1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/aotLinkedClassBulkLoader.hpp"
26 #include "cds/cdsConfig.hpp"
27 #include "classfile/javaClasses.inline.hpp"
28 #include "classfile/symbolTable.hpp"
29 #include "classfile/vmClasses.hpp"
30 #include "classfile/vmSymbols.hpp"
31 #include "code/aotCodeCache.hpp"
32 #include "code/codeCache.hpp"
33 #include "code/codeHeapState.hpp"
34 #include "code/dependencyContext.hpp"
35 #include "compiler/compilationLog.hpp"
36 #include "compiler/compilationMemoryStatistic.hpp"
37 #include "compiler/compilationPolicy.hpp"
38 #include "compiler/compileBroker.hpp"
39 #include "compiler/compileLog.hpp"
40 #include "compiler/compilerDefinitions.inline.hpp"
41 #include "compiler/compilerEvent.hpp"
42 #include "compiler/compilerOracle.hpp"
43 #include "compiler/directivesParser.hpp"
44 #include "compiler/recompilationPolicy.hpp"
45 #include "gc/shared/memAllocator.hpp"
46 #include "interpreter/linkResolver.hpp"
47 #include "jfr/jfrEvents.hpp"
48 #include "jvm.h"
49 #include "logging/log.hpp"
50 #include "logging/logStream.hpp"
51 #include "memory/allocation.inline.hpp"
52 #include "memory/resourceArea.hpp"
53 #include "memory/universe.hpp"
54 #include "oops/method.inline.hpp"
55 #include "oops/methodData.hpp"
56 #include "oops/oop.inline.hpp"
57 #include "prims/jvmtiExport.hpp"
58 #include "prims/nativeLookup.hpp"
59 #include "prims/whitebox.hpp"
60 #include "runtime/atomicAccess.hpp"
61 #include "runtime/escapeBarrier.hpp"
62 #include "runtime/globals_extension.hpp"
63 #include "runtime/handles.inline.hpp"
64 #include "runtime/init.hpp"
65 #include "runtime/interfaceSupport.inline.hpp"
66 #include "runtime/java.hpp"
67 #include "runtime/javaCalls.hpp"
68 #include "runtime/jniHandles.inline.hpp"
69 #include "runtime/os.hpp"
70 #include "runtime/perfData.hpp"
71 #include "runtime/safepointVerifiers.hpp"
72 #include "runtime/sharedRuntime.hpp"
73 #include "runtime/threads.hpp"
74 #include "runtime/threadSMR.inline.hpp"
75 #include "runtime/timerTrace.hpp"
76 #include "runtime/vframe.inline.hpp"
77 #include "services/management.hpp"
78 #include "utilities/debug.hpp"
79 #include "utilities/dtrace.hpp"
80 #include "utilities/events.hpp"
81 #include "utilities/formatBuffer.hpp"
82 #include "utilities/macros.hpp"
83 #include "utilities/nonblockingQueue.inline.hpp"
84 #ifdef COMPILER1
85 #include "c1/c1_Compiler.hpp"
86 #endif
87 #ifdef COMPILER2
88 #include "opto/c2compiler.hpp"
89 #endif
90 #if INCLUDE_JVMCI
91 #include "jvmci/jvmciEnv.hpp"
92 #include "jvmci/jvmciRuntime.hpp"
93 #endif
94
95 #ifdef DTRACE_ENABLED
96
97 // Only bother with this argument setup if dtrace is available
98
99 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \
100 { \
101 Symbol* klass_name = (method)->klass_name(); \
102 Symbol* name = (method)->name(); \
103 Symbol* signature = (method)->signature(); \
104 HOTSPOT_METHOD_COMPILE_BEGIN( \
105 (char *) comp_name, strlen(comp_name), \
106 (char *) klass_name->bytes(), klass_name->utf8_length(), \
107 (char *) name->bytes(), name->utf8_length(), \
108 (char *) signature->bytes(), signature->utf8_length()); \
109 }
110
111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \
112 { \
113 Symbol* klass_name = (method)->klass_name(); \
114 Symbol* name = (method)->name(); \
115 Symbol* signature = (method)->signature(); \
116 HOTSPOT_METHOD_COMPILE_END( \
117 (char *) comp_name, strlen(comp_name), \
118 (char *) klass_name->bytes(), klass_name->utf8_length(), \
119 (char *) name->bytes(), name->utf8_length(), \
120 (char *) signature->bytes(), signature->utf8_length(), (success)); \
121 }
122
123 #else // ndef DTRACE_ENABLED
124
125 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
126 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
127
128 #endif // ndef DTRACE_ENABLED
129
130 bool CompileBroker::_initialized = false;
131 volatile bool CompileBroker::_should_block = false;
132 volatile int CompileBroker::_print_compilation_warning = 0;
133 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
134
135 // The installed compiler(s)
136 AbstractCompiler* CompileBroker::_compilers[2];
137
138 // The maximum numbers of compiler threads to be determined during startup.
139 int CompileBroker::_c1_count = 0;
140 int CompileBroker::_c2_count = 0;
141 int CompileBroker::_ac_count = 0;
142
143 // An array of compiler names as Java String objects
144 jobject* CompileBroker::_compiler1_objects = nullptr;
145 jobject* CompileBroker::_compiler2_objects = nullptr;
146 jobject* CompileBroker::_ac_objects = nullptr;
147
148 CompileLog** CompileBroker::_compiler1_logs = nullptr;
149 CompileLog** CompileBroker::_compiler2_logs = nullptr;
150 CompileLog** CompileBroker::_ac_logs = nullptr;
151
152 // These counters are used to assign an unique ID to each compilation.
153 volatile jint CompileBroker::_compilation_id = 0;
154 volatile jint CompileBroker::_osr_compilation_id = 0;
155 volatile jint CompileBroker::_native_compilation_id = 0;
156
157 // Performance counters
158 PerfCounter* CompileBroker::_perf_total_compilation = nullptr;
159 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr;
160 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr;
161
162 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr;
163 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr;
164 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr;
165 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr;
166 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr;
167
168 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr;
169 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr;
170 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr;
171 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr;
172
173 PerfStringVariable* CompileBroker::_perf_last_method = nullptr;
174 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr;
175 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr;
176 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr;
177 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr;
178 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr;
179 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr;
180
181 // Timers and counters for generating statistics
182 elapsedTimer CompileBroker::_t_total_compilation;
183 elapsedTimer CompileBroker::_t_osr_compilation;
184 elapsedTimer CompileBroker::_t_standard_compilation;
185 elapsedTimer CompileBroker::_t_invalidated_compilation;
186 elapsedTimer CompileBroker::_t_bailedout_compilation;
187
188 uint CompileBroker::_total_bailout_count = 0;
189 uint CompileBroker::_total_invalidated_count = 0;
190 uint CompileBroker::_total_not_entrant_count = 0;
191 uint CompileBroker::_total_compile_count = 0;
192 uint CompileBroker::_total_osr_compile_count = 0;
193 uint CompileBroker::_total_standard_compile_count = 0;
194 uint CompileBroker::_total_compiler_stopped_count = 0;
195 uint CompileBroker::_total_compiler_restarted_count = 0;
196
197 uint CompileBroker::_sum_osr_bytes_compiled = 0;
198 uint CompileBroker::_sum_standard_bytes_compiled = 0;
199 uint CompileBroker::_sum_nmethod_size = 0;
200 uint CompileBroker::_sum_nmethod_code_size = 0;
201
202 jlong CompileBroker::_peak_compilation_time = 0;
203
204 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
205 CompilerStatistics CompileBroker::_aot_stats;
206 CompilerStatistics CompileBroker::_aot_stats_per_level[CompLevel_full_optimization + 1];
207
208 CompileQueue* CompileBroker::_c2_compile_queue = nullptr;
209 CompileQueue* CompileBroker::_c1_compile_queue = nullptr;
210 CompileQueue* CompileBroker::_ac1_compile_queue = nullptr;
211 CompileQueue* CompileBroker::_ac2_compile_queue = nullptr;
212
213 bool compileBroker_init() {
214 if (LogEvents) {
215 CompilationLog::init();
216 }
217
218 // init directives stack, adding default directive
219 DirectivesStack::init();
220
221 if (DirectivesParser::has_file()) {
222 return DirectivesParser::parse_from_flag();
223 } else if (CompilerDirectivesPrint) {
224 // Print default directive even when no other was added
225 DirectivesStack::print(tty);
226 }
227
228 return true;
229 }
230
231 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
232 CompilerThread* thread = CompilerThread::current();
233 thread->set_task(task);
234 CompileLog* log = thread->log();
235 thread->timeout()->arm();
236 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log);
237 }
238
239 CompileTaskWrapper::~CompileTaskWrapper() {
240 CompilerThread* thread = CompilerThread::current();
241
242 // First, disarm the timeout. This still relies on the underlying task.
243 thread->timeout()->disarm();
244
245 CompileTask* task = thread->task();
246 CompileLog* log = thread->log();
247 AbstractCompiler* comp = thread->compiler();
248 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log);
249 thread->set_task(nullptr);
250 thread->set_env(nullptr);
251 if (task->is_blocking()) {
252 bool free_task = false;
253 {
254 MutexLocker notifier(thread, CompileTaskWait_lock);
255 task->mark_complete();
256 #if INCLUDE_JVMCI
257 if (comp->is_jvmci()) {
258 if (!task->has_waiter()) {
259 // The waiting thread timed out and thus did not delete the task.
260 free_task = true;
261 }
262 task->set_blocking_jvmci_compile_state(nullptr);
263 }
264 #endif
265 if (!free_task) {
266 // Notify the waiting thread that the compilation has completed
267 // so that it can free the task.
268 CompileTaskWait_lock->notify_all();
269 }
270 }
271 if (free_task) {
272 // The task can only be deleted once the task lock is released.
273 delete task;
274 }
275 } else {
276 task->mark_complete();
277
278 // By convention, the compiling thread is responsible for deleting
279 // a non-blocking CompileTask.
280 delete task;
281 }
282 }
283
284 /**
285 * Check if a CompilerThread can be removed and update count if requested.
286 */
287 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
288 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
289 if (!ReduceNumberOfCompilerThreads) return false;
290
291 if (RecompilationPolicy::have_recompilation_work()) return false;
292
293 AbstractCompiler *compiler = ct->compiler();
294 int compiler_count = compiler->num_compiler_threads();
295 bool c1 = compiler->is_c1();
296
297 // Keep at least 1 compiler thread of each type.
298 if (compiler_count < 2) return false;
299
300 // Keep thread alive for at least some time.
301 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
302
303 #if INCLUDE_JVMCI
304 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
305 // Handles for JVMCI thread objects may get released concurrently.
306 if (do_it) {
307 assert(CompileThread_lock->owner() == ct, "must be holding lock");
308 } else {
309 // Skip check if it's the last thread and let caller check again.
310 return true;
311 }
312 }
313 #endif
314
315 // We only allow the last compiler thread of each type to get removed.
316 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
317 : compiler2_object(compiler_count - 1);
318 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
319 if (do_it) {
320 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
321 compiler->set_num_compiler_threads(compiler_count - 1);
322 #if INCLUDE_JVMCI
323 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
324 // Old j.l.Thread object can die when no longer referenced elsewhere.
325 JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
326 _compiler2_objects[compiler_count - 1] = nullptr;
327 }
328 #endif
329 }
330 return true;
331 }
332 return false;
333 }
334
335 /**
336 * Add a CompileTask to a CompileQueue.
337 */
338 void CompileQueue::add(CompileTask* task) {
339 assert(_lock->owned_by_self(), "must own lock");
340
341 task->set_next(nullptr);
342 task->set_prev(nullptr);
343
344 if (_last == nullptr) {
345 // The compile queue is empty.
346 assert(_first == nullptr, "queue is empty");
347 _first = task;
348 _last = task;
349 } else {
350 // Append the task to the queue.
351 assert(_last->next() == nullptr, "not last");
352 _last->set_next(task);
353 task->set_prev(_last);
354 _last = task;
355 }
356 ++_size;
357 ++_total_added;
358 if (_size > _peak_size) {
359 _peak_size = _size;
360 }
361
362 // Mark the method as being in the compile queue.
363 task->method()->set_queued_for_compilation();
364
365 task->mark_queued(os::elapsed_counter());
366
367 if (CIPrintCompileQueue) {
368 print_tty();
369 }
370
371 if (LogCompilation && xtty != nullptr) {
372 task->log_task_queued();
373 }
374
375 if (TrainingData::need_data() && !CDSConfig::is_dumping_final_static_archive()) {
376 CompileTrainingData* ctd = CompileTrainingData::make(task);
377 if (ctd != nullptr) {
378 task->set_training_data(ctd);
379 }
380 }
381
382 // Notify CompilerThreads that a task is available.
383 _lock->notify_all();
384 }
385
386 void CompileQueue::add_pending(CompileTask* task) {
387 assert(_lock->owned_by_self() == false, "must NOT own lock");
388 assert(UseLockFreeCompileQueues, "");
389 task->method()->set_queued_for_compilation();
390 _queue.push(*task);
391 // FIXME: additional coordination needed? e.g., is it possible for compiler thread to block w/o processing pending tasks?
392 if (is_empty()) {
393 MutexLocker ml(_lock);
394 _lock->notify_all();
395 }
396 }
397
398 static bool process_pending(CompileTask* task) {
399 // guarantee(task->method()->queued_for_compilation(), "");
400 if (task->is_unloaded()) {
401 return true; // unloaded
402 }
403 task->method()->set_queued_for_compilation(); // FIXME
404 if (task->method()->pending_queue_processed()) {
405 return true; // already queued
406 }
407 // Mark the method as being in the compile queue.
408 task->method()->set_pending_queue_processed();
409 if (CompileBroker::compilation_is_complete(task->method(), task->osr_bci(), task->comp_level(),
410 task->requires_online_compilation(), task->compile_reason())) {
411 return true; // already compiled
412 }
413 return false; // active
414 }
415
416 void CompileQueue::transfer_pending() {
417 assert(_lock->owned_by_self(), "must own lock");
418
419 CompileTask* task;
420 while ((task = _queue.pop()) != nullptr) {
421 bool is_stale = process_pending(task);
422 if (is_stale) {
423 task->set_next(_first_stale);
424 task->set_prev(nullptr);
425 _first_stale = task;
426 } else {
427 add(task);
428 }
429 }
430 }
431
432 /**
433 * Empties compilation queue by deleting all compilation tasks.
434 * Furthermore, the method wakes up all threads that are waiting
435 * on a compilation task to finish. This can happen if background
436 * compilation is disabled.
437 */
438 void CompileQueue::delete_all() {
439 MutexLocker mu(_lock);
440 transfer_pending();
441
442 CompileTask* current = _first;
443
444 // Iterate over all tasks in the compile queue
445 while (current != nullptr) {
446 CompileTask* next = current->next();
447 if (!current->is_blocking()) {
448 // Non-blocking task. No one is waiting for it, delete it now.
449 delete current;
450 } else {
451 // Blocking task. By convention, it is the waiters responsibility
452 // to delete the task. We cannot delete it here, because we do not
453 // coordinate with waiters. We will notify the waiters later.
454 }
455 current = next;
456 }
457 _first = nullptr;
458 _last = nullptr;
459
460 // Wake up all blocking task waiters to deal with remaining blocking
461 // tasks. This is not a performance sensitive path, so we do this
462 // unconditionally to simplify coding/testing.
463 {
464 MonitorLocker ml(Thread::current(), CompileTaskWait_lock);
465 ml.notify_all();
466 }
467
468 // Wake up all threads that block on the queue.
469 _lock->notify_all();
470 }
471
472 /**
473 * Get the next CompileTask from a CompileQueue
474 */
475 CompileTask* CompileQueue::get(CompilerThread* thread) {
476 // save methods from RedefineClasses across safepoint
477 // across compile queue lock below.
478 methodHandle save_method;
479
480 MonitorLocker locker(_lock);
481 transfer_pending();
482
483 RecompilationPolicy::sample_load_average();
484
485 // If _first is null we have no more compile jobs. There are two reasons for
486 // having no compile jobs: First, we compiled everything we wanted. Second,
487 // we ran out of code cache so compilation has been disabled. In the latter
488 // case we perform code cache sweeps to free memory such that we can re-enable
489 // compilation.
490 while (_first == nullptr) {
491 // Exit loop if compilation is disabled forever
492 if (CompileBroker::is_compilation_disabled_forever()) {
493 return nullptr;
494 }
495
496 AbstractCompiler* compiler = thread->compiler();
497 guarantee(compiler != nullptr, "Compiler object must exist");
498 compiler->on_empty_queue(this, thread);
499 if (_first != nullptr) {
500 // The call to on_empty_queue may have temporarily unlocked the MCQ lock
501 // so check again whether any tasks were added to the queue.
502 break;
503 }
504
505 // If we have added stale tasks, there might be waiters that want
506 // the notification these tasks have failed. Normally, this would
507 // be done by a compiler thread that would perform the purge at
508 // the end of some compilation. But, if compile queue is empty,
509 // there is no guarantee compilers would run and do the purge.
510 // Do the purge here and now to unblock the waiters.
511 // Perform this until we run out of stale tasks.
512 while (_first_stale != nullptr) {
513 purge_stale_tasks();
514 }
515 if (_first != nullptr) {
516 // Purge stale tasks may have transferred some new tasks,
517 // so check again.
518 break;
519 }
520
521 // If there are no compilation tasks and we can compile new jobs
522 // (i.e., there is enough free space in the code cache) there is
523 // no need to invoke the GC.
524 // We need a timed wait here, since compiler threads can exit if compilation
525 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
526 // is not critical and we do not want idle compiler threads to wake up too often.
527 locker.wait(5*1000);
528
529 transfer_pending(); // reacquired lock
530
531 if (RecompilationPolicy::have_recompilation_work()) return nullptr;
532
533 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) {
534 // Still nothing to compile. Give caller a chance to stop this thread.
535 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr;
536 }
537 }
538
539 if (CompileBroker::is_compilation_disabled_forever()) {
540 return nullptr;
541 }
542
543 CompileTask* task;
544 {
545 NoSafepointVerifier nsv;
546 task = CompilationPolicy::select_task(this, thread);
547 if (task != nullptr) {
548 task = task->select_for_compilation();
549 }
550 }
551
552 if (task != nullptr) {
553 // Save method pointers across unlock safepoint. The task is removed from
554 // the compilation queue, which is walked during RedefineClasses.
555 Thread* thread = Thread::current();
556 save_method = methodHandle(thread, task->method());
557
558 remove(task);
559 }
560 purge_stale_tasks(); // may temporarily release MCQ lock
561 return task;
562 }
563
564 // Clean & deallocate stale compile tasks.
565 // Temporarily releases MethodCompileQueue lock.
566 void CompileQueue::purge_stale_tasks() {
567 assert(_lock->owned_by_self(), "must own lock");
568 if (_first_stale != nullptr) {
569 // Stale tasks are purged when MCQ lock is released,
570 // but _first_stale updates are protected by MCQ lock.
571 // Once task processing starts and MCQ lock is released,
572 // other compiler threads can reuse _first_stale.
573 CompileTask* head = _first_stale;
574 _first_stale = nullptr;
575 {
576 MutexUnlocker ul(_lock);
577 for (CompileTask* task = head; task != nullptr; ) {
578 CompileTask* next_task = task->next();
579 task->set_next(nullptr);
580 CompileTaskWrapper ctw(task); // Frees the task
581 task->set_failure_reason("stale task");
582 task = next_task;
583 }
584 }
585 transfer_pending(); // transfer pending after reacquiring MCQ lock
586 }
587 }
588
589 void CompileQueue::remove(CompileTask* task) {
590 assert(_lock->owned_by_self(), "must own lock");
591 if (task->prev() != nullptr) {
592 task->prev()->set_next(task->next());
593 } else {
594 // max is the first element
595 assert(task == _first, "Sanity");
596 _first = task->next();
597 }
598
599 if (task->next() != nullptr) {
600 task->next()->set_prev(task->prev());
601 } else {
602 // max is the last element
603 assert(task == _last, "Sanity");
604 _last = task->prev();
605 }
606 task->set_next(nullptr);
607 task->set_prev(nullptr);
608 --_size;
609 ++_total_removed;
610 }
611
612 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
613 assert(_lock->owned_by_self(), "must own lock");
614 remove(task);
615
616 // Enqueue the task for reclamation (should be done outside MCQ lock)
617 task->set_next(_first_stale);
618 task->set_prev(nullptr);
619 _first_stale = task;
620 }
621
622 // methods in the compile queue need to be marked as used on the stack
623 // so that they don't get reclaimed by Redefine Classes
624 void CompileQueue::mark_on_stack() {
625 for (CompileTask* task = _first; task != nullptr; task = task->next()) {
626 task->mark_on_stack();
627 }
628 for (CompileTask* task = _queue.first(); !_queue.is_end(task); task = task->next()) {
629 assert(task != nullptr, "");
630 task->mark_on_stack();
631 }
632 }
633
634
635 CompileQueue* CompileBroker::compile_queue(int comp_level, bool is_aot) {
636 if (is_c2_compile(comp_level)) return ((is_aot && (_ac_count > 0)) ? _ac2_compile_queue : _c2_compile_queue);
637 if (is_c1_compile(comp_level)) return ((is_aot && (_ac_count > 0)) ? _ac1_compile_queue : _c1_compile_queue);
638 return nullptr;
639 }
640
641 CompileQueue* CompileBroker::c1_compile_queue() {
642 return _c1_compile_queue;
643 }
644
645 CompileQueue* CompileBroker::c2_compile_queue() {
646 return _c2_compile_queue;
647 }
648
649 void CompileBroker::print_compile_queues(outputStream* st) {
650 st->print_cr("Current compiles: ");
651
652 char buf[2000];
653 int buflen = sizeof(buf);
654 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
655
656 st->cr();
657 if (_c1_compile_queue != nullptr) {
658 _c1_compile_queue->print(st);
659 }
660 if (_c2_compile_queue != nullptr) {
661 _c2_compile_queue->print(st);
662 }
663 if (_ac1_compile_queue != nullptr) {
664 _ac1_compile_queue->print(st);
665 }
666 if (_ac2_compile_queue != nullptr) {
667 _ac2_compile_queue->print(st);
668 }
669 }
670
671 void CompileQueue::print(outputStream* st) {
672 assert_locked_or_safepoint(_lock);
673 st->print_cr("%s:", name());
674 CompileTask* task = _first;
675 if (task == nullptr) {
676 st->print_cr("Empty");
677 } else {
678 while (task != nullptr) {
679 task->print(st, nullptr, true, true);
680 task = task->next();
681 }
682 }
683 st->cr();
684 }
685
686 void CompileQueue::print_tty() {
687 stringStream ss;
688 // Dump the compile queue into a buffer before locking the tty
689 print(&ss);
690 {
691 ttyLocker ttyl;
692 tty->print("%s", ss.freeze());
693 }
694 }
695
696 CompilerCounters::CompilerCounters() {
697 _current_method[0] = '\0';
698 _compile_type = CompileBroker::no_compile;
699 }
700
701 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
702 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
703 // in compiler/compilerEvent.cpp) and registers it with its serializer.
704 //
705 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
706 // so if c2 is used, it should be always registered first.
707 // This function is called during vm initialization.
708 static void register_jfr_phasetype_serializer(CompilerType compiler_type) {
709 ResourceMark rm;
710 static bool first_registration = true;
711 if (compiler_type == compiler_jvmci) {
712 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
713 first_registration = false;
714 #ifdef COMPILER2
715 } else if (compiler_type == compiler_c2) {
716 assert(first_registration, "invariant"); // c2 must be registered first.
717 for (int i = 0; i < PHASE_NUM_TYPES; i++) {
718 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
719 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
720 }
721 first_registration = false;
722 #endif // COMPILER2
723 }
724 }
725 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
726
727 // ------------------------------------------------------------------
728 // CompileBroker::compilation_init
729 //
730 // Initialize the Compilation object
731 void CompileBroker::compilation_init(JavaThread* THREAD) {
732 // No need to initialize compilation system if we do not use it.
733 if (!UseCompiler) {
734 return;
735 }
736 // Set the interface to the current compiler(s).
737 _c1_count = CompilationPolicy::c1_count();
738 _c2_count = CompilationPolicy::c2_count();
739 _ac_count = CompilationPolicy::ac_count();
740
741 #if INCLUDE_JVMCI
742 if (EnableJVMCI) {
743 // This is creating a JVMCICompiler singleton.
744 JVMCICompiler* jvmci = new JVMCICompiler();
745
746 if (UseJVMCICompiler) {
747 _compilers[1] = jvmci;
748 if (FLAG_IS_DEFAULT(JVMCIThreads)) {
749 if (BootstrapJVMCI) {
750 // JVMCI will bootstrap so give it more threads
751 _c2_count = MIN2(32, os::active_processor_count());
752 }
753 } else {
754 _c2_count = JVMCIThreads;
755 }
756 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
757 } else {
758 #ifdef COMPILER1
759 _c1_count = JVMCIHostThreads;
760 #endif // COMPILER1
761 }
762 }
763 }
764 #endif // INCLUDE_JVMCI
765
766 #ifdef COMPILER1
767 if (_c1_count > 0) {
768 _compilers[0] = new Compiler();
769 }
770 #endif // COMPILER1
771
772 #ifdef COMPILER2
773 if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
774 if (_c2_count > 0) {
775 _compilers[1] = new C2Compiler();
776 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
777 // idToPhase mapping for c2 is in opto/phasetype.hpp
778 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
779 }
780 }
781 #endif // COMPILER2
782
783 #if INCLUDE_JVMCI
784 // Register after c2 registration.
785 // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
786 if (EnableJVMCI) {
787 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
788 }
789 #endif // INCLUDE_JVMCI
790
791 if (CompilerOracle::should_collect_memstat()) {
792 CompilationMemoryStatistic::initialize();
793 }
794
795 // Start the compiler thread(s)
796 init_compiler_threads();
797 // totalTime performance counter is always created as it is required
798 // by the implementation of java.lang.management.CompilationMXBean.
799 {
800 // Ensure OOM leads to vm_exit_during_initialization.
801 EXCEPTION_MARK;
802 _perf_total_compilation =
803 PerfDataManager::create_counter(JAVA_CI, "totalTime",
804 PerfData::U_Ticks, CHECK);
805 }
806
807 if (UsePerfData) {
808
809 EXCEPTION_MARK;
810
811 // create the jvmstat performance counters
812 _perf_osr_compilation =
813 PerfDataManager::create_counter(SUN_CI, "osrTime",
814 PerfData::U_Ticks, CHECK);
815
816 _perf_standard_compilation =
817 PerfDataManager::create_counter(SUN_CI, "standardTime",
818 PerfData::U_Ticks, CHECK);
819
820 _perf_total_bailout_count =
821 PerfDataManager::create_counter(SUN_CI, "totalBailouts",
822 PerfData::U_Events, CHECK);
823
824 _perf_total_invalidated_count =
825 PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
826 PerfData::U_Events, CHECK);
827
828 _perf_total_compile_count =
829 PerfDataManager::create_counter(SUN_CI, "totalCompiles",
830 PerfData::U_Events, CHECK);
831 _perf_total_osr_compile_count =
832 PerfDataManager::create_counter(SUN_CI, "osrCompiles",
833 PerfData::U_Events, CHECK);
834
835 _perf_total_standard_compile_count =
836 PerfDataManager::create_counter(SUN_CI, "standardCompiles",
837 PerfData::U_Events, CHECK);
838
839 _perf_sum_osr_bytes_compiled =
840 PerfDataManager::create_counter(SUN_CI, "osrBytes",
841 PerfData::U_Bytes, CHECK);
842
843 _perf_sum_standard_bytes_compiled =
844 PerfDataManager::create_counter(SUN_CI, "standardBytes",
845 PerfData::U_Bytes, CHECK);
846
847 _perf_sum_nmethod_size =
848 PerfDataManager::create_counter(SUN_CI, "nmethodSize",
849 PerfData::U_Bytes, CHECK);
850
851 _perf_sum_nmethod_code_size =
852 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
853 PerfData::U_Bytes, CHECK);
854
855 _perf_last_method =
856 PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
857 CompilerCounters::cmname_buffer_length,
858 "", CHECK);
859
860 _perf_last_failed_method =
861 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
862 CompilerCounters::cmname_buffer_length,
863 "", CHECK);
864
865 _perf_last_invalidated_method =
866 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
867 CompilerCounters::cmname_buffer_length,
868 "", CHECK);
869
870 _perf_last_compile_type =
871 PerfDataManager::create_variable(SUN_CI, "lastType",
872 PerfData::U_None,
873 (jlong)CompileBroker::no_compile,
874 CHECK);
875
876 _perf_last_compile_size =
877 PerfDataManager::create_variable(SUN_CI, "lastSize",
878 PerfData::U_Bytes,
879 (jlong)CompileBroker::no_compile,
880 CHECK);
881
882
883 _perf_last_failed_type =
884 PerfDataManager::create_variable(SUN_CI, "lastFailedType",
885 PerfData::U_None,
886 (jlong)CompileBroker::no_compile,
887 CHECK);
888
889 _perf_last_invalidated_type =
890 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
891 PerfData::U_None,
892 (jlong)CompileBroker::no_compile,
893 CHECK);
894 }
895
896 log_info(aot, codecache, init)("CompileBroker is initialized");
897 _initialized = true;
898 }
899
900 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
901 Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH);
902 return thread_oop;
903 }
904
905 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) {
906 CompilationPolicy::replay_training_at_init_loop(thread);
907 }
908
909 #if defined(ASSERT) && COMPILER2_OR_JVMCI
910 // Entry for DeoptimizeObjectsALotThread. The threads are started in
911 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
912 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
913 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
914 bool enter_single_loop;
915 {
916 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
917 static int single_thread_count = 0;
918 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
919 }
920 if (enter_single_loop) {
921 dt->deoptimize_objects_alot_loop_single();
922 } else {
923 dt->deoptimize_objects_alot_loop_all();
924 }
925 }
926
927 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
928 // barrier targets a single thread which is selected round robin.
929 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
930 HandleMark hm(this);
931 while (true) {
932 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
933 { // Begin new scope for escape barrier
934 HandleMarkCleaner hmc(this);
935 ResourceMark rm(this);
936 EscapeBarrier eb(true, this, deoptee_thread);
937 eb.deoptimize_objects(100);
938 }
939 // Now sleep after the escape barriers destructor resumed deoptee_thread.
940 sleep(DeoptimizeObjectsALotInterval);
941 }
942 }
943 }
944
945 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
946 // barrier targets all java threads in the vm at once.
947 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
948 HandleMark hm(this);
949 while (true) {
950 { // Begin new scope for escape barrier
951 HandleMarkCleaner hmc(this);
952 ResourceMark rm(this);
953 EscapeBarrier eb(true, this);
954 eb.deoptimize_objects_all_threads();
955 }
956 // Now sleep after the escape barriers destructor resumed the java threads.
957 sleep(DeoptimizeObjectsALotInterval);
958 }
959 }
960 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
961
962
963 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
964 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
965
966 if (java_lang_Thread::thread(thread_oop()) != nullptr) {
967 assert(type == compiler_t, "should only happen with reused compiler threads");
968 // The compiler thread hasn't actually exited yet so don't try to reuse it
969 return nullptr;
970 }
971
972 JavaThread* new_thread = nullptr;
973 switch (type) {
974 case compiler_t:
975 assert(comp != nullptr, "Compiler instance missing.");
976 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
977 CompilerCounters* counters = new CompilerCounters();
978 new_thread = new CompilerThread(queue, counters);
979 }
980 break;
981 #if defined(ASSERT) && COMPILER2_OR_JVMCI
982 case deoptimizer_t:
983 new_thread = new DeoptimizeObjectsALotThread();
984 break;
985 #endif // ASSERT
986 case training_replay_t:
987 new_thread = new TrainingReplayThread();
988 break;
989 default:
990 ShouldNotReachHere();
991 }
992
993 // At this point the new CompilerThread data-races with this startup
994 // thread (which is the main thread and NOT the VM thread).
995 // This means Java bytecodes being executed at startup can
996 // queue compile jobs which will run at whatever default priority the
997 // newly created CompilerThread runs at.
998
999
1000 // At this point it may be possible that no osthread was created for the
1001 // JavaThread due to lack of resources. We will handle that failure below.
1002 // Also check new_thread so that static analysis is happy.
1003 if (new_thread != nullptr && new_thread->osthread() != nullptr) {
1004
1005 if (type == compiler_t) {
1006 CompilerThread::cast(new_thread)->set_compiler(comp);
1007 }
1008
1009 // Note that we cannot call os::set_priority because it expects Java
1010 // priorities and we are *explicitly* using OS priorities so that it's
1011 // possible to set the compiler thread priority higher than any Java
1012 // thread.
1013
1014 int native_prio = CompilerThreadPriority;
1015 if (native_prio == -1) {
1016 if (UseCriticalCompilerThreadPriority) {
1017 native_prio = os::java_to_os_priority[CriticalPriority];
1018 } else {
1019 native_prio = os::java_to_os_priority[NearMaxPriority];
1020 }
1021 }
1022 os::set_native_priority(new_thread, native_prio);
1023
1024 // Note that this only sets the JavaThread _priority field, which by
1025 // definition is limited to Java priorities and not OS priorities.
1026 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
1027
1028 } else { // osthread initialization failure
1029 if (UseDynamicNumberOfCompilerThreads && type == compiler_t
1030 && comp->num_compiler_threads() > 0) {
1031 // The new thread is not known to Thread-SMR yet so we can just delete.
1032 delete new_thread;
1033 return nullptr;
1034 } else {
1035 vm_exit_during_initialization("java.lang.OutOfMemoryError",
1036 os::native_thread_creation_failed_msg());
1037 }
1038 }
1039
1040 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
1041
1042 return new_thread;
1043 }
1044
1045 static bool trace_compiler_threads() {
1046 LogTarget(Debug, jit, thread) lt;
1047 return TraceCompilerThreads || lt.is_enabled();
1048 }
1049
1050 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) {
1051 char name_buffer[256];
1052 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i);
1053 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL);
1054 return JNIHandles::make_global(thread_oop);
1055 }
1056
1057 static void print_compiler_threads(stringStream& msg) {
1058 if (TraceCompilerThreads) {
1059 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string());
1060 }
1061 LogTarget(Debug, jit, thread) lt;
1062 if (lt.is_enabled()) {
1063 LogStream ls(lt);
1064 ls.print_cr("%s", msg.as_string());
1065 }
1066 }
1067
1068 static void print_compiler_thread(JavaThread *ct) {
1069 if (trace_compiler_threads()) {
1070 ResourceMark rm;
1071 ThreadsListHandle tlh; // name() depends on the TLH.
1072 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1073 stringStream msg;
1074 msg.print("Added initial compiler thread %s", ct->name());
1075 print_compiler_threads(msg);
1076 }
1077 }
1078
1079 void CompileBroker::init_compiler_threads() {
1080 // Ensure any exceptions lead to vm_exit_during_initialization.
1081 EXCEPTION_MARK;
1082 #if !defined(ZERO)
1083 assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
1084 #endif // !ZERO
1085 // Initialize the compilation queue
1086 if (_c2_count > 0) {
1087 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
1088 _c2_compile_queue = new CompileQueue(name, MethodCompileQueueC2_lock);
1089 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
1090 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
1091 }
1092 if (_c1_count > 0) {
1093 _c1_compile_queue = new CompileQueue("C1 compile queue", MethodCompileQueueC1_lock);
1094 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
1095 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
1096 }
1097
1098 if (_ac_count > 0) {
1099 if (_c1_count > 0) { // C1 is present
1100 _ac1_compile_queue = new CompileQueue("C1 AOT code compile queue", MethodCompileQueueSC1_lock);
1101 }
1102 if (_c2_count > 0) { // C2 is present
1103 _ac2_compile_queue = new CompileQueue("C2 AOT code compile queue", MethodCompileQueueSC2_lock);
1104 }
1105 _ac_objects = NEW_C_HEAP_ARRAY(jobject, _ac_count, mtCompiler);
1106 _ac_logs = NEW_C_HEAP_ARRAY(CompileLog*, _ac_count, mtCompiler);
1107 }
1108 char name_buffer[256];
1109
1110 for (int i = 0; i < _c2_count; i++) {
1111 // Create a name for our thread.
1112 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK);
1113 _compiler2_objects[i] = thread_handle;
1114 _compiler2_logs[i] = nullptr;
1115
1116 if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1117 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
1118 assert(ct != nullptr, "should have been handled for initial thread");
1119 _compilers[1]->set_num_compiler_threads(i + 1);
1120 print_compiler_thread(ct);
1121 }
1122 }
1123
1124 for (int i = 0; i < _c1_count; i++) {
1125 // Create a name for our thread.
1126 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK);
1127 _compiler1_objects[i] = thread_handle;
1128 _compiler1_logs[i] = nullptr;
1129
1130 if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1131 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
1132 assert(ct != nullptr, "should have been handled for initial thread");
1133 _compilers[0]->set_num_compiler_threads(i + 1);
1134 print_compiler_thread(ct);
1135 }
1136 }
1137
1138 if (_ac_count > 0) {
1139 int i = 0;
1140 if (_c1_count > 0) { // C1 is present
1141 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 1);
1142 Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1143 jobject thread_handle = JNIHandles::make_global(thread_oop);
1144 _ac_objects[i] = thread_handle;
1145 _ac_logs[i] = nullptr;
1146 i++;
1147
1148 JavaThread *ct = make_thread(compiler_t, thread_handle, _ac1_compile_queue, _compilers[0], THREAD);
1149 assert(ct != nullptr, "should have been handled for initial thread");
1150 print_compiler_thread(ct);
1151 }
1152 if (_c2_count > 0) { // C2 is present
1153 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d AOT code caching CompilerThread", 2);
1154 Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1155 jobject thread_handle = JNIHandles::make_global(thread_oop);
1156 _ac_objects[i] = thread_handle;
1157 _ac_logs[i] = nullptr;
1158
1159 JavaThread *ct = make_thread(compiler_t, thread_handle, _ac2_compile_queue, _compilers[1], THREAD);
1160 assert(ct != nullptr, "should have been handled for initial thread");
1161 print_compiler_thread(ct);
1162 }
1163 }
1164
1165 if (UsePerfData) {
1166 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
1167 }
1168
1169 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1170 if (DeoptimizeObjectsALot) {
1171 // Initialize and start the object deoptimizer threads
1172 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1173 for (int count = 0; count < total_count; count++) {
1174 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK);
1175 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1176 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD);
1177 }
1178 }
1179 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1180 }
1181
1182 void CompileBroker::init_training_replay() {
1183 // Ensure any exceptions lead to vm_exit_during_initialization.
1184 EXCEPTION_MARK;
1185 if (TrainingData::have_data()) {
1186 Handle thread_oop = create_thread_oop("Training replay thread", CHECK);
1187 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1188 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD);
1189 }
1190 }
1191
1192 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1193
1194 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0;
1195 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4;
1196
1197 // Quick check if we already have enough compiler threads without taking the lock.
1198 // Numbers may change concurrently, so we read them again after we have the lock.
1199 if (_c2_compile_queue != nullptr) {
1200 old_c2_count = get_c2_thread_count();
1201 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread);
1202 }
1203 if (_c1_compile_queue != nullptr) {
1204 old_c1_count = get_c1_thread_count();
1205 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread);
1206 }
1207 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return;
1208
1209 // Now, we do the more expensive operations.
1210 physical_memory_size_type free_memory = 0;
1211 // Return value ignored - defaulting to 0 on failure.
1212 (void)os::free_memory(free_memory);
1213 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1214 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1215 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1216
1217 // Only attempt to start additional threads if the lock is free.
1218 if (!CompileThread_lock->try_lock()) return;
1219
1220 if (_c2_compile_queue != nullptr) {
1221 old_c2_count = get_c2_thread_count();
1222 new_c2_count = MIN4(_c2_count,
1223 _c2_compile_queue->size() / c2_tasks_per_thread,
1224 (int)(free_memory / (200*M)),
1225 (int)(available_cc_np / (128*K)));
1226
1227 for (int i = old_c2_count; i < new_c2_count; i++) {
1228 #if INCLUDE_JVMCI
1229 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) {
1230 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their
1231 // existence is completely hidden from the rest of the VM (and those compiler threads can't
1232 // call Java code to do the creation anyway).
1233 //
1234 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we
1235 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For
1236 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary
1237 // coupling with Java.
1238 if (!THREAD->can_call_java()) break;
1239 char name_buffer[256];
1240 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1241 Handle thread_oop;
1242 {
1243 // We have to give up the lock temporarily for the Java calls.
1244 MutexUnlocker mu(CompileThread_lock);
1245 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD);
1246 }
1247 if (HAS_PENDING_EXCEPTION) {
1248 if (trace_compiler_threads()) {
1249 ResourceMark rm;
1250 stringStream msg;
1251 msg.print_cr("JVMCI compiler thread creation failed:");
1252 PENDING_EXCEPTION->print_on(&msg);
1253 print_compiler_threads(msg);
1254 }
1255 CLEAR_PENDING_EXCEPTION;
1256 break;
1257 }
1258 // Check if another thread has beaten us during the Java calls.
1259 if (get_c2_thread_count() != i) break;
1260 jobject thread_handle = JNIHandles::make_global(thread_oop);
1261 assert(compiler2_object(i) == nullptr, "Old one must be released!");
1262 _compiler2_objects[i] = thread_handle;
1263 }
1264 #endif
1265 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist");
1266 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1267 if (ct == nullptr) break;
1268 _compilers[1]->set_num_compiler_threads(i + 1);
1269 if (trace_compiler_threads()) {
1270 ResourceMark rm;
1271 ThreadsListHandle tlh; // name() depends on the TLH.
1272 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1273 stringStream msg;
1274 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)",
1275 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M));
1276 print_compiler_threads(msg);
1277 }
1278 }
1279 }
1280
1281 if (_c1_compile_queue != nullptr) {
1282 old_c1_count = get_c1_thread_count();
1283 new_c1_count = MIN4(_c1_count,
1284 _c1_compile_queue->size() / c1_tasks_per_thread,
1285 (int)(free_memory / (100*M)),
1286 (int)(available_cc_p / (128*K)));
1287
1288 for (int i = old_c1_count; i < new_c1_count; i++) {
1289 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1290 if (ct == nullptr) break;
1291 _compilers[0]->set_num_compiler_threads(i + 1);
1292 if (trace_compiler_threads()) {
1293 ResourceMark rm;
1294 ThreadsListHandle tlh; // name() depends on the TLH.
1295 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1296 stringStream msg;
1297 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)",
1298 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M));
1299 print_compiler_threads(msg);
1300 }
1301 }
1302 }
1303
1304 CompileThread_lock->unlock();
1305 }
1306
1307
1308 /**
1309 * Set the methods on the stack as on_stack so that redefine classes doesn't
1310 * reclaim them. This method is executed at a safepoint.
1311 */
1312 void CompileBroker::mark_on_stack() {
1313 assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1314 // Since we are at a safepoint, we do not need a lock to access
1315 // the compile queues.
1316 if (_c2_compile_queue != nullptr) {
1317 _c2_compile_queue->mark_on_stack();
1318 }
1319 if (_c1_compile_queue != nullptr) {
1320 _c1_compile_queue->mark_on_stack();
1321 }
1322 if (_ac1_compile_queue != nullptr) {
1323 _ac1_compile_queue->mark_on_stack();
1324 }
1325 if (_ac2_compile_queue != nullptr) {
1326 _ac2_compile_queue->mark_on_stack();
1327 }
1328 }
1329
1330 // ------------------------------------------------------------------
1331 // CompileBroker::compile_method
1332 //
1333 // Request compilation of a method.
1334 void CompileBroker::compile_method_base(const methodHandle& method,
1335 int osr_bci,
1336 int comp_level,
1337 int hot_count,
1338 CompileTask::CompileReason compile_reason,
1339 bool requires_online_compilation,
1340 bool blocking,
1341 Thread* thread) {
1342 guarantee(!method->is_abstract(), "cannot compile abstract methods");
1343 assert(method->method_holder()->is_instance_klass(),
1344 "sanity check");
1345 assert(!method->method_holder()->is_not_initialized() ||
1346 compile_reason == CompileTask::Reason_Preload ||
1347 compile_reason == CompileTask::Reason_Precompile ||
1348 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized");
1349 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1350
1351 if (CIPrintRequests) {
1352 tty->print("request: ");
1353 method->print_short_name(tty);
1354 if (osr_bci != InvocationEntryBci) {
1355 tty->print(" osr_bci: %d", osr_bci);
1356 }
1357 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1358 if (hot_count > 0) {
1359 tty->print(" hot: yes");
1360 }
1361 tty->cr();
1362 }
1363
1364 // A request has been made for compilation. Before we do any
1365 // real work, check to see if the method has been compiled
1366 // in the meantime with a definitive result.
1367 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1368 return;
1369 }
1370
1371 #ifndef PRODUCT
1372 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1373 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1374 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI.
1375 return;
1376 }
1377 }
1378 #endif
1379
1380 // If this method is already in the compile queue, then
1381 // we do not block the current thread.
1382 if (compilation_is_in_queue(method)) {
1383 // We may want to decay our counter a bit here to prevent
1384 // multiple denied requests for compilation. This is an
1385 // open compilation policy issue. Note: The other possibility,
1386 // in the case that this is a blocking compile request, is to have
1387 // all subsequent blocking requesters wait for completion of
1388 // ongoing compiles. Note that in this case we'll need a protocol
1389 // for freeing the associated compile tasks. [Or we could have
1390 // a single static monitor on which all these waiters sleep.]
1391 return;
1392 }
1393
1394 // Tiered policy requires MethodCounters to exist before adding a method to
1395 // the queue. Create if we don't have them yet.
1396 if (compile_reason != CompileTask::Reason_Preload) {
1397 method->get_method_counters(thread);
1398 }
1399
1400 AOTCodeEntry* aot_code_entry = find_aot_code_entry(method, osr_bci, comp_level, compile_reason, requires_online_compilation);
1401 bool is_aot = (aot_code_entry != nullptr);
1402
1403 // Outputs from the following MutexLocker block:
1404 CompileTask* task = nullptr;
1405 CompileQueue* queue = compile_queue(comp_level, is_aot);
1406
1407 // Acquire our lock.
1408 {
1409 ConditionalMutexLocker locker(thread, queue->lock(), !UseLockFreeCompileQueues);
1410
1411 // Make sure the method has not slipped into the queues since
1412 // last we checked; note that those checks were "fast bail-outs".
1413 // Here we need to be more careful, see 14012000 below.
1414 if (compilation_is_in_queue(method)) {
1415 return;
1416 }
1417
1418 // We need to check again to see if the compilation has
1419 // completed. A previous compilation may have registered
1420 // some result.
1421 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1422 return;
1423 }
1424
1425 // We now know that this compilation is not pending, complete,
1426 // or prohibited. Assign a compile_id to this compilation
1427 // and check to see if it is in our [Start..Stop) range.
1428 int compile_id = assign_compile_id(method, osr_bci);
1429 if (compile_id == 0) {
1430 // The compilation falls outside the allowed range.
1431 return;
1432 }
1433
1434 #if INCLUDE_JVMCI
1435 if (UseJVMCICompiler && blocking) {
1436 // Don't allow blocking compiles for requests triggered by JVMCI.
1437 if (thread->is_Compiler_thread()) {
1438 blocking = false;
1439 }
1440
1441 // In libjvmci, JVMCI initialization should not deadlock with other threads
1442 if (!UseJVMCINativeLibrary) {
1443 // Don't allow blocking compiles if inside a class initializer or while performing class loading
1444 vframeStream vfst(JavaThread::cast(thread));
1445 for (; !vfst.at_end(); vfst.next()) {
1446 if (vfst.method()->is_static_initializer() ||
1447 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1448 vfst.method()->name() == vmSymbols::loadClass_name())) {
1449 blocking = false;
1450 break;
1451 }
1452 }
1453
1454 // Don't allow blocking compilation requests to JVMCI
1455 // if JVMCI itself is not yet initialized
1456 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1457 blocking = false;
1458 }
1459 }
1460
1461 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1462 // to avoid deadlock between compiler thread(s) and threads run at shutdown
1463 // such as the DestroyJavaVM thread.
1464 if (JVMCI::in_shutdown()) {
1465 blocking = false;
1466 }
1467 }
1468 #endif // INCLUDE_JVMCI
1469
1470 // We will enter the compilation in the queue.
1471 // 14012000: Note that this sets the queued_for_compile bits in
1472 // the target method. We can now reason that a method cannot be
1473 // queued for compilation more than once, as follows:
1474 // Before a thread queues a task for compilation, it first acquires
1475 // the compile queue lock, then checks if the method's queued bits
1476 // are set or it has already been compiled. Thus there can not be two
1477 // instances of a compilation task for the same method on the
1478 // compilation queue. Consider now the case where the compilation
1479 // thread has already removed a task for that method from the queue
1480 // and is in the midst of compiling it. In this case, the
1481 // queued_for_compile bits must be set in the method (and these
1482 // will be visible to the current thread, since the bits were set
1483 // under protection of the compile queue lock, which we hold now.
1484 // When the compilation completes, the compiler thread first sets
1485 // the compilation result and then clears the queued_for_compile
1486 // bits. Neither of these actions are protected by a barrier (or done
1487 // under the protection of a lock), so the only guarantee we have
1488 // (on machines with TSO (Total Store Order)) is that these values
1489 // will update in that order. As a result, the only combinations of
1490 // these bits that the current thread will see are, in temporal order:
1491 // <RESULT, QUEUE> :
1492 // <0, 1> : in compile queue, but not yet compiled
1493 // <1, 1> : compiled but queue bit not cleared
1494 // <1, 0> : compiled and queue bit cleared
1495 // Because we first check the queue bits then check the result bits,
1496 // we are assured that we cannot introduce a duplicate task.
1497 // Note that if we did the tests in the reverse order (i.e. check
1498 // result then check queued bit), we could get the result bit before
1499 // the compilation completed, and the queue bit after the compilation
1500 // completed, and end up introducing a "duplicate" (redundant) task.
1501 // In that case, the compiler thread should first check if a method
1502 // has already been compiled before trying to compile it.
1503 // NOTE: in the event that there are multiple compiler threads and
1504 // there is de-optimization/recompilation, things will get hairy,
1505 // and in that case it's best to protect both the testing (here) of
1506 // these bits, and their updating (here and elsewhere) under a
1507 // common lock.
1508 task = create_compile_task(queue,
1509 compile_id, method,
1510 osr_bci, comp_level,
1511 hot_count, aot_code_entry, compile_reason,
1512 requires_online_compilation, blocking);
1513
1514 if (task->is_aot_load() && (_ac_count > 0)) {
1515 // Put it on AOT code caching queue
1516 queue = is_c1_compile(comp_level) ? _ac1_compile_queue : _ac2_compile_queue;
1517 }
1518
1519 if (UseLockFreeCompileQueues) {
1520 assert(queue->lock()->owned_by_self() == false, "");
1521 queue->add_pending(task);
1522 } else {
1523 queue->add(task);
1524 }
1525 }
1526
1527 if (blocking) {
1528 wait_for_completion(task);
1529 }
1530 }
1531
1532 AOTCodeEntry* CompileBroker::find_aot_code_entry(const methodHandle& method, int osr_bci, int comp_level,
1533 CompileTask::CompileReason compile_reason,
1534 bool requires_online_compilation) {
1535 if (requires_online_compilation || compile_reason == CompileTask::Reason_Whitebox) {
1536 return nullptr; // Need normal JIT compilation
1537 }
1538 AOTCodeEntry* aot_code_entry = nullptr;
1539 if (osr_bci == InvocationEntryBci && AOTCodeCache::is_using_code()) {
1540 // Check for AOT preload code first.
1541 if (compile_reason == CompileTask::Reason_Preload) {
1542 aot_code_entry = method->aot_code_entry();
1543 assert(aot_code_entry != nullptr && aot_code_entry->for_preload(), "sanity");
1544 } else {
1545 aot_code_entry = AOTCodeCache::find_code_entry(method, comp_level);
1546 }
1547 }
1548 return aot_code_entry;
1549 }
1550
1551 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1552 int comp_level,
1553 int hot_count,
1554 bool requires_online_compilation,
1555 CompileTask::CompileReason compile_reason,
1556 TRAPS) {
1557 // Do nothing if compilebroker is not initialized or compiles are submitted on level none
1558 if (!_initialized || comp_level == CompLevel_none) {
1559 return nullptr;
1560 }
1561
1562 AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1563 assert(comp != nullptr, "Ensure we have a compiler");
1564
1565 #if INCLUDE_JVMCI
1566 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1567 // JVMCI compilation is not yet initializable.
1568 return nullptr;
1569 }
1570 #endif
1571
1572 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1573 // CompileBroker::compile_method can trap and can have pending async exception.
1574 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_count, requires_online_compilation, compile_reason, directive, THREAD);
1575 DirectivesStack::release(directive);
1576 return nm;
1577 }
1578
1579 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1580 int comp_level,
1581 int hot_count,
1582 bool requires_online_compilation,
1583 CompileTask::CompileReason compile_reason,
1584 DirectiveSet* directive,
1585 TRAPS) {
1586
1587 // make sure arguments make sense
1588 assert(method->method_holder()->is_instance_klass(), "not an instance method");
1589 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1590 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1591 assert(!method->method_holder()->is_not_initialized() ||
1592 compile_reason == CompileTask::Reason_Preload ||
1593 compile_reason == CompileTask::Reason_Precompile ||
1594 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized");
1595 // return quickly if possible
1596 bool aot_compilation = (PrecompileCode && PrecompileOnlyAndExit) ||
1597 CDSConfig::is_dumping_aot_code();
1598 if (aot_compilation && !CompileTask::reason_is_precompile(compile_reason)) {
1599 // Skip normal compilations when compiling AOT code
1600 return nullptr;
1601 }
1602
1603 // lock, make sure that the compilation
1604 // isn't prohibited in a straightforward way.
1605 AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1606 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1607 return nullptr;
1608 }
1609
1610 if (osr_bci == InvocationEntryBci) {
1611 // standard compilation
1612 nmethod* method_code = method->code();
1613 if (method_code != nullptr) {
1614 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) {
1615 return method_code;
1616 }
1617 }
1618 if (method->is_not_compilable(comp_level)) {
1619 return nullptr;
1620 }
1621 } else {
1622 // osr compilation
1623 // We accept a higher level osr method
1624 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1625 if (nm != nullptr) return nm;
1626 if (method->is_not_osr_compilable(comp_level)) return nullptr;
1627 }
1628
1629 assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1630 // some prerequisites that are compiler specific
1631 if (compile_reason != CompileTask::Reason_Preload &&
1632 !CompileTask::reason_is_precompile(compile_reason) &&
1633 (comp->is_c2() || comp->is_jvmci())) {
1634 InternalOOMEMark iom(THREAD);
1635 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1636 // Resolve all classes seen in the signature of the method
1637 // we are compiling.
1638 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1639 }
1640
1641 // If the method is native, do the lookup in the thread requesting
1642 // the compilation. Native lookups can load code, which is not
1643 // permitted during compilation.
1644 //
1645 // Note: A native method implies non-osr compilation which is
1646 // checked with an assertion at the entry of this method.
1647 if (method->is_native() && !method->is_method_handle_intrinsic()) {
1648 address adr = NativeLookup::lookup(method, THREAD);
1649 if (HAS_PENDING_EXCEPTION) {
1650 // In case of an exception looking up the method, we just forget
1651 // about it. The interpreter will kick-in and throw the exception.
1652 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1653 CLEAR_PENDING_EXCEPTION;
1654 return nullptr;
1655 }
1656 assert(method->has_native_function(), "must have native code by now");
1657 }
1658
1659 // RedefineClasses() has replaced this method; just return
1660 if (method->is_old()) {
1661 return nullptr;
1662 }
1663
1664 // JVMTI -- post_compile_event requires jmethod_id() that may require
1665 // a lock the compiling thread can not acquire. Prefetch it here.
1666 if (JvmtiExport::should_post_compiled_method_load()) {
1667 method->jmethod_id();
1668 }
1669
1670 // do the compilation
1671 if (method->is_native()) {
1672 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1673 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1674 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1675 //
1676 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1677 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls.
1678 AdapterHandlerLibrary::create_native_wrapper(method);
1679 } else {
1680 return nullptr;
1681 }
1682 } else {
1683 // If the compiler is shut off due to code cache getting full
1684 // fail out now so blocking compiles dont hang the java thread
1685 if (!should_compile_new_jobs()) {
1686 return nullptr;
1687 }
1688 bool is_blocking = ReplayCompiles ||
1689 !directive->BackgroundCompilationOption ||
1690 (PreloadBlocking && (compile_reason == CompileTask::Reason_Preload));
1691 compile_method_base(method, osr_bci, comp_level, hot_count, compile_reason, requires_online_compilation, is_blocking, THREAD);
1692 }
1693
1694 // return requested nmethod
1695 // We accept a higher level osr method
1696 if (osr_bci == InvocationEntryBci) {
1697 return method->code();
1698 }
1699 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1700 }
1701
1702
1703 // ------------------------------------------------------------------
1704 // CompileBroker::compilation_is_complete
1705 //
1706 // See if compilation of this method is already complete.
1707 bool CompileBroker::compilation_is_complete(Method* method,
1708 int osr_bci,
1709 int comp_level,
1710 bool online_only,
1711 CompileTask::CompileReason compile_reason) {
1712 if (compile_reason == CompileTask::Reason_Precompile ||
1713 compile_reason == CompileTask::Reason_PrecompileForPreload) {
1714 return false; // FIXME: any restrictions?
1715 }
1716 bool is_osr = (osr_bci != standard_entry_bci);
1717 if (is_osr) {
1718 if (method->is_not_osr_compilable(comp_level)) {
1719 return true;
1720 } else {
1721 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1722 return (result != nullptr);
1723 }
1724 } else {
1725 if (method->is_not_compilable(comp_level)) {
1726 return true;
1727 } else {
1728 nmethod* result = method->code();
1729 if (result == nullptr) {
1730 return false;
1731 }
1732 if (online_only && result->is_aot()) {
1733 return false;
1734 }
1735 bool same_level = (comp_level == result->comp_level());
1736 if (result->has_clinit_barriers()) {
1737 return !same_level; // Allow replace preloaded code with new code of the same level
1738 }
1739 return same_level;
1740 }
1741 }
1742 }
1743
1744
1745 /**
1746 * See if this compilation is already requested.
1747 *
1748 * Implementation note: there is only a single "is in queue" bit
1749 * for each method. This means that the check below is overly
1750 * conservative in the sense that an osr compilation in the queue
1751 * will block a normal compilation from entering the queue (and vice
1752 * versa). This can be remedied by a full queue search to disambiguate
1753 * cases. If it is deemed profitable, this may be done.
1754 */
1755 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1756 return method->queued_for_compilation();
1757 }
1758
1759 // ------------------------------------------------------------------
1760 // CompileBroker::compilation_is_prohibited
1761 //
1762 // See if this compilation is not allowed.
1763 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1764 bool is_native = method->is_native();
1765 // Some compilers may not support the compilation of natives.
1766 AbstractCompiler *comp = compiler(comp_level);
1767 if (is_native && (!CICompileNatives || comp == nullptr)) {
1768 method->set_not_compilable_quietly("native methods not supported", comp_level);
1769 return true;
1770 }
1771
1772 bool is_osr = (osr_bci != standard_entry_bci);
1773 // Some compilers may not support on stack replacement.
1774 if (is_osr && (!CICompileOSR || comp == nullptr)) {
1775 method->set_not_osr_compilable("OSR not supported", comp_level);
1776 return true;
1777 }
1778
1779 // The method may be explicitly excluded by the user.
1780 double scale;
1781 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) {
1782 bool quietly = CompilerOracle::be_quiet();
1783 if (PrintCompilation && !quietly) {
1784 // This does not happen quietly...
1785 ResourceMark rm;
1786 tty->print("### Excluding %s:%s",
1787 method->is_native() ? "generation of native wrapper" : "compile",
1788 (method->is_static() ? " static" : ""));
1789 method->print_short_name(tty);
1790 tty->cr();
1791 }
1792 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1793 }
1794
1795 return false;
1796 }
1797
1798 /**
1799 * Generate serialized IDs for compilation requests. If certain debugging flags are used
1800 * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1801 * The function also allows to generate separate compilation IDs for OSR compilations.
1802 */
1803 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1804 #ifdef ASSERT
1805 bool is_osr = (osr_bci != standard_entry_bci);
1806 int id;
1807 if (method->is_native()) {
1808 assert(!is_osr, "can't be osr");
1809 // Adapters, native wrappers and method handle intrinsics
1810 // should be generated always.
1811 return AtomicAccess::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1812 } else if (CICountOSR && is_osr) {
1813 id = AtomicAccess::add(&_osr_compilation_id, 1);
1814 if (CIStartOSR <= id && id < CIStopOSR) {
1815 return id;
1816 }
1817 } else {
1818 id = AtomicAccess::add(&_compilation_id, 1);
1819 if (CIStart <= id && id < CIStop) {
1820 return id;
1821 }
1822 }
1823
1824 // Method was not in the appropriate compilation range.
1825 method->set_not_compilable_quietly("Not in requested compile id range");
1826 return 0;
1827 #else
1828 // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1829 // only _compilation_id is incremented.
1830 return AtomicAccess::add(&_compilation_id, 1);
1831 #endif
1832 }
1833
1834 // ------------------------------------------------------------------
1835 // CompileBroker::assign_compile_id_unlocked
1836 //
1837 // Public wrapper for assign_compile_id that acquires the needed locks
1838 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1839 return assign_compile_id(method, osr_bci);
1840 }
1841
1842 // ------------------------------------------------------------------
1843 // CompileBroker::create_compile_task
1844 //
1845 // Create a CompileTask object representing the current request for
1846 // compilation. Add this task to the queue.
1847 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue,
1848 int compile_id,
1849 const methodHandle& method,
1850 int osr_bci,
1851 int comp_level,
1852 int hot_count,
1853 AOTCodeEntry* aot_code_entry,
1854 CompileTask::CompileReason compile_reason,
1855 bool requires_online_compilation,
1856 bool blocking) {
1857 CompileTask* new_task = new CompileTask(compile_id, method, osr_bci, comp_level,
1858 hot_count, aot_code_entry, compile_reason, queue,
1859 requires_online_compilation, blocking);
1860 return new_task;
1861 }
1862
1863 #if INCLUDE_JVMCI
1864 // The number of milliseconds to wait before checking if
1865 // JVMCI compilation has made progress.
1866 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1867
1868 // The number of JVMCI compilation progress checks that must fail
1869 // before unblocking a thread waiting for a blocking compilation.
1870 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1871
1872 /**
1873 * Waits for a JVMCI compiler to complete a given task. This thread
1874 * waits until either the task completes or it sees no JVMCI compilation
1875 * progress for N consecutive milliseconds where N is
1876 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1877 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1878 *
1879 * @return true if this thread needs to delete the task
1880 */
1881 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1882 assert(UseJVMCICompiler, "sanity");
1883 MonitorLocker ml(thread, CompileTaskWait_lock);
1884 int progress_wait_attempts = 0;
1885 jint thread_jvmci_compilation_ticks = 0;
1886 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1887 while (!task->is_complete() && !is_compilation_disabled_forever() &&
1888 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1889 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1890
1891 bool progress;
1892 if (jvmci_compile_state != nullptr) {
1893 jint ticks = jvmci_compile_state->compilation_ticks();
1894 progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1895 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1896 thread_jvmci_compilation_ticks = ticks;
1897 } else {
1898 // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1899 // that all JVMCI compiler threads are blocked on. We use the global JVMCI
1900 // compilation ticks to determine whether JVMCI compilation
1901 // is still making progress through the JVMCI compiler queue.
1902 jint ticks = jvmci->global_compilation_ticks();
1903 progress = (ticks - global_jvmci_compilation_ticks) != 0;
1904 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1905 global_jvmci_compilation_ticks = ticks;
1906 }
1907
1908 if (!progress) {
1909 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1910 if (PrintCompilation) {
1911 task->print(tty, "wait for blocking compilation timed out");
1912 }
1913 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1914 break;
1915 }
1916 } else {
1917 progress_wait_attempts = 0;
1918 }
1919 }
1920 task->clear_waiter();
1921 return task->is_complete();
1922 }
1923 #endif
1924
1925 /**
1926 * Wait for the compilation task to complete.
1927 */
1928 void CompileBroker::wait_for_completion(CompileTask* task) {
1929 if (CIPrintCompileQueue) {
1930 ttyLocker ttyl;
1931 tty->print_cr("BLOCKING FOR COMPILE");
1932 }
1933
1934 assert(task->is_blocking(), "can only wait on blocking task");
1935
1936 JavaThread* thread = JavaThread::current();
1937
1938 methodHandle method(thread, task->method());
1939 bool free_task;
1940 #if INCLUDE_JVMCI
1941 AbstractCompiler* comp = compiler(task->comp_level());
1942 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) {
1943 // It may return before compilation is completed.
1944 // Note that libjvmci should not pre-emptively unblock
1945 // a thread waiting for a compilation as it does not call
1946 // Java code and so is not deadlock prone like jarjvmci.
1947 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1948 } else
1949 #endif
1950 {
1951 free_task = true;
1952 // Wait until the task is complete or compilation is shut down.
1953 MonitorLocker ml(thread, CompileTaskWait_lock);
1954 while (!task->is_complete() && !is_compilation_disabled_forever()) {
1955 ml.wait();
1956 }
1957 }
1958
1959 // It is harmless to check this status without the lock, because
1960 // completion is a stable property.
1961 if (!task->is_complete()) {
1962 // Task is not complete, likely because we are exiting for compilation
1963 // shutdown. The task can still be reached through the queue, or executed
1964 // by some compiler thread. There is no coordination with either MCQ lock
1965 // holders or compilers, therefore we cannot delete the task.
1966 //
1967 // This will leave task allocated, which leaks it. At this (degraded) point,
1968 // it is less risky to abandon the task, rather than attempting a more
1969 // complicated deletion protocol.
1970 free_task = false;
1971 }
1972
1973 if (free_task) {
1974 assert(task->is_complete(), "Compilation should have completed");
1975 assert(task->next() == nullptr && task->prev() == nullptr,
1976 "Completed task should not be in the queue");
1977
1978 // By convention, the waiter is responsible for deleting a
1979 // blocking CompileTask. Since there is only one waiter ever
1980 // waiting on a CompileTask, we know that no one else will
1981 // be using this CompileTask; we can delete it.
1982 delete task;
1983 }
1984 }
1985
1986 void CompileBroker::wait_for_no_active_tasks() {
1987 CompileTask::wait_for_no_active_tasks();
1988 }
1989
1990 /**
1991 * Initialize compiler thread(s) + compiler object(s). The postcondition
1992 * of this function is that the compiler runtimes are initialized and that
1993 * compiler threads can start compiling.
1994 */
1995 bool CompileBroker::init_compiler_runtime() {
1996 CompilerThread* thread = CompilerThread::current();
1997 AbstractCompiler* comp = thread->compiler();
1998 // Final sanity check - the compiler object must exist
1999 guarantee(comp != nullptr, "Compiler object must exist");
2000
2001 {
2002 // Must switch to native to allocate ci_env
2003 ThreadToNativeFromVM ttn(thread);
2004 ciEnv ci_env((CompileTask*)nullptr);
2005 // Cache Jvmti state
2006 ci_env.cache_jvmti_state();
2007 // Cache DTrace flags
2008 ci_env.cache_dtrace_flags();
2009
2010 // Switch back to VM state to do compiler initialization
2011 ThreadInVMfromNative tv(thread);
2012
2013 comp->initialize();
2014 }
2015
2016 if (comp->is_failed()) {
2017 disable_compilation_forever();
2018 // If compiler initialization failed, no compiler thread that is specific to a
2019 // particular compiler runtime will ever start to compile methods.
2020 shutdown_compiler_runtime(comp, thread);
2021 return false;
2022 }
2023
2024 // C1 specific check
2025 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) {
2026 warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
2027 return false;
2028 }
2029
2030 return true;
2031 }
2032
2033 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) {
2034 BufferBlob* blob = thread->get_buffer_blob();
2035 if (blob != nullptr) {
2036 blob->purge();
2037 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2038 CodeCache::free(blob);
2039 }
2040 }
2041
2042 /**
2043 * If C1 and/or C2 initialization failed, we shut down all compilation.
2044 * We do this to keep things simple. This can be changed if it ever turns
2045 * out to be a problem.
2046 */
2047 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
2048 free_buffer_blob_if_allocated(thread);
2049
2050 log_info(compilation)("shutdown_compiler_runtime: " INTPTR_FORMAT, p2i(thread));
2051
2052 if (comp->should_perform_shutdown()) {
2053 // There are two reasons for shutting down the compiler
2054 // 1) compiler runtime initialization failed
2055 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
2056 warning("%s initialization failed. Shutting down all compilers", comp->name());
2057
2058 // Only one thread per compiler runtime object enters here
2059 // Set state to shut down
2060 comp->set_shut_down();
2061
2062 // Delete all queued compilation tasks to make compiler threads exit faster.
2063 if (_c1_compile_queue != nullptr) {
2064 _c1_compile_queue->delete_all();
2065 }
2066
2067 if (_c2_compile_queue != nullptr) {
2068 _c2_compile_queue->delete_all();
2069 }
2070
2071 // Set flags so that we continue execution with using interpreter only.
2072 UseCompiler = false;
2073 UseInterpreter = true;
2074
2075 // We could delete compiler runtimes also. However, there are references to
2076 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then
2077 // fail. This can be done later if necessary.
2078 }
2079 }
2080
2081 /**
2082 * Helper function to create new or reuse old CompileLog.
2083 */
2084 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
2085 if (!LogCompilation) return nullptr;
2086
2087 AbstractCompiler *compiler = ct->compiler();
2088 bool c1 = compiler->is_c1();
2089 jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
2090 assert(compiler_objects != nullptr, "must be initialized at this point");
2091 CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
2092 assert(logs != nullptr, "must be initialized at this point");
2093 int count = c1 ? _c1_count : _c2_count;
2094
2095 if (ct->queue() == _ac1_compile_queue || ct->queue() == _ac2_compile_queue) {
2096 compiler_objects = _ac_objects;
2097 logs = _ac_logs;
2098 count = _ac_count;
2099 }
2100 // Find Compiler number by its threadObj.
2101 oop compiler_obj = ct->threadObj();
2102 int compiler_number = 0;
2103 bool found = false;
2104 for (; compiler_number < count; compiler_number++) {
2105 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
2106 found = true;
2107 break;
2108 }
2109 }
2110 assert(found, "Compiler must exist at this point");
2111
2112 // Determine pointer for this thread's log.
2113 CompileLog** log_ptr = &logs[compiler_number];
2114
2115 // Return old one if it exists.
2116 CompileLog* log = *log_ptr;
2117 if (log != nullptr) {
2118 ct->init_log(log);
2119 return log;
2120 }
2121
2122 // Create a new one and remember it.
2123 init_compiler_thread_log();
2124 log = ct->log();
2125 *log_ptr = log;
2126 return log;
2127 }
2128
2129 // ------------------------------------------------------------------
2130 // CompileBroker::compiler_thread_loop
2131 //
2132 // The main loop run by a CompilerThread.
2133 void CompileBroker::compiler_thread_loop() {
2134 CompilerThread* thread = CompilerThread::current();
2135 CompileQueue* queue = thread->queue();
2136 // For the thread that initializes the ciObjectFactory
2137 // this resource mark holds all the shared objects
2138 ResourceMark rm;
2139
2140 // First thread to get here will initialize the compiler interface
2141
2142 {
2143 ASSERT_IN_VM;
2144 MutexLocker only_one (thread, CompileThread_lock);
2145 if (!ciObjectFactory::is_initialized()) {
2146 ciObjectFactory::initialize();
2147 }
2148 }
2149
2150 // Open a log.
2151 CompileLog* log = get_log(thread);
2152 if (log != nullptr) {
2153 log->begin_elem("start_compile_thread name='%s' thread='%zu' process='%d'",
2154 thread->name(),
2155 os::current_thread_id(),
2156 os::current_process_id());
2157 log->stamp();
2158 log->end_elem();
2159 }
2160
2161 if (!thread->init_compilation_timeout()) {
2162 return;
2163 }
2164
2165 // If compiler thread/runtime initialization fails, exit the compiler thread
2166 if (!init_compiler_runtime()) {
2167 return;
2168 }
2169
2170 thread->start_idle_timer();
2171
2172 // Poll for new compilation tasks as long as the JVM runs. Compilation
2173 // should only be disabled if something went wrong while initializing the
2174 // compiler runtimes. This, in turn, should not happen. The only known case
2175 // when compiler runtime initialization fails is if there is not enough free
2176 // space in the code cache to generate the necessary stubs, etc.
2177 while (!is_compilation_disabled_forever()) {
2178 // We need this HandleMark to avoid leaking VM handles.
2179 HandleMark hm(thread);
2180
2181 RecompilationPolicy::recompilation_step(AOTRecompilationWorkUnitSize, thread);
2182
2183 CompileTask* task = queue->get(thread);
2184 if (task == nullptr) {
2185 if (UseDynamicNumberOfCompilerThreads) {
2186 // Access compiler_count under lock to enforce consistency.
2187 MutexLocker only_one(CompileThread_lock);
2188 if (can_remove(thread, true)) {
2189 if (trace_compiler_threads()) {
2190 ResourceMark rm;
2191 stringStream msg;
2192 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
2193 thread->name(), thread->idle_time_millis());
2194 print_compiler_threads(msg);
2195 }
2196
2197 // Notify compiler that the compiler thread is about to stop
2198 thread->compiler()->stopping_compiler_thread(thread);
2199
2200 free_buffer_blob_if_allocated(thread);
2201 return; // Stop this thread.
2202 }
2203 }
2204 } else {
2205 // Assign the task to the current thread. Mark this compilation
2206 // thread as active for the profiler.
2207 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
2208 // occurs after fetching the compile task off the queue.
2209 CompileTaskWrapper ctw(task);
2210 methodHandle method(thread, task->method());
2211
2212 // Never compile a method if breakpoints are present in it
2213 if (method()->number_of_breakpoints() == 0) {
2214 // Compile the method.
2215 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
2216 invoke_compiler_on_method(task);
2217 thread->start_idle_timer();
2218 } else {
2219 // After compilation is disabled, remove remaining methods from queue
2220 method->clear_queued_for_compilation();
2221 method->set_pending_queue_processed(false);
2222 task->set_failure_reason("compilation is disabled");
2223 }
2224 } else {
2225 task->set_failure_reason("breakpoints are present");
2226 }
2227
2228 // Don't use AOT compielr threads for dynamic C1 and C2 threads creation.
2229 if (UseDynamicNumberOfCompilerThreads &&
2230 (queue == _c1_compile_queue || queue == _c2_compile_queue)) {
2231 possibly_add_compiler_threads(thread);
2232 assert(!thread->has_pending_exception(), "should have been handled");
2233 }
2234 }
2235 }
2236
2237 // Shut down compiler runtime
2238 shutdown_compiler_runtime(thread->compiler(), thread);
2239 }
2240
2241 // ------------------------------------------------------------------
2242 // CompileBroker::init_compiler_thread_log
2243 //
2244 // Set up state required by +LogCompilation.
2245 void CompileBroker::init_compiler_thread_log() {
2246 CompilerThread* thread = CompilerThread::current();
2247 char file_name[4*K];
2248 FILE* fp = nullptr;
2249 intx thread_id = os::current_thread_id();
2250 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
2251 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr);
2252 if (dir == nullptr) {
2253 jio_snprintf(file_name, sizeof(file_name), "hs_c%zu_pid%u.log",
2254 thread_id, os::current_process_id());
2255 } else {
2256 jio_snprintf(file_name, sizeof(file_name),
2257 "%s%shs_c%zu_pid%u.log", dir,
2258 os::file_separator(), thread_id, os::current_process_id());
2259 }
2260
2261 fp = os::fopen(file_name, "wt");
2262 if (fp != nullptr) {
2263 if (LogCompilation && Verbose) {
2264 tty->print_cr("Opening compilation log %s", file_name);
2265 }
2266 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
2267 if (log == nullptr) {
2268 fclose(fp);
2269 return;
2270 }
2271 thread->init_log(log);
2272
2273 if (xtty != nullptr) {
2274 ttyLocker ttyl;
2275 // Record any per thread log files
2276 xtty->elem("thread_logfile thread='%zd' filename='%s'", thread_id, file_name);
2277 }
2278 return;
2279 }
2280 }
2281 warning("Cannot open log file: %s", file_name);
2282 }
2283
2284 void CompileBroker::log_metaspace_failure() {
2285 const char* message = "some methods may not be compiled because metaspace "
2286 "is out of memory";
2287 if (CompilationLog::log() != nullptr) {
2288 CompilationLog::log()->log_metaspace_failure(message);
2289 }
2290 if (PrintCompilation) {
2291 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2292 }
2293 }
2294
2295
2296 // ------------------------------------------------------------------
2297 // CompileBroker::set_should_block
2298 //
2299 // Set _should_block.
2300 // Call this from the VM, with Threads_lock held and a safepoint requested.
2301 void CompileBroker::set_should_block() {
2302 assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2303 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2304 #ifndef PRODUCT
2305 if (PrintCompilation && (Verbose || WizardMode))
2306 tty->print_cr("notifying compiler thread pool to block");
2307 #endif
2308 _should_block = true;
2309 }
2310
2311 // ------------------------------------------------------------------
2312 // CompileBroker::maybe_block
2313 //
2314 // Call this from the compiler at convenient points, to poll for _should_block.
2315 void CompileBroker::maybe_block() {
2316 if (_should_block) {
2317 #ifndef PRODUCT
2318 if (PrintCompilation && (Verbose || WizardMode))
2319 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2320 #endif
2321 // If we are executing a task during the request to block, report the task
2322 // before disappearing.
2323 CompilerThread* thread = CompilerThread::current();
2324 if (thread != nullptr) {
2325 CompileTask* task = thread->task();
2326 if (task != nullptr) {
2327 if (PrintCompilation) {
2328 task->print(tty, "blocked");
2329 }
2330 task->print_ul("blocked");
2331 }
2332 }
2333 // Go to VM state and block for final VM shutdown safepoint.
2334 ThreadInVMfromNative tivfn(JavaThread::current());
2335 assert(false, "Should never unblock from TIVNM entry");
2336 }
2337 }
2338
2339 // wrapper for CodeCache::print_summary()
2340 static void codecache_print(bool detailed)
2341 {
2342 stringStream s;
2343 // Dump code cache into a buffer before locking the tty,
2344 {
2345 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2346 CodeCache::print_summary(&s, detailed);
2347 }
2348 ttyLocker ttyl;
2349 tty->print("%s", s.freeze());
2350 }
2351
2352 // wrapper for CodeCache::print_summary() using outputStream
2353 static void codecache_print(outputStream* out, bool detailed) {
2354 stringStream s;
2355
2356 // Dump code cache into a buffer
2357 {
2358 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2359 CodeCache::print_summary(&s, detailed);
2360 }
2361
2362 char* remaining_log = s.as_string();
2363 while (*remaining_log != '\0') {
2364 char* eol = strchr(remaining_log, '\n');
2365 if (eol == nullptr) {
2366 out->print_cr("%s", remaining_log);
2367 remaining_log = remaining_log + strlen(remaining_log);
2368 } else {
2369 *eol = '\0';
2370 out->print_cr("%s", remaining_log);
2371 remaining_log = eol + 1;
2372 }
2373 }
2374 }
2375
2376 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2377 int compilable, const char* failure_reason) {
2378 if (!AbortVMOnCompilationFailure) {
2379 return;
2380 }
2381 if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2382 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2383 }
2384 if (compilable == ciEnv::MethodCompilable_never) {
2385 fatal("Never compilable: %s", failure_reason);
2386 }
2387 }
2388
2389 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2390 assert(task != nullptr, "invariant");
2391 CompilerEvent::CompilationEvent::post(event,
2392 task->compile_id(),
2393 task->compiler()->type(),
2394 task->method(),
2395 task->comp_level(),
2396 task->is_success(),
2397 task->osr_bci() != CompileBroker::standard_entry_bci,
2398 task->nm_total_size(),
2399 task->num_inlined_bytecodes(),
2400 task->arena_bytes());
2401 }
2402
2403 int DirectivesStack::_depth = 0;
2404 CompilerDirectives* DirectivesStack::_top = nullptr;
2405 CompilerDirectives* DirectivesStack::_bottom = nullptr;
2406
2407 // Acquires Compilation_lock and waits for it to be notified
2408 // as long as WhiteBox::compilation_locked is true.
2409 static void whitebox_lock_compilation() {
2410 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2411 while (WhiteBox::compilation_locked) {
2412 locker.wait();
2413 }
2414 }
2415
2416 // ------------------------------------------------------------------
2417 // CompileBroker::invoke_compiler_on_method
2418 //
2419 // Compile a method.
2420 //
2421 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2422 task->print_ul();
2423 elapsedTimer time;
2424
2425 DirectiveSet* directive = task->directive();
2426
2427 CompilerThread* thread = CompilerThread::current();
2428 ResourceMark rm(thread);
2429
2430 if (CompilationLog::log() != nullptr) {
2431 CompilationLog::log()->log_compile(thread, task);
2432 }
2433
2434 // Common flags.
2435 int compile_id = task->compile_id();
2436 int osr_bci = task->osr_bci();
2437 bool is_osr = (osr_bci != standard_entry_bci);
2438 bool should_log = (thread->log() != nullptr);
2439 bool should_break = false;
2440 bool should_print_compilation = PrintCompilation || directive->PrintCompilationOption;
2441 const int task_level = task->comp_level();
2442 AbstractCompiler* comp = task->compiler();
2443 {
2444 // create the handle inside it's own block so it can't
2445 // accidentally be referenced once the thread transitions to
2446 // native. The NoHandleMark before the transition should catch
2447 // any cases where this occurs in the future.
2448 methodHandle method(thread, task->method());
2449
2450 assert(!method->is_native(), "no longer compile natives");
2451
2452 // Update compile information when using perfdata.
2453 if (UsePerfData) {
2454 update_compile_perf_data(thread, method, is_osr);
2455 }
2456
2457 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2458 }
2459
2460 should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2461 if (should_log && !directive->LogOption) {
2462 should_log = false;
2463 }
2464
2465 // Allocate a new set of JNI handles.
2466 JNIHandleMark jhm(thread);
2467 Method* target_handle = task->method();
2468 int compilable = ciEnv::MethodCompilable;
2469 const char* failure_reason = nullptr;
2470 bool failure_reason_on_C_heap = false;
2471 const char* retry_message = nullptr;
2472
2473 #if INCLUDE_JVMCI
2474 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) {
2475 JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2476
2477 TraceTime t1("compilation", &time);
2478 EventCompilation event;
2479 JVMCICompileState compile_state(task, jvmci);
2480 JVMCIRuntime *runtime = nullptr;
2481
2482 if (JVMCI::in_shutdown()) {
2483 failure_reason = "in JVMCI shutdown";
2484 retry_message = "not retryable";
2485 compilable = ciEnv::MethodCompilable_never;
2486 } else if (compile_state.target_method_is_old()) {
2487 // Skip redefined methods
2488 failure_reason = "redefined method";
2489 retry_message = "not retryable";
2490 compilable = ciEnv::MethodCompilable_never;
2491 } else {
2492 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2493 if (env.init_error() != JNI_OK) {
2494 const char* msg = env.init_error_msg();
2495 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)",
2496 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI);
2497 bool reason_on_C_heap = true;
2498 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it
2499 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime.
2500 bool retryable = env.init_error() == JNI_ENOMEM;
2501 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap);
2502 }
2503 if (failure_reason == nullptr) {
2504 if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2505 // Must switch to native to block
2506 ThreadToNativeFromVM ttn(thread);
2507 whitebox_lock_compilation();
2508 }
2509 methodHandle method(thread, target_handle);
2510 runtime = env.runtime();
2511 runtime->compile_method(&env, jvmci, method, osr_bci);
2512
2513 failure_reason = compile_state.failure_reason();
2514 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2515 if (!compile_state.retryable()) {
2516 retry_message = "not retryable";
2517 compilable = ciEnv::MethodCompilable_not_at_tier;
2518 }
2519 if (!task->is_success()) {
2520 assert(failure_reason != nullptr, "must specify failure_reason");
2521 }
2522 }
2523 }
2524 if (!task->is_success() && !JVMCI::in_shutdown()) {
2525 handle_compile_error(thread, task, nullptr, compilable, failure_reason);
2526 }
2527 if (event.should_commit()) {
2528 post_compilation_event(event, task);
2529 }
2530
2531 if (runtime != nullptr) {
2532 runtime->post_compile(thread);
2533 }
2534 } else
2535 #endif // INCLUDE_JVMCI
2536 {
2537 NoHandleMark nhm;
2538 ThreadToNativeFromVM ttn(thread);
2539
2540 ciEnv ci_env(task);
2541 if (should_break) {
2542 ci_env.set_break_at_compile(true);
2543 }
2544 if (should_log) {
2545 ci_env.set_log(thread->log());
2546 }
2547 assert(thread->env() == &ci_env, "set by ci_env");
2548 // The thread-env() field is cleared in ~CompileTaskWrapper.
2549
2550 // Cache Jvmti state
2551 bool method_is_old = ci_env.cache_jvmti_state();
2552
2553 // Skip redefined methods
2554 if (method_is_old) {
2555 ci_env.record_method_not_compilable("redefined method", true);
2556 }
2557
2558 // Cache DTrace flags
2559 ci_env.cache_dtrace_flags();
2560
2561 ciMethod* target = ci_env.get_method_from_handle(target_handle);
2562
2563 TraceTime t1("compilation", &time);
2564 EventCompilation event;
2565
2566 if (comp == nullptr) {
2567 ci_env.record_method_not_compilable("no compiler");
2568 } else if (!ci_env.failing()) {
2569 if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2570 whitebox_lock_compilation();
2571 }
2572 comp->compile_method(&ci_env, target, osr_bci, true, directive);
2573
2574 /* Repeat compilation without installing code for profiling purposes */
2575 int repeat_compilation_count = task->is_aot_load() ? 0 : directive->RepeatCompilationOption;
2576 while (repeat_compilation_count > 0) {
2577 ResourceMark rm(thread);
2578 task->print_ul("NO CODE INSTALLED");
2579 thread->timeout()->reset();
2580 comp->compile_method(&ci_env, target, osr_bci, false, directive);
2581 repeat_compilation_count--;
2582 }
2583 }
2584
2585
2586 if (!ci_env.failing() && !task->is_success() && !task->is_precompile()) {
2587 assert(ci_env.failure_reason() != nullptr, "expect failure reason");
2588 assert(false, "compiler should always document failure: %s", ci_env.failure_reason());
2589 // The compiler elected, without comment, not to register a result.
2590 // Do not attempt further compilations of this method.
2591 ci_env.record_method_not_compilable("compile failed");
2592 }
2593
2594 // Copy this bit to the enclosing block:
2595 compilable = ci_env.compilable();
2596
2597 if (ci_env.failing()) {
2598 // Duplicate the failure reason string, so that it outlives ciEnv
2599 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler);
2600 failure_reason_on_C_heap = true;
2601 retry_message = ci_env.retry_message();
2602 ci_env.report_failure(failure_reason);
2603 }
2604
2605 if (ci_env.failing()) {
2606 handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2607 }
2608 if (event.should_commit()) {
2609 post_compilation_event(event, task);
2610 }
2611 }
2612
2613 if (failure_reason != nullptr) {
2614 task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2615 if (CompilationLog::log() != nullptr) {
2616 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2617 }
2618 if (PrintCompilation || directive->PrintCompilationOption) {
2619 FormatBufferResource msg = retry_message != nullptr ?
2620 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2621 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason);
2622 task->print(tty, msg);
2623 }
2624 }
2625
2626 task->mark_finished(os::elapsed_counter());
2627 DirectivesStack::release(directive);
2628
2629 methodHandle method(thread, task->method());
2630
2631 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2632
2633 collect_statistics(thread, time, task);
2634
2635 if (PrintCompilation && PrintCompilation2) {
2636 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp
2637 tty->print("%4d ", compile_id); // print compilation number
2638 tty->print("%s ", (is_osr ? "%" : (task->is_aot_load() ? (task->preload() ? "P" : "A") : " ")));
2639 if (task->is_success()) {
2640 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2641 }
2642 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2643 }
2644
2645 Log(compilation, codecache) log;
2646 if (log.is_debug()) {
2647 LogStream ls(log.debug());
2648 codecache_print(&ls, /* detailed= */ false);
2649 }
2650 if (PrintCodeCacheOnCompilation) {
2651 codecache_print(/* detailed= */ false);
2652 }
2653 // Disable compilation, if required.
2654 switch (compilable) {
2655 case ciEnv::MethodCompilable_never:
2656 if (is_osr)
2657 method->set_not_osr_compilable_quietly("MethodCompilable_never");
2658 else
2659 method->set_not_compilable_quietly("MethodCompilable_never");
2660 break;
2661 case ciEnv::MethodCompilable_not_at_tier:
2662 if (is_osr)
2663 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2664 else
2665 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2666 break;
2667 }
2668
2669 // Note that the queued_for_compilation bits are cleared without
2670 // protection of a mutex. [They were set by the requester thread,
2671 // when adding the task to the compile queue -- at which time the
2672 // compile queue lock was held. Subsequently, we acquired the compile
2673 // queue lock to get this task off the compile queue; thus (to belabour
2674 // the point somewhat) our clearing of the bits must be occurring
2675 // only after the setting of the bits. See also 14012000 above.
2676 method->clear_queued_for_compilation();
2677 method->set_pending_queue_processed(false);
2678
2679 if (should_print_compilation) {
2680 ResourceMark rm;
2681 task->print_tty();
2682 }
2683 }
2684
2685 /**
2686 * The CodeCache is full. Print warning and disable compilation.
2687 * Schedule code cache cleaning so compilation can continue later.
2688 * This function needs to be called only from CodeCache::allocate(),
2689 * since we currently handle a full code cache uniformly.
2690 */
2691 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2692 UseInterpreter = true;
2693 if (UseCompiler || AlwaysCompileLoopMethods ) {
2694 if (xtty != nullptr) {
2695 stringStream s;
2696 // Dump code cache state into a buffer before locking the tty,
2697 // because log_state() will use locks causing lock conflicts.
2698 CodeCache::log_state(&s);
2699 // Lock to prevent tearing
2700 ttyLocker ttyl;
2701 xtty->begin_elem("code_cache_full");
2702 xtty->print("%s", s.freeze());
2703 xtty->stamp();
2704 xtty->end_elem();
2705 }
2706
2707 #ifndef PRODUCT
2708 if (ExitOnFullCodeCache) {
2709 codecache_print(/* detailed= */ true);
2710 before_exit(JavaThread::current());
2711 exit_globals(); // will delete tty
2712 vm_direct_exit(1);
2713 }
2714 #endif
2715 if (UseCodeCacheFlushing) {
2716 // Since code cache is full, immediately stop new compiles
2717 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2718 log_info(codecache)("Code cache is full - disabling compilation");
2719 }
2720 } else {
2721 disable_compilation_forever();
2722 }
2723
2724 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2725 }
2726 }
2727
2728 // ------------------------------------------------------------------
2729 // CompileBroker::update_compile_perf_data
2730 //
2731 // Record this compilation for debugging purposes.
2732 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2733 ResourceMark rm;
2734 char* method_name = method->name()->as_C_string();
2735 char current_method[CompilerCounters::cmname_buffer_length];
2736 size_t maxLen = CompilerCounters::cmname_buffer_length;
2737
2738 const char* class_name = method->method_holder()->name()->as_C_string();
2739
2740 size_t s1len = strlen(class_name);
2741 size_t s2len = strlen(method_name);
2742
2743 // check if we need to truncate the string
2744 if (s1len + s2len + 2 > maxLen) {
2745
2746 // the strategy is to lop off the leading characters of the
2747 // class name and the trailing characters of the method name.
2748
2749 if (s2len + 2 > maxLen) {
2750 // lop of the entire class name string, let snprintf handle
2751 // truncation of the method name.
2752 class_name += s1len; // null string
2753 }
2754 else {
2755 // lop off the extra characters from the front of the class name
2756 class_name += ((s1len + s2len + 2) - maxLen);
2757 }
2758 }
2759
2760 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2761
2762 int last_compile_type = normal_compile;
2763 if (CICountOSR && is_osr) {
2764 last_compile_type = osr_compile;
2765 } else if (CICountNative && method->is_native()) {
2766 last_compile_type = native_compile;
2767 }
2768
2769 CompilerCounters* counters = thread->counters();
2770 counters->set_current_method(current_method);
2771 counters->set_compile_type((jlong) last_compile_type);
2772 }
2773
2774 // ------------------------------------------------------------------
2775 // CompileBroker::collect_statistics
2776 //
2777 // Collect statistics about the compilation.
2778
2779 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2780 bool success = task->is_success();
2781 methodHandle method (thread, task->method());
2782 int compile_id = task->compile_id();
2783 bool is_osr = (task->osr_bci() != standard_entry_bci);
2784 const int comp_level = task->comp_level();
2785 CompilerCounters* counters = thread->counters();
2786
2787 MutexLocker locker(CompileStatistics_lock);
2788
2789 // _perf variables are production performance counters which are
2790 // updated regardless of the setting of the CITime and CITimeEach flags
2791 //
2792
2793 // account all time, including bailouts and failures in this counter;
2794 // C1 and C2 counters are counting both successful and unsuccessful compiles
2795 _t_total_compilation.add(&time);
2796
2797 // Update compilation times. Used by the implementation of JFR CompilerStatistics
2798 // and java.lang.management.CompilationMXBean.
2799 _perf_total_compilation->inc(time.ticks());
2800 _peak_compilation_time = MAX2(time.milliseconds(), _peak_compilation_time);
2801
2802 if (!success) {
2803 _total_bailout_count++;
2804 if (UsePerfData) {
2805 _perf_last_failed_method->set_value(counters->current_method());
2806 _perf_last_failed_type->set_value(counters->compile_type());
2807 _perf_total_bailout_count->inc();
2808 }
2809 _t_bailedout_compilation.add(&time);
2810
2811 if (CITime || log_is_enabled(Info, init)) {
2812 CompilerStatistics* stats = nullptr;
2813 if (task->is_aot_load()) {
2814 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2815 stats = &_aot_stats_per_level[level];
2816 } else {
2817 stats = &_stats_per_level[comp_level-1];
2818 }
2819 stats->_bailout.update(time, 0);
2820 }
2821 } else if (!task->is_success()) {
2822 if (UsePerfData) {
2823 _perf_last_invalidated_method->set_value(counters->current_method());
2824 _perf_last_invalidated_type->set_value(counters->compile_type());
2825 _perf_total_invalidated_count->inc();
2826 }
2827 _total_invalidated_count++;
2828 _t_invalidated_compilation.add(&time);
2829
2830 if (CITime || log_is_enabled(Info, init)) {
2831 CompilerStatistics* stats = nullptr;
2832 if (task->is_aot_load()) {
2833 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2834 stats = &_aot_stats_per_level[level];
2835 } else {
2836 stats = &_stats_per_level[comp_level-1];
2837 }
2838 stats->_invalidated.update(time, 0);
2839 }
2840 } else {
2841 // Compilation succeeded
2842 if (CITime || log_is_enabled(Info, init)) {
2843 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2844 if (is_osr) {
2845 _t_osr_compilation.add(&time);
2846 _sum_osr_bytes_compiled += bytes_compiled;
2847 } else {
2848 _t_standard_compilation.add(&time);
2849 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2850 }
2851
2852 // Collect statistic per compilation level
2853 if (task->is_aot_load()) {
2854 _aot_stats._standard.update(time, bytes_compiled);
2855 _aot_stats._nmethods_size += task->nm_total_size();
2856 _aot_stats._nmethods_code_size += task->nm_insts_size();
2857 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1);
2858 CompilerStatistics* stats = &_aot_stats_per_level[level];
2859 stats->_standard.update(time, bytes_compiled);
2860 stats->_nmethods_size += task->nm_total_size();
2861 stats->_nmethods_code_size += task->nm_insts_size();
2862 } else if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2863 CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2864 if (is_osr) {
2865 stats->_osr.update(time, bytes_compiled);
2866 } else {
2867 stats->_standard.update(time, bytes_compiled);
2868 }
2869 stats->_nmethods_size += task->nm_total_size();
2870 stats->_nmethods_code_size += task->nm_insts_size();
2871 } else {
2872 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2873 }
2874
2875 // Collect statistic per compiler
2876 AbstractCompiler* comp = task->compiler();
2877 if (comp && !task->is_aot_load()) {
2878 CompilerStatistics* stats = comp->stats();
2879 if (is_osr) {
2880 stats->_osr.update(time, bytes_compiled);
2881 } else {
2882 stats->_standard.update(time, bytes_compiled);
2883 }
2884 stats->_nmethods_size += task->nm_total_size();
2885 stats->_nmethods_code_size += task->nm_insts_size();
2886 } else if (!task->is_aot_load()) { // if (!comp)
2887 assert(false, "Compiler object must exist");
2888 }
2889 }
2890
2891 if (UsePerfData) {
2892 // save the name of the last method compiled
2893 _perf_last_method->set_value(counters->current_method());
2894 _perf_last_compile_type->set_value(counters->compile_type());
2895 _perf_last_compile_size->set_value(method->code_size() +
2896 task->num_inlined_bytecodes());
2897 if (is_osr) {
2898 _perf_osr_compilation->inc(time.ticks());
2899 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2900 } else {
2901 _perf_standard_compilation->inc(time.ticks());
2902 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2903 }
2904 }
2905
2906 if (CITimeEach) {
2907 double compile_time = time.seconds();
2908 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2909 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2910 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2911 }
2912
2913 // Collect counts of successful compilations
2914 _sum_nmethod_size += task->nm_total_size();
2915 _sum_nmethod_code_size += task->nm_insts_size();
2916 _total_compile_count++;
2917
2918 if (UsePerfData) {
2919 _perf_sum_nmethod_size->inc( task->nm_total_size());
2920 _perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2921 _perf_total_compile_count->inc();
2922 }
2923
2924 if (is_osr) {
2925 if (UsePerfData) _perf_total_osr_compile_count->inc();
2926 _total_osr_compile_count++;
2927 } else {
2928 if (UsePerfData) _perf_total_standard_compile_count->inc();
2929 _total_standard_compile_count++;
2930 }
2931 }
2932 // set the current method for the thread to null
2933 if (UsePerfData) counters->set_current_method("");
2934 }
2935
2936 const char* CompileBroker::compiler_name(int comp_level) {
2937 AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2938 if (comp == nullptr) {
2939 return "no compiler";
2940 } else {
2941 return (comp->name());
2942 }
2943 }
2944
2945 jlong CompileBroker::total_compilation_ticks() {
2946 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0;
2947 }
2948
2949 void CompileBroker::log_not_entrant(nmethod* nm) {
2950 _total_not_entrant_count++;
2951 if (CITime || log_is_enabled(Info, init)) {
2952 CompilerStatistics* stats = nullptr;
2953 int level = nm->comp_level();
2954 if (nm->is_aot()) {
2955 if (nm->preloaded()) {
2956 assert(level == CompLevel_full_optimization, "%d", level);
2957 level = CompLevel_full_optimization + 1;
2958 }
2959 stats = &_aot_stats_per_level[level - 1];
2960 } else {
2961 stats = &_stats_per_level[level - 1];
2962 }
2963 stats->_made_not_entrant._count++;
2964 }
2965 }
2966
2967 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2968 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}",
2969 name, stats->bytes_per_second(),
2970 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2971 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2972 stats->_nmethods_size, stats->_nmethods_code_size);
2973 }
2974
2975 static void print_helper(outputStream* st, const char* name, CompilerStatistics::Data data, bool print_time = true) {
2976 if (data._count > 0) {
2977 st->print("; %s: %4u methods", name, data._count);
2978 if (print_time) {
2979 st->print(" (in %.3fs)", data._time.seconds());
2980 }
2981 }
2982 }
2983
2984 static void print_tier_helper(outputStream* st, const char* prefix, int tier, CompilerStatistics* stats) {
2985 st->print(" %s%d: %5u methods", prefix, tier, stats->_standard._count);
2986 if (stats->_standard._count > 0) {
2987 st->print(" (in %.3fs)", stats->_standard._time.seconds());
2988 }
2989 print_helper(st, "osr", stats->_osr);
2990 print_helper(st, "bailout", stats->_bailout);
2991 print_helper(st, "invalid", stats->_invalidated);
2992 print_helper(st, "not_entrant", stats->_made_not_entrant, false);
2993 st->cr();
2994 }
2995
2996 static void print_queue_info(outputStream* st, CompileQueue* queue) {
2997 if (queue != nullptr) {
2998 MutexLocker ml(queue->lock());
2999
3000 uint total_cnt = 0;
3001 uint active_cnt = 0;
3002 for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) {
3003 guarantee(jt != nullptr, "");
3004 if (jt->is_Compiler_thread()) {
3005 CompilerThread* ct = (CompilerThread*)jt;
3006
3007 guarantee(ct != nullptr, "");
3008 if (ct->queue() == queue) {
3009 ++total_cnt;
3010 CompileTask* task = ct->task();
3011 if (task != nullptr) {
3012 ++active_cnt;
3013 }
3014 }
3015 }
3016 }
3017
3018 st->print(" %s (%d active / %d total threads): %u tasks",
3019 queue->name(), active_cnt, total_cnt, queue->size());
3020 if (queue->size() > 0) {
3021 uint counts[] = {0, 0, 0, 0, 0}; // T1 ... T5
3022 for (CompileTask* task = queue->first(); task != nullptr; task = task->next()) {
3023 int tier = task->comp_level();
3024 if (task->is_aot_load() && task->preload()) {
3025 assert(tier == CompLevel_full_optimization, "%d", tier);
3026 tier = CompLevel_full_optimization + 1;
3027 }
3028 counts[tier-1]++;
3029 }
3030 st->print(":");
3031 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3032 uint cnt = counts[tier-1];
3033 if (cnt > 0) {
3034 st->print(" T%d: %u tasks;", tier, cnt);
3035 }
3036 }
3037 }
3038 st->cr();
3039
3040 // for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) {
3041 // guarantee(jt != nullptr, "");
3042 // if (jt->is_Compiler_thread()) {
3043 // CompilerThread* ct = (CompilerThread*)jt;
3044 //
3045 // guarantee(ct != nullptr, "");
3046 // if (ct->queue() == queue) {
3047 // ResourceMark rm;
3048 // CompileTask* task = ct->task();
3049 // st->print(" %s: ", ct->name_raw());
3050 // if (task != nullptr) {
3051 // task->print(st, nullptr, true /*short_form*/, false /*cr*/);
3052 // }
3053 // st->cr();
3054 // }
3055 // }
3056 // }
3057 }
3058 }
3059 void CompileBroker::print_statistics_on(outputStream* st) {
3060 st->print_cr(" Total: %u methods; %u bailouts, %u invalidated, %u non_entrant",
3061 _total_compile_count, _total_bailout_count, _total_invalidated_count, _total_not_entrant_count);
3062 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
3063 print_tier_helper(st, "Tier", tier, &_stats_per_level[tier-1]);
3064 }
3065 st->cr();
3066
3067 if (AOTCodeCaching) {
3068 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3069 if (tier != CompLevel_full_profile) {
3070 print_tier_helper(st, "AOT Code T", tier, &_aot_stats_per_level[tier - 1]);
3071 }
3072 }
3073 st->cr();
3074 }
3075
3076 print_queue_info(st, _c1_compile_queue);
3077 print_queue_info(st, _c2_compile_queue);
3078 print_queue_info(st, _ac1_compile_queue);
3079 print_queue_info(st, _ac2_compile_queue);
3080 }
3081
3082 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
3083 if (per_compiler) {
3084 if (aggregate) {
3085 tty->cr();
3086 tty->print_cr("[%dms] Individual compiler times (for compiled methods only)", (int)tty->time_stamp().milliseconds());
3087 tty->print_cr("------------------------------------------------");
3088 tty->cr();
3089 }
3090 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
3091 AbstractCompiler* comp = _compilers[i];
3092 if (comp != nullptr) {
3093 print_times(comp->name(), comp->stats());
3094 }
3095 }
3096 if (_aot_stats._standard._count > 0) {
3097 print_times("SC", &_aot_stats);
3098 }
3099 if (aggregate) {
3100 tty->cr();
3101 tty->print_cr("Individual compilation Tier times (for compiled methods only)");
3102 tty->print_cr("------------------------------------------------");
3103 tty->cr();
3104 }
3105 char tier_name[256];
3106 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
3107 CompilerStatistics* stats = &_stats_per_level[tier-1];
3108 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
3109 print_times(tier_name, stats);
3110 }
3111 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) {
3112 CompilerStatistics* stats = &_aot_stats_per_level[tier-1];
3113 if (stats->_standard._bytes > 0) {
3114 os::snprintf_checked(tier_name, sizeof(tier_name), "AOT Code T%d", tier);
3115 print_times(tier_name, stats);
3116 }
3117 }
3118 }
3119
3120 if (!aggregate) {
3121 return;
3122 }
3123
3124 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
3125 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
3126 elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
3127
3128 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
3129 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
3130
3131 uint standard_compile_count = CompileBroker::_total_standard_compile_count;
3132 uint osr_compile_count = CompileBroker::_total_osr_compile_count;
3133 uint total_compile_count = CompileBroker::_total_compile_count;
3134 uint total_bailout_count = CompileBroker::_total_bailout_count;
3135 uint total_invalidated_count = CompileBroker::_total_invalidated_count;
3136
3137 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size;
3138 uint nmethods_size = CompileBroker::_sum_nmethod_size;
3139
3140 tty->cr();
3141 tty->print_cr("Accumulated compiler times");
3142 tty->print_cr("----------------------------------------------------------");
3143 //0000000000111111111122222222223333333333444444444455555555556666666666
3144 //0123456789012345678901234567890123456789012345678901234567890123456789
3145 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds());
3146 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s",
3147 standard_compilation.seconds(),
3148 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
3149 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s",
3150 CompileBroker::_t_bailedout_compilation.seconds(),
3151 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
3152 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s",
3153 osr_compilation.seconds(),
3154 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
3155 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s",
3156 CompileBroker::_t_invalidated_compilation.seconds(),
3157 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
3158
3159 if (AOTCodeCaching) { // Check flags because AOT code cache could be closed already
3160 tty->cr();
3161 AOTCodeCache::print_timers_on(tty);
3162 }
3163 AbstractCompiler *comp = compiler(CompLevel_simple);
3164 if (comp != nullptr) {
3165 tty->cr();
3166 comp->print_timers();
3167 }
3168 comp = compiler(CompLevel_full_optimization);
3169 if (comp != nullptr) {
3170 tty->cr();
3171 comp->print_timers();
3172 }
3173 #if INCLUDE_JVMCI
3174 if (EnableJVMCI) {
3175 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
3176 if (jvmci_comp != nullptr && jvmci_comp != comp) {
3177 tty->cr();
3178 jvmci_comp->print_timers();
3179 }
3180 }
3181 #endif
3182
3183 tty->cr();
3184 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count);
3185 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count);
3186 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count);
3187 uint tcb = osr_bytes_compiled + standard_bytes_compiled;
3188 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb);
3189 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled);
3190 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled);
3191 double tcs = total_compilation.seconds();
3192 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs);
3193 tty->print_cr(" Average compilation speed : %8u bytes/s", bps);
3194 tty->cr();
3195 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size);
3196 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size);
3197 }
3198
3199 // Print general/accumulated JIT information.
3200 void CompileBroker::print_info(outputStream *out) {
3201 if (out == nullptr) out = tty;
3202 out->cr();
3203 out->print_cr("======================");
3204 out->print_cr(" General JIT info ");
3205 out->print_cr("======================");
3206 out->cr();
3207 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off");
3208 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount);
3209 out->cr();
3210 out->print_cr("CodeCache overview");
3211 out->print_cr("--------------------------------------------------------");
3212 out->cr();
3213 out->print_cr(" Reserved size : %7zu KB", CodeCache::max_capacity() / K);
3214 out->print_cr(" Committed size : %7zu KB", CodeCache::capacity() / K);
3215 out->print_cr(" Unallocated capacity : %7zu KB", CodeCache::unallocated_capacity() / K);
3216 out->cr();
3217 }
3218
3219 // Note: tty_lock must not be held upon entry to this function.
3220 // Print functions called from herein do "micro-locking" on tty_lock.
3221 // That's a tradeoff which keeps together important blocks of output.
3222 // At the same time, continuous tty_lock hold time is kept in check,
3223 // preventing concurrently printing threads from stalling a long time.
3224 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
3225 TimeStamp ts_total;
3226 TimeStamp ts_global;
3227 TimeStamp ts;
3228
3229 bool allFun = !strcmp(function, "all");
3230 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
3231 bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
3232 bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
3233 bool methodCount = !strcmp(function, "MethodCount") || allFun;
3234 bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
3235 bool methodAge = !strcmp(function, "MethodAge") || allFun;
3236 bool methodNames = !strcmp(function, "MethodNames") || allFun;
3237 bool discard = !strcmp(function, "discard") || allFun;
3238
3239 if (out == nullptr) {
3240 out = tty;
3241 }
3242
3243 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
3244 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
3245 out->cr();
3246 return;
3247 }
3248
3249 ts_total.update(); // record starting point
3250
3251 if (aggregate) {
3252 print_info(out);
3253 }
3254
3255 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
3256 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
3257 // When we request individual parts of the analysis via the jcmd interface, it is possible
3258 // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
3259 // updated the aggregated data. We will then see a modified, but again consistent, view
3260 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
3261 // a lock across user interaction.
3262
3263 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
3264 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
3265 // leading to an unnecessarily long hold time of the other locks we acquired before.
3266 ts.update(); // record starting point
3267 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
3268 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
3269
3270 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
3271 // Unfortunately, such protection is not sufficient:
3272 // When a new nmethod is created via ciEnv::register_method(), the
3273 // Compile_lock is taken first. After some initializations,
3274 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
3275 // immediately (after finalizing the oop references). To lock out concurrent
3276 // modifiers, we have to grab both locks as well in the described sequence.
3277 //
3278 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
3279 // for the entire duration of aggregation and printing. That makes sure we see
3280 // a consistent picture and do not run into issues caused by concurrent alterations.
3281 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() &&
3282 !Compile_lock->owned_by_self();
3283 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
3284 !CodeCache_lock->owned_by_self();
3285 bool take_global_lock_1 = allFun && should_take_Compile_lock;
3286 bool take_global_lock_2 = allFun && should_take_CodeCache_lock;
3287 bool take_function_lock_1 = !allFun && should_take_Compile_lock;
3288 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock;
3289 bool take_global_locks = take_global_lock_1 || take_global_lock_2;
3290 bool take_function_locks = take_function_lock_1 || take_function_lock_2;
3291
3292 ts_global.update(); // record starting point
3293
3294 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag);
3295 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag);
3296 if (take_global_locks) {
3297 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
3298 ts_global.update(); // record starting point
3299 }
3300
3301 if (aggregate) {
3302 ts.update(); // record starting point
3303 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag);
3304 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag);
3305 if (take_function_locks) {
3306 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
3307 }
3308
3309 ts.update(); // record starting point
3310 CodeCache::aggregate(out, granularity);
3311 if (take_function_locks) {
3312 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
3313 }
3314 }
3315
3316 if (usedSpace) CodeCache::print_usedSpace(out);
3317 if (freeSpace) CodeCache::print_freeSpace(out);
3318 if (methodCount) CodeCache::print_count(out);
3319 if (methodSpace) CodeCache::print_space(out);
3320 if (methodAge) CodeCache::print_age(out);
3321 if (methodNames) {
3322 if (allFun) {
3323 // print_names() can only be used safely if the locks have been continuously held
3324 // since aggregation begin. That is true only for function "all".
3325 CodeCache::print_names(out);
3326 } else {
3327 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
3328 }
3329 }
3330 if (discard) CodeCache::discard(out);
3331
3332 if (take_global_locks) {
3333 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
3334 }
3335 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
3336 }