1 /*
   2  * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "classfile/javaClasses.inline.hpp"
  25 #include "classfile/symbolTable.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmClasses.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/memAllocator.hpp"
  31 #include "gc/shared/oopStorage.inline.hpp"
  32 #include "jvmci/jniAccessMark.inline.hpp"
  33 #include "jvmci/jvmciCodeInstaller.hpp"
  34 #include "jvmci/jvmciCompilerToVM.hpp"
  35 #include "jvmci/jvmciRuntime.hpp"
  36 #include "jvmci/metadataHandles.hpp"
  37 #include "logging/log.hpp"
  38 #include "logging/logStream.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.inline.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/method.inline.hpp"
  44 #include "oops/objArrayKlass.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/typeArrayOop.inline.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/methodHandles.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fieldDescriptor.inline.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/jniHandles.inline.hpp"
  56 #include "runtime/mutex.hpp"
  57 #include "runtime/reflection.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/synchronizer.hpp"
  60 #if INCLUDE_G1GC
  61 #include "gc/g1/g1BarrierSetRuntime.hpp"
  62 #endif // INCLUDE_G1GC
  63 
  64 // Simple helper to see if the caller of a runtime stub which
  65 // entered the VM has been deoptimized
  66 
  67 static bool caller_is_deopted() {
  68   JavaThread* thread = JavaThread::current();
  69   RegisterMap reg_map(thread,
  70                       RegisterMap::UpdateMap::skip,
  71                       RegisterMap::ProcessFrames::include,
  72                       RegisterMap::WalkContinuation::skip);
  73   frame runtime_frame = thread->last_frame();
  74   frame caller_frame = runtime_frame.sender(&reg_map);
  75   assert(caller_frame.is_compiled_frame(), "must be compiled");
  76   return caller_frame.is_deoptimized_frame();
  77 }
  78 
  79 // Stress deoptimization
  80 static void deopt_caller() {
  81   if ( !caller_is_deopted()) {
  82     JavaThread* thread = JavaThread::current();
  83     RegisterMap reg_map(thread,
  84                         RegisterMap::UpdateMap::skip,
  85                         RegisterMap::ProcessFrames::include,
  86                         RegisterMap::WalkContinuation::skip);
  87     frame runtime_frame = thread->last_frame();
  88     frame caller_frame = runtime_frame.sender(&reg_map);
  89     Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
  90     assert(caller_is_deopted(), "Must be deoptimized");
  91   }
  92 }
  93 
  94 // Manages a scope for a JVMCI runtime call that attempts a heap allocation.
  95 // If there is a pending OutOfMemoryError upon closing the scope and the runtime
  96 // call is of the variety where allocation failure returns null without an
  97 // exception, the following action is taken:
  98 //   1. The pending OutOfMemoryError is cleared
  99 //   2. null is written to JavaThread::_vm_result_oop
 100 class RetryableAllocationMark {
 101  private:
 102    InternalOOMEMark _iom;
 103  public:
 104   RetryableAllocationMark(JavaThread* thread) : _iom(thread) {}
 105   ~RetryableAllocationMark() {
 106     JavaThread* THREAD = _iom.thread(); // For exception macros.
 107     if (THREAD != nullptr) {
 108       if (HAS_PENDING_EXCEPTION) {
 109         oop ex = PENDING_EXCEPTION;
 110         THREAD->set_vm_result_oop(nullptr);
 111         if (ex->is_a(vmClasses::OutOfMemoryError_klass())) {
 112           CLEAR_PENDING_EXCEPTION;
 113         }
 114       }
 115     }
 116   }
 117 };
 118 
 119 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass))
 120   JRT_BLOCK;
 121   assert(klass->is_klass(), "not a class");
 122   Handle holder(current, klass->klass_holder()); // keep the klass alive
 123   InstanceKlass* h = InstanceKlass::cast(klass);
 124   {
 125     RetryableAllocationMark ram(current);
 126     h->check_valid_for_instantiation(true, CHECK);
 127     if (!h->is_initialized()) {
 128       // Cannot re-execute class initialization without side effects
 129       // so return without attempting the initialization
 130       current->set_vm_result_oop(nullptr);
 131       return;
 132     }
 133     // allocate instance and return via TLS
 134     oop obj = h->allocate_instance(CHECK);
 135     current->set_vm_result_oop(obj);
 136   }
 137   JRT_BLOCK_END;
 138   SharedRuntime::on_slowpath_allocation_exit(current);
 139 JRT_END
 140 
 141 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length))
 142   JRT_BLOCK;
 143   // Note: no handle for klass needed since they are not used
 144   //       anymore after new_objArray() and no GC can happen before.
 145   //       (This may have to change if this code changes!)
 146   assert(array_klass->is_klass(), "not a class");
 147   oop obj;
 148   if (array_klass->is_typeArray_klass()) {
 149     BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
 150     RetryableAllocationMark ram(current);
 151     obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 152   } else {
 153     Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 154     Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 155     RetryableAllocationMark ram(current);
 156     obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 157   }
 158   // This is pretty rare but this runtime patch is stressful to deoptimization
 159   // if we deoptimize here so force a deopt to stress the path.
 160   if (DeoptimizeALot) {
 161     static int deopts = 0;
 162     if (deopts++ % 2 == 0) {
 163       // Drop the allocation
 164       obj = nullptr;
 165     } else {
 166       deopt_caller();
 167     }
 168   }
 169   current->set_vm_result_oop(obj);
 170   JRT_BLOCK_END;
 171   SharedRuntime::on_slowpath_allocation_exit(current);
 172 JRT_END
 173 
 174 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims))
 175   assert(klass->is_klass(), "not a class");
 176   assert(rank >= 1, "rank must be nonzero");
 177   Handle holder(current, klass->klass_holder()); // keep the klass alive
 178   RetryableAllocationMark ram(current);
 179   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 180   current->set_vm_result_oop(obj);
 181 JRT_END
 182 
 183 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length))
 184   RetryableAllocationMark ram(current);
 185   oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
 186   current->set_vm_result_oop(obj);
 187 JRT_END
 188 
 189 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror))
 190   InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror));
 191 
 192   if (klass == nullptr) {
 193     ResourceMark rm(current);
 194     THROW(vmSymbols::java_lang_InstantiationException());
 195   }
 196   RetryableAllocationMark ram(current);
 197 
 198   // Create new instance (the receiver)
 199   klass->check_valid_for_instantiation(false, CHECK);
 200 
 201   if (!klass->is_initialized()) {
 202     // Cannot re-execute class initialization without side effects
 203     // so return without attempting the initialization
 204     current->set_vm_result_oop(nullptr);
 205     return;
 206   }
 207 
 208   oop obj = klass->allocate_instance(CHECK);
 209   current->set_vm_result_oop(obj);
 210 JRT_END
 211 
 212 extern void vm_exit(int code);
 213 
 214 // Enter this method from compiled code handler below. This is where we transition
 215 // to VM mode. This is done as a helper routine so that the method called directly
 216 // from compiled code does not have to transition to VM. This allows the entry
 217 // method to see if the nmethod that we have just looked up a handler for has
 218 // been deoptimized while we were in the vm. This simplifies the assembly code
 219 // cpu directories.
 220 //
 221 // We are entering here from exception stub (via the entry method below)
 222 // If there is a compiled exception handler in this method, we will continue there;
 223 // otherwise we will unwind the stack and continue at the caller of top frame method
 224 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 225 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 226 // check to see if the handler we are going to return is now in a nmethod that has
 227 // been deoptimized. If that is the case we return the deopt blob
 228 // unpack_with_exception entry instead. This makes life for the exception blob easier
 229 // because making that same check and diverting is painful from assembly language.
 230 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 231   // Reset method handle flag.
 232   current->set_is_method_handle_return(false);
 233 
 234   Handle exception(current, ex);
 235 
 236   // The frame we rethrow the exception to might not have been processed by the GC yet.
 237   // The stack watermark barrier takes care of detecting that and ensuring the frame
 238   // has updated oops.
 239   StackWatermarkSet::after_unwind(current);
 240 
 241   nm = CodeCache::find_nmethod(pc);
 242   assert(nm != nullptr, "did not find nmethod");
 243   // Adjust the pc as needed/
 244   if (nm->is_deopt_pc(pc)) {
 245     RegisterMap map(current,
 246                     RegisterMap::UpdateMap::skip,
 247                     RegisterMap::ProcessFrames::include,
 248                     RegisterMap::WalkContinuation::skip);
 249     frame exception_frame = current->last_frame().sender(&map);
 250     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 251     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 252     pc = exception_frame.pc();
 253   }
 254   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 255   assert(oopDesc::is_oop(exception()), "just checking");
 256   // Check that exception is a subclass of Throwable
 257   assert(exception->is_a(vmClasses::Throwable_klass()),
 258          "Exception not subclass of Throwable");
 259 
 260   // debugging support
 261   // tracing
 262   if (log_is_enabled(Info, exceptions)) {
 263     ResourceMark rm;
 264     stringStream tempst;
 265     assert(nm->method() != nullptr, "Unexpected null method()");
 266     tempst.print("JVMCI compiled method <%s>\n"
 267                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 268                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 269     Exceptions::log_exception(exception, tempst.as_string());
 270   }
 271   // for AbortVMOnException flag
 272   Exceptions::debug_check_abort(exception);
 273 
 274   // Check the stack guard pages and re-enable them if necessary and there is
 275   // enough space on the stack to do so.  Use fast exceptions only if the guard
 276   // pages are enabled.
 277   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 278 
 279   if (JvmtiExport::can_post_on_exceptions()) {
 280     // To ensure correct notification of exception catches and throws
 281     // we have to deoptimize here.  If we attempted to notify the
 282     // catches and throws during this exception lookup it's possible
 283     // we could deoptimize on the way out of the VM and end back in
 284     // the interpreter at the throw site.  This would result in double
 285     // notifications since the interpreter would also notify about
 286     // these same catches and throws as it unwound the frame.
 287 
 288     RegisterMap reg_map(current,
 289                         RegisterMap::UpdateMap::include,
 290                         RegisterMap::ProcessFrames::include,
 291                         RegisterMap::WalkContinuation::skip);
 292     frame stub_frame = current->last_frame();
 293     frame caller_frame = stub_frame.sender(&reg_map);
 294 
 295     // We don't really want to deoptimize the nmethod itself since we
 296     // can actually continue in the exception handler ourselves but I
 297     // don't see an easy way to have the desired effect.
 298     Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint);
 299     assert(caller_is_deopted(), "Must be deoptimized");
 300 
 301     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 302   }
 303 
 304   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 305   if (guard_pages_enabled) {
 306     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 307     if (fast_continuation != nullptr) {
 308       // Set flag if return address is a method handle call site.
 309       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 310       return fast_continuation;
 311     }
 312   }
 313 
 314   // If the stack guard pages are enabled, check whether there is a handler in
 315   // the current method.  Otherwise (guard pages disabled), force an unwind and
 316   // skip the exception cache update (i.e., just leave continuation==nullptr).
 317   address continuation = nullptr;
 318   if (guard_pages_enabled) {
 319 
 320     // New exception handling mechanism can support inlined methods
 321     // with exception handlers since the mappings are from PC to PC
 322 
 323     // Clear out the exception oop and pc since looking up an
 324     // exception handler can cause class loading, which might throw an
 325     // exception and those fields are expected to be clear during
 326     // normal bytecode execution.
 327     current->clear_exception_oop_and_pc();
 328 
 329     bool recursive_exception = false;
 330     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 331     // If an exception was thrown during exception dispatch, the exception oop may have changed
 332     current->set_exception_oop(exception());
 333     current->set_exception_pc(pc);
 334 
 335     // The exception cache is used only for non-implicit exceptions
 336     // Update the exception cache only when another exception did
 337     // occur during the computation of the compiled exception handler
 338     // (e.g., when loading the class of the catch type).
 339     // Checking for exception oop equality is not
 340     // sufficient because some exceptions are pre-allocated and reused.
 341     if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) {
 342       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 343     }
 344   }
 345 
 346   // Set flag if return address is a method handle call site.
 347   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 348 
 349   if (log_is_enabled(Info, exceptions)) {
 350     ResourceMark rm;
 351     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 352                          " for exception thrown at PC " PTR_FORMAT,
 353                          p2i(current), p2i(continuation), p2i(pc));
 354   }
 355 
 356   return continuation;
 357 JRT_END
 358 
 359 // Enter this method from compiled code only if there is a Java exception handler
 360 // in the method handling the exception.
 361 // We are entering here from exception stub. We don't do a normal VM transition here.
 362 // We do it in a helper. This is so we can check to see if the nmethod we have just
 363 // searched for an exception handler has been deoptimized in the meantime.
 364 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) {
 365   oop exception = current->exception_oop();
 366   address pc = current->exception_pc();
 367   // Still in Java mode
 368   DEBUG_ONLY(NoHandleMark nhm);
 369   nmethod* nm = nullptr;
 370   address continuation = nullptr;
 371   {
 372     // Enter VM mode by calling the helper
 373     ResetNoHandleMark rnhm;
 374     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 375   }
 376   // Back in JAVA, use no oops DON'T safepoint
 377 
 378   // Now check to see if the compiled method we were called from is now deoptimized.
 379   // If so we must return to the deopt blob and deoptimize the nmethod
 380   if (nm != nullptr && caller_is_deopted()) {
 381     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 382   }
 383 
 384   assert(continuation != nullptr, "no handler found");
 385   return continuation;
 386 }
 387 
 388 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock))
 389   SharedRuntime::monitor_enter_helper(obj, lock, current);
 390 JRT_END
 391 
 392 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock))
 393   assert(current == JavaThread::current(), "pre-condition");
 394   assert(current->last_Java_sp(), "last_Java_sp must be set");
 395   assert(oopDesc::is_oop(obj), "invalid lock object pointer dected");
 396   SharedRuntime::monitor_exit_helper(obj, lock, current);
 397 JRT_END
 398 
 399 // Object.notify() fast path, caller does slow path
 400 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj))
 401   assert(current == JavaThread::current(), "pre-condition");
 402 
 403   // Very few notify/notifyAll operations find any threads on the waitset, so
 404   // the dominant fast-path is to simply return.
 405   // Relatedly, it's critical that notify/notifyAll be fast in order to
 406   // reduce lock hold times.
 407   if (!SafepointSynchronize::is_synchronizing()) {
 408     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 409       return true;
 410     }
 411   }
 412   return false; // caller must perform slow path
 413 
 414 JRT_END
 415 
 416 // Object.notifyAll() fast path, caller does slow path
 417 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj))
 418   assert(current == JavaThread::current(), "pre-condition");
 419 
 420   if (!SafepointSynchronize::is_synchronizing() ) {
 421     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 422       return true;
 423     }
 424   }
 425   return false; // caller must perform slow path
 426 
 427 JRT_END
 428 
 429 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message))
 430   JRT_BLOCK;
 431   TempNewSymbol symbol = SymbolTable::new_symbol(exception);
 432   SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
 433   JRT_BLOCK_END;
 434   return caller_is_deopted();
 435 JRT_END
 436 
 437 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass))
 438   JRT_BLOCK;
 439   ResourceMark rm(current);
 440   TempNewSymbol symbol = SymbolTable::new_symbol(exception);
 441   SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name());
 442   JRT_BLOCK_END;
 443   return caller_is_deopted();
 444 JRT_END
 445 
 446 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass))
 447   JRT_BLOCK;
 448   ResourceMark rm(current);
 449   const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass);
 450   TempNewSymbol symbol = SymbolTable::new_symbol(exception);
 451   SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
 452   JRT_BLOCK_END;
 453   return caller_is_deopted();
 454 JRT_END
 455 
 456 class ArgumentPusher : public SignatureIterator {
 457  protected:
 458   JavaCallArguments*  _jca;
 459   jlong _argument;
 460   bool _pushed;
 461 
 462   jlong next_arg() {
 463     guarantee(!_pushed, "one argument");
 464     _pushed = true;
 465     return _argument;
 466   }
 467 
 468   float next_float() {
 469     guarantee(!_pushed, "one argument");
 470     _pushed = true;
 471     jvalue v;
 472     v.i = (jint) _argument;
 473     return v.f;
 474   }
 475 
 476   double next_double() {
 477     guarantee(!_pushed, "one argument");
 478     _pushed = true;
 479     jvalue v;
 480     v.j = _argument;
 481     return v.d;
 482   }
 483 
 484   Handle next_object() {
 485     guarantee(!_pushed, "one argument");
 486     _pushed = true;
 487     return Handle(Thread::current(), cast_to_oop(_argument));
 488   }
 489 
 490  public:
 491   ArgumentPusher(Symbol* signature, JavaCallArguments*  jca, jlong argument) : SignatureIterator(signature) {
 492     this->_return_type = T_ILLEGAL;
 493     _jca = jca;
 494     _argument = argument;
 495     _pushed = false;
 496     do_parameters_on(this);
 497   }
 498 
 499   void do_type(BasicType type) {
 500     switch (type) {
 501       case T_OBJECT:
 502       case T_ARRAY:   _jca->push_oop(next_object());         break;
 503       case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break;
 504       case T_CHAR:    _jca->push_int((jchar) next_arg());    break;
 505       case T_SHORT:   _jca->push_int((jint)  next_arg());    break;
 506       case T_BYTE:    _jca->push_int((jbyte) next_arg());    break;
 507       case T_INT:     _jca->push_int((jint)  next_arg());    break;
 508       case T_LONG:    _jca->push_long((jlong) next_arg());   break;
 509       case T_FLOAT:   _jca->push_float(next_float());        break;
 510       case T_DOUBLE:  _jca->push_double(next_double());      break;
 511       default:        fatal("Unexpected type %s", type2name(type));
 512     }
 513   }
 514 };
 515 
 516 
 517 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument))
 518   ResourceMark rm;
 519   HandleMark hm(current);
 520 
 521   methodHandle mh(current, method);
 522   if (mh->size_of_parameters() > 1 && !mh->is_static()) {
 523     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument");
 524   }
 525 
 526   Symbol* signature = mh->signature();
 527   JavaCallArguments jca(mh->size_of_parameters());
 528   ArgumentPusher jap(signature, &jca, argument);
 529   BasicType return_type = jap.return_type();
 530   JavaValue result(return_type);
 531   JavaCalls::call(&result, mh, &jca, CHECK_0);
 532 
 533   if (return_type == T_VOID) {
 534     return 0;
 535   } else if (return_type == T_OBJECT || return_type == T_ARRAY) {
 536     current->set_vm_result_oop(result.get_oop());
 537     return 0;
 538   } else {
 539     jvalue *value = (jvalue *) result.get_value_addr();
 540     // Narrow the value down if required (Important on big endian machines)
 541     switch (return_type) {
 542       case T_BOOLEAN:
 543         return (jboolean) value->i;
 544       case T_BYTE:
 545         return (jbyte) value->i;
 546       case T_CHAR:
 547         return (jchar) value->i;
 548       case T_SHORT:
 549         return (jshort) value->i;
 550       case T_INT:
 551       case T_FLOAT:
 552         return value->i;
 553       case T_LONG:
 554       case T_DOUBLE:
 555         return value->j;
 556       default:
 557         fatal("Unexpected type %s", type2name(return_type));
 558         return 0;
 559     }
 560   }
 561 JRT_END
 562 
 563 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
 564   ttyLocker ttyl;
 565 
 566   if (obj == nullptr) {
 567     tty->print("null");
 568   } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) {
 569     if (oopDesc::is_oop_or_null(obj, true)) {
 570       char buf[O_BUFLEN];
 571       tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
 572     } else {
 573       tty->print(INTPTR_FORMAT, p2i(obj));
 574     }
 575   } else {
 576     ResourceMark rm;
 577     assert(obj != nullptr && java_lang_String::is_instance(obj), "must be");
 578     char *buf = java_lang_String::as_utf8_string(obj);
 579     tty->print_raw(buf);
 580   }
 581   if (newline) {
 582     tty->cr();
 583   }
 584 JRT_END
 585 
 586 #if INCLUDE_G1GC
 587 
 588 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) {
 589   G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread);
 590 }
 591 
 592 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) {
 593   G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread);
 594 }
 595 
 596 #endif // INCLUDE_G1GC
 597 
 598 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
 599   bool ret = true;
 600   if(!Universe::heap()->is_in(parent)) {
 601     tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
 602     parent->print();
 603     ret=false;
 604   }
 605   if(!Universe::heap()->is_in(child)) {
 606     tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
 607     child->print();
 608     ret=false;
 609   }
 610   return (jint)ret;
 611 JRT_END
 612 
 613 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value))
 614   ResourceMark rm(current);
 615   const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where;
 616   char *detail_msg = nullptr;
 617   if (format != 0L) {
 618     const char* buf = (char*) (address) format;
 619     size_t detail_msg_length = strlen(buf) * 2;
 620     detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
 621     jio_snprintf(detail_msg, detail_msg_length, buf, value);
 622   }
 623   report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
 624 JRT_END
 625 
 626 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
 627   oop exception = thread->exception_oop();
 628   assert(exception != nullptr, "npe");
 629   thread->set_exception_oop(nullptr);
 630   thread->set_exception_pc(nullptr);
 631   return exception;
 632 JRT_END
 633 
 634 PRAGMA_DIAG_PUSH
 635 PRAGMA_FORMAT_NONLITERAL_IGNORED
 636 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3))
 637   ResourceMark rm;
 638   tty->print(format, v1, v2, v3);
 639 JRT_END
 640 PRAGMA_DIAG_POP
 641 
 642 static void decipher(jlong v, bool ignoreZero) {
 643   if (v != 0 || !ignoreZero) {
 644     void* p = (void *)(address) v;
 645     CodeBlob* cb = CodeCache::find_blob(p);
 646     if (cb) {
 647       if (cb->is_nmethod()) {
 648         char buf[O_BUFLEN];
 649         tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
 650         return;
 651       }
 652       cb->print_value_on(tty);
 653       return;
 654     }
 655     if (Universe::heap()->is_in(p)) {
 656       oop obj = cast_to_oop(p);
 657       obj->print_value_on(tty);
 658       return;
 659     }
 660     tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
 661   }
 662 }
 663 
 664 PRAGMA_DIAG_PUSH
 665 PRAGMA_FORMAT_NONLITERAL_IGNORED
 666 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
 667   ResourceMark rm;
 668   const char *buf = (const char*) (address) format;
 669   if (vmError) {
 670     if (buf != nullptr) {
 671       fatal(buf, v1, v2, v3);
 672     } else {
 673       fatal("<anonymous error>");
 674     }
 675   } else if (buf != nullptr) {
 676     tty->print(buf, v1, v2, v3);
 677   } else {
 678     assert(v2 == 0, "v2 != 0");
 679     assert(v3 == 0, "v3 != 0");
 680     decipher(v1, false);
 681   }
 682 JRT_END
 683 PRAGMA_DIAG_POP
 684 
 685 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
 686   union {
 687       jlong l;
 688       jdouble d;
 689       jfloat f;
 690   } uu;
 691   uu.l = value;
 692   switch (typeChar) {
 693     case 'Z': tty->print(value == 0 ? "false" : "true"); break;
 694     case 'B': tty->print("%d", (jbyte) value); break;
 695     case 'C': tty->print("%c", (jchar) value); break;
 696     case 'S': tty->print("%d", (jshort) value); break;
 697     case 'I': tty->print("%d", (jint) value); break;
 698     case 'F': tty->print("%f", uu.f); break;
 699     case 'J': tty->print(JLONG_FORMAT, value); break;
 700     case 'D': tty->print("%lf", uu.d); break;
 701     default: assert(false, "unknown typeChar"); break;
 702   }
 703   if (newline) {
 704     tty->cr();
 705   }
 706 JRT_END
 707 
 708 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj))
 709   return (jint) obj->identity_hash();
 710 JRT_END
 711 
 712 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value))
 713   deopt_caller();
 714   return (jint) value;
 715 JRT_END
 716 
 717 
 718 // Implementation of JVMCI.initializeRuntime()
 719 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
 720 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c))
 721   JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
 722   if (!EnableJVMCI) {
 723     JVMCI_THROW_MSG_NULL(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE);
 724   }
 725   JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
 726   JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
 727   return JVMCIENV->get_jobject(runtime);
 728 JVM_END
 729 
 730 // Implementation of Services.readSystemPropertiesInfo(int[] offsets)
 731 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV.
 732 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle))
 733   JVMCIENV_FROM_JNI(thread, env);
 734   if (!EnableJVMCI) {
 735     JVMCI_THROW_MSG_0(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE);
 736   }
 737   JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle);
 738   JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes());
 739   JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes());
 740   JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes());
 741 
 742   return (jlong) Arguments::system_properties();
 743 JVM_END
 744 
 745 
 746 void JVMCINMethodData::initialize(int nmethod_mirror_index,
 747                                   int nmethod_entry_patch_offset,
 748                                   const char* nmethod_mirror_name,
 749                                   FailedSpeculation** failed_speculations)
 750 {
 751   _failed_speculations = failed_speculations;
 752   _nmethod_mirror_index = nmethod_mirror_index;
 753   guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier");
 754   _nmethod_entry_patch_offset = nmethod_entry_patch_offset;
 755   if (nmethod_mirror_name != nullptr) {
 756     _has_name = true;
 757     char* dest = (char*) name();
 758     strcpy(dest, nmethod_mirror_name);
 759   } else {
 760     _has_name = false;
 761   }
 762 }
 763 
 764 void JVMCINMethodData::copy(JVMCINMethodData* data) {
 765   initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations);
 766 }
 767 
 768 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) {
 769   jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS;
 770   guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index);
 771   int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK;
 772   if (index + length > (uint) nm->speculations_size()) {
 773     fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size());
 774   }
 775   address data = nm->speculations_begin() + index;
 776   FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length);
 777 }
 778 
 779 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) {
 780   if (_nmethod_mirror_index == -1) {
 781     return nullptr;
 782   }
 783   if (phantom_ref) {
 784     return nm->oop_at_phantom(_nmethod_mirror_index);
 785   } else {
 786     return nm->oop_at(_nmethod_mirror_index);
 787   }
 788 }
 789 
 790 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) {
 791   guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod");
 792   oop* addr = nm->oop_addr_at(_nmethod_mirror_index);
 793   guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror");
 794   guarantee(*addr == nullptr, "cannot overwrite non-null mirror");
 795 
 796   *addr = new_mirror;
 797 
 798   // Since we've patched some oops in the nmethod,
 799   // (re)register it with the heap.
 800   MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 801   Universe::heap()->register_nmethod(nm);
 802 }
 803 
 804 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) {
 805   oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false);
 806   if (nmethod_mirror == nullptr) {
 807     return;
 808   }
 809 
 810   // Update the values in the mirror if it still refers to nm.
 811   // We cannot use JVMCIObject to wrap the mirror as this is called
 812   // during GC, forbidding the creation of JNIHandles.
 813   JVMCIEnv* jvmciEnv = nullptr;
 814   nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror);
 815   if (nm == current) {
 816     if (nm->is_unloading()) {
 817       // Break the link from the mirror to nm such that
 818       // future invocations via the mirror will result in
 819       // an InvalidInstalledCodeException.
 820       HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0);
 821       HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
 822       HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
 823     } else if (nm->is_not_entrant()) {
 824       // Zero the entry point so any new invocation will fail but keep
 825       // the address link around that so that existing activations can
 826       // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code).
 827       HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
 828       HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
 829     }
 830   }
 831 
 832   if (_nmethod_mirror_index != -1 && nm->is_unloading()) {
 833     // Drop the reference to the nmethod mirror object but don't clear the actual oop reference.  Otherwise
 834     // it would appear that the nmethod didn't need to be unloaded in the first place.
 835     _nmethod_mirror_index = -1;
 836   }
 837 }
 838 
 839 // Handles to objects in the Hotspot heap.
 840 static OopStorage* object_handles() {
 841   return Universe::vm_global();
 842 }
 843 
 844 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) {
 845   assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause");
 846   assert(oopDesc::is_oop(obj()), "not an oop");
 847 
 848   oop* ptr = OopHandle(object_handles(), obj()).ptr_raw();
 849   MutexLocker ml(_lock);
 850   _oop_handles.append(ptr);
 851   return reinterpret_cast<jlong>(ptr);
 852 }
 853 
 854 #ifdef ASSERT
 855 bool JVMCIRuntime::is_oop_handle(jlong handle) {
 856   const oop* ptr = (oop*) handle;
 857   return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY;
 858 }
 859 #endif
 860 
 861 int JVMCIRuntime::release_and_clear_oop_handles() {
 862   guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown");
 863   int released = release_cleared_oop_handles();
 864   if (_oop_handles.length() != 0) {
 865     for (int i = 0; i < _oop_handles.length(); i++) {
 866       oop* oop_ptr = _oop_handles.at(i);
 867       guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles");
 868       guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle");
 869       // Satisfy OopHandles::release precondition that all
 870       // handles being released are null.
 871       NativeAccess<>::oop_store(oop_ptr, (oop) nullptr);
 872     }
 873 
 874     // Do the bulk release
 875     object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length());
 876     released += _oop_handles.length();
 877   }
 878   _oop_handles.clear();
 879   return released;
 880 }
 881 
 882 static bool is_referent_non_null(oop* handle) {
 883   return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr;
 884 }
 885 
 886 // Swaps the elements in `array` at index `a` and index `b`
 887 static void swap(GrowableArray<oop*>* array, int a, int b) {
 888   oop* tmp = array->at(a);
 889   array->at_put(a, array->at(b));
 890   array->at_put(b, tmp);
 891 }
 892 
 893 int JVMCIRuntime::release_cleared_oop_handles() {
 894   // Despite this lock, it's possible for another thread
 895   // to clear a handle's referent concurrently (e.g., a thread
 896   // executing IndirectHotSpotObjectConstantImpl.clear()).
 897   // This is benign - it means there can still be cleared
 898   // handles in _oop_handles when this method returns.
 899   MutexLocker ml(_lock);
 900 
 901   int next = 0;
 902   if (_oop_handles.length() != 0) {
 903     // Key for _oop_handles contents in example below:
 904     //   H: handle with non-null referent
 905     //   h: handle with clear (i.e., null) referent
 906     //   -: null entry
 907 
 908     // Shuffle all handles with non-null referents to the front of the list
 909     // Example: Before: 0HHh-Hh-
 910     //           After: HHHh--h-
 911     for (int i = 0; i < _oop_handles.length(); i++) {
 912       oop* handle = _oop_handles.at(i);
 913       if (is_referent_non_null(handle)) {
 914         if (i != next && !is_referent_non_null(_oop_handles.at(next))) {
 915           // Swap elements at index `next` and `i`
 916           swap(&_oop_handles, next, i);
 917         }
 918         next++;
 919       }
 920     }
 921 
 922     // `next` is now the index of the first null handle or handle with a null referent
 923     int num_alive = next;
 924 
 925     // Shuffle all null handles to the end of the list
 926     // Example: Before: HHHh--h-
 927     //           After: HHHhh---
 928     //       num_alive: 3
 929     for (int i = next; i < _oop_handles.length(); i++) {
 930       oop* handle = _oop_handles.at(i);
 931       if (handle != nullptr) {
 932         if (i != next && _oop_handles.at(next) == nullptr) {
 933           // Swap elements at index `next` and `i`
 934           swap(&_oop_handles, next, i);
 935         }
 936         next++;
 937       }
 938     }
 939     if (next != num_alive) {
 940       int to_release = next - num_alive;
 941 
 942       // `next` is now the index of the first null handle
 943       // Example: to_release: 2
 944 
 945       // Bulk release the handles with a null referent
 946       object_handles()->release(_oop_handles.adr_at(num_alive), to_release);
 947 
 948       // Truncate oop handles to only those with a non-null referent
 949       JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive);
 950       _oop_handles.trunc_to(num_alive);
 951       // Example: HHH
 952 
 953       return to_release;
 954     }
 955   }
 956   return 0;
 957 }
 958 
 959 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) {
 960   MutexLocker ml(_lock);
 961   return _metadata_handles->allocate_handle(handle);
 962 }
 963 
 964 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) {
 965   MutexLocker ml(_lock);
 966   return _metadata_handles->allocate_handle(handle);
 967 }
 968 
 969 void JVMCIRuntime::release_handle(jmetadata handle) {
 970   MutexLocker ml(_lock);
 971   _metadata_handles->chain_free_list(handle);
 972 }
 973 
 974 // Function for redirecting shared library JavaVM output to tty
 975 static void _log(const char* buf, size_t count) {
 976   tty->write((char*) buf, count);
 977 }
 978 
 979 // Function for redirecting shared library JavaVM fatal error data to a log file.
 980 // The log file is opened on first call to this function.
 981 static void _fatal_log(const char* buf, size_t count) {
 982   JVMCI::fatal_log(buf, count);
 983 }
 984 
 985 // Function for shared library JavaVM to flush tty
 986 static void _flush_log() {
 987   tty->flush();
 988 }
 989 
 990 // Function for shared library JavaVM to exit HotSpot on a fatal error
 991 static void _fatal() {
 992   Thread* thread = Thread::current_or_null_safe();
 993   if (thread != nullptr && thread->is_Java_thread()) {
 994     JavaThread* jthread = JavaThread::cast(thread);
 995     JVMCIRuntime* runtime = jthread->libjvmci_runtime();
 996     if (runtime != nullptr) {
 997       int javaVM_id = runtime->get_shared_library_javavm_id();
 998       fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id());
 999     }
1000   }
1001   intx current_thread_id = os::current_thread_id();
1002   fatal("thread %zd: Fatal error in JVMCI shared library", current_thread_id);
1003 }
1004 
1005 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) :
1006   _init_state(uninitialized),
1007   _shared_library_javavm(nullptr),
1008   _shared_library_javavm_id(0),
1009   _id(id),
1010   _next(next),
1011   _metadata_handles(new MetadataHandles()),
1012   _oop_handles(100, mtJVMCI),
1013   _num_attached_threads(0),
1014   _for_compile_broker(for_compile_broker)
1015 {
1016   if (id == -1) {
1017     _lock = JVMCIRuntime_lock;
1018   } else {
1019     stringStream lock_name;
1020     lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id);
1021     Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint);
1022     _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true));
1023   }
1024   JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")",
1025       id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this));
1026 }
1027 
1028 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) {
1029   assert(JVMCI_lock->owner() == thread, "must be");
1030   // When shutting down, use the first available runtime.
1031   for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1032     if (runtime->_num_attached_threads != cannot_be_attached) {
1033       runtime->pre_attach_thread(thread);
1034       JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id());
1035       return runtime;
1036     }
1037   }
1038   // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to
1039   // do here since JVMCI_lock is locked.
1040   if (JVMCI::_shutdown_compiler_runtime == nullptr) {
1041     JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true);
1042   }
1043   JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime;
1044   JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id());
1045   return runtime;
1046 }
1047 
1048 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) {
1049   assert(JVMCI_lock->owner() == thread, "must be");
1050   bool for_compile_broker = thread->is_Compiler_thread();
1051   for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1052     if (count != nullptr) {
1053       (*count)++;
1054     }
1055     if (for_compile_broker == runtime->_for_compile_broker) {
1056       int count = runtime->_num_attached_threads;
1057       if (count == cannot_be_attached || runtime == skip) {
1058         // Cannot attach to rt
1059         continue;
1060       }
1061       // If selecting for repacking, ignore a runtime without an existing JavaVM
1062       if (skip != nullptr && !runtime->has_shared_library_javavm()) {
1063         continue;
1064       }
1065 
1066       // Select first runtime with sufficient capacity
1067       if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) {
1068         runtime->pre_attach_thread(thread);
1069         return runtime;
1070       }
1071     }
1072   }
1073   return nullptr;
1074 }
1075 
1076 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) {
1077   assert(JVMCI_lock->owner() == thread, "must be");
1078   int id = 0;
1079   JVMCIRuntime* runtime;
1080   if (JVMCI::using_singleton_shared_library_runtime()) {
1081     runtime = JVMCI::_compiler_runtimes;
1082     guarantee(runtime != nullptr, "must be");
1083     while (runtime->_num_attached_threads == cannot_be_attached) {
1084       // Since there is only a singleton JVMCIRuntime, we
1085       // need to wait for it to be available for attaching.
1086       JVMCI_lock->wait();
1087     }
1088     runtime->pre_attach_thread(thread);
1089   } else {
1090     runtime = select_runtime(thread, nullptr, &id);
1091   }
1092   if (runtime == nullptr) {
1093     runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread());
1094     JVMCI::_compiler_runtimes = runtime;
1095     runtime->pre_attach_thread(thread);
1096   }
1097   return runtime;
1098 }
1099 
1100 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) {
1101   assert(thread->libjvmci_runtime() == nullptr, "must be");
1102   // Find the runtime with fewest attached threads
1103   JVMCIRuntime* runtime = nullptr;
1104   {
1105     MutexLocker locker(JVMCI_lock);
1106     runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread);
1107   }
1108   runtime->attach_thread(thread);
1109   return runtime;
1110 }
1111 
1112 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) {
1113   MutexLocker locker(JVMCI_lock);
1114   for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1115     if (runtime->_shared_library_javavm == javaVM) {
1116       if (runtime->_num_attached_threads == cannot_be_attached) {
1117         return "Cannot attach to JVMCI runtime that is shutting down";
1118       }
1119       runtime->pre_attach_thread(thread);
1120       runtime->attach_thread(thread);
1121       return nullptr;
1122     }
1123   }
1124   return "Cannot find JVMCI runtime";
1125 }
1126 
1127 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) {
1128   assert(JVMCI_lock->owner() == thread, "must be");
1129   _num_attached_threads++;
1130 }
1131 
1132 void JVMCIRuntime::attach_thread(JavaThread* thread) {
1133   assert(thread->libjvmci_runtime() == nullptr, "must be");
1134   thread->set_libjvmci_runtime(this);
1135   guarantee(this == JVMCI::_shutdown_compiler_runtime ||
1136             _num_attached_threads > 0,
1137             "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads);
1138   JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : "");
1139 }
1140 
1141 void JVMCIRuntime::repack(JavaThread* thread) {
1142   JVMCIRuntime* new_runtime = nullptr;
1143   {
1144     MutexLocker locker(JVMCI_lock);
1145     if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) {
1146       return;
1147     }
1148     new_runtime = select_runtime(thread, this, nullptr);
1149   }
1150   if (new_runtime != nullptr) {
1151     JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1);
1152     detach_thread(thread, "moving thread to another JVMCI runtime");
1153     new_runtime->attach_thread(thread);
1154   }
1155 }
1156 
1157 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) {
1158   if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) {
1159     // Do minimal work when shutting down JVMCI
1160     thread->set_libjvmci_runtime(nullptr);
1161     return false;
1162   }
1163   bool should_shutdown;
1164   bool destroyed_javavm = false;
1165   {
1166     MutexLocker locker(JVMCI_lock);
1167     _num_attached_threads--;
1168     JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads);
1169     should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown();
1170     if (should_shutdown && !can_destroy_javavm) {
1171       // If it's not possible to destroy the JavaVM on this thread then the VM must
1172       // not be shutdown. This can happen when a shared library thread is the last
1173       // thread to detach from a shared library JavaVM (e.g. GraalServiceThread).
1174       JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id);
1175       should_shutdown = false;
1176     }
1177     if (should_shutdown) {
1178       // Prevent other threads from attaching to this runtime
1179       // while it is shutting down and destroying its JavaVM
1180       _num_attached_threads = cannot_be_attached;
1181     }
1182   }
1183   if (should_shutdown) {
1184     // Release the JavaVM resources associated with this
1185     // runtime once there are no threads attached to it.
1186     shutdown();
1187     if (can_destroy_javavm) {
1188       destroyed_javavm = destroy_shared_library_javavm();
1189       if (destroyed_javavm) {
1190         // Can release all handles now that there's no code executing
1191         // that could be using them. Handles for the Java JVMCI runtime
1192         // are never released as we cannot guarantee all compiler threads
1193         // using it have been stopped.
1194         int released = release_and_clear_oop_handles();
1195         JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}",
1196             _id,
1197             released,
1198             _metadata_handles->num_handles(),
1199             _metadata_handles->num_handles() - _metadata_handles->num_free_handles(),
1200             _metadata_handles->num_blocks());
1201 
1202         // No need to acquire _lock since this is the only thread accessing this runtime
1203         _metadata_handles->clear();
1204       }
1205     }
1206     // Allow other threads to attach to this runtime now
1207     MutexLocker locker(JVMCI_lock);
1208     _num_attached_threads = 0;
1209     if (JVMCI::using_singleton_shared_library_runtime()) {
1210       // Notify any thread waiting to attach to the
1211       // singleton JVMCIRuntime
1212       JVMCI_lock->notify();
1213     }
1214   }
1215   thread->set_libjvmci_runtime(nullptr);
1216   JVMCI_event_1("detached from JVMCI runtime %d", _id);
1217   return destroyed_javavm;
1218 }
1219 
1220 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) {
1221   MutexLocker locker(_lock);
1222   JavaVM* javaVM = _shared_library_javavm;
1223   if (javaVM == nullptr) {
1224 #ifdef ASSERT
1225     const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit");
1226     if (val != nullptr && strcmp(val, "true") == 0) {
1227       *create_JavaVM_err = JNI_ENOMEM;
1228       return nullptr;
1229     }
1230 #endif
1231 
1232     char* sl_path;
1233     void* sl_handle = JVMCI::get_shared_library(sl_path, true);
1234 
1235     jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args);
1236     typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args);
1237 
1238     JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM"));
1239     if (JNI_CreateJavaVM == nullptr) {
1240       fatal("Unable to find JNI_CreateJavaVM in %s", sl_path);
1241     }
1242 
1243     ResourceMark rm;
1244     JavaVMInitArgs vm_args;
1245     vm_args.version = JNI_VERSION_1_2;
1246     vm_args.ignoreUnrecognized = JNI_TRUE;
1247     JavaVMOption options[6];
1248     jlong javaVM_id = 0;
1249 
1250     // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id"
1251     // option whose extraInfo info field is a pointer to which a unique id for the
1252     // JavaVM should be written.
1253     options[0].optionString = (char*) "_javavm_id";
1254     options[0].extraInfo = &javaVM_id;
1255 
1256     options[1].optionString = (char*) "_log";
1257     options[1].extraInfo = (void*) _log;
1258     options[2].optionString = (char*) "_flush_log";
1259     options[2].extraInfo = (void*) _flush_log;
1260     options[3].optionString = (char*) "_fatal";
1261     options[3].extraInfo = (void*) _fatal;
1262     options[4].optionString = (char*) "_fatal_log";
1263     options[4].extraInfo = (void*) _fatal_log;
1264     options[5].optionString = (char*) "_createvm_errorstr";
1265     options[5].extraInfo = (void*) err_msg;
1266 
1267     vm_args.version = JNI_VERSION_1_2;
1268     vm_args.options = options;
1269     vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption);
1270 
1271     JNIEnv* env = nullptr;
1272     int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args);
1273     if (result == JNI_OK) {
1274       guarantee(env != nullptr, "missing env");
1275       _shared_library_javavm_id = javaVM_id;
1276       _shared_library_javavm = javaVM;
1277       JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1278       return env;
1279     } else {
1280       *create_JavaVM_err = result;
1281     }
1282   }
1283   return nullptr;
1284 }
1285 
1286 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) {
1287   if (info != nullptr) {
1288     typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info);
1289     if (info_oop->length() < 4) {
1290       JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length()));
1291     }
1292     JavaVM* javaVM = _shared_library_javavm;
1293     info_oop->long_at_put(0, (jlong) (address) javaVM);
1294     info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0);
1295     info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1);
1296     info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2);
1297   }
1298 }
1299 
1300 #define JAVAVM_CALL_BLOCK                                             \
1301   guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \
1302   ThreadToNativeFromVM ttnfv(thread);                                 \
1303   JavaVM* javavm = _shared_library_javavm;
1304 
1305 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) {
1306   JAVAVM_CALL_BLOCK
1307   return javavm->AttachCurrentThread(penv, args);
1308 }
1309 
1310 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) {
1311   JAVAVM_CALL_BLOCK
1312   return javavm->AttachCurrentThreadAsDaemon(penv, args);
1313 }
1314 
1315 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) {
1316   JAVAVM_CALL_BLOCK
1317   return javavm->DetachCurrentThread();
1318 }
1319 
1320 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) {
1321   JAVAVM_CALL_BLOCK
1322   return javavm->GetEnv(penv, version);
1323 }
1324 #undef JAVAVM_CALL_BLOCK                                             \
1325 
1326 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1327   if (is_HotSpotJVMCIRuntime_initialized()) {
1328     if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) {
1329       JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library");
1330     }
1331   }
1332 
1333   initialize(JVMCI_CHECK);
1334 
1335   // This should only be called in the context of the JVMCI class being initialized
1336   JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK);
1337   result = JVMCIENV->make_global(result);
1338 
1339   OrderAccess::storestore();  // Ensure handle is fully constructed before publishing
1340   _HotSpotJVMCIRuntime_instance = result;
1341 
1342   JVMCI::_is_initialized = true;
1343 }
1344 
1345 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1346 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1347 
1348 class JavaVMRefsInitialization: public StackObj {
1349   JVMCIRuntime::InitState *_state;
1350   int _id;
1351  public:
1352   JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) {
1353     _state = state;
1354     _id = id;
1355     // All classes, methods and fields in the JVMCI shared library
1356     // are in the read-only part of the image. As such, these
1357     // values (and any global handle derived from them via NewGlobalRef)
1358     // are the same for all JavaVM instances created in the
1359     // shared library which means they only need to be initialized
1360     // once. In non-product mode, we check this invariant.
1361     // See com.oracle.svm.jni.JNIImageHeapHandles.
1362     // The same is true for Klass* and field offsets in HotSpotJVMCI.
1363     if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) {
1364       *state = JVMCIRuntime::being_initialized;
1365       JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id);
1366     } else {
1367       while (*state != JVMCIRuntime::fully_initialized) {
1368         JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id);
1369         JVMCI_lock->wait();
1370       }
1371       JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id);
1372     }
1373   }
1374 
1375   ~JavaVMRefsInitialization() {
1376     if (*_state == JVMCIRuntime::being_initialized) {
1377       *_state = JVMCIRuntime::fully_initialized;
1378       JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id);
1379       JVMCI_lock->notify_all();
1380     }
1381   }
1382 
1383   bool should_init() {
1384     return *_state == JVMCIRuntime::being_initialized;
1385   }
1386 };
1387 
1388 void JVMCIRuntime::initialize(JVMCI_TRAPS) {
1389   // Check first without _lock
1390   if (_init_state == fully_initialized) {
1391     return;
1392   }
1393 
1394   JavaThread* THREAD = JavaThread::current();
1395 
1396   MutexLocker locker(_lock);
1397   // Check again under _lock
1398   if (_init_state == fully_initialized) {
1399     return;
1400   }
1401 
1402   while (_init_state == being_initialized) {
1403     JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id);
1404     _lock->wait();
1405     if (_init_state == fully_initialized) {
1406       JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id);
1407       return;
1408     }
1409   }
1410 
1411   JVMCI_event_1("initializing JVMCI runtime %d", _id);
1412   _init_state = being_initialized;
1413 
1414   {
1415     MutexUnlocker unlock(_lock);
1416 
1417     HandleMark hm(THREAD);
1418     ResourceMark rm(THREAD);
1419     {
1420       MutexLocker lock_jvmci(JVMCI_lock);
1421       if (JVMCIENV->is_hotspot()) {
1422         JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id);
1423         if (initialization.should_init()) {
1424           MutexUnlocker unlock_jvmci(JVMCI_lock);
1425           HotSpotJVMCI::compute_offsets(CHECK_EXIT);
1426         }
1427       } else {
1428         JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id);
1429         if (initialization.should_init()) {
1430           MutexUnlocker unlock_jvmci(JVMCI_lock);
1431           JNIAccessMark jni(JVMCIENV, THREAD);
1432 
1433           JNIJVMCI::initialize_ids(jni.env());
1434           if (jni()->ExceptionCheck()) {
1435             jni()->ExceptionDescribe();
1436             fatal("JNI exception during init");
1437           }
1438           // _lock is re-locked at this point
1439         }
1440       }
1441     }
1442 
1443     if (!JVMCIENV->is_hotspot()) {
1444       JNIAccessMark jni(JVMCIENV, THREAD);
1445       JNIJVMCI::register_natives(jni.env());
1446     }
1447     create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0));
1448     create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0));
1449     create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0));
1450     create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0));
1451     create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0));
1452     create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0));
1453     create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0));
1454     create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0));
1455     create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0));
1456 
1457     DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);)
1458   }
1459 
1460   _init_state = fully_initialized;
1461   JVMCI_event_1("initialized JVMCI runtime %d", _id);
1462   _lock->notify_all();
1463 }
1464 
1465 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) {
1466   JavaThread* THREAD = JavaThread::current(); // For exception macros.
1467   // These primitive types are long lived and are created before the runtime is fully set up
1468   // so skip registering them for scanning.
1469   JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true);
1470   if (JVMCIENV->is_hotspot()) {
1471     JavaValue result(T_OBJECT);
1472     JavaCallArguments args;
1473     args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror)));
1474     args.push_int(type2char(type));
1475     JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject()));
1476 
1477     return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop()));
1478   } else {
1479     JNIAccessMark jni(JVMCIENV);
1480     jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(),
1481                                            JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(),
1482                                            mirror.as_jobject(), type2char(type));
1483     if (jni()->ExceptionCheck()) {
1484       return JVMCIObject();
1485     }
1486     return JVMCIENV->wrap(result);
1487   }
1488 }
1489 
1490 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) {
1491   if (!is_HotSpotJVMCIRuntime_initialized()) {
1492     initialize(JVMCI_CHECK);
1493     JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK);
1494     guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id);
1495   }
1496 }
1497 
1498 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1499   initialize(JVMCI_CHECK_(JVMCIObject()));
1500   initialize_JVMCI(JVMCI_CHECK_(JVMCIObject()));
1501   return _HotSpotJVMCIRuntime_instance;
1502 }
1503 
1504 // Implementation of CompilerToVM.registerNatives()
1505 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
1506 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass))
1507   JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
1508 
1509   if (!EnableJVMCI) {
1510     JVMCI_THROW_MSG(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE);
1511   }
1512 
1513   JVMCIENV->runtime()->initialize(JVMCIENV);
1514 
1515   {
1516     ResourceMark rm(thread);
1517     HandleMark hm(thread);
1518     ThreadToNativeFromVM trans(thread);
1519 
1520     // Ensure _non_oop_bits is initialized
1521     Universe::non_oop_word();
1522     JNIEnv *env = libjvmciOrHotspotEnv;
1523     if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) {
1524       if (!env->ExceptionCheck()) {
1525         for (int i = 0; i < CompilerToVM::methods_count(); i++) {
1526           if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) {
1527             guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature);
1528             break;
1529           }
1530         }
1531       } else {
1532         env->ExceptionDescribe();
1533       }
1534       guarantee(false, "Failed registering CompilerToVM native methods");
1535     }
1536   }
1537 JVM_END
1538 
1539 
1540 void JVMCIRuntime::shutdown() {
1541   if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1542     JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id);
1543     JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__);
1544     JVMCIEnv* JVMCIENV = &__stack_jvmci_env__;
1545     if (JVMCIENV->init_error() == JNI_OK) {
1546       JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance);
1547     } else {
1548       JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error());
1549     }
1550     if (_num_attached_threads == cannot_be_attached) {
1551       // Only when no other threads are attached to this runtime
1552       // is it safe to reset these fields.
1553       _HotSpotJVMCIRuntime_instance = JVMCIObject();
1554       _init_state = uninitialized;
1555       JVMCI_event_1("shut down JVMCI runtime %d", _id);
1556     }
1557   }
1558 }
1559 
1560 bool JVMCIRuntime::destroy_shared_library_javavm() {
1561   guarantee(_num_attached_threads == cannot_be_attached,
1562       "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads);
1563   JavaVM* javaVM;
1564   jlong javaVM_id = _shared_library_javavm_id;
1565   {
1566     // Exactly one thread can destroy the JavaVM
1567     // and release the handle to it.
1568     MutexLocker only_one(_lock);
1569     javaVM = _shared_library_javavm;
1570     if (javaVM != nullptr) {
1571       _shared_library_javavm = nullptr;
1572       _shared_library_javavm_id = 0;
1573     }
1574   }
1575   if (javaVM != nullptr) {
1576     int result;
1577     {
1578       // Must transition into native before calling into libjvmci
1579       ThreadToNativeFromVM ttnfv(JavaThread::current());
1580       result = javaVM->DestroyJavaVM();
1581     }
1582     if (result == JNI_OK) {
1583       JVMCI_event_1("destroyed JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1584     } else {
1585       warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM));
1586     }
1587     return true;
1588   }
1589   return false;
1590 }
1591 
1592 void JVMCIRuntime::bootstrap_finished(TRAPS) {
1593   if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1594     JVMCIENV_FROM_THREAD(THREAD);
1595     JVMCIENV->check_init(CHECK);
1596     JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV);
1597   }
1598 }
1599 
1600 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) {
1601   if (HAS_PENDING_EXCEPTION) {
1602     Handle exception(THREAD, PENDING_EXCEPTION);
1603     CLEAR_PENDING_EXCEPTION;
1604     java_lang_Throwable::print_stack_trace(exception, tty);
1605 
1606     // Clear and ignore any exceptions raised during printing
1607     CLEAR_PENDING_EXCEPTION;
1608   }
1609 }
1610 
1611 
1612 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) {
1613   JavaThread* THREAD = JavaThread::current(); // For exception macros.
1614 
1615   static volatile int report_error = 0;
1616   if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) {
1617     // Only report an error once
1618     tty->print_raw_cr(message);
1619     if (JVMCIENV != nullptr) {
1620       JVMCIENV->describe_pending_exception(tty);
1621     } else {
1622       describe_pending_hotspot_exception(THREAD);
1623     }
1624   } else {
1625     // Allow error reporting thread time to print the stack trace.
1626     THREAD->sleep(200);
1627   }
1628   fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message);
1629 }
1630 
1631 // ------------------------------------------------------------------
1632 // Note: the logic of this method should mirror the logic of
1633 // constantPoolOopDesc::verify_constant_pool_resolve.
1634 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) {
1635   if (accessing_klass->is_objArray_klass()) {
1636     accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass();
1637   }
1638   if (!accessing_klass->is_instance_klass()) {
1639     return true;
1640   }
1641 
1642   if (resolved_klass->is_objArray_klass()) {
1643     // Find the element klass, if this is an array.
1644     resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass();
1645   }
1646   if (resolved_klass->is_instance_klass()) {
1647     Reflection::VerifyClassAccessResults result =
1648       Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true);
1649     return result == Reflection::ACCESS_OK;
1650   }
1651   return true;
1652 }
1653 
1654 // ------------------------------------------------------------------
1655 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass,
1656                                           const constantPoolHandle& cpool,
1657                                           Symbol* sym,
1658                                           bool require_local) {
1659   JVMCI_EXCEPTION_CONTEXT;
1660 
1661   // Now we need to check the SystemDictionary
1662   if (sym->char_at(0) == JVM_SIGNATURE_CLASS &&
1663       sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) {
1664     // This is a name from a signature.  Strip off the trimmings.
1665     // Call recursive to keep scope of strippedsym.
1666     TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1,
1667                                                         sym->utf8_length()-2);
1668     return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local);
1669   }
1670 
1671   Handle loader;
1672   if (accessing_klass != nullptr) {
1673     loader = Handle(THREAD, accessing_klass->class_loader());
1674   }
1675 
1676   Klass* found_klass = require_local ?
1677                          SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader) :
1678                          SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader);
1679 
1680   // If we fail to find an array klass, look again for its element type.
1681   // The element type may be available either locally or via constraints.
1682   // In either case, if we can find the element type in the system dictionary,
1683   // we must build an array type around it.  The CI requires array klasses
1684   // to be loaded if their element klasses are loaded, except when memory
1685   // is exhausted.
1686   if (sym->char_at(0) == JVM_SIGNATURE_ARRAY &&
1687       (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) {
1688     // We have an unloaded array.
1689     // Build it on the fly if the element class exists.
1690     TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1,
1691                                                      sym->utf8_length()-1);
1692 
1693     // Get element Klass recursively.
1694     Klass* elem_klass =
1695       get_klass_by_name_impl(accessing_klass,
1696                              cpool,
1697                              elem_sym,
1698                              require_local);
1699     if (elem_klass != nullptr) {
1700       // Now make an array for it
1701       return elem_klass->array_klass(THREAD);
1702     }
1703   }
1704 
1705   if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) {
1706     // Look inside the constant pool for pre-resolved class entries.
1707     for (int i = cpool->length() - 1; i >= 1; i--) {
1708       if (cpool->tag_at(i).is_klass()) {
1709         Klass*  kls = cpool->resolved_klass_at(i);
1710         if (kls->name() == sym) {
1711           return kls;
1712         }
1713       }
1714     }
1715   }
1716 
1717   return found_klass;
1718 }
1719 
1720 // ------------------------------------------------------------------
1721 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass,
1722                                   Symbol* klass_name,
1723                                   bool require_local) {
1724   ResourceMark rm;
1725   constantPoolHandle cpool;
1726   return get_klass_by_name_impl(accessing_klass,
1727                                                  cpool,
1728                                                  klass_name,
1729                                                  require_local);
1730 }
1731 
1732 // ------------------------------------------------------------------
1733 // Implementation of get_klass_by_index.
1734 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool,
1735                                         int index,
1736                                         bool& is_accessible,
1737                                         Klass* accessor) {
1738   JVMCI_EXCEPTION_CONTEXT;
1739   Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index);
1740   Symbol* klass_name = nullptr;
1741   if (klass == nullptr) {
1742     klass_name = cpool->klass_name_at(index);
1743   }
1744 
1745   if (klass == nullptr) {
1746     // Not found in constant pool.  Use the name to do the lookup.
1747     Klass* k = get_klass_by_name_impl(accessor,
1748                                         cpool,
1749                                         klass_name,
1750                                         false);
1751     // Calculate accessibility the hard way.
1752     if (k == nullptr) {
1753       is_accessible = false;
1754     } else if (k->class_loader() != accessor->class_loader() &&
1755                get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) {
1756       // Loaded only remotely.  Not linked yet.
1757       is_accessible = false;
1758     } else {
1759       // Linked locally, and we must also check public/private, etc.
1760       is_accessible = check_klass_accessibility(accessor, k);
1761     }
1762     if (!is_accessible) {
1763       return nullptr;
1764     }
1765     return k;
1766   }
1767 
1768   // It is known to be accessible, since it was found in the constant pool.
1769   is_accessible = true;
1770   return klass;
1771 }
1772 
1773 // ------------------------------------------------------------------
1774 // Get a klass from the constant pool.
1775 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool,
1776                                    int index,
1777                                    bool& is_accessible,
1778                                    Klass* accessor) {
1779   ResourceMark rm;
1780   Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor);
1781   return result;
1782 }
1783 
1784 // ------------------------------------------------------------------
1785 // Perform an appropriate method lookup based on accessor, holder,
1786 // name, signature, and bytecode.
1787 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor,
1788                                     Klass*        holder,
1789                                     Symbol*       name,
1790                                     Symbol*       sig,
1791                                     Bytecodes::Code bc,
1792                                     constantTag   tag) {
1793   // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl().
1794   assert(check_klass_accessibility(accessor, holder), "holder not accessible");
1795 
1796   LinkInfo link_info(holder, name, sig, accessor,
1797                      LinkInfo::AccessCheck::required,
1798                      LinkInfo::LoaderConstraintCheck::required,
1799                      tag);
1800   switch (bc) {
1801     case Bytecodes::_invokestatic:
1802       return LinkResolver::resolve_static_call_or_null(link_info);
1803     case Bytecodes::_invokespecial:
1804       return LinkResolver::resolve_special_call_or_null(link_info);
1805     case Bytecodes::_invokeinterface:
1806       return LinkResolver::linktime_resolve_interface_method_or_null(link_info);
1807     case Bytecodes::_invokevirtual:
1808       return LinkResolver::linktime_resolve_virtual_method_or_null(link_info);
1809     default:
1810       fatal("Unhandled bytecode: %s", Bytecodes::name(bc));
1811       return nullptr; // silence compiler warnings
1812   }
1813 }
1814 
1815 
1816 // ------------------------------------------------------------------
1817 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool,
1818                                                int index, Bytecodes::Code bc,
1819                                                InstanceKlass* accessor) {
1820   if (bc == Bytecodes::_invokedynamic) {
1821     if (cpool->resolved_indy_entry_at(index)->is_resolved()) {
1822       return cpool->resolved_indy_entry_at(index)->method();
1823     }
1824 
1825     return nullptr;
1826   }
1827 
1828   int holder_index = cpool->klass_ref_index_at(index, bc);
1829   bool holder_is_accessible;
1830   Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor);
1831 
1832   // Get the method's name and signature.
1833   Symbol* name_sym = cpool->name_ref_at(index, bc);
1834   Symbol* sig_sym  = cpool->signature_ref_at(index, bc);
1835 
1836   if (cpool->has_preresolution()
1837       || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) &&
1838           MethodHandles::is_signature_polymorphic_name(holder, name_sym))) {
1839     // Short-circuit lookups for JSR 292-related call sites.
1840     // That is, do not rely only on name-based lookups, because they may fail
1841     // if the names are not resolvable in the boot class loader (7056328).
1842     switch (bc) {
1843     case Bytecodes::_invokevirtual:
1844     case Bytecodes::_invokeinterface:
1845     case Bytecodes::_invokespecial:
1846     case Bytecodes::_invokestatic:
1847       {
1848         Method* m = ConstantPool::method_at_if_loaded(cpool, index);
1849         if (m != nullptr) {
1850           return m;
1851         }
1852       }
1853       break;
1854     default:
1855       break;
1856     }
1857   }
1858 
1859   if (holder_is_accessible) { // Our declared holder is loaded.
1860     constantTag tag = cpool->tag_ref_at(index, bc);
1861     Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag);
1862     if (m != nullptr) {
1863       // We found the method.
1864       return m;
1865     }
1866   }
1867 
1868   // Either the declared holder was not loaded, or the method could
1869   // not be found.
1870 
1871   return nullptr;
1872 }
1873 
1874 // ------------------------------------------------------------------
1875 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) {
1876   // For the case of <array>.clone(), the method holder can be an ArrayKlass*
1877   // instead of an InstanceKlass*.  For that case simply pretend that the
1878   // declared holder is Object.clone since that's where the call will bottom out.
1879   if (method_holder->is_instance_klass()) {
1880     return InstanceKlass::cast(method_holder);
1881   } else if (method_holder->is_array_klass()) {
1882     return vmClasses::Object_klass();
1883   } else {
1884     ShouldNotReachHere();
1885   }
1886   return nullptr;
1887 }
1888 
1889 
1890 // ------------------------------------------------------------------
1891 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool,
1892                                      int index, Bytecodes::Code bc,
1893                                      InstanceKlass* accessor) {
1894   ResourceMark rm;
1895   return get_method_by_index_impl(cpool, index, bc, accessor);
1896 }
1897 
1898 // ------------------------------------------------------------------
1899 // Check for changes to the system dictionary during compilation
1900 // class loads, evolution, breakpoints
1901 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies,
1902                                                                           JVMCICompileState* compile_state,
1903                                                                           char** failure_detail,
1904                                                                           bool& failing_dep_is_call_site)
1905 {
1906   failing_dep_is_call_site = false;
1907   // If JVMTI capabilities were enabled during compile, the compilation is invalidated.
1908   if (compile_state != nullptr && compile_state->jvmti_state_changed()) {
1909     *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies";
1910     return JVMCI::dependencies_failed;
1911   }
1912 
1913   CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task();
1914   Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail);
1915 
1916   if (result == Dependencies::end_marker) {
1917     return JVMCI::ok;
1918   }
1919   if (result == Dependencies::call_site_target_value) {
1920     failing_dep_is_call_site = true;
1921   }
1922   return JVMCI::dependencies_failed;
1923 }
1924 
1925 // Called after an upcall to `function` while compiling `method`.
1926 // If an exception occurred, it is cleared, the compilation state
1927 // is updated with the failure and this method returns true.
1928 // Otherwise, it returns false.
1929 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) {
1930   if (JVMCIENV->has_pending_exception()) {
1931     ResourceMark rm;
1932     bool reason_on_C_heap = true;
1933     const char* pending_string = nullptr;
1934     const char* pending_stack_trace = nullptr;
1935     JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace);
1936     if (pending_string == nullptr) pending_string = "null";
1937     // Using stringStream instead of err_msg to avoid truncation
1938     stringStream st;
1939     st.print("uncaught exception in %s [%s]", function, pending_string);
1940     const char* failure_reason = os::strdup(st.freeze(), mtJVMCI);
1941     if (failure_reason == nullptr) {
1942       failure_reason = "uncaught exception";
1943       reason_on_C_heap = false;
1944     }
1945     JVMCI_event_1("%s", failure_reason);
1946     Log(jit, compilation) log;
1947     if (log.is_info()) {
1948       log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string());
1949       if (pending_stack_trace != nullptr) {
1950         LogStream ls(log.info());
1951         ls.print_raw_cr(pending_stack_trace);
1952       }
1953     }
1954     JVMCICompileState* compile_state = JVMCIENV->compile_state();
1955     compile_state->set_failure(true, failure_reason, reason_on_C_heap);
1956     compiler->on_upcall(failure_reason, compile_state);
1957     return true;
1958   }
1959   return false;
1960 }
1961 
1962 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) {
1963   JVMCI_EXCEPTION_CONTEXT
1964 
1965   JVMCICompileState* compile_state = JVMCIENV->compile_state();
1966 
1967   bool is_osr = entry_bci != InvocationEntryBci;
1968   if (compiler->is_bootstrapping() && is_osr) {
1969     // no OSR compilations during bootstrap - the compiler is just too slow at this point,
1970     // and we know that there are no endless loops
1971     compile_state->set_failure(true, "No OSR during bootstrap");
1972     return;
1973   }
1974   if (JVMCI::in_shutdown()) {
1975     if (UseJVMCINativeLibrary) {
1976       JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false);
1977       if (runtime != nullptr) {
1978         runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation");
1979       }
1980     }
1981     compile_state->set_failure(false, "Avoiding compilation during shutdown");
1982     return;
1983   }
1984 
1985   HandleMark hm(thread);
1986   JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
1987   if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) {
1988     return;
1989   }
1990   JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV);
1991   if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) {
1992     return;
1993   }
1994 
1995   JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci,
1996                                                                      (jlong) compile_state, compile_state->task()->compile_id());
1997 #ifdef ASSERT
1998   if (JVMCIENV->has_pending_exception()) {
1999     const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal");
2000     if (val != nullptr && strcmp(val, "true") == 0) {
2001       fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling");
2002     }
2003   }
2004 #endif
2005 
2006   if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) {
2007     return;
2008   }
2009   compiler->on_upcall(nullptr);
2010   guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null");
2011   JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object);
2012   if (failure_message.is_non_null()) {
2013     // Copy failure reason into resource memory first ...
2014     const char* failure_reason = JVMCIENV->as_utf8_string(failure_message);
2015     // ... and then into the C heap.
2016     failure_reason = os::strdup(failure_reason, mtJVMCI);
2017     bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0;
2018     compile_state->set_failure(retryable, failure_reason, true);
2019   } else {
2020     if (!compile_state->task()->is_success()) {
2021       compile_state->set_failure(true, "no nmethod produced");
2022     } else {
2023       compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object));
2024       compiler->inc_methods_compiled();
2025     }
2026   }
2027   if (compiler->is_bootstrapping()) {
2028     compiler->set_bootstrap_compilation_request_handled();
2029   }
2030 }
2031 
2032 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) {
2033   JVMCI_EXCEPTION_CONTEXT
2034 
2035   JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2036   if (JVMCIENV->has_pending_exception()) {
2037     fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2038   }
2039   return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name);
2040 }
2041 
2042 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) {
2043   JVMCI_EXCEPTION_CONTEXT
2044 
2045   JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2046   if (JVMCIENV->has_pending_exception()) {
2047     fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2048   }
2049   return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id);
2050 }
2051 
2052 // ------------------------------------------------------------------
2053 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV,
2054                                                        const methodHandle& method,
2055                                                        nmethod*& nm,
2056                                                        int entry_bci,
2057                                                        CodeOffsets* offsets,
2058                                                        int orig_pc_offset,
2059                                                        CodeBuffer* code_buffer,
2060                                                        int frame_words,
2061                                                        OopMapSet* oop_map_set,
2062                                                        ExceptionHandlerTable* handler_table,
2063                                                        ImplicitExceptionTable* implicit_exception_table,
2064                                                        AbstractCompiler* compiler,
2065                                                        DebugInformationRecorder* debug_info,
2066                                                        Dependencies* dependencies,
2067                                                        int compile_id,
2068                                                        bool has_monitors,
2069                                                        bool has_unsafe_access,
2070                                                        bool has_scoped_access,
2071                                                        bool has_wide_vector,
2072                                                        JVMCIObject compiled_code,
2073                                                        JVMCIObject nmethod_mirror,
2074                                                        FailedSpeculation** failed_speculations,
2075                                                        char* speculations,
2076                                                        int speculations_len,
2077                                                        int nmethod_entry_patch_offset) {
2078   JVMCI_EXCEPTION_CONTEXT;
2079   CompLevel comp_level = CompLevel_full_optimization;
2080   char* failure_detail = nullptr;
2081 
2082   bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0;
2083   assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be");
2084   JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror);
2085   const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name);
2086   int nmethod_mirror_index;
2087   if (!install_default) {
2088     // Reserve or initialize mirror slot in the oops table.
2089     OopRecorder* oop_recorder = debug_info->oop_recorder();
2090     nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr);
2091   } else {
2092     // A default HotSpotNmethod mirror is never tracked by the nmethod
2093     nmethod_mirror_index = -1;
2094   }
2095 
2096   JVMCI::CodeInstallResult result(JVMCI::ok);
2097 
2098   // We require method counters to store some method state (max compilation levels) required by the compilation policy.
2099   if (method->get_method_counters(THREAD) == nullptr) {
2100     result = JVMCI::cache_full;
2101     failure_detail = (char*) "can't create method counters";
2102   }
2103 
2104   if (result == JVMCI::ok) {
2105     // Check if memory should be freed before allocation
2106     CodeCache::gc_on_allocation();
2107 
2108     // To prevent compile queue updates.
2109     MutexLocker locker(THREAD, MethodCompileQueue_lock);
2110 
2111     // Prevent InstanceKlass::add_to_hierarchy from running
2112     // and invalidating our dependencies until we install this method.
2113     MutexLocker ml(Compile_lock);
2114 
2115     // Encode the dependencies now, so we can check them right away.
2116     dependencies->encode_content_bytes();
2117 
2118     // Record the dependencies for the current compile in the log
2119     if (LogCompilation) {
2120       for (Dependencies::DepStream deps(dependencies); deps.next(); ) {
2121         deps.log_dependency();
2122       }
2123     }
2124 
2125     // Check for {class loads, evolution, breakpoints} during compilation
2126     JVMCICompileState* compile_state = JVMCIENV->compile_state();
2127     bool failing_dep_is_call_site;
2128     result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site);
2129     if (result != JVMCI::ok) {
2130       // While not a true deoptimization, it is a preemptive decompile.
2131       MethodData* mdp = method()->method_data();
2132       if (mdp != nullptr && !failing_dep_is_call_site) {
2133         mdp->inc_decompile_count();
2134 #ifdef ASSERT
2135         if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) {
2136           ResourceMark m;
2137           tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string());
2138         }
2139 #endif
2140       }
2141 
2142       // All buffers in the CodeBuffer are allocated in the CodeCache.
2143       // If the code buffer is created on each compile attempt
2144       // as in C2, then it must be freed.
2145       //code_buffer->free_blob();
2146     } else {
2147       JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index,
2148                                                         nmethod_entry_patch_offset,
2149                                                         nmethod_mirror_name,
2150                                                         failed_speculations);
2151       nm =  nmethod::new_nmethod(method,
2152                                  compile_id,
2153                                  entry_bci,
2154                                  offsets,
2155                                  orig_pc_offset,
2156                                  debug_info, dependencies, code_buffer,
2157                                  frame_words, oop_map_set,
2158                                  handler_table, implicit_exception_table,
2159                                  compiler, comp_level, nullptr /* AOTCodeEntry */,
2160                                  speculations, speculations_len, data);
2161 
2162 
2163       // Free codeBlobs
2164       if (nm == nullptr) {
2165         // The CodeCache is full.  Print out warning and disable compilation.
2166         {
2167           MutexUnlocker ml(Compile_lock);
2168           MutexUnlocker locker(MethodCompileQueue_lock);
2169           CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level));
2170         }
2171         result = JVMCI::cache_full;
2172       } else {
2173         nm->set_has_unsafe_access(has_unsafe_access);
2174         nm->set_has_wide_vectors(has_wide_vector);
2175         nm->set_has_monitors(has_monitors);
2176         nm->set_has_scoped_access(has_scoped_access);
2177 
2178         JVMCINMethodData* data = nm->jvmci_nmethod_data();
2179         assert(data != nullptr, "must be");
2180         if (install_default) {
2181           assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == nullptr, "must be");
2182           if (entry_bci == InvocationEntryBci) {
2183             // If there is an old version we're done with it
2184             nmethod* old = method->code();
2185             if (TraceMethodReplacement && old != nullptr) {
2186               ResourceMark rm;
2187               char *method_name = method->name_and_sig_as_C_string();
2188               tty->print_cr("Replacing method %s", method_name);
2189             }
2190             if (old != nullptr) {
2191               old->make_not_entrant("JVMCI register method");
2192             }
2193 
2194             LogTarget(Info, nmethod, install) lt;
2195             if (lt.is_enabled()) {
2196               ResourceMark rm;
2197               char *method_name = method->name_and_sig_as_C_string();
2198               lt.print("Installing method (%d) %s [entry point: %p]",
2199                         comp_level, method_name, nm->entry_point());
2200             }
2201             // Allow the code to be executed
2202             MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2203             if (nm->make_in_use()) {
2204               method->set_code(method, nm);
2205             } else {
2206               result = JVMCI::nmethod_reclaimed;
2207             }
2208           } else {
2209             LogTarget(Info, nmethod, install) lt;
2210             if (lt.is_enabled()) {
2211               ResourceMark rm;
2212               char *method_name = method->name_and_sig_as_C_string();
2213               lt.print("Installing osr method (%d) %s @ %d",
2214                         comp_level, method_name, entry_bci);
2215             }
2216             MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2217             if (nm->make_in_use()) {
2218               InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm);
2219             } else {
2220               result = JVMCI::nmethod_reclaimed;
2221             }
2222           }
2223         } else {
2224           assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be");
2225           MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2226           if (!nm->make_in_use()) {
2227             result = JVMCI::nmethod_reclaimed;
2228           }
2229         }
2230       }
2231     }
2232   }
2233 
2234   // String creation must be done outside lock
2235   if (failure_detail != nullptr) {
2236     // A failure to allocate the string is silently ignored.
2237     JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV);
2238     JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message);
2239   }
2240 
2241   if (result == JVMCI::ok) {
2242     JVMCICompileState* state = JVMCIENV->compile_state();
2243     if (state != nullptr) {
2244       // Compilation succeeded, post what we know about it
2245       nm->post_compiled_method(state->task());
2246     }
2247   }
2248 
2249   return result;
2250 }
2251 
2252 void JVMCIRuntime::post_compile(JavaThread* thread) {
2253   if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) {
2254     if (thread->libjvmci_runtime() != nullptr) {
2255       detach_thread(thread, "single use JavaVM");
2256     } else {
2257       // JVMCI shutdown may have already detached the thread
2258     }
2259   }
2260 }