1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "cds/cdsConfig.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/aotCodeCache.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/codeHeapState.hpp"
  34 #include "code/dependencyContext.hpp"
  35 #include "compiler/compilationLog.hpp"
  36 #include "compiler/compilationMemoryStatistic.hpp"
  37 #include "compiler/compilationPolicy.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/compileLog.hpp"
  40 #include "compiler/compilerDefinitions.inline.hpp"
  41 #include "compiler/compilerEvent.hpp"
  42 #include "compiler/compilerOracle.hpp"
  43 #include "compiler/directivesParser.hpp"
  44 #include "compiler/recompilationPolicy.hpp"
  45 #include "gc/shared/memAllocator.hpp"
  46 #include "interpreter/linkResolver.hpp"
  47 #include "jfr/jfrEvents.hpp"
  48 #include "jvm.h"
  49 #include "logging/log.hpp"
  50 #include "logging/logStream.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/method.inline.hpp"
  55 #include "oops/methodData.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "prims/nativeLookup.hpp"
  59 #include "prims/whitebox.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/escapeBarrier.hpp"
  62 #include "runtime/globals_extension.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/init.hpp"
  65 #include "runtime/interfaceSupport.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/jniHandles.inline.hpp"
  69 #include "runtime/os.hpp"
  70 #include "runtime/perfData.hpp"
  71 #include "runtime/safepointVerifiers.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/threads.hpp"
  74 #include "runtime/threadSMR.inline.hpp"
  75 #include "runtime/timerTrace.hpp"
  76 #include "runtime/vframe.inline.hpp"
  77 #include "services/management.hpp"
  78 #include "utilities/debug.hpp"
  79 #include "utilities/dtrace.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/formatBuffer.hpp"
  82 #include "utilities/macros.hpp"
  83 #include "utilities/nonblockingQueue.inline.hpp"
  84 #ifdef COMPILER1
  85 #include "c1/c1_Compiler.hpp"
  86 #endif
  87 #ifdef COMPILER2
  88 #include "opto/c2compiler.hpp"
  89 #endif
  90 #if INCLUDE_JVMCI
  91 #include "jvmci/jvmciEnv.hpp"
  92 #include "jvmci/jvmciRuntime.hpp"
  93 #endif
  94 
  95 #ifdef DTRACE_ENABLED
  96 
  97 // Only bother with this argument setup if dtrace is available
  98 
  99 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
 100   {                                                                      \
 101     Symbol* klass_name = (method)->klass_name();                         \
 102     Symbol* name = (method)->name();                                     \
 103     Symbol* signature = (method)->signature();                           \
 104     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
 105       (char *) comp_name, strlen(comp_name),                             \
 106       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 107       (char *) name->bytes(), name->utf8_length(),                       \
 108       (char *) signature->bytes(), signature->utf8_length());            \
 109   }
 110 
 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
 112   {                                                                      \
 113     Symbol* klass_name = (method)->klass_name();                         \
 114     Symbol* name = (method)->name();                                     \
 115     Symbol* signature = (method)->signature();                           \
 116     HOTSPOT_METHOD_COMPILE_END(                                          \
 117       (char *) comp_name, strlen(comp_name),                             \
 118       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 119       (char *) name->bytes(), name->utf8_length(),                       \
 120       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 121   }
 122 
 123 #else //  ndef DTRACE_ENABLED
 124 
 125 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 126 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 127 
 128 #endif // ndef DTRACE_ENABLED
 129 
 130 bool CompileBroker::_initialized = false;
 131 volatile bool CompileBroker::_should_block = false;
 132 volatile int  CompileBroker::_print_compilation_warning = 0;
 133 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 134 
 135 // The installed compiler(s)
 136 AbstractCompiler* CompileBroker::_compilers[3];
 137 
 138 // The maximum numbers of compiler threads to be determined during startup.
 139 int CompileBroker::_c1_count = 0;
 140 int CompileBroker::_c2_count = 0;
 141 int CompileBroker::_c3_count = 0;
 142 int CompileBroker::_ac_count = 0;
 143 
 144 // An array of compiler names as Java String objects
 145 jobject* CompileBroker::_compiler1_objects = nullptr;
 146 jobject* CompileBroker::_compiler2_objects = nullptr;
 147 jobject* CompileBroker::_compiler3_objects = nullptr;
 148 jobject* CompileBroker::_ac_objects = nullptr;
 149 
 150 CompileLog** CompileBroker::_compiler1_logs = nullptr;
 151 CompileLog** CompileBroker::_compiler2_logs = nullptr;
 152 CompileLog** CompileBroker::_compiler3_logs = nullptr;
 153 CompileLog** CompileBroker::_ac_logs = nullptr;
 154 
 155 // These counters are used to assign an unique ID to each compilation.
 156 volatile jint CompileBroker::_compilation_id     = 0;
 157 volatile jint CompileBroker::_osr_compilation_id = 0;
 158 volatile jint CompileBroker::_native_compilation_id = 0;
 159 
 160 // Performance counters
 161 PerfCounter* CompileBroker::_perf_total_compilation = nullptr;
 162 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr;
 163 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr;
 164 
 165 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr;
 166 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr;
 167 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr;
 168 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr;
 169 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr;
 170 
 171 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr;
 172 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr;
 173 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr;
 174 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr;
 175 
 176 PerfStringVariable* CompileBroker::_perf_last_method = nullptr;
 177 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr;
 178 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr;
 179 PerfVariable*       CompileBroker::_perf_last_compile_type = nullptr;
 180 PerfVariable*       CompileBroker::_perf_last_compile_size = nullptr;
 181 PerfVariable*       CompileBroker::_perf_last_failed_type = nullptr;
 182 PerfVariable*       CompileBroker::_perf_last_invalidated_type = nullptr;
 183 
 184 // Timers and counters for generating statistics
 185 elapsedTimer CompileBroker::_t_total_compilation;
 186 elapsedTimer CompileBroker::_t_osr_compilation;
 187 elapsedTimer CompileBroker::_t_standard_compilation;
 188 elapsedTimer CompileBroker::_t_invalidated_compilation;
 189 elapsedTimer CompileBroker::_t_bailedout_compilation;
 190 
 191 uint CompileBroker::_total_bailout_count            = 0;
 192 uint CompileBroker::_total_invalidated_count        = 0;
 193 uint CompileBroker::_total_not_entrant_count        = 0;
 194 uint CompileBroker::_total_compile_count            = 0;
 195 uint CompileBroker::_total_osr_compile_count        = 0;
 196 uint CompileBroker::_total_standard_compile_count   = 0;
 197 uint CompileBroker::_total_compiler_stopped_count   = 0;
 198 uint CompileBroker::_total_compiler_restarted_count = 0;
 199 
 200 uint CompileBroker::_sum_osr_bytes_compiled         = 0;
 201 uint CompileBroker::_sum_standard_bytes_compiled    = 0;
 202 uint CompileBroker::_sum_nmethod_size               = 0;
 203 uint CompileBroker::_sum_nmethod_code_size          = 0;
 204 
 205 jlong CompileBroker::_peak_compilation_time        = 0;
 206 
 207 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 208 CompilerStatistics CompileBroker::_aot_stats;
 209 CompilerStatistics CompileBroker::_aot_stats_per_level[CompLevel_full_optimization + 1];
 210 
 211 CompileQueue* CompileBroker::_c3_compile_queue     = nullptr;
 212 CompileQueue* CompileBroker::_c2_compile_queue     = nullptr;
 213 CompileQueue* CompileBroker::_c1_compile_queue     = nullptr;
 214 CompileQueue* CompileBroker::_ac1_compile_queue    = nullptr;
 215 CompileQueue* CompileBroker::_ac2_compile_queue    = nullptr;
 216 
 217 bool compileBroker_init() {
 218   if (LogEvents) {
 219     CompilationLog::init();
 220   }
 221 
 222   // init directives stack, adding default directive
 223   DirectivesStack::init();
 224 
 225   if (DirectivesParser::has_file()) {
 226     return DirectivesParser::parse_from_flag();
 227   } else if (CompilerDirectivesPrint) {
 228     // Print default directive even when no other was added
 229     DirectivesStack::print(tty);
 230   }
 231 
 232   return true;
 233 }
 234 
 235 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 236   CompilerThread* thread = CompilerThread::current();
 237   thread->set_task(task);
 238   CompileLog*     log  = thread->log();
 239   if (log != nullptr && !task->is_unloaded())  task->log_task_start(log);
 240 }
 241 
 242 CompileTaskWrapper::~CompileTaskWrapper() {
 243   CompilerThread* thread = CompilerThread::current();
 244   CompileTask* task = thread->task();
 245   CompileLog*  log  = thread->log();
 246   AbstractCompiler* comp = thread->compiler();
 247   if (log != nullptr && !task->is_unloaded())  task->log_task_done(log);
 248   thread->set_task(nullptr);
 249   thread->set_env(nullptr);
 250   if (task->is_blocking()) {
 251     bool free_task = false;
 252     {
 253       MutexLocker notifier(thread, task->lock());
 254       task->mark_complete();
 255 #if INCLUDE_JVMCI
 256       if (comp->is_jvmci()) {
 257         if (!task->has_waiter()) {
 258           // The waiting thread timed out and thus did not free the task.
 259           free_task = true;
 260         }
 261         task->set_blocking_jvmci_compile_state(nullptr);
 262       }
 263 #endif
 264       if (!free_task) {
 265         // Notify the waiting thread that the compilation has completed
 266         // so that it can free the task.
 267         task->lock()->notify_all();
 268       }
 269     }
 270     if (free_task) {
 271       // The task can only be freed once the task lock is released.
 272       CompileTask::free(task);
 273     }
 274   } else {
 275     task->mark_complete();
 276 
 277     // By convention, the compiling thread is responsible for
 278     // recycling a non-blocking CompileTask.
 279     CompileTask::free(task);
 280   }
 281 }
 282 
 283 /**
 284  * Check if a CompilerThread can be removed and update count if requested.
 285  */
 286 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 287   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 288   if (!ReduceNumberOfCompilerThreads) return false;
 289 
 290   if (RecompilationPolicy::have_recompilation_work()) return false;
 291 
 292   AbstractCompiler *compiler = ct->compiler();
 293   int compiler_count = compiler->num_compiler_threads();
 294   bool c1 = compiler->is_c1();
 295 
 296   // Keep at least 1 compiler thread of each type.
 297   if (compiler_count < 2) return false;
 298 
 299   // Keep thread alive for at least some time.
 300   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 301 
 302 #if INCLUDE_JVMCI
 303   if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 304     // Handles for JVMCI thread objects may get released concurrently.
 305     if (do_it) {
 306       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 307     } else {
 308       // Skip check if it's the last thread and let caller check again.
 309       return true;
 310     }
 311   }
 312 #endif
 313 
 314   // We only allow the last compiler thread of each type to get removed.
 315   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 316                              : compiler2_object(compiler_count - 1);
 317   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 318     if (do_it) {
 319       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 320       compiler->set_num_compiler_threads(compiler_count - 1);
 321 #if INCLUDE_JVMCI
 322       if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 323         // Old j.l.Thread object can die when no longer referenced elsewhere.
 324         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 325         _compiler2_objects[compiler_count - 1] = nullptr;
 326       }
 327 #endif
 328     }
 329     return true;
 330   }
 331   return false;
 332 }
 333 
 334 /**
 335  * Add a CompileTask to a CompileQueue.
 336  */
 337 void CompileQueue::add(CompileTask* task) {
 338   assert(_lock->owned_by_self(), "must own lock");
 339 
 340   task->set_next(nullptr);
 341   task->set_prev(nullptr);
 342 
 343   if (_last == nullptr) {
 344     // The compile queue is empty.
 345     assert(_first == nullptr, "queue is empty");
 346     _first = task;
 347     _last = task;
 348   } else {
 349     // Append the task to the queue.
 350     assert(_last->next() == nullptr, "not last");
 351     _last->set_next(task);
 352     task->set_prev(_last);
 353     _last = task;
 354   }
 355   ++_size;
 356   ++_total_added;
 357   if (_size > _peak_size) {
 358     _peak_size = _size;
 359   }
 360 
 361   // Mark the method as being in the compile queue.
 362   task->method()->set_queued_for_compilation();
 363 
 364   task->mark_queued(os::elapsed_counter());
 365 
 366   if (CIPrintCompileQueue) {
 367     print_tty();
 368   }
 369 
 370   if (LogCompilation && xtty != nullptr) {
 371     task->log_task_queued();
 372   }
 373 
 374   if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) {
 375     CompileTrainingData* ctd = CompileTrainingData::make(task);
 376     if (ctd != nullptr) {
 377       task->set_training_data(ctd);
 378     }
 379   }
 380 
 381   // Notify CompilerThreads that a task is available.
 382   _lock->notify_all();
 383 }
 384 
 385 void CompileQueue::add_pending(CompileTask* task) {
 386   assert(_lock->owned_by_self() == false, "must NOT own lock");
 387   assert(UseLockFreeCompileQueues, "");
 388   task->method()->set_queued_for_compilation();
 389   _queue.push(*task);
 390   // FIXME: additional coordination needed? e.g., is it possible for compiler thread to block w/o processing pending tasks?
 391   if (is_empty()) {
 392     MutexLocker ml(_lock);
 393     _lock->notify_all();
 394   }
 395 }
 396 
 397 static bool process_pending(CompileTask* task) {
 398 //  guarantee(task->method()->queued_for_compilation(), "");
 399   if (task->is_unloaded()) {
 400     return true; // unloaded
 401   }
 402   task->method()->set_queued_for_compilation(); // FIXME
 403   if (task->method()->pending_queue_processed()) {
 404     return true; // already queued
 405   }
 406   // Mark the method as being in the compile queue.
 407   task->method()->set_pending_queue_processed();
 408   if (CompileBroker::compilation_is_complete(task->method(), task->osr_bci(), task->comp_level(),
 409                                              task->requires_online_compilation(), task->compile_reason())) {
 410     return true; // already compiled
 411   }
 412   return false; // active
 413 }
 414 
 415 void CompileQueue::transfer_pending() {
 416   assert(_lock->owned_by_self(), "must own lock");
 417 
 418   CompileTask* task;
 419   while ((task = _queue.pop()) != nullptr) {
 420     bool is_stale = process_pending(task);
 421     if (is_stale) {
 422       task->set_next(_first_stale);
 423       task->set_prev(nullptr);
 424       _first_stale = task;
 425     } else {
 426       add(task);
 427     }
 428   }
 429 }
 430 
 431 /**
 432  * Empties compilation queue by putting all compilation tasks onto
 433  * a freelist. Furthermore, the method wakes up all threads that are
 434  * waiting on a compilation task to finish. This can happen if background
 435  * compilation is disabled.
 436  */
 437 void CompileQueue::free_all() {
 438   MutexLocker mu(_lock);
 439   transfer_pending();
 440 
 441   CompileTask* next = _first;
 442 
 443   // Iterate over all tasks in the compile queue
 444   while (next != nullptr) {
 445     CompileTask* current = next;
 446     next = current->next();
 447     bool found_waiter = false;
 448     {
 449       MutexLocker ct_lock(current->lock());
 450       assert(current->waiting_for_completion_count() <= 1, "more than one thread are waiting for task");
 451       if (current->waiting_for_completion_count() > 0) {
 452         // If another thread waits for this task, we must wake them up
 453         // so they will stop waiting and free the task.
 454         current->lock()->notify();
 455         found_waiter = true;
 456       }
 457     }
 458     if (!found_waiter) {
 459       // If no one was waiting for this task, we need to free it ourselves. In this case, the task
 460       // is also certainly unlocked, because, again, there is no waiter.
 461       // Otherwise, by convention, it's the waiters responsibility to free the task.
 462       // Put the task back on the freelist.
 463       CompileTask::free(current);
 464     }
 465   }
 466   _first = nullptr;
 467   _last = nullptr;
 468 
 469   // Wake up all threads that block on the queue.
 470   _lock->notify_all();
 471 }
 472 
 473 /**
 474  * Get the next CompileTask from a CompileQueue
 475  */
 476 CompileTask* CompileQueue::get(CompilerThread* thread) {
 477   // save methods from RedefineClasses across safepoint
 478   // across compile queue lock below.
 479   methodHandle save_method;
 480 
 481   MonitorLocker locker(_lock);
 482   transfer_pending();
 483 
 484   RecompilationPolicy::sample_load_average();
 485 
 486   // If _first is null we have no more compile jobs. There are two reasons for
 487   // having no compile jobs: First, we compiled everything we wanted. Second,
 488   // we ran out of code cache so compilation has been disabled. In the latter
 489   // case we perform code cache sweeps to free memory such that we can re-enable
 490   // compilation.
 491   while (_first == nullptr) {
 492     // Exit loop if compilation is disabled forever
 493     if (CompileBroker::is_compilation_disabled_forever()) {
 494       return nullptr;
 495     }
 496 
 497     AbstractCompiler* compiler = thread->compiler();
 498     guarantee(compiler != nullptr, "Compiler object must exist");
 499     compiler->on_empty_queue(this, thread);
 500     if (_first != nullptr) {
 501       // The call to on_empty_queue may have temporarily unlocked the MCQ lock
 502       // so check again whether any tasks were added to the queue.
 503       break;
 504     }
 505 
 506     // If we have added stale tasks, there might be waiters that want
 507     // the notification these tasks have failed. Normally, this would
 508     // be done by a compiler thread that would perform the purge at
 509     // the end of some compilation. But, if compile queue is empty,
 510     // there is no guarantee compilers would run and do the purge.
 511     // Do the purge here and now to unblock the waiters.
 512     // Perform this until we run out of stale tasks.
 513     while (_first_stale != nullptr) {
 514       purge_stale_tasks();
 515     }
 516     if (_first != nullptr) {
 517       // Purge stale tasks may have transferred some new tasks,
 518       // so check again.
 519       break;
 520     }
 521 
 522     // If there are no compilation tasks and we can compile new jobs
 523     // (i.e., there is enough free space in the code cache) there is
 524     // no need to invoke the GC.
 525     // We need a timed wait here, since compiler threads can exit if compilation
 526     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 527     // is not critical and we do not want idle compiler threads to wake up too often.
 528     locker.wait(5*1000);
 529 
 530     transfer_pending(); // reacquired lock
 531 
 532     if (RecompilationPolicy::have_recompilation_work()) return nullptr;
 533 
 534     if (UseDynamicNumberOfCompilerThreads && _first == nullptr) {
 535       // Still nothing to compile. Give caller a chance to stop this thread.
 536       if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr;
 537     }
 538   }
 539 
 540   if (CompileBroker::is_compilation_disabled_forever()) {
 541     return nullptr;
 542   }
 543 
 544   CompileTask* task;
 545   {
 546     NoSafepointVerifier nsv;
 547     task = CompilationPolicy::select_task(this, thread);
 548     if (task != nullptr) {
 549       task = task->select_for_compilation();
 550     }
 551   }
 552 
 553   if (task != nullptr) {
 554     // Save method pointers across unlock safepoint.  The task is removed from
 555     // the compilation queue, which is walked during RedefineClasses.
 556     Thread* thread = Thread::current();
 557     save_method = methodHandle(thread, task->method());
 558 
 559     remove(task);
 560   }
 561   purge_stale_tasks(); // may temporarily release MCQ lock
 562   return task;
 563 }
 564 
 565 // Clean & deallocate stale compile tasks.
 566 // Temporarily releases MethodCompileQueue lock.
 567 void CompileQueue::purge_stale_tasks() {
 568   assert(_lock->owned_by_self(), "must own lock");
 569   if (_first_stale != nullptr) {
 570     // Stale tasks are purged when MCQ lock is released,
 571     // but _first_stale updates are protected by MCQ lock.
 572     // Once task processing starts and MCQ lock is released,
 573     // other compiler threads can reuse _first_stale.
 574     CompileTask* head = _first_stale;
 575     _first_stale = nullptr;
 576     {
 577       MutexUnlocker ul(_lock);
 578       for (CompileTask* task = head; task != nullptr; ) {
 579         CompileTask* next_task = task->next();
 580         CompileTaskWrapper ctw(task); // Frees the task
 581         task->set_failure_reason("stale task");
 582         task = next_task;
 583       }
 584     }
 585     transfer_pending(); // transfer pending after reacquiring MCQ lock
 586   }
 587 }
 588 
 589 void CompileQueue::remove(CompileTask* task) {
 590   assert(_lock->owned_by_self(), "must own lock");
 591   if (task->prev() != nullptr) {
 592     task->prev()->set_next(task->next());
 593   } else {
 594     // max is the first element
 595     assert(task == _first, "Sanity");
 596     _first = task->next();
 597   }
 598 
 599   if (task->next() != nullptr) {
 600     task->next()->set_prev(task->prev());
 601   } else {
 602     // max is the last element
 603     assert(task == _last, "Sanity");
 604     _last = task->prev();
 605   }
 606   --_size;
 607   ++_total_removed;
 608 }
 609 
 610 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 611   assert(_lock->owned_by_self(), "must own lock");
 612   remove(task);
 613 
 614   // Enqueue the task for reclamation (should be done outside MCQ lock)
 615   task->set_next(_first_stale);
 616   task->set_prev(nullptr);
 617   _first_stale = task;
 618 }
 619 
 620 // methods in the compile queue need to be marked as used on the stack
 621 // so that they don't get reclaimed by Redefine Classes
 622 void CompileQueue::mark_on_stack() {
 623   for (CompileTask* task = _first; task != nullptr; task = task->next()) {
 624     task->mark_on_stack();
 625   }
 626   for (CompileTask* task = _queue.first(); !_queue.is_end(task); task = task->next()) {
 627     assert(task != nullptr, "");
 628     task->mark_on_stack();
 629   }
 630 }
 631 
 632 
 633 CompileQueue* CompileBroker::compile_queue(int comp_level, bool is_aot) {
 634   if (is_c2_compile(comp_level)) return ((is_aot  && (_ac_count > 0)) ? _ac2_compile_queue : _c2_compile_queue);
 635   if (is_c1_compile(comp_level)) return ((is_aot && (_ac_count > 0)) ? _ac1_compile_queue : _c1_compile_queue);
 636   return nullptr;
 637 }
 638 
 639 CompileQueue* CompileBroker::c1_compile_queue() {
 640   return _c1_compile_queue;
 641 }
 642 
 643 CompileQueue* CompileBroker::c2_compile_queue() {
 644   return _c2_compile_queue;
 645 }
 646 
 647 void CompileBroker::print_compile_queues(outputStream* st) {
 648   st->print_cr("Current compiles: ");
 649 
 650   char buf[2000];
 651   int buflen = sizeof(buf);
 652   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 653 
 654   st->cr();
 655   if (_c1_compile_queue != nullptr) {
 656     _c1_compile_queue->print(st);
 657   }
 658   if (_c2_compile_queue != nullptr) {
 659     _c2_compile_queue->print(st);
 660   }
 661   if (_c3_compile_queue != nullptr) {
 662     _c3_compile_queue->print(st);
 663   }
 664   if (_ac1_compile_queue != nullptr) {
 665     _ac1_compile_queue->print(st);
 666   }
 667   if (_ac2_compile_queue != nullptr) {
 668     _ac2_compile_queue->print(st);
 669   }
 670 }
 671 
 672 void CompileQueue::print(outputStream* st) {
 673   assert_locked_or_safepoint(_lock);
 674   st->print_cr("%s:", name());
 675   CompileTask* task = _first;
 676   if (task == nullptr) {
 677     st->print_cr("Empty");
 678   } else {
 679     while (task != nullptr) {
 680       task->print(st, nullptr, true, true);
 681       task = task->next();
 682     }
 683   }
 684   st->cr();
 685 }
 686 
 687 void CompileQueue::print_tty() {
 688   stringStream ss;
 689   // Dump the compile queue into a buffer before locking the tty
 690   print(&ss);
 691   {
 692     ttyLocker ttyl;
 693     tty->print("%s", ss.freeze());
 694   }
 695 }
 696 
 697 CompilerCounters::CompilerCounters() {
 698   _current_method[0] = '\0';
 699   _compile_type = CompileBroker::no_compile;
 700 }
 701 
 702 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 703 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 704 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 705 //
 706 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 707 // so if c2 is used, it should be always registered first.
 708 // This function is called during vm initialization.
 709 static void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 710   ResourceMark rm;
 711   static bool first_registration = true;
 712   if (compiler_type == compiler_jvmci) {
 713     CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
 714     first_registration = false;
 715 #ifdef COMPILER2
 716   } else if (compiler_type == compiler_c2) {
 717     assert(first_registration, "invariant"); // c2 must be registered first.
 718     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 719       const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
 720       CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
 721     }
 722     first_registration = false;
 723 #endif // COMPILER2
 724   }
 725 }
 726 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 727 
 728 // ------------------------------------------------------------------
 729 // CompileBroker::compilation_init
 730 //
 731 // Initialize the Compilation object
 732 void CompileBroker::compilation_init(JavaThread* THREAD) {
 733   // No need to initialize compilation system if we do not use it.
 734   if (!UseCompiler) {
 735     return;
 736   }
 737   // Set the interface to the current compiler(s).
 738   _c1_count = CompilationPolicy::c1_count();
 739   _c2_count = CompilationPolicy::c2_count();
 740   _c3_count = CompilationPolicy::c3_count();
 741   _ac_count = CompilationPolicy::ac_count();
 742 
 743 #if INCLUDE_JVMCI
 744   if (EnableJVMCI) {
 745     // This is creating a JVMCICompiler singleton.
 746     JVMCICompiler* jvmci = new JVMCICompiler();
 747 
 748     if (UseJVMCICompiler) {
 749       _compilers[1] = jvmci;
 750       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 751         if (BootstrapJVMCI) {
 752           // JVMCI will bootstrap so give it more threads
 753           _c2_count = MIN2(32, os::active_processor_count());
 754         }
 755       } else {
 756         _c2_count = JVMCIThreads;
 757       }
 758       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 759       } else {
 760 #ifdef COMPILER1
 761         _c1_count = JVMCIHostThreads;
 762 #endif // COMPILER1
 763       }
 764 #ifdef COMPILER2
 765       if (AOTCodeCache::is_on() && (_c3_count > 0)) {
 766         _compilers[2] = new C2Compiler();
 767       }
 768 #endif
 769     }
 770   }
 771 #endif // INCLUDE_JVMCI
 772 
 773 #ifdef COMPILER1
 774   if (_c1_count > 0) {
 775     _compilers[0] = new Compiler();
 776   }
 777 #endif // COMPILER1
 778 
 779 #ifdef COMPILER2
 780   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 781     if (_c2_count > 0) {
 782       _compilers[1] = new C2Compiler();
 783       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 784       // idToPhase mapping for c2 is in opto/phasetype.hpp
 785       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 786     }
 787   }
 788 #endif // COMPILER2
 789 
 790 #if INCLUDE_JVMCI
 791    // Register after c2 registration.
 792    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 793    if (EnableJVMCI) {
 794      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 795    }
 796 #endif // INCLUDE_JVMCI
 797 
 798   if (CompilerOracle::should_collect_memstat()) {
 799     CompilationMemoryStatistic::initialize();
 800   }
 801 
 802   // Start the compiler thread(s)
 803   init_compiler_threads();
 804   // totalTime performance counter is always created as it is required
 805   // by the implementation of java.lang.management.CompilationMXBean.
 806   {
 807     // Ensure OOM leads to vm_exit_during_initialization.
 808     EXCEPTION_MARK;
 809     _perf_total_compilation =
 810                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 811                                                  PerfData::U_Ticks, CHECK);
 812   }
 813 
 814   if (UsePerfData) {
 815 
 816     EXCEPTION_MARK;
 817 
 818     // create the jvmstat performance counters
 819     _perf_osr_compilation =
 820                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 821                                                  PerfData::U_Ticks, CHECK);
 822 
 823     _perf_standard_compilation =
 824                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 825                                                  PerfData::U_Ticks, CHECK);
 826 
 827     _perf_total_bailout_count =
 828                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 829                                                  PerfData::U_Events, CHECK);
 830 
 831     _perf_total_invalidated_count =
 832                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 833                                                  PerfData::U_Events, CHECK);
 834 
 835     _perf_total_compile_count =
 836                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 837                                                  PerfData::U_Events, CHECK);
 838     _perf_total_osr_compile_count =
 839                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 840                                                  PerfData::U_Events, CHECK);
 841 
 842     _perf_total_standard_compile_count =
 843                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 844                                                  PerfData::U_Events, CHECK);
 845 
 846     _perf_sum_osr_bytes_compiled =
 847                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 848                                                  PerfData::U_Bytes, CHECK);
 849 
 850     _perf_sum_standard_bytes_compiled =
 851                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 852                                                  PerfData::U_Bytes, CHECK);
 853 
 854     _perf_sum_nmethod_size =
 855                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 856                                                  PerfData::U_Bytes, CHECK);
 857 
 858     _perf_sum_nmethod_code_size =
 859                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 860                                                  PerfData::U_Bytes, CHECK);
 861 
 862     _perf_last_method =
 863                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 864                                        CompilerCounters::cmname_buffer_length,
 865                                        "", CHECK);
 866 
 867     _perf_last_failed_method =
 868             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 869                                        CompilerCounters::cmname_buffer_length,
 870                                        "", CHECK);
 871 
 872     _perf_last_invalidated_method =
 873         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 874                                      CompilerCounters::cmname_buffer_length,
 875                                      "", CHECK);
 876 
 877     _perf_last_compile_type =
 878              PerfDataManager::create_variable(SUN_CI, "lastType",
 879                                               PerfData::U_None,
 880                                               (jlong)CompileBroker::no_compile,
 881                                               CHECK);
 882 
 883     _perf_last_compile_size =
 884              PerfDataManager::create_variable(SUN_CI, "lastSize",
 885                                               PerfData::U_Bytes,
 886                                               (jlong)CompileBroker::no_compile,
 887                                               CHECK);
 888 
 889 
 890     _perf_last_failed_type =
 891              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 892                                               PerfData::U_None,
 893                                               (jlong)CompileBroker::no_compile,
 894                                               CHECK);
 895 
 896     _perf_last_invalidated_type =
 897          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 898                                           PerfData::U_None,
 899                                           (jlong)CompileBroker::no_compile,
 900                                           CHECK);
 901   }
 902 
 903   log_info(aot, codecache, init)("CompileBroker is initialized");
 904   _initialized = true;
 905 }
 906 
 907 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 908   Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH);
 909   return thread_oop;
 910 }
 911 
 912 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) {
 913   CompilationPolicy::replay_training_at_init_loop(thread);
 914 }
 915 
 916 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 917 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 918 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
 919 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 920     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 921     bool enter_single_loop;
 922     {
 923       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 924       static int single_thread_count = 0;
 925       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 926     }
 927     if (enter_single_loop) {
 928       dt->deoptimize_objects_alot_loop_single();
 929     } else {
 930       dt->deoptimize_objects_alot_loop_all();
 931     }
 932   }
 933 
 934 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 935 // barrier targets a single thread which is selected round robin.
 936 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 937   HandleMark hm(this);
 938   while (true) {
 939     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 940       { // Begin new scope for escape barrier
 941         HandleMarkCleaner hmc(this);
 942         ResourceMark rm(this);
 943         EscapeBarrier eb(true, this, deoptee_thread);
 944         eb.deoptimize_objects(100);
 945       }
 946       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 947       sleep(DeoptimizeObjectsALotInterval);
 948     }
 949   }
 950 }
 951 
 952 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 953 // barrier targets all java threads in the vm at once.
 954 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 955   HandleMark hm(this);
 956   while (true) {
 957     { // Begin new scope for escape barrier
 958       HandleMarkCleaner hmc(this);
 959       ResourceMark rm(this);
 960       EscapeBarrier eb(true, this);
 961       eb.deoptimize_objects_all_threads();
 962     }
 963     // Now sleep after the escape barriers destructor resumed the java threads.
 964     sleep(DeoptimizeObjectsALotInterval);
 965   }
 966 }
 967 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 968 
 969 
 970 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
 971   Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
 972 
 973   if (java_lang_Thread::thread(thread_oop()) != nullptr) {
 974     assert(type == compiler_t, "should only happen with reused compiler threads");
 975     // The compiler thread hasn't actually exited yet so don't try to reuse it
 976     return nullptr;
 977   }
 978 
 979   JavaThread* new_thread = nullptr;
 980   switch (type) {
 981     case compiler_t:
 982       assert(comp != nullptr, "Compiler instance missing.");
 983       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 984         CompilerCounters* counters = new CompilerCounters();
 985         new_thread = new CompilerThread(queue, counters);
 986       }
 987       break;
 988 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 989     case deoptimizer_t:
 990       new_thread = new DeoptimizeObjectsALotThread();
 991       break;
 992 #endif // ASSERT
 993     case training_replay_t:
 994       new_thread = new TrainingReplayThread();
 995       break;
 996     default:
 997       ShouldNotReachHere();
 998   }
 999 
1000   // At this point the new CompilerThread data-races with this startup
1001   // thread (which is the main thread and NOT the VM thread).
1002   // This means Java bytecodes being executed at startup can
1003   // queue compile jobs which will run at whatever default priority the
1004   // newly created CompilerThread runs at.
1005 
1006 
1007   // At this point it may be possible that no osthread was created for the
1008   // JavaThread due to lack of resources. We will handle that failure below.
1009   // Also check new_thread so that static analysis is happy.
1010   if (new_thread != nullptr && new_thread->osthread() != nullptr) {
1011 
1012     if (type == compiler_t) {
1013       CompilerThread::cast(new_thread)->set_compiler(comp);
1014     }
1015 
1016     // Note that we cannot call os::set_priority because it expects Java
1017     // priorities and we are *explicitly* using OS priorities so that it's
1018     // possible to set the compiler thread priority higher than any Java
1019     // thread.
1020 
1021     int native_prio = CompilerThreadPriority;
1022     if (native_prio == -1) {
1023       if (UseCriticalCompilerThreadPriority) {
1024         native_prio = os::java_to_os_priority[CriticalPriority];
1025       } else {
1026         native_prio = os::java_to_os_priority[NearMaxPriority];
1027       }
1028     }
1029     os::set_native_priority(new_thread, native_prio);
1030 
1031     // Note that this only sets the JavaThread _priority field, which by
1032     // definition is limited to Java priorities and not OS priorities.
1033     JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
1034 
1035   } else { // osthread initialization failure
1036     if (UseDynamicNumberOfCompilerThreads && type == compiler_t
1037         && comp->num_compiler_threads() > 0) {
1038       // The new thread is not known to Thread-SMR yet so we can just delete.
1039       delete new_thread;
1040       return nullptr;
1041     } else {
1042       vm_exit_during_initialization("java.lang.OutOfMemoryError",
1043                                     os::native_thread_creation_failed_msg());
1044     }
1045   }
1046 
1047   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
1048 
1049   return new_thread;
1050 }
1051 
1052 static bool trace_compiler_threads() {
1053   LogTarget(Debug, jit, thread) lt;
1054   return TraceCompilerThreads || lt.is_enabled();
1055 }
1056 
1057 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) {
1058   char name_buffer[256];
1059   os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i);
1060   Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL);
1061   return JNIHandles::make_global(thread_oop);
1062 }
1063 
1064 static void print_compiler_threads(stringStream& msg) {
1065   if (TraceCompilerThreads) {
1066     tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string());
1067   }
1068   LogTarget(Debug, jit, thread) lt;
1069   if (lt.is_enabled()) {
1070     LogStream ls(lt);
1071     ls.print_cr("%s", msg.as_string());
1072   }
1073 }
1074 
1075 static void print_compiler_thread(JavaThread *ct) {
1076   if (trace_compiler_threads()) {
1077     ResourceMark rm;
1078     ThreadsListHandle tlh;  // name() depends on the TLH.
1079     assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1080     stringStream msg;
1081     msg.print("Added initial compiler thread %s", ct->name());
1082     print_compiler_threads(msg);
1083   }
1084 }
1085 
1086 void CompileBroker::init_compiler_threads() {
1087   // Ensure any exceptions lead to vm_exit_during_initialization.
1088   EXCEPTION_MARK;
1089 #if !defined(ZERO)
1090   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
1091 #endif // !ZERO
1092   // Initialize the compilation queue
1093   if (_c2_count > 0) {
1094     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
1095     _c2_compile_queue  = new CompileQueue(name, MethodCompileQueueC2_lock);
1096     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
1097     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
1098   }
1099   if (_c1_count > 0) {
1100     _c1_compile_queue  = new CompileQueue("C1 compile queue", MethodCompileQueueC1_lock);
1101     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
1102     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
1103   }
1104 
1105   if (_c3_count > 0) {
1106     const char* name = "C2 compile queue";
1107     _c3_compile_queue  = new CompileQueue(name, MethodCompileQueueC3_lock);
1108     _compiler3_objects = NEW_C_HEAP_ARRAY(jobject, _c3_count, mtCompiler);
1109     _compiler3_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c3_count, mtCompiler);
1110   }
1111   if (_ac_count > 0) {
1112     if (_c1_count > 0) { // C1 is present
1113       _ac1_compile_queue  = new CompileQueue("C1 AOT code compile queue", MethodCompileQueueSC1_lock);
1114     }
1115     if (_c2_count > 0) { // C2 is present
1116       _ac2_compile_queue  = new CompileQueue("C2 AOT code compile queue", MethodCompileQueueSC2_lock);
1117     }
1118     _ac_objects = NEW_C_HEAP_ARRAY(jobject, _ac_count, mtCompiler);
1119     _ac_logs = NEW_C_HEAP_ARRAY(CompileLog*, _ac_count, mtCompiler);
1120   }
1121   char name_buffer[256];
1122 
1123   for (int i = 0; i < _c2_count; i++) {
1124     // Create a name for our thread.
1125     jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK);
1126     _compiler2_objects[i] = thread_handle;
1127     _compiler2_logs[i] = nullptr;
1128 
1129     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1130       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
1131       assert(ct != nullptr, "should have been handled for initial thread");
1132       _compilers[1]->set_num_compiler_threads(i + 1);
1133       print_compiler_thread(ct);
1134     }
1135   }
1136 
1137   for (int i = 0; i < _c1_count; i++) {
1138     // Create a name for our thread.
1139     jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK);
1140     _compiler1_objects[i] = thread_handle;
1141     _compiler1_logs[i] = nullptr;
1142 
1143     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1144       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
1145       assert(ct != nullptr, "should have been handled for initial thread");
1146       _compilers[0]->set_num_compiler_threads(i + 1);
1147       print_compiler_thread(ct);
1148     }
1149   }
1150 
1151   for (int i = 0; i < _c3_count; i++) {
1152     // Create a name for our thread.
1153     os::snprintf_checked(name_buffer, sizeof(name_buffer), "C2 CompilerThread%d", i);
1154     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1155     jobject thread_handle = JNIHandles::make_global(thread_oop);
1156     _compiler3_objects[i] = thread_handle;
1157     _compiler3_logs[i] = nullptr;
1158 
1159     JavaThread *ct = make_thread(compiler_t, thread_handle, _c3_compile_queue, _compilers[2], THREAD);
1160     assert(ct != nullptr, "should have been handled for initial thread");
1161     _compilers[2]->set_num_compiler_threads(i + 1);
1162     print_compiler_thread(ct);
1163   }
1164 
1165   if (_ac_count > 0) {
1166     int i = 0;
1167     if (_c1_count > 0) { // C1 is present
1168       os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 1);
1169       Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1170       jobject thread_handle = JNIHandles::make_global(thread_oop);
1171       _ac_objects[i] = thread_handle;
1172       _ac_logs[i] = nullptr;
1173       i++;
1174 
1175       JavaThread *ct = make_thread(compiler_t, thread_handle, _ac1_compile_queue, _compilers[0], THREAD);
1176       assert(ct != nullptr, "should have been handled for initial thread");
1177       print_compiler_thread(ct);
1178     }
1179     if (_c2_count > 0) { // C2 is present
1180       os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 2);
1181       Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1182       jobject thread_handle = JNIHandles::make_global(thread_oop);
1183       _ac_objects[i] = thread_handle;
1184       _ac_logs[i] = nullptr;
1185 
1186       JavaThread *ct = make_thread(compiler_t, thread_handle, _ac2_compile_queue, _compilers[1], THREAD);
1187       assert(ct != nullptr, "should have been handled for initial thread");
1188       print_compiler_thread(ct);
1189     }
1190   }
1191 
1192   if (UsePerfData) {
1193     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count + _c3_count, CHECK);
1194   }
1195 
1196 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1197   if (DeoptimizeObjectsALot) {
1198     // Initialize and start the object deoptimizer threads
1199     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1200     for (int count = 0; count < total_count; count++) {
1201       Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK);
1202       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1203       make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD);
1204     }
1205   }
1206 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1207 }
1208 
1209 void CompileBroker::init_training_replay() {
1210   // Ensure any exceptions lead to vm_exit_during_initialization.
1211   EXCEPTION_MARK;
1212   if (TrainingData::have_data()) {
1213     Handle thread_oop = create_thread_oop("Training replay thread", CHECK);
1214     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1215     make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD);
1216   }
1217 }
1218 
1219 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1220 
1221   int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0;
1222   const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4;
1223 
1224   // Quick check if we already have enough compiler threads without taking the lock.
1225   // Numbers may change concurrently, so we read them again after we have the lock.
1226   if (_c2_compile_queue != nullptr) {
1227     old_c2_count = get_c2_thread_count();
1228     new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread);
1229   }
1230   if (_c1_compile_queue != nullptr) {
1231     old_c1_count = get_c1_thread_count();
1232     new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread);
1233   }
1234   if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return;
1235 
1236   // Now, we do the more expensive operations.
1237   julong free_memory = os::free_memory();
1238   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1239   size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1240          available_cc_p  = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1241 
1242   // Only attempt to start additional threads if the lock is free.
1243   if (!CompileThread_lock->try_lock()) return;
1244 
1245   if (_c2_compile_queue != nullptr) {
1246     old_c2_count = get_c2_thread_count();
1247     new_c2_count = MIN4(_c2_count,
1248         _c2_compile_queue->size() / c2_tasks_per_thread,
1249         (int)(free_memory / (200*M)),
1250         (int)(available_cc_np / (128*K)));
1251 
1252     for (int i = old_c2_count; i < new_c2_count; i++) {
1253 #if INCLUDE_JVMCI
1254       if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) {
1255         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their
1256         // existence is completely hidden from the rest of the VM (and those compiler threads can't
1257         // call Java code to do the creation anyway).
1258         //
1259         // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we
1260         // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads.  For
1261         // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary
1262         // coupling with Java.
1263         if (!THREAD->can_call_java()) break;
1264         char name_buffer[256];
1265         os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1266         Handle thread_oop;
1267         {
1268           // We have to give up the lock temporarily for the Java calls.
1269           MutexUnlocker mu(CompileThread_lock);
1270           thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD);
1271         }
1272         if (HAS_PENDING_EXCEPTION) {
1273           if (trace_compiler_threads()) {
1274             ResourceMark rm;
1275             stringStream msg;
1276             msg.print_cr("JVMCI compiler thread creation failed:");
1277             PENDING_EXCEPTION->print_on(&msg);
1278             print_compiler_threads(msg);
1279           }
1280           CLEAR_PENDING_EXCEPTION;
1281           break;
1282         }
1283         // Check if another thread has beaten us during the Java calls.
1284         if (get_c2_thread_count() != i) break;
1285         jobject thread_handle = JNIHandles::make_global(thread_oop);
1286         assert(compiler2_object(i) == nullptr, "Old one must be released!");
1287         _compiler2_objects[i] = thread_handle;
1288       }
1289 #endif
1290       guarantee(compiler2_object(i) != nullptr, "Thread oop must exist");
1291       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1292       if (ct == nullptr) break;
1293       _compilers[1]->set_num_compiler_threads(i + 1);
1294       if (trace_compiler_threads()) {
1295         ResourceMark rm;
1296         ThreadsListHandle tlh;  // name() depends on the TLH.
1297         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1298         stringStream msg;
1299         msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)",
1300                   ct->name(), (int)(free_memory/M), (int)(available_cc_np/M));
1301         print_compiler_threads(msg);
1302       }
1303     }
1304   }
1305 
1306   if (_c1_compile_queue != nullptr) {
1307     old_c1_count = get_c1_thread_count();
1308     new_c1_count = MIN4(_c1_count,
1309         _c1_compile_queue->size() / c1_tasks_per_thread,
1310         (int)(free_memory / (100*M)),
1311         (int)(available_cc_p / (128*K)));
1312 
1313     for (int i = old_c1_count; i < new_c1_count; i++) {
1314       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1315       if (ct == nullptr) break;
1316       _compilers[0]->set_num_compiler_threads(i + 1);
1317       if (trace_compiler_threads()) {
1318         ResourceMark rm;
1319         ThreadsListHandle tlh;  // name() depends on the TLH.
1320         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1321         stringStream msg;
1322         msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)",
1323                   ct->name(), (int)(free_memory/M), (int)(available_cc_p/M));
1324         print_compiler_threads(msg);
1325       }
1326     }
1327   }
1328 
1329   CompileThread_lock->unlock();
1330 }
1331 
1332 
1333 /**
1334  * Set the methods on the stack as on_stack so that redefine classes doesn't
1335  * reclaim them. This method is executed at a safepoint.
1336  */
1337 void CompileBroker::mark_on_stack() {
1338   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1339   // Since we are at a safepoint, we do not need a lock to access
1340   // the compile queues.
1341   if (_c3_compile_queue != nullptr) {
1342     _c3_compile_queue->mark_on_stack();
1343   }
1344   if (_c2_compile_queue != nullptr) {
1345     _c2_compile_queue->mark_on_stack();
1346   }
1347   if (_c1_compile_queue != nullptr) {
1348     _c1_compile_queue->mark_on_stack();
1349   }
1350   if (_ac1_compile_queue != nullptr) {
1351     _ac1_compile_queue->mark_on_stack();
1352   }
1353   if (_ac2_compile_queue != nullptr) {
1354     _ac2_compile_queue->mark_on_stack();
1355   }
1356 }
1357 
1358 // ------------------------------------------------------------------
1359 // CompileBroker::compile_method
1360 //
1361 // Request compilation of a method.
1362 void CompileBroker::compile_method_base(const methodHandle& method,
1363                                         int osr_bci,
1364                                         int comp_level,
1365                                         int hot_count,
1366                                         CompileTask::CompileReason compile_reason,
1367                                         bool requires_online_compilation,
1368                                         bool blocking,
1369                                         Thread* thread) {
1370   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1371   assert(method->method_holder()->is_instance_klass(),
1372          "sanity check");
1373   assert(!method->method_holder()->is_not_initialized()   ||
1374          compile_reason == CompileTask::Reason_Preload    ||
1375          compile_reason == CompileTask::Reason_Precompile ||
1376          compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized");
1377   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1378 
1379   if (CIPrintRequests) {
1380     tty->print("request: ");
1381     method->print_short_name(tty);
1382     if (osr_bci != InvocationEntryBci) {
1383       tty->print(" osr_bci: %d", osr_bci);
1384     }
1385     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1386     if (hot_count > 0) {
1387       tty->print(" hot: yes");
1388     }
1389     tty->cr();
1390   }
1391 
1392   // A request has been made for compilation.  Before we do any
1393   // real work, check to see if the method has been compiled
1394   // in the meantime with a definitive result.
1395   if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1396     return;
1397   }
1398 
1399 #ifndef PRODUCT
1400   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1401     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1402       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1403       return;
1404     }
1405   }
1406 #endif
1407 
1408   // If this method is already in the compile queue, then
1409   // we do not block the current thread.
1410   if (compilation_is_in_queue(method)) {
1411     // We may want to decay our counter a bit here to prevent
1412     // multiple denied requests for compilation.  This is an
1413     // open compilation policy issue. Note: The other possibility,
1414     // in the case that this is a blocking compile request, is to have
1415     // all subsequent blocking requesters wait for completion of
1416     // ongoing compiles. Note that in this case we'll need a protocol
1417     // for freeing the associated compile tasks. [Or we could have
1418     // a single static monitor on which all these waiters sleep.]
1419     return;
1420   }
1421 
1422   // Tiered policy requires MethodCounters to exist before adding a method to
1423   // the queue. Create if we don't have them yet.
1424   if (compile_reason != CompileTask::Reason_Preload) {
1425     method->get_method_counters(thread);
1426   }
1427 
1428   AOTCodeEntry* aot_code_entry = find_aot_code_entry(method, osr_bci, comp_level, compile_reason, requires_online_compilation);
1429   bool is_aot = (aot_code_entry != nullptr);
1430 
1431   // Outputs from the following MutexLocker block:
1432   CompileTask* task = nullptr;
1433   CompileQueue* queue;
1434 #if INCLUDE_JVMCI
1435   if (is_c2_compile(comp_level) && compiler2()->is_jvmci() && compiler3() != nullptr &&
1436       ((JVMCICompiler*)compiler2())->force_comp_at_level_simple(method)) {
1437     assert(_c3_compile_queue != nullptr, "sanity");
1438     queue = _c3_compile_queue; // JVMCI compiler's methods compilation
1439   } else
1440 #endif
1441   queue = compile_queue(comp_level, is_aot);
1442 
1443   // Acquire our lock.
1444   {
1445     ConditionalMutexLocker locker(thread, queue->lock(), !UseLockFreeCompileQueues);
1446 
1447     // Make sure the method has not slipped into the queues since
1448     // last we checked; note that those checks were "fast bail-outs".
1449     // Here we need to be more careful, see 14012000 below.
1450     if (compilation_is_in_queue(method)) {
1451       return;
1452     }
1453 
1454     // We need to check again to see if the compilation has
1455     // completed.  A previous compilation may have registered
1456     // some result.
1457     if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1458       return;
1459     }
1460 
1461     // We now know that this compilation is not pending, complete,
1462     // or prohibited.  Assign a compile_id to this compilation
1463     // and check to see if it is in our [Start..Stop) range.
1464     int compile_id = assign_compile_id(method, osr_bci);
1465     if (compile_id == 0) {
1466       // The compilation falls outside the allowed range.
1467       return;
1468     }
1469 
1470 #if INCLUDE_JVMCI
1471     if (UseJVMCICompiler && blocking) {
1472       // Don't allow blocking compiles for requests triggered by JVMCI.
1473       if (thread->is_Compiler_thread()) {
1474         blocking = false;
1475       }
1476 
1477       // In libjvmci, JVMCI initialization should not deadlock with other threads
1478       if (!UseJVMCINativeLibrary) {
1479         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1480         vframeStream vfst(JavaThread::cast(thread));
1481         for (; !vfst.at_end(); vfst.next()) {
1482           if (vfst.method()->is_static_initializer() ||
1483               (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1484                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1485             blocking = false;
1486             break;
1487           }
1488         }
1489 
1490         // Don't allow blocking compilation requests to JVMCI
1491         // if JVMCI itself is not yet initialized
1492         if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1493           blocking = false;
1494         }
1495       }
1496 
1497       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1498       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1499       // such as the DestroyJavaVM thread.
1500       if (JVMCI::in_shutdown()) {
1501         blocking = false;
1502       }
1503     }
1504 #endif // INCLUDE_JVMCI
1505 
1506     // We will enter the compilation in the queue.
1507     // 14012000: Note that this sets the queued_for_compile bits in
1508     // the target method. We can now reason that a method cannot be
1509     // queued for compilation more than once, as follows:
1510     // Before a thread queues a task for compilation, it first acquires
1511     // the compile queue lock, then checks if the method's queued bits
1512     // are set or it has already been compiled. Thus there can not be two
1513     // instances of a compilation task for the same method on the
1514     // compilation queue. Consider now the case where the compilation
1515     // thread has already removed a task for that method from the queue
1516     // and is in the midst of compiling it. In this case, the
1517     // queued_for_compile bits must be set in the method (and these
1518     // will be visible to the current thread, since the bits were set
1519     // under protection of the compile queue lock, which we hold now.
1520     // When the compilation completes, the compiler thread first sets
1521     // the compilation result and then clears the queued_for_compile
1522     // bits. Neither of these actions are protected by a barrier (or done
1523     // under the protection of a lock), so the only guarantee we have
1524     // (on machines with TSO (Total Store Order)) is that these values
1525     // will update in that order. As a result, the only combinations of
1526     // these bits that the current thread will see are, in temporal order:
1527     // <RESULT, QUEUE> :
1528     //     <0, 1> : in compile queue, but not yet compiled
1529     //     <1, 1> : compiled but queue bit not cleared
1530     //     <1, 0> : compiled and queue bit cleared
1531     // Because we first check the queue bits then check the result bits,
1532     // we are assured that we cannot introduce a duplicate task.
1533     // Note that if we did the tests in the reverse order (i.e. check
1534     // result then check queued bit), we could get the result bit before
1535     // the compilation completed, and the queue bit after the compilation
1536     // completed, and end up introducing a "duplicate" (redundant) task.
1537     // In that case, the compiler thread should first check if a method
1538     // has already been compiled before trying to compile it.
1539     // NOTE: in the event that there are multiple compiler threads and
1540     // there is de-optimization/recompilation, things will get hairy,
1541     // and in that case it's best to protect both the testing (here) of
1542     // these bits, and their updating (here and elsewhere) under a
1543     // common lock.
1544     task = create_compile_task(queue,
1545                                compile_id, method,
1546                                osr_bci, comp_level,
1547                                hot_count, aot_code_entry, compile_reason,
1548                                requires_online_compilation, blocking);
1549 
1550     if (task->is_aot() && (_ac_count > 0)) {
1551       // Put it on AOT code caching queue
1552       queue = is_c1_compile(comp_level) ? _ac1_compile_queue : _ac2_compile_queue;
1553     }
1554 
1555     if (UseLockFreeCompileQueues) {
1556       assert(queue->lock()->owned_by_self() == false, "");
1557       queue->add_pending(task);
1558     } else {
1559       queue->add(task);
1560     }
1561   }
1562 
1563   if (blocking) {
1564     wait_for_completion(task);
1565   }
1566 }
1567 
1568 AOTCodeEntry* CompileBroker::find_aot_code_entry(const methodHandle& method, int osr_bci, int comp_level,
1569                                         CompileTask::CompileReason compile_reason,
1570                                         bool requires_online_compilation) {
1571   AOTCodeEntry* aot_code_entry = nullptr;
1572   if (osr_bci == InvocationEntryBci && !requires_online_compilation && AOTCodeCache::is_on_for_use()) {
1573     // Check for cached code.
1574     if (compile_reason == CompileTask::Reason_Preload) {
1575       aot_code_entry = method->aot_code_entry();
1576       assert(aot_code_entry != nullptr && aot_code_entry->for_preload(), "sanity");
1577     } else {
1578       aot_code_entry = AOTCodeCache::find_code_entry(method, comp_level);
1579     }
1580   }
1581   return aot_code_entry;
1582 }
1583 
1584 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1585                                        int comp_level,
1586                                        int hot_count,
1587                                        bool requires_online_compilation,
1588                                        CompileTask::CompileReason compile_reason,
1589                                        TRAPS) {
1590   // Do nothing if compilebroker is not initialized or compiles are submitted on level none
1591   if (!_initialized || comp_level == CompLevel_none) {
1592     return nullptr;
1593   }
1594 
1595 #if INCLUDE_JVMCI
1596   if (EnableJVMCI && UseJVMCICompiler &&
1597       comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) {
1598     return nullptr;
1599   }
1600 #endif
1601 
1602   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1603   assert(comp != nullptr, "Ensure we have a compiler");
1604 
1605 #if INCLUDE_JVMCI
1606   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1607     // JVMCI compilation is not yet initializable.
1608     return nullptr;
1609   }
1610 #endif
1611 
1612   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1613   // CompileBroker::compile_method can trap and can have pending async exception.
1614   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, requires_online_compilation, compile_reason, directive, THREAD);
1615   DirectivesStack::release(directive);
1616   return nm;
1617 }
1618 
1619 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1620                                          int comp_level,
1621                                          int hot_count,
1622                                          bool requires_online_compilation,
1623                                          CompileTask::CompileReason compile_reason,
1624                                          DirectiveSet* directive,
1625                                          TRAPS) {
1626 
1627   // make sure arguments make sense
1628   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1629   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1630   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1631   assert(!method->method_holder()->is_not_initialized()   ||
1632          compile_reason == CompileTask::Reason_Preload    ||
1633          compile_reason == CompileTask::Reason_Precompile ||
1634          compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized");
1635   // return quickly if possible
1636 
1637   if (PrecompileOnlyAndExit && !CompileTask::reason_is_precompiled(compile_reason)) {
1638     return nullptr;
1639   }
1640 
1641   // lock, make sure that the compilation
1642   // isn't prohibited in a straightforward way.
1643   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1644   if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1645     return nullptr;
1646   }
1647 
1648   if (osr_bci == InvocationEntryBci) {
1649     // standard compilation
1650     nmethod* method_code = method->code();
1651     if (method_code != nullptr) {
1652       if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1653         return method_code;
1654       }
1655     }
1656     if (method->is_not_compilable(comp_level)) {
1657       return nullptr;
1658     }
1659   } else {
1660     // osr compilation
1661     // We accept a higher level osr method
1662     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1663     if (nm != nullptr) return nm;
1664     if (method->is_not_osr_compilable(comp_level)) return nullptr;
1665   }
1666 
1667   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1668   // some prerequisites that are compiler specific
1669   if (compile_reason != CompileTask::Reason_Preload &&
1670       !CompileTask::reason_is_precompiled(compile_reason) &&
1671      (comp->is_c2() || comp->is_jvmci())) {
1672     InternalOOMEMark iom(THREAD);
1673     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1674     // Resolve all classes seen in the signature of the method
1675     // we are compiling.
1676     Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1677   }
1678 
1679   // If the method is native, do the lookup in the thread requesting
1680   // the compilation. Native lookups can load code, which is not
1681   // permitted during compilation.
1682   //
1683   // Note: A native method implies non-osr compilation which is
1684   //       checked with an assertion at the entry of this method.
1685   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1686     address adr = NativeLookup::lookup(method, THREAD);
1687     if (HAS_PENDING_EXCEPTION) {
1688       // In case of an exception looking up the method, we just forget
1689       // about it. The interpreter will kick-in and throw the exception.
1690       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1691       CLEAR_PENDING_EXCEPTION;
1692       return nullptr;
1693     }
1694     assert(method->has_native_function(), "must have native code by now");
1695   }
1696 
1697   // RedefineClasses() has replaced this method; just return
1698   if (method->is_old()) {
1699     return nullptr;
1700   }
1701 
1702   // JVMTI -- post_compile_event requires jmethod_id() that may require
1703   // a lock the compiling thread can not acquire. Prefetch it here.
1704   if (JvmtiExport::should_post_compiled_method_load()) {
1705     method->jmethod_id();
1706   }
1707 
1708   // do the compilation
1709   if (method->is_native()) {
1710     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1711       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1712       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1713       //
1714       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1715       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1716       AdapterHandlerLibrary::create_native_wrapper(method);
1717     } else {
1718       return nullptr;
1719     }
1720   } else {
1721     // If the compiler is shut off due to code cache getting full
1722     // fail out now so blocking compiles dont hang the java thread
1723     if (!should_compile_new_jobs()) {
1724       return nullptr;
1725     }
1726     bool is_blocking = ReplayCompiles                                             ||
1727                        !directive->BackgroundCompilationOption                    ||
1728                        (PreloadBlocking && (compile_reason == CompileTask::Reason_Preload));
1729     compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, requires_online_compilation, is_blocking, THREAD);
1730   }
1731 
1732   // return requested nmethod
1733   // We accept a higher level osr method
1734   if (osr_bci == InvocationEntryBci) {
1735     return method->code();
1736   }
1737   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1738 }
1739 
1740 
1741 // ------------------------------------------------------------------
1742 // CompileBroker::compilation_is_complete
1743 //
1744 // See if compilation of this method is already complete.
1745 bool CompileBroker::compilation_is_complete(Method*                    method,
1746                                             int                        osr_bci,
1747                                             int                        comp_level,
1748                                             bool                       online_only,
1749                                             CompileTask::CompileReason compile_reason) {
1750   if (compile_reason == CompileTask::Reason_Precompile ||
1751       compile_reason == CompileTask::Reason_PrecompileForPreload) {
1752     return false; // FIXME: any restrictions?
1753   }
1754   bool is_osr = (osr_bci != standard_entry_bci);
1755   if (is_osr) {
1756     if (method->is_not_osr_compilable(comp_level)) {
1757       return true;
1758     } else {
1759       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1760       return (result != nullptr);
1761     }
1762   } else {
1763     if (method->is_not_compilable(comp_level)) {
1764       return true;
1765     } else {
1766       nmethod* result = method->code();
1767       if (result == nullptr) {
1768         return false;
1769       }
1770       if (online_only && result->is_aot()) {
1771         return false;
1772       }
1773       bool same_level = (comp_level == result->comp_level());
1774       if (result->has_clinit_barriers()) {
1775         return !same_level; // Allow replace preloaded code with new code of the same level
1776       }
1777       return same_level;
1778     }
1779   }
1780 }
1781 
1782 
1783 /**
1784  * See if this compilation is already requested.
1785  *
1786  * Implementation note: there is only a single "is in queue" bit
1787  * for each method.  This means that the check below is overly
1788  * conservative in the sense that an osr compilation in the queue
1789  * will block a normal compilation from entering the queue (and vice
1790  * versa).  This can be remedied by a full queue search to disambiguate
1791  * cases.  If it is deemed profitable, this may be done.
1792  */
1793 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1794   return method->queued_for_compilation();
1795 }
1796 
1797 // ------------------------------------------------------------------
1798 // CompileBroker::compilation_is_prohibited
1799 //
1800 // See if this compilation is not allowed.
1801 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1802   bool is_native = method->is_native();
1803   // Some compilers may not support the compilation of natives.
1804   AbstractCompiler *comp = compiler(comp_level);
1805   if (is_native && (!CICompileNatives || comp == nullptr)) {
1806     method->set_not_compilable_quietly("native methods not supported", comp_level);
1807     return true;
1808   }
1809 
1810   bool is_osr = (osr_bci != standard_entry_bci);
1811   // Some compilers may not support on stack replacement.
1812   if (is_osr && (!CICompileOSR || comp == nullptr)) {
1813     method->set_not_osr_compilable("OSR not supported", comp_level);
1814     return true;
1815   }
1816 
1817   // The method may be explicitly excluded by the user.
1818   double scale;
1819   if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) {
1820     bool quietly = CompilerOracle::be_quiet();
1821     if (PrintCompilation && !quietly) {
1822       // This does not happen quietly...
1823       ResourceMark rm;
1824       tty->print("### Excluding %s:%s",
1825                  method->is_native() ? "generation of native wrapper" : "compile",
1826                  (method->is_static() ? " static" : ""));
1827       method->print_short_name(tty);
1828       tty->cr();
1829     }
1830     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1831   }
1832 
1833   return false;
1834 }
1835 
1836 /**
1837  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1838  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1839  * The function also allows to generate separate compilation IDs for OSR compilations.
1840  */
1841 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1842 #ifdef ASSERT
1843   bool is_osr = (osr_bci != standard_entry_bci);
1844   int id;
1845   if (method->is_native()) {
1846     assert(!is_osr, "can't be osr");
1847     // Adapters, native wrappers and method handle intrinsics
1848     // should be generated always.
1849     return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1850   } else if (CICountOSR && is_osr) {
1851     id = Atomic::add(&_osr_compilation_id, 1);
1852     if (CIStartOSR <= id && id < CIStopOSR) {
1853       return id;
1854     }
1855   } else {
1856     id = Atomic::add(&_compilation_id, 1);
1857     if (CIStart <= id && id < CIStop) {
1858       return id;
1859     }
1860   }
1861 
1862   // Method was not in the appropriate compilation range.
1863   method->set_not_compilable_quietly("Not in requested compile id range");
1864   return 0;
1865 #else
1866   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1867   // only _compilation_id is incremented.
1868   return Atomic::add(&_compilation_id, 1);
1869 #endif
1870 }
1871 
1872 // ------------------------------------------------------------------
1873 // CompileBroker::assign_compile_id_unlocked
1874 //
1875 // Public wrapper for assign_compile_id that acquires the needed locks
1876 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1877   return assign_compile_id(method, osr_bci);
1878 }
1879 
1880 // ------------------------------------------------------------------
1881 // CompileBroker::create_compile_task
1882 //
1883 // Create a CompileTask object representing the current request for
1884 // compilation.  Add this task to the queue.
1885 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1886                                                 int                 compile_id,
1887                                                 const methodHandle& method,
1888                                                 int                 osr_bci,
1889                                                 int                 comp_level,
1890                                                 int                 hot_count,
1891                                                 AOTCodeEntry*       aot_code_entry,
1892                                                 CompileTask::CompileReason compile_reason,
1893                                                 bool                requires_online_compilation,
1894                                                 bool                blocking) {
1895   CompileTask* new_task = CompileTask::allocate();
1896   new_task->initialize(compile_id, method, osr_bci, comp_level,
1897                        hot_count, aot_code_entry, compile_reason, queue,
1898                        requires_online_compilation, blocking);
1899   return new_task;
1900 }
1901 
1902 #if INCLUDE_JVMCI
1903 // The number of milliseconds to wait before checking if
1904 // JVMCI compilation has made progress.
1905 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1906 
1907 // The number of JVMCI compilation progress checks that must fail
1908 // before unblocking a thread waiting for a blocking compilation.
1909 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1910 
1911 /**
1912  * Waits for a JVMCI compiler to complete a given task. This thread
1913  * waits until either the task completes or it sees no JVMCI compilation
1914  * progress for N consecutive milliseconds where N is
1915  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1916  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1917  *
1918  * @return true if this thread needs to free/recycle the task
1919  */
1920 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1921   assert(UseJVMCICompiler, "sanity");
1922   MonitorLocker ml(thread, task->lock());
1923   int progress_wait_attempts = 0;
1924   jint thread_jvmci_compilation_ticks = 0;
1925   jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1926   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1927          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1928     JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1929 
1930     bool progress;
1931     if (jvmci_compile_state != nullptr) {
1932       jint ticks = jvmci_compile_state->compilation_ticks();
1933       progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1934       JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1935       thread_jvmci_compilation_ticks = ticks;
1936     } else {
1937       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1938       // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1939       // compilation ticks to determine whether JVMCI compilation
1940       // is still making progress through the JVMCI compiler queue.
1941       jint ticks = jvmci->global_compilation_ticks();
1942       progress = (ticks - global_jvmci_compilation_ticks) != 0;
1943       JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1944       global_jvmci_compilation_ticks = ticks;
1945     }
1946 
1947     if (!progress) {
1948       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1949         if (PrintCompilation) {
1950           task->print(tty, "wait for blocking compilation timed out");
1951         }
1952         JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1953         break;
1954       }
1955     } else {
1956       progress_wait_attempts = 0;
1957     }
1958   }
1959   task->clear_waiter();
1960   return task->is_complete();
1961 }
1962 #endif
1963 
1964 /**
1965  *  Wait for the compilation task to complete.
1966  */
1967 void CompileBroker::wait_for_completion(CompileTask* task) {
1968   if (CIPrintCompileQueue) {
1969     ttyLocker ttyl;
1970     tty->print_cr("BLOCKING FOR COMPILE");
1971   }
1972 
1973   assert(task->is_blocking(), "can only wait on blocking task");
1974 
1975   JavaThread* thread = JavaThread::current();
1976 
1977   methodHandle method(thread, task->method());
1978   bool free_task;
1979 #if INCLUDE_JVMCI
1980   AbstractCompiler* comp = compiler(task->comp_level());
1981   if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) {
1982     // It may return before compilation is completed.
1983     // Note that libjvmci should not pre-emptively unblock
1984     // a thread waiting for a compilation as it does not call
1985     // Java code and so is not deadlock prone like jarjvmci.
1986     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1987   } else
1988 #endif
1989   {
1990     MonitorLocker ml(thread, task->lock());
1991     free_task = true;
1992     task->inc_waiting_for_completion();
1993     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1994       ml.wait();
1995     }
1996     task->dec_waiting_for_completion();
1997   }
1998 
1999   if (free_task) {
2000     if (is_compilation_disabled_forever()) {
2001       CompileTask::free(task);
2002       return;
2003     }
2004 
2005     // It is harmless to check this status without the lock, because
2006     // completion is a stable property (until the task object is recycled).
2007     assert(task->is_complete(), "Compilation should have completed");
2008 
2009     // By convention, the waiter is responsible for recycling a
2010     // blocking CompileTask. Since there is only one waiter ever
2011     // waiting on a CompileTask, we know that no one else will
2012     // be using this CompileTask; we can free it.
2013     CompileTask::free(task);
2014   }
2015 }
2016 
2017 void CompileBroker::wait_for_no_active_tasks() {
2018   CompileTask::wait_for_no_active_tasks();
2019 }
2020 
2021 /**
2022  * Initialize compiler thread(s) + compiler object(s). The postcondition
2023  * of this function is that the compiler runtimes are initialized and that
2024  * compiler threads can start compiling.
2025  */
2026 bool CompileBroker::init_compiler_runtime() {
2027   CompilerThread* thread = CompilerThread::current();
2028   AbstractCompiler* comp = thread->compiler();
2029   // Final sanity check - the compiler object must exist
2030   guarantee(comp != nullptr, "Compiler object must exist");
2031 
2032   {
2033     // Must switch to native to allocate ci_env
2034     ThreadToNativeFromVM ttn(thread);
2035     ciEnv ci_env((CompileTask*)nullptr);
2036     // Cache Jvmti state
2037     ci_env.cache_jvmti_state();
2038     // Cache DTrace flags
2039     ci_env.cache_dtrace_flags();
2040 
2041     // Switch back to VM state to do compiler initialization
2042     ThreadInVMfromNative tv(thread);
2043 
2044     comp->initialize();
2045   }
2046 
2047   if (comp->is_failed()) {
2048     disable_compilation_forever();
2049     // If compiler initialization failed, no compiler thread that is specific to a
2050     // particular compiler runtime will ever start to compile methods.
2051     shutdown_compiler_runtime(comp, thread);
2052     return false;
2053   }
2054 
2055   // C1 specific check
2056   if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) {
2057     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
2058     return false;
2059   }
2060 
2061   return true;
2062 }
2063 
2064 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) {
2065   BufferBlob* blob = thread->get_buffer_blob();
2066   if (blob != nullptr) {
2067     blob->purge();
2068     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2069     CodeCache::free(blob);
2070   }
2071 }
2072 
2073 /**
2074  * If C1 and/or C2 initialization failed, we shut down all compilation.
2075  * We do this to keep things simple. This can be changed if it ever turns
2076  * out to be a problem.
2077  */
2078 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
2079   free_buffer_blob_if_allocated(thread);
2080 
2081   log_info(compilation)("shutdown_compiler_runtime: " INTPTR_FORMAT, p2i(thread));
2082 
2083   if (comp->should_perform_shutdown()) {
2084     // There are two reasons for shutting down the compiler
2085     // 1) compiler runtime initialization failed
2086     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
2087     warning("%s initialization failed. Shutting down all compilers", comp->name());
2088 
2089     // Only one thread per compiler runtime object enters here
2090     // Set state to shut down
2091     comp->set_shut_down();
2092 
2093     // Delete all queued compilation tasks to make compiler threads exit faster.
2094     if (_c1_compile_queue != nullptr) {
2095       _c1_compile_queue->free_all();
2096     }
2097 
2098     if (_c2_compile_queue != nullptr) {
2099       _c2_compile_queue->free_all();
2100     }
2101 
2102     if (_c3_compile_queue != nullptr) {
2103       _c3_compile_queue->free_all();
2104     }
2105 
2106     // Set flags so that we continue execution with using interpreter only.
2107     UseCompiler    = false;
2108     UseInterpreter = true;
2109 
2110     // We could delete compiler runtimes also. However, there are references to
2111     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
2112     // fail. This can be done later if necessary.
2113   }
2114 }
2115 
2116 /**
2117  * Helper function to create new or reuse old CompileLog.
2118  */
2119 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
2120   if (!LogCompilation) return nullptr;
2121 
2122   AbstractCompiler *compiler = ct->compiler();
2123   bool jvmci = JVMCI_ONLY( compiler->is_jvmci() ||) false;
2124   bool c1 = compiler->is_c1();
2125   jobject* compiler_objects = c1 ? _compiler1_objects : (_c3_count == 0 ? _compiler2_objects : (jvmci ? _compiler2_objects : _compiler3_objects));
2126   assert(compiler_objects != nullptr, "must be initialized at this point");
2127   CompileLog** logs = c1 ? _compiler1_logs : (_c3_count == 0 ? _compiler2_logs : (jvmci ? _compiler2_logs : _compiler3_logs));
2128   assert(logs != nullptr, "must be initialized at this point");
2129   int count = c1 ? _c1_count : (_c3_count == 0 ? _c2_count : (jvmci ? _c2_count : _c3_count));
2130 
2131   if (ct->queue() == _ac1_compile_queue || ct->queue() == _ac2_compile_queue) {
2132     compiler_objects = _ac_objects;
2133     logs  = _ac_logs;
2134     count = _ac_count;
2135   }
2136   // Find Compiler number by its threadObj.
2137   oop compiler_obj = ct->threadObj();
2138   int compiler_number = 0;
2139   bool found = false;
2140   for (; compiler_number < count; compiler_number++) {
2141     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
2142       found = true;
2143       break;
2144     }
2145   }
2146   assert(found, "Compiler must exist at this point");
2147 
2148   // Determine pointer for this thread's log.
2149   CompileLog** log_ptr = &logs[compiler_number];
2150 
2151   // Return old one if it exists.
2152   CompileLog* log = *log_ptr;
2153   if (log != nullptr) {
2154     ct->init_log(log);
2155     return log;
2156   }
2157 
2158   // Create a new one and remember it.
2159   init_compiler_thread_log();
2160   log = ct->log();
2161   *log_ptr = log;
2162   return log;
2163 }
2164 
2165 // ------------------------------------------------------------------
2166 // CompileBroker::compiler_thread_loop
2167 //
2168 // The main loop run by a CompilerThread.
2169 void CompileBroker::compiler_thread_loop() {
2170   CompilerThread* thread = CompilerThread::current();
2171   CompileQueue* queue = thread->queue();
2172   // For the thread that initializes the ciObjectFactory
2173   // this resource mark holds all the shared objects
2174   ResourceMark rm;
2175 
2176   // First thread to get here will initialize the compiler interface
2177 
2178   {
2179     ASSERT_IN_VM;
2180     MutexLocker only_one (thread, CompileThread_lock);
2181     if (!ciObjectFactory::is_initialized()) {
2182       ciObjectFactory::initialize();
2183     }
2184   }
2185 
2186   // Open a log.
2187   CompileLog* log = get_log(thread);
2188   if (log != nullptr) {
2189     log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'",
2190                     thread->name(),
2191                     os::current_thread_id(),
2192                     os::current_process_id());
2193     log->stamp();
2194     log->end_elem();
2195   }
2196 
2197   // If compiler thread/runtime initialization fails, exit the compiler thread
2198   if (!init_compiler_runtime()) {
2199     return;
2200   }
2201 
2202   thread->start_idle_timer();
2203 
2204   // Poll for new compilation tasks as long as the JVM runs. Compilation
2205   // should only be disabled if something went wrong while initializing the
2206   // compiler runtimes. This, in turn, should not happen. The only known case
2207   // when compiler runtime initialization fails is if there is not enough free
2208   // space in the code cache to generate the necessary stubs, etc.
2209   while (!is_compilation_disabled_forever()) {
2210     // We need this HandleMark to avoid leaking VM handles.
2211     HandleMark hm(thread);
2212 
2213     RecompilationPolicy::recompilation_step(AOTRecompilationWorkUnitSize, thread);
2214 
2215     CompileTask* task = queue->get(thread);
2216     if (task == nullptr) {
2217       if (UseDynamicNumberOfCompilerThreads) {
2218         // Access compiler_count under lock to enforce consistency.
2219         MutexLocker only_one(CompileThread_lock);
2220         if (can_remove(thread, true)) {
2221           if (trace_compiler_threads()) {
2222             ResourceMark rm;
2223             stringStream msg;
2224             msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
2225                       thread->name(), thread->idle_time_millis());
2226             print_compiler_threads(msg);
2227           }
2228 
2229           // Notify compiler that the compiler thread is about to stop
2230           thread->compiler()->stopping_compiler_thread(thread);
2231 
2232           free_buffer_blob_if_allocated(thread);
2233           return; // Stop this thread.
2234         }
2235       }
2236     } else {
2237       // Assign the task to the current thread.  Mark this compilation
2238       // thread as active for the profiler.
2239       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
2240       // occurs after fetching the compile task off the queue.
2241       CompileTaskWrapper ctw(task);
2242       methodHandle method(thread, task->method());
2243 
2244       // Never compile a method if breakpoints are present in it
2245       if (method()->number_of_breakpoints() == 0) {
2246         // Compile the method.
2247         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
2248           invoke_compiler_on_method(task);
2249           thread->start_idle_timer();
2250         } else {
2251           // After compilation is disabled, remove remaining methods from queue
2252           method->clear_queued_for_compilation();
2253           method->set_pending_queue_processed(false);
2254           task->set_failure_reason("compilation is disabled");
2255         }
2256       } else {
2257         task->set_failure_reason("breakpoints are present");
2258       }
2259 
2260       if (UseDynamicNumberOfCompilerThreads) {
2261         possibly_add_compiler_threads(thread);
2262         assert(!thread->has_pending_exception(), "should have been handled");
2263       }
2264     }
2265   }
2266 
2267   // Shut down compiler runtime
2268   shutdown_compiler_runtime(thread->compiler(), thread);
2269 }
2270 
2271 // ------------------------------------------------------------------
2272 // CompileBroker::init_compiler_thread_log
2273 //
2274 // Set up state required by +LogCompilation.
2275 void CompileBroker::init_compiler_thread_log() {
2276     CompilerThread* thread = CompilerThread::current();
2277     char  file_name[4*K];
2278     FILE* fp = nullptr;
2279     intx thread_id = os::current_thread_id();
2280     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
2281       const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr);
2282       if (dir == nullptr) {
2283         jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log",
2284                      thread_id, os::current_process_id());
2285       } else {
2286         jio_snprintf(file_name, sizeof(file_name),
2287                      "%s%shs_c%zu_pid%u.log", dir,
2288                      os::file_separator(), thread_id, os::current_process_id());
2289       }
2290 
2291       fp = os::fopen(file_name, "wt");
2292       if (fp != nullptr) {
2293         if (LogCompilation && Verbose) {
2294           tty->print_cr("Opening compilation log %s", file_name);
2295         }
2296         CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
2297         if (log == nullptr) {
2298           fclose(fp);
2299           return;
2300         }
2301         thread->init_log(log);
2302 
2303         if (xtty != nullptr) {
2304           ttyLocker ttyl;
2305           // Record any per thread log files
2306           xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name);
2307         }
2308         return;
2309       }
2310     }
2311     warning("Cannot open log file: %s", file_name);
2312 }
2313 
2314 void CompileBroker::log_metaspace_failure() {
2315   const char* message = "some methods may not be compiled because metaspace "
2316                         "is out of memory";
2317   if (CompilationLog::log() != nullptr) {
2318     CompilationLog::log()->log_metaspace_failure(message);
2319   }
2320   if (PrintCompilation) {
2321     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2322   }
2323 }
2324 
2325 
2326 // ------------------------------------------------------------------
2327 // CompileBroker::set_should_block
2328 //
2329 // Set _should_block.
2330 // Call this from the VM, with Threads_lock held and a safepoint requested.
2331 void CompileBroker::set_should_block() {
2332   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2333   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2334 #ifndef PRODUCT
2335   if (PrintCompilation && (Verbose || WizardMode))
2336     tty->print_cr("notifying compiler thread pool to block");
2337 #endif
2338   _should_block = true;
2339 }
2340 
2341 // ------------------------------------------------------------------
2342 // CompileBroker::maybe_block
2343 //
2344 // Call this from the compiler at convenient points, to poll for _should_block.
2345 void CompileBroker::maybe_block() {
2346   if (_should_block) {
2347 #ifndef PRODUCT
2348     if (PrintCompilation && (Verbose || WizardMode))
2349       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2350 #endif
2351     // If we are executing a task during the request to block, report the task
2352     // before disappearing.
2353     CompilerThread* thread = CompilerThread::current();
2354     if (thread != nullptr) {
2355       CompileTask* task = thread->task();
2356       if (task != nullptr) {
2357         if (PrintCompilation) {
2358           task->print(tty, "blocked");
2359         }
2360         task->print_ul("blocked");
2361       }
2362     }
2363     // Go to VM state and block for final VM shutdown safepoint.
2364     ThreadInVMfromNative tivfn(JavaThread::current());
2365     assert(false, "Should never unblock from TIVNM entry");
2366   }
2367 }
2368 
2369 // wrapper for CodeCache::print_summary()
2370 static void codecache_print(bool detailed)
2371 {
2372   stringStream s;
2373   // Dump code cache  into a buffer before locking the tty,
2374   {
2375     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2376     CodeCache::print_summary(&s, detailed);
2377   }
2378   ttyLocker ttyl;
2379   tty->print("%s", s.freeze());
2380 }
2381 
2382 // wrapper for CodeCache::print_summary() using outputStream
2383 static void codecache_print(outputStream* out, bool detailed) {
2384   stringStream s;
2385 
2386   // Dump code cache into a buffer
2387   {
2388     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2389     CodeCache::print_summary(&s, detailed);
2390   }
2391 
2392   char* remaining_log = s.as_string();
2393   while (*remaining_log != '\0') {
2394     char* eol = strchr(remaining_log, '\n');
2395     if (eol == nullptr) {
2396       out->print_cr("%s", remaining_log);
2397       remaining_log = remaining_log + strlen(remaining_log);
2398     } else {
2399       *eol = '\0';
2400       out->print_cr("%s", remaining_log);
2401       remaining_log = eol + 1;
2402     }
2403   }
2404 }
2405 
2406 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2407                                          int compilable, const char* failure_reason) {
2408   if (!AbortVMOnCompilationFailure) {
2409     return;
2410   }
2411   if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2412     fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2413   }
2414   if (compilable == ciEnv::MethodCompilable_never) {
2415     fatal("Never compilable: %s", failure_reason);
2416   }
2417 }
2418 
2419 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2420   assert(task != nullptr, "invariant");
2421   CompilerEvent::CompilationEvent::post(event,
2422                                         task->compile_id(),
2423                                         task->compiler()->type(),
2424                                         task->method(),
2425                                         task->comp_level(),
2426                                         task->is_success(),
2427                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2428                                         task->nm_total_size(),
2429                                         task->num_inlined_bytecodes(),
2430                                         task->arena_bytes());
2431 }
2432 
2433 int DirectivesStack::_depth = 0;
2434 CompilerDirectives* DirectivesStack::_top = nullptr;
2435 CompilerDirectives* DirectivesStack::_bottom = nullptr;
2436 
2437 // Acquires Compilation_lock and waits for it to be notified
2438 // as long as WhiteBox::compilation_locked is true.
2439 static void whitebox_lock_compilation() {
2440   MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2441   while (WhiteBox::compilation_locked) {
2442     locker.wait();
2443   }
2444 }
2445 
2446 // ------------------------------------------------------------------
2447 // CompileBroker::invoke_compiler_on_method
2448 //
2449 // Compile a method.
2450 //
2451 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2452   task->print_ul();
2453   elapsedTimer time;
2454 
2455   DirectiveSet* directive = task->directive();
2456 
2457   CompilerThread* thread = CompilerThread::current();
2458   ResourceMark rm(thread);
2459 
2460   if (CompilationLog::log() != nullptr) {
2461     CompilationLog::log()->log_compile(thread, task);
2462   }
2463 
2464   // Common flags.
2465   int compile_id = task->compile_id();
2466   int osr_bci = task->osr_bci();
2467   bool is_osr = (osr_bci != standard_entry_bci);
2468   bool should_log = (thread->log() != nullptr);
2469   bool should_break = false;
2470   bool should_print_compilation = PrintCompilation || directive->PrintCompilationOption;
2471   const int task_level = task->comp_level();
2472   AbstractCompiler* comp = task->compiler();
2473   {
2474     // create the handle inside it's own block so it can't
2475     // accidentally be referenced once the thread transitions to
2476     // native.  The NoHandleMark before the transition should catch
2477     // any cases where this occurs in the future.
2478     methodHandle method(thread, task->method());
2479 
2480     assert(!method->is_native(), "no longer compile natives");
2481 
2482     // Update compile information when using perfdata.
2483     if (UsePerfData) {
2484       update_compile_perf_data(thread, method, is_osr);
2485     }
2486 
2487     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2488   }
2489 
2490   should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2491   if (should_log && !directive->LogOption) {
2492     should_log = false;
2493   }
2494 
2495   // Allocate a new set of JNI handles.
2496   JNIHandleMark jhm(thread);
2497   Method* target_handle = task->method();
2498   int compilable = ciEnv::MethodCompilable;
2499   const char* failure_reason = nullptr;
2500   bool failure_reason_on_C_heap = false;
2501   const char* retry_message = nullptr;
2502 
2503 #if INCLUDE_JVMCI
2504   if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) {
2505     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2506 
2507     TraceTime t1("compilation", &time);
2508     EventCompilation event;
2509     JVMCICompileState compile_state(task, jvmci);
2510     JVMCIRuntime *runtime = nullptr;
2511 
2512     if (JVMCI::in_shutdown()) {
2513       failure_reason = "in JVMCI shutdown";
2514       retry_message = "not retryable";
2515       compilable = ciEnv::MethodCompilable_never;
2516     } else if (compile_state.target_method_is_old()) {
2517       // Skip redefined methods
2518       failure_reason = "redefined method";
2519       retry_message = "not retryable";
2520       compilable = ciEnv::MethodCompilable_never;
2521     } else {
2522       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2523       if (env.init_error() != JNI_OK) {
2524         const char* msg = env.init_error_msg();
2525         failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)",
2526                                     env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI);
2527         bool reason_on_C_heap = true;
2528         // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it
2529         // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime.
2530         bool retryable = env.init_error() == JNI_ENOMEM;
2531         compile_state.set_failure(retryable, failure_reason, reason_on_C_heap);
2532       }
2533       if (failure_reason == nullptr) {
2534         if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2535           // Must switch to native to block
2536           ThreadToNativeFromVM ttn(thread);
2537           whitebox_lock_compilation();
2538         }
2539         methodHandle method(thread, target_handle);
2540         runtime = env.runtime();
2541         runtime->compile_method(&env, jvmci, method, osr_bci);
2542 
2543         failure_reason = compile_state.failure_reason();
2544         failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2545         if (!compile_state.retryable()) {
2546           retry_message = "not retryable";
2547           compilable = ciEnv::MethodCompilable_not_at_tier;
2548         }
2549         if (!task->is_success()) {
2550           assert(failure_reason != nullptr, "must specify failure_reason");
2551         }
2552       }
2553     }
2554     if (!task->is_success() && !JVMCI::in_shutdown()) {
2555       handle_compile_error(thread, task, nullptr, compilable, failure_reason);
2556     }
2557     if (event.should_commit()) {
2558       post_compilation_event(event, task);
2559     }
2560 
2561     if (runtime != nullptr) {
2562       runtime->post_compile(thread);
2563     }
2564   } else
2565 #endif // INCLUDE_JVMCI
2566   {
2567     NoHandleMark  nhm;
2568     ThreadToNativeFromVM ttn(thread);
2569 
2570     ciEnv ci_env(task);
2571     if (should_break) {
2572       ci_env.set_break_at_compile(true);
2573     }
2574     if (should_log) {
2575       ci_env.set_log(thread->log());
2576     }
2577     assert(thread->env() == &ci_env, "set by ci_env");
2578     // The thread-env() field is cleared in ~CompileTaskWrapper.
2579 
2580     // Cache Jvmti state
2581     bool method_is_old = ci_env.cache_jvmti_state();
2582 
2583     // Skip redefined methods
2584     if (method_is_old) {
2585       ci_env.record_method_not_compilable("redefined method", true);
2586     }
2587 
2588     // Cache DTrace flags
2589     ci_env.cache_dtrace_flags();
2590 
2591     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2592 
2593     TraceTime t1("compilation", &time);
2594     EventCompilation event;
2595 
2596     if (comp == nullptr) {
2597       ci_env.record_method_not_compilable("no compiler");
2598     } else if (!ci_env.failing()) {
2599       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2600         whitebox_lock_compilation();
2601       }
2602       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2603 
2604       /* Repeat compilation without installing code for profiling purposes */
2605       int repeat_compilation_count = directive->RepeatCompilationOption;
2606       while (repeat_compilation_count > 0) {
2607         ResourceMark rm(thread);
2608         task->print_ul("NO CODE INSTALLED");
2609         comp->compile_method(&ci_env, target, osr_bci, false, directive);
2610         repeat_compilation_count--;
2611       }
2612     }
2613 
2614 
2615     if (!ci_env.failing() && !task->is_success() && !task->is_precompiled()) {
2616       assert(ci_env.failure_reason() != nullptr, "expect failure reason");
2617       assert(false, "compiler should always document failure: %s", ci_env.failure_reason());
2618       // The compiler elected, without comment, not to register a result.
2619       // Do not attempt further compilations of this method.
2620       ci_env.record_method_not_compilable("compile failed");
2621     }
2622 
2623     // Copy this bit to the enclosing block:
2624     compilable = ci_env.compilable();
2625 
2626     if (ci_env.failing()) {
2627       // Duplicate the failure reason string, so that it outlives ciEnv
2628       failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler);
2629       failure_reason_on_C_heap = true;
2630       retry_message = ci_env.retry_message();
2631       ci_env.report_failure(failure_reason);
2632     }
2633 
2634     if (ci_env.failing()) {
2635       handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2636     }
2637     if (event.should_commit()) {
2638       post_compilation_event(event, task);
2639     }
2640   }
2641 
2642   if (failure_reason != nullptr) {
2643     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2644     if (CompilationLog::log() != nullptr) {
2645       CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2646     }
2647     if (PrintCompilation || directive->PrintCompilationOption) {
2648       FormatBufferResource msg = retry_message != nullptr ?
2649         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2650         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2651       task->print(tty, msg);
2652     }
2653   }
2654 
2655   task->mark_finished(os::elapsed_counter());
2656   DirectivesStack::release(directive);
2657 
2658   methodHandle method(thread, task->method());
2659 
2660   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2661 
2662   collect_statistics(thread, time, task);
2663 
2664   if (PrintCompilation && PrintCompilation2) {
2665     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2666     tty->print("%4d ", compile_id);    // print compilation number
2667     tty->print("%s ", (is_osr ? "%" : (task->is_aot() ? "A" : " ")));
2668     if (task->is_success()) {
2669       tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2670     }
2671     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2672   }
2673 
2674   Log(compilation, codecache) log;
2675   if (log.is_debug()) {
2676     LogStream ls(log.debug());
2677     codecache_print(&ls, /* detailed= */ false);
2678   }
2679   if (PrintCodeCacheOnCompilation) {
2680     codecache_print(/* detailed= */ false);
2681   }
2682   // Disable compilation, if required.
2683   switch (compilable) {
2684   case ciEnv::MethodCompilable_never:
2685     if (is_osr)
2686       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2687     else
2688       method->set_not_compilable_quietly("MethodCompilable_never");
2689     break;
2690   case ciEnv::MethodCompilable_not_at_tier:
2691     if (is_osr)
2692       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2693     else
2694       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2695     break;
2696   }
2697 
2698   // Note that the queued_for_compilation bits are cleared without
2699   // protection of a mutex. [They were set by the requester thread,
2700   // when adding the task to the compile queue -- at which time the
2701   // compile queue lock was held. Subsequently, we acquired the compile
2702   // queue lock to get this task off the compile queue; thus (to belabour
2703   // the point somewhat) our clearing of the bits must be occurring
2704   // only after the setting of the bits. See also 14012000 above.
2705   method->clear_queued_for_compilation();
2706   method->set_pending_queue_processed(false);
2707 
2708   if (should_print_compilation) {
2709     ResourceMark rm;
2710     task->print_tty();
2711   }
2712 }
2713 
2714 /**
2715  * The CodeCache is full. Print warning and disable compilation.
2716  * Schedule code cache cleaning so compilation can continue later.
2717  * This function needs to be called only from CodeCache::allocate(),
2718  * since we currently handle a full code cache uniformly.
2719  */
2720 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2721   UseInterpreter = true;
2722   if (UseCompiler || AlwaysCompileLoopMethods ) {
2723     if (xtty != nullptr) {
2724       stringStream s;
2725       // Dump code cache state into a buffer before locking the tty,
2726       // because log_state() will use locks causing lock conflicts.
2727       CodeCache::log_state(&s);
2728       // Lock to prevent tearing
2729       ttyLocker ttyl;
2730       xtty->begin_elem("code_cache_full");
2731       xtty->print("%s", s.freeze());
2732       xtty->stamp();
2733       xtty->end_elem();
2734     }
2735 
2736 #ifndef PRODUCT
2737     if (ExitOnFullCodeCache) {
2738       codecache_print(/* detailed= */ true);
2739       before_exit(JavaThread::current());
2740       exit_globals(); // will delete tty
2741       vm_direct_exit(1);
2742     }
2743 #endif
2744     if (UseCodeCacheFlushing) {
2745       // Since code cache is full, immediately stop new compiles
2746       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2747         log_info(codecache)("Code cache is full - disabling compilation");
2748       }
2749     } else {
2750       disable_compilation_forever();
2751     }
2752 
2753     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2754   }
2755 }
2756 
2757 // ------------------------------------------------------------------
2758 // CompileBroker::update_compile_perf_data
2759 //
2760 // Record this compilation for debugging purposes.
2761 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2762   ResourceMark rm;
2763   char* method_name = method->name()->as_C_string();
2764   char current_method[CompilerCounters::cmname_buffer_length];
2765   size_t maxLen = CompilerCounters::cmname_buffer_length;
2766 
2767   const char* class_name = method->method_holder()->name()->as_C_string();
2768 
2769   size_t s1len = strlen(class_name);
2770   size_t s2len = strlen(method_name);
2771 
2772   // check if we need to truncate the string
2773   if (s1len + s2len + 2 > maxLen) {
2774 
2775     // the strategy is to lop off the leading characters of the
2776     // class name and the trailing characters of the method name.
2777 
2778     if (s2len + 2 > maxLen) {
2779       // lop of the entire class name string, let snprintf handle
2780       // truncation of the method name.
2781       class_name += s1len; // null string
2782     }
2783     else {
2784       // lop off the extra characters from the front of the class name
2785       class_name += ((s1len + s2len + 2) - maxLen);
2786     }
2787   }
2788 
2789   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2790 
2791   int last_compile_type = normal_compile;
2792   if (CICountOSR && is_osr) {
2793     last_compile_type = osr_compile;
2794   } else if (CICountNative && method->is_native()) {
2795     last_compile_type = native_compile;
2796   }
2797 
2798   CompilerCounters* counters = thread->counters();
2799   counters->set_current_method(current_method);
2800   counters->set_compile_type((jlong) last_compile_type);
2801 }
2802 
2803 // ------------------------------------------------------------------
2804 // CompileBroker::collect_statistics
2805 //
2806 // Collect statistics about the compilation.
2807 
2808 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2809   bool success = task->is_success();
2810   methodHandle method (thread, task->method());
2811   int compile_id = task->compile_id();
2812   bool is_osr = (task->osr_bci() != standard_entry_bci);
2813   const int comp_level = task->comp_level();
2814   CompilerCounters* counters = thread->counters();
2815 
2816   MutexLocker locker(CompileStatistics_lock);
2817 
2818   // _perf variables are production performance counters which are
2819   // updated regardless of the setting of the CITime and CITimeEach flags
2820   //
2821 
2822   // account all time, including bailouts and failures in this counter;
2823   // C1 and C2 counters are counting both successful and unsuccessful compiles
2824   _t_total_compilation.add(&time);
2825 
2826   // Update compilation times. Used by the implementation of JFR CompilerStatistics
2827   // and java.lang.management.CompilationMXBean.
2828   _perf_total_compilation->inc(time.ticks());
2829   _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time);
2830 
2831   if (!success) {
2832     _total_bailout_count++;
2833     if (UsePerfData) {
2834       _perf_last_failed_method->set_value(counters->current_method());
2835       _perf_last_failed_type->set_value(counters->compile_type());
2836       _perf_total_bailout_count->inc();
2837     }
2838     _t_bailedout_compilation.add(&time);
2839 
2840     if (CITime || log_is_enabled(Info, init)) {
2841       CompilerStatistics* stats = nullptr;
2842       if (task->is_aot()) {
2843         int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2844         stats = &_aot_stats_per_level[level];
2845       } else {
2846         stats = &_stats_per_level[comp_level-1];
2847       }
2848       stats->_bailout.update(time, 0);
2849     }
2850   } else if (!task->is_success()) {
2851     if (UsePerfData) {
2852       _perf_last_invalidated_method->set_value(counters->current_method());
2853       _perf_last_invalidated_type->set_value(counters->compile_type());
2854       _perf_total_invalidated_count->inc();
2855     }
2856     _total_invalidated_count++;
2857     _t_invalidated_compilation.add(&time);
2858 
2859     if (CITime || log_is_enabled(Info, init)) {
2860       CompilerStatistics* stats = nullptr;
2861       if (task->is_aot()) {
2862         int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2863         stats = &_aot_stats_per_level[level];
2864       } else {
2865         stats = &_stats_per_level[comp_level-1];
2866       }
2867       stats->_invalidated.update(time, 0);
2868     }
2869   } else {
2870     // Compilation succeeded
2871     if (CITime || log_is_enabled(Info, init)) {
2872       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2873       if (is_osr) {
2874         _t_osr_compilation.add(&time);
2875         _sum_osr_bytes_compiled += bytes_compiled;
2876       } else {
2877         _t_standard_compilation.add(&time);
2878         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2879       }
2880 
2881       // Collect statistic per compilation level
2882       if (task->is_aot()) {
2883         _aot_stats._standard.update(time, bytes_compiled);
2884         _aot_stats._nmethods_size += task->nm_total_size();
2885         _aot_stats._nmethods_code_size += task->nm_insts_size();
2886         int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2887         CompilerStatistics* stats = &_aot_stats_per_level[level];
2888         stats->_standard.update(time, bytes_compiled);
2889         stats->_nmethods_size += task->nm_total_size();
2890         stats->_nmethods_code_size += task->nm_insts_size();
2891       } else if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2892         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2893         if (is_osr) {
2894           stats->_osr.update(time, bytes_compiled);
2895         } else {
2896           stats->_standard.update(time, bytes_compiled);
2897         }
2898         stats->_nmethods_size += task->nm_total_size();
2899         stats->_nmethods_code_size += task->nm_insts_size();
2900       } else {
2901         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2902       }
2903 
2904       // Collect statistic per compiler
2905       AbstractCompiler* comp = task->compiler();
2906       if (comp && !task->is_aot()) {
2907         CompilerStatistics* stats = comp->stats();
2908         if (is_osr) {
2909           stats->_osr.update(time, bytes_compiled);
2910         } else {
2911           stats->_standard.update(time, bytes_compiled);
2912         }
2913         stats->_nmethods_size += task->nm_total_size();
2914         stats->_nmethods_code_size += task->nm_insts_size();
2915       } else if (!task->is_aot()) { // if (!comp)
2916         assert(false, "Compiler object must exist");
2917       }
2918     }
2919 
2920     if (UsePerfData) {
2921       // save the name of the last method compiled
2922       _perf_last_method->set_value(counters->current_method());
2923       _perf_last_compile_type->set_value(counters->compile_type());
2924       _perf_last_compile_size->set_value(method->code_size() +
2925                                          task->num_inlined_bytecodes());
2926       if (is_osr) {
2927         _perf_osr_compilation->inc(time.ticks());
2928         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2929       } else {
2930         _perf_standard_compilation->inc(time.ticks());
2931         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2932       }
2933     }
2934 
2935     if (CITimeEach) {
2936       double compile_time = time.seconds();
2937       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2938       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2939                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2940     }
2941 
2942     // Collect counts of successful compilations
2943     _sum_nmethod_size      += task->nm_total_size();
2944     _sum_nmethod_code_size += task->nm_insts_size();
2945     _total_compile_count++;
2946 
2947     if (UsePerfData) {
2948       _perf_sum_nmethod_size->inc(     task->nm_total_size());
2949       _perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2950       _perf_total_compile_count->inc();
2951     }
2952 
2953     if (is_osr) {
2954       if (UsePerfData) _perf_total_osr_compile_count->inc();
2955       _total_osr_compile_count++;
2956     } else {
2957       if (UsePerfData) _perf_total_standard_compile_count->inc();
2958       _total_standard_compile_count++;
2959     }
2960   }
2961   // set the current method for the thread to null
2962   if (UsePerfData) counters->set_current_method("");
2963 }
2964 
2965 const char* CompileBroker::compiler_name(int comp_level) {
2966   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2967   if (comp == nullptr) {
2968     return "no compiler";
2969   } else {
2970     return (comp->name());
2971   }
2972 }
2973 
2974 jlong CompileBroker::total_compilation_ticks() {
2975   return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0;
2976 }
2977 
2978 void CompileBroker::log_not_entrant(nmethod* nm) {
2979   _total_not_entrant_count++;
2980   if (CITime || log_is_enabled(Info, init)) {
2981     CompilerStatistics* stats = nullptr;
2982     int level = nm->comp_level();
2983     if (nm->is_aot()) {
2984       if (nm->preloaded()) {
2985         assert(level == CompLevel_full_optimization, "%d", level);
2986         level = CompLevel_full_optimization + 1;
2987       }
2988       stats = &_aot_stats_per_level[level - 1];
2989     } else {
2990       stats = &_stats_per_level[level - 1];
2991     }
2992     stats->_made_not_entrant._count++;
2993   }
2994 }
2995 
2996 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2997   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}",
2998                 name, stats->bytes_per_second(),
2999                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
3000                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
3001                 stats->_nmethods_size, stats->_nmethods_code_size);
3002 }
3003 
3004 static void print_helper(outputStream* st, const char* name, CompilerStatistics::Data data, bool print_time = true) {
3005   if (data._count > 0) {
3006     st->print("; %s: %4u methods", name, data._count);
3007     if (print_time) {
3008       st->print(" (in %.3fs)", data._time.seconds());
3009     }
3010   }
3011 }
3012 
3013 static void print_tier_helper(outputStream* st, const char* prefix, int tier, CompilerStatistics* stats) {
3014   st->print("    %s%d: %5u methods", prefix, tier, stats->_standard._count);
3015   if (stats->_standard._count > 0) {
3016     st->print(" (in %.3fs)", stats->_standard._time.seconds());
3017   }
3018   print_helper(st, "osr",     stats->_osr);
3019   print_helper(st, "bailout", stats->_bailout);
3020   print_helper(st, "invalid", stats->_invalidated);
3021   print_helper(st, "not_entrant", stats->_made_not_entrant, false);
3022   st->cr();
3023 }
3024 
3025 static void print_queue_info(outputStream* st, CompileQueue* queue) {
3026   if (queue != nullptr) {
3027     MutexLocker ml(queue->lock());
3028 
3029     uint  total_cnt = 0;
3030     uint active_cnt = 0;
3031     for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) {
3032       guarantee(jt != nullptr, "");
3033       if (jt->is_Compiler_thread()) {
3034         CompilerThread* ct = (CompilerThread*)jt;
3035 
3036         guarantee(ct != nullptr, "");
3037         if (ct->queue() == queue) {
3038           ++total_cnt;
3039           CompileTask* task = ct->task();
3040           if (task != nullptr) {
3041             ++active_cnt;
3042           }
3043         }
3044       }
3045     }
3046 
3047     st->print("  %s (%d active / %d total threads): %u tasks",
3048               queue->name(), active_cnt, total_cnt, queue->size());
3049     if (queue->size() > 0) {
3050       uint counts[] = {0, 0, 0, 0, 0}; // T1 ... T5
3051       for (CompileTask* task = queue->first(); task != nullptr; task = task->next()) {
3052         int tier = task->comp_level();
3053         if (task->is_aot() && task->preload()) {
3054           assert(tier == CompLevel_full_optimization, "%d", tier);
3055           tier = CompLevel_full_optimization + 1;
3056         }
3057         counts[tier-1]++;
3058       }
3059       st->print(":");
3060       for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3061         uint cnt = counts[tier-1];
3062         if (cnt > 0) {
3063           st->print(" T%d: %u tasks;", tier, cnt);
3064         }
3065       }
3066     }
3067     st->cr();
3068 
3069 //    for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) {
3070 //      guarantee(jt != nullptr, "");
3071 //      if (jt->is_Compiler_thread()) {
3072 //        CompilerThread* ct = (CompilerThread*)jt;
3073 //
3074 //        guarantee(ct != nullptr, "");
3075 //        if (ct->queue() == queue) {
3076 //          ResourceMark rm;
3077 //          CompileTask* task = ct->task();
3078 //          st->print("    %s: ", ct->name_raw());
3079 //          if (task != nullptr) {
3080 //            task->print(st, nullptr, true /*short_form*/, false /*cr*/);
3081 //          }
3082 //          st->cr();
3083 //        }
3084 //      }
3085 //    }
3086   }
3087 }
3088 void CompileBroker::print_statistics_on(outputStream* st) {
3089   st->print_cr("  Total: %u methods; %u bailouts, %u invalidated, %u non_entrant",
3090                _total_compile_count, _total_bailout_count, _total_invalidated_count, _total_not_entrant_count);
3091   for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
3092     print_tier_helper(st, "Tier", tier, &_stats_per_level[tier-1]);
3093   }
3094   st->cr();
3095 
3096   if (AOTCodeCaching) {
3097     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3098       if (tier != CompLevel_full_profile) {
3099         print_tier_helper(st, "AOT Code T", tier, &_aot_stats_per_level[tier - 1]);
3100       }
3101     }
3102     st->cr();
3103   }
3104 
3105   print_queue_info(st, _c1_compile_queue);
3106   print_queue_info(st, _c2_compile_queue);
3107   print_queue_info(st, _c3_compile_queue);
3108   print_queue_info(st, _ac1_compile_queue);
3109   print_queue_info(st, _ac2_compile_queue);
3110 }
3111 
3112 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
3113   if (per_compiler) {
3114     if (aggregate) {
3115       tty->cr();
3116       tty->print_cr("[%dms] Individual compiler times (for compiled methods only)", (int)tty->time_stamp().milliseconds());
3117       tty->print_cr("------------------------------------------------");
3118       tty->cr();
3119     }
3120     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
3121       AbstractCompiler* comp = _compilers[i];
3122       if (comp != nullptr) {
3123         print_times(comp->name(), comp->stats());
3124       }
3125     }
3126     if (_aot_stats._standard._count > 0) {
3127       print_times("SC", &_aot_stats);
3128     }
3129     if (aggregate) {
3130       tty->cr();
3131       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
3132       tty->print_cr("------------------------------------------------");
3133       tty->cr();
3134     }
3135     char tier_name[256];
3136     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
3137       CompilerStatistics* stats = &_stats_per_level[tier-1];
3138       os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
3139       print_times(tier_name, stats);
3140     }
3141     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3142       CompilerStatistics* stats = &_aot_stats_per_level[tier-1];
3143       if (stats->_standard._bytes > 0) {
3144         os::snprintf_checked(tier_name, sizeof(tier_name), "AOT Code T%d", tier);
3145         print_times(tier_name, stats);
3146       }
3147     }
3148   }
3149 
3150   if (!aggregate) {
3151     return;
3152   }
3153 
3154   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
3155   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
3156   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
3157 
3158   uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
3159   uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
3160 
3161   uint standard_compile_count = CompileBroker::_total_standard_compile_count;
3162   uint osr_compile_count = CompileBroker::_total_osr_compile_count;
3163   uint total_compile_count = CompileBroker::_total_compile_count;
3164   uint total_bailout_count = CompileBroker::_total_bailout_count;
3165   uint total_invalidated_count = CompileBroker::_total_invalidated_count;
3166 
3167   uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size;
3168   uint nmethods_size = CompileBroker::_sum_nmethod_size;
3169 
3170   tty->cr();
3171   tty->print_cr("Accumulated compiler times");
3172   tty->print_cr("----------------------------------------------------------");
3173                //0000000000111111111122222222223333333333444444444455555555556666666666
3174                //0123456789012345678901234567890123456789012345678901234567890123456789
3175   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
3176   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
3177                 standard_compilation.seconds(),
3178                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
3179   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
3180                 CompileBroker::_t_bailedout_compilation.seconds(),
3181                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
3182   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
3183                 osr_compilation.seconds(),
3184                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
3185   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
3186                 CompileBroker::_t_invalidated_compilation.seconds(),
3187                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
3188 
3189   if (AOTCodeCaching) { // Check flags because AOT code cache could be closed already
3190     tty->cr();
3191     AOTCodeCache::print_timers_on(tty);
3192   }
3193   AbstractCompiler *comp = compiler(CompLevel_simple);
3194   if (comp != nullptr) {
3195     tty->cr();
3196     comp->print_timers();
3197   }
3198   comp = compiler(CompLevel_full_optimization);
3199   if (comp != nullptr) {
3200     tty->cr();
3201     comp->print_timers();
3202   }
3203   comp = _compilers[2];
3204   if (comp != nullptr) {
3205     tty->cr();
3206     comp->print_timers();
3207   }
3208 #if INCLUDE_JVMCI
3209   if (EnableJVMCI) {
3210     JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
3211     if (jvmci_comp != nullptr && jvmci_comp != comp) {
3212       tty->cr();
3213       jvmci_comp->print_timers();
3214     }
3215   }
3216 #endif
3217 
3218   tty->cr();
3219   tty->print_cr("  Total compiled methods    : %8u methods", total_compile_count);
3220   tty->print_cr("    Standard compilation    : %8u methods", standard_compile_count);
3221   tty->print_cr("    On stack replacement    : %8u methods", osr_compile_count);
3222   uint tcb = osr_bytes_compiled + standard_bytes_compiled;
3223   tty->print_cr("  Total compiled bytecodes  : %8u bytes", tcb);
3224   tty->print_cr("    Standard compilation    : %8u bytes", standard_bytes_compiled);
3225   tty->print_cr("    On stack replacement    : %8u bytes", osr_bytes_compiled);
3226   double tcs = total_compilation.seconds();
3227   uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs);
3228   tty->print_cr("  Average compilation speed : %8u bytes/s", bps);
3229   tty->cr();
3230   tty->print_cr("  nmethod code size         : %8u bytes", nmethods_code_size);
3231   tty->print_cr("  nmethod total size        : %8u bytes", nmethods_size);
3232 }
3233 
3234 // Print general/accumulated JIT information.
3235 void CompileBroker::print_info(outputStream *out) {
3236   if (out == nullptr) out = tty;
3237   out->cr();
3238   out->print_cr("======================");
3239   out->print_cr("   General JIT info   ");
3240   out->print_cr("======================");
3241   out->cr();
3242   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
3243   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
3244   out->cr();
3245   out->print_cr("CodeCache overview");
3246   out->print_cr("--------------------------------------------------------");
3247   out->cr();
3248   out->print_cr("         Reserved size : %7zu KB", CodeCache::max_capacity() / K);
3249   out->print_cr("        Committed size : %7zu KB", CodeCache::capacity() / K);
3250   out->print_cr("  Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K);
3251   out->cr();
3252 }
3253 
3254 // Note: tty_lock must not be held upon entry to this function.
3255 //       Print functions called from herein do "micro-locking" on tty_lock.
3256 //       That's a tradeoff which keeps together important blocks of output.
3257 //       At the same time, continuous tty_lock hold time is kept in check,
3258 //       preventing concurrently printing threads from stalling a long time.
3259 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
3260   TimeStamp ts_total;
3261   TimeStamp ts_global;
3262   TimeStamp ts;
3263 
3264   bool allFun = !strcmp(function, "all");
3265   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
3266   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
3267   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
3268   bool methodCount = !strcmp(function, "MethodCount") || allFun;
3269   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
3270   bool methodAge = !strcmp(function, "MethodAge") || allFun;
3271   bool methodNames = !strcmp(function, "MethodNames") || allFun;
3272   bool discard = !strcmp(function, "discard") || allFun;
3273 
3274   if (out == nullptr) {
3275     out = tty;
3276   }
3277 
3278   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
3279     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
3280     out->cr();
3281     return;
3282   }
3283 
3284   ts_total.update(); // record starting point
3285 
3286   if (aggregate) {
3287     print_info(out);
3288   }
3289 
3290   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
3291   // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
3292   // When we request individual parts of the analysis via the jcmd interface, it is possible
3293   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
3294   // updated the aggregated data. We will then see a modified, but again consistent, view
3295   // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
3296   // a lock across user interaction.
3297 
3298   // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
3299   // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
3300   // leading to an unnecessarily long hold time of the other locks we acquired before.
3301   ts.update(); // record starting point
3302   MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
3303   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
3304 
3305   // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
3306   // Unfortunately, such protection is not sufficient:
3307   // When a new nmethod is created via ciEnv::register_method(), the
3308   // Compile_lock is taken first. After some initializations,
3309   // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
3310   // immediately (after finalizing the oop references). To lock out concurrent
3311   // modifiers, we have to grab both locks as well in the described sequence.
3312   //
3313   // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
3314   // for the entire duration of aggregation and printing. That makes sure we see
3315   // a consistent picture and do not run into issues caused by concurrent alterations.
3316   bool should_take_Compile_lock   = !SafepointSynchronize::is_at_safepoint() &&
3317                                     !Compile_lock->owned_by_self();
3318   bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
3319                                     !CodeCache_lock->owned_by_self();
3320   bool take_global_lock_1   =  allFun && should_take_Compile_lock;
3321   bool take_global_lock_2   =  allFun && should_take_CodeCache_lock;
3322   bool take_function_lock_1 = !allFun && should_take_Compile_lock;
3323   bool take_function_lock_2 = !allFun && should_take_CodeCache_lock;
3324   bool take_global_locks    = take_global_lock_1 || take_global_lock_2;
3325   bool take_function_locks  = take_function_lock_1 || take_function_lock_2;
3326 
3327   ts_global.update(); // record starting point
3328 
3329   ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag);
3330   ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag);
3331   if (take_global_locks) {
3332     out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
3333     ts_global.update(); // record starting point
3334   }
3335 
3336   if (aggregate) {
3337     ts.update(); // record starting point
3338     ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1,  Mutex::_safepoint_check_flag);
3339     ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag);
3340     if (take_function_locks) {
3341       out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
3342     }
3343 
3344     ts.update(); // record starting point
3345     CodeCache::aggregate(out, granularity);
3346     if (take_function_locks) {
3347       out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
3348     }
3349   }
3350 
3351   if (usedSpace) CodeCache::print_usedSpace(out);
3352   if (freeSpace) CodeCache::print_freeSpace(out);
3353   if (methodCount) CodeCache::print_count(out);
3354   if (methodSpace) CodeCache::print_space(out);
3355   if (methodAge) CodeCache::print_age(out);
3356   if (methodNames) {
3357     if (allFun) {
3358       // print_names() can only be used safely if the locks have been continuously held
3359       // since aggregation begin. That is true only for function "all".
3360       CodeCache::print_names(out);
3361     } else {
3362       out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
3363     }
3364   }
3365   if (discard) CodeCache::discard(out);
3366 
3367   if (take_global_locks) {
3368     out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
3369   }
3370   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
3371 }