1 /*
  2  * Copyright (c) 2018, 2026, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "code/codeCache.hpp"
 26 #include "code/nmethod.hpp"
 27 #include "gc/shared/barrierSet.hpp"
 28 #include "gc/shared/barrierSetAssembler.hpp"
 29 #include "gc/shared/barrierSetNMethod.hpp"
 30 #include "gc/shared/collectedHeap.hpp"
 31 #include "logging/log.hpp"
 32 #include "memory/iterator.hpp"
 33 #include "memory/universe.hpp"
 34 #include "oops/access.inline.hpp"
 35 #include "oops/method.inline.hpp"
 36 #include "runtime/atomic.hpp"
 37 #include "runtime/frame.inline.hpp"
 38 #include "runtime/javaThread.hpp"
 39 #include "runtime/threads.hpp"
 40 #include "runtime/threadWXSetters.inline.hpp"
 41 #include "utilities/debug.hpp"
 42 #if INCLUDE_JVMCI
 43 #include "jvmci/jvmciRuntime.hpp"
 44 #endif
 45 
 46 int BarrierSetNMethod::disarmed_guard_value() const {
 47   return *disarmed_guard_value_address();
 48 }
 49 
 50 bool BarrierSetNMethod::supports_entry_barrier(nmethod* nm) {
 51   if (nm->method()->is_method_handle_intrinsic()) {
 52     return false;
 53   }
 54 
 55   if (nm->method()->is_continuation_enter_intrinsic()) {
 56     return false;
 57   }
 58 
 59   if (nm->method()->is_continuation_yield_intrinsic()) {
 60     return false;
 61   }
 62 
 63   if (nm->method()->is_continuation_native_intrinsic()) {
 64     guarantee(false, "Unknown Continuation native intrinsic");
 65     return false;
 66   }
 67 
 68   if (nm->is_native_method() || nm->is_compiled_by_c2() || nm->is_compiled_by_c1() || nm->is_compiled_by_jvmci()) {
 69     return true;
 70   }
 71 
 72   return false;
 73 }
 74 
 75 void BarrierSetNMethod::disarm(nmethod* nm) {
 76   set_guard_value(nm, disarmed_guard_value());
 77 }
 78 
 79 void BarrierSetNMethod::guard_with(nmethod* nm, int value) {
 80   assert((value & not_entrant) == 0, "not_entrant bit is reserved");
 81   set_guard_value(nm, value);
 82 }
 83 
 84 bool BarrierSetNMethod::is_armed(nmethod* nm) {
 85   return (guard_value(nm) & ~not_entrant) != disarmed_guard_value();
 86 }
 87 
 88 bool BarrierSetNMethod::nmethod_entry_barrier(nmethod* nm) {
 89   class OopKeepAliveClosure : public OopClosure {
 90   public:
 91     virtual void do_oop(oop* p) {
 92       // Loads on nmethod oops are phantom strength.
 93       //
 94       // Note that we could have used NativeAccess<ON_PHANTOM_OOP_REF>::oop_load(p),
 95       // but that would have *required* us to convert the returned LoadOopProxy to an oop,
 96       // or else keep alive load barrier will never be called. It's the LoadOopProxy-to-oop
 97       // conversion that performs the load barriers. This is too subtle, so we instead
 98       // perform an explicit keep alive call.
 99       oop obj = NativeAccess<ON_PHANTOM_OOP_REF | AS_NO_KEEPALIVE>::oop_load(p);
100       if (obj != nullptr) {
101         Universe::heap()->keep_alive(obj);
102       }
103     }
104 
105     virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
106   };
107 
108   if (!is_armed(nm)) {
109     // Some other thread got here first and healed the oops
110     // and disarmed the nmethod. No need to continue.
111     return true;
112   }
113 
114   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, Thread::current()));
115 
116   // If the nmethod is the only thing pointing to the oops, and we are using a
117   // SATB GC, then it is important that this code marks them live.
118   // Also, with concurrent GC, it is possible that frames in continuation stack
119   // chunks are not visited if they are allocated after concurrent GC started.
120   OopKeepAliveClosure cl;
121   nm->oops_do(&cl);
122 
123   // CodeCache unloading support
124   nm->mark_as_maybe_on_stack();
125 
126   disarm(nm);
127 
128   return true;
129 }
130 
131 int* BarrierSetNMethod::disarmed_guard_value_address() const {
132   return (int*) &_current_phase;
133 }
134 
135 ByteSize BarrierSetNMethod::thread_disarmed_guard_value_offset() const {
136   return Thread::nmethod_disarmed_guard_value_offset();
137 }
138 
139 class BarrierSetNMethodArmClosure : public ThreadClosure {
140 private:
141   int _disarmed_guard_value;
142 
143 public:
144   BarrierSetNMethodArmClosure(int disarmed_guard_value) :
145       _disarmed_guard_value(disarmed_guard_value) {}
146 
147   virtual void do_thread(Thread* thread) {
148     thread->set_nmethod_disarmed_guard_value(_disarmed_guard_value);
149   }
150 };
151 
152 void BarrierSetNMethod::arm_all_nmethods() {
153   // Change to a new global GC phase. Doing this requires changing the thread-local
154   // disarm value for all threads, to reflect the new GC phase.
155   // We wrap around at INT_MAX. That means that we assume nmethods won't have ABA
156   // problems in their nmethod disarm values after INT_MAX - 1 GCs. Every time a GC
157   // completes, ABA problems are removed, but if a concurrent GC is started and then
158   // aborted N times, that is when there could be ABA problems. If there are anything
159   // close to INT_MAX - 1 GCs starting without being able to finish, something is
160   // seriously wrong.
161   ++_current_phase;
162   if (_current_phase == INT_MAX) {
163     _current_phase = initial;
164   }
165   BarrierSetNMethodArmClosure cl(_current_phase);
166   Threads::threads_do(&cl);
167 
168 #if (defined(AARCH64) || defined(RISCV64)) && !defined(ZERO)
169   // We clear the patching epoch when disarming nmethods, so that
170   // the counter won't overflow.
171   BarrierSetAssembler::clear_patching_epoch();
172 #endif
173 }
174 
175 int BarrierSetNMethod::nmethod_stub_entry_barrier(address* return_address_ptr) {
176   address return_address = *return_address_ptr;
177   AARCH64_PORT_ONLY(return_address = pauth_strip_pointer(return_address));
178   CodeBlob* cb = CodeCache::find_blob(return_address);
179   assert(cb != nullptr, "invariant");
180 
181   nmethod* nm = cb->as_nmethod();
182   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
183 
184   // Called upon first entry after being armed
185   bool may_enter = !bs_nm->is_not_entrant(nm) && bs_nm->nmethod_entry_barrier(nm);
186   assert(!nm->is_osr_method() || may_enter, "OSR nmethods should always be entrant after migration");
187 
188   if (may_enter) {
189     // In case a concurrent thread disarmed the nmethod, we need to ensure the new instructions
190     // are made visible, by using a cross modify fence. Note that this is synchronous cross modifying
191     // code, where the existence of new instructions is communicated via data (the guard value).
192     // This cross modify fence is only needed when the nmethod entry barrier modifies the
193     // instructions. Not all platforms currently do that, so if this check becomes expensive,
194     // it can be made conditional on the nmethod_patching_type.
195     OrderAccess::cross_modify_fence();
196 
197     // Diagnostic option to force deoptimization 1 in 10 times. It is otherwise
198     // a very rare event.
199     if (DeoptimizeNMethodBarriersALot && !nm->is_osr_method()) {
200       static Atomic<uint32_t> counter{0};
201       if (counter.add_then_fetch(1u) % 10 == 0) {
202         may_enter = false;
203       }
204     }
205   }
206 
207   if (!may_enter) {
208     log_trace(nmethod, barrier)("Deoptimizing nmethod: " PTR_FORMAT, p2i(nm));
209     bs_nm->deoptimize(nm, return_address_ptr);
210   }
211   return may_enter ? 0 : 1;
212 }
213 
214 bool BarrierSetNMethod::nmethod_osr_entry_barrier(nmethod* nm) {
215   assert(nm->is_osr_method(), "Should not reach here");
216   log_trace(nmethod, barrier)("Running osr nmethod entry barrier: " PTR_FORMAT, p2i(nm));
217   bool result = nmethod_entry_barrier(nm);
218   OrderAccess::cross_modify_fence();
219   return result;
220 }
221 
222 oop BarrierSetNMethod::oop_load_no_keepalive(const nmethod* nm, int index) {
223   return NativeAccess<AS_NO_KEEPALIVE>::oop_load(nm->oop_addr_at(index));
224 }
225 
226 oop BarrierSetNMethod::oop_load_phantom(const nmethod* nm, int index) {
227   return NativeAccess<ON_PHANTOM_OOP_REF>::oop_load(nm->oop_addr_at(index));
228 }
229 
230 // Make the nmethod permanently not-entrant, so that nmethod_stub_entry_barrier() will call
231 // deoptimize() to redirect the caller to SharedRuntime::get_handle_wrong_method_stub().
232 // A sticky armed bit is set and other bits are preserved.  As a result, a call to
233 // nmethod_stub_entry_barrier() may appear to be spurious, because is_armed() still returns
234 // false and nmethod_entry_barrier() is not called.
235 void BarrierSetNMethod::make_not_entrant(nmethod* nm) {
236   set_guard_value(nm, not_entrant, not_entrant);
237 }
238 
239 bool BarrierSetNMethod::is_not_entrant(nmethod* nm) {
240   return (guard_value(nm) & not_entrant) != 0;
241 }