1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "interpreter/interpreter.hpp"
 26 #include "interpreter/interpreterRuntime.hpp"
 27 #include "interpreter/interp_masm.hpp"
 28 #include "interpreter/templateInterpreter.hpp"
 29 #include "interpreter/templateInterpreterGenerator.hpp"
 30 #include "interpreter/templateTable.hpp"
 31 #include "logging/log.hpp"
 32 #include "memory/resourceArea.hpp"
 33 #include "prims/jvmtiExport.hpp"
 34 #include "runtime/safepoint.hpp"
 35 #include "runtime/timerTrace.hpp"
 36 #include "utilities/checkedCast.hpp"
 37 #include "utilities/copy.hpp"
 38 
 39 # define __ _masm->
 40 
 41 void TemplateInterpreter::initialize_stub() {
 42   // assertions
 43   assert(_code == nullptr, "must only initialize once");
 44   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
 45          "dispatch table too small");
 46 
 47   // allocate interpreter
 48   int code_size = InterpreterCodeSize;
 49   NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
 50   // 270+ interpreter codelets are generated and each of them is aligned to HeapWordSize,
 51   // plus their code section is aligned to CodeEntryAlignement. So we need additional size due to alignment.
 52   int max_aligned_codelets = 280;
 53   int max_aligned_bytes = checked_cast<int>(max_aligned_codelets * (HeapWordSize + CodeEntryAlignment));
 54   _code = new StubQueue(new InterpreterCodeletInterface, code_size + max_aligned_bytes, nullptr,
 55                         "Interpreter");
 56 }
 57 
 58 void TemplateInterpreter::initialize_code() {
 59   InterpreterRuntime::init_counters();
 60 
 61   AbstractInterpreter::initialize();
 62 
 63   TemplateTable::initialize();
 64 
 65   // generate interpreter
 66   { ResourceMark rm;
 67     TraceTime timer("Interpreter generation", TRACETIME_LOG(Info, startuptime));
 68     TemplateInterpreterGenerator g;
 69     // Free the unused memory not occupied by the interpreter and the stubs
 70     _code->deallocate_unused_tail();
 71   }
 72 
 73   if (PrintInterpreter) {
 74     ResourceMark rm;
 75     print();
 76   }
 77 
 78   // initialize dispatch table
 79   _active_table = _normal_table;
 80 }
 81 
 82 //------------------------------------------------------------------------------------------------------------------------
 83 // Implementation of EntryPoint
 84 
 85 EntryPoint::EntryPoint() {
 86   assert(number_of_states == 10, "check the code below");
 87   _entry[btos] = nullptr;
 88   _entry[ztos] = nullptr;
 89   _entry[ctos] = nullptr;
 90   _entry[stos] = nullptr;
 91   _entry[atos] = nullptr;
 92   _entry[itos] = nullptr;
 93   _entry[ltos] = nullptr;
 94   _entry[ftos] = nullptr;
 95   _entry[dtos] = nullptr;
 96   _entry[vtos] = nullptr;
 97 }
 98 
 99 
100 EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
101   assert(number_of_states == 10, "check the code below");
102   _entry[btos] = bentry;
103   _entry[ztos] = zentry;
104   _entry[ctos] = centry;
105   _entry[stos] = sentry;
106   _entry[atos] = aentry;
107   _entry[itos] = ientry;
108   _entry[ltos] = lentry;
109   _entry[ftos] = fentry;
110   _entry[dtos] = dentry;
111   _entry[vtos] = ventry;
112 }
113 
114 EntryPoint::EntryPoint(address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
115   assert(number_of_states == 10, "check the code below");
116   _entry[btos] = ientry;
117   _entry[ztos] = ientry;
118   _entry[ctos] = ientry;
119   _entry[stos] = ientry;
120   _entry[atos] = aentry;
121   _entry[itos] = ientry;
122   _entry[ltos] = lentry;
123   _entry[ftos] = fentry;
124   _entry[dtos] = dentry;
125   _entry[vtos] = ventry;
126 }
127 
128 void EntryPoint::set_entry(TosState state, address entry) {
129   assert(0 <= state && state < number_of_states, "state out of bounds");
130   _entry[state] = entry;
131 }
132 
133 
134 address EntryPoint::entry(TosState state) const {
135   assert(0 <= state && state < number_of_states, "state out of bounds");
136   return _entry[state];
137 }
138 
139 
140 void EntryPoint::print() {
141   tty->print("[");
142   for (int i = 0; i < number_of_states; i++) {
143     if (i > 0) tty->print(", ");
144     tty->print(INTPTR_FORMAT, p2i(_entry[i]));
145   }
146   tty->print("]");
147 }
148 
149 
150 bool EntryPoint::operator == (const EntryPoint& y) {
151   int i = number_of_states;
152   while (i-- > 0) {
153     if (_entry[i] != y._entry[i]) return false;
154   }
155   return true;
156 }
157 
158 
159 //------------------------------------------------------------------------------------------------------------------------
160 // Implementation of DispatchTable
161 
162 EntryPoint DispatchTable::entry(int i) const {
163   assert(0 <= i && i < length, "index out of bounds");
164   return
165     EntryPoint(
166       _table[btos][i],
167       _table[ztos][i],
168       _table[ctos][i],
169       _table[stos][i],
170       _table[atos][i],
171       _table[itos][i],
172       _table[ltos][i],
173       _table[ftos][i],
174       _table[dtos][i],
175       _table[vtos][i]
176     );
177 }
178 
179 
180 void DispatchTable::set_entry(int i, EntryPoint& entry) {
181   assert(0 <= i && i < length, "index out of bounds");
182   assert(number_of_states == 10, "check the code below");
183   _table[btos][i] = entry.entry(btos);
184   _table[ztos][i] = entry.entry(ztos);
185   _table[ctos][i] = entry.entry(ctos);
186   _table[stos][i] = entry.entry(stos);
187   _table[atos][i] = entry.entry(atos);
188   _table[itos][i] = entry.entry(itos);
189   _table[ltos][i] = entry.entry(ltos);
190   _table[ftos][i] = entry.entry(ftos);
191   _table[dtos][i] = entry.entry(dtos);
192   _table[vtos][i] = entry.entry(vtos);
193 }
194 
195 
196 bool DispatchTable::operator == (DispatchTable& y) {
197   int i = length;
198   while (i-- > 0) {
199     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
200     if (!(entry(i) == t)) return false;
201   }
202   return true;
203 }
204 
205 address    TemplateInterpreter::_remove_activation_entry                    = nullptr;
206 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = nullptr;
207 
208 
209 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = nullptr;
210 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = nullptr;
211 address    TemplateInterpreter::_throw_ArithmeticException_entry            = nullptr;
212 address    TemplateInterpreter::_throw_ClassCastException_entry             = nullptr;
213 address    TemplateInterpreter::_throw_NullPointerException_entry           = nullptr;
214 address    TemplateInterpreter::_throw_StackOverflowError_entry             = nullptr;
215 address    TemplateInterpreter::_throw_exception_entry                      = nullptr;
216 address    TemplateInterpreter::_cont_resume_interpreter_adapter            = nullptr;
217 
218 #ifndef PRODUCT
219 EntryPoint TemplateInterpreter::_trace_code;
220 #endif // !PRODUCT
221 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
222 EntryPoint TemplateInterpreter::_earlyret_entry;
223 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
224 address    TemplateInterpreter::_deopt_reexecute_return_entry;
225 EntryPoint TemplateInterpreter::_safept_entry;
226 
227 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
228 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
229 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
230 
231 DispatchTable TemplateInterpreter::_active_table;
232 DispatchTable TemplateInterpreter::_normal_table;
233 DispatchTable TemplateInterpreter::_safept_table;
234 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
235 
236 
237 //------------------------------------------------------------------------------------------------------------------------
238 // Entry points
239 
240 /**
241  * Returns the return entry table for the given invoke bytecode.
242  */
243 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
244   switch (code) {
245   case Bytecodes::_invokestatic:
246   case Bytecodes::_invokespecial:
247   case Bytecodes::_invokevirtual:
248   case Bytecodes::_invokehandle:
249   case Bytecodes::_fast_invokevfinal:
250     return Interpreter::invoke_return_entry_table();
251   case Bytecodes::_invokeinterface:
252     return Interpreter::invokeinterface_return_entry_table();
253   case Bytecodes::_invokedynamic:
254     return Interpreter::invokedynamic_return_entry_table();
255   default:
256     fatal("invalid bytecode: %s", Bytecodes::name(code));
257     return nullptr;
258   }
259 }
260 
261 /**
262  * Returns the return entry address for the given top-of-stack state and bytecode.
263  */
264 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
265   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
266   const int index = TosState_as_index(state);
267   switch (code) {
268   case Bytecodes::_invokestatic:
269   case Bytecodes::_invokespecial:
270   case Bytecodes::_invokevirtual:
271   case Bytecodes::_invokehandle:
272     return _invoke_return_entry[index];
273   case Bytecodes::_invokeinterface:
274     return _invokeinterface_return_entry[index];
275   case Bytecodes::_invokedynamic:
276     return _invokedynamic_return_entry[index];
277   default:
278     assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s", Bytecodes::name(code));
279     address entry = _return_entry[length].entry(state);
280     vmassert(entry != nullptr, "unsupported return entry requested, length=%d state=%d", length, index);
281     return entry;
282   }
283 }
284 
285 
286 address TemplateInterpreter::deopt_entry(TosState state, int length) {
287   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
288   address entry = _deopt_entry[length].entry(state);
289   vmassert(entry != nullptr, "unsupported deopt entry requested, length=%d state=%d", length, TosState_as_index(state));
290   return entry;
291 }
292 
293 //------------------------------------------------------------------------------------------------------------------------
294 // Support for invokes
295 
296 int TemplateInterpreter::TosState_as_index(TosState state) {
297   assert( state < number_of_states , "Invalid state in TosState_as_index");
298   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
299   return (int)state;
300 }
301 
302 
303 //------------------------------------------------------------------------------------------------------------------------
304 // Safepoint support
305 
306 static inline void copy_table(address* from, address* to, int size) {
307   // Copy non-overlapping tables.
308   if (SafepointSynchronize::is_at_safepoint()) {
309     // Nothing is using the table at a safepoint so skip atomic word copy.
310     Copy::disjoint_words((HeapWord*)from, (HeapWord*)to, (size_t)size);
311   } else {
312     // Use atomic word copy when not at a safepoint for safety.
313     Copy::disjoint_words_atomic((HeapWord*)from, (HeapWord*)to, (size_t)size);
314   }
315 }
316 
317 void TemplateInterpreter::notice_safepoints() {
318   if (!_notice_safepoints) {
319     log_debug(interpreter, safepoint)("switching active_table to safept_table.");
320     // switch to safepoint dispatch table
321     _notice_safepoints = true;
322     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
323   } else {
324     log_debug(interpreter, safepoint)("active_table is already safept_table; "
325                                       "notice_safepoints() call is no-op.");
326   }
327 }
328 
329 // switch from the dispatch table which notices safepoints back to the
330 // normal dispatch table.  So that we can notice single stepping points,
331 // keep the safepoint dispatch table if we are single stepping in JVMTI.
332 // Note that the should_post_single_step test is exactly as fast as the
333 // JvmtiExport::_enabled test and covers both cases.
334 void TemplateInterpreter::ignore_safepoints() {
335   if (_notice_safepoints) {
336     if (!JvmtiExport::should_post_single_step()) {
337       log_debug(interpreter, safepoint)("switching active_table to normal_table.");
338       // switch to normal dispatch table
339       _notice_safepoints = false;
340       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
341     } else {
342       log_debug(interpreter, safepoint)("single stepping is still active; "
343                                         "ignoring ignore_safepoints() call.");
344     }
345   } else {
346     log_debug(interpreter, safepoint)("active_table is already normal_table; "
347                                       "ignore_safepoints() call is no-op.");
348   }
349 }
350 
351 //------------------------------------------------------------------------------------------------------------------------
352 // Deoptimization support
353 
354 // If deoptimization happens, this function returns the point of next bytecode to continue execution
355 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
356   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
357 }
358 
359 // If deoptimization happens, this function returns the point where the interpreter reexecutes
360 // the bytecode.
361 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
362 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
363 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
364   assert(method->contains(bcp), "just checkin'");
365   Bytecodes::Code code   = Bytecodes::code_at(method, bcp);
366   if (code == Bytecodes::_return_register_finalizer) {
367     // This is used for deopt during registration of finalizers
368     // during Object.<init>.  We simply need to resume execution at
369     // the standard return vtos bytecode to pop the frame normally.
370     // reexecuting the real bytecode would cause double registration
371     // of the finalizable object.
372     return Interpreter::deopt_reexecute_return_entry();
373   } else {
374     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
375   }
376 }
377 
378 // If deoptimization happens, the interpreter should reexecute this bytecode.
379 // This function mainly helps the compilers to set up the reexecute bit.
380 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
381   if (code == Bytecodes::_return) {
382     //Yes, we consider Bytecodes::_return as a special case of reexecution
383     return true;
384   } else {
385     return AbstractInterpreter::bytecode_should_reexecute(code);
386   }
387 }
388 
389 InterpreterCodelet* TemplateInterpreter::codelet_containing(address pc) {
390   return (InterpreterCodelet*)_code->stub_containing(pc);
391 }