1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "interpreter/interp_masm.hpp"
26 #include "interpreter/interpreter.hpp"
27 #include "interpreter/interpreterRuntime.hpp"
28 #include "interpreter/templateInterpreter.hpp"
29 #include "interpreter/templateInterpreterGenerator.hpp"
30 #include "interpreter/templateTable.hpp"
31 #include "logging/log.hpp"
32 #include "memory/resourceArea.hpp"
33 #include "prims/jvmtiExport.hpp"
34 #include "runtime/safepoint.hpp"
35 #include "runtime/timerTrace.hpp"
36 #include "utilities/checkedCast.hpp"
37 #include "utilities/copy.hpp"
38
39 # define __ _masm->
40
41 void TemplateInterpreter::initialize_stub() {
42 // assertions
43 assert(_code == nullptr, "must only initialize once");
44 assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
45 "dispatch table too small");
46
47 // allocate interpreter
48 int code_size = InterpreterCodeSize;
49 NOT_PRODUCT(code_size *= 4;) // debug uses extra interpreter code space
50 // 270+ interpreter codelets are generated and each of them is aligned to HeapWordSize,
51 // plus their code section is aligned to CodeEntryAlignement. So we need additional size due to alignment.
52 int max_aligned_codelets = 280;
53 int max_aligned_bytes = checked_cast<int>(max_aligned_codelets * (HeapWordSize + CodeEntryAlignment));
54 _code = new StubQueue(new InterpreterCodeletInterface, code_size + max_aligned_bytes, nullptr,
55 "Interpreter");
56 }
57
58 void TemplateInterpreter::initialize_code() {
59 AbstractInterpreter::initialize();
60
61 TemplateTable::initialize();
62
63 // generate interpreter
64 { ResourceMark rm;
65 TraceTime timer("Interpreter generation", TRACETIME_LOG(Info, startuptime));
66 TemplateInterpreterGenerator g;
67 // Free the unused memory not occupied by the interpreter and the stubs
68 _code->deallocate_unused_tail();
69 }
70
71 if (PrintInterpreter) {
72 ResourceMark rm;
73 print();
74 }
75
76 // initialize dispatch table
77 _active_table = _normal_table;
78 }
79
80 //------------------------------------------------------------------------------------------------------------------------
81 // Implementation of EntryPoint
82
83 EntryPoint::EntryPoint() {
84 assert(number_of_states == 10, "check the code below");
85 _entry[btos] = nullptr;
86 _entry[ztos] = nullptr;
87 _entry[ctos] = nullptr;
88 _entry[stos] = nullptr;
89 _entry[atos] = nullptr;
90 _entry[itos] = nullptr;
91 _entry[ltos] = nullptr;
92 _entry[ftos] = nullptr;
93 _entry[dtos] = nullptr;
94 _entry[vtos] = nullptr;
95 }
96
97
98 EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
99 assert(number_of_states == 10, "check the code below");
100 _entry[btos] = bentry;
101 _entry[ztos] = zentry;
102 _entry[ctos] = centry;
103 _entry[stos] = sentry;
104 _entry[atos] = aentry;
105 _entry[itos] = ientry;
106 _entry[ltos] = lentry;
107 _entry[ftos] = fentry;
108 _entry[dtos] = dentry;
109 _entry[vtos] = ventry;
110 }
111
112 EntryPoint::EntryPoint(address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
113 assert(number_of_states == 10, "check the code below");
114 _entry[btos] = ientry;
115 _entry[ztos] = ientry;
116 _entry[ctos] = ientry;
117 _entry[stos] = ientry;
118 _entry[atos] = aentry;
119 _entry[itos] = ientry;
120 _entry[ltos] = lentry;
121 _entry[ftos] = fentry;
122 _entry[dtos] = dentry;
123 _entry[vtos] = ventry;
124 }
125
126 void EntryPoint::set_entry(TosState state, address entry) {
127 assert(0 <= state && state < number_of_states, "state out of bounds");
128 _entry[state] = entry;
129 }
130
131
132 address EntryPoint::entry(TosState state) const {
133 assert(0 <= state && state < number_of_states, "state out of bounds");
134 return _entry[state];
135 }
136
137
138 void EntryPoint::print() {
139 tty->print("[");
140 for (int i = 0; i < number_of_states; i++) {
141 if (i > 0) tty->print(", ");
142 tty->print(INTPTR_FORMAT, p2i(_entry[i]));
143 }
144 tty->print("]");
145 }
146
147
148 bool EntryPoint::operator == (const EntryPoint& y) {
149 int i = number_of_states;
150 while (i-- > 0) {
151 if (_entry[i] != y._entry[i]) return false;
152 }
153 return true;
154 }
155
156
157 //------------------------------------------------------------------------------------------------------------------------
158 // Implementation of DispatchTable
159
160 EntryPoint DispatchTable::entry(int i) const {
161 assert(0 <= i && i < length, "index out of bounds");
162 return
163 EntryPoint(
164 _table[btos][i],
165 _table[ztos][i],
166 _table[ctos][i],
167 _table[stos][i],
168 _table[atos][i],
169 _table[itos][i],
170 _table[ltos][i],
171 _table[ftos][i],
172 _table[dtos][i],
173 _table[vtos][i]
174 );
175 }
176
177
178 void DispatchTable::set_entry(int i, EntryPoint& entry) {
179 assert(0 <= i && i < length, "index out of bounds");
180 assert(number_of_states == 10, "check the code below");
181 _table[btos][i] = entry.entry(btos);
182 _table[ztos][i] = entry.entry(ztos);
183 _table[ctos][i] = entry.entry(ctos);
184 _table[stos][i] = entry.entry(stos);
185 _table[atos][i] = entry.entry(atos);
186 _table[itos][i] = entry.entry(itos);
187 _table[ltos][i] = entry.entry(ltos);
188 _table[ftos][i] = entry.entry(ftos);
189 _table[dtos][i] = entry.entry(dtos);
190 _table[vtos][i] = entry.entry(vtos);
191 }
192
193
194 bool DispatchTable::operator == (DispatchTable& y) {
195 int i = length;
196 while (i-- > 0) {
197 EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
198 if (!(entry(i) == t)) return false;
199 }
200 return true;
201 }
202
203 address TemplateInterpreter::_remove_activation_entry = nullptr;
204 address TemplateInterpreter::_remove_activation_preserving_args_entry = nullptr;
205
206
207 address TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = nullptr;
208 address TemplateInterpreter::_throw_ArrayStoreException_entry = nullptr;
209 address TemplateInterpreter::_throw_ArithmeticException_entry = nullptr;
210 address TemplateInterpreter::_throw_ClassCastException_entry = nullptr;
211 address TemplateInterpreter::_throw_NullPointerException_entry = nullptr;
212 address TemplateInterpreter::_throw_StackOverflowError_entry = nullptr;
213 address TemplateInterpreter::_throw_exception_entry = nullptr;
214 address TemplateInterpreter::_cont_resume_interpreter_adapter = nullptr;
215
216 #ifndef PRODUCT
217 EntryPoint TemplateInterpreter::_trace_code;
218 #endif // !PRODUCT
219 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
220 EntryPoint TemplateInterpreter::_earlyret_entry;
221 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
222 address TemplateInterpreter::_deopt_reexecute_return_entry;
223 EntryPoint TemplateInterpreter::_safept_entry;
224
225 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
226 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
227 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
228
229 DispatchTable TemplateInterpreter::_active_table;
230 DispatchTable TemplateInterpreter::_normal_table;
231 DispatchTable TemplateInterpreter::_safept_table;
232 address TemplateInterpreter::_wentry_point[DispatchTable::length];
233
234
235 //------------------------------------------------------------------------------------------------------------------------
236 // Entry points
237
238 /**
239 * Returns the return entry table for the given invoke bytecode.
240 */
241 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
242 switch (code) {
243 case Bytecodes::_invokestatic:
244 case Bytecodes::_invokespecial:
245 case Bytecodes::_invokevirtual:
246 case Bytecodes::_invokehandle:
247 case Bytecodes::_fast_invokevfinal:
248 return Interpreter::invoke_return_entry_table();
249 case Bytecodes::_invokeinterface:
250 return Interpreter::invokeinterface_return_entry_table();
251 case Bytecodes::_invokedynamic:
252 return Interpreter::invokedynamic_return_entry_table();
253 default:
254 fatal("invalid bytecode: %s", Bytecodes::name(code));
255 return nullptr;
256 }
257 }
258
259 /**
260 * Returns the return entry address for the given top-of-stack state and bytecode.
261 */
262 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
263 guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
264 const int index = TosState_as_index(state);
265 switch (code) {
266 case Bytecodes::_invokestatic:
267 case Bytecodes::_invokespecial:
268 case Bytecodes::_invokevirtual:
269 case Bytecodes::_invokehandle:
270 return _invoke_return_entry[index];
271 case Bytecodes::_invokeinterface:
272 return _invokeinterface_return_entry[index];
273 case Bytecodes::_invokedynamic:
274 return _invokedynamic_return_entry[index];
275 default:
276 assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s", Bytecodes::name(code));
277 address entry = _return_entry[length].entry(state);
278 vmassert(entry != nullptr, "unsupported return entry requested, length=%d state=%d", length, index);
279 return entry;
280 }
281 }
282
283
284 address TemplateInterpreter::deopt_entry(TosState state, int length) {
285 guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
286 address entry = _deopt_entry[length].entry(state);
287 vmassert(entry != nullptr, "unsupported deopt entry requested, length=%d state=%d", length, TosState_as_index(state));
288 return entry;
289 }
290
291 //------------------------------------------------------------------------------------------------------------------------
292 // Support for invokes
293
294 int TemplateInterpreter::TosState_as_index(TosState state) {
295 assert( state < number_of_states , "Invalid state in TosState_as_index");
296 assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
297 return (int)state;
298 }
299
300
301 //------------------------------------------------------------------------------------------------------------------------
302 // Safepoint support
303
304 static inline void copy_table(address* from, address* to, int size) {
305 // Copy non-overlapping tables.
306 if (SafepointSynchronize::is_at_safepoint()) {
307 // Nothing is using the table at a safepoint so skip atomic word copy.
308 Copy::disjoint_words((HeapWord*)from, (HeapWord*)to, (size_t)size);
309 } else {
310 // Use atomic word copy when not at a safepoint for safety.
311 Copy::disjoint_words_atomic((HeapWord*)from, (HeapWord*)to, (size_t)size);
312 }
313 }
314
315 void TemplateInterpreter::notice_safepoints() {
316 if (!_notice_safepoints) {
317 log_debug(interpreter, safepoint)("switching active_table to safept_table.");
318 // switch to safepoint dispatch table
319 _notice_safepoints = true;
320 copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
321 } else {
322 log_debug(interpreter, safepoint)("active_table is already safept_table; "
323 "notice_safepoints() call is no-op.");
324 }
325 }
326
327 // switch from the dispatch table which notices safepoints back to the
328 // normal dispatch table. So that we can notice single stepping points,
329 // keep the safepoint dispatch table if we are single stepping in JVMTI.
330 // Note that the should_post_single_step test is exactly as fast as the
331 // JvmtiExport::_enabled test and covers both cases.
332 void TemplateInterpreter::ignore_safepoints() {
333 if (_notice_safepoints) {
334 if (!JvmtiExport::should_post_single_step()) {
335 log_debug(interpreter, safepoint)("switching active_table to normal_table.");
336 // switch to normal dispatch table
337 _notice_safepoints = false;
338 copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
339 } else {
340 log_debug(interpreter, safepoint)("single stepping is still active; "
341 "ignoring ignore_safepoints() call.");
342 }
343 } else {
344 log_debug(interpreter, safepoint)("active_table is already normal_table; "
345 "ignore_safepoints() call is no-op.");
346 }
347 }
348
349 //------------------------------------------------------------------------------------------------------------------------
350 // Deoptimization support
351
352 // If deoptimization happens, this function returns the point of next bytecode to continue execution
353 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
354 return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
355 }
356
357 // If deoptimization happens, this function returns the point where the interpreter reexecutes
358 // the bytecode.
359 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
360 // that do not return "Interpreter::deopt_entry(vtos, 0)"
361 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
362 assert(method->contains(bcp), "just checkin'");
363 Bytecodes::Code code = Bytecodes::code_at(method, bcp);
364 if (code == Bytecodes::_return_register_finalizer) {
365 // This is used for deopt during registration of finalizers
366 // during Object.<init>. We simply need to resume execution at
367 // the standard return vtos bytecode to pop the frame normally.
368 // reexecuting the real bytecode would cause double registration
369 // of the finalizable object.
370 return Interpreter::deopt_reexecute_return_entry();
371 } else {
372 return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
373 }
374 }
375
376 // If deoptimization happens, the interpreter should reexecute this bytecode.
377 // This function mainly helps the compilers to set up the reexecute bit.
378 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
379 if (code == Bytecodes::_return) {
380 //Yes, we consider Bytecodes::_return as a special case of reexecution
381 return true;
382 } else {
383 return AbstractInterpreter::bytecode_should_reexecute(code);
384 }
385 }
386
387 InterpreterCodelet* TemplateInterpreter::codelet_containing(address pc) {
388 return (InterpreterCodelet*)_code->stub_containing(pc);
389 }