1 /* 2 * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 #include "classfile/javaClasses.inline.hpp" 25 #include "classfile/symbolTable.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmClasses.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/memAllocator.hpp" 31 #include "gc/shared/oopStorage.inline.hpp" 32 #include "jvmci/jniAccessMark.inline.hpp" 33 #include "jvmci/jvmciCodeInstaller.hpp" 34 #include "jvmci/jvmciCompilerToVM.hpp" 35 #include "jvmci/jvmciRuntime.hpp" 36 #include "jvmci/metadataHandles.hpp" 37 #include "logging/log.hpp" 38 #include "logging/logStream.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/constantPool.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "oops/objArrayKlass.hpp" 45 #include "oops/oop.inline.hpp" 46 #include "oops/typeArrayOop.inline.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/methodHandles.hpp" 49 #include "runtime/arguments.hpp" 50 #include "runtime/atomic.hpp" 51 #include "runtime/deoptimization.hpp" 52 #include "runtime/fieldDescriptor.inline.hpp" 53 #include "runtime/frame.inline.hpp" 54 #include "runtime/java.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/mutex.hpp" 57 #include "runtime/reflection.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/synchronizer.hpp" 60 #if INCLUDE_G1GC 61 #include "gc/g1/g1BarrierSetRuntime.hpp" 62 #endif // INCLUDE_G1GC 63 64 // Simple helper to see if the caller of a runtime stub which 65 // entered the VM has been deoptimized 66 67 static bool caller_is_deopted() { 68 JavaThread* thread = JavaThread::current(); 69 RegisterMap reg_map(thread, 70 RegisterMap::UpdateMap::skip, 71 RegisterMap::ProcessFrames::include, 72 RegisterMap::WalkContinuation::skip); 73 frame runtime_frame = thread->last_frame(); 74 frame caller_frame = runtime_frame.sender(®_map); 75 assert(caller_frame.is_compiled_frame(), "must be compiled"); 76 return caller_frame.is_deoptimized_frame(); 77 } 78 79 // Stress deoptimization 80 static void deopt_caller() { 81 if ( !caller_is_deopted()) { 82 JavaThread* thread = JavaThread::current(); 83 RegisterMap reg_map(thread, 84 RegisterMap::UpdateMap::skip, 85 RegisterMap::ProcessFrames::include, 86 RegisterMap::WalkContinuation::skip); 87 frame runtime_frame = thread->last_frame(); 88 frame caller_frame = runtime_frame.sender(®_map); 89 Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); 90 assert(caller_is_deopted(), "Must be deoptimized"); 91 } 92 } 93 94 // Manages a scope for a JVMCI runtime call that attempts a heap allocation. 95 // If there is a pending OutOfMemoryError upon closing the scope and the runtime 96 // call is of the variety where allocation failure returns null without an 97 // exception, the following action is taken: 98 // 1. The pending OutOfMemoryError is cleared 99 // 2. null is written to JavaThread::_vm_result_oop 100 class RetryableAllocationMark { 101 private: 102 InternalOOMEMark _iom; 103 public: 104 RetryableAllocationMark(JavaThread* thread) : _iom(thread) {} 105 ~RetryableAllocationMark() { 106 JavaThread* THREAD = _iom.thread(); // For exception macros. 107 if (THREAD != nullptr) { 108 if (HAS_PENDING_EXCEPTION) { 109 oop ex = PENDING_EXCEPTION; 110 THREAD->set_vm_result_oop(nullptr); 111 if (ex->is_a(vmClasses::OutOfMemoryError_klass())) { 112 CLEAR_PENDING_EXCEPTION; 113 } 114 } 115 } 116 } 117 }; 118 119 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass)) 120 JRT_BLOCK; 121 assert(klass->is_klass(), "not a class"); 122 Handle holder(current, klass->klass_holder()); // keep the klass alive 123 InstanceKlass* h = InstanceKlass::cast(klass); 124 { 125 RetryableAllocationMark ram(current); 126 h->check_valid_for_instantiation(true, CHECK); 127 if (!h->is_initialized()) { 128 // Cannot re-execute class initialization without side effects 129 // so return without attempting the initialization 130 current->set_vm_result_oop(nullptr); 131 return; 132 } 133 // allocate instance and return via TLS 134 oop obj = h->allocate_instance(CHECK); 135 current->set_vm_result_oop(obj); 136 } 137 JRT_BLOCK_END; 138 SharedRuntime::on_slowpath_allocation_exit(current); 139 JRT_END 140 141 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length)) 142 JRT_BLOCK; 143 // Note: no handle for klass needed since they are not used 144 // anymore after new_objArray() and no GC can happen before. 145 // (This may have to change if this code changes!) 146 assert(array_klass->is_klass(), "not a class"); 147 oop obj; 148 if (array_klass->is_typeArray_klass()) { 149 BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); 150 RetryableAllocationMark ram(current); 151 obj = oopFactory::new_typeArray(elt_type, length, CHECK); 152 } else { 153 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 154 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 155 RetryableAllocationMark ram(current); 156 obj = oopFactory::new_objArray(elem_klass, length, CHECK); 157 } 158 // This is pretty rare but this runtime patch is stressful to deoptimization 159 // if we deoptimize here so force a deopt to stress the path. 160 if (DeoptimizeALot) { 161 static int deopts = 0; 162 if (deopts++ % 2 == 0) { 163 // Drop the allocation 164 obj = nullptr; 165 } else { 166 deopt_caller(); 167 } 168 } 169 current->set_vm_result_oop(obj); 170 JRT_BLOCK_END; 171 SharedRuntime::on_slowpath_allocation_exit(current); 172 JRT_END 173 174 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims)) 175 assert(klass->is_klass(), "not a class"); 176 assert(rank >= 1, "rank must be nonzero"); 177 Handle holder(current, klass->klass_holder()); // keep the klass alive 178 RetryableAllocationMark ram(current); 179 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 180 current->set_vm_result_oop(obj); 181 JRT_END 182 183 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length)) 184 RetryableAllocationMark ram(current); 185 oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); 186 current->set_vm_result_oop(obj); 187 JRT_END 188 189 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror)) 190 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror)); 191 192 if (klass == nullptr) { 193 ResourceMark rm(current); 194 THROW(vmSymbols::java_lang_InstantiationException()); 195 } 196 RetryableAllocationMark ram(current); 197 198 // Create new instance (the receiver) 199 klass->check_valid_for_instantiation(false, CHECK); 200 201 if (!klass->is_initialized()) { 202 // Cannot re-execute class initialization without side effects 203 // so return without attempting the initialization 204 current->set_vm_result_oop(nullptr); 205 return; 206 } 207 208 oop obj = klass->allocate_instance(CHECK); 209 current->set_vm_result_oop(obj); 210 JRT_END 211 212 extern void vm_exit(int code); 213 214 // Enter this method from compiled code handler below. This is where we transition 215 // to VM mode. This is done as a helper routine so that the method called directly 216 // from compiled code does not have to transition to VM. This allows the entry 217 // method to see if the nmethod that we have just looked up a handler for has 218 // been deoptimized while we were in the vm. This simplifies the assembly code 219 // cpu directories. 220 // 221 // We are entering here from exception stub (via the entry method below) 222 // If there is a compiled exception handler in this method, we will continue there; 223 // otherwise we will unwind the stack and continue at the caller of top frame method 224 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 225 // control the area where we can allow a safepoint. After we exit the safepoint area we can 226 // check to see if the handler we are going to return is now in a nmethod that has 227 // been deoptimized. If that is the case we return the deopt blob 228 // unpack_with_exception entry instead. This makes life for the exception blob easier 229 // because making that same check and diverting is painful from assembly language. 230 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 231 // Reset method handle flag. 232 current->set_is_method_handle_return(false); 233 234 Handle exception(current, ex); 235 236 // The frame we rethrow the exception to might not have been processed by the GC yet. 237 // The stack watermark barrier takes care of detecting that and ensuring the frame 238 // has updated oops. 239 StackWatermarkSet::after_unwind(current); 240 241 nm = CodeCache::find_nmethod(pc); 242 assert(nm != nullptr, "did not find nmethod"); 243 // Adjust the pc as needed/ 244 if (nm->is_deopt_pc(pc)) { 245 RegisterMap map(current, 246 RegisterMap::UpdateMap::skip, 247 RegisterMap::ProcessFrames::include, 248 RegisterMap::WalkContinuation::skip); 249 frame exception_frame = current->last_frame().sender(&map); 250 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 251 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 252 pc = exception_frame.pc(); 253 } 254 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 255 assert(oopDesc::is_oop(exception()), "just checking"); 256 // Check that exception is a subclass of Throwable 257 assert(exception->is_a(vmClasses::Throwable_klass()), 258 "Exception not subclass of Throwable"); 259 260 // debugging support 261 // tracing 262 if (log_is_enabled(Info, exceptions)) { 263 ResourceMark rm; 264 stringStream tempst; 265 assert(nm->method() != nullptr, "Unexpected null method()"); 266 tempst.print("JVMCI compiled method <%s>\n" 267 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 268 nm->method()->print_value_string(), p2i(pc), p2i(current)); 269 Exceptions::log_exception(exception, tempst.as_string()); 270 } 271 // for AbortVMOnException flag 272 Exceptions::debug_check_abort(exception); 273 274 // Check the stack guard pages and re-enable them if necessary and there is 275 // enough space on the stack to do so. Use fast exceptions only if the guard 276 // pages are enabled. 277 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 278 279 if (JvmtiExport::can_post_on_exceptions()) { 280 // To ensure correct notification of exception catches and throws 281 // we have to deoptimize here. If we attempted to notify the 282 // catches and throws during this exception lookup it's possible 283 // we could deoptimize on the way out of the VM and end back in 284 // the interpreter at the throw site. This would result in double 285 // notifications since the interpreter would also notify about 286 // these same catches and throws as it unwound the frame. 287 288 RegisterMap reg_map(current, 289 RegisterMap::UpdateMap::include, 290 RegisterMap::ProcessFrames::include, 291 RegisterMap::WalkContinuation::skip); 292 frame stub_frame = current->last_frame(); 293 frame caller_frame = stub_frame.sender(®_map); 294 295 // We don't really want to deoptimize the nmethod itself since we 296 // can actually continue in the exception handler ourselves but I 297 // don't see an easy way to have the desired effect. 298 Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint); 299 assert(caller_is_deopted(), "Must be deoptimized"); 300 301 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 302 } 303 304 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 305 if (guard_pages_enabled) { 306 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 307 if (fast_continuation != nullptr) { 308 // Set flag if return address is a method handle call site. 309 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 310 return fast_continuation; 311 } 312 } 313 314 // If the stack guard pages are enabled, check whether there is a handler in 315 // the current method. Otherwise (guard pages disabled), force an unwind and 316 // skip the exception cache update (i.e., just leave continuation==nullptr). 317 address continuation = nullptr; 318 if (guard_pages_enabled) { 319 320 // New exception handling mechanism can support inlined methods 321 // with exception handlers since the mappings are from PC to PC 322 323 // Clear out the exception oop and pc since looking up an 324 // exception handler can cause class loading, which might throw an 325 // exception and those fields are expected to be clear during 326 // normal bytecode execution. 327 current->clear_exception_oop_and_pc(); 328 329 bool recursive_exception = false; 330 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 331 // If an exception was thrown during exception dispatch, the exception oop may have changed 332 current->set_exception_oop(exception()); 333 current->set_exception_pc(pc); 334 335 // The exception cache is used only for non-implicit exceptions 336 // Update the exception cache only when another exception did 337 // occur during the computation of the compiled exception handler 338 // (e.g., when loading the class of the catch type). 339 // Checking for exception oop equality is not 340 // sufficient because some exceptions are pre-allocated and reused. 341 if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) { 342 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 343 } 344 } 345 346 // Set flag if return address is a method handle call site. 347 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 348 349 if (log_is_enabled(Info, exceptions)) { 350 ResourceMark rm; 351 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 352 " for exception thrown at PC " PTR_FORMAT, 353 p2i(current), p2i(continuation), p2i(pc)); 354 } 355 356 return continuation; 357 JRT_END 358 359 // Enter this method from compiled code only if there is a Java exception handler 360 // in the method handling the exception. 361 // We are entering here from exception stub. We don't do a normal VM transition here. 362 // We do it in a helper. This is so we can check to see if the nmethod we have just 363 // searched for an exception handler has been deoptimized in the meantime. 364 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) { 365 oop exception = current->exception_oop(); 366 address pc = current->exception_pc(); 367 // Still in Java mode 368 DEBUG_ONLY(NoHandleMark nhm); 369 nmethod* nm = nullptr; 370 address continuation = nullptr; 371 { 372 // Enter VM mode by calling the helper 373 ResetNoHandleMark rnhm; 374 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 375 } 376 // Back in JAVA, use no oops DON'T safepoint 377 378 // Now check to see if the compiled method we were called from is now deoptimized. 379 // If so we must return to the deopt blob and deoptimize the nmethod 380 if (nm != nullptr && caller_is_deopted()) { 381 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 382 } 383 384 assert(continuation != nullptr, "no handler found"); 385 return continuation; 386 } 387 388 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock)) 389 SharedRuntime::monitor_enter_helper(obj, lock, current); 390 JRT_END 391 392 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock)) 393 assert(current == JavaThread::current(), "pre-condition"); 394 assert(current->last_Java_sp(), "last_Java_sp must be set"); 395 assert(oopDesc::is_oop(obj), "invalid lock object pointer dected"); 396 SharedRuntime::monitor_exit_helper(obj, lock, current); 397 JRT_END 398 399 // Object.notify() fast path, caller does slow path 400 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj)) 401 assert(current == JavaThread::current(), "pre-condition"); 402 403 // Very few notify/notifyAll operations find any threads on the waitset, so 404 // the dominant fast-path is to simply return. 405 // Relatedly, it's critical that notify/notifyAll be fast in order to 406 // reduce lock hold times. 407 if (!SafepointSynchronize::is_synchronizing()) { 408 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 409 return true; 410 } 411 } 412 return false; // caller must perform slow path 413 414 JRT_END 415 416 // Object.notifyAll() fast path, caller does slow path 417 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj)) 418 assert(current == JavaThread::current(), "pre-condition"); 419 420 if (!SafepointSynchronize::is_synchronizing() ) { 421 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 422 return true; 423 } 424 } 425 return false; // caller must perform slow path 426 427 JRT_END 428 429 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message)) 430 JRT_BLOCK; 431 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 432 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 433 JRT_BLOCK_END; 434 return caller_is_deopted(); 435 JRT_END 436 437 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass)) 438 JRT_BLOCK; 439 ResourceMark rm(current); 440 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 441 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name()); 442 JRT_BLOCK_END; 443 return caller_is_deopted(); 444 JRT_END 445 446 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass)) 447 JRT_BLOCK; 448 ResourceMark rm(current); 449 const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass); 450 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 451 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 452 JRT_BLOCK_END; 453 return caller_is_deopted(); 454 JRT_END 455 456 class ArgumentPusher : public SignatureIterator { 457 protected: 458 JavaCallArguments* _jca; 459 jlong _argument; 460 bool _pushed; 461 462 jlong next_arg() { 463 guarantee(!_pushed, "one argument"); 464 _pushed = true; 465 return _argument; 466 } 467 468 float next_float() { 469 guarantee(!_pushed, "one argument"); 470 _pushed = true; 471 jvalue v; 472 v.i = (jint) _argument; 473 return v.f; 474 } 475 476 double next_double() { 477 guarantee(!_pushed, "one argument"); 478 _pushed = true; 479 jvalue v; 480 v.j = _argument; 481 return v.d; 482 } 483 484 Handle next_object() { 485 guarantee(!_pushed, "one argument"); 486 _pushed = true; 487 return Handle(Thread::current(), cast_to_oop(_argument)); 488 } 489 490 public: 491 ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) { 492 this->_return_type = T_ILLEGAL; 493 _jca = jca; 494 _argument = argument; 495 _pushed = false; 496 do_parameters_on(this); 497 } 498 499 void do_type(BasicType type) { 500 switch (type) { 501 case T_OBJECT: 502 case T_ARRAY: _jca->push_oop(next_object()); break; 503 case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break; 504 case T_CHAR: _jca->push_int((jchar) next_arg()); break; 505 case T_SHORT: _jca->push_int((jint) next_arg()); break; 506 case T_BYTE: _jca->push_int((jbyte) next_arg()); break; 507 case T_INT: _jca->push_int((jint) next_arg()); break; 508 case T_LONG: _jca->push_long((jlong) next_arg()); break; 509 case T_FLOAT: _jca->push_float(next_float()); break; 510 case T_DOUBLE: _jca->push_double(next_double()); break; 511 default: fatal("Unexpected type %s", type2name(type)); 512 } 513 } 514 }; 515 516 517 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument)) 518 ResourceMark rm; 519 HandleMark hm(current); 520 521 methodHandle mh(current, method); 522 if (mh->size_of_parameters() > 1 && !mh->is_static()) { 523 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument"); 524 } 525 526 Symbol* signature = mh->signature(); 527 JavaCallArguments jca(mh->size_of_parameters()); 528 ArgumentPusher jap(signature, &jca, argument); 529 BasicType return_type = jap.return_type(); 530 JavaValue result(return_type); 531 JavaCalls::call(&result, mh, &jca, CHECK_0); 532 533 if (return_type == T_VOID) { 534 return 0; 535 } else if (return_type == T_OBJECT || return_type == T_ARRAY) { 536 current->set_vm_result_oop(result.get_oop()); 537 return 0; 538 } else { 539 jvalue *value = (jvalue *) result.get_value_addr(); 540 // Narrow the value down if required (Important on big endian machines) 541 switch (return_type) { 542 case T_BOOLEAN: 543 return (jboolean) value->i; 544 case T_BYTE: 545 return (jbyte) value->i; 546 case T_CHAR: 547 return (jchar) value->i; 548 case T_SHORT: 549 return (jshort) value->i; 550 case T_INT: 551 case T_FLOAT: 552 return value->i; 553 case T_LONG: 554 case T_DOUBLE: 555 return value->j; 556 default: 557 fatal("Unexpected type %s", type2name(return_type)); 558 return 0; 559 } 560 } 561 JRT_END 562 563 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline)) 564 ttyLocker ttyl; 565 566 if (obj == nullptr) { 567 tty->print("null"); 568 } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) { 569 if (oopDesc::is_oop_or_null(obj, true)) { 570 char buf[O_BUFLEN]; 571 tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); 572 } else { 573 tty->print(INTPTR_FORMAT, p2i(obj)); 574 } 575 } else { 576 ResourceMark rm; 577 assert(obj != nullptr && java_lang_String::is_instance(obj), "must be"); 578 char *buf = java_lang_String::as_utf8_string(obj); 579 tty->print_raw(buf); 580 } 581 if (newline) { 582 tty->cr(); 583 } 584 JRT_END 585 586 #if INCLUDE_G1GC 587 588 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) { 589 G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread); 590 } 591 592 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) { 593 G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread); 594 } 595 596 #endif // INCLUDE_G1GC 597 598 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) 599 bool ret = true; 600 if(!Universe::heap()->is_in(parent)) { 601 tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); 602 parent->print(); 603 ret=false; 604 } 605 if(!Universe::heap()->is_in(child)) { 606 tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); 607 child->print(); 608 ret=false; 609 } 610 return (jint)ret; 611 JRT_END 612 613 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value)) 614 ResourceMark rm(current); 615 const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where; 616 char *detail_msg = nullptr; 617 if (format != 0L) { 618 const char* buf = (char*) (address) format; 619 size_t detail_msg_length = strlen(buf) * 2; 620 detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); 621 jio_snprintf(detail_msg, detail_msg_length, buf, value); 622 } 623 report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); 624 JRT_END 625 626 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) 627 oop exception = thread->exception_oop(); 628 assert(exception != nullptr, "npe"); 629 thread->set_exception_oop(nullptr); 630 thread->set_exception_pc(nullptr); 631 return exception; 632 JRT_END 633 634 PRAGMA_DIAG_PUSH 635 PRAGMA_FORMAT_NONLITERAL_IGNORED 636 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3)) 637 ResourceMark rm; 638 tty->print(format, v1, v2, v3); 639 JRT_END 640 PRAGMA_DIAG_POP 641 642 static void decipher(jlong v, bool ignoreZero) { 643 if (v != 0 || !ignoreZero) { 644 void* p = (void *)(address) v; 645 CodeBlob* cb = CodeCache::find_blob(p); 646 if (cb) { 647 if (cb->is_nmethod()) { 648 char buf[O_BUFLEN]; 649 tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); 650 return; 651 } 652 cb->print_value_on(tty); 653 return; 654 } 655 if (Universe::heap()->is_in(p)) { 656 oop obj = cast_to_oop(p); 657 obj->print_value_on(tty); 658 return; 659 } 660 tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); 661 } 662 } 663 664 PRAGMA_DIAG_PUSH 665 PRAGMA_FORMAT_NONLITERAL_IGNORED 666 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) 667 ResourceMark rm; 668 const char *buf = (const char*) (address) format; 669 if (vmError) { 670 if (buf != nullptr) { 671 fatal(buf, v1, v2, v3); 672 } else { 673 fatal("<anonymous error>"); 674 } 675 } else if (buf != nullptr) { 676 tty->print(buf, v1, v2, v3); 677 } else { 678 assert(v2 == 0, "v2 != 0"); 679 assert(v3 == 0, "v3 != 0"); 680 decipher(v1, false); 681 } 682 JRT_END 683 PRAGMA_DIAG_POP 684 685 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) 686 union { 687 jlong l; 688 jdouble d; 689 jfloat f; 690 } uu; 691 uu.l = value; 692 switch (typeChar) { 693 case 'Z': tty->print(value == 0 ? "false" : "true"); break; 694 case 'B': tty->print("%d", (jbyte) value); break; 695 case 'C': tty->print("%c", (jchar) value); break; 696 case 'S': tty->print("%d", (jshort) value); break; 697 case 'I': tty->print("%d", (jint) value); break; 698 case 'F': tty->print("%f", uu.f); break; 699 case 'J': tty->print(JLONG_FORMAT, value); break; 700 case 'D': tty->print("%lf", uu.d); break; 701 default: assert(false, "unknown typeChar"); break; 702 } 703 if (newline) { 704 tty->cr(); 705 } 706 JRT_END 707 708 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj)) 709 return (jint) obj->identity_hash(); 710 JRT_END 711 712 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value)) 713 deopt_caller(); 714 return (jint) value; 715 JRT_END 716 717 718 // Implementation of JVMCI.initializeRuntime() 719 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 720 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c)) 721 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 722 if (!EnableJVMCI) { 723 JVMCI_THROW_MSG_NULL(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 724 } 725 JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 726 JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 727 return JVMCIENV->get_jobject(runtime); 728 JVM_END 729 730 // Implementation of Services.readSystemPropertiesInfo(int[] offsets) 731 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV. 732 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle)) 733 JVMCIENV_FROM_JNI(thread, env); 734 if (!EnableJVMCI) { 735 JVMCI_THROW_MSG_0(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 736 } 737 JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle); 738 JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes()); 739 JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes()); 740 JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes()); 741 742 return (jlong) Arguments::system_properties(); 743 JVM_END 744 745 746 void JVMCINMethodData::initialize(int nmethod_mirror_index, 747 int nmethod_entry_patch_offset, 748 const char* nmethod_mirror_name, 749 bool is_default, 750 bool profile_deopt, 751 FailedSpeculation** failed_speculations) 752 { 753 _failed_speculations = failed_speculations; 754 _nmethod_mirror_index = nmethod_mirror_index; 755 guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier"); 756 _nmethod_entry_patch_offset = nmethod_entry_patch_offset; 757 if (nmethod_mirror_name != nullptr) { 758 _properties.bits._has_name = 1; 759 char* dest = (char*) name(); 760 strcpy(dest, nmethod_mirror_name); 761 } else { 762 _properties.bits._has_name = 0; 763 } 764 _properties.bits._is_default = is_default; 765 _properties.bits._profile_deopt = profile_deopt; 766 } 767 768 void JVMCINMethodData::copy(JVMCINMethodData* data) { 769 initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_properties.bits._is_default, 770 data->_properties.bits._profile_deopt, data->_failed_speculations); 771 } 772 773 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) { 774 jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS; 775 guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index); 776 int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK; 777 if (index + length > (uint) nm->speculations_size()) { 778 fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size()); 779 } 780 address data = nm->speculations_begin() + index; 781 FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length); 782 } 783 784 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm) { 785 if (_nmethod_mirror_index == -1) { 786 return nullptr; 787 } 788 return nm->oop_at(_nmethod_mirror_index); 789 } 790 791 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) { 792 guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod"); 793 oop* addr = nm->oop_addr_at(_nmethod_mirror_index); 794 guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror"); 795 guarantee(*addr == nullptr, "cannot overwrite non-null mirror"); 796 797 *addr = new_mirror; 798 799 // Since we've patched some oops in the nmethod, 800 // (re)register it with the heap. 801 MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag); 802 Universe::heap()->register_nmethod(nm); 803 } 804 805 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm, nmethod::InvalidationReason invalidation_reason) { 806 oop nmethod_mirror = get_nmethod_mirror(nm); 807 if (nmethod_mirror == nullptr) { 808 return; 809 } 810 811 // Update the values in the mirror if it still refers to nm. 812 // We cannot use JVMCIObject to wrap the mirror as this is called 813 // during GC, forbidding the creation of JNIHandles. 814 JVMCIEnv* jvmciEnv = nullptr; 815 nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror); 816 if (nm == current) { 817 if (nm->is_unloading()) { 818 // Break the link from the mirror to nm such that 819 // future invocations via the mirror will result in 820 // an InvalidInstalledCodeException. 821 HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0); 822 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 823 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 824 if (HotSpotJVMCI::HotSpotNmethod::invalidationReason(jvmciEnv, nmethod_mirror) == 825 static_cast<int>(nmethod::InvalidationReason::NOT_INVALIDATED)) { 826 HotSpotJVMCI::HotSpotNmethod::set_invalidationReason(jvmciEnv, nmethod_mirror, static_cast<int>(invalidation_reason)); 827 } 828 } else if (nm->is_not_entrant()) { 829 // Zero the entry point so any new invocation will fail but keep 830 // the address link around that so that existing activations can 831 // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code). 832 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 833 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 834 if (HotSpotJVMCI::HotSpotNmethod::invalidationReason(jvmciEnv, nmethod_mirror) == 835 static_cast<int>(nmethod::InvalidationReason::NOT_INVALIDATED)) { 836 HotSpotJVMCI::HotSpotNmethod::set_invalidationReason(jvmciEnv, nmethod_mirror, static_cast<int>(invalidation_reason)); 837 } 838 } 839 } 840 841 if (_nmethod_mirror_index != -1 && nm->is_unloading()) { 842 // Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise 843 // it would appear that the nmethod didn't need to be unloaded in the first place. 844 _nmethod_mirror_index = -1; 845 } 846 } 847 848 // Handles to objects in the Hotspot heap. 849 static OopStorage* object_handles() { 850 return Universe::vm_global(); 851 } 852 853 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) { 854 assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause"); 855 assert(oopDesc::is_oop(obj()), "not an oop"); 856 857 oop* ptr = OopHandle(object_handles(), obj()).ptr_raw(); 858 MutexLocker ml(_lock); 859 _oop_handles.append(ptr); 860 return reinterpret_cast<jlong>(ptr); 861 } 862 863 #ifdef ASSERT 864 bool JVMCIRuntime::is_oop_handle(jlong handle) { 865 const oop* ptr = (oop*) handle; 866 return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY; 867 } 868 #endif 869 870 int JVMCIRuntime::release_and_clear_oop_handles() { 871 guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown"); 872 int released = release_cleared_oop_handles(); 873 if (_oop_handles.length() != 0) { 874 for (int i = 0; i < _oop_handles.length(); i++) { 875 oop* oop_ptr = _oop_handles.at(i); 876 guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles"); 877 guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle"); 878 // Satisfy OopHandles::release precondition that all 879 // handles being released are null. 880 NativeAccess<>::oop_store(oop_ptr, (oop) nullptr); 881 } 882 883 // Do the bulk release 884 object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length()); 885 released += _oop_handles.length(); 886 } 887 _oop_handles.clear(); 888 return released; 889 } 890 891 static bool is_referent_non_null(oop* handle) { 892 return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr; 893 } 894 895 // Swaps the elements in `array` at index `a` and index `b` 896 static void swap(GrowableArray<oop*>* array, int a, int b) { 897 oop* tmp = array->at(a); 898 array->at_put(a, array->at(b)); 899 array->at_put(b, tmp); 900 } 901 902 int JVMCIRuntime::release_cleared_oop_handles() { 903 // Despite this lock, it's possible for another thread 904 // to clear a handle's referent concurrently (e.g., a thread 905 // executing IndirectHotSpotObjectConstantImpl.clear()). 906 // This is benign - it means there can still be cleared 907 // handles in _oop_handles when this method returns. 908 MutexLocker ml(_lock); 909 910 int next = 0; 911 if (_oop_handles.length() != 0) { 912 // Key for _oop_handles contents in example below: 913 // H: handle with non-null referent 914 // h: handle with clear (i.e., null) referent 915 // -: null entry 916 917 // Shuffle all handles with non-null referents to the front of the list 918 // Example: Before: 0HHh-Hh- 919 // After: HHHh--h- 920 for (int i = 0; i < _oop_handles.length(); i++) { 921 oop* handle = _oop_handles.at(i); 922 if (is_referent_non_null(handle)) { 923 if (i != next && !is_referent_non_null(_oop_handles.at(next))) { 924 // Swap elements at index `next` and `i` 925 swap(&_oop_handles, next, i); 926 } 927 next++; 928 } 929 } 930 931 // `next` is now the index of the first null handle or handle with a null referent 932 int num_alive = next; 933 934 // Shuffle all null handles to the end of the list 935 // Example: Before: HHHh--h- 936 // After: HHHhh--- 937 // num_alive: 3 938 for (int i = next; i < _oop_handles.length(); i++) { 939 oop* handle = _oop_handles.at(i); 940 if (handle != nullptr) { 941 if (i != next && _oop_handles.at(next) == nullptr) { 942 // Swap elements at index `next` and `i` 943 swap(&_oop_handles, next, i); 944 } 945 next++; 946 } 947 } 948 if (next != num_alive) { 949 int to_release = next - num_alive; 950 951 // `next` is now the index of the first null handle 952 // Example: to_release: 2 953 954 // Bulk release the handles with a null referent 955 object_handles()->release(_oop_handles.adr_at(num_alive), to_release); 956 957 // Truncate oop handles to only those with a non-null referent 958 JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive); 959 _oop_handles.trunc_to(num_alive); 960 // Example: HHH 961 962 return to_release; 963 } 964 } 965 return 0; 966 } 967 968 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) { 969 MutexLocker ml(_lock); 970 return _metadata_handles->allocate_handle(handle); 971 } 972 973 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) { 974 MutexLocker ml(_lock); 975 return _metadata_handles->allocate_handle(handle); 976 } 977 978 void JVMCIRuntime::release_handle(jmetadata handle) { 979 MutexLocker ml(_lock); 980 _metadata_handles->chain_free_list(handle); 981 } 982 983 // Function for redirecting shared library JavaVM output to tty 984 static void _log(const char* buf, size_t count) { 985 tty->write((char*) buf, count); 986 } 987 988 // Function for redirecting shared library JavaVM fatal error data to a log file. 989 // The log file is opened on first call to this function. 990 static void _fatal_log(const char* buf, size_t count) { 991 JVMCI::fatal_log(buf, count); 992 } 993 994 // Function for shared library JavaVM to flush tty 995 static void _flush_log() { 996 tty->flush(); 997 } 998 999 // Function for shared library JavaVM to exit HotSpot on a fatal error 1000 static void _fatal() { 1001 Thread* thread = Thread::current_or_null_safe(); 1002 if (thread != nullptr && thread->is_Java_thread()) { 1003 JavaThread* jthread = JavaThread::cast(thread); 1004 JVMCIRuntime* runtime = jthread->libjvmci_runtime(); 1005 if (runtime != nullptr) { 1006 int javaVM_id = runtime->get_shared_library_javavm_id(); 1007 fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id()); 1008 } 1009 } 1010 intx current_thread_id = os::current_thread_id(); 1011 fatal("thread %zd: Fatal error in JVMCI shared library", current_thread_id); 1012 } 1013 1014 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) : 1015 _init_state(uninitialized), 1016 _shared_library_javavm(nullptr), 1017 _shared_library_javavm_id(0), 1018 _id(id), 1019 _next(next), 1020 _metadata_handles(new MetadataHandles()), 1021 _oop_handles(100, mtJVMCI), 1022 _num_attached_threads(0), 1023 _for_compile_broker(for_compile_broker) 1024 { 1025 if (id == -1) { 1026 _lock = JVMCIRuntime_lock; 1027 } else { 1028 stringStream lock_name; 1029 lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id); 1030 Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint); 1031 _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true)); 1032 } 1033 JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")", 1034 id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this)); 1035 } 1036 1037 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) { 1038 assert(JVMCI_lock->owner() == thread, "must be"); 1039 // When shutting down, use the first available runtime. 1040 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1041 if (runtime->_num_attached_threads != cannot_be_attached) { 1042 runtime->pre_attach_thread(thread); 1043 JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id()); 1044 return runtime; 1045 } 1046 } 1047 // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to 1048 // do here since JVMCI_lock is locked. 1049 if (JVMCI::_shutdown_compiler_runtime == nullptr) { 1050 JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true); 1051 } 1052 JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime; 1053 JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id()); 1054 return runtime; 1055 } 1056 1057 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) { 1058 assert(JVMCI_lock->owner() == thread, "must be"); 1059 bool for_compile_broker = thread->is_Compiler_thread(); 1060 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1061 if (count != nullptr) { 1062 (*count)++; 1063 } 1064 if (for_compile_broker == runtime->_for_compile_broker) { 1065 int count = runtime->_num_attached_threads; 1066 if (count == cannot_be_attached || runtime == skip) { 1067 // Cannot attach to rt 1068 continue; 1069 } 1070 // If selecting for repacking, ignore a runtime without an existing JavaVM 1071 if (skip != nullptr && !runtime->has_shared_library_javavm()) { 1072 continue; 1073 } 1074 1075 // Select first runtime with sufficient capacity 1076 if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) { 1077 runtime->pre_attach_thread(thread); 1078 return runtime; 1079 } 1080 } 1081 } 1082 return nullptr; 1083 } 1084 1085 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) { 1086 assert(JVMCI_lock->owner() == thread, "must be"); 1087 int id = 0; 1088 JVMCIRuntime* runtime; 1089 if (JVMCI::using_singleton_shared_library_runtime()) { 1090 runtime = JVMCI::_compiler_runtimes; 1091 guarantee(runtime != nullptr, "must be"); 1092 while (runtime->_num_attached_threads == cannot_be_attached) { 1093 // Since there is only a singleton JVMCIRuntime, we 1094 // need to wait for it to be available for attaching. 1095 JVMCI_lock->wait(); 1096 } 1097 runtime->pre_attach_thread(thread); 1098 } else { 1099 runtime = select_runtime(thread, nullptr, &id); 1100 } 1101 if (runtime == nullptr) { 1102 runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread()); 1103 JVMCI::_compiler_runtimes = runtime; 1104 runtime->pre_attach_thread(thread); 1105 } 1106 return runtime; 1107 } 1108 1109 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) { 1110 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1111 // Find the runtime with fewest attached threads 1112 JVMCIRuntime* runtime = nullptr; 1113 { 1114 MutexLocker locker(JVMCI_lock); 1115 runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread); 1116 } 1117 runtime->attach_thread(thread); 1118 return runtime; 1119 } 1120 1121 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) { 1122 MutexLocker locker(JVMCI_lock); 1123 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1124 if (runtime->_shared_library_javavm == javaVM) { 1125 if (runtime->_num_attached_threads == cannot_be_attached) { 1126 return "Cannot attach to JVMCI runtime that is shutting down"; 1127 } 1128 runtime->pre_attach_thread(thread); 1129 runtime->attach_thread(thread); 1130 return nullptr; 1131 } 1132 } 1133 return "Cannot find JVMCI runtime"; 1134 } 1135 1136 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) { 1137 assert(JVMCI_lock->owner() == thread, "must be"); 1138 _num_attached_threads++; 1139 } 1140 1141 void JVMCIRuntime::attach_thread(JavaThread* thread) { 1142 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1143 thread->set_libjvmci_runtime(this); 1144 guarantee(this == JVMCI::_shutdown_compiler_runtime || 1145 _num_attached_threads > 0, 1146 "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads); 1147 JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : ""); 1148 } 1149 1150 void JVMCIRuntime::repack(JavaThread* thread) { 1151 JVMCIRuntime* new_runtime = nullptr; 1152 { 1153 MutexLocker locker(JVMCI_lock); 1154 if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) { 1155 return; 1156 } 1157 new_runtime = select_runtime(thread, this, nullptr); 1158 } 1159 if (new_runtime != nullptr) { 1160 JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1); 1161 detach_thread(thread, "moving thread to another JVMCI runtime"); 1162 new_runtime->attach_thread(thread); 1163 } 1164 } 1165 1166 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) { 1167 if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) { 1168 // Do minimal work when shutting down JVMCI 1169 thread->set_libjvmci_runtime(nullptr); 1170 return false; 1171 } 1172 bool should_shutdown; 1173 bool destroyed_javavm = false; 1174 { 1175 MutexLocker locker(JVMCI_lock); 1176 _num_attached_threads--; 1177 JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads); 1178 should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown(); 1179 if (should_shutdown && !can_destroy_javavm) { 1180 // If it's not possible to destroy the JavaVM on this thread then the VM must 1181 // not be shutdown. This can happen when a shared library thread is the last 1182 // thread to detach from a shared library JavaVM (e.g. GraalServiceThread). 1183 JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id); 1184 should_shutdown = false; 1185 } 1186 if (should_shutdown) { 1187 // Prevent other threads from attaching to this runtime 1188 // while it is shutting down and destroying its JavaVM 1189 _num_attached_threads = cannot_be_attached; 1190 } 1191 } 1192 if (should_shutdown) { 1193 // Release the JavaVM resources associated with this 1194 // runtime once there are no threads attached to it. 1195 shutdown(); 1196 if (can_destroy_javavm) { 1197 destroyed_javavm = destroy_shared_library_javavm(); 1198 if (destroyed_javavm) { 1199 // Can release all handles now that there's no code executing 1200 // that could be using them. Handles for the Java JVMCI runtime 1201 // are never released as we cannot guarantee all compiler threads 1202 // using it have been stopped. 1203 int released = release_and_clear_oop_handles(); 1204 JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}", 1205 _id, 1206 released, 1207 _metadata_handles->num_handles(), 1208 _metadata_handles->num_handles() - _metadata_handles->num_free_handles(), 1209 _metadata_handles->num_blocks()); 1210 1211 // No need to acquire _lock since this is the only thread accessing this runtime 1212 _metadata_handles->clear(); 1213 } 1214 } 1215 // Allow other threads to attach to this runtime now 1216 MutexLocker locker(JVMCI_lock); 1217 _num_attached_threads = 0; 1218 if (JVMCI::using_singleton_shared_library_runtime()) { 1219 // Notify any thread waiting to attach to the 1220 // singleton JVMCIRuntime 1221 JVMCI_lock->notify(); 1222 } 1223 } 1224 thread->set_libjvmci_runtime(nullptr); 1225 JVMCI_event_1("detached from JVMCI runtime %d", _id); 1226 return destroyed_javavm; 1227 } 1228 1229 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) { 1230 MutexLocker locker(_lock); 1231 JavaVM* javaVM = _shared_library_javavm; 1232 if (javaVM == nullptr) { 1233 #ifdef ASSERT 1234 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit"); 1235 if (val != nullptr && strcmp(val, "true") == 0) { 1236 *create_JavaVM_err = JNI_ENOMEM; 1237 return nullptr; 1238 } 1239 #endif 1240 1241 char* sl_path; 1242 void* sl_handle = JVMCI::get_shared_library(sl_path, true); 1243 1244 jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args); 1245 typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args); 1246 1247 JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM")); 1248 if (JNI_CreateJavaVM == nullptr) { 1249 fatal("Unable to find JNI_CreateJavaVM in %s", sl_path); 1250 } 1251 1252 ResourceMark rm; 1253 JavaVMInitArgs vm_args; 1254 vm_args.version = JNI_VERSION_1_2; 1255 vm_args.ignoreUnrecognized = JNI_TRUE; 1256 JavaVMOption options[6]; 1257 jlong javaVM_id = 0; 1258 1259 // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id" 1260 // option whose extraInfo info field is a pointer to which a unique id for the 1261 // JavaVM should be written. 1262 options[0].optionString = (char*) "_javavm_id"; 1263 options[0].extraInfo = &javaVM_id; 1264 1265 options[1].optionString = (char*) "_log"; 1266 options[1].extraInfo = (void*) _log; 1267 options[2].optionString = (char*) "_flush_log"; 1268 options[2].extraInfo = (void*) _flush_log; 1269 options[3].optionString = (char*) "_fatal"; 1270 options[3].extraInfo = (void*) _fatal; 1271 options[4].optionString = (char*) "_fatal_log"; 1272 options[4].extraInfo = (void*) _fatal_log; 1273 options[5].optionString = (char*) "_createvm_errorstr"; 1274 options[5].extraInfo = (void*) err_msg; 1275 1276 vm_args.version = JNI_VERSION_1_2; 1277 vm_args.options = options; 1278 vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption); 1279 1280 JNIEnv* env = nullptr; 1281 int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args); 1282 if (result == JNI_OK) { 1283 guarantee(env != nullptr, "missing env"); 1284 _shared_library_javavm_id = javaVM_id; 1285 _shared_library_javavm = javaVM; 1286 JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1287 return env; 1288 } else { 1289 *create_JavaVM_err = result; 1290 } 1291 } 1292 return nullptr; 1293 } 1294 1295 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) { 1296 if (info != nullptr) { 1297 typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info); 1298 if (info_oop->length() < 4) { 1299 JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length())); 1300 } 1301 JavaVM* javaVM = _shared_library_javavm; 1302 info_oop->long_at_put(0, (jlong) (address) javaVM); 1303 info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0); 1304 info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1); 1305 info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2); 1306 } 1307 } 1308 1309 #define JAVAVM_CALL_BLOCK \ 1310 guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \ 1311 ThreadToNativeFromVM ttnfv(thread); \ 1312 JavaVM* javavm = _shared_library_javavm; 1313 1314 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) { 1315 JAVAVM_CALL_BLOCK 1316 return javavm->AttachCurrentThread(penv, args); 1317 } 1318 1319 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) { 1320 JAVAVM_CALL_BLOCK 1321 return javavm->AttachCurrentThreadAsDaemon(penv, args); 1322 } 1323 1324 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) { 1325 JAVAVM_CALL_BLOCK 1326 return javavm->DetachCurrentThread(); 1327 } 1328 1329 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) { 1330 JAVAVM_CALL_BLOCK 1331 return javavm->GetEnv(penv, version); 1332 } 1333 #undef JAVAVM_CALL_BLOCK \ 1334 1335 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1336 if (is_HotSpotJVMCIRuntime_initialized()) { 1337 if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) { 1338 JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library"); 1339 } 1340 } 1341 1342 initialize(JVMCI_CHECK); 1343 1344 // This should only be called in the context of the JVMCI class being initialized 1345 JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK); 1346 result = JVMCIENV->make_global(result); 1347 1348 OrderAccess::storestore(); // Ensure handle is fully constructed before publishing 1349 _HotSpotJVMCIRuntime_instance = result; 1350 1351 JVMCI::_is_initialized = true; 1352 } 1353 1354 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1355 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1356 1357 class JavaVMRefsInitialization: public StackObj { 1358 JVMCIRuntime::InitState *_state; 1359 int _id; 1360 public: 1361 JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) { 1362 _state = state; 1363 _id = id; 1364 // All classes, methods and fields in the JVMCI shared library 1365 // are in the read-only part of the image. As such, these 1366 // values (and any global handle derived from them via NewGlobalRef) 1367 // are the same for all JavaVM instances created in the 1368 // shared library which means they only need to be initialized 1369 // once. In non-product mode, we check this invariant. 1370 // See com.oracle.svm.jni.JNIImageHeapHandles. 1371 // The same is true for Klass* and field offsets in HotSpotJVMCI. 1372 if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) { 1373 *state = JVMCIRuntime::being_initialized; 1374 JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id); 1375 } else { 1376 while (*state != JVMCIRuntime::fully_initialized) { 1377 JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id); 1378 JVMCI_lock->wait(); 1379 } 1380 JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id); 1381 } 1382 } 1383 1384 ~JavaVMRefsInitialization() { 1385 if (*_state == JVMCIRuntime::being_initialized) { 1386 *_state = JVMCIRuntime::fully_initialized; 1387 JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id); 1388 JVMCI_lock->notify_all(); 1389 } 1390 } 1391 1392 bool should_init() { 1393 return *_state == JVMCIRuntime::being_initialized; 1394 } 1395 }; 1396 1397 void JVMCIRuntime::initialize(JVMCI_TRAPS) { 1398 // Check first without _lock 1399 if (_init_state == fully_initialized) { 1400 return; 1401 } 1402 1403 JavaThread* THREAD = JavaThread::current(); 1404 1405 MutexLocker locker(_lock); 1406 // Check again under _lock 1407 if (_init_state == fully_initialized) { 1408 return; 1409 } 1410 1411 while (_init_state == being_initialized) { 1412 JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id); 1413 _lock->wait(); 1414 if (_init_state == fully_initialized) { 1415 JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id); 1416 return; 1417 } 1418 } 1419 1420 JVMCI_event_1("initializing JVMCI runtime %d", _id); 1421 _init_state = being_initialized; 1422 1423 { 1424 MutexUnlocker unlock(_lock); 1425 1426 HandleMark hm(THREAD); 1427 ResourceMark rm(THREAD); 1428 { 1429 MutexLocker lock_jvmci(JVMCI_lock); 1430 if (JVMCIENV->is_hotspot()) { 1431 JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id); 1432 if (initialization.should_init()) { 1433 MutexUnlocker unlock_jvmci(JVMCI_lock); 1434 HotSpotJVMCI::compute_offsets(CHECK_EXIT); 1435 } 1436 } else { 1437 JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id); 1438 if (initialization.should_init()) { 1439 MutexUnlocker unlock_jvmci(JVMCI_lock); 1440 JNIAccessMark jni(JVMCIENV, THREAD); 1441 1442 JNIJVMCI::initialize_ids(jni.env()); 1443 if (jni()->ExceptionCheck()) { 1444 jni()->ExceptionDescribe(); 1445 fatal("JNI exception during init"); 1446 } 1447 // _lock is re-locked at this point 1448 } 1449 } 1450 } 1451 1452 if (!JVMCIENV->is_hotspot()) { 1453 JNIAccessMark jni(JVMCIENV, THREAD); 1454 JNIJVMCI::register_natives(jni.env()); 1455 } 1456 create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0)); 1457 create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0)); 1458 create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0)); 1459 create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0)); 1460 create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0)); 1461 create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0)); 1462 create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0)); 1463 create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0)); 1464 create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0)); 1465 1466 DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);) 1467 } 1468 1469 _init_state = fully_initialized; 1470 JVMCI_event_1("initialized JVMCI runtime %d", _id); 1471 _lock->notify_all(); 1472 } 1473 1474 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) { 1475 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1476 // These primitive types are long lived and are created before the runtime is fully set up 1477 // so skip registering them for scanning. 1478 JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true); 1479 if (JVMCIENV->is_hotspot()) { 1480 JavaValue result(T_OBJECT); 1481 JavaCallArguments args; 1482 args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror))); 1483 args.push_int(type2char(type)); 1484 JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject())); 1485 1486 return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop())); 1487 } else { 1488 JNIAccessMark jni(JVMCIENV); 1489 jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(), 1490 JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(), 1491 mirror.as_jobject(), type2char(type)); 1492 if (jni()->ExceptionCheck()) { 1493 return JVMCIObject(); 1494 } 1495 return JVMCIENV->wrap(result); 1496 } 1497 } 1498 1499 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) { 1500 if (!is_HotSpotJVMCIRuntime_initialized()) { 1501 initialize(JVMCI_CHECK); 1502 JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK); 1503 guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id); 1504 } 1505 } 1506 1507 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1508 initialize(JVMCI_CHECK_(JVMCIObject())); 1509 initialize_JVMCI(JVMCI_CHECK_(JVMCIObject())); 1510 return _HotSpotJVMCIRuntime_instance; 1511 } 1512 1513 // Implementation of CompilerToVM.registerNatives() 1514 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 1515 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass)) 1516 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 1517 1518 if (!EnableJVMCI) { 1519 JVMCI_THROW_MSG(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 1520 } 1521 1522 JVMCIENV->runtime()->initialize(JVMCIENV); 1523 1524 { 1525 ResourceMark rm(thread); 1526 HandleMark hm(thread); 1527 ThreadToNativeFromVM trans(thread); 1528 1529 // Ensure _non_oop_bits is initialized 1530 Universe::non_oop_word(); 1531 JNIEnv *env = libjvmciOrHotspotEnv; 1532 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) { 1533 if (!env->ExceptionCheck()) { 1534 for (int i = 0; i < CompilerToVM::methods_count(); i++) { 1535 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) { 1536 guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature); 1537 break; 1538 } 1539 } 1540 } else { 1541 env->ExceptionDescribe(); 1542 } 1543 guarantee(false, "Failed registering CompilerToVM native methods"); 1544 } 1545 } 1546 JVM_END 1547 1548 1549 void JVMCIRuntime::shutdown() { 1550 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1551 JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id); 1552 JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__); 1553 JVMCIEnv* JVMCIENV = &__stack_jvmci_env__; 1554 if (JVMCIENV->init_error() == JNI_OK) { 1555 JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance); 1556 } else { 1557 JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error()); 1558 } 1559 if (_num_attached_threads == cannot_be_attached) { 1560 // Only when no other threads are attached to this runtime 1561 // is it safe to reset these fields. 1562 _HotSpotJVMCIRuntime_instance = JVMCIObject(); 1563 _init_state = uninitialized; 1564 JVMCI_event_1("shut down JVMCI runtime %d", _id); 1565 } 1566 } 1567 } 1568 1569 bool JVMCIRuntime::destroy_shared_library_javavm() { 1570 guarantee(_num_attached_threads == cannot_be_attached, 1571 "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads); 1572 JavaVM* javaVM; 1573 jlong javaVM_id = _shared_library_javavm_id; 1574 { 1575 // Exactly one thread can destroy the JavaVM 1576 // and release the handle to it. 1577 MutexLocker only_one(_lock); 1578 javaVM = _shared_library_javavm; 1579 if (javaVM != nullptr) { 1580 _shared_library_javavm = nullptr; 1581 _shared_library_javavm_id = 0; 1582 } 1583 } 1584 if (javaVM != nullptr) { 1585 int result; 1586 { 1587 // Must transition into native before calling into libjvmci 1588 ThreadToNativeFromVM ttnfv(JavaThread::current()); 1589 result = javaVM->DestroyJavaVM(); 1590 } 1591 if (result == JNI_OK) { 1592 JVMCI_event_1("destroyed JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1593 } else { 1594 warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM)); 1595 } 1596 return true; 1597 } 1598 return false; 1599 } 1600 1601 void JVMCIRuntime::bootstrap_finished(TRAPS) { 1602 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1603 JVMCIENV_FROM_THREAD(THREAD); 1604 JVMCIENV->check_init(CHECK); 1605 JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV); 1606 } 1607 } 1608 1609 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) { 1610 if (HAS_PENDING_EXCEPTION) { 1611 Handle exception(THREAD, PENDING_EXCEPTION); 1612 CLEAR_PENDING_EXCEPTION; 1613 java_lang_Throwable::print_stack_trace(exception, tty); 1614 1615 // Clear and ignore any exceptions raised during printing 1616 CLEAR_PENDING_EXCEPTION; 1617 } 1618 } 1619 1620 1621 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) { 1622 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1623 1624 static volatile int report_error = 0; 1625 if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) { 1626 // Only report an error once 1627 tty->print_raw_cr(message); 1628 if (JVMCIENV != nullptr) { 1629 JVMCIENV->describe_pending_exception(tty); 1630 } else { 1631 describe_pending_hotspot_exception(THREAD); 1632 } 1633 } else { 1634 // Allow error reporting thread time to print the stack trace. 1635 THREAD->sleep(200); 1636 } 1637 fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message); 1638 } 1639 1640 // ------------------------------------------------------------------ 1641 // Note: the logic of this method should mirror the logic of 1642 // constantPoolOopDesc::verify_constant_pool_resolve. 1643 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) { 1644 if (accessing_klass->is_objArray_klass()) { 1645 accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass(); 1646 } 1647 if (!accessing_klass->is_instance_klass()) { 1648 return true; 1649 } 1650 1651 if (resolved_klass->is_objArray_klass()) { 1652 // Find the element klass, if this is an array. 1653 resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass(); 1654 } 1655 if (resolved_klass->is_instance_klass()) { 1656 Reflection::VerifyClassAccessResults result = 1657 Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true); 1658 return result == Reflection::ACCESS_OK; 1659 } 1660 return true; 1661 } 1662 1663 // ------------------------------------------------------------------ 1664 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass, 1665 const constantPoolHandle& cpool, 1666 Symbol* sym, 1667 bool require_local) { 1668 JVMCI_EXCEPTION_CONTEXT; 1669 1670 // Now we need to check the SystemDictionary 1671 if (sym->char_at(0) == JVM_SIGNATURE_CLASS && 1672 sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) { 1673 // This is a name from a signature. Strip off the trimmings. 1674 // Call recursive to keep scope of strippedsym. 1675 TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1, 1676 sym->utf8_length()-2); 1677 return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local); 1678 } 1679 1680 Handle loader; 1681 if (accessing_klass != nullptr) { 1682 loader = Handle(THREAD, accessing_klass->class_loader()); 1683 } 1684 1685 Klass* found_klass = require_local ? 1686 SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader) : 1687 SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader); 1688 1689 // If we fail to find an array klass, look again for its element type. 1690 // The element type may be available either locally or via constraints. 1691 // In either case, if we can find the element type in the system dictionary, 1692 // we must build an array type around it. The CI requires array klasses 1693 // to be loaded if their element klasses are loaded, except when memory 1694 // is exhausted. 1695 if (sym->char_at(0) == JVM_SIGNATURE_ARRAY && 1696 (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) { 1697 // We have an unloaded array. 1698 // Build it on the fly if the element class exists. 1699 TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1, 1700 sym->utf8_length()-1); 1701 1702 // Get element Klass recursively. 1703 Klass* elem_klass = 1704 get_klass_by_name_impl(accessing_klass, 1705 cpool, 1706 elem_sym, 1707 require_local); 1708 if (elem_klass != nullptr) { 1709 // Now make an array for it 1710 return elem_klass->array_klass(THREAD); 1711 } 1712 } 1713 1714 if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) { 1715 // Look inside the constant pool for pre-resolved class entries. 1716 for (int i = cpool->length() - 1; i >= 1; i--) { 1717 if (cpool->tag_at(i).is_klass()) { 1718 Klass* kls = cpool->resolved_klass_at(i); 1719 if (kls->name() == sym) { 1720 return kls; 1721 } 1722 } 1723 } 1724 } 1725 1726 return found_klass; 1727 } 1728 1729 // ------------------------------------------------------------------ 1730 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass, 1731 Symbol* klass_name, 1732 bool require_local) { 1733 ResourceMark rm; 1734 constantPoolHandle cpool; 1735 return get_klass_by_name_impl(accessing_klass, 1736 cpool, 1737 klass_name, 1738 require_local); 1739 } 1740 1741 // ------------------------------------------------------------------ 1742 // Implementation of get_klass_by_index. 1743 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool, 1744 int index, 1745 bool& is_accessible, 1746 Klass* accessor) { 1747 JVMCI_EXCEPTION_CONTEXT; 1748 Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index); 1749 Symbol* klass_name = nullptr; 1750 if (klass == nullptr) { 1751 klass_name = cpool->klass_name_at(index); 1752 } 1753 1754 if (klass == nullptr) { 1755 // Not found in constant pool. Use the name to do the lookup. 1756 Klass* k = get_klass_by_name_impl(accessor, 1757 cpool, 1758 klass_name, 1759 false); 1760 // Calculate accessibility the hard way. 1761 if (k == nullptr) { 1762 is_accessible = false; 1763 } else if (k->class_loader() != accessor->class_loader() && 1764 get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) { 1765 // Loaded only remotely. Not linked yet. 1766 is_accessible = false; 1767 } else { 1768 // Linked locally, and we must also check public/private, etc. 1769 is_accessible = check_klass_accessibility(accessor, k); 1770 } 1771 if (!is_accessible) { 1772 return nullptr; 1773 } 1774 return k; 1775 } 1776 1777 // It is known to be accessible, since it was found in the constant pool. 1778 is_accessible = true; 1779 return klass; 1780 } 1781 1782 // ------------------------------------------------------------------ 1783 // Get a klass from the constant pool. 1784 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool, 1785 int index, 1786 bool& is_accessible, 1787 Klass* accessor) { 1788 ResourceMark rm; 1789 Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor); 1790 return result; 1791 } 1792 1793 // ------------------------------------------------------------------ 1794 // Perform an appropriate method lookup based on accessor, holder, 1795 // name, signature, and bytecode. 1796 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor, 1797 Klass* holder, 1798 Symbol* name, 1799 Symbol* sig, 1800 Bytecodes::Code bc, 1801 constantTag tag) { 1802 // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl(). 1803 assert(check_klass_accessibility(accessor, holder), "holder not accessible"); 1804 1805 LinkInfo link_info(holder, name, sig, accessor, 1806 LinkInfo::AccessCheck::required, 1807 LinkInfo::LoaderConstraintCheck::required, 1808 tag); 1809 switch (bc) { 1810 case Bytecodes::_invokestatic: 1811 return LinkResolver::resolve_static_call_or_null(link_info); 1812 case Bytecodes::_invokespecial: 1813 return LinkResolver::resolve_special_call_or_null(link_info); 1814 case Bytecodes::_invokeinterface: 1815 return LinkResolver::linktime_resolve_interface_method_or_null(link_info); 1816 case Bytecodes::_invokevirtual: 1817 return LinkResolver::linktime_resolve_virtual_method_or_null(link_info); 1818 default: 1819 fatal("Unhandled bytecode: %s", Bytecodes::name(bc)); 1820 return nullptr; // silence compiler warnings 1821 } 1822 } 1823 1824 1825 // ------------------------------------------------------------------ 1826 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool, 1827 int index, Bytecodes::Code bc, 1828 InstanceKlass* accessor) { 1829 if (bc == Bytecodes::_invokedynamic) { 1830 if (cpool->resolved_indy_entry_at(index)->is_resolved()) { 1831 return cpool->resolved_indy_entry_at(index)->method(); 1832 } 1833 1834 return nullptr; 1835 } 1836 1837 int holder_index = cpool->klass_ref_index_at(index, bc); 1838 bool holder_is_accessible; 1839 Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor); 1840 1841 // Get the method's name and signature. 1842 Symbol* name_sym = cpool->name_ref_at(index, bc); 1843 Symbol* sig_sym = cpool->signature_ref_at(index, bc); 1844 1845 if (cpool->has_preresolution() 1846 || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) && 1847 MethodHandles::is_signature_polymorphic_name(holder, name_sym))) { 1848 // Short-circuit lookups for JSR 292-related call sites. 1849 // That is, do not rely only on name-based lookups, because they may fail 1850 // if the names are not resolvable in the boot class loader (7056328). 1851 switch (bc) { 1852 case Bytecodes::_invokevirtual: 1853 case Bytecodes::_invokeinterface: 1854 case Bytecodes::_invokespecial: 1855 case Bytecodes::_invokestatic: 1856 { 1857 Method* m = ConstantPool::method_at_if_loaded(cpool, index); 1858 if (m != nullptr) { 1859 return m; 1860 } 1861 } 1862 break; 1863 default: 1864 break; 1865 } 1866 } 1867 1868 if (holder_is_accessible) { // Our declared holder is loaded. 1869 constantTag tag = cpool->tag_ref_at(index, bc); 1870 Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag); 1871 if (m != nullptr) { 1872 // We found the method. 1873 return m; 1874 } 1875 } 1876 1877 // Either the declared holder was not loaded, or the method could 1878 // not be found. 1879 1880 return nullptr; 1881 } 1882 1883 // ------------------------------------------------------------------ 1884 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) { 1885 // For the case of <array>.clone(), the method holder can be an ArrayKlass* 1886 // instead of an InstanceKlass*. For that case simply pretend that the 1887 // declared holder is Object.clone since that's where the call will bottom out. 1888 if (method_holder->is_instance_klass()) { 1889 return InstanceKlass::cast(method_holder); 1890 } else if (method_holder->is_array_klass()) { 1891 return vmClasses::Object_klass(); 1892 } else { 1893 ShouldNotReachHere(); 1894 } 1895 return nullptr; 1896 } 1897 1898 1899 // ------------------------------------------------------------------ 1900 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool, 1901 int index, Bytecodes::Code bc, 1902 InstanceKlass* accessor) { 1903 ResourceMark rm; 1904 return get_method_by_index_impl(cpool, index, bc, accessor); 1905 } 1906 1907 // ------------------------------------------------------------------ 1908 // Check for changes to the system dictionary during compilation 1909 // class loads, evolution, breakpoints 1910 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies, 1911 JVMCICompileState* compile_state, 1912 char** failure_detail, 1913 bool& failing_dep_is_call_site) 1914 { 1915 failing_dep_is_call_site = false; 1916 // If JVMTI capabilities were enabled during compile, the compilation is invalidated. 1917 if (compile_state != nullptr && compile_state->jvmti_state_changed()) { 1918 *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies"; 1919 return JVMCI::dependencies_failed; 1920 } 1921 1922 CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task(); 1923 Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail); 1924 1925 if (result == Dependencies::end_marker) { 1926 return JVMCI::ok; 1927 } 1928 if (result == Dependencies::call_site_target_value) { 1929 failing_dep_is_call_site = true; 1930 } 1931 return JVMCI::dependencies_failed; 1932 } 1933 1934 // Called after an upcall to `function` while compiling `method`. 1935 // If an exception occurred, it is cleared, the compilation state 1936 // is updated with the failure and this method returns true. 1937 // Otherwise, it returns false. 1938 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) { 1939 if (JVMCIENV->has_pending_exception()) { 1940 ResourceMark rm; 1941 bool reason_on_C_heap = true; 1942 const char* pending_string = nullptr; 1943 const char* pending_stack_trace = nullptr; 1944 JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace); 1945 if (pending_string == nullptr) pending_string = "null"; 1946 // Using stringStream instead of err_msg to avoid truncation 1947 stringStream st; 1948 st.print("uncaught exception in %s [%s]", function, pending_string); 1949 const char* failure_reason = os::strdup(st.freeze(), mtJVMCI); 1950 if (failure_reason == nullptr) { 1951 failure_reason = "uncaught exception"; 1952 reason_on_C_heap = false; 1953 } 1954 JVMCI_event_1("%s", failure_reason); 1955 Log(jit, compilation) log; 1956 if (log.is_info()) { 1957 log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string()); 1958 if (pending_stack_trace != nullptr) { 1959 LogStream ls(log.info()); 1960 ls.print_raw_cr(pending_stack_trace); 1961 } 1962 } 1963 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1964 compile_state->set_failure(true, failure_reason, reason_on_C_heap); 1965 compiler->on_upcall(failure_reason, compile_state); 1966 return true; 1967 } 1968 return false; 1969 } 1970 1971 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) { 1972 JVMCI_EXCEPTION_CONTEXT 1973 1974 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1975 1976 bool is_osr = entry_bci != InvocationEntryBci; 1977 if (compiler->is_bootstrapping() && is_osr) { 1978 // no OSR compilations during bootstrap - the compiler is just too slow at this point, 1979 // and we know that there are no endless loops 1980 compile_state->set_failure(true, "No OSR during bootstrap"); 1981 return; 1982 } 1983 if (JVMCI::in_shutdown()) { 1984 if (UseJVMCINativeLibrary) { 1985 JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false); 1986 if (runtime != nullptr) { 1987 runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation"); 1988 } 1989 } 1990 compile_state->set_failure(false, "Avoiding compilation during shutdown"); 1991 return; 1992 } 1993 1994 HandleMark hm(thread); 1995 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 1996 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) { 1997 return; 1998 } 1999 JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV); 2000 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) { 2001 return; 2002 } 2003 2004 JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci, 2005 (jlong) compile_state, compile_state->task()->compile_id()); 2006 #ifdef ASSERT 2007 if (JVMCIENV->has_pending_exception()) { 2008 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal"); 2009 if (val != nullptr && strcmp(val, "true") == 0) { 2010 fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling"); 2011 } 2012 } 2013 #endif 2014 2015 if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) { 2016 return; 2017 } 2018 compiler->on_upcall(nullptr); 2019 guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null"); 2020 JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object); 2021 if (failure_message.is_non_null()) { 2022 // Copy failure reason into resource memory first ... 2023 const char* failure_reason = JVMCIENV->as_utf8_string(failure_message); 2024 // ... and then into the C heap. 2025 failure_reason = os::strdup(failure_reason, mtJVMCI); 2026 bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0; 2027 compile_state->set_failure(retryable, failure_reason, true); 2028 } else { 2029 if (!compile_state->task()->is_success()) { 2030 compile_state->set_failure(true, "no nmethod produced"); 2031 } else { 2032 compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object)); 2033 compiler->inc_methods_compiled(); 2034 } 2035 } 2036 if (compiler->is_bootstrapping()) { 2037 compiler->set_bootstrap_compilation_request_handled(); 2038 } 2039 } 2040 2041 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) { 2042 JVMCI_EXCEPTION_CONTEXT 2043 2044 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2045 if (JVMCIENV->has_pending_exception()) { 2046 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2047 } 2048 return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name); 2049 } 2050 2051 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) { 2052 JVMCI_EXCEPTION_CONTEXT 2053 2054 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2055 if (JVMCIENV->has_pending_exception()) { 2056 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2057 } 2058 return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id); 2059 } 2060 2061 // ------------------------------------------------------------------ 2062 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV, 2063 const methodHandle& method, 2064 nmethod*& nm, 2065 int entry_bci, 2066 CodeOffsets* offsets, 2067 int orig_pc_offset, 2068 CodeBuffer* code_buffer, 2069 int frame_words, 2070 OopMapSet* oop_map_set, 2071 ExceptionHandlerTable* handler_table, 2072 ImplicitExceptionTable* implicit_exception_table, 2073 AbstractCompiler* compiler, 2074 DebugInformationRecorder* debug_info, 2075 Dependencies* dependencies, 2076 int compile_id, 2077 bool has_monitors, 2078 bool has_unsafe_access, 2079 bool has_scoped_access, 2080 bool has_wide_vector, 2081 JVMCIObject compiled_code, 2082 JVMCIObject nmethod_mirror, 2083 FailedSpeculation** failed_speculations, 2084 char* speculations, 2085 int speculations_len, 2086 int nmethod_entry_patch_offset) { 2087 JVMCI_EXCEPTION_CONTEXT; 2088 CompLevel comp_level = CompLevel_full_optimization; 2089 char* failure_detail = nullptr; 2090 2091 bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0; 2092 bool profile_deopt = JVMCIENV->get_HotSpotNmethod_profileDeopt(nmethod_mirror) != 0; 2093 assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be"); 2094 JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror); 2095 const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name); 2096 int nmethod_mirror_index; 2097 if (!install_default) { 2098 // Reserve or initialize mirror slot in the oops table. 2099 OopRecorder* oop_recorder = debug_info->oop_recorder(); 2100 nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr); 2101 } else { 2102 // A default HotSpotNmethod mirror is never tracked by the nmethod 2103 nmethod_mirror_index = -1; 2104 } 2105 2106 JVMCI::CodeInstallResult result(JVMCI::ok); 2107 2108 // We require method counters to store some method state (max compilation levels) required by the compilation policy. 2109 if (method->get_method_counters(THREAD) == nullptr) { 2110 result = JVMCI::cache_full; 2111 failure_detail = (char*) "can't create method counters"; 2112 } 2113 2114 if (result == JVMCI::ok) { 2115 // Check if memory should be freed before allocation 2116 CodeCache::gc_on_allocation(); 2117 2118 // To prevent compile queue updates. 2119 MutexLocker locker(THREAD, MethodCompileQueue_lock); 2120 2121 // Prevent InstanceKlass::add_to_hierarchy from running 2122 // and invalidating our dependencies until we install this method. 2123 MutexLocker ml(Compile_lock); 2124 2125 // Encode the dependencies now, so we can check them right away. 2126 dependencies->encode_content_bytes(); 2127 2128 // Record the dependencies for the current compile in the log 2129 if (LogCompilation) { 2130 for (Dependencies::DepStream deps(dependencies); deps.next(); ) { 2131 deps.log_dependency(); 2132 } 2133 } 2134 2135 // Check for {class loads, evolution, breakpoints} during compilation 2136 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 2137 bool failing_dep_is_call_site; 2138 result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site); 2139 if (install_default && result != JVMCI::ok) { 2140 // While not a true deoptimization, it is a preemptive decompile. 2141 MethodData* mdp = method()->method_data(); 2142 if (mdp != nullptr && !failing_dep_is_call_site) { 2143 mdp->inc_decompile_count(); 2144 #ifdef ASSERT 2145 if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) { 2146 ResourceMark m; 2147 tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string()); 2148 } 2149 #endif 2150 } 2151 2152 // All buffers in the CodeBuffer are allocated in the CodeCache. 2153 // If the code buffer is created on each compile attempt 2154 // as in C2, then it must be freed. 2155 //code_buffer->free_blob(); 2156 } else { 2157 JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index, 2158 nmethod_entry_patch_offset, 2159 nmethod_mirror_name, 2160 install_default, 2161 profile_deopt, 2162 failed_speculations); 2163 nm = nmethod::new_nmethod(method, 2164 compile_id, 2165 entry_bci, 2166 offsets, 2167 orig_pc_offset, 2168 debug_info, dependencies, code_buffer, 2169 frame_words, oop_map_set, 2170 handler_table, implicit_exception_table, 2171 compiler, comp_level, 2172 speculations, speculations_len, data); 2173 2174 2175 // Free codeBlobs 2176 if (nm == nullptr) { 2177 // The CodeCache is full. Print out warning and disable compilation. 2178 { 2179 MutexUnlocker ml(Compile_lock); 2180 MutexUnlocker locker(MethodCompileQueue_lock); 2181 CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level)); 2182 } 2183 result = JVMCI::cache_full; 2184 } else { 2185 nm->set_has_unsafe_access(has_unsafe_access); 2186 nm->set_has_wide_vectors(has_wide_vector); 2187 nm->set_has_monitors(has_monitors); 2188 nm->set_has_scoped_access(has_scoped_access); 2189 2190 JVMCINMethodData* data = nm->jvmci_nmethod_data(); 2191 assert(data != nullptr, "must be"); 2192 if (install_default) { 2193 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm) == nullptr, "must be"); 2194 if (entry_bci == InvocationEntryBci) { 2195 // If there is an old version we're done with it 2196 nmethod* old = method->code(); 2197 if (TraceMethodReplacement && old != nullptr) { 2198 ResourceMark rm; 2199 char *method_name = method->name_and_sig_as_C_string(); 2200 tty->print_cr("Replacing method %s", method_name); 2201 } 2202 if (old != nullptr) { 2203 old->make_not_entrant(nmethod::InvalidationReason::JVMCI_REPLACED_WITH_NEW_CODE); 2204 } 2205 2206 LogTarget(Info, nmethod, install) lt; 2207 if (lt.is_enabled()) { 2208 ResourceMark rm; 2209 char *method_name = method->name_and_sig_as_C_string(); 2210 lt.print("Installing method (%d) %s [entry point: %p]", 2211 comp_level, method_name, nm->entry_point()); 2212 } 2213 // Allow the code to be executed 2214 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2215 if (nm->make_in_use()) { 2216 method->set_code(method, nm); 2217 } else { 2218 result = JVMCI::nmethod_reclaimed; 2219 } 2220 } else { 2221 LogTarget(Info, nmethod, install) lt; 2222 if (lt.is_enabled()) { 2223 ResourceMark rm; 2224 char *method_name = method->name_and_sig_as_C_string(); 2225 lt.print("Installing osr method (%d) %s @ %d", 2226 comp_level, method_name, entry_bci); 2227 } 2228 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2229 if (nm->make_in_use()) { 2230 InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm); 2231 } else { 2232 result = JVMCI::nmethod_reclaimed; 2233 } 2234 } 2235 } else { 2236 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm) == HotSpotJVMCI::resolve(nmethod_mirror), "must be"); 2237 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2238 if (!nm->make_in_use()) { 2239 result = JVMCI::nmethod_reclaimed; 2240 } 2241 } 2242 } 2243 } 2244 } 2245 2246 // String creation must be done outside lock 2247 if (failure_detail != nullptr) { 2248 // A failure to allocate the string is silently ignored. 2249 JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV); 2250 JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message); 2251 } 2252 2253 if (result == JVMCI::ok) { 2254 JVMCICompileState* state = JVMCIENV->compile_state(); 2255 if (state != nullptr) { 2256 // Compilation succeeded, post what we know about it 2257 nm->post_compiled_method(state->task()); 2258 } 2259 } 2260 2261 return result; 2262 } 2263 2264 void JVMCIRuntime::post_compile(JavaThread* thread) { 2265 if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) { 2266 if (thread->libjvmci_runtime() != nullptr) { 2267 detach_thread(thread, "single use JavaVM"); 2268 } else { 2269 // JVMCI shutdown may have already detached the thread 2270 } 2271 } 2272 }