1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "interpreter/interpreter.hpp" 27 #include "interpreter/interpreterRuntime.hpp" 28 #include "interpreter/interp_masm.hpp" 29 #include "interpreter/templateInterpreter.hpp" 30 #include "interpreter/templateInterpreterGenerator.hpp" 31 #include "interpreter/templateTable.hpp" 32 #include "logging/log.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "prims/jvmtiExport.hpp" 35 #include "runtime/safepoint.hpp" 36 #include "runtime/timerTrace.hpp" 37 #include "utilities/checkedCast.hpp" 38 #include "utilities/copy.hpp" 39 40 # define __ _masm-> 41 42 void TemplateInterpreter::initialize_stub() { 43 // assertions 44 assert(_code == nullptr, "must only initialize once"); 45 assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length, 46 "dispatch table too small"); 47 48 // allocate interpreter 49 int code_size = InterpreterCodeSize; 50 NOT_PRODUCT(code_size *= 4;) // debug uses extra interpreter code space 51 // 270+ interpreter codelets are generated and each of them is aligned to HeapWordSize, 52 // plus their code section is aligned to CodeEntryAlignement. So we need additional size due to alignment. 53 int max_aligned_codelets = 280; 54 int max_aligned_bytes = checked_cast<int>(max_aligned_codelets * (HeapWordSize + CodeEntryAlignment)); 55 _code = new StubQueue(new InterpreterCodeletInterface, code_size + max_aligned_bytes, nullptr, 56 "Interpreter"); 57 } 58 59 void TemplateInterpreter::initialize_code() { 60 AbstractInterpreter::initialize(); 61 62 TemplateTable::initialize(); 63 64 // generate interpreter 65 { ResourceMark rm; 66 TraceTime timer("Interpreter generation", TRACETIME_LOG(Info, startuptime)); 67 TemplateInterpreterGenerator g; 68 // Free the unused memory not occupied by the interpreter and the stubs 69 _code->deallocate_unused_tail(); 70 } 71 72 if (PrintInterpreter) { 73 ResourceMark rm; 74 print(); 75 } 76 77 // initialize dispatch table 78 _active_table = _normal_table; 79 } 80 81 //------------------------------------------------------------------------------------------------------------------------ 82 // Implementation of EntryPoint 83 84 EntryPoint::EntryPoint() { 85 assert(number_of_states == 10, "check the code below"); 86 _entry[btos] = nullptr; 87 _entry[ztos] = nullptr; 88 _entry[ctos] = nullptr; 89 _entry[stos] = nullptr; 90 _entry[atos] = nullptr; 91 _entry[itos] = nullptr; 92 _entry[ltos] = nullptr; 93 _entry[ftos] = nullptr; 94 _entry[dtos] = nullptr; 95 _entry[vtos] = nullptr; 96 } 97 98 99 EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) { 100 assert(number_of_states == 10, "check the code below"); 101 _entry[btos] = bentry; 102 _entry[ztos] = zentry; 103 _entry[ctos] = centry; 104 _entry[stos] = sentry; 105 _entry[atos] = aentry; 106 _entry[itos] = ientry; 107 _entry[ltos] = lentry; 108 _entry[ftos] = fentry; 109 _entry[dtos] = dentry; 110 _entry[vtos] = ventry; 111 } 112 113 EntryPoint::EntryPoint(address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) { 114 assert(number_of_states == 10, "check the code below"); 115 _entry[btos] = ientry; 116 _entry[ztos] = ientry; 117 _entry[ctos] = ientry; 118 _entry[stos] = ientry; 119 _entry[atos] = aentry; 120 _entry[itos] = ientry; 121 _entry[ltos] = lentry; 122 _entry[ftos] = fentry; 123 _entry[dtos] = dentry; 124 _entry[vtos] = ventry; 125 } 126 127 void EntryPoint::set_entry(TosState state, address entry) { 128 assert(0 <= state && state < number_of_states, "state out of bounds"); 129 _entry[state] = entry; 130 } 131 132 133 address EntryPoint::entry(TosState state) const { 134 assert(0 <= state && state < number_of_states, "state out of bounds"); 135 return _entry[state]; 136 } 137 138 139 void EntryPoint::print() { 140 tty->print("["); 141 for (int i = 0; i < number_of_states; i++) { 142 if (i > 0) tty->print(", "); 143 tty->print(INTPTR_FORMAT, p2i(_entry[i])); 144 } 145 tty->print("]"); 146 } 147 148 149 bool EntryPoint::operator == (const EntryPoint& y) { 150 int i = number_of_states; 151 while (i-- > 0) { 152 if (_entry[i] != y._entry[i]) return false; 153 } 154 return true; 155 } 156 157 158 //------------------------------------------------------------------------------------------------------------------------ 159 // Implementation of DispatchTable 160 161 EntryPoint DispatchTable::entry(int i) const { 162 assert(0 <= i && i < length, "index out of bounds"); 163 return 164 EntryPoint( 165 _table[btos][i], 166 _table[ztos][i], 167 _table[ctos][i], 168 _table[stos][i], 169 _table[atos][i], 170 _table[itos][i], 171 _table[ltos][i], 172 _table[ftos][i], 173 _table[dtos][i], 174 _table[vtos][i] 175 ); 176 } 177 178 179 void DispatchTable::set_entry(int i, EntryPoint& entry) { 180 assert(0 <= i && i < length, "index out of bounds"); 181 assert(number_of_states == 10, "check the code below"); 182 _table[btos][i] = entry.entry(btos); 183 _table[ztos][i] = entry.entry(ztos); 184 _table[ctos][i] = entry.entry(ctos); 185 _table[stos][i] = entry.entry(stos); 186 _table[atos][i] = entry.entry(atos); 187 _table[itos][i] = entry.entry(itos); 188 _table[ltos][i] = entry.entry(ltos); 189 _table[ftos][i] = entry.entry(ftos); 190 _table[dtos][i] = entry.entry(dtos); 191 _table[vtos][i] = entry.entry(vtos); 192 } 193 194 195 bool DispatchTable::operator == (DispatchTable& y) { 196 int i = length; 197 while (i-- > 0) { 198 EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096) 199 if (!(entry(i) == t)) return false; 200 } 201 return true; 202 } 203 204 address TemplateInterpreter::_remove_activation_entry = nullptr; 205 address TemplateInterpreter::_remove_activation_preserving_args_entry = nullptr; 206 207 208 address TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = nullptr; 209 address TemplateInterpreter::_throw_ArrayStoreException_entry = nullptr; 210 address TemplateInterpreter::_throw_ArithmeticException_entry = nullptr; 211 address TemplateInterpreter::_throw_ClassCastException_entry = nullptr; 212 address TemplateInterpreter::_throw_NullPointerException_entry = nullptr; 213 address TemplateInterpreter::_throw_StackOverflowError_entry = nullptr; 214 address TemplateInterpreter::_throw_exception_entry = nullptr; 215 216 #ifndef PRODUCT 217 EntryPoint TemplateInterpreter::_trace_code; 218 #endif // !PRODUCT 219 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries]; 220 EntryPoint TemplateInterpreter::_earlyret_entry; 221 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ]; 222 address TemplateInterpreter::_deopt_reexecute_return_entry; 223 EntryPoint TemplateInterpreter::_safept_entry; 224 225 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs]; 226 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs]; 227 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs]; 228 229 DispatchTable TemplateInterpreter::_active_table; 230 DispatchTable TemplateInterpreter::_normal_table; 231 DispatchTable TemplateInterpreter::_safept_table; 232 address TemplateInterpreter::_wentry_point[DispatchTable::length]; 233 234 235 //------------------------------------------------------------------------------------------------------------------------ 236 // Entry points 237 238 /** 239 * Returns the return entry table for the given invoke bytecode. 240 */ 241 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) { 242 switch (code) { 243 case Bytecodes::_invokestatic: 244 case Bytecodes::_invokespecial: 245 case Bytecodes::_invokevirtual: 246 case Bytecodes::_invokehandle: 247 case Bytecodes::_fast_invokevfinal: 248 return Interpreter::invoke_return_entry_table(); 249 case Bytecodes::_invokeinterface: 250 return Interpreter::invokeinterface_return_entry_table(); 251 case Bytecodes::_invokedynamic: 252 return Interpreter::invokedynamic_return_entry_table(); 253 default: 254 fatal("invalid bytecode: %s", Bytecodes::name(code)); 255 return nullptr; 256 } 257 } 258 259 /** 260 * Returns the return entry address for the given top-of-stack state and bytecode. 261 */ 262 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) { 263 guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length"); 264 const int index = TosState_as_index(state); 265 switch (code) { 266 case Bytecodes::_invokestatic: 267 case Bytecodes::_invokespecial: 268 case Bytecodes::_invokevirtual: 269 case Bytecodes::_invokehandle: 270 return _invoke_return_entry[index]; 271 case Bytecodes::_invokeinterface: 272 return _invokeinterface_return_entry[index]; 273 case Bytecodes::_invokedynamic: 274 return _invokedynamic_return_entry[index]; 275 default: 276 assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s", Bytecodes::name(code)); 277 address entry = _return_entry[length].entry(state); 278 vmassert(entry != nullptr, "unsupported return entry requested, length=%d state=%d", length, index); 279 return entry; 280 } 281 } 282 283 284 address TemplateInterpreter::deopt_entry(TosState state, int length) { 285 guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length"); 286 address entry = _deopt_entry[length].entry(state); 287 vmassert(entry != nullptr, "unsupported deopt entry requested, length=%d state=%d", length, TosState_as_index(state)); 288 return entry; 289 } 290 291 //------------------------------------------------------------------------------------------------------------------------ 292 // Support for invokes 293 294 int TemplateInterpreter::TosState_as_index(TosState state) { 295 assert( state < number_of_states , "Invalid state in TosState_as_index"); 296 assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds"); 297 return (int)state; 298 } 299 300 301 //------------------------------------------------------------------------------------------------------------------------ 302 // Safepoint support 303 304 static inline void copy_table(address* from, address* to, int size) { 305 // Copy non-overlapping tables. 306 if (SafepointSynchronize::is_at_safepoint()) { 307 // Nothing is using the table at a safepoint so skip atomic word copy. 308 Copy::disjoint_words((HeapWord*)from, (HeapWord*)to, (size_t)size); 309 } else { 310 // Use atomic word copy when not at a safepoint for safety. 311 Copy::disjoint_words_atomic((HeapWord*)from, (HeapWord*)to, (size_t)size); 312 } 313 } 314 315 void TemplateInterpreter::notice_safepoints() { 316 if (!_notice_safepoints) { 317 log_debug(interpreter, safepoint)("switching active_table to safept_table."); 318 // switch to safepoint dispatch table 319 _notice_safepoints = true; 320 copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address)); 321 } else { 322 log_debug(interpreter, safepoint)("active_table is already safept_table; " 323 "notice_safepoints() call is no-op."); 324 } 325 } 326 327 // switch from the dispatch table which notices safepoints back to the 328 // normal dispatch table. So that we can notice single stepping points, 329 // keep the safepoint dispatch table if we are single stepping in JVMTI. 330 // Note that the should_post_single_step test is exactly as fast as the 331 // JvmtiExport::_enabled test and covers both cases. 332 void TemplateInterpreter::ignore_safepoints() { 333 if (_notice_safepoints) { 334 if (!JvmtiExport::should_post_single_step()) { 335 log_debug(interpreter, safepoint)("switching active_table to normal_table."); 336 // switch to normal dispatch table 337 _notice_safepoints = false; 338 copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address)); 339 } else { 340 log_debug(interpreter, safepoint)("single stepping is still active; " 341 "ignoring ignore_safepoints() call."); 342 } 343 } else { 344 log_debug(interpreter, safepoint)("active_table is already normal_table; " 345 "ignore_safepoints() call is no-op."); 346 } 347 } 348 349 //------------------------------------------------------------------------------------------------------------------------ 350 // Deoptimization support 351 352 // If deoptimization happens, this function returns the point of next bytecode to continue execution 353 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) { 354 return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame); 355 } 356 357 // If deoptimization happens, this function returns the point where the interpreter reexecutes 358 // the bytecode. 359 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases 360 // that do not return "Interpreter::deopt_entry(vtos, 0)" 361 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) { 362 assert(method->contains(bcp), "just checkin'"); 363 Bytecodes::Code code = Bytecodes::code_at(method, bcp); 364 if (code == Bytecodes::_return_register_finalizer) { 365 // This is used for deopt during registration of finalizers 366 // during Object.<init>. We simply need to resume execution at 367 // the standard return vtos bytecode to pop the frame normally. 368 // reexecuting the real bytecode would cause double registration 369 // of the finalizable object. 370 return Interpreter::deopt_reexecute_return_entry(); 371 } else { 372 return AbstractInterpreter::deopt_reexecute_entry(method, bcp); 373 } 374 } 375 376 // If deoptimization happens, the interpreter should reexecute this bytecode. 377 // This function mainly helps the compilers to set up the reexecute bit. 378 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) { 379 if (code == Bytecodes::_return) { 380 //Yes, we consider Bytecodes::_return as a special case of reexecution 381 return true; 382 } else { 383 return AbstractInterpreter::bytecode_should_reexecute(code); 384 } 385 } 386 387 InterpreterCodelet* TemplateInterpreter::codelet_containing(address pc) { 388 return (InterpreterCodelet*)_code->stub_containing(pc); 389 }