1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/aotLinkedClassBulkLoader.hpp"
  26 #include "cds/cdsConfig.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/aotCodeCache.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/codeHeapState.hpp"
  34 #include "code/dependencyContext.hpp"
  35 #include "compiler/compilationLog.hpp"
  36 #include "compiler/compilationMemoryStatistic.hpp"
  37 #include "compiler/compilationPolicy.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/compileLog.hpp"
  40 #include "compiler/compilerDefinitions.inline.hpp"
  41 #include "compiler/compilerEvent.hpp"
  42 #include "compiler/compilerOracle.hpp"
  43 #include "compiler/directivesParser.hpp"
  44 #include "compiler/recompilationPolicy.hpp"
  45 #include "gc/shared/memAllocator.hpp"
  46 #include "interpreter/linkResolver.hpp"
  47 #include "jfr/jfrEvents.hpp"
  48 #include "jvm.h"
  49 #include "logging/log.hpp"
  50 #include "logging/logStream.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/method.inline.hpp"
  55 #include "oops/methodData.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "prims/nativeLookup.hpp"
  59 #include "prims/whitebox.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/escapeBarrier.hpp"
  62 #include "runtime/globals_extension.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/init.hpp"
  65 #include "runtime/interfaceSupport.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/jniHandles.inline.hpp"
  69 #include "runtime/os.hpp"
  70 #include "runtime/perfData.hpp"
  71 #include "runtime/safepointVerifiers.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/threads.hpp"
  74 #include "runtime/threadSMR.inline.hpp"
  75 #include "runtime/timerTrace.hpp"
  76 #include "runtime/vframe.inline.hpp"
  77 #include "services/management.hpp"
  78 #include "utilities/debug.hpp"
  79 #include "utilities/dtrace.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/formatBuffer.hpp"
  82 #include "utilities/macros.hpp"
  83 #include "utilities/nonblockingQueue.inline.hpp"
  84 #ifdef COMPILER1
  85 #include "c1/c1_Compiler.hpp"
  86 #endif
  87 #ifdef COMPILER2
  88 #include "opto/c2compiler.hpp"
  89 #endif
  90 #if INCLUDE_JVMCI
  91 #include "jvmci/jvmciEnv.hpp"
  92 #include "jvmci/jvmciRuntime.hpp"
  93 #endif
  94 
  95 #ifdef DTRACE_ENABLED
  96 
  97 // Only bother with this argument setup if dtrace is available
  98 
  99 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
 100   {                                                                      \
 101     Symbol* klass_name = (method)->klass_name();                         \
 102     Symbol* name = (method)->name();                                     \
 103     Symbol* signature = (method)->signature();                           \
 104     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
 105       (char *) comp_name, strlen(comp_name),                             \
 106       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 107       (char *) name->bytes(), name->utf8_length(),                       \
 108       (char *) signature->bytes(), signature->utf8_length());            \
 109   }
 110 
 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
 112   {                                                                      \
 113     Symbol* klass_name = (method)->klass_name();                         \
 114     Symbol* name = (method)->name();                                     \
 115     Symbol* signature = (method)->signature();                           \
 116     HOTSPOT_METHOD_COMPILE_END(                                          \
 117       (char *) comp_name, strlen(comp_name),                             \
 118       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 119       (char *) name->bytes(), name->utf8_length(),                       \
 120       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 121   }
 122 
 123 #else //  ndef DTRACE_ENABLED
 124 
 125 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 126 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 127 
 128 #endif // ndef DTRACE_ENABLED
 129 
 130 bool CompileBroker::_initialized = false;
 131 volatile bool CompileBroker::_should_block = false;
 132 volatile int  CompileBroker::_print_compilation_warning = 0;
 133 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 134 
 135 // The installed compiler(s)
 136 AbstractCompiler* CompileBroker::_compilers[3];
 137 
 138 // The maximum numbers of compiler threads to be determined during startup.
 139 int CompileBroker::_c1_count = 0;
 140 int CompileBroker::_c2_count = 0;
 141 int CompileBroker::_c3_count = 0;
 142 int CompileBroker::_ac_count = 0;
 143 
 144 // An array of compiler names as Java String objects
 145 jobject* CompileBroker::_compiler1_objects = nullptr;
 146 jobject* CompileBroker::_compiler2_objects = nullptr;
 147 jobject* CompileBroker::_compiler3_objects = nullptr;
 148 jobject* CompileBroker::_ac_objects = nullptr;
 149 
 150 CompileLog** CompileBroker::_compiler1_logs = nullptr;
 151 CompileLog** CompileBroker::_compiler2_logs = nullptr;
 152 CompileLog** CompileBroker::_compiler3_logs = nullptr;
 153 CompileLog** CompileBroker::_ac_logs = nullptr;
 154 
 155 // These counters are used to assign an unique ID to each compilation.
 156 volatile jint CompileBroker::_compilation_id     = 0;
 157 volatile jint CompileBroker::_osr_compilation_id = 0;
 158 volatile jint CompileBroker::_native_compilation_id = 0;
 159 
 160 // Performance counters
 161 PerfCounter* CompileBroker::_perf_total_compilation = nullptr;
 162 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr;
 163 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr;
 164 
 165 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr;
 166 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr;
 167 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr;
 168 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr;
 169 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr;
 170 
 171 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr;
 172 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr;
 173 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr;
 174 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr;
 175 
 176 PerfStringVariable* CompileBroker::_perf_last_method = nullptr;
 177 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr;
 178 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr;
 179 PerfVariable*       CompileBroker::_perf_last_compile_type = nullptr;
 180 PerfVariable*       CompileBroker::_perf_last_compile_size = nullptr;
 181 PerfVariable*       CompileBroker::_perf_last_failed_type = nullptr;
 182 PerfVariable*       CompileBroker::_perf_last_invalidated_type = nullptr;
 183 
 184 // Timers and counters for generating statistics
 185 elapsedTimer CompileBroker::_t_total_compilation;
 186 elapsedTimer CompileBroker::_t_osr_compilation;
 187 elapsedTimer CompileBroker::_t_standard_compilation;
 188 elapsedTimer CompileBroker::_t_invalidated_compilation;
 189 elapsedTimer CompileBroker::_t_bailedout_compilation;
 190 
 191 uint CompileBroker::_total_bailout_count            = 0;
 192 uint CompileBroker::_total_invalidated_count        = 0;
 193 uint CompileBroker::_total_not_entrant_count        = 0;
 194 uint CompileBroker::_total_compile_count            = 0;
 195 uint CompileBroker::_total_osr_compile_count        = 0;
 196 uint CompileBroker::_total_standard_compile_count   = 0;
 197 uint CompileBroker::_total_compiler_stopped_count   = 0;
 198 uint CompileBroker::_total_compiler_restarted_count = 0;
 199 
 200 uint CompileBroker::_sum_osr_bytes_compiled         = 0;
 201 uint CompileBroker::_sum_standard_bytes_compiled    = 0;
 202 uint CompileBroker::_sum_nmethod_size               = 0;
 203 uint CompileBroker::_sum_nmethod_code_size          = 0;
 204 
 205 jlong CompileBroker::_peak_compilation_time        = 0;
 206 
 207 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 208 CompilerStatistics CompileBroker::_aot_stats;
 209 CompilerStatistics CompileBroker::_aot_stats_per_level[CompLevel_full_optimization + 1];
 210 
 211 CompileQueue* CompileBroker::_c3_compile_queue     = nullptr;
 212 CompileQueue* CompileBroker::_c2_compile_queue     = nullptr;
 213 CompileQueue* CompileBroker::_c1_compile_queue     = nullptr;
 214 CompileQueue* CompileBroker::_ac1_compile_queue    = nullptr;
 215 CompileQueue* CompileBroker::_ac2_compile_queue    = nullptr;
 216 
 217 bool compileBroker_init() {
 218   if (LogEvents) {
 219     CompilationLog::init();
 220   }
 221 
 222   // init directives stack, adding default directive
 223   DirectivesStack::init();
 224 
 225   if (DirectivesParser::has_file()) {
 226     return DirectivesParser::parse_from_flag();
 227   } else if (CompilerDirectivesPrint) {
 228     // Print default directive even when no other was added
 229     DirectivesStack::print(tty);
 230   }
 231 
 232   return true;
 233 }
 234 
 235 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 236   CompilerThread* thread = CompilerThread::current();
 237   thread->set_task(task);
 238   CompileLog*     log  = thread->log();
 239   if (log != nullptr && !task->is_unloaded())  task->log_task_start(log);
 240 }
 241 
 242 CompileTaskWrapper::~CompileTaskWrapper() {
 243   CompilerThread* thread = CompilerThread::current();
 244   CompileTask* task = thread->task();
 245   CompileLog*  log  = thread->log();
 246   AbstractCompiler* comp = thread->compiler();
 247   if (log != nullptr && !task->is_unloaded())  task->log_task_done(log);
 248   thread->set_task(nullptr);
 249   thread->set_env(nullptr);
 250   if (task->is_blocking()) {
 251     bool free_task = false;
 252     {
 253       MutexLocker notifier(thread, CompileTaskWait_lock);
 254       task->mark_complete();
 255 #if INCLUDE_JVMCI
 256       if (comp->is_jvmci()) {
 257         if (!task->has_waiter()) {
 258           // The waiting thread timed out and thus did not delete the task.
 259           free_task = true;
 260         }
 261         task->set_blocking_jvmci_compile_state(nullptr);
 262       }
 263 #endif
 264       if (!free_task) {
 265         // Notify the waiting thread that the compilation has completed
 266         // so that it can free the task.
 267         CompileTaskWait_lock->notify_all();
 268       }
 269     }
 270     if (free_task) {
 271       // The task can only be deleted once the task lock is released.
 272       delete task;
 273     }
 274   } else {
 275     task->mark_complete();
 276 
 277     // By convention, the compiling thread is responsible for deleting
 278     // a non-blocking CompileTask.
 279     delete task;
 280   }
 281 }
 282 
 283 /**
 284  * Check if a CompilerThread can be removed and update count if requested.
 285  */
 286 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 287   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 288   if (!ReduceNumberOfCompilerThreads) return false;
 289 
 290   if (RecompilationPolicy::have_recompilation_work()) return false;
 291 
 292   AbstractCompiler *compiler = ct->compiler();
 293   int compiler_count = compiler->num_compiler_threads();
 294   bool c1 = compiler->is_c1();
 295 
 296   // Keep at least 1 compiler thread of each type.
 297   if (compiler_count < 2) return false;
 298 
 299   // Keep thread alive for at least some time.
 300   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 301 
 302 #if INCLUDE_JVMCI
 303   if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 304     // Handles for JVMCI thread objects may get released concurrently.
 305     if (do_it) {
 306       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 307     } else {
 308       // Skip check if it's the last thread and let caller check again.
 309       return true;
 310     }
 311   }
 312 #endif
 313 
 314   // We only allow the last compiler thread of each type to get removed.
 315   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 316                              : compiler2_object(compiler_count - 1);
 317   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 318     if (do_it) {
 319       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 320       compiler->set_num_compiler_threads(compiler_count - 1);
 321 #if INCLUDE_JVMCI
 322       if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
 323         // Old j.l.Thread object can die when no longer referenced elsewhere.
 324         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 325         _compiler2_objects[compiler_count - 1] = nullptr;
 326       }
 327 #endif
 328     }
 329     return true;
 330   }
 331   return false;
 332 }
 333 
 334 /**
 335  * Add a CompileTask to a CompileQueue.
 336  */
 337 void CompileQueue::add(CompileTask* task) {
 338   assert(_lock->owned_by_self(), "must own lock");
 339 
 340   task->set_next(nullptr);
 341   task->set_prev(nullptr);
 342 
 343   if (_last == nullptr) {
 344     // The compile queue is empty.
 345     assert(_first == nullptr, "queue is empty");
 346     _first = task;
 347     _last = task;
 348   } else {
 349     // Append the task to the queue.
 350     assert(_last->next() == nullptr, "not last");
 351     _last->set_next(task);
 352     task->set_prev(_last);
 353     _last = task;
 354   }
 355   ++_size;
 356   ++_total_added;
 357   if (_size > _peak_size) {
 358     _peak_size = _size;
 359   }
 360 
 361   // Mark the method as being in the compile queue.
 362   task->method()->set_queued_for_compilation();
 363 
 364   task->mark_queued(os::elapsed_counter());
 365 
 366   if (CIPrintCompileQueue) {
 367     print_tty();
 368   }
 369 
 370   if (LogCompilation && xtty != nullptr) {
 371     task->log_task_queued();
 372   }
 373 
 374   if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) {
 375     CompileTrainingData* ctd = CompileTrainingData::make(task);
 376     if (ctd != nullptr) {
 377       task->set_training_data(ctd);
 378     }
 379   }
 380 
 381   // Notify CompilerThreads that a task is available.
 382   _lock->notify_all();
 383 }
 384 
 385 void CompileQueue::add_pending(CompileTask* task) {
 386   assert(_lock->owned_by_self() == false, "must NOT own lock");
 387   assert(UseLockFreeCompileQueues, "");
 388   task->method()->set_queued_for_compilation();
 389   _queue.push(*task);
 390   // FIXME: additional coordination needed? e.g., is it possible for compiler thread to block w/o processing pending tasks?
 391   if (is_empty()) {
 392     MutexLocker ml(_lock);
 393     _lock->notify_all();
 394   }
 395 }
 396 
 397 static bool process_pending(CompileTask* task) {
 398 //  guarantee(task->method()->queued_for_compilation(), "");
 399   if (task->is_unloaded()) {
 400     return true; // unloaded
 401   }
 402   task->method()->set_queued_for_compilation(); // FIXME
 403   if (task->method()->pending_queue_processed()) {
 404     return true; // already queued
 405   }
 406   // Mark the method as being in the compile queue.
 407   task->method()->set_pending_queue_processed();
 408   if (CompileBroker::compilation_is_complete(task->method(), task->osr_bci(), task->comp_level(),
 409                                              task->requires_online_compilation(), task->compile_reason())) {
 410     return true; // already compiled
 411   }
 412   return false; // active
 413 }
 414 
 415 void CompileQueue::transfer_pending() {
 416   assert(_lock->owned_by_self(), "must own lock");
 417 
 418   CompileTask* task;
 419   while ((task = _queue.pop()) != nullptr) {
 420     bool is_stale = process_pending(task);
 421     if (is_stale) {
 422       task->set_next(_first_stale);
 423       task->set_prev(nullptr);
 424       _first_stale = task;
 425     } else {
 426       add(task);
 427     }
 428   }
 429 }
 430 
 431 /**
 432  * Empties compilation queue by deleting all compilation tasks.
 433  * Furthermore, the method wakes up all threads that are waiting
 434  * on a compilation task to finish. This can happen if background
 435  * compilation is disabled.
 436  */
 437 void CompileQueue::delete_all() {
 438   MutexLocker mu(_lock);
 439   transfer_pending();
 440 
 441   CompileTask* next = _first;
 442 
 443   // Iterate over all tasks in the compile queue
 444   while (next != nullptr) {
 445     CompileTask* current = next;
 446     next = current->next();
 447     bool found_waiter = false;
 448     {
 449       MutexLocker ct_lock(CompileTaskWait_lock);
 450       assert(current->waiting_for_completion_count() <= 1, "more than one thread are waiting for task");
 451       if (current->waiting_for_completion_count() > 0) {
 452         // If another thread waits for this task, we must wake them up
 453         // so they will stop waiting and free the task.
 454         CompileTaskWait_lock->notify_all();
 455         found_waiter = true;
 456       }
 457     }
 458     if (!found_waiter) {
 459       // If no one was waiting for this task, we need to delete it ourselves.
 460       // In this case, the task is also certainly unlocked, because, again, there is no waiter.
 461       // Otherwise, by convention, it's the waiters responsibility to delete the task.
 462       delete current;
 463     }
 464   }
 465   _first = nullptr;
 466   _last = nullptr;
 467 
 468   // Wake up all threads that block on the queue.
 469   _lock->notify_all();
 470 }
 471 
 472 /**
 473  * Get the next CompileTask from a CompileQueue
 474  */
 475 CompileTask* CompileQueue::get(CompilerThread* thread) {
 476   // save methods from RedefineClasses across safepoint
 477   // across compile queue lock below.
 478   methodHandle save_method;
 479 
 480   MonitorLocker locker(_lock);
 481   transfer_pending();
 482 
 483   RecompilationPolicy::sample_load_average();
 484 
 485   // If _first is null we have no more compile jobs. There are two reasons for
 486   // having no compile jobs: First, we compiled everything we wanted. Second,
 487   // we ran out of code cache so compilation has been disabled. In the latter
 488   // case we perform code cache sweeps to free memory such that we can re-enable
 489   // compilation.
 490   while (_first == nullptr) {
 491     // Exit loop if compilation is disabled forever
 492     if (CompileBroker::is_compilation_disabled_forever()) {
 493       return nullptr;
 494     }
 495 
 496     AbstractCompiler* compiler = thread->compiler();
 497     guarantee(compiler != nullptr, "Compiler object must exist");
 498     compiler->on_empty_queue(this, thread);
 499     if (_first != nullptr) {
 500       // The call to on_empty_queue may have temporarily unlocked the MCQ lock
 501       // so check again whether any tasks were added to the queue.
 502       break;
 503     }
 504 
 505     // If we have added stale tasks, there might be waiters that want
 506     // the notification these tasks have failed. Normally, this would
 507     // be done by a compiler thread that would perform the purge at
 508     // the end of some compilation. But, if compile queue is empty,
 509     // there is no guarantee compilers would run and do the purge.
 510     // Do the purge here and now to unblock the waiters.
 511     // Perform this until we run out of stale tasks.
 512     while (_first_stale != nullptr) {
 513       purge_stale_tasks();
 514     }
 515     if (_first != nullptr) {
 516       // Purge stale tasks may have transferred some new tasks,
 517       // so check again.
 518       break;
 519     }
 520 
 521     // If there are no compilation tasks and we can compile new jobs
 522     // (i.e., there is enough free space in the code cache) there is
 523     // no need to invoke the GC.
 524     // We need a timed wait here, since compiler threads can exit if compilation
 525     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 526     // is not critical and we do not want idle compiler threads to wake up too often.
 527     locker.wait(5*1000);
 528 
 529     transfer_pending(); // reacquired lock
 530 
 531     if (RecompilationPolicy::have_recompilation_work()) return nullptr;
 532 
 533     if (UseDynamicNumberOfCompilerThreads && _first == nullptr) {
 534       // Still nothing to compile. Give caller a chance to stop this thread.
 535       if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr;
 536     }
 537   }
 538 
 539   if (CompileBroker::is_compilation_disabled_forever()) {
 540     return nullptr;
 541   }
 542 
 543   CompileTask* task;
 544   {
 545     NoSafepointVerifier nsv;
 546     task = CompilationPolicy::select_task(this, thread);
 547     if (task != nullptr) {
 548       task = task->select_for_compilation();
 549     }
 550   }
 551 
 552   if (task != nullptr) {
 553     // Save method pointers across unlock safepoint.  The task is removed from
 554     // the compilation queue, which is walked during RedefineClasses.
 555     Thread* thread = Thread::current();
 556     save_method = methodHandle(thread, task->method());
 557 
 558     remove(task);
 559   }
 560   purge_stale_tasks(); // may temporarily release MCQ lock
 561   return task;
 562 }
 563 
 564 // Clean & deallocate stale compile tasks.
 565 // Temporarily releases MethodCompileQueue lock.
 566 void CompileQueue::purge_stale_tasks() {
 567   assert(_lock->owned_by_self(), "must own lock");
 568   if (_first_stale != nullptr) {
 569     // Stale tasks are purged when MCQ lock is released,
 570     // but _first_stale updates are protected by MCQ lock.
 571     // Once task processing starts and MCQ lock is released,
 572     // other compiler threads can reuse _first_stale.
 573     CompileTask* head = _first_stale;
 574     _first_stale = nullptr;
 575     {
 576       MutexUnlocker ul(_lock);
 577       for (CompileTask* task = head; task != nullptr; ) {
 578         CompileTask* next_task = task->next();
 579         CompileTaskWrapper ctw(task); // Frees the task
 580         task->set_failure_reason("stale task");
 581         task = next_task;
 582       }
 583     }
 584     transfer_pending(); // transfer pending after reacquiring MCQ lock
 585   }
 586 }
 587 
 588 void CompileQueue::remove(CompileTask* task) {
 589   assert(_lock->owned_by_self(), "must own lock");
 590   if (task->prev() != nullptr) {
 591     task->prev()->set_next(task->next());
 592   } else {
 593     // max is the first element
 594     assert(task == _first, "Sanity");
 595     _first = task->next();
 596   }
 597 
 598   if (task->next() != nullptr) {
 599     task->next()->set_prev(task->prev());
 600   } else {
 601     // max is the last element
 602     assert(task == _last, "Sanity");
 603     _last = task->prev();
 604   }
 605   --_size;
 606   ++_total_removed;
 607 }
 608 
 609 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 610   assert(_lock->owned_by_self(), "must own lock");
 611   remove(task);
 612 
 613   // Enqueue the task for reclamation (should be done outside MCQ lock)
 614   task->set_next(_first_stale);
 615   task->set_prev(nullptr);
 616   _first_stale = task;
 617 }
 618 
 619 // methods in the compile queue need to be marked as used on the stack
 620 // so that they don't get reclaimed by Redefine Classes
 621 void CompileQueue::mark_on_stack() {
 622   for (CompileTask* task = _first; task != nullptr; task = task->next()) {
 623     task->mark_on_stack();
 624   }
 625   for (CompileTask* task = _queue.first(); !_queue.is_end(task); task = task->next()) {
 626     assert(task != nullptr, "");
 627     task->mark_on_stack();
 628   }
 629 }
 630 
 631 
 632 CompileQueue* CompileBroker::compile_queue(int comp_level, bool is_aot) {
 633   if (is_c2_compile(comp_level)) return ((is_aot  && (_ac_count > 0)) ? _ac2_compile_queue : _c2_compile_queue);
 634   if (is_c1_compile(comp_level)) return ((is_aot && (_ac_count > 0)) ? _ac1_compile_queue : _c1_compile_queue);
 635   return nullptr;
 636 }
 637 
 638 CompileQueue* CompileBroker::c1_compile_queue() {
 639   return _c1_compile_queue;
 640 }
 641 
 642 CompileQueue* CompileBroker::c2_compile_queue() {
 643   return _c2_compile_queue;
 644 }
 645 
 646 void CompileBroker::print_compile_queues(outputStream* st) {
 647   st->print_cr("Current compiles: ");
 648 
 649   char buf[2000];
 650   int buflen = sizeof(buf);
 651   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 652 
 653   st->cr();
 654   if (_c1_compile_queue != nullptr) {
 655     _c1_compile_queue->print(st);
 656   }
 657   if (_c2_compile_queue != nullptr) {
 658     _c2_compile_queue->print(st);
 659   }
 660   if (_c3_compile_queue != nullptr) {
 661     _c3_compile_queue->print(st);
 662   }
 663   if (_ac1_compile_queue != nullptr) {
 664     _ac1_compile_queue->print(st);
 665   }
 666   if (_ac2_compile_queue != nullptr) {
 667     _ac2_compile_queue->print(st);
 668   }
 669 }
 670 
 671 void CompileQueue::print(outputStream* st) {
 672   assert_locked_or_safepoint(_lock);
 673   st->print_cr("%s:", name());
 674   CompileTask* task = _first;
 675   if (task == nullptr) {
 676     st->print_cr("Empty");
 677   } else {
 678     while (task != nullptr) {
 679       task->print(st, nullptr, true, true);
 680       task = task->next();
 681     }
 682   }
 683   st->cr();
 684 }
 685 
 686 void CompileQueue::print_tty() {
 687   stringStream ss;
 688   // Dump the compile queue into a buffer before locking the tty
 689   print(&ss);
 690   {
 691     ttyLocker ttyl;
 692     tty->print("%s", ss.freeze());
 693   }
 694 }
 695 
 696 CompilerCounters::CompilerCounters() {
 697   _current_method[0] = '\0';
 698   _compile_type = CompileBroker::no_compile;
 699 }
 700 
 701 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 702 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 703 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 704 //
 705 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 706 // so if c2 is used, it should be always registered first.
 707 // This function is called during vm initialization.
 708 static void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 709   ResourceMark rm;
 710   static bool first_registration = true;
 711   if (compiler_type == compiler_jvmci) {
 712     CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
 713     first_registration = false;
 714 #ifdef COMPILER2
 715   } else if (compiler_type == compiler_c2) {
 716     assert(first_registration, "invariant"); // c2 must be registered first.
 717     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 718       const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
 719       CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
 720     }
 721     first_registration = false;
 722 #endif // COMPILER2
 723   }
 724 }
 725 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 726 
 727 // ------------------------------------------------------------------
 728 // CompileBroker::compilation_init
 729 //
 730 // Initialize the Compilation object
 731 void CompileBroker::compilation_init(JavaThread* THREAD) {
 732   // No need to initialize compilation system if we do not use it.
 733   if (!UseCompiler) {
 734     return;
 735   }
 736   // Set the interface to the current compiler(s).
 737   _c1_count = CompilationPolicy::c1_count();
 738   _c2_count = CompilationPolicy::c2_count();
 739   _c3_count = CompilationPolicy::c3_count();
 740   _ac_count = CompilationPolicy::ac_count();
 741 
 742 #if INCLUDE_JVMCI
 743   if (EnableJVMCI) {
 744     // This is creating a JVMCICompiler singleton.
 745     JVMCICompiler* jvmci = new JVMCICompiler();
 746 
 747     if (UseJVMCICompiler) {
 748       _compilers[1] = jvmci;
 749       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 750         if (BootstrapJVMCI) {
 751           // JVMCI will bootstrap so give it more threads
 752           _c2_count = MIN2(32, os::active_processor_count());
 753         }
 754       } else {
 755         _c2_count = JVMCIThreads;
 756       }
 757       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 758       } else {
 759 #ifdef COMPILER1
 760         _c1_count = JVMCIHostThreads;
 761 #endif // COMPILER1
 762       }
 763 #ifdef COMPILER2
 764       if (AOTCodeCache::is_on() && (_c3_count > 0)) {
 765         _compilers[2] = new C2Compiler();
 766       }
 767 #endif
 768     }
 769   }
 770 #endif // INCLUDE_JVMCI
 771 
 772 #ifdef COMPILER1
 773   if (_c1_count > 0) {
 774     _compilers[0] = new Compiler();
 775   }
 776 #endif // COMPILER1
 777 
 778 #ifdef COMPILER2
 779   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 780     if (_c2_count > 0) {
 781       _compilers[1] = new C2Compiler();
 782       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 783       // idToPhase mapping for c2 is in opto/phasetype.hpp
 784       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 785     }
 786   }
 787 #endif // COMPILER2
 788 
 789 #if INCLUDE_JVMCI
 790    // Register after c2 registration.
 791    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 792    if (EnableJVMCI) {
 793      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 794    }
 795 #endif // INCLUDE_JVMCI
 796 
 797   if (CompilerOracle::should_collect_memstat()) {
 798     CompilationMemoryStatistic::initialize();
 799   }
 800 
 801   // Start the compiler thread(s)
 802   init_compiler_threads();
 803   // totalTime performance counter is always created as it is required
 804   // by the implementation of java.lang.management.CompilationMXBean.
 805   {
 806     // Ensure OOM leads to vm_exit_during_initialization.
 807     EXCEPTION_MARK;
 808     _perf_total_compilation =
 809                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 810                                                  PerfData::U_Ticks, CHECK);
 811   }
 812 
 813   if (UsePerfData) {
 814 
 815     EXCEPTION_MARK;
 816 
 817     // create the jvmstat performance counters
 818     _perf_osr_compilation =
 819                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 820                                                  PerfData::U_Ticks, CHECK);
 821 
 822     _perf_standard_compilation =
 823                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 824                                                  PerfData::U_Ticks, CHECK);
 825 
 826     _perf_total_bailout_count =
 827                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 828                                                  PerfData::U_Events, CHECK);
 829 
 830     _perf_total_invalidated_count =
 831                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 832                                                  PerfData::U_Events, CHECK);
 833 
 834     _perf_total_compile_count =
 835                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 836                                                  PerfData::U_Events, CHECK);
 837     _perf_total_osr_compile_count =
 838                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 839                                                  PerfData::U_Events, CHECK);
 840 
 841     _perf_total_standard_compile_count =
 842                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 843                                                  PerfData::U_Events, CHECK);
 844 
 845     _perf_sum_osr_bytes_compiled =
 846                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 847                                                  PerfData::U_Bytes, CHECK);
 848 
 849     _perf_sum_standard_bytes_compiled =
 850                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 851                                                  PerfData::U_Bytes, CHECK);
 852 
 853     _perf_sum_nmethod_size =
 854                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 855                                                  PerfData::U_Bytes, CHECK);
 856 
 857     _perf_sum_nmethod_code_size =
 858                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 859                                                  PerfData::U_Bytes, CHECK);
 860 
 861     _perf_last_method =
 862                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 863                                        CompilerCounters::cmname_buffer_length,
 864                                        "", CHECK);
 865 
 866     _perf_last_failed_method =
 867             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 868                                        CompilerCounters::cmname_buffer_length,
 869                                        "", CHECK);
 870 
 871     _perf_last_invalidated_method =
 872         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 873                                      CompilerCounters::cmname_buffer_length,
 874                                      "", CHECK);
 875 
 876     _perf_last_compile_type =
 877              PerfDataManager::create_variable(SUN_CI, "lastType",
 878                                               PerfData::U_None,
 879                                               (jlong)CompileBroker::no_compile,
 880                                               CHECK);
 881 
 882     _perf_last_compile_size =
 883              PerfDataManager::create_variable(SUN_CI, "lastSize",
 884                                               PerfData::U_Bytes,
 885                                               (jlong)CompileBroker::no_compile,
 886                                               CHECK);
 887 
 888 
 889     _perf_last_failed_type =
 890              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 891                                               PerfData::U_None,
 892                                               (jlong)CompileBroker::no_compile,
 893                                               CHECK);
 894 
 895     _perf_last_invalidated_type =
 896          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 897                                           PerfData::U_None,
 898                                           (jlong)CompileBroker::no_compile,
 899                                           CHECK);
 900   }
 901 
 902   log_info(aot, codecache, init)("CompileBroker is initialized");
 903   _initialized = true;
 904 }
 905 
 906 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 907   Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH);
 908   return thread_oop;
 909 }
 910 
 911 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) {
 912   CompilationPolicy::replay_training_at_init_loop(thread);
 913 }
 914 
 915 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 916 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 917 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
 918 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 919     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 920     bool enter_single_loop;
 921     {
 922       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 923       static int single_thread_count = 0;
 924       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 925     }
 926     if (enter_single_loop) {
 927       dt->deoptimize_objects_alot_loop_single();
 928     } else {
 929       dt->deoptimize_objects_alot_loop_all();
 930     }
 931   }
 932 
 933 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 934 // barrier targets a single thread which is selected round robin.
 935 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 936   HandleMark hm(this);
 937   while (true) {
 938     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 939       { // Begin new scope for escape barrier
 940         HandleMarkCleaner hmc(this);
 941         ResourceMark rm(this);
 942         EscapeBarrier eb(true, this, deoptee_thread);
 943         eb.deoptimize_objects(100);
 944       }
 945       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 946       sleep(DeoptimizeObjectsALotInterval);
 947     }
 948   }
 949 }
 950 
 951 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 952 // barrier targets all java threads in the vm at once.
 953 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 954   HandleMark hm(this);
 955   while (true) {
 956     { // Begin new scope for escape barrier
 957       HandleMarkCleaner hmc(this);
 958       ResourceMark rm(this);
 959       EscapeBarrier eb(true, this);
 960       eb.deoptimize_objects_all_threads();
 961     }
 962     // Now sleep after the escape barriers destructor resumed the java threads.
 963     sleep(DeoptimizeObjectsALotInterval);
 964   }
 965 }
 966 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 967 
 968 
 969 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
 970   Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
 971 
 972   if (java_lang_Thread::thread(thread_oop()) != nullptr) {
 973     assert(type == compiler_t, "should only happen with reused compiler threads");
 974     // The compiler thread hasn't actually exited yet so don't try to reuse it
 975     return nullptr;
 976   }
 977 
 978   JavaThread* new_thread = nullptr;
 979   switch (type) {
 980     case compiler_t:
 981       assert(comp != nullptr, "Compiler instance missing.");
 982       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 983         CompilerCounters* counters = new CompilerCounters();
 984         new_thread = new CompilerThread(queue, counters);
 985       }
 986       break;
 987 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 988     case deoptimizer_t:
 989       new_thread = new DeoptimizeObjectsALotThread();
 990       break;
 991 #endif // ASSERT
 992     case training_replay_t:
 993       new_thread = new TrainingReplayThread();
 994       break;
 995     default:
 996       ShouldNotReachHere();
 997   }
 998 
 999   // At this point the new CompilerThread data-races with this startup
1000   // thread (which is the main thread and NOT the VM thread).
1001   // This means Java bytecodes being executed at startup can
1002   // queue compile jobs which will run at whatever default priority the
1003   // newly created CompilerThread runs at.
1004 
1005 
1006   // At this point it may be possible that no osthread was created for the
1007   // JavaThread due to lack of resources. We will handle that failure below.
1008   // Also check new_thread so that static analysis is happy.
1009   if (new_thread != nullptr && new_thread->osthread() != nullptr) {
1010 
1011     if (type == compiler_t) {
1012       CompilerThread::cast(new_thread)->set_compiler(comp);
1013     }
1014 
1015     // Note that we cannot call os::set_priority because it expects Java
1016     // priorities and we are *explicitly* using OS priorities so that it's
1017     // possible to set the compiler thread priority higher than any Java
1018     // thread.
1019 
1020     int native_prio = CompilerThreadPriority;
1021     if (native_prio == -1) {
1022       if (UseCriticalCompilerThreadPriority) {
1023         native_prio = os::java_to_os_priority[CriticalPriority];
1024       } else {
1025         native_prio = os::java_to_os_priority[NearMaxPriority];
1026       }
1027     }
1028     os::set_native_priority(new_thread, native_prio);
1029 
1030     // Note that this only sets the JavaThread _priority field, which by
1031     // definition is limited to Java priorities and not OS priorities.
1032     JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
1033 
1034   } else { // osthread initialization failure
1035     if (UseDynamicNumberOfCompilerThreads && type == compiler_t
1036         && comp->num_compiler_threads() > 0) {
1037       // The new thread is not known to Thread-SMR yet so we can just delete.
1038       delete new_thread;
1039       return nullptr;
1040     } else {
1041       vm_exit_during_initialization("java.lang.OutOfMemoryError",
1042                                     os::native_thread_creation_failed_msg());
1043     }
1044   }
1045 
1046   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
1047 
1048   return new_thread;
1049 }
1050 
1051 static bool trace_compiler_threads() {
1052   LogTarget(Debug, jit, thread) lt;
1053   return TraceCompilerThreads || lt.is_enabled();
1054 }
1055 
1056 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) {
1057   char name_buffer[256];
1058   os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i);
1059   Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL);
1060   return JNIHandles::make_global(thread_oop);
1061 }
1062 
1063 static void print_compiler_threads(stringStream& msg) {
1064   if (TraceCompilerThreads) {
1065     tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string());
1066   }
1067   LogTarget(Debug, jit, thread) lt;
1068   if (lt.is_enabled()) {
1069     LogStream ls(lt);
1070     ls.print_cr("%s", msg.as_string());
1071   }
1072 }
1073 
1074 static void print_compiler_thread(JavaThread *ct) {
1075   if (trace_compiler_threads()) {
1076     ResourceMark rm;
1077     ThreadsListHandle tlh;  // name() depends on the TLH.
1078     assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1079     stringStream msg;
1080     msg.print("Added initial compiler thread %s", ct->name());
1081     print_compiler_threads(msg);
1082   }
1083 }
1084 
1085 void CompileBroker::init_compiler_threads() {
1086   // Ensure any exceptions lead to vm_exit_during_initialization.
1087   EXCEPTION_MARK;
1088 #if !defined(ZERO)
1089   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
1090 #endif // !ZERO
1091   // Initialize the compilation queue
1092   if (_c2_count > 0) {
1093     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
1094     _c2_compile_queue  = new CompileQueue(name, MethodCompileQueueC2_lock);
1095     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
1096     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
1097   }
1098   if (_c1_count > 0) {
1099     _c1_compile_queue  = new CompileQueue("C1 compile queue", MethodCompileQueueC1_lock);
1100     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
1101     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
1102   }
1103 
1104   if (_c3_count > 0) {
1105     const char* name = "C2 compile queue";
1106     _c3_compile_queue  = new CompileQueue(name, MethodCompileQueueC3_lock);
1107     _compiler3_objects = NEW_C_HEAP_ARRAY(jobject, _c3_count, mtCompiler);
1108     _compiler3_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c3_count, mtCompiler);
1109   }
1110   if (_ac_count > 0) {
1111     if (_c1_count > 0) { // C1 is present
1112       _ac1_compile_queue  = new CompileQueue("C1 AOT code compile queue", MethodCompileQueueSC1_lock);
1113     }
1114     if (_c2_count > 0) { // C2 is present
1115       _ac2_compile_queue  = new CompileQueue("C2 AOT code compile queue", MethodCompileQueueSC2_lock);
1116     }
1117     _ac_objects = NEW_C_HEAP_ARRAY(jobject, _ac_count, mtCompiler);
1118     _ac_logs = NEW_C_HEAP_ARRAY(CompileLog*, _ac_count, mtCompiler);
1119   }
1120   char name_buffer[256];
1121 
1122   for (int i = 0; i < _c2_count; i++) {
1123     // Create a name for our thread.
1124     jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK);
1125     _compiler2_objects[i] = thread_handle;
1126     _compiler2_logs[i] = nullptr;
1127 
1128     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1129       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
1130       assert(ct != nullptr, "should have been handled for initial thread");
1131       _compilers[1]->set_num_compiler_threads(i + 1);
1132       print_compiler_thread(ct);
1133     }
1134   }
1135 
1136   for (int i = 0; i < _c1_count; i++) {
1137     // Create a name for our thread.
1138     jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK);
1139     _compiler1_objects[i] = thread_handle;
1140     _compiler1_logs[i] = nullptr;
1141 
1142     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1143       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
1144       assert(ct != nullptr, "should have been handled for initial thread");
1145       _compilers[0]->set_num_compiler_threads(i + 1);
1146       print_compiler_thread(ct);
1147     }
1148   }
1149 
1150   for (int i = 0; i < _c3_count; i++) {
1151     // Create a name for our thread.
1152     os::snprintf_checked(name_buffer, sizeof(name_buffer), "C2 CompilerThread%d", i);
1153     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1154     jobject thread_handle = JNIHandles::make_global(thread_oop);
1155     _compiler3_objects[i] = thread_handle;
1156     _compiler3_logs[i] = nullptr;
1157 
1158     JavaThread *ct = make_thread(compiler_t, thread_handle, _c3_compile_queue, _compilers[2], THREAD);
1159     assert(ct != nullptr, "should have been handled for initial thread");
1160     _compilers[2]->set_num_compiler_threads(i + 1);
1161     print_compiler_thread(ct);
1162   }
1163 
1164   if (_ac_count > 0) {
1165     int i = 0;
1166     if (_c1_count > 0) { // C1 is present
1167       os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 1);
1168       Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1169       jobject thread_handle = JNIHandles::make_global(thread_oop);
1170       _ac_objects[i] = thread_handle;
1171       _ac_logs[i] = nullptr;
1172       i++;
1173 
1174       JavaThread *ct = make_thread(compiler_t, thread_handle, _ac1_compile_queue, _compilers[0], THREAD);
1175       assert(ct != nullptr, "should have been handled for initial thread");
1176       print_compiler_thread(ct);
1177     }
1178     if (_c2_count > 0) { // C2 is present
1179       os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 2);
1180       Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1181       jobject thread_handle = JNIHandles::make_global(thread_oop);
1182       _ac_objects[i] = thread_handle;
1183       _ac_logs[i] = nullptr;
1184 
1185       JavaThread *ct = make_thread(compiler_t, thread_handle, _ac2_compile_queue, _compilers[1], THREAD);
1186       assert(ct != nullptr, "should have been handled for initial thread");
1187       print_compiler_thread(ct);
1188     }
1189   }
1190 
1191   if (UsePerfData) {
1192     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count + _c3_count, CHECK);
1193   }
1194 
1195 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1196   if (DeoptimizeObjectsALot) {
1197     // Initialize and start the object deoptimizer threads
1198     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1199     for (int count = 0; count < total_count; count++) {
1200       Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK);
1201       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1202       make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD);
1203     }
1204   }
1205 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1206 }
1207 
1208 void CompileBroker::init_training_replay() {
1209   // Ensure any exceptions lead to vm_exit_during_initialization.
1210   EXCEPTION_MARK;
1211   if (TrainingData::have_data()) {
1212     Handle thread_oop = create_thread_oop("Training replay thread", CHECK);
1213     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1214     make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD);
1215   }
1216 }
1217 
1218 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1219 
1220   int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0;
1221   const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4;
1222 
1223   // Quick check if we already have enough compiler threads without taking the lock.
1224   // Numbers may change concurrently, so we read them again after we have the lock.
1225   if (_c2_compile_queue != nullptr) {
1226     old_c2_count = get_c2_thread_count();
1227     new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread);
1228   }
1229   if (_c1_compile_queue != nullptr) {
1230     old_c1_count = get_c1_thread_count();
1231     new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread);
1232   }
1233   if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return;
1234 
1235   // Now, we do the more expensive operations.
1236   julong free_memory = os::free_memory();
1237   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1238   size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1239          available_cc_p  = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1240 
1241   // Only attempt to start additional threads if the lock is free.
1242   if (!CompileThread_lock->try_lock()) return;
1243 
1244   if (_c2_compile_queue != nullptr) {
1245     old_c2_count = get_c2_thread_count();
1246     new_c2_count = MIN4(_c2_count,
1247         _c2_compile_queue->size() / c2_tasks_per_thread,
1248         (int)(free_memory / (200*M)),
1249         (int)(available_cc_np / (128*K)));
1250 
1251     for (int i = old_c2_count; i < new_c2_count; i++) {
1252 #if INCLUDE_JVMCI
1253       if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) {
1254         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their
1255         // existence is completely hidden from the rest of the VM (and those compiler threads can't
1256         // call Java code to do the creation anyway).
1257         //
1258         // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we
1259         // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads.  For
1260         // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary
1261         // coupling with Java.
1262         if (!THREAD->can_call_java()) break;
1263         char name_buffer[256];
1264         os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1265         Handle thread_oop;
1266         {
1267           // We have to give up the lock temporarily for the Java calls.
1268           MutexUnlocker mu(CompileThread_lock);
1269           thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD);
1270         }
1271         if (HAS_PENDING_EXCEPTION) {
1272           if (trace_compiler_threads()) {
1273             ResourceMark rm;
1274             stringStream msg;
1275             msg.print_cr("JVMCI compiler thread creation failed:");
1276             PENDING_EXCEPTION->print_on(&msg);
1277             print_compiler_threads(msg);
1278           }
1279           CLEAR_PENDING_EXCEPTION;
1280           break;
1281         }
1282         // Check if another thread has beaten us during the Java calls.
1283         if (get_c2_thread_count() != i) break;
1284         jobject thread_handle = JNIHandles::make_global(thread_oop);
1285         assert(compiler2_object(i) == nullptr, "Old one must be released!");
1286         _compiler2_objects[i] = thread_handle;
1287       }
1288 #endif
1289       guarantee(compiler2_object(i) != nullptr, "Thread oop must exist");
1290       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1291       if (ct == nullptr) break;
1292       _compilers[1]->set_num_compiler_threads(i + 1);
1293       if (trace_compiler_threads()) {
1294         ResourceMark rm;
1295         ThreadsListHandle tlh;  // name() depends on the TLH.
1296         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1297         stringStream msg;
1298         msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)",
1299                   ct->name(), (int)(free_memory/M), (int)(available_cc_np/M));
1300         print_compiler_threads(msg);
1301       }
1302     }
1303   }
1304 
1305   if (_c1_compile_queue != nullptr) {
1306     old_c1_count = get_c1_thread_count();
1307     new_c1_count = MIN4(_c1_count,
1308         _c1_compile_queue->size() / c1_tasks_per_thread,
1309         (int)(free_memory / (100*M)),
1310         (int)(available_cc_p / (128*K)));
1311 
1312     for (int i = old_c1_count; i < new_c1_count; i++) {
1313       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1314       if (ct == nullptr) break;
1315       _compilers[0]->set_num_compiler_threads(i + 1);
1316       if (trace_compiler_threads()) {
1317         ResourceMark rm;
1318         ThreadsListHandle tlh;  // name() depends on the TLH.
1319         assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1320         stringStream msg;
1321         msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)",
1322                   ct->name(), (int)(free_memory/M), (int)(available_cc_p/M));
1323         print_compiler_threads(msg);
1324       }
1325     }
1326   }
1327 
1328   CompileThread_lock->unlock();
1329 }
1330 
1331 
1332 /**
1333  * Set the methods on the stack as on_stack so that redefine classes doesn't
1334  * reclaim them. This method is executed at a safepoint.
1335  */
1336 void CompileBroker::mark_on_stack() {
1337   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1338   // Since we are at a safepoint, we do not need a lock to access
1339   // the compile queues.
1340   if (_c3_compile_queue != nullptr) {
1341     _c3_compile_queue->mark_on_stack();
1342   }
1343   if (_c2_compile_queue != nullptr) {
1344     _c2_compile_queue->mark_on_stack();
1345   }
1346   if (_c1_compile_queue != nullptr) {
1347     _c1_compile_queue->mark_on_stack();
1348   }
1349   if (_ac1_compile_queue != nullptr) {
1350     _ac1_compile_queue->mark_on_stack();
1351   }
1352   if (_ac2_compile_queue != nullptr) {
1353     _ac2_compile_queue->mark_on_stack();
1354   }
1355 }
1356 
1357 // ------------------------------------------------------------------
1358 // CompileBroker::compile_method
1359 //
1360 // Request compilation of a method.
1361 void CompileBroker::compile_method_base(const methodHandle& method,
1362                                         int osr_bci,
1363                                         int comp_level,
1364                                         int hot_count,
1365                                         CompileTask::CompileReason compile_reason,
1366                                         bool requires_online_compilation,
1367                                         bool blocking,
1368                                         Thread* thread) {
1369   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1370   assert(method->method_holder()->is_instance_klass(),
1371          "sanity check");
1372   assert(!method->method_holder()->is_not_initialized()   ||
1373          compile_reason == CompileTask::Reason_Preload    ||
1374          compile_reason == CompileTask::Reason_Precompile ||
1375          compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized");
1376   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1377 
1378   if (CIPrintRequests) {
1379     tty->print("request: ");
1380     method->print_short_name(tty);
1381     if (osr_bci != InvocationEntryBci) {
1382       tty->print(" osr_bci: %d", osr_bci);
1383     }
1384     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1385     if (hot_count > 0) {
1386       tty->print(" hot: yes");
1387     }
1388     tty->cr();
1389   }
1390 
1391   // A request has been made for compilation.  Before we do any
1392   // real work, check to see if the method has been compiled
1393   // in the meantime with a definitive result.
1394   if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1395     return;
1396   }
1397 
1398 #ifndef PRODUCT
1399   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1400     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1401       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1402       return;
1403     }
1404   }
1405 #endif
1406 
1407   // If this method is already in the compile queue, then
1408   // we do not block the current thread.
1409   if (compilation_is_in_queue(method)) {
1410     // We may want to decay our counter a bit here to prevent
1411     // multiple denied requests for compilation.  This is an
1412     // open compilation policy issue. Note: The other possibility,
1413     // in the case that this is a blocking compile request, is to have
1414     // all subsequent blocking requesters wait for completion of
1415     // ongoing compiles. Note that in this case we'll need a protocol
1416     // for freeing the associated compile tasks. [Or we could have
1417     // a single static monitor on which all these waiters sleep.]
1418     return;
1419   }
1420 
1421   // Tiered policy requires MethodCounters to exist before adding a method to
1422   // the queue. Create if we don't have them yet.
1423   if (compile_reason != CompileTask::Reason_Preload) {
1424     method->get_method_counters(thread);
1425   }
1426 
1427   AOTCodeEntry* aot_code_entry = find_aot_code_entry(method, osr_bci, comp_level, compile_reason, requires_online_compilation);
1428   bool is_aot = (aot_code_entry != nullptr);
1429 
1430   // Outputs from the following MutexLocker block:
1431   CompileTask* task = nullptr;
1432   CompileQueue* queue;
1433 #if INCLUDE_JVMCI
1434   if (is_c2_compile(comp_level) && compiler2()->is_jvmci() && compiler3() != nullptr &&
1435       ((JVMCICompiler*)compiler2())->force_comp_at_level_simple(method)) {
1436     assert(_c3_compile_queue != nullptr, "sanity");
1437     queue = _c3_compile_queue; // JVMCI compiler's methods compilation
1438   } else
1439 #endif
1440   queue = compile_queue(comp_level, is_aot);
1441 
1442   // Acquire our lock.
1443   {
1444     ConditionalMutexLocker locker(thread, queue->lock(), !UseLockFreeCompileQueues);
1445 
1446     // Make sure the method has not slipped into the queues since
1447     // last we checked; note that those checks were "fast bail-outs".
1448     // Here we need to be more careful, see 14012000 below.
1449     if (compilation_is_in_queue(method)) {
1450       return;
1451     }
1452 
1453     // We need to check again to see if the compilation has
1454     // completed.  A previous compilation may have registered
1455     // some result.
1456     if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1457       return;
1458     }
1459 
1460     // We now know that this compilation is not pending, complete,
1461     // or prohibited.  Assign a compile_id to this compilation
1462     // and check to see if it is in our [Start..Stop) range.
1463     int compile_id = assign_compile_id(method, osr_bci);
1464     if (compile_id == 0) {
1465       // The compilation falls outside the allowed range.
1466       return;
1467     }
1468 
1469 #if INCLUDE_JVMCI
1470     if (UseJVMCICompiler && blocking) {
1471       // Don't allow blocking compiles for requests triggered by JVMCI.
1472       if (thread->is_Compiler_thread()) {
1473         blocking = false;
1474       }
1475 
1476       // In libjvmci, JVMCI initialization should not deadlock with other threads
1477       if (!UseJVMCINativeLibrary) {
1478         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1479         vframeStream vfst(JavaThread::cast(thread));
1480         for (; !vfst.at_end(); vfst.next()) {
1481           if (vfst.method()->is_static_initializer() ||
1482               (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1483                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1484             blocking = false;
1485             break;
1486           }
1487         }
1488 
1489         // Don't allow blocking compilation requests to JVMCI
1490         // if JVMCI itself is not yet initialized
1491         if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1492           blocking = false;
1493         }
1494       }
1495 
1496       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1497       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1498       // such as the DestroyJavaVM thread.
1499       if (JVMCI::in_shutdown()) {
1500         blocking = false;
1501       }
1502     }
1503 #endif // INCLUDE_JVMCI
1504 
1505     // We will enter the compilation in the queue.
1506     // 14012000: Note that this sets the queued_for_compile bits in
1507     // the target method. We can now reason that a method cannot be
1508     // queued for compilation more than once, as follows:
1509     // Before a thread queues a task for compilation, it first acquires
1510     // the compile queue lock, then checks if the method's queued bits
1511     // are set or it has already been compiled. Thus there can not be two
1512     // instances of a compilation task for the same method on the
1513     // compilation queue. Consider now the case where the compilation
1514     // thread has already removed a task for that method from the queue
1515     // and is in the midst of compiling it. In this case, the
1516     // queued_for_compile bits must be set in the method (and these
1517     // will be visible to the current thread, since the bits were set
1518     // under protection of the compile queue lock, which we hold now.
1519     // When the compilation completes, the compiler thread first sets
1520     // the compilation result and then clears the queued_for_compile
1521     // bits. Neither of these actions are protected by a barrier (or done
1522     // under the protection of a lock), so the only guarantee we have
1523     // (on machines with TSO (Total Store Order)) is that these values
1524     // will update in that order. As a result, the only combinations of
1525     // these bits that the current thread will see are, in temporal order:
1526     // <RESULT, QUEUE> :
1527     //     <0, 1> : in compile queue, but not yet compiled
1528     //     <1, 1> : compiled but queue bit not cleared
1529     //     <1, 0> : compiled and queue bit cleared
1530     // Because we first check the queue bits then check the result bits,
1531     // we are assured that we cannot introduce a duplicate task.
1532     // Note that if we did the tests in the reverse order (i.e. check
1533     // result then check queued bit), we could get the result bit before
1534     // the compilation completed, and the queue bit after the compilation
1535     // completed, and end up introducing a "duplicate" (redundant) task.
1536     // In that case, the compiler thread should first check if a method
1537     // has already been compiled before trying to compile it.
1538     // NOTE: in the event that there are multiple compiler threads and
1539     // there is de-optimization/recompilation, things will get hairy,
1540     // and in that case it's best to protect both the testing (here) of
1541     // these bits, and their updating (here and elsewhere) under a
1542     // common lock.
1543     task = create_compile_task(queue,
1544                                compile_id, method,
1545                                osr_bci, comp_level,
1546                                hot_count, aot_code_entry, compile_reason,
1547                                requires_online_compilation, blocking);
1548 
1549     if (task->is_aot() && (_ac_count > 0)) {
1550       // Put it on AOT code caching queue
1551       queue = is_c1_compile(comp_level) ? _ac1_compile_queue : _ac2_compile_queue;
1552     }
1553 
1554     if (UseLockFreeCompileQueues) {
1555       assert(queue->lock()->owned_by_self() == false, "");
1556       queue->add_pending(task);
1557     } else {
1558       queue->add(task);
1559     }
1560   }
1561 
1562   if (blocking) {
1563     wait_for_completion(task);
1564   }
1565 }
1566 
1567 AOTCodeEntry* CompileBroker::find_aot_code_entry(const methodHandle& method, int osr_bci, int comp_level,
1568                                         CompileTask::CompileReason compile_reason,
1569                                         bool requires_online_compilation) {
1570   AOTCodeEntry* aot_code_entry = nullptr;
1571   if (osr_bci == InvocationEntryBci && !requires_online_compilation && AOTCodeCache::is_on_for_use()) {
1572     // Check for cached code.
1573     if (compile_reason == CompileTask::Reason_Preload) {
1574       aot_code_entry = method->aot_code_entry();
1575       assert(aot_code_entry != nullptr && aot_code_entry->for_preload(), "sanity");
1576     } else {
1577       aot_code_entry = AOTCodeCache::find_code_entry(method, comp_level);
1578     }
1579   }
1580   return aot_code_entry;
1581 }
1582 
1583 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1584                                        int comp_level,
1585                                        int hot_count,
1586                                        bool requires_online_compilation,
1587                                        CompileTask::CompileReason compile_reason,
1588                                        TRAPS) {
1589   // Do nothing if compilebroker is not initialized or compiles are submitted on level none
1590   if (!_initialized || comp_level == CompLevel_none) {
1591     return nullptr;
1592   }
1593 
1594 #if INCLUDE_JVMCI
1595   if (EnableJVMCI && UseJVMCICompiler &&
1596       comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) {
1597     return nullptr;
1598   }
1599 #endif
1600 
1601   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1602   assert(comp != nullptr, "Ensure we have a compiler");
1603 
1604 #if INCLUDE_JVMCI
1605   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1606     // JVMCI compilation is not yet initializable.
1607     return nullptr;
1608   }
1609 #endif
1610 
1611   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1612   // CompileBroker::compile_method can trap and can have pending async exception.
1613   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, requires_online_compilation, compile_reason, directive, THREAD);
1614   DirectivesStack::release(directive);
1615   return nm;
1616 }
1617 
1618 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1619                                          int comp_level,
1620                                          int hot_count,
1621                                          bool requires_online_compilation,
1622                                          CompileTask::CompileReason compile_reason,
1623                                          DirectiveSet* directive,
1624                                          TRAPS) {
1625 
1626   // make sure arguments make sense
1627   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1628   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1629   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1630   assert(!method->method_holder()->is_not_initialized()   ||
1631          compile_reason == CompileTask::Reason_Preload    ||
1632          compile_reason == CompileTask::Reason_Precompile ||
1633          compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized");
1634   // return quickly if possible
1635 
1636   if (PrecompileOnlyAndExit && !CompileTask::reason_is_precompiled(compile_reason)) {
1637     return nullptr;
1638   }
1639 
1640   // lock, make sure that the compilation
1641   // isn't prohibited in a straightforward way.
1642   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1643   if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1644     return nullptr;
1645   }
1646 
1647   if (osr_bci == InvocationEntryBci) {
1648     // standard compilation
1649     nmethod* method_code = method->code();
1650     if (method_code != nullptr) {
1651       if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1652         return method_code;
1653       }
1654     }
1655     if (method->is_not_compilable(comp_level)) {
1656       return nullptr;
1657     }
1658   } else {
1659     // osr compilation
1660     // We accept a higher level osr method
1661     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1662     if (nm != nullptr) return nm;
1663     if (method->is_not_osr_compilable(comp_level)) return nullptr;
1664   }
1665 
1666   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1667   // some prerequisites that are compiler specific
1668   if (compile_reason != CompileTask::Reason_Preload &&
1669       !CompileTask::reason_is_precompiled(compile_reason) &&
1670      (comp->is_c2() || comp->is_jvmci())) {
1671     InternalOOMEMark iom(THREAD);
1672     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1673     // Resolve all classes seen in the signature of the method
1674     // we are compiling.
1675     Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1676   }
1677 
1678   // If the method is native, do the lookup in the thread requesting
1679   // the compilation. Native lookups can load code, which is not
1680   // permitted during compilation.
1681   //
1682   // Note: A native method implies non-osr compilation which is
1683   //       checked with an assertion at the entry of this method.
1684   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1685     address adr = NativeLookup::lookup(method, THREAD);
1686     if (HAS_PENDING_EXCEPTION) {
1687       // In case of an exception looking up the method, we just forget
1688       // about it. The interpreter will kick-in and throw the exception.
1689       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1690       CLEAR_PENDING_EXCEPTION;
1691       return nullptr;
1692     }
1693     assert(method->has_native_function(), "must have native code by now");
1694   }
1695 
1696   // RedefineClasses() has replaced this method; just return
1697   if (method->is_old()) {
1698     return nullptr;
1699   }
1700 
1701   // JVMTI -- post_compile_event requires jmethod_id() that may require
1702   // a lock the compiling thread can not acquire. Prefetch it here.
1703   if (JvmtiExport::should_post_compiled_method_load()) {
1704     method->jmethod_id();
1705   }
1706 
1707   // do the compilation
1708   if (method->is_native()) {
1709     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1710       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1711       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1712       //
1713       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1714       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1715       AdapterHandlerLibrary::create_native_wrapper(method);
1716     } else {
1717       return nullptr;
1718     }
1719   } else {
1720     // If the compiler is shut off due to code cache getting full
1721     // fail out now so blocking compiles dont hang the java thread
1722     if (!should_compile_new_jobs()) {
1723       return nullptr;
1724     }
1725     bool is_blocking = ReplayCompiles                                             ||
1726                        !directive->BackgroundCompilationOption                    ||
1727                        (PreloadBlocking && (compile_reason == CompileTask::Reason_Preload));
1728     compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, requires_online_compilation, is_blocking, THREAD);
1729   }
1730 
1731   // return requested nmethod
1732   // We accept a higher level osr method
1733   if (osr_bci == InvocationEntryBci) {
1734     return method->code();
1735   }
1736   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1737 }
1738 
1739 
1740 // ------------------------------------------------------------------
1741 // CompileBroker::compilation_is_complete
1742 //
1743 // See if compilation of this method is already complete.
1744 bool CompileBroker::compilation_is_complete(Method*                    method,
1745                                             int                        osr_bci,
1746                                             int                        comp_level,
1747                                             bool                       online_only,
1748                                             CompileTask::CompileReason compile_reason) {
1749   if (compile_reason == CompileTask::Reason_Precompile ||
1750       compile_reason == CompileTask::Reason_PrecompileForPreload) {
1751     return false; // FIXME: any restrictions?
1752   }
1753   bool is_osr = (osr_bci != standard_entry_bci);
1754   if (is_osr) {
1755     if (method->is_not_osr_compilable(comp_level)) {
1756       return true;
1757     } else {
1758       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1759       return (result != nullptr);
1760     }
1761   } else {
1762     if (method->is_not_compilable(comp_level)) {
1763       return true;
1764     } else {
1765       nmethod* result = method->code();
1766       if (result == nullptr) {
1767         return false;
1768       }
1769       if (online_only && result->is_aot()) {
1770         return false;
1771       }
1772       bool same_level = (comp_level == result->comp_level());
1773       if (result->has_clinit_barriers()) {
1774         return !same_level; // Allow replace preloaded code with new code of the same level
1775       }
1776       return same_level;
1777     }
1778   }
1779 }
1780 
1781 
1782 /**
1783  * See if this compilation is already requested.
1784  *
1785  * Implementation note: there is only a single "is in queue" bit
1786  * for each method.  This means that the check below is overly
1787  * conservative in the sense that an osr compilation in the queue
1788  * will block a normal compilation from entering the queue (and vice
1789  * versa).  This can be remedied by a full queue search to disambiguate
1790  * cases.  If it is deemed profitable, this may be done.
1791  */
1792 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1793   return method->queued_for_compilation();
1794 }
1795 
1796 // ------------------------------------------------------------------
1797 // CompileBroker::compilation_is_prohibited
1798 //
1799 // See if this compilation is not allowed.
1800 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1801   bool is_native = method->is_native();
1802   // Some compilers may not support the compilation of natives.
1803   AbstractCompiler *comp = compiler(comp_level);
1804   if (is_native && (!CICompileNatives || comp == nullptr)) {
1805     method->set_not_compilable_quietly("native methods not supported", comp_level);
1806     return true;
1807   }
1808 
1809   bool is_osr = (osr_bci != standard_entry_bci);
1810   // Some compilers may not support on stack replacement.
1811   if (is_osr && (!CICompileOSR || comp == nullptr)) {
1812     method->set_not_osr_compilable("OSR not supported", comp_level);
1813     return true;
1814   }
1815 
1816   // The method may be explicitly excluded by the user.
1817   double scale;
1818   if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) {
1819     bool quietly = CompilerOracle::be_quiet();
1820     if (PrintCompilation && !quietly) {
1821       // This does not happen quietly...
1822       ResourceMark rm;
1823       tty->print("### Excluding %s:%s",
1824                  method->is_native() ? "generation of native wrapper" : "compile",
1825                  (method->is_static() ? " static" : ""));
1826       method->print_short_name(tty);
1827       tty->cr();
1828     }
1829     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1830   }
1831 
1832   return false;
1833 }
1834 
1835 /**
1836  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1837  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1838  * The function also allows to generate separate compilation IDs for OSR compilations.
1839  */
1840 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1841 #ifdef ASSERT
1842   bool is_osr = (osr_bci != standard_entry_bci);
1843   int id;
1844   if (method->is_native()) {
1845     assert(!is_osr, "can't be osr");
1846     // Adapters, native wrappers and method handle intrinsics
1847     // should be generated always.
1848     return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1849   } else if (CICountOSR && is_osr) {
1850     id = Atomic::add(&_osr_compilation_id, 1);
1851     if (CIStartOSR <= id && id < CIStopOSR) {
1852       return id;
1853     }
1854   } else {
1855     id = Atomic::add(&_compilation_id, 1);
1856     if (CIStart <= id && id < CIStop) {
1857       return id;
1858     }
1859   }
1860 
1861   // Method was not in the appropriate compilation range.
1862   method->set_not_compilable_quietly("Not in requested compile id range");
1863   return 0;
1864 #else
1865   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1866   // only _compilation_id is incremented.
1867   return Atomic::add(&_compilation_id, 1);
1868 #endif
1869 }
1870 
1871 // ------------------------------------------------------------------
1872 // CompileBroker::assign_compile_id_unlocked
1873 //
1874 // Public wrapper for assign_compile_id that acquires the needed locks
1875 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1876   return assign_compile_id(method, osr_bci);
1877 }
1878 
1879 // ------------------------------------------------------------------
1880 // CompileBroker::create_compile_task
1881 //
1882 // Create a CompileTask object representing the current request for
1883 // compilation.  Add this task to the queue.
1884 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1885                                                 int                 compile_id,
1886                                                 const methodHandle& method,
1887                                                 int                 osr_bci,
1888                                                 int                 comp_level,
1889                                                 int                 hot_count,
1890                                                 AOTCodeEntry*       aot_code_entry,
1891                                                 CompileTask::CompileReason compile_reason,
1892                                                 bool                requires_online_compilation,
1893                                                 bool                blocking) {
1894   CompileTask* new_task = new CompileTask(compile_id, method, osr_bci, comp_level,
1895                        hot_count, aot_code_entry, compile_reason, queue,
1896                        requires_online_compilation, blocking);
1897   return new_task;
1898 }
1899 
1900 #if INCLUDE_JVMCI
1901 // The number of milliseconds to wait before checking if
1902 // JVMCI compilation has made progress.
1903 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1904 
1905 // The number of JVMCI compilation progress checks that must fail
1906 // before unblocking a thread waiting for a blocking compilation.
1907 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1908 
1909 /**
1910  * Waits for a JVMCI compiler to complete a given task. This thread
1911  * waits until either the task completes or it sees no JVMCI compilation
1912  * progress for N consecutive milliseconds where N is
1913  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1914  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1915  *
1916  * @return true if this thread needs to delete the task
1917  */
1918 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1919   assert(UseJVMCICompiler, "sanity");
1920   MonitorLocker ml(thread, CompileTaskWait_lock);
1921   int progress_wait_attempts = 0;
1922   jint thread_jvmci_compilation_ticks = 0;
1923   jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1924   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1925          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1926     JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1927 
1928     bool progress;
1929     if (jvmci_compile_state != nullptr) {
1930       jint ticks = jvmci_compile_state->compilation_ticks();
1931       progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1932       JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1933       thread_jvmci_compilation_ticks = ticks;
1934     } else {
1935       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1936       // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1937       // compilation ticks to determine whether JVMCI compilation
1938       // is still making progress through the JVMCI compiler queue.
1939       jint ticks = jvmci->global_compilation_ticks();
1940       progress = (ticks - global_jvmci_compilation_ticks) != 0;
1941       JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1942       global_jvmci_compilation_ticks = ticks;
1943     }
1944 
1945     if (!progress) {
1946       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1947         if (PrintCompilation) {
1948           task->print(tty, "wait for blocking compilation timed out");
1949         }
1950         JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1951         break;
1952       }
1953     } else {
1954       progress_wait_attempts = 0;
1955     }
1956   }
1957   task->clear_waiter();
1958   return task->is_complete();
1959 }
1960 #endif
1961 
1962 /**
1963  *  Wait for the compilation task to complete.
1964  */
1965 void CompileBroker::wait_for_completion(CompileTask* task) {
1966   if (CIPrintCompileQueue) {
1967     ttyLocker ttyl;
1968     tty->print_cr("BLOCKING FOR COMPILE");
1969   }
1970 
1971   assert(task->is_blocking(), "can only wait on blocking task");
1972 
1973   JavaThread* thread = JavaThread::current();
1974 
1975   methodHandle method(thread, task->method());
1976   bool free_task;
1977 #if INCLUDE_JVMCI
1978   AbstractCompiler* comp = compiler(task->comp_level());
1979   if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) {
1980     // It may return before compilation is completed.
1981     // Note that libjvmci should not pre-emptively unblock
1982     // a thread waiting for a compilation as it does not call
1983     // Java code and so is not deadlock prone like jarjvmci.
1984     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1985   } else
1986 #endif
1987   {
1988     MonitorLocker ml(thread, CompileTaskWait_lock);
1989     free_task = true;
1990     task->inc_waiting_for_completion();
1991     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1992       ml.wait();
1993     }
1994     task->dec_waiting_for_completion();
1995   }
1996 
1997   if (free_task) {
1998     if (is_compilation_disabled_forever()) {
1999       delete task;
2000       return;
2001     }
2002 
2003     // It is harmless to check this status without the lock, because
2004     // completion is a stable property (until the task object is deleted).
2005     assert(task->is_complete(), "Compilation should have completed");
2006 
2007     // By convention, the waiter is responsible for deleting a
2008     // blocking CompileTask. Since there is only one waiter ever
2009     // waiting on a CompileTask, we know that no one else will
2010     // be using this CompileTask; we can delete it.
2011     delete task;
2012   }
2013 }
2014 
2015 void CompileBroker::wait_for_no_active_tasks() {
2016   CompileTask::wait_for_no_active_tasks();
2017 }
2018 
2019 /**
2020  * Initialize compiler thread(s) + compiler object(s). The postcondition
2021  * of this function is that the compiler runtimes are initialized and that
2022  * compiler threads can start compiling.
2023  */
2024 bool CompileBroker::init_compiler_runtime() {
2025   CompilerThread* thread = CompilerThread::current();
2026   AbstractCompiler* comp = thread->compiler();
2027   // Final sanity check - the compiler object must exist
2028   guarantee(comp != nullptr, "Compiler object must exist");
2029 
2030   {
2031     // Must switch to native to allocate ci_env
2032     ThreadToNativeFromVM ttn(thread);
2033     ciEnv ci_env((CompileTask*)nullptr);
2034     // Cache Jvmti state
2035     ci_env.cache_jvmti_state();
2036     // Cache DTrace flags
2037     ci_env.cache_dtrace_flags();
2038 
2039     // Switch back to VM state to do compiler initialization
2040     ThreadInVMfromNative tv(thread);
2041 
2042     comp->initialize();
2043   }
2044 
2045   if (comp->is_failed()) {
2046     disable_compilation_forever();
2047     // If compiler initialization failed, no compiler thread that is specific to a
2048     // particular compiler runtime will ever start to compile methods.
2049     shutdown_compiler_runtime(comp, thread);
2050     return false;
2051   }
2052 
2053   // C1 specific check
2054   if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) {
2055     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
2056     return false;
2057   }
2058 
2059   return true;
2060 }
2061 
2062 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) {
2063   BufferBlob* blob = thread->get_buffer_blob();
2064   if (blob != nullptr) {
2065     blob->purge();
2066     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2067     CodeCache::free(blob);
2068   }
2069 }
2070 
2071 /**
2072  * If C1 and/or C2 initialization failed, we shut down all compilation.
2073  * We do this to keep things simple. This can be changed if it ever turns
2074  * out to be a problem.
2075  */
2076 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
2077   free_buffer_blob_if_allocated(thread);
2078 
2079   log_info(compilation)("shutdown_compiler_runtime: " INTPTR_FORMAT, p2i(thread));
2080 
2081   if (comp->should_perform_shutdown()) {
2082     // There are two reasons for shutting down the compiler
2083     // 1) compiler runtime initialization failed
2084     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
2085     warning("%s initialization failed. Shutting down all compilers", comp->name());
2086 
2087     // Only one thread per compiler runtime object enters here
2088     // Set state to shut down
2089     comp->set_shut_down();
2090 
2091     // Delete all queued compilation tasks to make compiler threads exit faster.
2092     if (_c1_compile_queue != nullptr) {
2093       _c1_compile_queue->delete_all();
2094     }
2095 
2096     if (_c2_compile_queue != nullptr) {
2097       _c2_compile_queue->delete_all();
2098     }
2099 
2100     if (_c3_compile_queue != nullptr) {
2101       _c3_compile_queue->delete_all();
2102     }
2103 
2104     // Set flags so that we continue execution with using interpreter only.
2105     UseCompiler    = false;
2106     UseInterpreter = true;
2107 
2108     // We could delete compiler runtimes also. However, there are references to
2109     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
2110     // fail. This can be done later if necessary.
2111   }
2112 }
2113 
2114 /**
2115  * Helper function to create new or reuse old CompileLog.
2116  */
2117 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
2118   if (!LogCompilation) return nullptr;
2119 
2120   AbstractCompiler *compiler = ct->compiler();
2121   bool jvmci = JVMCI_ONLY( compiler->is_jvmci() ||) false;
2122   bool c1 = compiler->is_c1();
2123   jobject* compiler_objects = c1 ? _compiler1_objects : (_c3_count == 0 ? _compiler2_objects : (jvmci ? _compiler2_objects : _compiler3_objects));
2124   assert(compiler_objects != nullptr, "must be initialized at this point");
2125   CompileLog** logs = c1 ? _compiler1_logs : (_c3_count == 0 ? _compiler2_logs : (jvmci ? _compiler2_logs : _compiler3_logs));
2126   assert(logs != nullptr, "must be initialized at this point");
2127   int count = c1 ? _c1_count : (_c3_count == 0 ? _c2_count : (jvmci ? _c2_count : _c3_count));
2128 
2129   if (ct->queue() == _ac1_compile_queue || ct->queue() == _ac2_compile_queue) {
2130     compiler_objects = _ac_objects;
2131     logs  = _ac_logs;
2132     count = _ac_count;
2133   }
2134   // Find Compiler number by its threadObj.
2135   oop compiler_obj = ct->threadObj();
2136   int compiler_number = 0;
2137   bool found = false;
2138   for (; compiler_number < count; compiler_number++) {
2139     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
2140       found = true;
2141       break;
2142     }
2143   }
2144   assert(found, "Compiler must exist at this point");
2145 
2146   // Determine pointer for this thread's log.
2147   CompileLog** log_ptr = &logs[compiler_number];
2148 
2149   // Return old one if it exists.
2150   CompileLog* log = *log_ptr;
2151   if (log != nullptr) {
2152     ct->init_log(log);
2153     return log;
2154   }
2155 
2156   // Create a new one and remember it.
2157   init_compiler_thread_log();
2158   log = ct->log();
2159   *log_ptr = log;
2160   return log;
2161 }
2162 
2163 // ------------------------------------------------------------------
2164 // CompileBroker::compiler_thread_loop
2165 //
2166 // The main loop run by a CompilerThread.
2167 void CompileBroker::compiler_thread_loop() {
2168   CompilerThread* thread = CompilerThread::current();
2169   CompileQueue* queue = thread->queue();
2170   // For the thread that initializes the ciObjectFactory
2171   // this resource mark holds all the shared objects
2172   ResourceMark rm;
2173 
2174   // First thread to get here will initialize the compiler interface
2175 
2176   {
2177     ASSERT_IN_VM;
2178     MutexLocker only_one (thread, CompileThread_lock);
2179     if (!ciObjectFactory::is_initialized()) {
2180       ciObjectFactory::initialize();
2181     }
2182   }
2183 
2184   // Open a log.
2185   CompileLog* log = get_log(thread);
2186   if (log != nullptr) {
2187     log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'",
2188                     thread->name(),
2189                     os::current_thread_id(),
2190                     os::current_process_id());
2191     log->stamp();
2192     log->end_elem();
2193   }
2194 
2195   // If compiler thread/runtime initialization fails, exit the compiler thread
2196   if (!init_compiler_runtime()) {
2197     return;
2198   }
2199 
2200   thread->start_idle_timer();
2201 
2202   // Poll for new compilation tasks as long as the JVM runs. Compilation
2203   // should only be disabled if something went wrong while initializing the
2204   // compiler runtimes. This, in turn, should not happen. The only known case
2205   // when compiler runtime initialization fails is if there is not enough free
2206   // space in the code cache to generate the necessary stubs, etc.
2207   while (!is_compilation_disabled_forever()) {
2208     // We need this HandleMark to avoid leaking VM handles.
2209     HandleMark hm(thread);
2210 
2211     RecompilationPolicy::recompilation_step(AOTRecompilationWorkUnitSize, thread);
2212 
2213     CompileTask* task = queue->get(thread);
2214     if (task == nullptr) {
2215       if (UseDynamicNumberOfCompilerThreads) {
2216         // Access compiler_count under lock to enforce consistency.
2217         MutexLocker only_one(CompileThread_lock);
2218         if (can_remove(thread, true)) {
2219           if (trace_compiler_threads()) {
2220             ResourceMark rm;
2221             stringStream msg;
2222             msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
2223                       thread->name(), thread->idle_time_millis());
2224             print_compiler_threads(msg);
2225           }
2226 
2227           // Notify compiler that the compiler thread is about to stop
2228           thread->compiler()->stopping_compiler_thread(thread);
2229 
2230           free_buffer_blob_if_allocated(thread);
2231           return; // Stop this thread.
2232         }
2233       }
2234     } else {
2235       // Assign the task to the current thread.  Mark this compilation
2236       // thread as active for the profiler.
2237       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
2238       // occurs after fetching the compile task off the queue.
2239       CompileTaskWrapper ctw(task);
2240       methodHandle method(thread, task->method());
2241 
2242       // Never compile a method if breakpoints are present in it
2243       if (method()->number_of_breakpoints() == 0) {
2244         // Compile the method.
2245         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
2246           invoke_compiler_on_method(task);
2247           thread->start_idle_timer();
2248         } else {
2249           // After compilation is disabled, remove remaining methods from queue
2250           method->clear_queued_for_compilation();
2251           method->set_pending_queue_processed(false);
2252           task->set_failure_reason("compilation is disabled");
2253         }
2254       } else {
2255         task->set_failure_reason("breakpoints are present");
2256       }
2257 
2258       if (UseDynamicNumberOfCompilerThreads) {
2259         possibly_add_compiler_threads(thread);
2260         assert(!thread->has_pending_exception(), "should have been handled");
2261       }
2262     }
2263   }
2264 
2265   // Shut down compiler runtime
2266   shutdown_compiler_runtime(thread->compiler(), thread);
2267 }
2268 
2269 // ------------------------------------------------------------------
2270 // CompileBroker::init_compiler_thread_log
2271 //
2272 // Set up state required by +LogCompilation.
2273 void CompileBroker::init_compiler_thread_log() {
2274     CompilerThread* thread = CompilerThread::current();
2275     char  file_name[4*K];
2276     FILE* fp = nullptr;
2277     intx thread_id = os::current_thread_id();
2278     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
2279       const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr);
2280       if (dir == nullptr) {
2281         jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log",
2282                      thread_id, os::current_process_id());
2283       } else {
2284         jio_snprintf(file_name, sizeof(file_name),
2285                      "%s%shs_c%zu_pid%u.log", dir,
2286                      os::file_separator(), thread_id, os::current_process_id());
2287       }
2288 
2289       fp = os::fopen(file_name, "wt");
2290       if (fp != nullptr) {
2291         if (LogCompilation && Verbose) {
2292           tty->print_cr("Opening compilation log %s", file_name);
2293         }
2294         CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
2295         if (log == nullptr) {
2296           fclose(fp);
2297           return;
2298         }
2299         thread->init_log(log);
2300 
2301         if (xtty != nullptr) {
2302           ttyLocker ttyl;
2303           // Record any per thread log files
2304           xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name);
2305         }
2306         return;
2307       }
2308     }
2309     warning("Cannot open log file: %s", file_name);
2310 }
2311 
2312 void CompileBroker::log_metaspace_failure() {
2313   const char* message = "some methods may not be compiled because metaspace "
2314                         "is out of memory";
2315   if (CompilationLog::log() != nullptr) {
2316     CompilationLog::log()->log_metaspace_failure(message);
2317   }
2318   if (PrintCompilation) {
2319     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2320   }
2321 }
2322 
2323 
2324 // ------------------------------------------------------------------
2325 // CompileBroker::set_should_block
2326 //
2327 // Set _should_block.
2328 // Call this from the VM, with Threads_lock held and a safepoint requested.
2329 void CompileBroker::set_should_block() {
2330   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2331   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2332 #ifndef PRODUCT
2333   if (PrintCompilation && (Verbose || WizardMode))
2334     tty->print_cr("notifying compiler thread pool to block");
2335 #endif
2336   _should_block = true;
2337 }
2338 
2339 // ------------------------------------------------------------------
2340 // CompileBroker::maybe_block
2341 //
2342 // Call this from the compiler at convenient points, to poll for _should_block.
2343 void CompileBroker::maybe_block() {
2344   if (_should_block) {
2345 #ifndef PRODUCT
2346     if (PrintCompilation && (Verbose || WizardMode))
2347       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2348 #endif
2349     // If we are executing a task during the request to block, report the task
2350     // before disappearing.
2351     CompilerThread* thread = CompilerThread::current();
2352     if (thread != nullptr) {
2353       CompileTask* task = thread->task();
2354       if (task != nullptr) {
2355         if (PrintCompilation) {
2356           task->print(tty, "blocked");
2357         }
2358         task->print_ul("blocked");
2359       }
2360     }
2361     // Go to VM state and block for final VM shutdown safepoint.
2362     ThreadInVMfromNative tivfn(JavaThread::current());
2363     assert(false, "Should never unblock from TIVNM entry");
2364   }
2365 }
2366 
2367 // wrapper for CodeCache::print_summary()
2368 static void codecache_print(bool detailed)
2369 {
2370   stringStream s;
2371   // Dump code cache  into a buffer before locking the tty,
2372   {
2373     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2374     CodeCache::print_summary(&s, detailed);
2375   }
2376   ttyLocker ttyl;
2377   tty->print("%s", s.freeze());
2378 }
2379 
2380 // wrapper for CodeCache::print_summary() using outputStream
2381 static void codecache_print(outputStream* out, bool detailed) {
2382   stringStream s;
2383 
2384   // Dump code cache into a buffer
2385   {
2386     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2387     CodeCache::print_summary(&s, detailed);
2388   }
2389 
2390   char* remaining_log = s.as_string();
2391   while (*remaining_log != '\0') {
2392     char* eol = strchr(remaining_log, '\n');
2393     if (eol == nullptr) {
2394       out->print_cr("%s", remaining_log);
2395       remaining_log = remaining_log + strlen(remaining_log);
2396     } else {
2397       *eol = '\0';
2398       out->print_cr("%s", remaining_log);
2399       remaining_log = eol + 1;
2400     }
2401   }
2402 }
2403 
2404 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2405                                          int compilable, const char* failure_reason) {
2406   if (!AbortVMOnCompilationFailure) {
2407     return;
2408   }
2409   if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2410     fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2411   }
2412   if (compilable == ciEnv::MethodCompilable_never) {
2413     fatal("Never compilable: %s", failure_reason);
2414   }
2415 }
2416 
2417 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2418   assert(task != nullptr, "invariant");
2419   CompilerEvent::CompilationEvent::post(event,
2420                                         task->compile_id(),
2421                                         task->compiler()->type(),
2422                                         task->method(),
2423                                         task->comp_level(),
2424                                         task->is_success(),
2425                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2426                                         task->nm_total_size(),
2427                                         task->num_inlined_bytecodes(),
2428                                         task->arena_bytes());
2429 }
2430 
2431 int DirectivesStack::_depth = 0;
2432 CompilerDirectives* DirectivesStack::_top = nullptr;
2433 CompilerDirectives* DirectivesStack::_bottom = nullptr;
2434 
2435 // Acquires Compilation_lock and waits for it to be notified
2436 // as long as WhiteBox::compilation_locked is true.
2437 static void whitebox_lock_compilation() {
2438   MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2439   while (WhiteBox::compilation_locked) {
2440     locker.wait();
2441   }
2442 }
2443 
2444 // ------------------------------------------------------------------
2445 // CompileBroker::invoke_compiler_on_method
2446 //
2447 // Compile a method.
2448 //
2449 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2450   task->print_ul();
2451   elapsedTimer time;
2452 
2453   DirectiveSet* directive = task->directive();
2454 
2455   CompilerThread* thread = CompilerThread::current();
2456   ResourceMark rm(thread);
2457 
2458   if (CompilationLog::log() != nullptr) {
2459     CompilationLog::log()->log_compile(thread, task);
2460   }
2461 
2462   // Common flags.
2463   int compile_id = task->compile_id();
2464   int osr_bci = task->osr_bci();
2465   bool is_osr = (osr_bci != standard_entry_bci);
2466   bool should_log = (thread->log() != nullptr);
2467   bool should_break = false;
2468   bool should_print_compilation = PrintCompilation || directive->PrintCompilationOption;
2469   const int task_level = task->comp_level();
2470   AbstractCompiler* comp = task->compiler();
2471   {
2472     // create the handle inside it's own block so it can't
2473     // accidentally be referenced once the thread transitions to
2474     // native.  The NoHandleMark before the transition should catch
2475     // any cases where this occurs in the future.
2476     methodHandle method(thread, task->method());
2477 
2478     assert(!method->is_native(), "no longer compile natives");
2479 
2480     // Update compile information when using perfdata.
2481     if (UsePerfData) {
2482       update_compile_perf_data(thread, method, is_osr);
2483     }
2484 
2485     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2486   }
2487 
2488   should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2489   if (should_log && !directive->LogOption) {
2490     should_log = false;
2491   }
2492 
2493   // Allocate a new set of JNI handles.
2494   JNIHandleMark jhm(thread);
2495   Method* target_handle = task->method();
2496   int compilable = ciEnv::MethodCompilable;
2497   const char* failure_reason = nullptr;
2498   bool failure_reason_on_C_heap = false;
2499   const char* retry_message = nullptr;
2500 
2501 #if INCLUDE_JVMCI
2502   if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) {
2503     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2504 
2505     TraceTime t1("compilation", &time);
2506     EventCompilation event;
2507     JVMCICompileState compile_state(task, jvmci);
2508     JVMCIRuntime *runtime = nullptr;
2509 
2510     if (JVMCI::in_shutdown()) {
2511       failure_reason = "in JVMCI shutdown";
2512       retry_message = "not retryable";
2513       compilable = ciEnv::MethodCompilable_never;
2514     } else if (compile_state.target_method_is_old()) {
2515       // Skip redefined methods
2516       failure_reason = "redefined method";
2517       retry_message = "not retryable";
2518       compilable = ciEnv::MethodCompilable_never;
2519     } else {
2520       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2521       if (env.init_error() != JNI_OK) {
2522         const char* msg = env.init_error_msg();
2523         failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)",
2524                                     env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI);
2525         bool reason_on_C_heap = true;
2526         // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it
2527         // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime.
2528         bool retryable = env.init_error() == JNI_ENOMEM;
2529         compile_state.set_failure(retryable, failure_reason, reason_on_C_heap);
2530       }
2531       if (failure_reason == nullptr) {
2532         if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2533           // Must switch to native to block
2534           ThreadToNativeFromVM ttn(thread);
2535           whitebox_lock_compilation();
2536         }
2537         methodHandle method(thread, target_handle);
2538         runtime = env.runtime();
2539         runtime->compile_method(&env, jvmci, method, osr_bci);
2540 
2541         failure_reason = compile_state.failure_reason();
2542         failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2543         if (!compile_state.retryable()) {
2544           retry_message = "not retryable";
2545           compilable = ciEnv::MethodCompilable_not_at_tier;
2546         }
2547         if (!task->is_success()) {
2548           assert(failure_reason != nullptr, "must specify failure_reason");
2549         }
2550       }
2551     }
2552     if (!task->is_success() && !JVMCI::in_shutdown()) {
2553       handle_compile_error(thread, task, nullptr, compilable, failure_reason);
2554     }
2555     if (event.should_commit()) {
2556       post_compilation_event(event, task);
2557     }
2558 
2559     if (runtime != nullptr) {
2560       runtime->post_compile(thread);
2561     }
2562   } else
2563 #endif // INCLUDE_JVMCI
2564   {
2565     NoHandleMark  nhm;
2566     ThreadToNativeFromVM ttn(thread);
2567 
2568     ciEnv ci_env(task);
2569     if (should_break) {
2570       ci_env.set_break_at_compile(true);
2571     }
2572     if (should_log) {
2573       ci_env.set_log(thread->log());
2574     }
2575     assert(thread->env() == &ci_env, "set by ci_env");
2576     // The thread-env() field is cleared in ~CompileTaskWrapper.
2577 
2578     // Cache Jvmti state
2579     bool method_is_old = ci_env.cache_jvmti_state();
2580 
2581     // Skip redefined methods
2582     if (method_is_old) {
2583       ci_env.record_method_not_compilable("redefined method", true);
2584     }
2585 
2586     // Cache DTrace flags
2587     ci_env.cache_dtrace_flags();
2588 
2589     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2590 
2591     TraceTime t1("compilation", &time);
2592     EventCompilation event;
2593 
2594     if (comp == nullptr) {
2595       ci_env.record_method_not_compilable("no compiler");
2596     } else if (!ci_env.failing()) {
2597       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2598         whitebox_lock_compilation();
2599       }
2600       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2601 
2602       /* Repeat compilation without installing code for profiling purposes */
2603       int repeat_compilation_count = directive->RepeatCompilationOption;
2604       while (repeat_compilation_count > 0) {
2605         ResourceMark rm(thread);
2606         task->print_ul("NO CODE INSTALLED");
2607         comp->compile_method(&ci_env, target, osr_bci, false, directive);
2608         repeat_compilation_count--;
2609       }
2610     }
2611 
2612 
2613     if (!ci_env.failing() && !task->is_success() && !task->is_precompiled()) {
2614       assert(ci_env.failure_reason() != nullptr, "expect failure reason");
2615       assert(false, "compiler should always document failure: %s", ci_env.failure_reason());
2616       // The compiler elected, without comment, not to register a result.
2617       // Do not attempt further compilations of this method.
2618       ci_env.record_method_not_compilable("compile failed");
2619     }
2620 
2621     // Copy this bit to the enclosing block:
2622     compilable = ci_env.compilable();
2623 
2624     if (ci_env.failing()) {
2625       // Duplicate the failure reason string, so that it outlives ciEnv
2626       failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler);
2627       failure_reason_on_C_heap = true;
2628       retry_message = ci_env.retry_message();
2629       ci_env.report_failure(failure_reason);
2630     }
2631 
2632     if (ci_env.failing()) {
2633       handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2634     }
2635     if (event.should_commit()) {
2636       post_compilation_event(event, task);
2637     }
2638   }
2639 
2640   if (failure_reason != nullptr) {
2641     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2642     if (CompilationLog::log() != nullptr) {
2643       CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2644     }
2645     if (PrintCompilation || directive->PrintCompilationOption) {
2646       FormatBufferResource msg = retry_message != nullptr ?
2647         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2648         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2649       task->print(tty, msg);
2650     }
2651   }
2652 
2653   task->mark_finished(os::elapsed_counter());
2654   DirectivesStack::release(directive);
2655 
2656   methodHandle method(thread, task->method());
2657 
2658   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2659 
2660   collect_statistics(thread, time, task);
2661 
2662   if (PrintCompilation && PrintCompilation2) {
2663     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2664     tty->print("%4d ", compile_id);    // print compilation number
2665     tty->print("%s ", (is_osr ? "%" : (task->is_aot() ? "A" : " ")));
2666     if (task->is_success()) {
2667       tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2668     }
2669     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2670   }
2671 
2672   Log(compilation, codecache) log;
2673   if (log.is_debug()) {
2674     LogStream ls(log.debug());
2675     codecache_print(&ls, /* detailed= */ false);
2676   }
2677   if (PrintCodeCacheOnCompilation) {
2678     codecache_print(/* detailed= */ false);
2679   }
2680   // Disable compilation, if required.
2681   switch (compilable) {
2682   case ciEnv::MethodCompilable_never:
2683     if (is_osr)
2684       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2685     else
2686       method->set_not_compilable_quietly("MethodCompilable_never");
2687     break;
2688   case ciEnv::MethodCompilable_not_at_tier:
2689     if (is_osr)
2690       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2691     else
2692       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2693     break;
2694   }
2695 
2696   // Note that the queued_for_compilation bits are cleared without
2697   // protection of a mutex. [They were set by the requester thread,
2698   // when adding the task to the compile queue -- at which time the
2699   // compile queue lock was held. Subsequently, we acquired the compile
2700   // queue lock to get this task off the compile queue; thus (to belabour
2701   // the point somewhat) our clearing of the bits must be occurring
2702   // only after the setting of the bits. See also 14012000 above.
2703   method->clear_queued_for_compilation();
2704   method->set_pending_queue_processed(false);
2705 
2706   if (should_print_compilation) {
2707     ResourceMark rm;
2708     task->print_tty();
2709   }
2710 }
2711 
2712 /**
2713  * The CodeCache is full. Print warning and disable compilation.
2714  * Schedule code cache cleaning so compilation can continue later.
2715  * This function needs to be called only from CodeCache::allocate(),
2716  * since we currently handle a full code cache uniformly.
2717  */
2718 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2719   UseInterpreter = true;
2720   if (UseCompiler || AlwaysCompileLoopMethods ) {
2721     if (xtty != nullptr) {
2722       stringStream s;
2723       // Dump code cache state into a buffer before locking the tty,
2724       // because log_state() will use locks causing lock conflicts.
2725       CodeCache::log_state(&s);
2726       // Lock to prevent tearing
2727       ttyLocker ttyl;
2728       xtty->begin_elem("code_cache_full");
2729       xtty->print("%s", s.freeze());
2730       xtty->stamp();
2731       xtty->end_elem();
2732     }
2733 
2734 #ifndef PRODUCT
2735     if (ExitOnFullCodeCache) {
2736       codecache_print(/* detailed= */ true);
2737       before_exit(JavaThread::current());
2738       exit_globals(); // will delete tty
2739       vm_direct_exit(1);
2740     }
2741 #endif
2742     if (UseCodeCacheFlushing) {
2743       // Since code cache is full, immediately stop new compiles
2744       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2745         log_info(codecache)("Code cache is full - disabling compilation");
2746       }
2747     } else {
2748       disable_compilation_forever();
2749     }
2750 
2751     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2752   }
2753 }
2754 
2755 // ------------------------------------------------------------------
2756 // CompileBroker::update_compile_perf_data
2757 //
2758 // Record this compilation for debugging purposes.
2759 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2760   ResourceMark rm;
2761   char* method_name = method->name()->as_C_string();
2762   char current_method[CompilerCounters::cmname_buffer_length];
2763   size_t maxLen = CompilerCounters::cmname_buffer_length;
2764 
2765   const char* class_name = method->method_holder()->name()->as_C_string();
2766 
2767   size_t s1len = strlen(class_name);
2768   size_t s2len = strlen(method_name);
2769 
2770   // check if we need to truncate the string
2771   if (s1len + s2len + 2 > maxLen) {
2772 
2773     // the strategy is to lop off the leading characters of the
2774     // class name and the trailing characters of the method name.
2775 
2776     if (s2len + 2 > maxLen) {
2777       // lop of the entire class name string, let snprintf handle
2778       // truncation of the method name.
2779       class_name += s1len; // null string
2780     }
2781     else {
2782       // lop off the extra characters from the front of the class name
2783       class_name += ((s1len + s2len + 2) - maxLen);
2784     }
2785   }
2786 
2787   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2788 
2789   int last_compile_type = normal_compile;
2790   if (CICountOSR && is_osr) {
2791     last_compile_type = osr_compile;
2792   } else if (CICountNative && method->is_native()) {
2793     last_compile_type = native_compile;
2794   }
2795 
2796   CompilerCounters* counters = thread->counters();
2797   counters->set_current_method(current_method);
2798   counters->set_compile_type((jlong) last_compile_type);
2799 }
2800 
2801 // ------------------------------------------------------------------
2802 // CompileBroker::collect_statistics
2803 //
2804 // Collect statistics about the compilation.
2805 
2806 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2807   bool success = task->is_success();
2808   methodHandle method (thread, task->method());
2809   int compile_id = task->compile_id();
2810   bool is_osr = (task->osr_bci() != standard_entry_bci);
2811   const int comp_level = task->comp_level();
2812   CompilerCounters* counters = thread->counters();
2813 
2814   MutexLocker locker(CompileStatistics_lock);
2815 
2816   // _perf variables are production performance counters which are
2817   // updated regardless of the setting of the CITime and CITimeEach flags
2818   //
2819 
2820   // account all time, including bailouts and failures in this counter;
2821   // C1 and C2 counters are counting both successful and unsuccessful compiles
2822   _t_total_compilation.add(&time);
2823 
2824   // Update compilation times. Used by the implementation of JFR CompilerStatistics
2825   // and java.lang.management.CompilationMXBean.
2826   _perf_total_compilation->inc(time.ticks());
2827   _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time);
2828 
2829   if (!success) {
2830     _total_bailout_count++;
2831     if (UsePerfData) {
2832       _perf_last_failed_method->set_value(counters->current_method());
2833       _perf_last_failed_type->set_value(counters->compile_type());
2834       _perf_total_bailout_count->inc();
2835     }
2836     _t_bailedout_compilation.add(&time);
2837 
2838     if (CITime || log_is_enabled(Info, init)) {
2839       CompilerStatistics* stats = nullptr;
2840       if (task->is_aot()) {
2841         int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2842         stats = &_aot_stats_per_level[level];
2843       } else {
2844         stats = &_stats_per_level[comp_level-1];
2845       }
2846       stats->_bailout.update(time, 0);
2847     }
2848   } else if (!task->is_success()) {
2849     if (UsePerfData) {
2850       _perf_last_invalidated_method->set_value(counters->current_method());
2851       _perf_last_invalidated_type->set_value(counters->compile_type());
2852       _perf_total_invalidated_count->inc();
2853     }
2854     _total_invalidated_count++;
2855     _t_invalidated_compilation.add(&time);
2856 
2857     if (CITime || log_is_enabled(Info, init)) {
2858       CompilerStatistics* stats = nullptr;
2859       if (task->is_aot()) {
2860         int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2861         stats = &_aot_stats_per_level[level];
2862       } else {
2863         stats = &_stats_per_level[comp_level-1];
2864       }
2865       stats->_invalidated.update(time, 0);
2866     }
2867   } else {
2868     // Compilation succeeded
2869     if (CITime || log_is_enabled(Info, init)) {
2870       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2871       if (is_osr) {
2872         _t_osr_compilation.add(&time);
2873         _sum_osr_bytes_compiled += bytes_compiled;
2874       } else {
2875         _t_standard_compilation.add(&time);
2876         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2877       }
2878 
2879       // Collect statistic per compilation level
2880       if (task->is_aot()) {
2881         _aot_stats._standard.update(time, bytes_compiled);
2882         _aot_stats._nmethods_size += task->nm_total_size();
2883         _aot_stats._nmethods_code_size += task->nm_insts_size();
2884         int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2885         CompilerStatistics* stats = &_aot_stats_per_level[level];
2886         stats->_standard.update(time, bytes_compiled);
2887         stats->_nmethods_size += task->nm_total_size();
2888         stats->_nmethods_code_size += task->nm_insts_size();
2889       } else if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2890         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2891         if (is_osr) {
2892           stats->_osr.update(time, bytes_compiled);
2893         } else {
2894           stats->_standard.update(time, bytes_compiled);
2895         }
2896         stats->_nmethods_size += task->nm_total_size();
2897         stats->_nmethods_code_size += task->nm_insts_size();
2898       } else {
2899         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2900       }
2901 
2902       // Collect statistic per compiler
2903       AbstractCompiler* comp = task->compiler();
2904       if (comp && !task->is_aot()) {
2905         CompilerStatistics* stats = comp->stats();
2906         if (is_osr) {
2907           stats->_osr.update(time, bytes_compiled);
2908         } else {
2909           stats->_standard.update(time, bytes_compiled);
2910         }
2911         stats->_nmethods_size += task->nm_total_size();
2912         stats->_nmethods_code_size += task->nm_insts_size();
2913       } else if (!task->is_aot()) { // if (!comp)
2914         assert(false, "Compiler object must exist");
2915       }
2916     }
2917 
2918     if (UsePerfData) {
2919       // save the name of the last method compiled
2920       _perf_last_method->set_value(counters->current_method());
2921       _perf_last_compile_type->set_value(counters->compile_type());
2922       _perf_last_compile_size->set_value(method->code_size() +
2923                                          task->num_inlined_bytecodes());
2924       if (is_osr) {
2925         _perf_osr_compilation->inc(time.ticks());
2926         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2927       } else {
2928         _perf_standard_compilation->inc(time.ticks());
2929         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2930       }
2931     }
2932 
2933     if (CITimeEach) {
2934       double compile_time = time.seconds();
2935       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2936       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2937                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2938     }
2939 
2940     // Collect counts of successful compilations
2941     _sum_nmethod_size      += task->nm_total_size();
2942     _sum_nmethod_code_size += task->nm_insts_size();
2943     _total_compile_count++;
2944 
2945     if (UsePerfData) {
2946       _perf_sum_nmethod_size->inc(     task->nm_total_size());
2947       _perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2948       _perf_total_compile_count->inc();
2949     }
2950 
2951     if (is_osr) {
2952       if (UsePerfData) _perf_total_osr_compile_count->inc();
2953       _total_osr_compile_count++;
2954     } else {
2955       if (UsePerfData) _perf_total_standard_compile_count->inc();
2956       _total_standard_compile_count++;
2957     }
2958   }
2959   // set the current method for the thread to null
2960   if (UsePerfData) counters->set_current_method("");
2961 }
2962 
2963 const char* CompileBroker::compiler_name(int comp_level) {
2964   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2965   if (comp == nullptr) {
2966     return "no compiler";
2967   } else {
2968     return (comp->name());
2969   }
2970 }
2971 
2972 jlong CompileBroker::total_compilation_ticks() {
2973   return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0;
2974 }
2975 
2976 void CompileBroker::log_not_entrant(nmethod* nm) {
2977   _total_not_entrant_count++;
2978   if (CITime || log_is_enabled(Info, init)) {
2979     CompilerStatistics* stats = nullptr;
2980     int level = nm->comp_level();
2981     if (nm->is_aot()) {
2982       if (nm->preloaded()) {
2983         assert(level == CompLevel_full_optimization, "%d", level);
2984         level = CompLevel_full_optimization + 1;
2985       }
2986       stats = &_aot_stats_per_level[level - 1];
2987     } else {
2988       stats = &_stats_per_level[level - 1];
2989     }
2990     stats->_made_not_entrant._count++;
2991   }
2992 }
2993 
2994 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2995   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}",
2996                 name, stats->bytes_per_second(),
2997                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2998                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2999                 stats->_nmethods_size, stats->_nmethods_code_size);
3000 }
3001 
3002 static void print_helper(outputStream* st, const char* name, CompilerStatistics::Data data, bool print_time = true) {
3003   if (data._count > 0) {
3004     st->print("; %s: %4u methods", name, data._count);
3005     if (print_time) {
3006       st->print(" (in %.3fs)", data._time.seconds());
3007     }
3008   }
3009 }
3010 
3011 static void print_tier_helper(outputStream* st, const char* prefix, int tier, CompilerStatistics* stats) {
3012   st->print("    %s%d: %5u methods", prefix, tier, stats->_standard._count);
3013   if (stats->_standard._count > 0) {
3014     st->print(" (in %.3fs)", stats->_standard._time.seconds());
3015   }
3016   print_helper(st, "osr",     stats->_osr);
3017   print_helper(st, "bailout", stats->_bailout);
3018   print_helper(st, "invalid", stats->_invalidated);
3019   print_helper(st, "not_entrant", stats->_made_not_entrant, false);
3020   st->cr();
3021 }
3022 
3023 static void print_queue_info(outputStream* st, CompileQueue* queue) {
3024   if (queue != nullptr) {
3025     MutexLocker ml(queue->lock());
3026 
3027     uint  total_cnt = 0;
3028     uint active_cnt = 0;
3029     for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) {
3030       guarantee(jt != nullptr, "");
3031       if (jt->is_Compiler_thread()) {
3032         CompilerThread* ct = (CompilerThread*)jt;
3033 
3034         guarantee(ct != nullptr, "");
3035         if (ct->queue() == queue) {
3036           ++total_cnt;
3037           CompileTask* task = ct->task();
3038           if (task != nullptr) {
3039             ++active_cnt;
3040           }
3041         }
3042       }
3043     }
3044 
3045     st->print("  %s (%d active / %d total threads): %u tasks",
3046               queue->name(), active_cnt, total_cnt, queue->size());
3047     if (queue->size() > 0) {
3048       uint counts[] = {0, 0, 0, 0, 0}; // T1 ... T5
3049       for (CompileTask* task = queue->first(); task != nullptr; task = task->next()) {
3050         int tier = task->comp_level();
3051         if (task->is_aot() && task->preload()) {
3052           assert(tier == CompLevel_full_optimization, "%d", tier);
3053           tier = CompLevel_full_optimization + 1;
3054         }
3055         counts[tier-1]++;
3056       }
3057       st->print(":");
3058       for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3059         uint cnt = counts[tier-1];
3060         if (cnt > 0) {
3061           st->print(" T%d: %u tasks;", tier, cnt);
3062         }
3063       }
3064     }
3065     st->cr();
3066 
3067 //    for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) {
3068 //      guarantee(jt != nullptr, "");
3069 //      if (jt->is_Compiler_thread()) {
3070 //        CompilerThread* ct = (CompilerThread*)jt;
3071 //
3072 //        guarantee(ct != nullptr, "");
3073 //        if (ct->queue() == queue) {
3074 //          ResourceMark rm;
3075 //          CompileTask* task = ct->task();
3076 //          st->print("    %s: ", ct->name_raw());
3077 //          if (task != nullptr) {
3078 //            task->print(st, nullptr, true /*short_form*/, false /*cr*/);
3079 //          }
3080 //          st->cr();
3081 //        }
3082 //      }
3083 //    }
3084   }
3085 }
3086 void CompileBroker::print_statistics_on(outputStream* st) {
3087   st->print_cr("  Total: %u methods; %u bailouts, %u invalidated, %u non_entrant",
3088                _total_compile_count, _total_bailout_count, _total_invalidated_count, _total_not_entrant_count);
3089   for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
3090     print_tier_helper(st, "Tier", tier, &_stats_per_level[tier-1]);
3091   }
3092   st->cr();
3093 
3094   if (AOTCodeCaching) {
3095     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3096       if (tier != CompLevel_full_profile) {
3097         print_tier_helper(st, "AOT Code T", tier, &_aot_stats_per_level[tier - 1]);
3098       }
3099     }
3100     st->cr();
3101   }
3102 
3103   print_queue_info(st, _c1_compile_queue);
3104   print_queue_info(st, _c2_compile_queue);
3105   print_queue_info(st, _c3_compile_queue);
3106   print_queue_info(st, _ac1_compile_queue);
3107   print_queue_info(st, _ac2_compile_queue);
3108 }
3109 
3110 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
3111   if (per_compiler) {
3112     if (aggregate) {
3113       tty->cr();
3114       tty->print_cr("[%dms] Individual compiler times (for compiled methods only)", (int)tty->time_stamp().milliseconds());
3115       tty->print_cr("------------------------------------------------");
3116       tty->cr();
3117     }
3118     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
3119       AbstractCompiler* comp = _compilers[i];
3120       if (comp != nullptr) {
3121         print_times(comp->name(), comp->stats());
3122       }
3123     }
3124     if (_aot_stats._standard._count > 0) {
3125       print_times("SC", &_aot_stats);
3126     }
3127     if (aggregate) {
3128       tty->cr();
3129       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
3130       tty->print_cr("------------------------------------------------");
3131       tty->cr();
3132     }
3133     char tier_name[256];
3134     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
3135       CompilerStatistics* stats = &_stats_per_level[tier-1];
3136       os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
3137       print_times(tier_name, stats);
3138     }
3139     for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3140       CompilerStatistics* stats = &_aot_stats_per_level[tier-1];
3141       if (stats->_standard._bytes > 0) {
3142         os::snprintf_checked(tier_name, sizeof(tier_name), "AOT Code T%d", tier);
3143         print_times(tier_name, stats);
3144       }
3145     }
3146   }
3147 
3148   if (!aggregate) {
3149     return;
3150   }
3151 
3152   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
3153   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
3154   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
3155 
3156   uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
3157   uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
3158 
3159   uint standard_compile_count = CompileBroker::_total_standard_compile_count;
3160   uint osr_compile_count = CompileBroker::_total_osr_compile_count;
3161   uint total_compile_count = CompileBroker::_total_compile_count;
3162   uint total_bailout_count = CompileBroker::_total_bailout_count;
3163   uint total_invalidated_count = CompileBroker::_total_invalidated_count;
3164 
3165   uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size;
3166   uint nmethods_size = CompileBroker::_sum_nmethod_size;
3167 
3168   tty->cr();
3169   tty->print_cr("Accumulated compiler times");
3170   tty->print_cr("----------------------------------------------------------");
3171                //0000000000111111111122222222223333333333444444444455555555556666666666
3172                //0123456789012345678901234567890123456789012345678901234567890123456789
3173   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
3174   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
3175                 standard_compilation.seconds(),
3176                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
3177   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
3178                 CompileBroker::_t_bailedout_compilation.seconds(),
3179                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
3180   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
3181                 osr_compilation.seconds(),
3182                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
3183   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
3184                 CompileBroker::_t_invalidated_compilation.seconds(),
3185                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
3186 
3187   if (AOTCodeCaching) { // Check flags because AOT code cache could be closed already
3188     tty->cr();
3189     AOTCodeCache::print_timers_on(tty);
3190   }
3191   AbstractCompiler *comp = compiler(CompLevel_simple);
3192   if (comp != nullptr) {
3193     tty->cr();
3194     comp->print_timers();
3195   }
3196   comp = compiler(CompLevel_full_optimization);
3197   if (comp != nullptr) {
3198     tty->cr();
3199     comp->print_timers();
3200   }
3201   comp = _compilers[2];
3202   if (comp != nullptr) {
3203     tty->cr();
3204     comp->print_timers();
3205   }
3206 #if INCLUDE_JVMCI
3207   if (EnableJVMCI) {
3208     JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
3209     if (jvmci_comp != nullptr && jvmci_comp != comp) {
3210       tty->cr();
3211       jvmci_comp->print_timers();
3212     }
3213   }
3214 #endif
3215 
3216   tty->cr();
3217   tty->print_cr("  Total compiled methods    : %8u methods", total_compile_count);
3218   tty->print_cr("    Standard compilation    : %8u methods", standard_compile_count);
3219   tty->print_cr("    On stack replacement    : %8u methods", osr_compile_count);
3220   uint tcb = osr_bytes_compiled + standard_bytes_compiled;
3221   tty->print_cr("  Total compiled bytecodes  : %8u bytes", tcb);
3222   tty->print_cr("    Standard compilation    : %8u bytes", standard_bytes_compiled);
3223   tty->print_cr("    On stack replacement    : %8u bytes", osr_bytes_compiled);
3224   double tcs = total_compilation.seconds();
3225   uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs);
3226   tty->print_cr("  Average compilation speed : %8u bytes/s", bps);
3227   tty->cr();
3228   tty->print_cr("  nmethod code size         : %8u bytes", nmethods_code_size);
3229   tty->print_cr("  nmethod total size        : %8u bytes", nmethods_size);
3230 }
3231 
3232 // Print general/accumulated JIT information.
3233 void CompileBroker::print_info(outputStream *out) {
3234   if (out == nullptr) out = tty;
3235   out->cr();
3236   out->print_cr("======================");
3237   out->print_cr("   General JIT info   ");
3238   out->print_cr("======================");
3239   out->cr();
3240   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
3241   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
3242   out->cr();
3243   out->print_cr("CodeCache overview");
3244   out->print_cr("--------------------------------------------------------");
3245   out->cr();
3246   out->print_cr("         Reserved size : %7zu KB", CodeCache::max_capacity() / K);
3247   out->print_cr("        Committed size : %7zu KB", CodeCache::capacity() / K);
3248   out->print_cr("  Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K);
3249   out->cr();
3250 }
3251 
3252 // Note: tty_lock must not be held upon entry to this function.
3253 //       Print functions called from herein do "micro-locking" on tty_lock.
3254 //       That's a tradeoff which keeps together important blocks of output.
3255 //       At the same time, continuous tty_lock hold time is kept in check,
3256 //       preventing concurrently printing threads from stalling a long time.
3257 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
3258   TimeStamp ts_total;
3259   TimeStamp ts_global;
3260   TimeStamp ts;
3261 
3262   bool allFun = !strcmp(function, "all");
3263   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
3264   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
3265   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
3266   bool methodCount = !strcmp(function, "MethodCount") || allFun;
3267   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
3268   bool methodAge = !strcmp(function, "MethodAge") || allFun;
3269   bool methodNames = !strcmp(function, "MethodNames") || allFun;
3270   bool discard = !strcmp(function, "discard") || allFun;
3271 
3272   if (out == nullptr) {
3273     out = tty;
3274   }
3275 
3276   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
3277     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
3278     out->cr();
3279     return;
3280   }
3281 
3282   ts_total.update(); // record starting point
3283 
3284   if (aggregate) {
3285     print_info(out);
3286   }
3287 
3288   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
3289   // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
3290   // When we request individual parts of the analysis via the jcmd interface, it is possible
3291   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
3292   // updated the aggregated data. We will then see a modified, but again consistent, view
3293   // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
3294   // a lock across user interaction.
3295 
3296   // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
3297   // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
3298   // leading to an unnecessarily long hold time of the other locks we acquired before.
3299   ts.update(); // record starting point
3300   MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
3301   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
3302 
3303   // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
3304   // Unfortunately, such protection is not sufficient:
3305   // When a new nmethod is created via ciEnv::register_method(), the
3306   // Compile_lock is taken first. After some initializations,
3307   // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
3308   // immediately (after finalizing the oop references). To lock out concurrent
3309   // modifiers, we have to grab both locks as well in the described sequence.
3310   //
3311   // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
3312   // for the entire duration of aggregation and printing. That makes sure we see
3313   // a consistent picture and do not run into issues caused by concurrent alterations.
3314   bool should_take_Compile_lock   = !SafepointSynchronize::is_at_safepoint() &&
3315                                     !Compile_lock->owned_by_self();
3316   bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
3317                                     !CodeCache_lock->owned_by_self();
3318   bool take_global_lock_1   =  allFun && should_take_Compile_lock;
3319   bool take_global_lock_2   =  allFun && should_take_CodeCache_lock;
3320   bool take_function_lock_1 = !allFun && should_take_Compile_lock;
3321   bool take_function_lock_2 = !allFun && should_take_CodeCache_lock;
3322   bool take_global_locks    = take_global_lock_1 || take_global_lock_2;
3323   bool take_function_locks  = take_function_lock_1 || take_function_lock_2;
3324 
3325   ts_global.update(); // record starting point
3326 
3327   ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag);
3328   ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag);
3329   if (take_global_locks) {
3330     out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
3331     ts_global.update(); // record starting point
3332   }
3333 
3334   if (aggregate) {
3335     ts.update(); // record starting point
3336     ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1,  Mutex::_safepoint_check_flag);
3337     ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag);
3338     if (take_function_locks) {
3339       out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
3340     }
3341 
3342     ts.update(); // record starting point
3343     CodeCache::aggregate(out, granularity);
3344     if (take_function_locks) {
3345       out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
3346     }
3347   }
3348 
3349   if (usedSpace) CodeCache::print_usedSpace(out);
3350   if (freeSpace) CodeCache::print_freeSpace(out);
3351   if (methodCount) CodeCache::print_count(out);
3352   if (methodSpace) CodeCache::print_space(out);
3353   if (methodAge) CodeCache::print_age(out);
3354   if (methodNames) {
3355     if (allFun) {
3356       // print_names() can only be used safely if the locks have been continuously held
3357       // since aggregation begin. That is true only for function "all".
3358       CodeCache::print_names(out);
3359     } else {
3360       out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
3361     }
3362   }
3363   if (discard) CodeCache::discard(out);
3364 
3365   if (take_global_locks) {
3366     out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
3367   }
3368   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
3369 }