1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/aotLinkedClassBulkLoader.hpp" 26 #include "cds/cdsConfig.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/aotCodeCache.hpp" 32 #include "code/codeCache.hpp" 33 #include "code/codeHeapState.hpp" 34 #include "code/dependencyContext.hpp" 35 #include "compiler/compilationLog.hpp" 36 #include "compiler/compilationMemoryStatistic.hpp" 37 #include "compiler/compilationPolicy.hpp" 38 #include "compiler/compileBroker.hpp" 39 #include "compiler/compileLog.hpp" 40 #include "compiler/compilerDefinitions.inline.hpp" 41 #include "compiler/compilerEvent.hpp" 42 #include "compiler/compilerOracle.hpp" 43 #include "compiler/directivesParser.hpp" 44 #include "compiler/recompilationPolicy.hpp" 45 #include "gc/shared/memAllocator.hpp" 46 #include "interpreter/linkResolver.hpp" 47 #include "jfr/jfrEvents.hpp" 48 #include "jvm.h" 49 #include "logging/log.hpp" 50 #include "logging/logStream.hpp" 51 #include "memory/allocation.inline.hpp" 52 #include "memory/resourceArea.hpp" 53 #include "memory/universe.hpp" 54 #include "oops/method.inline.hpp" 55 #include "oops/methodData.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "prims/whitebox.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/escapeBarrier.hpp" 62 #include "runtime/globals_extension.hpp" 63 #include "runtime/handles.inline.hpp" 64 #include "runtime/init.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/java.hpp" 67 #include "runtime/javaCalls.hpp" 68 #include "runtime/jniHandles.inline.hpp" 69 #include "runtime/os.hpp" 70 #include "runtime/perfData.hpp" 71 #include "runtime/safepointVerifiers.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/threads.hpp" 74 #include "runtime/threadSMR.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "services/management.hpp" 78 #include "utilities/debug.hpp" 79 #include "utilities/dtrace.hpp" 80 #include "utilities/events.hpp" 81 #include "utilities/formatBuffer.hpp" 82 #include "utilities/macros.hpp" 83 #include "utilities/nonblockingQueue.inline.hpp" 84 #ifdef COMPILER1 85 #include "c1/c1_Compiler.hpp" 86 #endif 87 #ifdef COMPILER2 88 #include "opto/c2compiler.hpp" 89 #endif 90 #if INCLUDE_JVMCI 91 #include "jvmci/jvmciEnv.hpp" 92 #include "jvmci/jvmciRuntime.hpp" 93 #endif 94 95 #ifdef DTRACE_ENABLED 96 97 // Only bother with this argument setup if dtrace is available 98 99 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 100 { \ 101 Symbol* klass_name = (method)->klass_name(); \ 102 Symbol* name = (method)->name(); \ 103 Symbol* signature = (method)->signature(); \ 104 HOTSPOT_METHOD_COMPILE_BEGIN( \ 105 (char *) comp_name, strlen(comp_name), \ 106 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 107 (char *) name->bytes(), name->utf8_length(), \ 108 (char *) signature->bytes(), signature->utf8_length()); \ 109 } 110 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 112 { \ 113 Symbol* klass_name = (method)->klass_name(); \ 114 Symbol* name = (method)->name(); \ 115 Symbol* signature = (method)->signature(); \ 116 HOTSPOT_METHOD_COMPILE_END( \ 117 (char *) comp_name, strlen(comp_name), \ 118 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 119 (char *) name->bytes(), name->utf8_length(), \ 120 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 121 } 122 123 #else // ndef DTRACE_ENABLED 124 125 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 126 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 127 128 #endif // ndef DTRACE_ENABLED 129 130 bool CompileBroker::_initialized = false; 131 volatile bool CompileBroker::_should_block = false; 132 volatile int CompileBroker::_print_compilation_warning = 0; 133 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 134 135 // The installed compiler(s) 136 AbstractCompiler* CompileBroker::_compilers[2]; 137 138 // The maximum numbers of compiler threads to be determined during startup. 139 int CompileBroker::_c1_count = 0; 140 int CompileBroker::_c2_count = 0; 141 int CompileBroker::_ac_count = 0; 142 143 // An array of compiler names as Java String objects 144 jobject* CompileBroker::_compiler1_objects = nullptr; 145 jobject* CompileBroker::_compiler2_objects = nullptr; 146 jobject* CompileBroker::_ac_objects = nullptr; 147 148 CompileLog** CompileBroker::_compiler1_logs = nullptr; 149 CompileLog** CompileBroker::_compiler2_logs = nullptr; 150 CompileLog** CompileBroker::_ac_logs = nullptr; 151 152 // These counters are used to assign an unique ID to each compilation. 153 volatile jint CompileBroker::_compilation_id = 0; 154 volatile jint CompileBroker::_osr_compilation_id = 0; 155 volatile jint CompileBroker::_native_compilation_id = 0; 156 157 // Performance counters 158 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 159 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 160 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 161 162 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 163 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 164 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 165 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 166 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 167 168 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 169 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 170 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 171 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 172 173 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 174 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 175 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 176 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 177 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 178 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 179 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 180 181 // Timers and counters for generating statistics 182 elapsedTimer CompileBroker::_t_total_compilation; 183 elapsedTimer CompileBroker::_t_osr_compilation; 184 elapsedTimer CompileBroker::_t_standard_compilation; 185 elapsedTimer CompileBroker::_t_invalidated_compilation; 186 elapsedTimer CompileBroker::_t_bailedout_compilation; 187 188 uint CompileBroker::_total_bailout_count = 0; 189 uint CompileBroker::_total_invalidated_count = 0; 190 uint CompileBroker::_total_not_entrant_count = 0; 191 uint CompileBroker::_total_compile_count = 0; 192 uint CompileBroker::_total_osr_compile_count = 0; 193 uint CompileBroker::_total_standard_compile_count = 0; 194 uint CompileBroker::_total_compiler_stopped_count = 0; 195 uint CompileBroker::_total_compiler_restarted_count = 0; 196 197 uint CompileBroker::_sum_osr_bytes_compiled = 0; 198 uint CompileBroker::_sum_standard_bytes_compiled = 0; 199 uint CompileBroker::_sum_nmethod_size = 0; 200 uint CompileBroker::_sum_nmethod_code_size = 0; 201 202 jlong CompileBroker::_peak_compilation_time = 0; 203 204 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 205 CompilerStatistics CompileBroker::_aot_stats; 206 CompilerStatistics CompileBroker::_aot_stats_per_level[CompLevel_full_optimization + 1]; 207 208 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 209 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 210 CompileQueue* CompileBroker::_ac1_compile_queue = nullptr; 211 CompileQueue* CompileBroker::_ac2_compile_queue = nullptr; 212 213 bool compileBroker_init() { 214 if (LogEvents) { 215 CompilationLog::init(); 216 } 217 218 // init directives stack, adding default directive 219 DirectivesStack::init(); 220 221 if (DirectivesParser::has_file()) { 222 return DirectivesParser::parse_from_flag(); 223 } else if (CompilerDirectivesPrint) { 224 // Print default directive even when no other was added 225 DirectivesStack::print(tty); 226 } 227 228 return true; 229 } 230 231 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 232 CompilerThread* thread = CompilerThread::current(); 233 thread->set_task(task); 234 CompileLog* log = thread->log(); 235 thread->timeout()->arm(); 236 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 237 } 238 239 CompileTaskWrapper::~CompileTaskWrapper() { 240 CompilerThread* thread = CompilerThread::current(); 241 CompileTask* task = thread->task(); 242 CompileLog* log = thread->log(); 243 AbstractCompiler* comp = thread->compiler(); 244 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 245 thread->set_task(nullptr); 246 thread->set_env(nullptr); 247 thread->timeout()->disarm(); 248 if (task->is_blocking()) { 249 bool free_task = false; 250 { 251 MutexLocker notifier(thread, CompileTaskWait_lock); 252 task->mark_complete(); 253 #if INCLUDE_JVMCI 254 if (comp->is_jvmci()) { 255 if (!task->has_waiter()) { 256 // The waiting thread timed out and thus did not delete the task. 257 free_task = true; 258 } 259 task->set_blocking_jvmci_compile_state(nullptr); 260 } 261 #endif 262 if (!free_task) { 263 // Notify the waiting thread that the compilation has completed 264 // so that it can free the task. 265 CompileTaskWait_lock->notify_all(); 266 } 267 } 268 if (free_task) { 269 // The task can only be deleted once the task lock is released. 270 delete task; 271 } 272 } else { 273 task->mark_complete(); 274 275 // By convention, the compiling thread is responsible for deleting 276 // a non-blocking CompileTask. 277 delete task; 278 } 279 } 280 281 /** 282 * Check if a CompilerThread can be removed and update count if requested. 283 */ 284 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 285 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 286 if (!ReduceNumberOfCompilerThreads) return false; 287 288 if (RecompilationPolicy::have_recompilation_work()) return false; 289 290 AbstractCompiler *compiler = ct->compiler(); 291 int compiler_count = compiler->num_compiler_threads(); 292 bool c1 = compiler->is_c1(); 293 294 // Keep at least 1 compiler thread of each type. 295 if (compiler_count < 2) return false; 296 297 // Keep thread alive for at least some time. 298 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 299 300 #if INCLUDE_JVMCI 301 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 302 // Handles for JVMCI thread objects may get released concurrently. 303 if (do_it) { 304 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 305 } else { 306 // Skip check if it's the last thread and let caller check again. 307 return true; 308 } 309 } 310 #endif 311 312 // We only allow the last compiler thread of each type to get removed. 313 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 314 : compiler2_object(compiler_count - 1); 315 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 316 if (do_it) { 317 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 318 compiler->set_num_compiler_threads(compiler_count - 1); 319 #if INCLUDE_JVMCI 320 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 321 // Old j.l.Thread object can die when no longer referenced elsewhere. 322 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 323 _compiler2_objects[compiler_count - 1] = nullptr; 324 } 325 #endif 326 } 327 return true; 328 } 329 return false; 330 } 331 332 /** 333 * Add a CompileTask to a CompileQueue. 334 */ 335 void CompileQueue::add(CompileTask* task) { 336 assert(_lock->owned_by_self(), "must own lock"); 337 338 task->set_next(nullptr); 339 task->set_prev(nullptr); 340 341 if (_last == nullptr) { 342 // The compile queue is empty. 343 assert(_first == nullptr, "queue is empty"); 344 _first = task; 345 _last = task; 346 } else { 347 // Append the task to the queue. 348 assert(_last->next() == nullptr, "not last"); 349 _last->set_next(task); 350 task->set_prev(_last); 351 _last = task; 352 } 353 ++_size; 354 ++_total_added; 355 if (_size > _peak_size) { 356 _peak_size = _size; 357 } 358 359 // Mark the method as being in the compile queue. 360 task->method()->set_queued_for_compilation(); 361 362 task->mark_queued(os::elapsed_counter()); 363 364 if (CIPrintCompileQueue) { 365 print_tty(); 366 } 367 368 if (LogCompilation && xtty != nullptr) { 369 task->log_task_queued(); 370 } 371 372 if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) { 373 CompileTrainingData* ctd = CompileTrainingData::make(task); 374 if (ctd != nullptr) { 375 task->set_training_data(ctd); 376 } 377 } 378 379 // Notify CompilerThreads that a task is available. 380 _lock->notify_all(); 381 } 382 383 void CompileQueue::add_pending(CompileTask* task) { 384 assert(_lock->owned_by_self() == false, "must NOT own lock"); 385 assert(UseLockFreeCompileQueues, ""); 386 task->method()->set_queued_for_compilation(); 387 _queue.push(*task); 388 // FIXME: additional coordination needed? e.g., is it possible for compiler thread to block w/o processing pending tasks? 389 if (is_empty()) { 390 MutexLocker ml(_lock); 391 _lock->notify_all(); 392 } 393 } 394 395 static bool process_pending(CompileTask* task) { 396 // guarantee(task->method()->queued_for_compilation(), ""); 397 if (task->is_unloaded()) { 398 return true; // unloaded 399 } 400 task->method()->set_queued_for_compilation(); // FIXME 401 if (task->method()->pending_queue_processed()) { 402 return true; // already queued 403 } 404 // Mark the method as being in the compile queue. 405 task->method()->set_pending_queue_processed(); 406 if (CompileBroker::compilation_is_complete(task->method(), task->osr_bci(), task->comp_level(), 407 task->requires_online_compilation(), task->compile_reason())) { 408 return true; // already compiled 409 } 410 return false; // active 411 } 412 413 void CompileQueue::transfer_pending() { 414 assert(_lock->owned_by_self(), "must own lock"); 415 416 CompileTask* task; 417 while ((task = _queue.pop()) != nullptr) { 418 bool is_stale = process_pending(task); 419 if (is_stale) { 420 task->set_next(_first_stale); 421 task->set_prev(nullptr); 422 _first_stale = task; 423 } else { 424 add(task); 425 } 426 } 427 } 428 429 /** 430 * Empties compilation queue by deleting all compilation tasks. 431 * Furthermore, the method wakes up all threads that are waiting 432 * on a compilation task to finish. This can happen if background 433 * compilation is disabled. 434 */ 435 void CompileQueue::delete_all() { 436 MutexLocker mu(_lock); 437 transfer_pending(); 438 439 CompileTask* current = _first; 440 441 // Iterate over all tasks in the compile queue 442 while (current != nullptr) { 443 CompileTask* next = current->next(); 444 if (!current->is_blocking()) { 445 // Non-blocking task. No one is waiting for it, delete it now. 446 delete current; 447 } else { 448 // Blocking task. By convention, it is the waiters responsibility 449 // to delete the task. We cannot delete it here, because we do not 450 // coordinate with waiters. We will notify the waiters later. 451 } 452 current = next; 453 } 454 _first = nullptr; 455 _last = nullptr; 456 457 // Wake up all blocking task waiters to deal with remaining blocking 458 // tasks. This is not a performance sensitive path, so we do this 459 // unconditionally to simplify coding/testing. 460 { 461 MonitorLocker ml(Thread::current(), CompileTaskWait_lock); 462 ml.notify_all(); 463 } 464 465 // Wake up all threads that block on the queue. 466 _lock->notify_all(); 467 } 468 469 /** 470 * Get the next CompileTask from a CompileQueue 471 */ 472 CompileTask* CompileQueue::get(CompilerThread* thread) { 473 // save methods from RedefineClasses across safepoint 474 // across compile queue lock below. 475 methodHandle save_method; 476 477 MonitorLocker locker(_lock); 478 transfer_pending(); 479 480 RecompilationPolicy::sample_load_average(); 481 482 // If _first is null we have no more compile jobs. There are two reasons for 483 // having no compile jobs: First, we compiled everything we wanted. Second, 484 // we ran out of code cache so compilation has been disabled. In the latter 485 // case we perform code cache sweeps to free memory such that we can re-enable 486 // compilation. 487 while (_first == nullptr) { 488 // Exit loop if compilation is disabled forever 489 if (CompileBroker::is_compilation_disabled_forever()) { 490 return nullptr; 491 } 492 493 AbstractCompiler* compiler = thread->compiler(); 494 guarantee(compiler != nullptr, "Compiler object must exist"); 495 compiler->on_empty_queue(this, thread); 496 if (_first != nullptr) { 497 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 498 // so check again whether any tasks were added to the queue. 499 break; 500 } 501 502 // If we have added stale tasks, there might be waiters that want 503 // the notification these tasks have failed. Normally, this would 504 // be done by a compiler thread that would perform the purge at 505 // the end of some compilation. But, if compile queue is empty, 506 // there is no guarantee compilers would run and do the purge. 507 // Do the purge here and now to unblock the waiters. 508 // Perform this until we run out of stale tasks. 509 while (_first_stale != nullptr) { 510 purge_stale_tasks(); 511 } 512 if (_first != nullptr) { 513 // Purge stale tasks may have transferred some new tasks, 514 // so check again. 515 break; 516 } 517 518 // If there are no compilation tasks and we can compile new jobs 519 // (i.e., there is enough free space in the code cache) there is 520 // no need to invoke the GC. 521 // We need a timed wait here, since compiler threads can exit if compilation 522 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 523 // is not critical and we do not want idle compiler threads to wake up too often. 524 locker.wait(5*1000); 525 526 transfer_pending(); // reacquired lock 527 528 if (RecompilationPolicy::have_recompilation_work()) return nullptr; 529 530 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 531 // Still nothing to compile. Give caller a chance to stop this thread. 532 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 533 } 534 } 535 536 if (CompileBroker::is_compilation_disabled_forever()) { 537 return nullptr; 538 } 539 540 CompileTask* task; 541 { 542 NoSafepointVerifier nsv; 543 task = CompilationPolicy::select_task(this, thread); 544 if (task != nullptr) { 545 task = task->select_for_compilation(); 546 } 547 } 548 549 if (task != nullptr) { 550 // Save method pointers across unlock safepoint. The task is removed from 551 // the compilation queue, which is walked during RedefineClasses. 552 Thread* thread = Thread::current(); 553 save_method = methodHandle(thread, task->method()); 554 555 remove(task); 556 } 557 purge_stale_tasks(); // may temporarily release MCQ lock 558 return task; 559 } 560 561 // Clean & deallocate stale compile tasks. 562 // Temporarily releases MethodCompileQueue lock. 563 void CompileQueue::purge_stale_tasks() { 564 assert(_lock->owned_by_self(), "must own lock"); 565 if (_first_stale != nullptr) { 566 // Stale tasks are purged when MCQ lock is released, 567 // but _first_stale updates are protected by MCQ lock. 568 // Once task processing starts and MCQ lock is released, 569 // other compiler threads can reuse _first_stale. 570 CompileTask* head = _first_stale; 571 _first_stale = nullptr; 572 { 573 MutexUnlocker ul(_lock); 574 for (CompileTask* task = head; task != nullptr; ) { 575 CompileTask* next_task = task->next(); 576 task->set_next(nullptr); 577 CompileTaskWrapper ctw(task); // Frees the task 578 task->set_failure_reason("stale task"); 579 task = next_task; 580 } 581 } 582 transfer_pending(); // transfer pending after reacquiring MCQ lock 583 } 584 } 585 586 void CompileQueue::remove(CompileTask* task) { 587 assert(_lock->owned_by_self(), "must own lock"); 588 if (task->prev() != nullptr) { 589 task->prev()->set_next(task->next()); 590 } else { 591 // max is the first element 592 assert(task == _first, "Sanity"); 593 _first = task->next(); 594 } 595 596 if (task->next() != nullptr) { 597 task->next()->set_prev(task->prev()); 598 } else { 599 // max is the last element 600 assert(task == _last, "Sanity"); 601 _last = task->prev(); 602 } 603 task->set_next(nullptr); 604 task->set_prev(nullptr); 605 --_size; 606 ++_total_removed; 607 } 608 609 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 610 assert(_lock->owned_by_self(), "must own lock"); 611 remove(task); 612 613 // Enqueue the task for reclamation (should be done outside MCQ lock) 614 task->set_next(_first_stale); 615 task->set_prev(nullptr); 616 _first_stale = task; 617 } 618 619 // methods in the compile queue need to be marked as used on the stack 620 // so that they don't get reclaimed by Redefine Classes 621 void CompileQueue::mark_on_stack() { 622 for (CompileTask* task = _first; task != nullptr; task = task->next()) { 623 task->mark_on_stack(); 624 } 625 for (CompileTask* task = _queue.first(); !_queue.is_end(task); task = task->next()) { 626 assert(task != nullptr, ""); 627 task->mark_on_stack(); 628 } 629 } 630 631 632 CompileQueue* CompileBroker::compile_queue(int comp_level, bool is_aot) { 633 if (is_c2_compile(comp_level)) return ((is_aot && (_ac_count > 0)) ? _ac2_compile_queue : _c2_compile_queue); 634 if (is_c1_compile(comp_level)) return ((is_aot && (_ac_count > 0)) ? _ac1_compile_queue : _c1_compile_queue); 635 return nullptr; 636 } 637 638 CompileQueue* CompileBroker::c1_compile_queue() { 639 return _c1_compile_queue; 640 } 641 642 CompileQueue* CompileBroker::c2_compile_queue() { 643 return _c2_compile_queue; 644 } 645 646 void CompileBroker::print_compile_queues(outputStream* st) { 647 st->print_cr("Current compiles: "); 648 649 char buf[2000]; 650 int buflen = sizeof(buf); 651 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 652 653 st->cr(); 654 if (_c1_compile_queue != nullptr) { 655 _c1_compile_queue->print(st); 656 } 657 if (_c2_compile_queue != nullptr) { 658 _c2_compile_queue->print(st); 659 } 660 if (_ac1_compile_queue != nullptr) { 661 _ac1_compile_queue->print(st); 662 } 663 if (_ac2_compile_queue != nullptr) { 664 _ac2_compile_queue->print(st); 665 } 666 } 667 668 void CompileQueue::print(outputStream* st) { 669 assert_locked_or_safepoint(_lock); 670 st->print_cr("%s:", name()); 671 CompileTask* task = _first; 672 if (task == nullptr) { 673 st->print_cr("Empty"); 674 } else { 675 while (task != nullptr) { 676 task->print(st, nullptr, true, true); 677 task = task->next(); 678 } 679 } 680 st->cr(); 681 } 682 683 void CompileQueue::print_tty() { 684 stringStream ss; 685 // Dump the compile queue into a buffer before locking the tty 686 print(&ss); 687 { 688 ttyLocker ttyl; 689 tty->print("%s", ss.freeze()); 690 } 691 } 692 693 CompilerCounters::CompilerCounters() { 694 _current_method[0] = '\0'; 695 _compile_type = CompileBroker::no_compile; 696 } 697 698 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 699 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 700 // in compiler/compilerEvent.cpp) and registers it with its serializer. 701 // 702 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 703 // so if c2 is used, it should be always registered first. 704 // This function is called during vm initialization. 705 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 706 ResourceMark rm; 707 static bool first_registration = true; 708 if (compiler_type == compiler_jvmci) { 709 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 710 first_registration = false; 711 #ifdef COMPILER2 712 } else if (compiler_type == compiler_c2) { 713 assert(first_registration, "invariant"); // c2 must be registered first. 714 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 715 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 716 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 717 } 718 first_registration = false; 719 #endif // COMPILER2 720 } 721 } 722 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 723 724 // ------------------------------------------------------------------ 725 // CompileBroker::compilation_init 726 // 727 // Initialize the Compilation object 728 void CompileBroker::compilation_init(JavaThread* THREAD) { 729 // No need to initialize compilation system if we do not use it. 730 if (!UseCompiler) { 731 return; 732 } 733 // Set the interface to the current compiler(s). 734 _c1_count = CompilationPolicy::c1_count(); 735 _c2_count = CompilationPolicy::c2_count(); 736 _ac_count = CompilationPolicy::ac_count(); 737 738 #if INCLUDE_JVMCI 739 if (EnableJVMCI) { 740 // This is creating a JVMCICompiler singleton. 741 JVMCICompiler* jvmci = new JVMCICompiler(); 742 743 if (UseJVMCICompiler) { 744 _compilers[1] = jvmci; 745 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 746 if (BootstrapJVMCI) { 747 // JVMCI will bootstrap so give it more threads 748 _c2_count = MIN2(32, os::active_processor_count()); 749 } 750 } else { 751 _c2_count = JVMCIThreads; 752 } 753 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 754 } else { 755 #ifdef COMPILER1 756 _c1_count = JVMCIHostThreads; 757 #endif // COMPILER1 758 } 759 } 760 } 761 #endif // INCLUDE_JVMCI 762 763 #ifdef COMPILER1 764 if (_c1_count > 0) { 765 _compilers[0] = new Compiler(); 766 } 767 #endif // COMPILER1 768 769 #ifdef COMPILER2 770 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 771 if (_c2_count > 0) { 772 _compilers[1] = new C2Compiler(); 773 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 774 // idToPhase mapping for c2 is in opto/phasetype.hpp 775 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 776 } 777 } 778 #endif // COMPILER2 779 780 #if INCLUDE_JVMCI 781 // Register after c2 registration. 782 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 783 if (EnableJVMCI) { 784 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 785 } 786 #endif // INCLUDE_JVMCI 787 788 if (CompilerOracle::should_collect_memstat()) { 789 CompilationMemoryStatistic::initialize(); 790 } 791 792 // Start the compiler thread(s) 793 init_compiler_threads(); 794 // totalTime performance counter is always created as it is required 795 // by the implementation of java.lang.management.CompilationMXBean. 796 { 797 // Ensure OOM leads to vm_exit_during_initialization. 798 EXCEPTION_MARK; 799 _perf_total_compilation = 800 PerfDataManager::create_counter(JAVA_CI, "totalTime", 801 PerfData::U_Ticks, CHECK); 802 } 803 804 if (UsePerfData) { 805 806 EXCEPTION_MARK; 807 808 // create the jvmstat performance counters 809 _perf_osr_compilation = 810 PerfDataManager::create_counter(SUN_CI, "osrTime", 811 PerfData::U_Ticks, CHECK); 812 813 _perf_standard_compilation = 814 PerfDataManager::create_counter(SUN_CI, "standardTime", 815 PerfData::U_Ticks, CHECK); 816 817 _perf_total_bailout_count = 818 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 819 PerfData::U_Events, CHECK); 820 821 _perf_total_invalidated_count = 822 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 823 PerfData::U_Events, CHECK); 824 825 _perf_total_compile_count = 826 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 827 PerfData::U_Events, CHECK); 828 _perf_total_osr_compile_count = 829 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 830 PerfData::U_Events, CHECK); 831 832 _perf_total_standard_compile_count = 833 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 834 PerfData::U_Events, CHECK); 835 836 _perf_sum_osr_bytes_compiled = 837 PerfDataManager::create_counter(SUN_CI, "osrBytes", 838 PerfData::U_Bytes, CHECK); 839 840 _perf_sum_standard_bytes_compiled = 841 PerfDataManager::create_counter(SUN_CI, "standardBytes", 842 PerfData::U_Bytes, CHECK); 843 844 _perf_sum_nmethod_size = 845 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 846 PerfData::U_Bytes, CHECK); 847 848 _perf_sum_nmethod_code_size = 849 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 850 PerfData::U_Bytes, CHECK); 851 852 _perf_last_method = 853 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 854 CompilerCounters::cmname_buffer_length, 855 "", CHECK); 856 857 _perf_last_failed_method = 858 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 859 CompilerCounters::cmname_buffer_length, 860 "", CHECK); 861 862 _perf_last_invalidated_method = 863 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 864 CompilerCounters::cmname_buffer_length, 865 "", CHECK); 866 867 _perf_last_compile_type = 868 PerfDataManager::create_variable(SUN_CI, "lastType", 869 PerfData::U_None, 870 (jlong)CompileBroker::no_compile, 871 CHECK); 872 873 _perf_last_compile_size = 874 PerfDataManager::create_variable(SUN_CI, "lastSize", 875 PerfData::U_Bytes, 876 (jlong)CompileBroker::no_compile, 877 CHECK); 878 879 880 _perf_last_failed_type = 881 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 882 PerfData::U_None, 883 (jlong)CompileBroker::no_compile, 884 CHECK); 885 886 _perf_last_invalidated_type = 887 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 888 PerfData::U_None, 889 (jlong)CompileBroker::no_compile, 890 CHECK); 891 } 892 893 log_info(aot, codecache, init)("CompileBroker is initialized"); 894 _initialized = true; 895 } 896 897 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) { 898 Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH); 899 return thread_oop; 900 } 901 902 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) { 903 CompilationPolicy::replay_training_at_init_loop(thread); 904 } 905 906 #if defined(ASSERT) && COMPILER2_OR_JVMCI 907 // Entry for DeoptimizeObjectsALotThread. The threads are started in 908 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 909 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 910 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 911 bool enter_single_loop; 912 { 913 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 914 static int single_thread_count = 0; 915 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 916 } 917 if (enter_single_loop) { 918 dt->deoptimize_objects_alot_loop_single(); 919 } else { 920 dt->deoptimize_objects_alot_loop_all(); 921 } 922 } 923 924 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 925 // barrier targets a single thread which is selected round robin. 926 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 927 HandleMark hm(this); 928 while (true) { 929 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 930 { // Begin new scope for escape barrier 931 HandleMarkCleaner hmc(this); 932 ResourceMark rm(this); 933 EscapeBarrier eb(true, this, deoptee_thread); 934 eb.deoptimize_objects(100); 935 } 936 // Now sleep after the escape barriers destructor resumed deoptee_thread. 937 sleep(DeoptimizeObjectsALotInterval); 938 } 939 } 940 } 941 942 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 943 // barrier targets all java threads in the vm at once. 944 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 945 HandleMark hm(this); 946 while (true) { 947 { // Begin new scope for escape barrier 948 HandleMarkCleaner hmc(this); 949 ResourceMark rm(this); 950 EscapeBarrier eb(true, this); 951 eb.deoptimize_objects_all_threads(); 952 } 953 // Now sleep after the escape barriers destructor resumed the java threads. 954 sleep(DeoptimizeObjectsALotInterval); 955 } 956 } 957 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 958 959 960 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 961 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 962 963 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 964 assert(type == compiler_t, "should only happen with reused compiler threads"); 965 // The compiler thread hasn't actually exited yet so don't try to reuse it 966 return nullptr; 967 } 968 969 JavaThread* new_thread = nullptr; 970 switch (type) { 971 case compiler_t: 972 assert(comp != nullptr, "Compiler instance missing."); 973 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 974 CompilerCounters* counters = new CompilerCounters(); 975 new_thread = new CompilerThread(queue, counters); 976 } 977 break; 978 #if defined(ASSERT) && COMPILER2_OR_JVMCI 979 case deoptimizer_t: 980 new_thread = new DeoptimizeObjectsALotThread(); 981 break; 982 #endif // ASSERT 983 case training_replay_t: 984 new_thread = new TrainingReplayThread(); 985 break; 986 default: 987 ShouldNotReachHere(); 988 } 989 990 // At this point the new CompilerThread data-races with this startup 991 // thread (which is the main thread and NOT the VM thread). 992 // This means Java bytecodes being executed at startup can 993 // queue compile jobs which will run at whatever default priority the 994 // newly created CompilerThread runs at. 995 996 997 // At this point it may be possible that no osthread was created for the 998 // JavaThread due to lack of resources. We will handle that failure below. 999 // Also check new_thread so that static analysis is happy. 1000 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 1001 1002 if (type == compiler_t) { 1003 CompilerThread::cast(new_thread)->set_compiler(comp); 1004 } 1005 1006 // Note that we cannot call os::set_priority because it expects Java 1007 // priorities and we are *explicitly* using OS priorities so that it's 1008 // possible to set the compiler thread priority higher than any Java 1009 // thread. 1010 1011 int native_prio = CompilerThreadPriority; 1012 if (native_prio == -1) { 1013 if (UseCriticalCompilerThreadPriority) { 1014 native_prio = os::java_to_os_priority[CriticalPriority]; 1015 } else { 1016 native_prio = os::java_to_os_priority[NearMaxPriority]; 1017 } 1018 } 1019 os::set_native_priority(new_thread, native_prio); 1020 1021 // Note that this only sets the JavaThread _priority field, which by 1022 // definition is limited to Java priorities and not OS priorities. 1023 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 1024 1025 } else { // osthread initialization failure 1026 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 1027 && comp->num_compiler_threads() > 0) { 1028 // The new thread is not known to Thread-SMR yet so we can just delete. 1029 delete new_thread; 1030 return nullptr; 1031 } else { 1032 vm_exit_during_initialization("java.lang.OutOfMemoryError", 1033 os::native_thread_creation_failed_msg()); 1034 } 1035 } 1036 1037 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 1038 1039 return new_thread; 1040 } 1041 1042 static bool trace_compiler_threads() { 1043 LogTarget(Debug, jit, thread) lt; 1044 return TraceCompilerThreads || lt.is_enabled(); 1045 } 1046 1047 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 1048 char name_buffer[256]; 1049 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 1050 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 1051 return JNIHandles::make_global(thread_oop); 1052 } 1053 1054 static void print_compiler_threads(stringStream& msg) { 1055 if (TraceCompilerThreads) { 1056 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 1057 } 1058 LogTarget(Debug, jit, thread) lt; 1059 if (lt.is_enabled()) { 1060 LogStream ls(lt); 1061 ls.print_cr("%s", msg.as_string()); 1062 } 1063 } 1064 1065 static void print_compiler_thread(JavaThread *ct) { 1066 if (trace_compiler_threads()) { 1067 ResourceMark rm; 1068 ThreadsListHandle tlh; // name() depends on the TLH. 1069 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1070 stringStream msg; 1071 msg.print("Added initial compiler thread %s", ct->name()); 1072 print_compiler_threads(msg); 1073 } 1074 } 1075 1076 void CompileBroker::init_compiler_threads() { 1077 // Ensure any exceptions lead to vm_exit_during_initialization. 1078 EXCEPTION_MARK; 1079 #if !defined(ZERO) 1080 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 1081 #endif // !ZERO 1082 // Initialize the compilation queue 1083 if (_c2_count > 0) { 1084 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 1085 _c2_compile_queue = new CompileQueue(name, MethodCompileQueueC2_lock); 1086 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 1087 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 1088 } 1089 if (_c1_count > 0) { 1090 _c1_compile_queue = new CompileQueue("C1 compile queue", MethodCompileQueueC1_lock); 1091 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 1092 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 1093 } 1094 1095 if (_ac_count > 0) { 1096 if (_c1_count > 0) { // C1 is present 1097 _ac1_compile_queue = new CompileQueue("C1 AOT code compile queue", MethodCompileQueueSC1_lock); 1098 } 1099 if (_c2_count > 0) { // C2 is present 1100 _ac2_compile_queue = new CompileQueue("C2 AOT code compile queue", MethodCompileQueueSC2_lock); 1101 } 1102 _ac_objects = NEW_C_HEAP_ARRAY(jobject, _ac_count, mtCompiler); 1103 _ac_logs = NEW_C_HEAP_ARRAY(CompileLog*, _ac_count, mtCompiler); 1104 } 1105 char name_buffer[256]; 1106 1107 for (int i = 0; i < _c2_count; i++) { 1108 // Create a name for our thread. 1109 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 1110 _compiler2_objects[i] = thread_handle; 1111 _compiler2_logs[i] = nullptr; 1112 1113 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1114 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 1115 assert(ct != nullptr, "should have been handled for initial thread"); 1116 _compilers[1]->set_num_compiler_threads(i + 1); 1117 print_compiler_thread(ct); 1118 } 1119 } 1120 1121 for (int i = 0; i < _c1_count; i++) { 1122 // Create a name for our thread. 1123 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 1124 _compiler1_objects[i] = thread_handle; 1125 _compiler1_logs[i] = nullptr; 1126 1127 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1128 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 1129 assert(ct != nullptr, "should have been handled for initial thread"); 1130 _compilers[0]->set_num_compiler_threads(i + 1); 1131 print_compiler_thread(ct); 1132 } 1133 } 1134 1135 if (_ac_count > 0) { 1136 int i = 0; 1137 if (_c1_count > 0) { // C1 is present 1138 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 1); 1139 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1140 jobject thread_handle = JNIHandles::make_global(thread_oop); 1141 _ac_objects[i] = thread_handle; 1142 _ac_logs[i] = nullptr; 1143 i++; 1144 1145 JavaThread *ct = make_thread(compiler_t, thread_handle, _ac1_compile_queue, _compilers[0], THREAD); 1146 assert(ct != nullptr, "should have been handled for initial thread"); 1147 print_compiler_thread(ct); 1148 } 1149 if (_c2_count > 0) { // C2 is present 1150 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 2); 1151 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1152 jobject thread_handle = JNIHandles::make_global(thread_oop); 1153 _ac_objects[i] = thread_handle; 1154 _ac_logs[i] = nullptr; 1155 1156 JavaThread *ct = make_thread(compiler_t, thread_handle, _ac2_compile_queue, _compilers[1], THREAD); 1157 assert(ct != nullptr, "should have been handled for initial thread"); 1158 print_compiler_thread(ct); 1159 } 1160 } 1161 1162 if (UsePerfData) { 1163 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK); 1164 } 1165 1166 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1167 if (DeoptimizeObjectsALot) { 1168 // Initialize and start the object deoptimizer threads 1169 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1170 for (int count = 0; count < total_count; count++) { 1171 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1172 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1173 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1174 } 1175 } 1176 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1177 } 1178 1179 void CompileBroker::init_training_replay() { 1180 // Ensure any exceptions lead to vm_exit_during_initialization. 1181 EXCEPTION_MARK; 1182 if (TrainingData::have_data()) { 1183 Handle thread_oop = create_thread_oop("Training replay thread", CHECK); 1184 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1185 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD); 1186 } 1187 } 1188 1189 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1190 1191 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1192 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1193 1194 // Quick check if we already have enough compiler threads without taking the lock. 1195 // Numbers may change concurrently, so we read them again after we have the lock. 1196 if (_c2_compile_queue != nullptr) { 1197 old_c2_count = get_c2_thread_count(); 1198 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1199 } 1200 if (_c1_compile_queue != nullptr) { 1201 old_c1_count = get_c1_thread_count(); 1202 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1203 } 1204 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1205 1206 // Now, we do the more expensive operations. 1207 size_t free_memory = 0; 1208 // Return value ignored - defaulting to 0 on failure. 1209 (void)os::free_memory(free_memory); 1210 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1211 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1212 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1213 1214 // Only attempt to start additional threads if the lock is free. 1215 if (!CompileThread_lock->try_lock()) return; 1216 1217 if (_c2_compile_queue != nullptr) { 1218 old_c2_count = get_c2_thread_count(); 1219 new_c2_count = MIN4(_c2_count, 1220 _c2_compile_queue->size() / c2_tasks_per_thread, 1221 (int)(free_memory / (200*M)), 1222 (int)(available_cc_np / (128*K))); 1223 1224 for (int i = old_c2_count; i < new_c2_count; i++) { 1225 #if INCLUDE_JVMCI 1226 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1227 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1228 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1229 // call Java code to do the creation anyway). 1230 // 1231 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1232 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1233 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1234 // coupling with Java. 1235 if (!THREAD->can_call_java()) break; 1236 char name_buffer[256]; 1237 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1238 Handle thread_oop; 1239 { 1240 // We have to give up the lock temporarily for the Java calls. 1241 MutexUnlocker mu(CompileThread_lock); 1242 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1243 } 1244 if (HAS_PENDING_EXCEPTION) { 1245 if (trace_compiler_threads()) { 1246 ResourceMark rm; 1247 stringStream msg; 1248 msg.print_cr("JVMCI compiler thread creation failed:"); 1249 PENDING_EXCEPTION->print_on(&msg); 1250 print_compiler_threads(msg); 1251 } 1252 CLEAR_PENDING_EXCEPTION; 1253 break; 1254 } 1255 // Check if another thread has beaten us during the Java calls. 1256 if (get_c2_thread_count() != i) break; 1257 jobject thread_handle = JNIHandles::make_global(thread_oop); 1258 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1259 _compiler2_objects[i] = thread_handle; 1260 } 1261 #endif 1262 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1263 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1264 if (ct == nullptr) break; 1265 _compilers[1]->set_num_compiler_threads(i + 1); 1266 if (trace_compiler_threads()) { 1267 ResourceMark rm; 1268 ThreadsListHandle tlh; // name() depends on the TLH. 1269 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1270 stringStream msg; 1271 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1272 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1273 print_compiler_threads(msg); 1274 } 1275 } 1276 } 1277 1278 if (_c1_compile_queue != nullptr) { 1279 old_c1_count = get_c1_thread_count(); 1280 new_c1_count = MIN4(_c1_count, 1281 _c1_compile_queue->size() / c1_tasks_per_thread, 1282 (int)(free_memory / (100*M)), 1283 (int)(available_cc_p / (128*K))); 1284 1285 for (int i = old_c1_count; i < new_c1_count; i++) { 1286 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1287 if (ct == nullptr) break; 1288 _compilers[0]->set_num_compiler_threads(i + 1); 1289 if (trace_compiler_threads()) { 1290 ResourceMark rm; 1291 ThreadsListHandle tlh; // name() depends on the TLH. 1292 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1293 stringStream msg; 1294 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1295 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1296 print_compiler_threads(msg); 1297 } 1298 } 1299 } 1300 1301 CompileThread_lock->unlock(); 1302 } 1303 1304 1305 /** 1306 * Set the methods on the stack as on_stack so that redefine classes doesn't 1307 * reclaim them. This method is executed at a safepoint. 1308 */ 1309 void CompileBroker::mark_on_stack() { 1310 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1311 // Since we are at a safepoint, we do not need a lock to access 1312 // the compile queues. 1313 if (_c2_compile_queue != nullptr) { 1314 _c2_compile_queue->mark_on_stack(); 1315 } 1316 if (_c1_compile_queue != nullptr) { 1317 _c1_compile_queue->mark_on_stack(); 1318 } 1319 if (_ac1_compile_queue != nullptr) { 1320 _ac1_compile_queue->mark_on_stack(); 1321 } 1322 if (_ac2_compile_queue != nullptr) { 1323 _ac2_compile_queue->mark_on_stack(); 1324 } 1325 } 1326 1327 // ------------------------------------------------------------------ 1328 // CompileBroker::compile_method 1329 // 1330 // Request compilation of a method. 1331 void CompileBroker::compile_method_base(const methodHandle& method, 1332 int osr_bci, 1333 int comp_level, 1334 int hot_count, 1335 CompileTask::CompileReason compile_reason, 1336 bool requires_online_compilation, 1337 bool blocking, 1338 Thread* thread) { 1339 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1340 assert(method->method_holder()->is_instance_klass(), 1341 "sanity check"); 1342 assert(!method->method_holder()->is_not_initialized() || 1343 compile_reason == CompileTask::Reason_Preload || 1344 compile_reason == CompileTask::Reason_Precompile || 1345 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1346 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1347 1348 if (CIPrintRequests) { 1349 tty->print("request: "); 1350 method->print_short_name(tty); 1351 if (osr_bci != InvocationEntryBci) { 1352 tty->print(" osr_bci: %d", osr_bci); 1353 } 1354 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1355 if (hot_count > 0) { 1356 tty->print(" hot: yes"); 1357 } 1358 tty->cr(); 1359 } 1360 1361 // A request has been made for compilation. Before we do any 1362 // real work, check to see if the method has been compiled 1363 // in the meantime with a definitive result. 1364 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1365 return; 1366 } 1367 1368 #ifndef PRODUCT 1369 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1370 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1371 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1372 return; 1373 } 1374 } 1375 #endif 1376 1377 // If this method is already in the compile queue, then 1378 // we do not block the current thread. 1379 if (compilation_is_in_queue(method)) { 1380 // We may want to decay our counter a bit here to prevent 1381 // multiple denied requests for compilation. This is an 1382 // open compilation policy issue. Note: The other possibility, 1383 // in the case that this is a blocking compile request, is to have 1384 // all subsequent blocking requesters wait for completion of 1385 // ongoing compiles. Note that in this case we'll need a protocol 1386 // for freeing the associated compile tasks. [Or we could have 1387 // a single static monitor on which all these waiters sleep.] 1388 return; 1389 } 1390 1391 // Tiered policy requires MethodCounters to exist before adding a method to 1392 // the queue. Create if we don't have them yet. 1393 if (compile_reason != CompileTask::Reason_Preload) { 1394 method->get_method_counters(thread); 1395 } 1396 1397 AOTCodeEntry* aot_code_entry = find_aot_code_entry(method, osr_bci, comp_level, compile_reason, requires_online_compilation); 1398 bool is_aot = (aot_code_entry != nullptr); 1399 1400 // Outputs from the following MutexLocker block: 1401 CompileTask* task = nullptr; 1402 CompileQueue* queue = compile_queue(comp_level, is_aot); 1403 1404 // Acquire our lock. 1405 { 1406 ConditionalMutexLocker locker(thread, queue->lock(), !UseLockFreeCompileQueues); 1407 1408 // Make sure the method has not slipped into the queues since 1409 // last we checked; note that those checks were "fast bail-outs". 1410 // Here we need to be more careful, see 14012000 below. 1411 if (compilation_is_in_queue(method)) { 1412 return; 1413 } 1414 1415 // We need to check again to see if the compilation has 1416 // completed. A previous compilation may have registered 1417 // some result. 1418 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1419 return; 1420 } 1421 1422 // We now know that this compilation is not pending, complete, 1423 // or prohibited. Assign a compile_id to this compilation 1424 // and check to see if it is in our [Start..Stop) range. 1425 int compile_id = assign_compile_id(method, osr_bci); 1426 if (compile_id == 0) { 1427 // The compilation falls outside the allowed range. 1428 return; 1429 } 1430 1431 #if INCLUDE_JVMCI 1432 if (UseJVMCICompiler && blocking) { 1433 // Don't allow blocking compiles for requests triggered by JVMCI. 1434 if (thread->is_Compiler_thread()) { 1435 blocking = false; 1436 } 1437 1438 // In libjvmci, JVMCI initialization should not deadlock with other threads 1439 if (!UseJVMCINativeLibrary) { 1440 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1441 vframeStream vfst(JavaThread::cast(thread)); 1442 for (; !vfst.at_end(); vfst.next()) { 1443 if (vfst.method()->is_static_initializer() || 1444 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1445 vfst.method()->name() == vmSymbols::loadClass_name())) { 1446 blocking = false; 1447 break; 1448 } 1449 } 1450 1451 // Don't allow blocking compilation requests to JVMCI 1452 // if JVMCI itself is not yet initialized 1453 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1454 blocking = false; 1455 } 1456 } 1457 1458 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1459 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1460 // such as the DestroyJavaVM thread. 1461 if (JVMCI::in_shutdown()) { 1462 blocking = false; 1463 } 1464 } 1465 #endif // INCLUDE_JVMCI 1466 1467 // We will enter the compilation in the queue. 1468 // 14012000: Note that this sets the queued_for_compile bits in 1469 // the target method. We can now reason that a method cannot be 1470 // queued for compilation more than once, as follows: 1471 // Before a thread queues a task for compilation, it first acquires 1472 // the compile queue lock, then checks if the method's queued bits 1473 // are set or it has already been compiled. Thus there can not be two 1474 // instances of a compilation task for the same method on the 1475 // compilation queue. Consider now the case where the compilation 1476 // thread has already removed a task for that method from the queue 1477 // and is in the midst of compiling it. In this case, the 1478 // queued_for_compile bits must be set in the method (and these 1479 // will be visible to the current thread, since the bits were set 1480 // under protection of the compile queue lock, which we hold now. 1481 // When the compilation completes, the compiler thread first sets 1482 // the compilation result and then clears the queued_for_compile 1483 // bits. Neither of these actions are protected by a barrier (or done 1484 // under the protection of a lock), so the only guarantee we have 1485 // (on machines with TSO (Total Store Order)) is that these values 1486 // will update in that order. As a result, the only combinations of 1487 // these bits that the current thread will see are, in temporal order: 1488 // <RESULT, QUEUE> : 1489 // <0, 1> : in compile queue, but not yet compiled 1490 // <1, 1> : compiled but queue bit not cleared 1491 // <1, 0> : compiled and queue bit cleared 1492 // Because we first check the queue bits then check the result bits, 1493 // we are assured that we cannot introduce a duplicate task. 1494 // Note that if we did the tests in the reverse order (i.e. check 1495 // result then check queued bit), we could get the result bit before 1496 // the compilation completed, and the queue bit after the compilation 1497 // completed, and end up introducing a "duplicate" (redundant) task. 1498 // In that case, the compiler thread should first check if a method 1499 // has already been compiled before trying to compile it. 1500 // NOTE: in the event that there are multiple compiler threads and 1501 // there is de-optimization/recompilation, things will get hairy, 1502 // and in that case it's best to protect both the testing (here) of 1503 // these bits, and their updating (here and elsewhere) under a 1504 // common lock. 1505 task = create_compile_task(queue, 1506 compile_id, method, 1507 osr_bci, comp_level, 1508 hot_count, aot_code_entry, compile_reason, 1509 requires_online_compilation, blocking); 1510 1511 if (task->is_aot_load() && (_ac_count > 0)) { 1512 // Put it on AOT code caching queue 1513 queue = is_c1_compile(comp_level) ? _ac1_compile_queue : _ac2_compile_queue; 1514 } 1515 1516 if (UseLockFreeCompileQueues) { 1517 assert(queue->lock()->owned_by_self() == false, ""); 1518 queue->add_pending(task); 1519 } else { 1520 queue->add(task); 1521 } 1522 } 1523 1524 if (blocking) { 1525 wait_for_completion(task); 1526 } 1527 } 1528 1529 AOTCodeEntry* CompileBroker::find_aot_code_entry(const methodHandle& method, int osr_bci, int comp_level, 1530 CompileTask::CompileReason compile_reason, 1531 bool requires_online_compilation) { 1532 if (requires_online_compilation || compile_reason == CompileTask::Reason_Whitebox) { 1533 return nullptr; // Need normal JIT compilation 1534 } 1535 AOTCodeEntry* aot_code_entry = nullptr; 1536 if (osr_bci == InvocationEntryBci && AOTCodeCache::is_using_code()) { 1537 // Check for AOT preload code first. 1538 if (compile_reason == CompileTask::Reason_Preload) { 1539 aot_code_entry = method->aot_code_entry(); 1540 assert(aot_code_entry != nullptr && aot_code_entry->for_preload(), "sanity"); 1541 } else { 1542 aot_code_entry = AOTCodeCache::find_code_entry(method, comp_level); 1543 } 1544 } 1545 return aot_code_entry; 1546 } 1547 1548 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1549 int comp_level, 1550 int hot_count, 1551 bool requires_online_compilation, 1552 CompileTask::CompileReason compile_reason, 1553 TRAPS) { 1554 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1555 if (!_initialized || comp_level == CompLevel_none) { 1556 return nullptr; 1557 } 1558 1559 #if INCLUDE_JVMCI 1560 if (EnableJVMCI && UseJVMCICompiler && 1561 comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 1562 return nullptr; 1563 } 1564 #endif 1565 1566 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1567 assert(comp != nullptr, "Ensure we have a compiler"); 1568 1569 #if INCLUDE_JVMCI 1570 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1571 // JVMCI compilation is not yet initializable. 1572 return nullptr; 1573 } 1574 #endif 1575 1576 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1577 // CompileBroker::compile_method can trap and can have pending async exception. 1578 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, requires_online_compilation, compile_reason, directive, THREAD); 1579 DirectivesStack::release(directive); 1580 return nm; 1581 } 1582 1583 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1584 int comp_level, 1585 int hot_count, 1586 bool requires_online_compilation, 1587 CompileTask::CompileReason compile_reason, 1588 DirectiveSet* directive, 1589 TRAPS) { 1590 1591 // make sure arguments make sense 1592 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1593 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1594 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1595 assert(!method->method_holder()->is_not_initialized() || 1596 compile_reason == CompileTask::Reason_Preload || 1597 compile_reason == CompileTask::Reason_Precompile || 1598 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1599 // return quickly if possible 1600 bool aot_compilation = (PrecompileCode && PrecompileOnlyAndExit) || 1601 CDSConfig::is_dumping_aot_code(); 1602 if (aot_compilation && !CompileTask::reason_is_precompile(compile_reason)) { 1603 // Skip normal compilations when compiling AOT code 1604 return nullptr; 1605 } 1606 1607 // lock, make sure that the compilation 1608 // isn't prohibited in a straightforward way. 1609 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1610 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1611 return nullptr; 1612 } 1613 1614 if (osr_bci == InvocationEntryBci) { 1615 // standard compilation 1616 nmethod* method_code = method->code(); 1617 if (method_code != nullptr) { 1618 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1619 return method_code; 1620 } 1621 } 1622 if (method->is_not_compilable(comp_level)) { 1623 return nullptr; 1624 } 1625 } else { 1626 // osr compilation 1627 // We accept a higher level osr method 1628 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1629 if (nm != nullptr) return nm; 1630 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1631 } 1632 1633 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1634 // some prerequisites that are compiler specific 1635 if (compile_reason != CompileTask::Reason_Preload && 1636 !CompileTask::reason_is_precompile(compile_reason) && 1637 (comp->is_c2() || comp->is_jvmci())) { 1638 InternalOOMEMark iom(THREAD); 1639 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1640 // Resolve all classes seen in the signature of the method 1641 // we are compiling. 1642 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1643 } 1644 1645 // If the method is native, do the lookup in the thread requesting 1646 // the compilation. Native lookups can load code, which is not 1647 // permitted during compilation. 1648 // 1649 // Note: A native method implies non-osr compilation which is 1650 // checked with an assertion at the entry of this method. 1651 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1652 address adr = NativeLookup::lookup(method, THREAD); 1653 if (HAS_PENDING_EXCEPTION) { 1654 // In case of an exception looking up the method, we just forget 1655 // about it. The interpreter will kick-in and throw the exception. 1656 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1657 CLEAR_PENDING_EXCEPTION; 1658 return nullptr; 1659 } 1660 assert(method->has_native_function(), "must have native code by now"); 1661 } 1662 1663 // RedefineClasses() has replaced this method; just return 1664 if (method->is_old()) { 1665 return nullptr; 1666 } 1667 1668 // JVMTI -- post_compile_event requires jmethod_id() that may require 1669 // a lock the compiling thread can not acquire. Prefetch it here. 1670 if (JvmtiExport::should_post_compiled_method_load()) { 1671 method->jmethod_id(); 1672 } 1673 1674 // do the compilation 1675 if (method->is_native()) { 1676 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1677 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1678 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1679 // 1680 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1681 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1682 AdapterHandlerLibrary::create_native_wrapper(method); 1683 } else { 1684 return nullptr; 1685 } 1686 } else { 1687 // If the compiler is shut off due to code cache getting full 1688 // fail out now so blocking compiles dont hang the java thread 1689 if (!should_compile_new_jobs()) { 1690 return nullptr; 1691 } 1692 bool is_blocking = ReplayCompiles || 1693 !directive->BackgroundCompilationOption || 1694 (PreloadBlocking && (compile_reason == CompileTask::Reason_Preload)); 1695 compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, requires_online_compilation, is_blocking, THREAD); 1696 } 1697 1698 // return requested nmethod 1699 // We accept a higher level osr method 1700 if (osr_bci == InvocationEntryBci) { 1701 return method->code(); 1702 } 1703 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1704 } 1705 1706 1707 // ------------------------------------------------------------------ 1708 // CompileBroker::compilation_is_complete 1709 // 1710 // See if compilation of this method is already complete. 1711 bool CompileBroker::compilation_is_complete(Method* method, 1712 int osr_bci, 1713 int comp_level, 1714 bool online_only, 1715 CompileTask::CompileReason compile_reason) { 1716 if (compile_reason == CompileTask::Reason_Precompile || 1717 compile_reason == CompileTask::Reason_PrecompileForPreload) { 1718 return false; // FIXME: any restrictions? 1719 } 1720 bool is_osr = (osr_bci != standard_entry_bci); 1721 if (is_osr) { 1722 if (method->is_not_osr_compilable(comp_level)) { 1723 return true; 1724 } else { 1725 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1726 return (result != nullptr); 1727 } 1728 } else { 1729 if (method->is_not_compilable(comp_level)) { 1730 return true; 1731 } else { 1732 nmethod* result = method->code(); 1733 if (result == nullptr) { 1734 return false; 1735 } 1736 if (online_only && result->is_aot()) { 1737 return false; 1738 } 1739 bool same_level = (comp_level == result->comp_level()); 1740 if (result->has_clinit_barriers()) { 1741 return !same_level; // Allow replace preloaded code with new code of the same level 1742 } 1743 return same_level; 1744 } 1745 } 1746 } 1747 1748 1749 /** 1750 * See if this compilation is already requested. 1751 * 1752 * Implementation note: there is only a single "is in queue" bit 1753 * for each method. This means that the check below is overly 1754 * conservative in the sense that an osr compilation in the queue 1755 * will block a normal compilation from entering the queue (and vice 1756 * versa). This can be remedied by a full queue search to disambiguate 1757 * cases. If it is deemed profitable, this may be done. 1758 */ 1759 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1760 return method->queued_for_compilation(); 1761 } 1762 1763 // ------------------------------------------------------------------ 1764 // CompileBroker::compilation_is_prohibited 1765 // 1766 // See if this compilation is not allowed. 1767 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1768 bool is_native = method->is_native(); 1769 // Some compilers may not support the compilation of natives. 1770 AbstractCompiler *comp = compiler(comp_level); 1771 if (is_native && (!CICompileNatives || comp == nullptr)) { 1772 method->set_not_compilable_quietly("native methods not supported", comp_level); 1773 return true; 1774 } 1775 1776 bool is_osr = (osr_bci != standard_entry_bci); 1777 // Some compilers may not support on stack replacement. 1778 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1779 method->set_not_osr_compilable("OSR not supported", comp_level); 1780 return true; 1781 } 1782 1783 // The method may be explicitly excluded by the user. 1784 double scale; 1785 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1786 bool quietly = CompilerOracle::be_quiet(); 1787 if (PrintCompilation && !quietly) { 1788 // This does not happen quietly... 1789 ResourceMark rm; 1790 tty->print("### Excluding %s:%s", 1791 method->is_native() ? "generation of native wrapper" : "compile", 1792 (method->is_static() ? " static" : "")); 1793 method->print_short_name(tty); 1794 tty->cr(); 1795 } 1796 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1797 } 1798 1799 return false; 1800 } 1801 1802 /** 1803 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1804 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1805 * The function also allows to generate separate compilation IDs for OSR compilations. 1806 */ 1807 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1808 #ifdef ASSERT 1809 bool is_osr = (osr_bci != standard_entry_bci); 1810 int id; 1811 if (method->is_native()) { 1812 assert(!is_osr, "can't be osr"); 1813 // Adapters, native wrappers and method handle intrinsics 1814 // should be generated always. 1815 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1816 } else if (CICountOSR && is_osr) { 1817 id = Atomic::add(&_osr_compilation_id, 1); 1818 if (CIStartOSR <= id && id < CIStopOSR) { 1819 return id; 1820 } 1821 } else { 1822 id = Atomic::add(&_compilation_id, 1); 1823 if (CIStart <= id && id < CIStop) { 1824 return id; 1825 } 1826 } 1827 1828 // Method was not in the appropriate compilation range. 1829 method->set_not_compilable_quietly("Not in requested compile id range"); 1830 return 0; 1831 #else 1832 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1833 // only _compilation_id is incremented. 1834 return Atomic::add(&_compilation_id, 1); 1835 #endif 1836 } 1837 1838 // ------------------------------------------------------------------ 1839 // CompileBroker::assign_compile_id_unlocked 1840 // 1841 // Public wrapper for assign_compile_id that acquires the needed locks 1842 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1843 return assign_compile_id(method, osr_bci); 1844 } 1845 1846 // ------------------------------------------------------------------ 1847 // CompileBroker::create_compile_task 1848 // 1849 // Create a CompileTask object representing the current request for 1850 // compilation. Add this task to the queue. 1851 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1852 int compile_id, 1853 const methodHandle& method, 1854 int osr_bci, 1855 int comp_level, 1856 int hot_count, 1857 AOTCodeEntry* aot_code_entry, 1858 CompileTask::CompileReason compile_reason, 1859 bool requires_online_compilation, 1860 bool blocking) { 1861 CompileTask* new_task = new CompileTask(compile_id, method, osr_bci, comp_level, 1862 hot_count, aot_code_entry, compile_reason, queue, 1863 requires_online_compilation, blocking); 1864 return new_task; 1865 } 1866 1867 #if INCLUDE_JVMCI 1868 // The number of milliseconds to wait before checking if 1869 // JVMCI compilation has made progress. 1870 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1871 1872 // The number of JVMCI compilation progress checks that must fail 1873 // before unblocking a thread waiting for a blocking compilation. 1874 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1875 1876 /** 1877 * Waits for a JVMCI compiler to complete a given task. This thread 1878 * waits until either the task completes or it sees no JVMCI compilation 1879 * progress for N consecutive milliseconds where N is 1880 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1881 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1882 * 1883 * @return true if this thread needs to delete the task 1884 */ 1885 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1886 assert(UseJVMCICompiler, "sanity"); 1887 MonitorLocker ml(thread, CompileTaskWait_lock); 1888 int progress_wait_attempts = 0; 1889 jint thread_jvmci_compilation_ticks = 0; 1890 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1891 while (!task->is_complete() && !is_compilation_disabled_forever() && 1892 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1893 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1894 1895 bool progress; 1896 if (jvmci_compile_state != nullptr) { 1897 jint ticks = jvmci_compile_state->compilation_ticks(); 1898 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1899 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1900 thread_jvmci_compilation_ticks = ticks; 1901 } else { 1902 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1903 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1904 // compilation ticks to determine whether JVMCI compilation 1905 // is still making progress through the JVMCI compiler queue. 1906 jint ticks = jvmci->global_compilation_ticks(); 1907 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1908 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1909 global_jvmci_compilation_ticks = ticks; 1910 } 1911 1912 if (!progress) { 1913 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1914 if (PrintCompilation) { 1915 task->print(tty, "wait for blocking compilation timed out"); 1916 } 1917 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1918 break; 1919 } 1920 } else { 1921 progress_wait_attempts = 0; 1922 } 1923 } 1924 task->clear_waiter(); 1925 return task->is_complete(); 1926 } 1927 #endif 1928 1929 /** 1930 * Wait for the compilation task to complete. 1931 */ 1932 void CompileBroker::wait_for_completion(CompileTask* task) { 1933 if (CIPrintCompileQueue) { 1934 ttyLocker ttyl; 1935 tty->print_cr("BLOCKING FOR COMPILE"); 1936 } 1937 1938 assert(task->is_blocking(), "can only wait on blocking task"); 1939 1940 JavaThread* thread = JavaThread::current(); 1941 1942 methodHandle method(thread, task->method()); 1943 bool free_task; 1944 #if INCLUDE_JVMCI 1945 AbstractCompiler* comp = compiler(task->comp_level()); 1946 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 1947 // It may return before compilation is completed. 1948 // Note that libjvmci should not pre-emptively unblock 1949 // a thread waiting for a compilation as it does not call 1950 // Java code and so is not deadlock prone like jarjvmci. 1951 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 1952 } else 1953 #endif 1954 { 1955 free_task = true; 1956 // Wait until the task is complete or compilation is shut down. 1957 MonitorLocker ml(thread, CompileTaskWait_lock); 1958 while (!task->is_complete() && !is_compilation_disabled_forever()) { 1959 ml.wait(); 1960 } 1961 } 1962 1963 // It is harmless to check this status without the lock, because 1964 // completion is a stable property. 1965 if (!task->is_complete()) { 1966 // Task is not complete, likely because we are exiting for compilation 1967 // shutdown. The task can still be reached through the queue, or executed 1968 // by some compiler thread. There is no coordination with either MCQ lock 1969 // holders or compilers, therefore we cannot delete the task. 1970 // 1971 // This will leave task allocated, which leaks it. At this (degraded) point, 1972 // it is less risky to abandon the task, rather than attempting a more 1973 // complicated deletion protocol. 1974 free_task = false; 1975 } 1976 1977 if (free_task) { 1978 assert(task->is_complete(), "Compilation should have completed"); 1979 assert(task->next() == nullptr && task->prev() == nullptr, 1980 "Completed task should not be in the queue"); 1981 1982 // By convention, the waiter is responsible for deleting a 1983 // blocking CompileTask. Since there is only one waiter ever 1984 // waiting on a CompileTask, we know that no one else will 1985 // be using this CompileTask; we can delete it. 1986 delete task; 1987 } 1988 } 1989 1990 void CompileBroker::wait_for_no_active_tasks() { 1991 CompileTask::wait_for_no_active_tasks(); 1992 } 1993 1994 /** 1995 * Initialize compiler thread(s) + compiler object(s). The postcondition 1996 * of this function is that the compiler runtimes are initialized and that 1997 * compiler threads can start compiling. 1998 */ 1999 bool CompileBroker::init_compiler_runtime() { 2000 CompilerThread* thread = CompilerThread::current(); 2001 AbstractCompiler* comp = thread->compiler(); 2002 // Final sanity check - the compiler object must exist 2003 guarantee(comp != nullptr, "Compiler object must exist"); 2004 2005 { 2006 // Must switch to native to allocate ci_env 2007 ThreadToNativeFromVM ttn(thread); 2008 ciEnv ci_env((CompileTask*)nullptr); 2009 // Cache Jvmti state 2010 ci_env.cache_jvmti_state(); 2011 // Cache DTrace flags 2012 ci_env.cache_dtrace_flags(); 2013 2014 // Switch back to VM state to do compiler initialization 2015 ThreadInVMfromNative tv(thread); 2016 2017 comp->initialize(); 2018 } 2019 2020 if (comp->is_failed()) { 2021 disable_compilation_forever(); 2022 // If compiler initialization failed, no compiler thread that is specific to a 2023 // particular compiler runtime will ever start to compile methods. 2024 shutdown_compiler_runtime(comp, thread); 2025 return false; 2026 } 2027 2028 // C1 specific check 2029 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 2030 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 2031 return false; 2032 } 2033 2034 return true; 2035 } 2036 2037 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 2038 BufferBlob* blob = thread->get_buffer_blob(); 2039 if (blob != nullptr) { 2040 blob->purge(); 2041 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2042 CodeCache::free(blob); 2043 } 2044 } 2045 2046 /** 2047 * If C1 and/or C2 initialization failed, we shut down all compilation. 2048 * We do this to keep things simple. This can be changed if it ever turns 2049 * out to be a problem. 2050 */ 2051 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 2052 free_buffer_blob_if_allocated(thread); 2053 2054 log_info(compilation)("shutdown_compiler_runtime: " INTPTR_FORMAT, p2i(thread)); 2055 2056 if (comp->should_perform_shutdown()) { 2057 // There are two reasons for shutting down the compiler 2058 // 1) compiler runtime initialization failed 2059 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 2060 warning("%s initialization failed. Shutting down all compilers", comp->name()); 2061 2062 // Only one thread per compiler runtime object enters here 2063 // Set state to shut down 2064 comp->set_shut_down(); 2065 2066 // Delete all queued compilation tasks to make compiler threads exit faster. 2067 if (_c1_compile_queue != nullptr) { 2068 _c1_compile_queue->delete_all(); 2069 } 2070 2071 if (_c2_compile_queue != nullptr) { 2072 _c2_compile_queue->delete_all(); 2073 } 2074 2075 // Set flags so that we continue execution with using interpreter only. 2076 UseCompiler = false; 2077 UseInterpreter = true; 2078 2079 // We could delete compiler runtimes also. However, there are references to 2080 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 2081 // fail. This can be done later if necessary. 2082 } 2083 } 2084 2085 /** 2086 * Helper function to create new or reuse old CompileLog. 2087 */ 2088 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 2089 if (!LogCompilation) return nullptr; 2090 2091 AbstractCompiler *compiler = ct->compiler(); 2092 bool c1 = compiler->is_c1(); 2093 jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects; 2094 assert(compiler_objects != nullptr, "must be initialized at this point"); 2095 CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs; 2096 assert(logs != nullptr, "must be initialized at this point"); 2097 int count = c1 ? _c1_count : _c2_count; 2098 2099 if (ct->queue() == _ac1_compile_queue || ct->queue() == _ac2_compile_queue) { 2100 compiler_objects = _ac_objects; 2101 logs = _ac_logs; 2102 count = _ac_count; 2103 } 2104 // Find Compiler number by its threadObj. 2105 oop compiler_obj = ct->threadObj(); 2106 int compiler_number = 0; 2107 bool found = false; 2108 for (; compiler_number < count; compiler_number++) { 2109 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 2110 found = true; 2111 break; 2112 } 2113 } 2114 assert(found, "Compiler must exist at this point"); 2115 2116 // Determine pointer for this thread's log. 2117 CompileLog** log_ptr = &logs[compiler_number]; 2118 2119 // Return old one if it exists. 2120 CompileLog* log = *log_ptr; 2121 if (log != nullptr) { 2122 ct->init_log(log); 2123 return log; 2124 } 2125 2126 // Create a new one and remember it. 2127 init_compiler_thread_log(); 2128 log = ct->log(); 2129 *log_ptr = log; 2130 return log; 2131 } 2132 2133 // ------------------------------------------------------------------ 2134 // CompileBroker::compiler_thread_loop 2135 // 2136 // The main loop run by a CompilerThread. 2137 void CompileBroker::compiler_thread_loop() { 2138 CompilerThread* thread = CompilerThread::current(); 2139 CompileQueue* queue = thread->queue(); 2140 // For the thread that initializes the ciObjectFactory 2141 // this resource mark holds all the shared objects 2142 ResourceMark rm; 2143 2144 // First thread to get here will initialize the compiler interface 2145 2146 { 2147 ASSERT_IN_VM; 2148 MutexLocker only_one (thread, CompileThread_lock); 2149 if (!ciObjectFactory::is_initialized()) { 2150 ciObjectFactory::initialize(); 2151 } 2152 } 2153 2154 // Open a log. 2155 CompileLog* log = get_log(thread); 2156 if (log != nullptr) { 2157 log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'", 2158 thread->name(), 2159 os::current_thread_id(), 2160 os::current_process_id()); 2161 log->stamp(); 2162 log->end_elem(); 2163 } 2164 2165 if (!thread->init_compilation_timeout()) { 2166 return; 2167 } 2168 2169 // If compiler thread/runtime initialization fails, exit the compiler thread 2170 if (!init_compiler_runtime()) { 2171 return; 2172 } 2173 2174 thread->start_idle_timer(); 2175 2176 // Poll for new compilation tasks as long as the JVM runs. Compilation 2177 // should only be disabled if something went wrong while initializing the 2178 // compiler runtimes. This, in turn, should not happen. The only known case 2179 // when compiler runtime initialization fails is if there is not enough free 2180 // space in the code cache to generate the necessary stubs, etc. 2181 while (!is_compilation_disabled_forever()) { 2182 // We need this HandleMark to avoid leaking VM handles. 2183 HandleMark hm(thread); 2184 2185 RecompilationPolicy::recompilation_step(AOTRecompilationWorkUnitSize, thread); 2186 2187 CompileTask* task = queue->get(thread); 2188 if (task == nullptr) { 2189 if (UseDynamicNumberOfCompilerThreads) { 2190 // Access compiler_count under lock to enforce consistency. 2191 MutexLocker only_one(CompileThread_lock); 2192 if (can_remove(thread, true)) { 2193 if (trace_compiler_threads()) { 2194 ResourceMark rm; 2195 stringStream msg; 2196 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 2197 thread->name(), thread->idle_time_millis()); 2198 print_compiler_threads(msg); 2199 } 2200 2201 // Notify compiler that the compiler thread is about to stop 2202 thread->compiler()->stopping_compiler_thread(thread); 2203 2204 free_buffer_blob_if_allocated(thread); 2205 return; // Stop this thread. 2206 } 2207 } 2208 } else { 2209 // Assign the task to the current thread. Mark this compilation 2210 // thread as active for the profiler. 2211 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 2212 // occurs after fetching the compile task off the queue. 2213 CompileTaskWrapper ctw(task); 2214 methodHandle method(thread, task->method()); 2215 2216 // Never compile a method if breakpoints are present in it 2217 if (method()->number_of_breakpoints() == 0) { 2218 // Compile the method. 2219 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 2220 invoke_compiler_on_method(task); 2221 thread->start_idle_timer(); 2222 } else { 2223 // After compilation is disabled, remove remaining methods from queue 2224 method->clear_queued_for_compilation(); 2225 method->set_pending_queue_processed(false); 2226 task->set_failure_reason("compilation is disabled"); 2227 } 2228 } else { 2229 task->set_failure_reason("breakpoints are present"); 2230 } 2231 2232 // Don't use AOT compielr threads for dynamic C1 and C2 threads creation. 2233 if (UseDynamicNumberOfCompilerThreads && 2234 (queue == _c1_compile_queue || queue == _c2_compile_queue)) { 2235 possibly_add_compiler_threads(thread); 2236 assert(!thread->has_pending_exception(), "should have been handled"); 2237 } 2238 } 2239 } 2240 2241 // Shut down compiler runtime 2242 shutdown_compiler_runtime(thread->compiler(), thread); 2243 } 2244 2245 // ------------------------------------------------------------------ 2246 // CompileBroker::init_compiler_thread_log 2247 // 2248 // Set up state required by +LogCompilation. 2249 void CompileBroker::init_compiler_thread_log() { 2250 CompilerThread* thread = CompilerThread::current(); 2251 char file_name[4*K]; 2252 FILE* fp = nullptr; 2253 intx thread_id = os::current_thread_id(); 2254 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2255 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2256 if (dir == nullptr) { 2257 jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log", 2258 thread_id, os::current_process_id()); 2259 } else { 2260 jio_snprintf(file_name, sizeof(file_name), 2261 "%s%shs_c%zu_pid%u.log", dir, 2262 os::file_separator(), thread_id, os::current_process_id()); 2263 } 2264 2265 fp = os::fopen(file_name, "wt"); 2266 if (fp != nullptr) { 2267 if (LogCompilation && Verbose) { 2268 tty->print_cr("Opening compilation log %s", file_name); 2269 } 2270 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2271 if (log == nullptr) { 2272 fclose(fp); 2273 return; 2274 } 2275 thread->init_log(log); 2276 2277 if (xtty != nullptr) { 2278 ttyLocker ttyl; 2279 // Record any per thread log files 2280 xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name); 2281 } 2282 return; 2283 } 2284 } 2285 warning("Cannot open log file: %s", file_name); 2286 } 2287 2288 void CompileBroker::log_metaspace_failure() { 2289 const char* message = "some methods may not be compiled because metaspace " 2290 "is out of memory"; 2291 if (CompilationLog::log() != nullptr) { 2292 CompilationLog::log()->log_metaspace_failure(message); 2293 } 2294 if (PrintCompilation) { 2295 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2296 } 2297 } 2298 2299 2300 // ------------------------------------------------------------------ 2301 // CompileBroker::set_should_block 2302 // 2303 // Set _should_block. 2304 // Call this from the VM, with Threads_lock held and a safepoint requested. 2305 void CompileBroker::set_should_block() { 2306 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2307 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2308 #ifndef PRODUCT 2309 if (PrintCompilation && (Verbose || WizardMode)) 2310 tty->print_cr("notifying compiler thread pool to block"); 2311 #endif 2312 _should_block = true; 2313 } 2314 2315 // ------------------------------------------------------------------ 2316 // CompileBroker::maybe_block 2317 // 2318 // Call this from the compiler at convenient points, to poll for _should_block. 2319 void CompileBroker::maybe_block() { 2320 if (_should_block) { 2321 #ifndef PRODUCT 2322 if (PrintCompilation && (Verbose || WizardMode)) 2323 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2324 #endif 2325 // If we are executing a task during the request to block, report the task 2326 // before disappearing. 2327 CompilerThread* thread = CompilerThread::current(); 2328 if (thread != nullptr) { 2329 CompileTask* task = thread->task(); 2330 if (task != nullptr) { 2331 if (PrintCompilation) { 2332 task->print(tty, "blocked"); 2333 } 2334 task->print_ul("blocked"); 2335 } 2336 } 2337 // Go to VM state and block for final VM shutdown safepoint. 2338 ThreadInVMfromNative tivfn(JavaThread::current()); 2339 assert(false, "Should never unblock from TIVNM entry"); 2340 } 2341 } 2342 2343 // wrapper for CodeCache::print_summary() 2344 static void codecache_print(bool detailed) 2345 { 2346 stringStream s; 2347 // Dump code cache into a buffer before locking the tty, 2348 { 2349 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2350 CodeCache::print_summary(&s, detailed); 2351 } 2352 ttyLocker ttyl; 2353 tty->print("%s", s.freeze()); 2354 } 2355 2356 // wrapper for CodeCache::print_summary() using outputStream 2357 static void codecache_print(outputStream* out, bool detailed) { 2358 stringStream s; 2359 2360 // Dump code cache into a buffer 2361 { 2362 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2363 CodeCache::print_summary(&s, detailed); 2364 } 2365 2366 char* remaining_log = s.as_string(); 2367 while (*remaining_log != '\0') { 2368 char* eol = strchr(remaining_log, '\n'); 2369 if (eol == nullptr) { 2370 out->print_cr("%s", remaining_log); 2371 remaining_log = remaining_log + strlen(remaining_log); 2372 } else { 2373 *eol = '\0'; 2374 out->print_cr("%s", remaining_log); 2375 remaining_log = eol + 1; 2376 } 2377 } 2378 } 2379 2380 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2381 int compilable, const char* failure_reason) { 2382 if (!AbortVMOnCompilationFailure) { 2383 return; 2384 } 2385 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2386 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2387 } 2388 if (compilable == ciEnv::MethodCompilable_never) { 2389 fatal("Never compilable: %s", failure_reason); 2390 } 2391 } 2392 2393 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2394 assert(task != nullptr, "invariant"); 2395 CompilerEvent::CompilationEvent::post(event, 2396 task->compile_id(), 2397 task->compiler()->type(), 2398 task->method(), 2399 task->comp_level(), 2400 task->is_success(), 2401 task->osr_bci() != CompileBroker::standard_entry_bci, 2402 task->nm_total_size(), 2403 task->num_inlined_bytecodes(), 2404 task->arena_bytes()); 2405 } 2406 2407 int DirectivesStack::_depth = 0; 2408 CompilerDirectives* DirectivesStack::_top = nullptr; 2409 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2410 2411 // Acquires Compilation_lock and waits for it to be notified 2412 // as long as WhiteBox::compilation_locked is true. 2413 static void whitebox_lock_compilation() { 2414 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2415 while (WhiteBox::compilation_locked) { 2416 locker.wait(); 2417 } 2418 } 2419 2420 // ------------------------------------------------------------------ 2421 // CompileBroker::invoke_compiler_on_method 2422 // 2423 // Compile a method. 2424 // 2425 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2426 task->print_ul(); 2427 elapsedTimer time; 2428 2429 DirectiveSet* directive = task->directive(); 2430 2431 CompilerThread* thread = CompilerThread::current(); 2432 ResourceMark rm(thread); 2433 2434 if (CompilationLog::log() != nullptr) { 2435 CompilationLog::log()->log_compile(thread, task); 2436 } 2437 2438 // Common flags. 2439 int compile_id = task->compile_id(); 2440 int osr_bci = task->osr_bci(); 2441 bool is_osr = (osr_bci != standard_entry_bci); 2442 bool should_log = (thread->log() != nullptr); 2443 bool should_break = false; 2444 bool should_print_compilation = PrintCompilation || directive->PrintCompilationOption; 2445 const int task_level = task->comp_level(); 2446 AbstractCompiler* comp = task->compiler(); 2447 { 2448 // create the handle inside it's own block so it can't 2449 // accidentally be referenced once the thread transitions to 2450 // native. The NoHandleMark before the transition should catch 2451 // any cases where this occurs in the future. 2452 methodHandle method(thread, task->method()); 2453 2454 assert(!method->is_native(), "no longer compile natives"); 2455 2456 // Update compile information when using perfdata. 2457 if (UsePerfData) { 2458 update_compile_perf_data(thread, method, is_osr); 2459 } 2460 2461 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2462 } 2463 2464 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2465 if (should_log && !directive->LogOption) { 2466 should_log = false; 2467 } 2468 2469 // Allocate a new set of JNI handles. 2470 JNIHandleMark jhm(thread); 2471 Method* target_handle = task->method(); 2472 int compilable = ciEnv::MethodCompilable; 2473 const char* failure_reason = nullptr; 2474 bool failure_reason_on_C_heap = false; 2475 const char* retry_message = nullptr; 2476 2477 #if INCLUDE_JVMCI 2478 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2479 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2480 2481 TraceTime t1("compilation", &time); 2482 EventCompilation event; 2483 JVMCICompileState compile_state(task, jvmci); 2484 JVMCIRuntime *runtime = nullptr; 2485 2486 if (JVMCI::in_shutdown()) { 2487 failure_reason = "in JVMCI shutdown"; 2488 retry_message = "not retryable"; 2489 compilable = ciEnv::MethodCompilable_never; 2490 } else if (compile_state.target_method_is_old()) { 2491 // Skip redefined methods 2492 failure_reason = "redefined method"; 2493 retry_message = "not retryable"; 2494 compilable = ciEnv::MethodCompilable_never; 2495 } else { 2496 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2497 if (env.init_error() != JNI_OK) { 2498 const char* msg = env.init_error_msg(); 2499 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2500 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2501 bool reason_on_C_heap = true; 2502 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2503 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2504 bool retryable = env.init_error() == JNI_ENOMEM; 2505 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2506 } 2507 if (failure_reason == nullptr) { 2508 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2509 // Must switch to native to block 2510 ThreadToNativeFromVM ttn(thread); 2511 whitebox_lock_compilation(); 2512 } 2513 methodHandle method(thread, target_handle); 2514 runtime = env.runtime(); 2515 runtime->compile_method(&env, jvmci, method, osr_bci); 2516 2517 failure_reason = compile_state.failure_reason(); 2518 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2519 if (!compile_state.retryable()) { 2520 retry_message = "not retryable"; 2521 compilable = ciEnv::MethodCompilable_not_at_tier; 2522 } 2523 if (!task->is_success()) { 2524 assert(failure_reason != nullptr, "must specify failure_reason"); 2525 } 2526 } 2527 } 2528 if (!task->is_success() && !JVMCI::in_shutdown()) { 2529 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2530 } 2531 if (event.should_commit()) { 2532 post_compilation_event(event, task); 2533 } 2534 2535 if (runtime != nullptr) { 2536 runtime->post_compile(thread); 2537 } 2538 } else 2539 #endif // INCLUDE_JVMCI 2540 { 2541 NoHandleMark nhm; 2542 ThreadToNativeFromVM ttn(thread); 2543 2544 ciEnv ci_env(task); 2545 if (should_break) { 2546 ci_env.set_break_at_compile(true); 2547 } 2548 if (should_log) { 2549 ci_env.set_log(thread->log()); 2550 } 2551 assert(thread->env() == &ci_env, "set by ci_env"); 2552 // The thread-env() field is cleared in ~CompileTaskWrapper. 2553 2554 // Cache Jvmti state 2555 bool method_is_old = ci_env.cache_jvmti_state(); 2556 2557 // Skip redefined methods 2558 if (method_is_old) { 2559 ci_env.record_method_not_compilable("redefined method", true); 2560 } 2561 2562 // Cache DTrace flags 2563 ci_env.cache_dtrace_flags(); 2564 2565 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2566 2567 TraceTime t1("compilation", &time); 2568 EventCompilation event; 2569 2570 if (comp == nullptr) { 2571 ci_env.record_method_not_compilable("no compiler"); 2572 } else if (!ci_env.failing()) { 2573 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2574 whitebox_lock_compilation(); 2575 } 2576 comp->compile_method(&ci_env, target, osr_bci, true, directive); 2577 2578 /* Repeat compilation without installing code for profiling purposes */ 2579 int repeat_compilation_count = directive->RepeatCompilationOption; 2580 while (repeat_compilation_count > 0) { 2581 ResourceMark rm(thread); 2582 task->print_ul("NO CODE INSTALLED"); 2583 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2584 repeat_compilation_count--; 2585 } 2586 } 2587 2588 2589 if (!ci_env.failing() && !task->is_success() && !task->is_precompile()) { 2590 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2591 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2592 // The compiler elected, without comment, not to register a result. 2593 // Do not attempt further compilations of this method. 2594 ci_env.record_method_not_compilable("compile failed"); 2595 } 2596 2597 // Copy this bit to the enclosing block: 2598 compilable = ci_env.compilable(); 2599 2600 if (ci_env.failing()) { 2601 // Duplicate the failure reason string, so that it outlives ciEnv 2602 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2603 failure_reason_on_C_heap = true; 2604 retry_message = ci_env.retry_message(); 2605 ci_env.report_failure(failure_reason); 2606 } 2607 2608 if (ci_env.failing()) { 2609 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2610 } 2611 if (event.should_commit()) { 2612 post_compilation_event(event, task); 2613 } 2614 } 2615 2616 if (failure_reason != nullptr) { 2617 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2618 if (CompilationLog::log() != nullptr) { 2619 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2620 } 2621 if (PrintCompilation || directive->PrintCompilationOption) { 2622 FormatBufferResource msg = retry_message != nullptr ? 2623 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2624 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2625 task->print(tty, msg); 2626 } 2627 } 2628 2629 task->mark_finished(os::elapsed_counter()); 2630 DirectivesStack::release(directive); 2631 2632 methodHandle method(thread, task->method()); 2633 2634 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2635 2636 collect_statistics(thread, time, task); 2637 2638 if (PrintCompilation && PrintCompilation2) { 2639 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2640 tty->print("%4d ", compile_id); // print compilation number 2641 tty->print("%s ", (is_osr ? "%" : (task->is_aot_load() ? (task->preload() ? "P" : "A") : " "))); 2642 if (task->is_success()) { 2643 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2644 } 2645 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2646 } 2647 2648 Log(compilation, codecache) log; 2649 if (log.is_debug()) { 2650 LogStream ls(log.debug()); 2651 codecache_print(&ls, /* detailed= */ false); 2652 } 2653 if (PrintCodeCacheOnCompilation) { 2654 codecache_print(/* detailed= */ false); 2655 } 2656 // Disable compilation, if required. 2657 switch (compilable) { 2658 case ciEnv::MethodCompilable_never: 2659 if (is_osr) 2660 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2661 else 2662 method->set_not_compilable_quietly("MethodCompilable_never"); 2663 break; 2664 case ciEnv::MethodCompilable_not_at_tier: 2665 if (is_osr) 2666 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2667 else 2668 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2669 break; 2670 } 2671 2672 // Note that the queued_for_compilation bits are cleared without 2673 // protection of a mutex. [They were set by the requester thread, 2674 // when adding the task to the compile queue -- at which time the 2675 // compile queue lock was held. Subsequently, we acquired the compile 2676 // queue lock to get this task off the compile queue; thus (to belabour 2677 // the point somewhat) our clearing of the bits must be occurring 2678 // only after the setting of the bits. See also 14012000 above. 2679 method->clear_queued_for_compilation(); 2680 method->set_pending_queue_processed(false); 2681 2682 if (should_print_compilation) { 2683 ResourceMark rm; 2684 task->print_tty(); 2685 } 2686 } 2687 2688 /** 2689 * The CodeCache is full. Print warning and disable compilation. 2690 * Schedule code cache cleaning so compilation can continue later. 2691 * This function needs to be called only from CodeCache::allocate(), 2692 * since we currently handle a full code cache uniformly. 2693 */ 2694 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2695 UseInterpreter = true; 2696 if (UseCompiler || AlwaysCompileLoopMethods ) { 2697 if (xtty != nullptr) { 2698 stringStream s; 2699 // Dump code cache state into a buffer before locking the tty, 2700 // because log_state() will use locks causing lock conflicts. 2701 CodeCache::log_state(&s); 2702 // Lock to prevent tearing 2703 ttyLocker ttyl; 2704 xtty->begin_elem("code_cache_full"); 2705 xtty->print("%s", s.freeze()); 2706 xtty->stamp(); 2707 xtty->end_elem(); 2708 } 2709 2710 #ifndef PRODUCT 2711 if (ExitOnFullCodeCache) { 2712 codecache_print(/* detailed= */ true); 2713 before_exit(JavaThread::current()); 2714 exit_globals(); // will delete tty 2715 vm_direct_exit(1); 2716 } 2717 #endif 2718 if (UseCodeCacheFlushing) { 2719 // Since code cache is full, immediately stop new compiles 2720 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2721 log_info(codecache)("Code cache is full - disabling compilation"); 2722 } 2723 } else { 2724 disable_compilation_forever(); 2725 } 2726 2727 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2728 } 2729 } 2730 2731 // ------------------------------------------------------------------ 2732 // CompileBroker::update_compile_perf_data 2733 // 2734 // Record this compilation for debugging purposes. 2735 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2736 ResourceMark rm; 2737 char* method_name = method->name()->as_C_string(); 2738 char current_method[CompilerCounters::cmname_buffer_length]; 2739 size_t maxLen = CompilerCounters::cmname_buffer_length; 2740 2741 const char* class_name = method->method_holder()->name()->as_C_string(); 2742 2743 size_t s1len = strlen(class_name); 2744 size_t s2len = strlen(method_name); 2745 2746 // check if we need to truncate the string 2747 if (s1len + s2len + 2 > maxLen) { 2748 2749 // the strategy is to lop off the leading characters of the 2750 // class name and the trailing characters of the method name. 2751 2752 if (s2len + 2 > maxLen) { 2753 // lop of the entire class name string, let snprintf handle 2754 // truncation of the method name. 2755 class_name += s1len; // null string 2756 } 2757 else { 2758 // lop off the extra characters from the front of the class name 2759 class_name += ((s1len + s2len + 2) - maxLen); 2760 } 2761 } 2762 2763 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2764 2765 int last_compile_type = normal_compile; 2766 if (CICountOSR && is_osr) { 2767 last_compile_type = osr_compile; 2768 } else if (CICountNative && method->is_native()) { 2769 last_compile_type = native_compile; 2770 } 2771 2772 CompilerCounters* counters = thread->counters(); 2773 counters->set_current_method(current_method); 2774 counters->set_compile_type((jlong) last_compile_type); 2775 } 2776 2777 // ------------------------------------------------------------------ 2778 // CompileBroker::collect_statistics 2779 // 2780 // Collect statistics about the compilation. 2781 2782 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2783 bool success = task->is_success(); 2784 methodHandle method (thread, task->method()); 2785 int compile_id = task->compile_id(); 2786 bool is_osr = (task->osr_bci() != standard_entry_bci); 2787 const int comp_level = task->comp_level(); 2788 CompilerCounters* counters = thread->counters(); 2789 2790 MutexLocker locker(CompileStatistics_lock); 2791 2792 // _perf variables are production performance counters which are 2793 // updated regardless of the setting of the CITime and CITimeEach flags 2794 // 2795 2796 // account all time, including bailouts and failures in this counter; 2797 // C1 and C2 counters are counting both successful and unsuccessful compiles 2798 _t_total_compilation.add(&time); 2799 2800 // Update compilation times. Used by the implementation of JFR CompilerStatistics 2801 // and java.lang.management.CompilationMXBean. 2802 _perf_total_compilation->inc(time.ticks()); 2803 _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time); 2804 2805 if (!success) { 2806 _total_bailout_count++; 2807 if (UsePerfData) { 2808 _perf_last_failed_method->set_value(counters->current_method()); 2809 _perf_last_failed_type->set_value(counters->compile_type()); 2810 _perf_total_bailout_count->inc(); 2811 } 2812 _t_bailedout_compilation.add(&time); 2813 2814 if (CITime || log_is_enabled(Info, init)) { 2815 CompilerStatistics* stats = nullptr; 2816 if (task->is_aot_load()) { 2817 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2818 stats = &_aot_stats_per_level[level]; 2819 } else { 2820 stats = &_stats_per_level[comp_level-1]; 2821 } 2822 stats->_bailout.update(time, 0); 2823 } 2824 } else if (!task->is_success()) { 2825 if (UsePerfData) { 2826 _perf_last_invalidated_method->set_value(counters->current_method()); 2827 _perf_last_invalidated_type->set_value(counters->compile_type()); 2828 _perf_total_invalidated_count->inc(); 2829 } 2830 _total_invalidated_count++; 2831 _t_invalidated_compilation.add(&time); 2832 2833 if (CITime || log_is_enabled(Info, init)) { 2834 CompilerStatistics* stats = nullptr; 2835 if (task->is_aot_load()) { 2836 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2837 stats = &_aot_stats_per_level[level]; 2838 } else { 2839 stats = &_stats_per_level[comp_level-1]; 2840 } 2841 stats->_invalidated.update(time, 0); 2842 } 2843 } else { 2844 // Compilation succeeded 2845 if (CITime || log_is_enabled(Info, init)) { 2846 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2847 if (is_osr) { 2848 _t_osr_compilation.add(&time); 2849 _sum_osr_bytes_compiled += bytes_compiled; 2850 } else { 2851 _t_standard_compilation.add(&time); 2852 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2853 } 2854 2855 // Collect statistic per compilation level 2856 if (task->is_aot_load()) { 2857 _aot_stats._standard.update(time, bytes_compiled); 2858 _aot_stats._nmethods_size += task->nm_total_size(); 2859 _aot_stats._nmethods_code_size += task->nm_insts_size(); 2860 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2861 CompilerStatistics* stats = &_aot_stats_per_level[level]; 2862 stats->_standard.update(time, bytes_compiled); 2863 stats->_nmethods_size += task->nm_total_size(); 2864 stats->_nmethods_code_size += task->nm_insts_size(); 2865 } else if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2866 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2867 if (is_osr) { 2868 stats->_osr.update(time, bytes_compiled); 2869 } else { 2870 stats->_standard.update(time, bytes_compiled); 2871 } 2872 stats->_nmethods_size += task->nm_total_size(); 2873 stats->_nmethods_code_size += task->nm_insts_size(); 2874 } else { 2875 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2876 } 2877 2878 // Collect statistic per compiler 2879 AbstractCompiler* comp = task->compiler(); 2880 if (comp && !task->is_aot_load()) { 2881 CompilerStatistics* stats = comp->stats(); 2882 if (is_osr) { 2883 stats->_osr.update(time, bytes_compiled); 2884 } else { 2885 stats->_standard.update(time, bytes_compiled); 2886 } 2887 stats->_nmethods_size += task->nm_total_size(); 2888 stats->_nmethods_code_size += task->nm_insts_size(); 2889 } else if (!task->is_aot_load()) { // if (!comp) 2890 assert(false, "Compiler object must exist"); 2891 } 2892 } 2893 2894 if (UsePerfData) { 2895 // save the name of the last method compiled 2896 _perf_last_method->set_value(counters->current_method()); 2897 _perf_last_compile_type->set_value(counters->compile_type()); 2898 _perf_last_compile_size->set_value(method->code_size() + 2899 task->num_inlined_bytecodes()); 2900 if (is_osr) { 2901 _perf_osr_compilation->inc(time.ticks()); 2902 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2903 } else { 2904 _perf_standard_compilation->inc(time.ticks()); 2905 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2906 } 2907 } 2908 2909 if (CITimeEach) { 2910 double compile_time = time.seconds(); 2911 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2912 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2913 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2914 } 2915 2916 // Collect counts of successful compilations 2917 _sum_nmethod_size += task->nm_total_size(); 2918 _sum_nmethod_code_size += task->nm_insts_size(); 2919 _total_compile_count++; 2920 2921 if (UsePerfData) { 2922 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2923 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2924 _perf_total_compile_count->inc(); 2925 } 2926 2927 if (is_osr) { 2928 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2929 _total_osr_compile_count++; 2930 } else { 2931 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2932 _total_standard_compile_count++; 2933 } 2934 } 2935 // set the current method for the thread to null 2936 if (UsePerfData) counters->set_current_method(""); 2937 } 2938 2939 const char* CompileBroker::compiler_name(int comp_level) { 2940 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2941 if (comp == nullptr) { 2942 return "no compiler"; 2943 } else { 2944 return (comp->name()); 2945 } 2946 } 2947 2948 jlong CompileBroker::total_compilation_ticks() { 2949 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2950 } 2951 2952 void CompileBroker::log_not_entrant(nmethod* nm) { 2953 _total_not_entrant_count++; 2954 if (CITime || log_is_enabled(Info, init)) { 2955 CompilerStatistics* stats = nullptr; 2956 int level = nm->comp_level(); 2957 if (nm->is_aot()) { 2958 if (nm->preloaded()) { 2959 assert(level == CompLevel_full_optimization, "%d", level); 2960 level = CompLevel_full_optimization + 1; 2961 } 2962 stats = &_aot_stats_per_level[level - 1]; 2963 } else { 2964 stats = &_stats_per_level[level - 1]; 2965 } 2966 stats->_made_not_entrant._count++; 2967 } 2968 } 2969 2970 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 2971 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 2972 name, stats->bytes_per_second(), 2973 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 2974 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 2975 stats->_nmethods_size, stats->_nmethods_code_size); 2976 } 2977 2978 static void print_helper(outputStream* st, const char* name, CompilerStatistics::Data data, bool print_time = true) { 2979 if (data._count > 0) { 2980 st->print("; %s: %4u methods", name, data._count); 2981 if (print_time) { 2982 st->print(" (in %.3fs)", data._time.seconds()); 2983 } 2984 } 2985 } 2986 2987 static void print_tier_helper(outputStream* st, const char* prefix, int tier, CompilerStatistics* stats) { 2988 st->print(" %s%d: %5u methods", prefix, tier, stats->_standard._count); 2989 if (stats->_standard._count > 0) { 2990 st->print(" (in %.3fs)", stats->_standard._time.seconds()); 2991 } 2992 print_helper(st, "osr", stats->_osr); 2993 print_helper(st, "bailout", stats->_bailout); 2994 print_helper(st, "invalid", stats->_invalidated); 2995 print_helper(st, "not_entrant", stats->_made_not_entrant, false); 2996 st->cr(); 2997 } 2998 2999 static void print_queue_info(outputStream* st, CompileQueue* queue) { 3000 if (queue != nullptr) { 3001 MutexLocker ml(queue->lock()); 3002 3003 uint total_cnt = 0; 3004 uint active_cnt = 0; 3005 for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3006 guarantee(jt != nullptr, ""); 3007 if (jt->is_Compiler_thread()) { 3008 CompilerThread* ct = (CompilerThread*)jt; 3009 3010 guarantee(ct != nullptr, ""); 3011 if (ct->queue() == queue) { 3012 ++total_cnt; 3013 CompileTask* task = ct->task(); 3014 if (task != nullptr) { 3015 ++active_cnt; 3016 } 3017 } 3018 } 3019 } 3020 3021 st->print(" %s (%d active / %d total threads): %u tasks", 3022 queue->name(), active_cnt, total_cnt, queue->size()); 3023 if (queue->size() > 0) { 3024 uint counts[] = {0, 0, 0, 0, 0}; // T1 ... T5 3025 for (CompileTask* task = queue->first(); task != nullptr; task = task->next()) { 3026 int tier = task->comp_level(); 3027 if (task->is_aot_load() && task->preload()) { 3028 assert(tier == CompLevel_full_optimization, "%d", tier); 3029 tier = CompLevel_full_optimization + 1; 3030 } 3031 counts[tier-1]++; 3032 } 3033 st->print(":"); 3034 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3035 uint cnt = counts[tier-1]; 3036 if (cnt > 0) { 3037 st->print(" T%d: %u tasks;", tier, cnt); 3038 } 3039 } 3040 } 3041 st->cr(); 3042 3043 // for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3044 // guarantee(jt != nullptr, ""); 3045 // if (jt->is_Compiler_thread()) { 3046 // CompilerThread* ct = (CompilerThread*)jt; 3047 // 3048 // guarantee(ct != nullptr, ""); 3049 // if (ct->queue() == queue) { 3050 // ResourceMark rm; 3051 // CompileTask* task = ct->task(); 3052 // st->print(" %s: ", ct->name_raw()); 3053 // if (task != nullptr) { 3054 // task->print(st, nullptr, true /*short_form*/, false /*cr*/); 3055 // } 3056 // st->cr(); 3057 // } 3058 // } 3059 // } 3060 } 3061 } 3062 void CompileBroker::print_statistics_on(outputStream* st) { 3063 st->print_cr(" Total: %u methods; %u bailouts, %u invalidated, %u non_entrant", 3064 _total_compile_count, _total_bailout_count, _total_invalidated_count, _total_not_entrant_count); 3065 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3066 print_tier_helper(st, "Tier", tier, &_stats_per_level[tier-1]); 3067 } 3068 st->cr(); 3069 3070 if (AOTCodeCaching) { 3071 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3072 if (tier != CompLevel_full_profile) { 3073 print_tier_helper(st, "AOT Code T", tier, &_aot_stats_per_level[tier - 1]); 3074 } 3075 } 3076 st->cr(); 3077 } 3078 3079 print_queue_info(st, _c1_compile_queue); 3080 print_queue_info(st, _c2_compile_queue); 3081 print_queue_info(st, _ac1_compile_queue); 3082 print_queue_info(st, _ac2_compile_queue); 3083 } 3084 3085 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 3086 if (per_compiler) { 3087 if (aggregate) { 3088 tty->cr(); 3089 tty->print_cr("[%dms] Individual compiler times (for compiled methods only)", (int)tty->time_stamp().milliseconds()); 3090 tty->print_cr("------------------------------------------------"); 3091 tty->cr(); 3092 } 3093 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 3094 AbstractCompiler* comp = _compilers[i]; 3095 if (comp != nullptr) { 3096 print_times(comp->name(), comp->stats()); 3097 } 3098 } 3099 if (_aot_stats._standard._count > 0) { 3100 print_times("SC", &_aot_stats); 3101 } 3102 if (aggregate) { 3103 tty->cr(); 3104 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 3105 tty->print_cr("------------------------------------------------"); 3106 tty->cr(); 3107 } 3108 char tier_name[256]; 3109 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3110 CompilerStatistics* stats = &_stats_per_level[tier-1]; 3111 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 3112 print_times(tier_name, stats); 3113 } 3114 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3115 CompilerStatistics* stats = &_aot_stats_per_level[tier-1]; 3116 if (stats->_standard._bytes > 0) { 3117 os::snprintf_checked(tier_name, sizeof(tier_name), "AOT Code T%d", tier); 3118 print_times(tier_name, stats); 3119 } 3120 } 3121 } 3122 3123 if (!aggregate) { 3124 return; 3125 } 3126 3127 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 3128 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 3129 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 3130 3131 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 3132 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 3133 3134 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 3135 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 3136 uint total_compile_count = CompileBroker::_total_compile_count; 3137 uint total_bailout_count = CompileBroker::_total_bailout_count; 3138 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 3139 3140 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 3141 uint nmethods_size = CompileBroker::_sum_nmethod_size; 3142 3143 tty->cr(); 3144 tty->print_cr("Accumulated compiler times"); 3145 tty->print_cr("----------------------------------------------------------"); 3146 //0000000000111111111122222222223333333333444444444455555555556666666666 3147 //0123456789012345678901234567890123456789012345678901234567890123456789 3148 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 3149 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 3150 standard_compilation.seconds(), 3151 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 3152 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 3153 CompileBroker::_t_bailedout_compilation.seconds(), 3154 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 3155 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 3156 osr_compilation.seconds(), 3157 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 3158 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 3159 CompileBroker::_t_invalidated_compilation.seconds(), 3160 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 3161 3162 if (AOTCodeCaching) { // Check flags because AOT code cache could be closed already 3163 tty->cr(); 3164 AOTCodeCache::print_timers_on(tty); 3165 } 3166 AbstractCompiler *comp = compiler(CompLevel_simple); 3167 if (comp != nullptr) { 3168 tty->cr(); 3169 comp->print_timers(); 3170 } 3171 comp = compiler(CompLevel_full_optimization); 3172 if (comp != nullptr) { 3173 tty->cr(); 3174 comp->print_timers(); 3175 } 3176 #if INCLUDE_JVMCI 3177 if (EnableJVMCI) { 3178 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 3179 if (jvmci_comp != nullptr && jvmci_comp != comp) { 3180 tty->cr(); 3181 jvmci_comp->print_timers(); 3182 } 3183 } 3184 #endif 3185 3186 tty->cr(); 3187 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 3188 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 3189 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 3190 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 3191 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 3192 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 3193 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 3194 double tcs = total_compilation.seconds(); 3195 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 3196 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 3197 tty->cr(); 3198 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 3199 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 3200 } 3201 3202 // Print general/accumulated JIT information. 3203 void CompileBroker::print_info(outputStream *out) { 3204 if (out == nullptr) out = tty; 3205 out->cr(); 3206 out->print_cr("======================"); 3207 out->print_cr(" General JIT info "); 3208 out->print_cr("======================"); 3209 out->cr(); 3210 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 3211 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 3212 out->cr(); 3213 out->print_cr("CodeCache overview"); 3214 out->print_cr("--------------------------------------------------------"); 3215 out->cr(); 3216 out->print_cr(" Reserved size : %7zu KB", CodeCache::max_capacity() / K); 3217 out->print_cr(" Committed size : %7zu KB", CodeCache::capacity() / K); 3218 out->print_cr(" Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K); 3219 out->cr(); 3220 } 3221 3222 // Note: tty_lock must not be held upon entry to this function. 3223 // Print functions called from herein do "micro-locking" on tty_lock. 3224 // That's a tradeoff which keeps together important blocks of output. 3225 // At the same time, continuous tty_lock hold time is kept in check, 3226 // preventing concurrently printing threads from stalling a long time. 3227 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 3228 TimeStamp ts_total; 3229 TimeStamp ts_global; 3230 TimeStamp ts; 3231 3232 bool allFun = !strcmp(function, "all"); 3233 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 3234 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 3235 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 3236 bool methodCount = !strcmp(function, "MethodCount") || allFun; 3237 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 3238 bool methodAge = !strcmp(function, "MethodAge") || allFun; 3239 bool methodNames = !strcmp(function, "MethodNames") || allFun; 3240 bool discard = !strcmp(function, "discard") || allFun; 3241 3242 if (out == nullptr) { 3243 out = tty; 3244 } 3245 3246 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 3247 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 3248 out->cr(); 3249 return; 3250 } 3251 3252 ts_total.update(); // record starting point 3253 3254 if (aggregate) { 3255 print_info(out); 3256 } 3257 3258 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 3259 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 3260 // When we request individual parts of the analysis via the jcmd interface, it is possible 3261 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 3262 // updated the aggregated data. We will then see a modified, but again consistent, view 3263 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 3264 // a lock across user interaction. 3265 3266 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 3267 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 3268 // leading to an unnecessarily long hold time of the other locks we acquired before. 3269 ts.update(); // record starting point 3270 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 3271 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 3272 3273 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 3274 // Unfortunately, such protection is not sufficient: 3275 // When a new nmethod is created via ciEnv::register_method(), the 3276 // Compile_lock is taken first. After some initializations, 3277 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 3278 // immediately (after finalizing the oop references). To lock out concurrent 3279 // modifiers, we have to grab both locks as well in the described sequence. 3280 // 3281 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 3282 // for the entire duration of aggregation and printing. That makes sure we see 3283 // a consistent picture and do not run into issues caused by concurrent alterations. 3284 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 3285 !Compile_lock->owned_by_self(); 3286 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 3287 !CodeCache_lock->owned_by_self(); 3288 bool take_global_lock_1 = allFun && should_take_Compile_lock; 3289 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 3290 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 3291 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 3292 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 3293 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 3294 3295 ts_global.update(); // record starting point 3296 3297 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 3298 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 3299 if (take_global_locks) { 3300 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 3301 ts_global.update(); // record starting point 3302 } 3303 3304 if (aggregate) { 3305 ts.update(); // record starting point 3306 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 3307 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 3308 if (take_function_locks) { 3309 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 3310 } 3311 3312 ts.update(); // record starting point 3313 CodeCache::aggregate(out, granularity); 3314 if (take_function_locks) { 3315 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 3316 } 3317 } 3318 3319 if (usedSpace) CodeCache::print_usedSpace(out); 3320 if (freeSpace) CodeCache::print_freeSpace(out); 3321 if (methodCount) CodeCache::print_count(out); 3322 if (methodSpace) CodeCache::print_space(out); 3323 if (methodAge) CodeCache::print_age(out); 3324 if (methodNames) { 3325 if (allFun) { 3326 // print_names() can only be used safely if the locks have been continuously held 3327 // since aggregation begin. That is true only for function "all". 3328 CodeCache::print_names(out); 3329 } else { 3330 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 3331 } 3332 } 3333 if (discard) CodeCache::discard(out); 3334 3335 if (take_global_locks) { 3336 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 3337 } 3338 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 3339 }