1 /* 2 * Copyright (c) 2018, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/codeCache.hpp" 27 #include "code/nmethod.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/barrierSetNMethod.hpp" 31 #include "gc/shared/collectedHeap.hpp" 32 #include "logging/log.hpp" 33 #include "memory/iterator.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/access.inline.hpp" 36 #include "oops/method.inline.hpp" 37 #include "runtime/frame.inline.hpp" 38 #include "runtime/javaThread.hpp" 39 #include "runtime/threadWXSetters.inline.hpp" 40 #include "runtime/threads.hpp" 41 #include "utilities/debug.hpp" 42 #if INCLUDE_JVMCI 43 #include "jvmci/jvmciRuntime.hpp" 44 #endif 45 46 int BarrierSetNMethod::disarmed_guard_value() const { 47 return *disarmed_guard_value_address(); 48 } 49 50 bool BarrierSetNMethod::supports_entry_barrier(nmethod* nm) { 51 if (nm->method()->is_method_handle_intrinsic()) { 52 return false; 53 } 54 55 if (nm->method()->is_continuation_enter_intrinsic()) { 56 return false; 57 } 58 59 if (nm->method()->is_continuation_yield_intrinsic()) { 60 return false; 61 } 62 63 if (nm->method()->is_continuation_native_intrinsic()) { 64 guarantee(false, "Unknown Continuation native intrinsic"); 65 return false; 66 } 67 68 if (nm->is_native_method() || nm->is_compiled_by_c2() || nm->is_compiled_by_c1() || nm->is_compiled_by_jvmci()) { 69 return true; 70 } 71 72 return false; 73 } 74 75 void BarrierSetNMethod::disarm(nmethod* nm) { 76 set_guard_value(nm, disarmed_guard_value()); 77 } 78 79 bool BarrierSetNMethod::is_armed(nmethod* nm) { 80 return guard_value(nm) != disarmed_guard_value(); 81 } 82 83 bool BarrierSetNMethod::nmethod_entry_barrier(nmethod* nm) { 84 class OopKeepAliveClosure : public OopClosure { 85 public: 86 virtual void do_oop(oop* p) { 87 // Loads on nmethod oops are phantom strength. 88 // 89 // Note that we could have used NativeAccess<ON_PHANTOM_OOP_REF>::oop_load(p), 90 // but that would have *required* us to convert the returned LoadOopProxy to an oop, 91 // or else keep alive load barrier will never be called. It's the LoadOopProxy-to-oop 92 // conversion that performs the load barriers. This is too subtle, so we instead 93 // perform an explicit keep alive call. 94 oop obj = NativeAccess<ON_PHANTOM_OOP_REF | AS_NO_KEEPALIVE>::oop_load(p); 95 if (obj != nullptr) { 96 Universe::heap()->keep_alive(obj); 97 } 98 } 99 100 virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } 101 }; 102 103 if (!is_armed(nm)) { 104 // Some other thread got here first and healed the oops 105 // and disarmed the nmethod. No need to continue. 106 return true; 107 } 108 109 // If the nmethod is the only thing pointing to the oops, and we are using a 110 // SATB GC, then it is important that this code marks them live. 111 // Also, with concurrent GC, it is possible that frames in continuation stack 112 // chunks are not visited if they are allocated after concurrent GC started. 113 OopKeepAliveClosure cl; 114 nm->oops_do(&cl); 115 116 // CodeCache unloading support 117 nm->mark_as_maybe_on_stack(); 118 119 disarm(nm); 120 121 return true; 122 } 123 124 int* BarrierSetNMethod::disarmed_guard_value_address() const { 125 return (int*) &_current_phase; 126 } 127 128 ByteSize BarrierSetNMethod::thread_disarmed_guard_value_offset() const { 129 return Thread::nmethod_disarmed_guard_value_offset(); 130 } 131 132 class BarrierSetNMethodArmClosure : public ThreadClosure { 133 private: 134 int _disarmed_guard_value; 135 136 public: 137 BarrierSetNMethodArmClosure(int disarmed_guard_value) : 138 _disarmed_guard_value(disarmed_guard_value) {} 139 140 virtual void do_thread(Thread* thread) { 141 thread->set_nmethod_disarmed_guard_value(_disarmed_guard_value); 142 } 143 }; 144 145 void BarrierSetNMethod::arm_all_nmethods() { 146 // Change to a new global GC phase. Doing this requires changing the thread-local 147 // disarm value for all threads, to reflect the new GC phase. 148 // We wrap around at INT_MAX. That means that we assume nmethods won't have ABA 149 // problems in their nmethod disarm values after INT_MAX - 1 GCs. Every time a GC 150 // completes, ABA problems are removed, but if a concurrent GC is started and then 151 // aborted N times, that is when there could be ABA problems. If there are anything 152 // close to INT_MAX - 1 GCs starting without being able to finish, something is 153 // seriously wrong. 154 ++_current_phase; 155 if (_current_phase == INT_MAX) { 156 _current_phase = 1; 157 } 158 BarrierSetNMethodArmClosure cl(_current_phase); 159 Threads::threads_do(&cl); 160 161 #if (defined(AARCH64) || defined(RISCV64)) && !defined(ZERO) 162 // We clear the patching epoch when disarming nmethods, so that 163 // the counter won't overflow. 164 BarrierSetAssembler::clear_patching_epoch(); 165 #endif 166 } 167 168 int BarrierSetNMethod::nmethod_stub_entry_barrier(address* return_address_ptr) { 169 // Enable WXWrite: the function is called directly from nmethod_entry_barrier 170 // stub. 171 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, Thread::current())); 172 173 address return_address = *return_address_ptr; 174 AARCH64_PORT_ONLY(return_address = pauth_strip_pointer(return_address)); 175 CodeBlob* cb = CodeCache::find_blob(return_address); 176 assert(cb != nullptr, "invariant"); 177 178 nmethod* nm = cb->as_nmethod(); 179 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 180 181 // Called upon first entry after being armed 182 bool may_enter = bs_nm->nmethod_entry_barrier(nm); 183 assert(!nm->is_osr_method() || may_enter, "OSR nmethods should always be entrant after migration"); 184 185 // In case a concurrent thread disarmed the nmethod, we need to ensure the new instructions 186 // are made visible, by using a cross modify fence. Note that this is synchronous cross modifying 187 // code, where the existence of new instructions is communicated via data (the guard value). 188 // This cross modify fence is only needed when the nmethod entry barrier modifies the 189 // instructions. Not all platforms currently do that, so if this check becomes expensive, 190 // it can be made conditional on the nmethod_patching_type. 191 OrderAccess::cross_modify_fence(); 192 193 // Diagnostic option to force deoptimization 1 in 10 times. It is otherwise 194 // a very rare event. 195 if (DeoptimizeNMethodBarriersALot && !nm->is_osr_method()) { 196 static volatile uint32_t counter=0; 197 if (Atomic::add(&counter, 1u) % 10 == 0) { 198 may_enter = false; 199 } 200 } 201 202 if (!may_enter) { 203 log_trace(nmethod, barrier)("Deoptimizing nmethod: " PTR_FORMAT, p2i(nm)); 204 bs_nm->deoptimize(nm, return_address_ptr); 205 } 206 return may_enter ? 0 : 1; 207 } 208 209 bool BarrierSetNMethod::nmethod_osr_entry_barrier(nmethod* nm) { 210 assert(nm->is_osr_method(), "Should not reach here"); 211 log_trace(nmethod, barrier)("Running osr nmethod entry barrier: " PTR_FORMAT, p2i(nm)); 212 bool result = nmethod_entry_barrier(nm); 213 OrderAccess::cross_modify_fence(); 214 return result; 215 }