loop 2174 // 2175 // The main loop run by a CompilerThread. 2176 void CompileBroker::compiler_thread_loop() { 2177 CompilerThread* thread = CompilerThread::current(); 2178 CompileQueue* queue = thread->queue(); 2179 // For the thread that initializes the ciObjectFactory 2180 // this resource mark holds all the shared objects 2181 ResourceMark rm; 2182 2183 // First thread to get here will initialize the compiler interface 2184 2185 { 2186 ASSERT_IN_VM; 2187 MutexLocker only_one (thread, CompileThread_lock); 2188 if (!ciObjectFactory::is_initialized()) { 2189 ciObjectFactory::initialize(); 2190 } 2191 } 2192 2193 // Open a log. 2194 CompileLog* log = get_log(thread); 2195 if (log != nullptr) { 2196 log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'", 2197 thread->name(), 2198 os::current_thread_id(), 2199 os::current_process_id()); 2200 log->stamp(); 2201 log->end_elem(); 2202 } 2203 2204 // If compiler thread/runtime initialization fails, exit the compiler thread 2205 if (!init_compiler_runtime()) { 2206 return; 2207 } 2208 2209 thread->start_idle_timer(); 2210 2211 // Poll for new compilation tasks as long as the JVM runs. Compilation 2212 // should only be disabled if something went wrong while initializing the 2213 // compiler runtimes. This, in turn, should not happen. The only known case 2214 // when compiler runtime initialization fails is if there is not enough free 2215 // space in the code cache to generate the necessary stubs, etc. 2216 while (!is_compilation_disabled_forever()) { 2217 // We need this HandleMark to avoid leaking VM handles. 2218 HandleMark hm(thread); 2219 2220 CompilationPolicy::recompilation_step(RecompilationWorkUnitSize, thread); 2221 2222 CompileTask* task = queue->get(thread); 2223 2224 if (task == nullptr) { 2225 if (UseDynamicNumberOfCompilerThreads) { 2226 // Access compiler_count under lock to enforce consistency. 2227 MutexLocker only_one(CompileThread_lock); 2228 if (can_remove(thread, true)) { 2229 if (trace_compiler_threads()) { 2230 ResourceMark rm; 2231 stringStream msg; 2232 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 2233 thread->name(), thread->idle_time_millis()); 2234 print_compiler_threads(msg); 2235 } 2236 2237 // Notify compiler that the compiler thread is about to stop 2238 thread->compiler()->stopping_compiler_thread(thread); 2239 2240 free_buffer_blob_if_allocated(thread); 2241 return; // Stop this thread. 2242 } 2243 } 2244 } else { 2245 // Assign the task to the current thread. Mark this compilation 2246 // thread as active for the profiler. 2247 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 2248 // occurs after fetching the compile task off the queue. 2249 CompileTaskWrapper ctw(task); 2250 methodHandle method(thread, task->method()); 2251 2252 // Never compile a method if breakpoints are present in it 2253 if (method()->number_of_breakpoints() == 0) { 2254 // Compile the method. 2255 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 2256 invoke_compiler_on_method(task); 2257 thread->start_idle_timer(); 2258 } else { 2259 // After compilation is disabled, remove remaining methods from queue 2260 method->clear_queued_for_compilation(); 2261 method->set_pending_queue_processed(false); 2262 task->set_failure_reason("compilation is disabled"); 2263 } 2264 } else { 2265 task->set_failure_reason("breakpoints are present"); 2266 } 2267 2268 if (UseDynamicNumberOfCompilerThreads) { 2269 possibly_add_compiler_threads(thread); 2270 assert(!thread->has_pending_exception(), "should have been handled"); 2271 } 2272 } 2273 } 2274 2275 // Shut down compiler runtime 2276 shutdown_compiler_runtime(thread->compiler(), thread); 2277 } 2278 2279 // ------------------------------------------------------------------ 2280 // CompileBroker::init_compiler_thread_log 2281 // 2282 // Set up state required by +LogCompilation. 2283 void CompileBroker::init_compiler_thread_log() { 2284 CompilerThread* thread = CompilerThread::current(); 2285 char file_name[4*K]; 2286 FILE* fp = nullptr; 2287 intx thread_id = os::current_thread_id(); 2288 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2289 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2290 if (dir == nullptr) { 2291 jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log", 2292 thread_id, os::current_process_id()); 2293 } else { 2294 jio_snprintf(file_name, sizeof(file_name), 2295 "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir, 2296 os::file_separator(), thread_id, os::current_process_id()); 2297 } 2298 2299 fp = os::fopen(file_name, "wt"); 2300 if (fp != nullptr) { 2301 if (LogCompilation && Verbose) { 2302 tty->print_cr("Opening compilation log %s", file_name); 2303 } 2304 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2305 if (log == nullptr) { 2306 fclose(fp); 2307 return; 2308 } 2309 thread->init_log(log); 2310 2311 if (xtty != nullptr) { 2312 ttyLocker ttyl; 2313 // Record any per thread log files 2314 xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name); 2315 } 2316 return; 2317 } 2318 } 2319 warning("Cannot open log file: %s", file_name); 2320 } 2321 2322 void CompileBroker::log_metaspace_failure() { 2323 const char* message = "some methods may not be compiled because metaspace " 2324 "is out of memory"; 2325 if (CompilationLog::log() != nullptr) { 2326 CompilationLog::log()->log_metaspace_failure(message); 2327 } 2328 if (PrintCompilation) { 2329 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2330 } 2331 } 2332 2333 2334 // ------------------------------------------------------------------ 2335 // CompileBroker::set_should_block 2336 // 2337 // Set _should_block. 2338 // Call this from the VM, with Threads_lock held and a safepoint requested. 2339 void CompileBroker::set_should_block() { 2340 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2341 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2342 #ifndef PRODUCT 2343 if (PrintCompilation && (Verbose || WizardMode)) 2344 tty->print_cr("notifying compiler thread pool to block"); 2345 #endif 2346 _should_block = true; 2347 } 2348 2349 // ------------------------------------------------------------------ 2350 // CompileBroker::maybe_block 2351 // 2352 // Call this from the compiler at convenient points, to poll for _should_block. 2353 void CompileBroker::maybe_block() { 2354 if (_should_block) { 2355 #ifndef PRODUCT 2356 if (PrintCompilation && (Verbose || WizardMode)) 2357 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2358 #endif 2359 ThreadInVMfromNative tivfn(JavaThread::current()); 2360 } 2361 } 2362 2363 // wrapper for CodeCache::print_summary() 2364 static void codecache_print(bool detailed) 2365 { 2366 stringStream s; 2367 // Dump code cache into a buffer before locking the tty, 2368 { 2369 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2370 CodeCache::print_summary(&s, detailed); 2371 } 2372 ttyLocker ttyl; 2373 tty->print("%s", s.freeze()); 2374 } 2375 2376 // wrapper for CodeCache::print_summary() using outputStream 2377 static void codecache_print(outputStream* out, bool detailed) { 2378 stringStream s; 2379 2380 // Dump code cache into a buffer 2381 { 2382 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2383 CodeCache::print_summary(&s, detailed); 2384 } 2385 2386 char* remaining_log = s.as_string(); 2387 while (*remaining_log != '\0') { 2388 char* eol = strchr(remaining_log, '\n'); 2389 if (eol == nullptr) { 2390 out->print_cr("%s", remaining_log); 2391 remaining_log = remaining_log + strlen(remaining_log); 2392 } else { 2393 *eol = '\0'; 2394 out->print_cr("%s", remaining_log); 2395 remaining_log = eol + 1; 2396 } 2397 } 2398 } 2399 2400 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2401 int compilable, const char* failure_reason) { 2402 if (!AbortVMOnCompilationFailure) { 2403 return; 2404 } 2405 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2406 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2407 } 2408 if (compilable == ciEnv::MethodCompilable_never) { 2409 fatal("Never compilable: %s", failure_reason); 2410 } 2411 } 2412 2413 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2414 assert(task != nullptr, "invariant"); 2415 CompilerEvent::CompilationEvent::post(event, 2416 task->compile_id(), 2417 task->compiler()->type(), 2418 task->method(), 2419 task->comp_level(), 2420 task->is_success(), 2421 task->osr_bci() != CompileBroker::standard_entry_bci, 2422 task->nm_total_size(), 2423 task->num_inlined_bytecodes(), 2424 task->arena_bytes()); 2425 } 2426 2427 int DirectivesStack::_depth = 0; 2428 CompilerDirectives* DirectivesStack::_top = nullptr; 2429 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2430 2431 // Acquires Compilation_lock and waits for it to be notified 2432 // as long as WhiteBox::compilation_locked is true. 2433 static void whitebox_lock_compilation() { 2434 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2435 while (WhiteBox::compilation_locked) { 2436 locker.wait(); 2437 } 2438 } 2439 2440 // ------------------------------------------------------------------ 2441 // CompileBroker::invoke_compiler_on_method 2442 // 2443 // Compile a method. 2444 // 2445 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2446 task->print_ul(); 2447 elapsedTimer time; 2448 2449 DirectiveSet* directive = task->directive(); 2450 if (directive->PrintCompilationOption) { 2451 ResourceMark rm; 2452 task->print_tty(); 2453 } 2454 2455 CompilerThread* thread = CompilerThread::current(); 2456 ResourceMark rm(thread); 2457 2458 if (CompilationLog::log() != nullptr) { 2459 CompilationLog::log()->log_compile(thread, task); 2460 } 2461 2462 // Common flags. 2463 int compile_id = task->compile_id(); 2464 int osr_bci = task->osr_bci(); 2465 bool is_osr = (osr_bci != standard_entry_bci); 2466 bool should_log = (thread->log() != nullptr); 2467 bool should_break = false; 2468 const int task_level = task->comp_level(); 2469 AbstractCompiler* comp = task->compiler(); 2470 CompileTrainingData* tdata = task->training_data(); 2471 assert(tdata == nullptr || TrainingData::need_data() || 2472 CDSConfig::is_dumping_preimage_static_archive(), ""); // FIXME: MetaspaceShared::preload_and_dump() messes with RecordTraining flag 2473 { 2474 // create the handle inside it's own block so it can't 2475 // accidentally be referenced once the thread transitions to 2476 // native. The NoHandleMark before the transition should catch 2477 // any cases where this occurs in the future. 2478 methodHandle method(thread, task->method()); 2479 2480 assert(!method->is_native(), "no longer compile natives"); 2481 2482 // Update compile information when using perfdata. 2483 if (UsePerfData) { 2484 update_compile_perf_data(thread, method, is_osr); 2485 } 2486 2487 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2488 } 2489 2490 if (tdata != nullptr) { 2491 tdata->record_compilation_start(task); 2492 } 2493 2494 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2495 if (should_log && !directive->LogOption) { 2496 should_log = false; 2497 } 2498 2499 // Allocate a new set of JNI handles. 2500 JNIHandleMark jhm(thread); 2501 Method* target_handle = task->method(); 2502 int compilable = ciEnv::MethodCompilable; 2503 const char* failure_reason = nullptr; 2504 bool failure_reason_on_C_heap = false; 2505 const char* retry_message = nullptr; 2506 2507 #if INCLUDE_JVMCI 2508 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2509 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2510 2511 TraceTime t1("compilation", &time); 2512 EventCompilation event; 2513 JVMCICompileState compile_state(task, jvmci); 2514 JVMCIRuntime *runtime = nullptr; 2515 2516 if (JVMCI::in_shutdown()) { 2517 failure_reason = "in JVMCI shutdown"; 2518 retry_message = "not retryable"; 2519 compilable = ciEnv::MethodCompilable_never; 2520 } else if (compile_state.target_method_is_old()) { 2521 // Skip redefined methods 2522 failure_reason = "redefined method"; 2523 retry_message = "not retryable"; 2524 compilable = ciEnv::MethodCompilable_never; 2525 } else { 2526 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2527 if (env.init_error() != JNI_OK) { 2528 const char* msg = env.init_error_msg(); 2529 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2530 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2531 bool reason_on_C_heap = true; 2532 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2533 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2534 bool retryable = env.init_error() == JNI_ENOMEM; 2535 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2536 } 2537 if (failure_reason == nullptr) { 2538 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2539 // Must switch to native to block 2540 ThreadToNativeFromVM ttn(thread); 2541 whitebox_lock_compilation(); 2542 } 2543 methodHandle method(thread, target_handle); 2544 runtime = env.runtime(); 2545 runtime->compile_method(&env, jvmci, method, osr_bci); 2546 2547 failure_reason = compile_state.failure_reason(); 2548 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2549 if (!compile_state.retryable()) { 2550 retry_message = "not retryable"; 2551 compilable = ciEnv::MethodCompilable_not_at_tier; 2552 } 2553 if (!task->is_success()) { 2554 assert(failure_reason != nullptr, "must specify failure_reason"); 2555 } 2556 } 2557 } 2558 if (!task->is_success() && !JVMCI::in_shutdown()) { 2559 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2560 } 2561 if (event.should_commit()) { 2562 post_compilation_event(event, task); 2563 } 2564 2565 if (runtime != nullptr) { 2566 runtime->post_compile(thread); 2567 } 2568 } else 2569 #endif // INCLUDE_JVMCI 2570 { 2571 NoHandleMark nhm; 2572 ThreadToNativeFromVM ttn(thread); 2573 2574 ciEnv ci_env(task); 2575 if (should_break) { 2576 ci_env.set_break_at_compile(true); 2577 } 2578 if (should_log) { 2579 ci_env.set_log(thread->log()); 2580 } 2581 assert(thread->env() == &ci_env, "set by ci_env"); 2582 // The thread-env() field is cleared in ~CompileTaskWrapper. 2583 2584 // Cache Jvmti state 2585 bool method_is_old = ci_env.cache_jvmti_state(); 2586 2587 // Skip redefined methods 2588 if (method_is_old) { 2589 ci_env.record_method_not_compilable("redefined method", true); 2590 } 2591 2592 // Cache DTrace flags 2593 ci_env.cache_dtrace_flags(); 2594 2595 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2596 2597 TraceTime t1("compilation", &time); 2598 EventCompilation event; 2599 2600 bool install_code = true; 2601 if (comp == nullptr) { 2602 ci_env.record_method_not_compilable("no compiler"); 2603 } else if (!ci_env.failing()) { 2604 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2605 whitebox_lock_compilation(); 2606 } 2607 if (StoreCachedCode && task->is_precompiled()) { 2608 install_code = false; // not suitable in the current context 2609 } 2610 comp->compile_method(&ci_env, target, osr_bci, install_code, directive); 2611 2612 /* Repeat compilation without installing code for profiling purposes */ 2613 int repeat_compilation_count = directive->RepeatCompilationOption; 2614 while (repeat_compilation_count > 0) { 2615 ResourceMark rm(thread); 2616 task->print_ul("NO CODE INSTALLED"); 2617 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2618 repeat_compilation_count--; 2619 } 2620 } 2621 2622 DirectivesStack::release(directive); 2623 2624 if (!ci_env.failing() && !task->is_success() && install_code) { 2625 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2626 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2627 // The compiler elected, without comment, not to register a result. 2628 // Do not attempt further compilations of this method. 2629 ci_env.record_method_not_compilable("compile failed"); 2630 } 2631 2632 // Copy this bit to the enclosing block: 2633 compilable = ci_env.compilable(); 2634 2635 if (ci_env.failing()) { 2636 // Duplicate the failure reason string, so that it outlives ciEnv 2637 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2638 failure_reason_on_C_heap = true; 2639 retry_message = ci_env.retry_message(); 2640 ci_env.report_failure(failure_reason); 2641 } 2642 2643 if (ci_env.failing()) { 2644 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2645 } 2646 if (event.should_commit()) { 2647 post_compilation_event(event, task); 2648 } 2649 } 2650 2651 if (failure_reason != nullptr) { 2652 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2653 if (CompilationLog::log() != nullptr) { 2654 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2655 } 2656 if (PrintCompilation) { 2657 FormatBufferResource msg = retry_message != nullptr ? 2658 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2659 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2660 task->print(tty, msg); 2661 } 2662 } 2663 2664 task->mark_finished(os::elapsed_counter()); 2665 2666 if (tdata != nullptr) { 2667 tdata->record_compilation_end(task); 2668 } 2669 2670 methodHandle method(thread, task->method()); 2671 2672 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2673 2674 collect_statistics(thread, time, task); 2675 2676 if (PrintCompilation && PrintCompilation2) { 2677 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2678 tty->print("%4d ", compile_id); // print compilation number 2679 tty->print("%s ", (is_osr ? "%" : (task->is_scc() ? "A" : " "))); 2680 if (task->is_success()) { 2681 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2682 } 2683 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2684 } 2685 2686 Log(compilation, codecache) log; 2687 if (log.is_debug()) { 2688 LogStream ls(log.debug()); 2689 codecache_print(&ls, /* detailed= */ false); 2690 } 2691 if (PrintCodeCacheOnCompilation) { 2692 codecache_print(/* detailed= */ false); 2693 } 2694 // Disable compilation, if required. 2695 switch (compilable) { 2696 case ciEnv::MethodCompilable_never: 2697 if (is_osr) 2698 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2699 else 2700 method->set_not_compilable_quietly("MethodCompilable_never"); 2701 break; 2702 case ciEnv::MethodCompilable_not_at_tier: 2703 if (is_osr) 2704 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2705 else 2706 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2707 break; 2708 } 2709 2710 // Note that the queued_for_compilation bits are cleared without 2711 // protection of a mutex. [They were set by the requester thread, 2712 // when adding the task to the compile queue -- at which time the 2713 // compile queue lock was held. Subsequently, we acquired the compile 2714 // queue lock to get this task off the compile queue; thus (to belabour 2715 // the point somewhat) our clearing of the bits must be occurring 2716 // only after the setting of the bits. See also 14012000 above. 2717 method->clear_queued_for_compilation(); 2718 method->set_pending_queue_processed(false); 2719 2720 if (PrintCompilation) { 2721 ResourceMark rm; 2722 task->print_tty(); 2723 } 2724 } 2725 2726 /** 2727 * The CodeCache is full. Print warning and disable compilation. 2728 * Schedule code cache cleaning so compilation can continue later. 2729 * This function needs to be called only from CodeCache::allocate(), 2730 * since we currently handle a full code cache uniformly. 2731 */ 2732 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2733 UseInterpreter = true; 2734 if (UseCompiler || AlwaysCompileLoopMethods ) { 2735 if (xtty != nullptr) { 2736 stringStream s; 2737 // Dump code cache state into a buffer before locking the tty, 2738 // because log_state() will use locks causing lock conflicts. 2739 CodeCache::log_state(&s); 2740 // Lock to prevent tearing 2741 ttyLocker ttyl; 2742 xtty->begin_elem("code_cache_full"); 2743 xtty->print("%s", s.freeze()); 2744 xtty->stamp(); 2745 xtty->end_elem(); 2746 } 2747 2748 #ifndef PRODUCT 2749 if (ExitOnFullCodeCache) { 2750 codecache_print(/* detailed= */ true); 2751 before_exit(JavaThread::current()); 2752 exit_globals(); // will delete tty 2753 vm_direct_exit(1); 2754 } 2755 #endif 2756 if (UseCodeCacheFlushing) { 2757 // Since code cache is full, immediately stop new compiles 2758 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2759 log_info(codecache)("Code cache is full - disabling compilation"); 2760 } 2761 } else { 2762 disable_compilation_forever(); 2763 } 2764 2765 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2766 } 2767 } 2768 2769 // ------------------------------------------------------------------ 2770 // CompileBroker::update_compile_perf_data 2771 // 2772 // Record this compilation for debugging purposes. 2773 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2774 ResourceMark rm; 2775 char* method_name = method->name()->as_C_string(); 2776 char current_method[CompilerCounters::cmname_buffer_length]; 2777 size_t maxLen = CompilerCounters::cmname_buffer_length; 2778 2779 const char* class_name = method->method_holder()->name()->as_C_string(); 2780 2781 size_t s1len = strlen(class_name); 2782 size_t s2len = strlen(method_name); 2783 2784 // check if we need to truncate the string 2785 if (s1len + s2len + 2 > maxLen) { 2786 2787 // the strategy is to lop off the leading characters of the 2788 // class name and the trailing characters of the method name. 2789 2790 if (s2len + 2 > maxLen) { 2791 // lop of the entire class name string, let snprintf handle 2792 // truncation of the method name. 2793 class_name += s1len; // null string 2794 } 2795 else { 2796 // lop off the extra characters from the front of the class name 2797 class_name += ((s1len + s2len + 2) - maxLen); 2798 } 2799 } 2800 2801 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2802 2803 int last_compile_type = normal_compile; 2804 if (CICountOSR && is_osr) { 2805 last_compile_type = osr_compile; 2806 } else if (CICountNative && method->is_native()) { 2807 last_compile_type = native_compile; 2808 } 2809 2810 CompilerCounters* counters = thread->counters(); 2811 counters->set_current_method(current_method); 2812 counters->set_compile_type((jlong) last_compile_type); 2813 } 2814 2815 // ------------------------------------------------------------------ 2816 // CompileBroker::collect_statistics 2817 // 2818 // Collect statistics about the compilation. 2819 2820 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2821 bool success = task->is_success(); 2822 methodHandle method (thread, task->method()); 2823 int compile_id = task->compile_id(); 2824 bool is_osr = (task->osr_bci() != standard_entry_bci); 2825 const int comp_level = task->comp_level(); 2826 CompilerCounters* counters = thread->counters(); 2827 2828 MutexLocker locker(CompileStatistics_lock); 2829 2830 // _perf variables are production performance counters which are 2831 // updated regardless of the setting of the CITime and CITimeEach flags 2832 // 2833 2834 // account all time, including bailouts and failures in this counter; 2835 // C1 and C2 counters are counting both successful and unsuccessful compiles 2836 _t_total_compilation.add(&time); 2837 2838 if (!success) { 2839 _total_bailout_count++; 2840 if (UsePerfData) { 2841 _perf_last_failed_method->set_value(counters->current_method()); 2842 _perf_last_failed_type->set_value(counters->compile_type()); 2843 _perf_total_bailout_count->inc(); 2844 } 2845 _t_bailedout_compilation.add(&time); 2846 2847 if (CITime || log_is_enabled(Info, init)) { 2848 CompilerStatistics* stats = nullptr; 2849 if (task->is_scc()) { 2850 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2851 stats = &_scc_stats_per_level[level]; 2852 } else { 2853 stats = &_stats_per_level[comp_level-1]; 2854 } 2855 stats->_bailout.update(time, 0); 2856 } 2857 } else if (!task->is_success()) { 2858 if (UsePerfData) { 2859 _perf_last_invalidated_method->set_value(counters->current_method()); 2860 _perf_last_invalidated_type->set_value(counters->compile_type()); 2861 _perf_total_invalidated_count->inc(); 2862 } 2863 _total_invalidated_count++; 2864 _t_invalidated_compilation.add(&time); 2865 2866 if (CITime || log_is_enabled(Info, init)) { 2867 CompilerStatistics* stats = nullptr; 2868 if (task->is_scc()) { 2869 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2870 stats = &_scc_stats_per_level[level]; 2871 } else { 2872 stats = &_stats_per_level[comp_level-1]; 2873 } 2874 stats->_invalidated.update(time, 0); 2875 } 2876 } else { 2877 // Compilation succeeded 2878 2879 // update compilation ticks - used by the implementation of 2880 // java.lang.management.CompilationMXBean 2881 _perf_total_compilation->inc(time.ticks()); 2882 _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time; 2883 2884 if (CITime || log_is_enabled(Info, init)) { 2885 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2886 if (is_osr) { 2887 _t_osr_compilation.add(&time); 2888 _sum_osr_bytes_compiled += bytes_compiled; 2889 } else { 2890 _t_standard_compilation.add(&time); 2891 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2892 } 2893 2894 // Collect statistic per compilation level 2895 if (task->is_scc()) { 2896 _scc_stats._standard.update(time, bytes_compiled); 2897 _scc_stats._nmethods_size += task->nm_total_size(); 2898 _scc_stats._nmethods_code_size += task->nm_insts_size(); 2899 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2900 CompilerStatistics* stats = &_scc_stats_per_level[level]; 2901 stats->_standard.update(time, bytes_compiled); 2902 stats->_nmethods_size += task->nm_total_size(); 2903 stats->_nmethods_code_size += task->nm_insts_size(); 2904 } else if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2905 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2906 if (is_osr) { 2907 stats->_osr.update(time, bytes_compiled); 2908 } else { 2909 stats->_standard.update(time, bytes_compiled); 2910 } 2911 stats->_nmethods_size += task->nm_total_size(); 2912 stats->_nmethods_code_size += task->nm_insts_size(); 2913 } else { 2914 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2915 } 2916 2917 // Collect statistic per compiler 2918 AbstractCompiler* comp = task->compiler(); 2919 if (comp && !task->is_scc()) { 2920 CompilerStatistics* stats = comp->stats(); 2921 if (is_osr) { 2922 stats->_osr.update(time, bytes_compiled); 2923 } else { 2924 stats->_standard.update(time, bytes_compiled); 2925 } 2926 stats->_nmethods_size += task->nm_total_size(); 2927 stats->_nmethods_code_size += task->nm_insts_size(); 2928 } else if (!task->is_scc()) { // if (!comp) 2929 assert(false, "Compiler object must exist"); 2930 } 2931 } 2932 2933 if (UsePerfData) { 2934 // save the name of the last method compiled 2935 _perf_last_method->set_value(counters->current_method()); 2936 _perf_last_compile_type->set_value(counters->compile_type()); 2937 _perf_last_compile_size->set_value(method->code_size() + 2938 task->num_inlined_bytecodes()); 2939 if (is_osr) { 2940 _perf_osr_compilation->inc(time.ticks()); 2941 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2942 } else { 2943 _perf_standard_compilation->inc(time.ticks()); 2944 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2945 } 2946 } 2947 2948 if (CITimeEach) { 2949 double compile_time = time.seconds(); 2950 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2951 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2952 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2953 } 2954 2955 // Collect counts of successful compilations 2956 _sum_nmethod_size += task->nm_total_size(); 2957 _sum_nmethod_code_size += task->nm_insts_size(); 2958 _total_compile_count++; 2959 2960 if (UsePerfData) { 2961 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2962 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2963 _perf_total_compile_count->inc(); 2964 } 2965 2966 if (is_osr) { 2967 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2968 _total_osr_compile_count++; 2969 } else { 2970 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2971 _total_standard_compile_count++; 2972 } 2973 } 2974 // set the current method for the thread to null 2975 if (UsePerfData) counters->set_current_method(""); 2976 } 2977 2978 const char* CompileBroker::compiler_name(int comp_level) { 2979 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2980 if (comp == nullptr) { 2981 return "no compiler"; 2982 } else { 2983 return (comp->name()); 2984 } 2985 } 2986 2987 jlong CompileBroker::total_compilation_ticks() { 2988 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2989 } 2990 2991 void CompileBroker::log_not_entrant(nmethod* nm) { 2992 _total_not_entrant_count++; 2993 if (CITime || log_is_enabled(Info, init)) { 2994 CompilerStatistics* stats = nullptr; 2995 int level = nm->comp_level(); 2996 if (nm->is_scc()) { 2997 if (nm->preloaded()) { 2998 assert(level == CompLevel_full_optimization, "%d", level); 2999 level = CompLevel_full_optimization + 1; 3000 } 3001 stats = &_scc_stats_per_level[level - 1]; 3002 } else { 3003 stats = &_stats_per_level[level - 1]; 3004 } 3005 stats->_made_not_entrant._count++; 3006 } 3007 } 3008 3009 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 3010 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 3011 name, stats->bytes_per_second(), 3012 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 3013 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 3014 stats->_nmethods_size, stats->_nmethods_code_size); 3015 } 3016 3017 static void print_helper(outputStream* st, const char* name, CompilerStatistics::Data data, bool print_time = true) { 3018 if (data._count > 0) { 3019 st->print("; %s: %4u methods", name, data._count); 3020 if (print_time) { 3021 st->print(" (in %.3fs)", data._time.seconds()); 3022 } 3023 } 3024 } 3025 3026 static void print_tier_helper(outputStream* st, const char* prefix, int tier, CompilerStatistics* stats) { 3027 st->print(" %s%d: %5u methods", prefix, tier, stats->_standard._count); 3028 if (stats->_standard._count > 0) { 3029 st->print(" (in %.3fs)", stats->_standard._time.seconds()); 3030 } 3031 print_helper(st, "osr", stats->_osr); 3032 print_helper(st, "bailout", stats->_bailout); 3033 print_helper(st, "invalid", stats->_invalidated); 3034 print_helper(st, "not_entrant", stats->_made_not_entrant, false); 3035 st->cr(); 3036 } 3037 3038 static void print_queue_info(outputStream* st, CompileQueue* queue) { 3039 if (queue != nullptr) { 3040 MutexLocker ml(queue->lock()); 3041 3042 uint total_cnt = 0; 3043 uint active_cnt = 0; 3044 for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3045 guarantee(jt != nullptr, ""); 3046 if (jt->is_Compiler_thread()) { 3047 CompilerThread* ct = (CompilerThread*)jt; 3048 3049 guarantee(ct != nullptr, ""); 3050 if (ct->queue() == queue) { 3051 ++total_cnt; 3052 CompileTask* task = ct->task(); 3053 if (task != nullptr) { 3054 ++active_cnt; 3055 } 3056 } 3057 } 3058 } 3059 3060 st->print(" %s (%d active / %d total threads): %u tasks", 3061 queue->name(), active_cnt, total_cnt, queue->size()); 3062 if (queue->size() > 0) { 3063 uint counts[] = {0, 0, 0, 0, 0}; // T1 ... T5 3064 for (CompileTask* task = queue->first(); task != nullptr; task = task->next()) { 3065 int tier = task->comp_level(); 3066 if (task->is_scc() && task->preload()) { 3067 assert(tier == CompLevel_full_optimization, "%d", tier); 3068 tier = CompLevel_full_optimization + 1; 3069 } 3070 counts[tier-1]++; 3071 } 3072 st->print(":"); 3073 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3074 uint cnt = counts[tier-1]; 3075 if (cnt > 0) { 3076 st->print(" T%d: %u tasks;", tier, cnt); 3077 } 3078 } 3079 } 3080 st->cr(); 3081 3082 // for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3083 // guarantee(jt != nullptr, ""); 3084 // if (jt->is_Compiler_thread()) { 3085 // CompilerThread* ct = (CompilerThread*)jt; 3086 // 3087 // guarantee(ct != nullptr, ""); 3088 // if (ct->queue() == queue) { 3089 // ResourceMark rm; 3090 // CompileTask* task = ct->task(); 3091 // st->print(" %s: ", ct->name_raw()); 3092 // if (task != nullptr) { 3093 // task->print(st, nullptr, true /*short_form*/, false /*cr*/); 3094 // } 3095 // st->cr(); 3096 // } 3097 // } 3098 // } 3099 } 3100 } 3101 void CompileBroker::print_statistics_on(outputStream* st) { 3102 st->print_cr(" Total: %u methods; %u bailouts, %u invalidated, %u non_entrant", 3103 _total_compile_count, _total_bailout_count, _total_invalidated_count, _total_not_entrant_count); 3104 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3105 print_tier_helper(st, "Tier", tier, &_stats_per_level[tier-1]); 3106 } 3107 st->cr(); 3108 3109 if (LoadCachedCode || StoreCachedCode) { 3110 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3111 if (tier != CompLevel_full_profile) { 3112 print_tier_helper(st, "SC T", tier, &_scc_stats_per_level[tier - 1]); 3113 } 3114 } 3115 st->cr(); 3116 } 3117 3118 print_queue_info(st, _c1_compile_queue); 3119 print_queue_info(st, _c2_compile_queue); 3120 print_queue_info(st, _c3_compile_queue); 3121 print_queue_info(st, _sc1_compile_queue); 3122 print_queue_info(st, _sc2_compile_queue); 3123 } 3124 3125 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 3126 if (per_compiler) { 3127 if (aggregate) { 3128 tty->cr(); 3129 tty->print_cr("[%dms] Individual compiler times (for compiled methods only)", (int)tty->time_stamp().milliseconds()); 3130 tty->print_cr("------------------------------------------------"); 3131 tty->cr(); 3132 } 3133 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 3134 AbstractCompiler* comp = _compilers[i]; 3135 if (comp != nullptr) { 3136 print_times(comp->name(), comp->stats()); 3137 } 3138 } 3139 if (_scc_stats._standard._count > 0) { 3140 print_times("SC", &_scc_stats); 3141 } 3142 if (aggregate) { 3143 tty->cr(); 3144 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 3145 tty->print_cr("------------------------------------------------"); 3146 tty->cr(); 3147 } 3148 char tier_name[256]; 3149 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3150 CompilerStatistics* stats = &_stats_per_level[tier-1]; 3151 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 3152 print_times(tier_name, stats); 3153 } 3154 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3155 CompilerStatistics* stats = &_scc_stats_per_level[tier-1]; 3156 if (stats->_standard._bytes > 0) { 3157 os::snprintf_checked(tier_name, sizeof(tier_name), "SC T%d", tier); 3158 print_times(tier_name, stats); 3159 } 3160 } 3161 } 3162 3163 if (!aggregate) { 3164 return; 3165 } 3166 3167 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 3168 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 3169 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 3170 3171 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 3172 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 3173 3174 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 3175 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 3176 uint total_compile_count = CompileBroker::_total_compile_count; 3177 uint total_bailout_count = CompileBroker::_total_bailout_count; 3178 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 3179 3180 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 3181 uint nmethods_size = CompileBroker::_sum_nmethod_size; 3182 3183 tty->cr(); 3184 tty->print_cr("Accumulated compiler times"); 3185 tty->print_cr("----------------------------------------------------------"); 3186 //0000000000111111111122222222223333333333444444444455555555556666666666 3187 //0123456789012345678901234567890123456789012345678901234567890123456789 3188 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 3189 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 3190 standard_compilation.seconds(), 3191 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 3192 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 3193 CompileBroker::_t_bailedout_compilation.seconds(), 3194 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 3195 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 3196 osr_compilation.seconds(), 3197 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 3198 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 3199 CompileBroker::_t_invalidated_compilation.seconds(), 3200 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 3201 3202 if (StoreCachedCode || LoadCachedCode) { // Check flags because SC cache could be closed already 3203 tty->cr(); 3204 SCCache::print_timers_on(tty); 3205 } 3206 AbstractCompiler *comp = compiler(CompLevel_simple); 3207 if (comp != nullptr) { 3208 tty->cr(); 3209 comp->print_timers(); 3210 } 3211 comp = compiler(CompLevel_full_optimization); 3212 if (comp != nullptr) { 3213 tty->cr(); 3214 comp->print_timers(); 3215 } 3216 comp = _compilers[2]; 3217 if (comp != nullptr) { 3218 tty->cr(); 3219 comp->print_timers(); 3220 } 3221 #if INCLUDE_JVMCI 3222 if (EnableJVMCI) { 3223 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 3224 if (jvmci_comp != nullptr && jvmci_comp != comp) { 3225 tty->cr(); 3226 jvmci_comp->print_timers(); 3227 } 3228 } 3229 #endif 3230 3231 tty->cr(); 3232 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 3233 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 3234 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 3235 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 3236 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 3237 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 3238 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 3239 double tcs = total_compilation.seconds(); 3240 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 3241 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 3242 tty->cr(); 3243 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 3244 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 3245 } 3246 3247 // Print general/accumulated JIT information. 3248 void CompileBroker::print_info(outputStream *out) { 3249 if (out == nullptr) out = tty; 3250 out->cr(); 3251 out->print_cr("======================"); 3252 out->print_cr(" General JIT info "); 3253 out->print_cr("======================"); 3254 out->cr(); 3255 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 3256 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 3257 out->cr(); 3258 out->print_cr("CodeCache overview"); 3259 out->print_cr("--------------------------------------------------------"); 3260 out->cr(); 3261 out->print_cr(" Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K); 3262 out->print_cr(" Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K); 3263 out->print_cr(" Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K); 3264 out->cr(); 3265 } 3266 3267 // Note: tty_lock must not be held upon entry to this function. 3268 // Print functions called from herein do "micro-locking" on tty_lock. 3269 // That's a tradeoff which keeps together important blocks of output. 3270 // At the same time, continuous tty_lock hold time is kept in check, 3271 // preventing concurrently printing threads from stalling a long time. 3272 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 3273 TimeStamp ts_total; 3274 TimeStamp ts_global; 3275 TimeStamp ts; 3276 3277 bool allFun = !strcmp(function, "all"); 3278 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 3279 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 3280 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 3281 bool methodCount = !strcmp(function, "MethodCount") || allFun; 3282 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 3283 bool methodAge = !strcmp(function, "MethodAge") || allFun; 3284 bool methodNames = !strcmp(function, "MethodNames") || allFun; 3285 bool discard = !strcmp(function, "discard") || allFun; 3286 3287 if (out == nullptr) { 3288 out = tty; 3289 } 3290 3291 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 3292 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 3293 out->cr(); 3294 return; 3295 } 3296 3297 ts_total.update(); // record starting point 3298 3299 if (aggregate) { 3300 print_info(out); 3301 } 3302 3303 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 3304 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 3305 // When we request individual parts of the analysis via the jcmd interface, it is possible 3306 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 3307 // updated the aggregated data. We will then see a modified, but again consistent, view 3308 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 3309 // a lock across user interaction. 3310 3311 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 3312 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 3313 // leading to an unnecessarily long hold time of the other locks we acquired before. 3314 ts.update(); // record starting point 3315 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 3316 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 3317 3318 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 3319 // Unfortunately, such protection is not sufficient: 3320 // When a new nmethod is created via ciEnv::register_method(), the 3321 // Compile_lock is taken first. After some initializations, 3322 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 3323 // immediately (after finalizing the oop references). To lock out concurrent 3324 // modifiers, we have to grab both locks as well in the described sequence. 3325 // 3326 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 3327 // for the entire duration of aggregation and printing. That makes sure we see 3328 // a consistent picture and do not run into issues caused by concurrent alterations. 3329 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 3330 !Compile_lock->owned_by_self(); 3331 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 3332 !CodeCache_lock->owned_by_self(); 3333 bool take_global_lock_1 = allFun && should_take_Compile_lock; 3334 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 3335 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 3336 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 3337 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 3338 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 3339 3340 ts_global.update(); // record starting point 3341 3342 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 3343 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 3344 if (take_global_locks) { 3345 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 3346 ts_global.update(); // record starting point 3347 } 3348 3349 if (aggregate) { 3350 ts.update(); // record starting point 3351 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 3352 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 3353 if (take_function_locks) { 3354 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 3355 } 3356 3357 ts.update(); // record starting point 3358 CodeCache::aggregate(out, granularity); 3359 if (take_function_locks) { 3360 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 3361 } 3362 } 3363 3364 if (usedSpace) CodeCache::print_usedSpace(out); 3365 if (freeSpace) CodeCache::print_freeSpace(out); 3366 if (methodCount) CodeCache::print_count(out); 3367 if (methodSpace) CodeCache::print_space(out); 3368 if (methodAge) CodeCache::print_age(out); 3369 if (methodNames) { 3370 if (allFun) { 3371 // print_names() can only be used safely if the locks have been continuously held 3372 // since aggregation begin. That is true only for function "all". 3373 CodeCache::print_names(out); 3374 } else { 3375 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 3376 } 3377 } 3378 if (discard) CodeCache::discard(out); 3379 3380 if (take_global_locks) { 3381 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 3382 } 3383 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 3384 }