1 /*
  2  * Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "classfile/javaClasses.hpp"
 26 #include "code/vmreg.inline.hpp"
 27 #include "gc/g1/c2/g1BarrierSetC2.hpp"
 28 #include "gc/g1/g1BarrierSet.hpp"
 29 #include "gc/g1/g1BarrierSetAssembler.hpp"
 30 #include "gc/g1/g1BarrierSetRuntime.hpp"
 31 #include "gc/g1/g1CardTable.hpp"
 32 #include "gc/g1/g1ThreadLocalData.hpp"
 33 #include "gc/g1/g1HeapRegion.hpp"
 34 #include "opto/arraycopynode.hpp"
 35 #include "opto/block.hpp"
 36 #include "opto/compile.hpp"
 37 #include "opto/escape.hpp"
 38 #include "opto/graphKit.hpp"
 39 #include "opto/idealKit.hpp"
 40 #include "opto/machnode.hpp"
 41 #include "opto/macro.hpp"
 42 #include "opto/memnode.hpp"
 43 #include "opto/node.hpp"
 44 #include "opto/output.hpp"
 45 #include "opto/regalloc.hpp"
 46 #include "opto/rootnode.hpp"
 47 #include "opto/runtime.hpp"
 48 #include "opto/type.hpp"
 49 #include "utilities/growableArray.hpp"
 50 #include "utilities/macros.hpp"
 51 
 52 /*
 53  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
 54  * required by SATB to make sure all objects live at the start of the
 55  * marking are kept alive, all reference updates need to any previous
 56  * reference stored before writing.
 57  *
 58  * If the previous value is null there is no need to save the old value.
 59  * References that are null are filtered during runtime by the barrier
 60  * code to avoid unnecessary queuing.
 61  *
 62  * However in the case of newly allocated objects it might be possible to
 63  * prove that the reference about to be overwritten is null during compile
 64  * time and avoid adding the barrier code completely.
 65  *
 66  * The compiler needs to determine that the object in which a field is about
 67  * to be written is newly allocated, and that no prior store to the same field
 68  * has happened since the allocation.
 69  */
 70 bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit,
 71                                                PhaseValues* phase,
 72                                                Node* adr,
 73                                                BasicType bt,
 74                                                uint adr_idx) const {
 75   intptr_t offset = 0;
 76   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 77   AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
 78 
 79   if (offset == Type::OffsetBot) {
 80     return false; // Cannot unalias unless there are precise offsets.
 81   }
 82   if (alloc == nullptr) {
 83     return false; // No allocation found.
 84   }
 85 
 86   intptr_t size_in_bytes = type2aelembytes(bt);
 87   Node* mem = kit->memory(adr_idx); // Start searching here.
 88 
 89   for (int cnt = 0; cnt < 50; cnt++) {
 90     if (mem->is_Store()) {
 91       Node* st_adr = mem->in(MemNode::Address);
 92       intptr_t st_offset = 0;
 93       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 94 
 95       if (st_base == nullptr) {
 96         break; // Inscrutable pointer.
 97       }
 98       if (st_base == base && st_offset == offset) {
 99         // We have found a store with same base and offset as ours.
100         break;
101       }
102       if (st_offset != offset && st_offset != Type::OffsetBot) {
103         const int MAX_STORE = BytesPerLong;
104         if (st_offset >= offset + size_in_bytes ||
105             st_offset <= offset - MAX_STORE ||
106             st_offset <= offset - mem->as_Store()->memory_size()) {
107           // Success:  The offsets are provably independent.
108           // (You may ask, why not just test st_offset != offset and be done?
109           // The answer is that stores of different sizes can co-exist
110           // in the same sequence of RawMem effects.  We sometimes initialize
111           // a whole 'tile' of array elements with a single jint or jlong.)
112           mem = mem->in(MemNode::Memory);
113           continue; // Advance through independent store memory.
114         }
115       }
116       if (st_base != base
117           && MemNode::detect_ptr_independence(base, alloc, st_base,
118                                               AllocateNode::Ideal_allocation(st_base),
119                                               phase)) {
120         // Success: the bases are provably independent.
121         mem = mem->in(MemNode::Memory);
122         continue; // Advance through independent store memory.
123       }
124     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
125       InitializeNode* st_init = mem->in(0)->as_Initialize();
126       AllocateNode* st_alloc = st_init->allocation();
127 
128       // Make sure that we are looking at the same allocation site.
129       // The alloc variable is guaranteed to not be null here from earlier check.
130       if (alloc == st_alloc) {
131         // Check that the initialization is storing null so that no previous store
132         // has been moved up and directly write a reference.
133         Node* captured_store = st_init->find_captured_store(offset,
134                                                             type2aelembytes(T_OBJECT),
135                                                             phase);
136         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
137           return true;
138         }
139       }
140     }
141     // Unless there is an explicit 'continue', we must bail out here,
142     // because 'mem' is an inscrutable memory state (e.g., a call).
143     break;
144   }
145   return false;
146 }
147 
148 /*
149  * G1, similar to any GC with a Young Generation, requires a way to keep track
150  * of references from Old Generation to Young Generation to make sure all live
151  * objects are found. G1 also requires to keep track of object references
152  * between different regions to enable evacuation of old regions, which is done
153  * as part of mixed collections. References are tracked in remembered sets,
154  * which are continuously updated as references are written to with the help of
155  * the post-barrier.
156  *
157  * To reduce the number of updates to the remembered set, the post-barrier
158  * filters out updates to fields in objects located in the Young Generation, the
159  * same region as the reference, when null is being written, or if the card is
160  * already marked as dirty by an earlier write.
161  *
162  * Under certain circumstances it is possible to avoid generating the
163  * post-barrier completely, if it is possible during compile time to prove the
164  * object is newly allocated and that no safepoint exists between the allocation
165  * and the store. This can be seen as a compile-time version of the
166  * above-mentioned Young Generation filter.
167  *
168  * In the case of a slow allocation, the allocation code must handle the barrier
169  * as part of the allocation if the allocated object is not located in the
170  * nursery; this would happen for humongous objects.
171  */
172 bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit,
173                                                 PhaseValues* phase, Node* store_ctrl,
174                                                 Node* adr) const {
175   intptr_t      offset = 0;
176   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
177   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base);
178 
179   if (offset == Type::OffsetBot) {
180     return false; // Cannot unalias unless there are precise offsets.
181   }
182   if (alloc == nullptr) {
183     return false; // No allocation found.
184   }
185 
186   Node* mem = store_ctrl;   // Start search from Store node.
187   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
188     InitializeNode* st_init = mem->in(0)->as_Initialize();
189     AllocateNode*  st_alloc = st_init->allocation();
190     // Make sure we are looking at the same allocation
191     if (alloc == st_alloc) {
192       return true;
193     }
194   }
195 
196   return false;
197 }
198 
199 Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
200   DecoratorSet decorators = access.decorators();
201   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
202   bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
203   bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
204   // If we are reading the value of the referent field of a Reference object, we
205   // need to record the referent in an SATB log buffer using the pre-barrier
206   // mechanism. Also we need to add a memory barrier to prevent commoning reads
207   // from this field across safepoints, since GC can change its value.
208   bool need_read_barrier = ((on_weak || on_phantom) && !no_keepalive);
209   if (access.is_oop() && need_read_barrier) {
210     access.set_barrier_data(G1C2BarrierPre);
211   }
212   return CardTableBarrierSetC2::load_at_resolved(access, val_type);
213 }
214 
215 void G1BarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
216   eliminate_gc_barrier_data(node);
217 }
218 
219 void G1BarrierSetC2::eliminate_gc_barrier_data(Node* node) const {
220   if (node->is_LoadStore()) {
221     LoadStoreNode* loadstore = node->as_LoadStore();
222     loadstore->set_barrier_data(0);
223   } else if (node->is_Mem()) {
224     MemNode* mem = node->as_Mem();
225     mem->set_barrier_data(0);
226   }
227 }
228 
229 static void refine_barrier_by_new_val_type(const Node* n) {
230   if (n->Opcode() != Op_StoreP &&
231       n->Opcode() != Op_StoreN) {
232     return;
233   }
234   MemNode* store = n->as_Mem();
235   const Node* newval = n->in(MemNode::ValueIn);
236   assert(newval != nullptr, "");
237   const Type* newval_bottom = newval->bottom_type();
238   TypePtr::PTR newval_type = newval_bottom->make_ptr()->ptr();
239   uint8_t barrier_data = store->barrier_data();
240   if (!newval_bottom->isa_oopptr() &&
241       !newval_bottom->isa_narrowoop() &&
242       newval_type != TypePtr::Null) {
243     // newval is neither an OOP nor null, so there is no barrier to refine.
244     assert(barrier_data == 0, "non-OOP stores should have no barrier data");
245     return;
246   }
247   if (barrier_data == 0) {
248     // No barrier to refine.
249     return;
250   }
251   if (newval_type == TypePtr::Null) {
252     // Simply elide post-barrier if writing null.
253     barrier_data &= ~G1C2BarrierPost;
254     barrier_data &= ~G1C2BarrierPostNotNull;
255   } else if (((barrier_data & G1C2BarrierPost) != 0) &&
256              newval_type == TypePtr::NotNull) {
257     // If the post-barrier has not been elided yet (e.g. due to newval being
258     // freshly allocated), mark it as not-null (simplifies barrier tests and
259     // compressed OOPs logic).
260     barrier_data |= G1C2BarrierPostNotNull;
261   }
262   store->set_barrier_data(barrier_data);
263   return;
264 }
265 
266 // Refine (not really expand) G1 barriers by looking at the new value type
267 // (whether it is necessarily null or necessarily non-null).
268 bool G1BarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
269   ResourceMark rm;
270   VectorSet visited;
271   Node_List worklist;
272   worklist.push(C->root());
273   while (worklist.size() > 0) {
274     Node* n = worklist.pop();
275     if (visited.test_set(n->_idx)) {
276       continue;
277     }
278     refine_barrier_by_new_val_type(n);
279     for (uint j = 0; j < n->req(); j++) {
280       Node* in = n->in(j);
281       if (in != nullptr) {
282         worklist.push(in);
283       }
284     }
285   }
286   return false;
287 }
288 
289 uint G1BarrierSetC2::estimated_barrier_size(const Node* node) const {
290   // These Ideal node counts are extracted from the pre-matching Ideal graph
291   // generated when compiling the following method with early barrier expansion:
292   //   static void write(MyObject obj1, Object o) {
293   //     obj1.o1 = o;
294   //   }
295   uint8_t barrier_data = MemNode::barrier_data(node);
296   uint nodes = 0;
297   if ((barrier_data & G1C2BarrierPre) != 0) {
298     nodes += 50;
299   }
300   if ((barrier_data & G1C2BarrierPost) != 0) {
301     nodes += 60;
302   }
303   return nodes;
304 }
305 
306 bool G1BarrierSetC2::can_initialize_object(const StoreNode* store) const {
307   assert(store->Opcode() == Op_StoreP || store->Opcode() == Op_StoreN, "OOP store expected");
308   // It is OK to move the store across the object initialization boundary only
309   // if it does not have any barrier, or if it has barriers that can be safely
310   // elided (because of the compensation steps taken on the allocation slow path
311   // when ReduceInitialCardMarks is enabled).
312   return (MemNode::barrier_data(store) == 0) || use_ReduceInitialCardMarks();
313 }
314 
315 void G1BarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
316   if (ac->is_clone_inst() && !use_ReduceInitialCardMarks()) {
317     clone_in_runtime(phase, ac, G1BarrierSetRuntime::clone_addr(), "G1BarrierSetRuntime::clone");
318     return;
319   }
320   BarrierSetC2::clone_at_expansion(phase, ac);
321 }
322 
323 Node* G1BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
324   DecoratorSet decorators = access.decorators();
325   bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
326   bool in_heap = (decorators & IN_HEAP) != 0;
327   bool tightly_coupled_alloc = (decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0;
328   bool need_store_barrier = !(tightly_coupled_alloc && use_ReduceInitialCardMarks()) && (in_heap || anonymous);
329   bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
330   if (access.is_oop() && need_store_barrier) {
331     access.set_barrier_data(get_store_barrier(access));
332     if (tightly_coupled_alloc) {
333       assert(!use_ReduceInitialCardMarks(),
334              "post-barriers are only needed for tightly-coupled initialization stores when ReduceInitialCardMarks is disabled");
335       // Pre-barriers are unnecessary for tightly-coupled initialization stores.
336       access.set_barrier_data(access.barrier_data() & ~G1C2BarrierPre);
337     }
338   }
339   if (no_keepalive) {
340     // No keep-alive means no need for the pre-barrier.
341     access.set_barrier_data(access.barrier_data() & ~G1C2BarrierPre);
342   }
343   return BarrierSetC2::store_at_resolved(access, val);
344 }
345 
346 Node* G1BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
347                                                      Node* new_val, const Type* value_type) const {
348   GraphKit* kit = access.kit();
349   if (!access.is_oop()) {
350     return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
351   }
352   access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost);
353   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
354 }
355 
356 Node* G1BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
357                                                       Node* new_val, const Type* value_type) const {
358   GraphKit* kit = access.kit();
359   if (!access.is_oop()) {
360     return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
361   }
362   access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost);
363   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
364 }
365 
366 Node* G1BarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const {
367   GraphKit* kit = access.kit();
368   if (!access.is_oop()) {
369     return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, value_type);
370   }
371   access.set_barrier_data(G1C2BarrierPre | G1C2BarrierPost);
372   return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, value_type);
373 }
374 
375 class G1BarrierSetC2State : public BarrierSetC2State {
376 private:
377   GrowableArray<G1BarrierStubC2*>* _stubs;
378 
379 public:
380   G1BarrierSetC2State(Arena* arena)
381     : BarrierSetC2State(arena),
382       _stubs(new (arena) GrowableArray<G1BarrierStubC2*>(arena, 8,  0, nullptr)) {}
383 
384   GrowableArray<G1BarrierStubC2*>* stubs() {
385     return _stubs;
386   }
387 
388   bool needs_liveness_data(const MachNode* mach) const {
389     return G1PreBarrierStubC2::needs_barrier(mach) ||
390            G1PostBarrierStubC2::needs_barrier(mach);
391   }
392 
393   bool needs_livein_data() const {
394     return false;
395   }
396 };
397 
398 static G1BarrierSetC2State* barrier_set_state() {
399   return reinterpret_cast<G1BarrierSetC2State*>(Compile::current()->barrier_set_state());
400 }
401 
402 G1BarrierStubC2::G1BarrierStubC2(const MachNode* node) : BarrierStubC2(node) {}
403 
404 G1PreBarrierStubC2::G1PreBarrierStubC2(const MachNode* node) : G1BarrierStubC2(node) {}
405 
406 bool G1PreBarrierStubC2::needs_barrier(const MachNode* node) {
407   return (node->barrier_data() & G1C2BarrierPre) != 0;
408 }
409 
410 G1PreBarrierStubC2* G1PreBarrierStubC2::create(const MachNode* node) {
411   G1PreBarrierStubC2* const stub = new (Compile::current()->comp_arena()) G1PreBarrierStubC2(node);
412   if (!Compile::current()->output()->in_scratch_emit_size()) {
413     barrier_set_state()->stubs()->append(stub);
414   }
415   return stub;
416 }
417 
418 void G1PreBarrierStubC2::initialize_registers(Register obj, Register pre_val, Register thread, Register tmp1, Register tmp2) {
419   _obj = obj;
420   _pre_val = pre_val;
421   _thread = thread;
422   _tmp1 = tmp1;
423   _tmp2 = tmp2;
424 }
425 
426 Register G1PreBarrierStubC2::obj() const {
427   return _obj;
428 }
429 
430 Register G1PreBarrierStubC2::pre_val() const {
431   return _pre_val;
432 }
433 
434 Register G1PreBarrierStubC2::thread() const {
435   return _thread;
436 }
437 
438 Register G1PreBarrierStubC2::tmp1() const {
439   return _tmp1;
440 }
441 
442 Register G1PreBarrierStubC2::tmp2() const {
443   return _tmp2;
444 }
445 
446 void G1PreBarrierStubC2::emit_code(MacroAssembler& masm) {
447   G1BarrierSetAssembler* bs = static_cast<G1BarrierSetAssembler*>(BarrierSet::barrier_set()->barrier_set_assembler());
448   bs->generate_c2_pre_barrier_stub(&masm, this);
449 }
450 
451 G1PostBarrierStubC2::G1PostBarrierStubC2(const MachNode* node) : G1BarrierStubC2(node) {}
452 
453 bool G1PostBarrierStubC2::needs_barrier(const MachNode* node) {
454   return (node->barrier_data() & G1C2BarrierPost) != 0;
455 }
456 
457 G1PostBarrierStubC2* G1PostBarrierStubC2::create(const MachNode* node) {
458   G1PostBarrierStubC2* const stub = new (Compile::current()->comp_arena()) G1PostBarrierStubC2(node);
459   if (!Compile::current()->output()->in_scratch_emit_size()) {
460     barrier_set_state()->stubs()->append(stub);
461   }
462   return stub;
463 }
464 
465 void G1PostBarrierStubC2::initialize_registers(Register thread, Register tmp1, Register tmp2, Register tmp3) {
466   _thread = thread;
467   _tmp1 = tmp1;
468   _tmp2 = tmp2;
469   _tmp3 = tmp3;
470 }
471 
472 Register G1PostBarrierStubC2::thread() const {
473   return _thread;
474 }
475 
476 Register G1PostBarrierStubC2::tmp1() const {
477   return _tmp1;
478 }
479 
480 Register G1PostBarrierStubC2::tmp2() const {
481   return _tmp2;
482 }
483 
484 Register G1PostBarrierStubC2::tmp3() const {
485   return _tmp3;
486 }
487 
488 void G1PostBarrierStubC2::emit_code(MacroAssembler& masm) {
489   G1BarrierSetAssembler* bs = static_cast<G1BarrierSetAssembler*>(BarrierSet::barrier_set()->barrier_set_assembler());
490   bs->generate_c2_post_barrier_stub(&masm, this);
491 }
492 
493 void* G1BarrierSetC2::create_barrier_state(Arena* comp_arena) const {
494   return new (comp_arena) G1BarrierSetC2State(comp_arena);
495 }
496 
497 int G1BarrierSetC2::get_store_barrier(C2Access& access) const {
498   if (!access.is_parse_access()) {
499     // Only support for eliding barriers at parse time for now.
500     return G1C2BarrierPre | G1C2BarrierPost;
501   }
502   GraphKit* kit = (static_cast<C2ParseAccess&>(access)).kit();
503   Node* ctl = kit->control();
504   Node* adr = access.addr().node();
505   uint adr_idx = kit->C->get_alias_index(access.addr().type());
506   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory");
507 
508   bool can_remove_pre_barrier = g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, access.type(), adr_idx);
509 
510   // We can skip marks on a freshly-allocated object in Eden. Keep this code in
511   // sync with CardTableBarrierSet::on_slowpath_allocation_exit. That routine
512   // informs GC to take appropriate compensating steps, upon a slow-path
513   // allocation, so as to make this card-mark elision safe.
514   // The post-barrier can also be removed if null is written. This case is
515   // handled by G1BarrierSetC2::expand_barriers, which runs at the end of C2's
516   // platform-independent optimizations to exploit stronger type information.
517   bool can_remove_post_barrier = use_ReduceInitialCardMarks() &&
518     ((access.base() == kit->just_allocated_object(ctl)) ||
519      g1_can_remove_post_barrier(kit, &kit->gvn(), ctl, adr));
520 
521   int barriers = 0;
522   if (!can_remove_pre_barrier) {
523     barriers |= G1C2BarrierPre;
524   }
525   if (!can_remove_post_barrier) {
526     barriers |= G1C2BarrierPost;
527   }
528 
529   return barriers;
530 }
531 
532 void G1BarrierSetC2::elide_dominated_barrier(MachNode* mach) const {
533   uint8_t barrier_data = mach->barrier_data();
534   barrier_data &= ~G1C2BarrierPre;
535   if (CardTableBarrierSetC2::use_ReduceInitialCardMarks()) {
536     barrier_data &= ~G1C2BarrierPost;
537     barrier_data &= ~G1C2BarrierPostNotNull;
538   }
539   mach->set_barrier_data(barrier_data);
540 }
541 
542 void G1BarrierSetC2::analyze_dominating_barriers() const {
543   ResourceMark rm;
544   PhaseCFG* const cfg = Compile::current()->cfg();
545 
546   // Find allocations and memory accesses (stores and atomic operations), and
547   // track them in lists.
548   Node_List accesses;
549   Node_List allocations;
550   for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
551     const Block* const block = cfg->get_block(i);
552     for (uint j = 0; j < block->number_of_nodes(); ++j) {
553       Node* const node = block->get_node(j);
554       if (node->is_Phi()) {
555         if (BarrierSetC2::is_allocation(node)) {
556           allocations.push(node);
557         }
558         continue;
559       } else if (!node->is_Mach()) {
560         continue;
561       }
562 
563       MachNode* const mach = node->as_Mach();
564       switch (mach->ideal_Opcode()) {
565       case Op_StoreP:
566       case Op_StoreN:
567       case Op_CompareAndExchangeP:
568       case Op_CompareAndSwapP:
569       case Op_GetAndSetP:
570       case Op_CompareAndExchangeN:
571       case Op_CompareAndSwapN:
572       case Op_GetAndSetN:
573         if (mach->barrier_data() != 0) {
574           accesses.push(mach);
575         }
576         break;
577       default:
578         break;
579       }
580     }
581   }
582 
583   // Find dominating allocations for each memory access (store or atomic
584   // operation) and elide barriers if there is no safepoint poll in between.
585   elide_dominated_barriers(accesses, allocations);
586 }
587 
588 void G1BarrierSetC2::late_barrier_analysis() const {
589   compute_liveness_at_stubs();
590   analyze_dominating_barriers();
591 }
592 
593 void G1BarrierSetC2::emit_stubs(CodeBuffer& cb) const {
594   MacroAssembler masm(&cb);
595   GrowableArray<G1BarrierStubC2*>* const stubs = barrier_set_state()->stubs();
596   for (int i = 0; i < stubs->length(); i++) {
597     // Make sure there is enough space in the code buffer
598     if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == nullptr) {
599       ciEnv::current()->record_failure("CodeCache is full");
600       return;
601     }
602     stubs->at(i)->emit_code(masm);
603   }
604   masm.flush();
605 }
606 
607 #ifndef PRODUCT
608 void G1BarrierSetC2::dump_barrier_data(const MachNode* mach, outputStream* st) const {
609   if ((mach->barrier_data() & G1C2BarrierPre) != 0) {
610     st->print("pre ");
611   }
612   if ((mach->barrier_data() & G1C2BarrierPost) != 0) {
613     st->print("post ");
614   }
615   if ((mach->barrier_data() & G1C2BarrierPostNotNull) != 0) {
616     st->print("notnull ");
617   }
618 }
619 #endif // !PRODUCT