1 /* 2 * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 #include "classfile/javaClasses.inline.hpp" 25 #include "classfile/symbolTable.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmClasses.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/memAllocator.hpp" 31 #include "gc/shared/oopStorage.inline.hpp" 32 #include "jvmci/jniAccessMark.inline.hpp" 33 #include "jvmci/jvmciCompilerToVM.hpp" 34 #include "jvmci/jvmciCodeInstaller.hpp" 35 #include "jvmci/jvmciRuntime.hpp" 36 #include "jvmci/metadataHandles.hpp" 37 #include "logging/log.hpp" 38 #include "logging/logStream.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/constantPool.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "oops/objArrayKlass.hpp" 45 #include "oops/oop.inline.hpp" 46 #include "oops/typeArrayOop.inline.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/methodHandles.hpp" 49 #include "runtime/arguments.hpp" 50 #include "runtime/atomic.hpp" 51 #include "runtime/deoptimization.hpp" 52 #include "runtime/fieldDescriptor.inline.hpp" 53 #include "runtime/frame.inline.hpp" 54 #include "runtime/java.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/mutex.hpp" 57 #include "runtime/reflection.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/synchronizer.hpp" 60 #if INCLUDE_G1GC 61 #include "gc/g1/g1BarrierSetRuntime.hpp" 62 #endif // INCLUDE_G1GC 63 64 // Simple helper to see if the caller of a runtime stub which 65 // entered the VM has been deoptimized 66 67 static bool caller_is_deopted() { 68 JavaThread* thread = JavaThread::current(); 69 RegisterMap reg_map(thread, 70 RegisterMap::UpdateMap::skip, 71 RegisterMap::ProcessFrames::include, 72 RegisterMap::WalkContinuation::skip); 73 frame runtime_frame = thread->last_frame(); 74 frame caller_frame = runtime_frame.sender(®_map); 75 assert(caller_frame.is_compiled_frame(), "must be compiled"); 76 return caller_frame.is_deoptimized_frame(); 77 } 78 79 // Stress deoptimization 80 static void deopt_caller() { 81 if ( !caller_is_deopted()) { 82 JavaThread* thread = JavaThread::current(); 83 RegisterMap reg_map(thread, 84 RegisterMap::UpdateMap::skip, 85 RegisterMap::ProcessFrames::include, 86 RegisterMap::WalkContinuation::skip); 87 frame runtime_frame = thread->last_frame(); 88 frame caller_frame = runtime_frame.sender(®_map); 89 Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); 90 assert(caller_is_deopted(), "Must be deoptimized"); 91 } 92 } 93 94 // Manages a scope for a JVMCI runtime call that attempts a heap allocation. 95 // If there is a pending OutOfMemoryError upon closing the scope and the runtime 96 // call is of the variety where allocation failure returns null without an 97 // exception, the following action is taken: 98 // 1. The pending OutOfMemoryError is cleared 99 // 2. null is written to JavaThread::_vm_result 100 class RetryableAllocationMark { 101 private: 102 InternalOOMEMark _iom; 103 public: 104 RetryableAllocationMark(JavaThread* thread) : _iom(thread) {} 105 ~RetryableAllocationMark() { 106 JavaThread* THREAD = _iom.thread(); // For exception macros. 107 if (THREAD != nullptr) { 108 if (HAS_PENDING_EXCEPTION) { 109 oop ex = PENDING_EXCEPTION; 110 THREAD->set_vm_result(nullptr); 111 if (ex->is_a(vmClasses::OutOfMemoryError_klass())) { 112 CLEAR_PENDING_EXCEPTION; 113 } 114 } 115 } 116 } 117 }; 118 119 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass)) 120 JRT_BLOCK; 121 assert(klass->is_klass(), "not a class"); 122 Handle holder(current, klass->klass_holder()); // keep the klass alive 123 InstanceKlass* h = InstanceKlass::cast(klass); 124 { 125 RetryableAllocationMark ram(current); 126 h->check_valid_for_instantiation(true, CHECK); 127 if (!h->is_initialized()) { 128 // Cannot re-execute class initialization without side effects 129 // so return without attempting the initialization 130 current->set_vm_result(nullptr); 131 return; 132 } 133 // allocate instance and return via TLS 134 oop obj = h->allocate_instance(CHECK); 135 current->set_vm_result(obj); 136 } 137 JRT_BLOCK_END; 138 SharedRuntime::on_slowpath_allocation_exit(current); 139 JRT_END 140 141 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length)) 142 JRT_BLOCK; 143 // Note: no handle for klass needed since they are not used 144 // anymore after new_objArray() and no GC can happen before. 145 // (This may have to change if this code changes!) 146 assert(array_klass->is_klass(), "not a class"); 147 oop obj; 148 if (array_klass->is_typeArray_klass()) { 149 BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); 150 RetryableAllocationMark ram(current); 151 obj = oopFactory::new_typeArray(elt_type, length, CHECK); 152 } else { 153 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 154 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 155 RetryableAllocationMark ram(current); 156 obj = oopFactory::new_objArray(elem_klass, length, CHECK); 157 } 158 // This is pretty rare but this runtime patch is stressful to deoptimization 159 // if we deoptimize here so force a deopt to stress the path. 160 if (DeoptimizeALot) { 161 static int deopts = 0; 162 if (deopts++ % 2 == 0) { 163 // Drop the allocation 164 obj = nullptr; 165 } else { 166 deopt_caller(); 167 } 168 } 169 current->set_vm_result(obj); 170 JRT_BLOCK_END; 171 SharedRuntime::on_slowpath_allocation_exit(current); 172 JRT_END 173 174 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims)) 175 assert(klass->is_klass(), "not a class"); 176 assert(rank >= 1, "rank must be nonzero"); 177 Handle holder(current, klass->klass_holder()); // keep the klass alive 178 RetryableAllocationMark ram(current); 179 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 180 current->set_vm_result(obj); 181 JRT_END 182 183 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length)) 184 RetryableAllocationMark ram(current); 185 oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); 186 current->set_vm_result(obj); 187 JRT_END 188 189 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror)) 190 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror)); 191 192 if (klass == nullptr) { 193 ResourceMark rm(current); 194 THROW(vmSymbols::java_lang_InstantiationException()); 195 } 196 RetryableAllocationMark ram(current); 197 198 // Create new instance (the receiver) 199 klass->check_valid_for_instantiation(false, CHECK); 200 201 if (!klass->is_initialized()) { 202 // Cannot re-execute class initialization without side effects 203 // so return without attempting the initialization 204 current->set_vm_result(nullptr); 205 return; 206 } 207 208 oop obj = klass->allocate_instance(CHECK); 209 current->set_vm_result(obj); 210 JRT_END 211 212 extern void vm_exit(int code); 213 214 // Enter this method from compiled code handler below. This is where we transition 215 // to VM mode. This is done as a helper routine so that the method called directly 216 // from compiled code does not have to transition to VM. This allows the entry 217 // method to see if the nmethod that we have just looked up a handler for has 218 // been deoptimized while we were in the vm. This simplifies the assembly code 219 // cpu directories. 220 // 221 // We are entering here from exception stub (via the entry method below) 222 // If there is a compiled exception handler in this method, we will continue there; 223 // otherwise we will unwind the stack and continue at the caller of top frame method 224 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 225 // control the area where we can allow a safepoint. After we exit the safepoint area we can 226 // check to see if the handler we are going to return is now in a nmethod that has 227 // been deoptimized. If that is the case we return the deopt blob 228 // unpack_with_exception entry instead. This makes life for the exception blob easier 229 // because making that same check and diverting is painful from assembly language. 230 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 231 // Reset method handle flag. 232 current->set_is_method_handle_return(false); 233 234 Handle exception(current, ex); 235 236 // The frame we rethrow the exception to might not have been processed by the GC yet. 237 // The stack watermark barrier takes care of detecting that and ensuring the frame 238 // has updated oops. 239 StackWatermarkSet::after_unwind(current); 240 241 nm = CodeCache::find_nmethod(pc); 242 assert(nm != nullptr, "did not find nmethod"); 243 // Adjust the pc as needed/ 244 if (nm->is_deopt_pc(pc)) { 245 RegisterMap map(current, 246 RegisterMap::UpdateMap::skip, 247 RegisterMap::ProcessFrames::include, 248 RegisterMap::WalkContinuation::skip); 249 frame exception_frame = current->last_frame().sender(&map); 250 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 251 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 252 pc = exception_frame.pc(); 253 } 254 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 255 assert(oopDesc::is_oop(exception()), "just checking"); 256 // Check that exception is a subclass of Throwable 257 assert(exception->is_a(vmClasses::Throwable_klass()), 258 "Exception not subclass of Throwable"); 259 260 // debugging support 261 // tracing 262 if (log_is_enabled(Info, exceptions)) { 263 ResourceMark rm; 264 stringStream tempst; 265 assert(nm->method() != nullptr, "Unexpected null method()"); 266 tempst.print("JVMCI compiled method <%s>\n" 267 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 268 nm->method()->print_value_string(), p2i(pc), p2i(current)); 269 Exceptions::log_exception(exception, tempst.as_string()); 270 } 271 // for AbortVMOnException flag 272 Exceptions::debug_check_abort(exception); 273 274 // Check the stack guard pages and re-enable them if necessary and there is 275 // enough space on the stack to do so. Use fast exceptions only if the guard 276 // pages are enabled. 277 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 278 279 if (JvmtiExport::can_post_on_exceptions()) { 280 // To ensure correct notification of exception catches and throws 281 // we have to deoptimize here. If we attempted to notify the 282 // catches and throws during this exception lookup it's possible 283 // we could deoptimize on the way out of the VM and end back in 284 // the interpreter at the throw site. This would result in double 285 // notifications since the interpreter would also notify about 286 // these same catches and throws as it unwound the frame. 287 288 RegisterMap reg_map(current, 289 RegisterMap::UpdateMap::include, 290 RegisterMap::ProcessFrames::include, 291 RegisterMap::WalkContinuation::skip); 292 frame stub_frame = current->last_frame(); 293 frame caller_frame = stub_frame.sender(®_map); 294 295 // We don't really want to deoptimize the nmethod itself since we 296 // can actually continue in the exception handler ourselves but I 297 // don't see an easy way to have the desired effect. 298 Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint); 299 assert(caller_is_deopted(), "Must be deoptimized"); 300 301 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 302 } 303 304 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 305 if (guard_pages_enabled) { 306 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 307 if (fast_continuation != nullptr) { 308 // Set flag if return address is a method handle call site. 309 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 310 return fast_continuation; 311 } 312 } 313 314 // If the stack guard pages are enabled, check whether there is a handler in 315 // the current method. Otherwise (guard pages disabled), force an unwind and 316 // skip the exception cache update (i.e., just leave continuation==nullptr). 317 address continuation = nullptr; 318 if (guard_pages_enabled) { 319 320 // New exception handling mechanism can support inlined methods 321 // with exception handlers since the mappings are from PC to PC 322 323 // Clear out the exception oop and pc since looking up an 324 // exception handler can cause class loading, which might throw an 325 // exception and those fields are expected to be clear during 326 // normal bytecode execution. 327 current->clear_exception_oop_and_pc(); 328 329 bool recursive_exception = false; 330 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 331 // If an exception was thrown during exception dispatch, the exception oop may have changed 332 current->set_exception_oop(exception()); 333 current->set_exception_pc(pc); 334 335 // The exception cache is used only for non-implicit exceptions 336 // Update the exception cache only when another exception did 337 // occur during the computation of the compiled exception handler 338 // (e.g., when loading the class of the catch type). 339 // Checking for exception oop equality is not 340 // sufficient because some exceptions are pre-allocated and reused. 341 if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) { 342 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 343 } 344 } 345 346 // Set flag if return address is a method handle call site. 347 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 348 349 if (log_is_enabled(Info, exceptions)) { 350 ResourceMark rm; 351 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 352 " for exception thrown at PC " PTR_FORMAT, 353 p2i(current), p2i(continuation), p2i(pc)); 354 } 355 356 return continuation; 357 JRT_END 358 359 // Enter this method from compiled code only if there is a Java exception handler 360 // in the method handling the exception. 361 // We are entering here from exception stub. We don't do a normal VM transition here. 362 // We do it in a helper. This is so we can check to see if the nmethod we have just 363 // searched for an exception handler has been deoptimized in the meantime. 364 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) { 365 oop exception = current->exception_oop(); 366 address pc = current->exception_pc(); 367 // Still in Java mode 368 DEBUG_ONLY(NoHandleMark nhm); 369 nmethod* nm = nullptr; 370 address continuation = nullptr; 371 { 372 // Enter VM mode by calling the helper 373 ResetNoHandleMark rnhm; 374 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 375 } 376 // Back in JAVA, use no oops DON'T safepoint 377 378 // Now check to see if the compiled method we were called from is now deoptimized. 379 // If so we must return to the deopt blob and deoptimize the nmethod 380 if (nm != nullptr && caller_is_deopted()) { 381 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 382 } 383 384 assert(continuation != nullptr, "no handler found"); 385 return continuation; 386 } 387 388 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock)) 389 SharedRuntime::monitor_enter_helper(obj, lock, current); 390 JRT_END 391 392 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock)) 393 assert(current == JavaThread::current(), "pre-condition"); 394 assert(current->last_Java_sp(), "last_Java_sp must be set"); 395 assert(oopDesc::is_oop(obj), "invalid lock object pointer dected"); 396 SharedRuntime::monitor_exit_helper(obj, lock, current); 397 JRT_END 398 399 // Object.notify() fast path, caller does slow path 400 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj)) 401 assert(current == JavaThread::current(), "pre-condition"); 402 403 // Very few notify/notifyAll operations find any threads on the waitset, so 404 // the dominant fast-path is to simply return. 405 // Relatedly, it's critical that notify/notifyAll be fast in order to 406 // reduce lock hold times. 407 if (!SafepointSynchronize::is_synchronizing()) { 408 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 409 return true; 410 } 411 } 412 return false; // caller must perform slow path 413 414 JRT_END 415 416 // Object.notifyAll() fast path, caller does slow path 417 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj)) 418 assert(current == JavaThread::current(), "pre-condition"); 419 420 if (!SafepointSynchronize::is_synchronizing() ) { 421 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 422 return true; 423 } 424 } 425 return false; // caller must perform slow path 426 427 JRT_END 428 429 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message)) 430 JRT_BLOCK; 431 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 432 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 433 JRT_BLOCK_END; 434 return caller_is_deopted(); 435 JRT_END 436 437 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass)) 438 JRT_BLOCK; 439 ResourceMark rm(current); 440 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 441 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name()); 442 JRT_BLOCK_END; 443 return caller_is_deopted(); 444 JRT_END 445 446 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass)) 447 JRT_BLOCK; 448 ResourceMark rm(current); 449 const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass); 450 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 451 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 452 JRT_BLOCK_END; 453 return caller_is_deopted(); 454 JRT_END 455 456 class ArgumentPusher : public SignatureIterator { 457 protected: 458 JavaCallArguments* _jca; 459 jlong _argument; 460 bool _pushed; 461 462 jlong next_arg() { 463 guarantee(!_pushed, "one argument"); 464 _pushed = true; 465 return _argument; 466 } 467 468 float next_float() { 469 guarantee(!_pushed, "one argument"); 470 _pushed = true; 471 jvalue v; 472 v.i = (jint) _argument; 473 return v.f; 474 } 475 476 double next_double() { 477 guarantee(!_pushed, "one argument"); 478 _pushed = true; 479 jvalue v; 480 v.j = _argument; 481 return v.d; 482 } 483 484 Handle next_object() { 485 guarantee(!_pushed, "one argument"); 486 _pushed = true; 487 return Handle(Thread::current(), cast_to_oop(_argument)); 488 } 489 490 public: 491 ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) { 492 this->_return_type = T_ILLEGAL; 493 _jca = jca; 494 _argument = argument; 495 _pushed = false; 496 do_parameters_on(this); 497 } 498 499 void do_type(BasicType type) { 500 switch (type) { 501 case T_OBJECT: 502 case T_ARRAY: _jca->push_oop(next_object()); break; 503 case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break; 504 case T_CHAR: _jca->push_int((jchar) next_arg()); break; 505 case T_SHORT: _jca->push_int((jint) next_arg()); break; 506 case T_BYTE: _jca->push_int((jbyte) next_arg()); break; 507 case T_INT: _jca->push_int((jint) next_arg()); break; 508 case T_LONG: _jca->push_long((jlong) next_arg()); break; 509 case T_FLOAT: _jca->push_float(next_float()); break; 510 case T_DOUBLE: _jca->push_double(next_double()); break; 511 default: fatal("Unexpected type %s", type2name(type)); 512 } 513 } 514 }; 515 516 517 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument)) 518 ResourceMark rm; 519 HandleMark hm(current); 520 521 methodHandle mh(current, method); 522 if (mh->size_of_parameters() > 1 && !mh->is_static()) { 523 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument"); 524 } 525 526 Symbol* signature = mh->signature(); 527 JavaCallArguments jca(mh->size_of_parameters()); 528 ArgumentPusher jap(signature, &jca, argument); 529 BasicType return_type = jap.return_type(); 530 JavaValue result(return_type); 531 JavaCalls::call(&result, mh, &jca, CHECK_0); 532 533 if (return_type == T_VOID) { 534 return 0; 535 } else if (return_type == T_OBJECT || return_type == T_ARRAY) { 536 current->set_vm_result(result.get_oop()); 537 return 0; 538 } else { 539 jvalue *value = (jvalue *) result.get_value_addr(); 540 // Narrow the value down if required (Important on big endian machines) 541 switch (return_type) { 542 case T_BOOLEAN: 543 return (jboolean) value->i; 544 case T_BYTE: 545 return (jbyte) value->i; 546 case T_CHAR: 547 return (jchar) value->i; 548 case T_SHORT: 549 return (jshort) value->i; 550 case T_INT: 551 case T_FLOAT: 552 return value->i; 553 case T_LONG: 554 case T_DOUBLE: 555 return value->j; 556 default: 557 fatal("Unexpected type %s", type2name(return_type)); 558 return 0; 559 } 560 } 561 JRT_END 562 563 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline)) 564 ttyLocker ttyl; 565 566 if (obj == nullptr) { 567 tty->print("null"); 568 } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) { 569 if (oopDesc::is_oop_or_null(obj, true)) { 570 char buf[O_BUFLEN]; 571 tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); 572 } else { 573 tty->print(INTPTR_FORMAT, p2i(obj)); 574 } 575 } else { 576 ResourceMark rm; 577 assert(obj != nullptr && java_lang_String::is_instance(obj), "must be"); 578 char *buf = java_lang_String::as_utf8_string(obj); 579 tty->print_raw(buf); 580 } 581 if (newline) { 582 tty->cr(); 583 } 584 JRT_END 585 586 #if INCLUDE_G1GC 587 588 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) { 589 G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread); 590 } 591 592 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) { 593 G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread); 594 } 595 596 #endif // INCLUDE_G1GC 597 598 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) 599 bool ret = true; 600 if(!Universe::heap()->is_in(parent)) { 601 tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); 602 parent->print(); 603 ret=false; 604 } 605 if(!Universe::heap()->is_in(child)) { 606 tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); 607 child->print(); 608 ret=false; 609 } 610 return (jint)ret; 611 JRT_END 612 613 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value)) 614 ResourceMark rm(current); 615 const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where; 616 char *detail_msg = nullptr; 617 if (format != 0L) { 618 const char* buf = (char*) (address) format; 619 size_t detail_msg_length = strlen(buf) * 2; 620 detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); 621 jio_snprintf(detail_msg, detail_msg_length, buf, value); 622 } 623 report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); 624 JRT_END 625 626 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) 627 oop exception = thread->exception_oop(); 628 assert(exception != nullptr, "npe"); 629 thread->set_exception_oop(nullptr); 630 thread->set_exception_pc(nullptr); 631 return exception; 632 JRT_END 633 634 PRAGMA_DIAG_PUSH 635 PRAGMA_FORMAT_NONLITERAL_IGNORED 636 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3)) 637 ResourceMark rm; 638 tty->print(format, v1, v2, v3); 639 JRT_END 640 PRAGMA_DIAG_POP 641 642 static void decipher(jlong v, bool ignoreZero) { 643 if (v != 0 || !ignoreZero) { 644 void* p = (void *)(address) v; 645 CodeBlob* cb = CodeCache::find_blob(p); 646 if (cb) { 647 if (cb->is_nmethod()) { 648 char buf[O_BUFLEN]; 649 tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); 650 return; 651 } 652 cb->print_value_on(tty); 653 return; 654 } 655 if (Universe::heap()->is_in(p)) { 656 oop obj = cast_to_oop(p); 657 obj->print_value_on(tty); 658 return; 659 } 660 tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); 661 } 662 } 663 664 PRAGMA_DIAG_PUSH 665 PRAGMA_FORMAT_NONLITERAL_IGNORED 666 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) 667 ResourceMark rm; 668 const char *buf = (const char*) (address) format; 669 if (vmError) { 670 if (buf != nullptr) { 671 fatal(buf, v1, v2, v3); 672 } else { 673 fatal("<anonymous error>"); 674 } 675 } else if (buf != nullptr) { 676 tty->print(buf, v1, v2, v3); 677 } else { 678 assert(v2 == 0, "v2 != 0"); 679 assert(v3 == 0, "v3 != 0"); 680 decipher(v1, false); 681 } 682 JRT_END 683 PRAGMA_DIAG_POP 684 685 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) 686 union { 687 jlong l; 688 jdouble d; 689 jfloat f; 690 } uu; 691 uu.l = value; 692 switch (typeChar) { 693 case 'Z': tty->print(value == 0 ? "false" : "true"); break; 694 case 'B': tty->print("%d", (jbyte) value); break; 695 case 'C': tty->print("%c", (jchar) value); break; 696 case 'S': tty->print("%d", (jshort) value); break; 697 case 'I': tty->print("%d", (jint) value); break; 698 case 'F': tty->print("%f", uu.f); break; 699 case 'J': tty->print(JLONG_FORMAT, value); break; 700 case 'D': tty->print("%lf", uu.d); break; 701 default: assert(false, "unknown typeChar"); break; 702 } 703 if (newline) { 704 tty->cr(); 705 } 706 JRT_END 707 708 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj)) 709 return (jint) obj->identity_hash(); 710 JRT_END 711 712 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value)) 713 deopt_caller(); 714 return (jint) value; 715 JRT_END 716 717 718 // Implementation of JVMCI.initializeRuntime() 719 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 720 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c)) 721 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 722 if (!EnableJVMCI) { 723 JVMCI_THROW_MSG_NULL(InternalError, "JVMCI is not enabled"); 724 } 725 JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 726 JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 727 return JVMCIENV->get_jobject(runtime); 728 JVM_END 729 730 // Implementation of Services.readSystemPropertiesInfo(int[] offsets) 731 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV. 732 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle)) 733 JVMCIENV_FROM_JNI(thread, env); 734 if (!EnableJVMCI) { 735 JVMCI_THROW_MSG_0(InternalError, "JVMCI is not enabled"); 736 } 737 JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle); 738 JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes()); 739 JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes()); 740 JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes()); 741 742 return (jlong) Arguments::system_properties(); 743 JVM_END 744 745 746 void JVMCIRuntime::call_getCompiler(TRAPS) { 747 JVMCIENV_FROM_THREAD(THREAD); 748 JVMCIENV->check_init(CHECK); 749 JVMCIObject jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_CHECK); 750 initialize(JVMCI_CHECK); 751 JVMCIENV->call_HotSpotJVMCIRuntime_getCompiler(jvmciRuntime, JVMCI_CHECK); 752 } 753 754 void JVMCINMethodData::initialize(int nmethod_mirror_index, 755 int nmethod_entry_patch_offset, 756 const char* nmethod_mirror_name, 757 FailedSpeculation** failed_speculations) 758 { 759 _failed_speculations = failed_speculations; 760 _nmethod_mirror_index = nmethod_mirror_index; 761 guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier"); 762 _nmethod_entry_patch_offset = nmethod_entry_patch_offset; 763 if (nmethod_mirror_name != nullptr) { 764 _has_name = true; 765 char* dest = (char*) name(); 766 strcpy(dest, nmethod_mirror_name); 767 } else { 768 _has_name = false; 769 } 770 } 771 772 void JVMCINMethodData::copy(JVMCINMethodData* data) { 773 initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations); 774 } 775 776 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) { 777 jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS; 778 guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index); 779 int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK; 780 if (index + length > (uint) nm->speculations_size()) { 781 fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size()); 782 } 783 address data = nm->speculations_begin() + index; 784 FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length); 785 } 786 787 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) { 788 if (_nmethod_mirror_index == -1) { 789 return nullptr; 790 } 791 if (phantom_ref) { 792 return nm->oop_at_phantom(_nmethod_mirror_index); 793 } else { 794 return nm->oop_at(_nmethod_mirror_index); 795 } 796 } 797 798 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) { 799 guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod"); 800 oop* addr = nm->oop_addr_at(_nmethod_mirror_index); 801 guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror"); 802 guarantee(*addr == nullptr, "cannot overwrite non-null mirror"); 803 804 *addr = new_mirror; 805 806 // Since we've patched some oops in the nmethod, 807 // (re)register it with the heap. 808 MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag); 809 Universe::heap()->register_nmethod(nm); 810 } 811 812 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) { 813 oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false); 814 if (nmethod_mirror == nullptr) { 815 return; 816 } 817 818 // Update the values in the mirror if it still refers to nm. 819 // We cannot use JVMCIObject to wrap the mirror as this is called 820 // during GC, forbidding the creation of JNIHandles. 821 JVMCIEnv* jvmciEnv = nullptr; 822 nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror); 823 if (nm == current) { 824 if (nm->is_unloading()) { 825 // Break the link from the mirror to nm such that 826 // future invocations via the mirror will result in 827 // an InvalidInstalledCodeException. 828 HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0); 829 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 830 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 831 } else if (nm->is_not_entrant()) { 832 // Zero the entry point so any new invocation will fail but keep 833 // the address link around that so that existing activations can 834 // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code). 835 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 836 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 837 } 838 } 839 840 if (_nmethod_mirror_index != -1 && nm->is_unloading()) { 841 // Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise 842 // it would appear that the nmethod didn't need to be unloaded in the first place. 843 _nmethod_mirror_index = -1; 844 } 845 } 846 847 // Handles to objects in the Hotspot heap. 848 static OopStorage* object_handles() { 849 return Universe::vm_global(); 850 } 851 852 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) { 853 assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause"); 854 assert(oopDesc::is_oop(obj()), "not an oop"); 855 856 oop* ptr = OopHandle(object_handles(), obj()).ptr_raw(); 857 MutexLocker ml(_lock); 858 _oop_handles.append(ptr); 859 return reinterpret_cast<jlong>(ptr); 860 } 861 862 #ifdef ASSERT 863 bool JVMCIRuntime::is_oop_handle(jlong handle) { 864 const oop* ptr = (oop*) handle; 865 return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY; 866 } 867 #endif 868 869 int JVMCIRuntime::release_and_clear_oop_handles() { 870 guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown"); 871 int released = release_cleared_oop_handles(); 872 if (_oop_handles.length() != 0) { 873 for (int i = 0; i < _oop_handles.length(); i++) { 874 oop* oop_ptr = _oop_handles.at(i); 875 guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles"); 876 guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle"); 877 // Satisfy OopHandles::release precondition that all 878 // handles being released are null. 879 NativeAccess<>::oop_store(oop_ptr, (oop) nullptr); 880 } 881 882 // Do the bulk release 883 object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length()); 884 released += _oop_handles.length(); 885 } 886 _oop_handles.clear(); 887 return released; 888 } 889 890 static bool is_referent_non_null(oop* handle) { 891 return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr; 892 } 893 894 // Swaps the elements in `array` at index `a` and index `b` 895 static void swap(GrowableArray<oop*>* array, int a, int b) { 896 oop* tmp = array->at(a); 897 array->at_put(a, array->at(b)); 898 array->at_put(b, tmp); 899 } 900 901 int JVMCIRuntime::release_cleared_oop_handles() { 902 // Despite this lock, it's possible for another thread 903 // to clear a handle's referent concurrently (e.g., a thread 904 // executing IndirectHotSpotObjectConstantImpl.clear()). 905 // This is benign - it means there can still be cleared 906 // handles in _oop_handles when this method returns. 907 MutexLocker ml(_lock); 908 909 int next = 0; 910 if (_oop_handles.length() != 0) { 911 // Key for _oop_handles contents in example below: 912 // H: handle with non-null referent 913 // h: handle with clear (i.e., null) referent 914 // -: null entry 915 916 // Shuffle all handles with non-null referents to the front of the list 917 // Example: Before: 0HHh-Hh- 918 // After: HHHh--h- 919 for (int i = 0; i < _oop_handles.length(); i++) { 920 oop* handle = _oop_handles.at(i); 921 if (is_referent_non_null(handle)) { 922 if (i != next && !is_referent_non_null(_oop_handles.at(next))) { 923 // Swap elements at index `next` and `i` 924 swap(&_oop_handles, next, i); 925 } 926 next++; 927 } 928 } 929 930 // `next` is now the index of the first null handle or handle with a null referent 931 int num_alive = next; 932 933 // Shuffle all null handles to the end of the list 934 // Example: Before: HHHh--h- 935 // After: HHHhh--- 936 // num_alive: 3 937 for (int i = next; i < _oop_handles.length(); i++) { 938 oop* handle = _oop_handles.at(i); 939 if (handle != nullptr) { 940 if (i != next && _oop_handles.at(next) == nullptr) { 941 // Swap elements at index `next` and `i` 942 swap(&_oop_handles, next, i); 943 } 944 next++; 945 } 946 } 947 if (next != num_alive) { 948 int to_release = next - num_alive; 949 950 // `next` is now the index of the first null handle 951 // Example: to_release: 2 952 953 // Bulk release the handles with a null referent 954 object_handles()->release(_oop_handles.adr_at(num_alive), to_release); 955 956 // Truncate oop handles to only those with a non-null referent 957 JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive); 958 _oop_handles.trunc_to(num_alive); 959 // Example: HHH 960 961 return to_release; 962 } 963 } 964 return 0; 965 } 966 967 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) { 968 MutexLocker ml(_lock); 969 return _metadata_handles->allocate_handle(handle); 970 } 971 972 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) { 973 MutexLocker ml(_lock); 974 return _metadata_handles->allocate_handle(handle); 975 } 976 977 void JVMCIRuntime::release_handle(jmetadata handle) { 978 MutexLocker ml(_lock); 979 _metadata_handles->chain_free_list(handle); 980 } 981 982 // Function for redirecting shared library JavaVM output to tty 983 static void _log(const char* buf, size_t count) { 984 tty->write((char*) buf, count); 985 } 986 987 // Function for redirecting shared library JavaVM fatal error data to a log file. 988 // The log file is opened on first call to this function. 989 static void _fatal_log(const char* buf, size_t count) { 990 JVMCI::fatal_log(buf, count); 991 } 992 993 // Function for shared library JavaVM to flush tty 994 static void _flush_log() { 995 tty->flush(); 996 } 997 998 // Function for shared library JavaVM to exit HotSpot on a fatal error 999 static void _fatal() { 1000 Thread* thread = Thread::current_or_null_safe(); 1001 if (thread != nullptr && thread->is_Java_thread()) { 1002 JavaThread* jthread = JavaThread::cast(thread); 1003 JVMCIRuntime* runtime = jthread->libjvmci_runtime(); 1004 if (runtime != nullptr) { 1005 int javaVM_id = runtime->get_shared_library_javavm_id(); 1006 fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id()); 1007 } 1008 } 1009 intx current_thread_id = os::current_thread_id(); 1010 fatal("thread %zd: Fatal error in JVMCI shared library", current_thread_id); 1011 } 1012 1013 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) : 1014 _init_state(uninitialized), 1015 _shared_library_javavm(nullptr), 1016 _shared_library_javavm_id(0), 1017 _id(id), 1018 _next(next), 1019 _metadata_handles(new MetadataHandles()), 1020 _oop_handles(100, mtJVMCI), 1021 _num_attached_threads(0), 1022 _for_compile_broker(for_compile_broker) 1023 { 1024 if (id == -1) { 1025 _lock = JVMCIRuntime_lock; 1026 } else { 1027 stringStream lock_name; 1028 lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id); 1029 Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint); 1030 _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true)); 1031 } 1032 JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")", 1033 id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this)); 1034 } 1035 1036 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) { 1037 assert(JVMCI_lock->owner() == thread, "must be"); 1038 // When shutting down, use the first available runtime. 1039 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1040 if (runtime->_num_attached_threads != cannot_be_attached) { 1041 runtime->pre_attach_thread(thread); 1042 JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id()); 1043 return runtime; 1044 } 1045 } 1046 // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to 1047 // do here since JVMCI_lock is locked. 1048 if (JVMCI::_shutdown_compiler_runtime == nullptr) { 1049 JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true); 1050 } 1051 JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime; 1052 JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id()); 1053 return runtime; 1054 } 1055 1056 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) { 1057 assert(JVMCI_lock->owner() == thread, "must be"); 1058 bool for_compile_broker = thread->is_Compiler_thread(); 1059 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1060 if (count != nullptr) { 1061 (*count)++; 1062 } 1063 if (for_compile_broker == runtime->_for_compile_broker) { 1064 int count = runtime->_num_attached_threads; 1065 if (count == cannot_be_attached || runtime == skip) { 1066 // Cannot attach to rt 1067 continue; 1068 } 1069 // If selecting for repacking, ignore a runtime without an existing JavaVM 1070 if (skip != nullptr && !runtime->has_shared_library_javavm()) { 1071 continue; 1072 } 1073 1074 // Select first runtime with sufficient capacity 1075 if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) { 1076 runtime->pre_attach_thread(thread); 1077 return runtime; 1078 } 1079 } 1080 } 1081 return nullptr; 1082 } 1083 1084 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) { 1085 assert(JVMCI_lock->owner() == thread, "must be"); 1086 int id = 0; 1087 JVMCIRuntime* runtime; 1088 if (JVMCI::using_singleton_shared_library_runtime()) { 1089 runtime = JVMCI::_compiler_runtimes; 1090 guarantee(runtime != nullptr, "must be"); 1091 while (runtime->_num_attached_threads == cannot_be_attached) { 1092 // Since there is only a singleton JVMCIRuntime, we 1093 // need to wait for it to be available for attaching. 1094 JVMCI_lock->wait(); 1095 } 1096 runtime->pre_attach_thread(thread); 1097 } else { 1098 runtime = select_runtime(thread, nullptr, &id); 1099 } 1100 if (runtime == nullptr) { 1101 runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread()); 1102 JVMCI::_compiler_runtimes = runtime; 1103 runtime->pre_attach_thread(thread); 1104 } 1105 return runtime; 1106 } 1107 1108 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) { 1109 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1110 // Find the runtime with fewest attached threads 1111 JVMCIRuntime* runtime = nullptr; 1112 { 1113 MutexLocker locker(JVMCI_lock); 1114 runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread); 1115 } 1116 runtime->attach_thread(thread); 1117 return runtime; 1118 } 1119 1120 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) { 1121 MutexLocker locker(JVMCI_lock); 1122 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1123 if (runtime->_shared_library_javavm == javaVM) { 1124 if (runtime->_num_attached_threads == cannot_be_attached) { 1125 return "Cannot attach to JVMCI runtime that is shutting down"; 1126 } 1127 runtime->pre_attach_thread(thread); 1128 runtime->attach_thread(thread); 1129 return nullptr; 1130 } 1131 } 1132 return "Cannot find JVMCI runtime"; 1133 } 1134 1135 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) { 1136 assert(JVMCI_lock->owner() == thread, "must be"); 1137 _num_attached_threads++; 1138 } 1139 1140 void JVMCIRuntime::attach_thread(JavaThread* thread) { 1141 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1142 thread->set_libjvmci_runtime(this); 1143 guarantee(this == JVMCI::_shutdown_compiler_runtime || 1144 _num_attached_threads > 0, 1145 "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads); 1146 JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : ""); 1147 } 1148 1149 void JVMCIRuntime::repack(JavaThread* thread) { 1150 JVMCIRuntime* new_runtime = nullptr; 1151 { 1152 MutexLocker locker(JVMCI_lock); 1153 if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) { 1154 return; 1155 } 1156 new_runtime = select_runtime(thread, this, nullptr); 1157 } 1158 if (new_runtime != nullptr) { 1159 JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1); 1160 detach_thread(thread, "moving thread to another JVMCI runtime"); 1161 new_runtime->attach_thread(thread); 1162 } 1163 } 1164 1165 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) { 1166 if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) { 1167 // Do minimal work when shutting down JVMCI 1168 thread->set_libjvmci_runtime(nullptr); 1169 return false; 1170 } 1171 bool should_shutdown; 1172 bool destroyed_javavm = false; 1173 { 1174 MutexLocker locker(JVMCI_lock); 1175 _num_attached_threads--; 1176 JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads); 1177 should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown(); 1178 if (should_shutdown && !can_destroy_javavm) { 1179 // If it's not possible to destroy the JavaVM on this thread then the VM must 1180 // not be shutdown. This can happen when a shared library thread is the last 1181 // thread to detach from a shared library JavaVM (e.g. GraalServiceThread). 1182 JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id); 1183 should_shutdown = false; 1184 } 1185 if (should_shutdown) { 1186 // Prevent other threads from attaching to this runtime 1187 // while it is shutting down and destroying its JavaVM 1188 _num_attached_threads = cannot_be_attached; 1189 } 1190 } 1191 if (should_shutdown) { 1192 // Release the JavaVM resources associated with this 1193 // runtime once there are no threads attached to it. 1194 shutdown(); 1195 if (can_destroy_javavm) { 1196 destroyed_javavm = destroy_shared_library_javavm(); 1197 if (destroyed_javavm) { 1198 // Can release all handles now that there's no code executing 1199 // that could be using them. Handles for the Java JVMCI runtime 1200 // are never released as we cannot guarantee all compiler threads 1201 // using it have been stopped. 1202 int released = release_and_clear_oop_handles(); 1203 JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}", 1204 _id, 1205 released, 1206 _metadata_handles->num_handles(), 1207 _metadata_handles->num_handles() - _metadata_handles->num_free_handles(), 1208 _metadata_handles->num_blocks()); 1209 1210 // No need to acquire _lock since this is the only thread accessing this runtime 1211 _metadata_handles->clear(); 1212 } 1213 } 1214 // Allow other threads to attach to this runtime now 1215 MutexLocker locker(JVMCI_lock); 1216 _num_attached_threads = 0; 1217 if (JVMCI::using_singleton_shared_library_runtime()) { 1218 // Notify any thread waiting to attach to the 1219 // singleton JVMCIRuntime 1220 JVMCI_lock->notify(); 1221 } 1222 } 1223 thread->set_libjvmci_runtime(nullptr); 1224 JVMCI_event_1("detached from JVMCI runtime %d", _id); 1225 return destroyed_javavm; 1226 } 1227 1228 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) { 1229 MutexLocker locker(_lock); 1230 JavaVM* javaVM = _shared_library_javavm; 1231 if (javaVM == nullptr) { 1232 #ifdef ASSERT 1233 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit"); 1234 if (val != nullptr && strcmp(val, "true") == 0) { 1235 *create_JavaVM_err = JNI_ENOMEM; 1236 return nullptr; 1237 } 1238 #endif 1239 1240 char* sl_path; 1241 void* sl_handle = JVMCI::get_shared_library(sl_path, true); 1242 1243 jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args); 1244 typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args); 1245 1246 JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM")); 1247 if (JNI_CreateJavaVM == nullptr) { 1248 fatal("Unable to find JNI_CreateJavaVM in %s", sl_path); 1249 } 1250 1251 ResourceMark rm; 1252 JavaVMInitArgs vm_args; 1253 vm_args.version = JNI_VERSION_1_2; 1254 vm_args.ignoreUnrecognized = JNI_TRUE; 1255 JavaVMOption options[6]; 1256 jlong javaVM_id = 0; 1257 1258 // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id" 1259 // option whose extraInfo info field is a pointer to which a unique id for the 1260 // JavaVM should be written. 1261 options[0].optionString = (char*) "_javavm_id"; 1262 options[0].extraInfo = &javaVM_id; 1263 1264 options[1].optionString = (char*) "_log"; 1265 options[1].extraInfo = (void*) _log; 1266 options[2].optionString = (char*) "_flush_log"; 1267 options[2].extraInfo = (void*) _flush_log; 1268 options[3].optionString = (char*) "_fatal"; 1269 options[3].extraInfo = (void*) _fatal; 1270 options[4].optionString = (char*) "_fatal_log"; 1271 options[4].extraInfo = (void*) _fatal_log; 1272 options[5].optionString = (char*) "_createvm_errorstr"; 1273 options[5].extraInfo = (void*) err_msg; 1274 1275 vm_args.version = JNI_VERSION_1_2; 1276 vm_args.options = options; 1277 vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption); 1278 1279 JNIEnv* env = nullptr; 1280 int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args); 1281 if (result == JNI_OK) { 1282 guarantee(env != nullptr, "missing env"); 1283 _shared_library_javavm_id = javaVM_id; 1284 _shared_library_javavm = javaVM; 1285 JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1286 return env; 1287 } else { 1288 *create_JavaVM_err = result; 1289 } 1290 } 1291 return nullptr; 1292 } 1293 1294 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) { 1295 if (info != nullptr) { 1296 typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info); 1297 if (info_oop->length() < 4) { 1298 JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length())); 1299 } 1300 JavaVM* javaVM = _shared_library_javavm; 1301 info_oop->long_at_put(0, (jlong) (address) javaVM); 1302 info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0); 1303 info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1); 1304 info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2); 1305 } 1306 } 1307 1308 #define JAVAVM_CALL_BLOCK \ 1309 guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \ 1310 ThreadToNativeFromVM ttnfv(thread); \ 1311 JavaVM* javavm = _shared_library_javavm; 1312 1313 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) { 1314 JAVAVM_CALL_BLOCK 1315 return javavm->AttachCurrentThread(penv, args); 1316 } 1317 1318 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) { 1319 JAVAVM_CALL_BLOCK 1320 return javavm->AttachCurrentThreadAsDaemon(penv, args); 1321 } 1322 1323 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) { 1324 JAVAVM_CALL_BLOCK 1325 return javavm->DetachCurrentThread(); 1326 } 1327 1328 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) { 1329 JAVAVM_CALL_BLOCK 1330 return javavm->GetEnv(penv, version); 1331 } 1332 #undef JAVAVM_CALL_BLOCK \ 1333 1334 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1335 if (is_HotSpotJVMCIRuntime_initialized()) { 1336 if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) { 1337 JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library"); 1338 } 1339 } 1340 1341 initialize(JVMCI_CHECK); 1342 1343 // This should only be called in the context of the JVMCI class being initialized 1344 JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK); 1345 result = JVMCIENV->make_global(result); 1346 1347 OrderAccess::storestore(); // Ensure handle is fully constructed before publishing 1348 _HotSpotJVMCIRuntime_instance = result; 1349 1350 JVMCI::_is_initialized = true; 1351 } 1352 1353 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1354 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1355 1356 class JavaVMRefsInitialization: public StackObj { 1357 JVMCIRuntime::InitState *_state; 1358 int _id; 1359 public: 1360 JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) { 1361 _state = state; 1362 _id = id; 1363 // All classes, methods and fields in the JVMCI shared library 1364 // are in the read-only part of the image. As such, these 1365 // values (and any global handle derived from them via NewGlobalRef) 1366 // are the same for all JavaVM instances created in the 1367 // shared library which means they only need to be initialized 1368 // once. In non-product mode, we check this invariant. 1369 // See com.oracle.svm.jni.JNIImageHeapHandles. 1370 // The same is true for Klass* and field offsets in HotSpotJVMCI. 1371 if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) { 1372 *state = JVMCIRuntime::being_initialized; 1373 JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id); 1374 } else { 1375 while (*state != JVMCIRuntime::fully_initialized) { 1376 JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id); 1377 JVMCI_lock->wait(); 1378 } 1379 JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id); 1380 } 1381 } 1382 1383 ~JavaVMRefsInitialization() { 1384 if (*_state == JVMCIRuntime::being_initialized) { 1385 *_state = JVMCIRuntime::fully_initialized; 1386 JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id); 1387 JVMCI_lock->notify_all(); 1388 } 1389 } 1390 1391 bool should_init() { 1392 return *_state == JVMCIRuntime::being_initialized; 1393 } 1394 }; 1395 1396 void JVMCIRuntime::initialize(JVMCI_TRAPS) { 1397 // Check first without _lock 1398 if (_init_state == fully_initialized) { 1399 return; 1400 } 1401 1402 JavaThread* THREAD = JavaThread::current(); 1403 1404 MutexLocker locker(_lock); 1405 // Check again under _lock 1406 if (_init_state == fully_initialized) { 1407 return; 1408 } 1409 1410 while (_init_state == being_initialized) { 1411 JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id); 1412 _lock->wait(); 1413 if (_init_state == fully_initialized) { 1414 JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id); 1415 return; 1416 } 1417 } 1418 1419 JVMCI_event_1("initializing JVMCI runtime %d", _id); 1420 _init_state = being_initialized; 1421 1422 { 1423 MutexUnlocker unlock(_lock); 1424 1425 HandleMark hm(THREAD); 1426 ResourceMark rm(THREAD); 1427 { 1428 MutexLocker lock_jvmci(JVMCI_lock); 1429 if (JVMCIENV->is_hotspot()) { 1430 JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id); 1431 if (initialization.should_init()) { 1432 MutexUnlocker unlock_jvmci(JVMCI_lock); 1433 HotSpotJVMCI::compute_offsets(CHECK_EXIT); 1434 } 1435 } else { 1436 JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id); 1437 if (initialization.should_init()) { 1438 MutexUnlocker unlock_jvmci(JVMCI_lock); 1439 JNIAccessMark jni(JVMCIENV, THREAD); 1440 1441 JNIJVMCI::initialize_ids(jni.env()); 1442 if (jni()->ExceptionCheck()) { 1443 jni()->ExceptionDescribe(); 1444 fatal("JNI exception during init"); 1445 } 1446 // _lock is re-locked at this point 1447 } 1448 } 1449 } 1450 1451 if (!JVMCIENV->is_hotspot()) { 1452 JNIAccessMark jni(JVMCIENV, THREAD); 1453 JNIJVMCI::register_natives(jni.env()); 1454 } 1455 create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0)); 1456 create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0)); 1457 create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0)); 1458 create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0)); 1459 create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0)); 1460 create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0)); 1461 create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0)); 1462 create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0)); 1463 create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0)); 1464 1465 DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);) 1466 } 1467 1468 _init_state = fully_initialized; 1469 JVMCI_event_1("initialized JVMCI runtime %d", _id); 1470 _lock->notify_all(); 1471 } 1472 1473 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) { 1474 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1475 // These primitive types are long lived and are created before the runtime is fully set up 1476 // so skip registering them for scanning. 1477 JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true); 1478 if (JVMCIENV->is_hotspot()) { 1479 JavaValue result(T_OBJECT); 1480 JavaCallArguments args; 1481 args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror))); 1482 args.push_int(type2char(type)); 1483 JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject())); 1484 1485 return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop())); 1486 } else { 1487 JNIAccessMark jni(JVMCIENV); 1488 jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(), 1489 JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(), 1490 mirror.as_jobject(), type2char(type)); 1491 if (jni()->ExceptionCheck()) { 1492 return JVMCIObject(); 1493 } 1494 return JVMCIENV->wrap(result); 1495 } 1496 } 1497 1498 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) { 1499 if (!is_HotSpotJVMCIRuntime_initialized()) { 1500 initialize(JVMCI_CHECK); 1501 JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK); 1502 guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id); 1503 } 1504 } 1505 1506 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1507 initialize(JVMCI_CHECK_(JVMCIObject())); 1508 initialize_JVMCI(JVMCI_CHECK_(JVMCIObject())); 1509 return _HotSpotJVMCIRuntime_instance; 1510 } 1511 1512 // Implementation of CompilerToVM.registerNatives() 1513 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 1514 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass)) 1515 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 1516 1517 if (!EnableJVMCI) { 1518 JVMCI_THROW_MSG(InternalError, "JVMCI is not enabled"); 1519 } 1520 1521 JVMCIENV->runtime()->initialize(JVMCIENV); 1522 1523 { 1524 ResourceMark rm(thread); 1525 HandleMark hm(thread); 1526 ThreadToNativeFromVM trans(thread); 1527 1528 // Ensure _non_oop_bits is initialized 1529 Universe::non_oop_word(); 1530 JNIEnv *env = libjvmciOrHotspotEnv; 1531 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) { 1532 if (!env->ExceptionCheck()) { 1533 for (int i = 0; i < CompilerToVM::methods_count(); i++) { 1534 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) { 1535 guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature); 1536 break; 1537 } 1538 } 1539 } else { 1540 env->ExceptionDescribe(); 1541 } 1542 guarantee(false, "Failed registering CompilerToVM native methods"); 1543 } 1544 } 1545 JVM_END 1546 1547 1548 void JVMCIRuntime::shutdown() { 1549 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1550 JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id); 1551 JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__); 1552 JVMCIEnv* JVMCIENV = &__stack_jvmci_env__; 1553 if (JVMCIENV->init_error() == JNI_OK) { 1554 JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance); 1555 } else { 1556 JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error()); 1557 } 1558 if (_num_attached_threads == cannot_be_attached) { 1559 // Only when no other threads are attached to this runtime 1560 // is it safe to reset these fields. 1561 _HotSpotJVMCIRuntime_instance = JVMCIObject(); 1562 _init_state = uninitialized; 1563 JVMCI_event_1("shut down JVMCI runtime %d", _id); 1564 } 1565 } 1566 } 1567 1568 bool JVMCIRuntime::destroy_shared_library_javavm() { 1569 guarantee(_num_attached_threads == cannot_be_attached, 1570 "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads); 1571 JavaVM* javaVM; 1572 jlong javaVM_id = _shared_library_javavm_id; 1573 { 1574 // Exactly one thread can destroy the JavaVM 1575 // and release the handle to it. 1576 MutexLocker only_one(_lock); 1577 javaVM = _shared_library_javavm; 1578 if (javaVM != nullptr) { 1579 _shared_library_javavm = nullptr; 1580 _shared_library_javavm_id = 0; 1581 } 1582 } 1583 if (javaVM != nullptr) { 1584 int result; 1585 { 1586 // Must transition into native before calling into libjvmci 1587 ThreadToNativeFromVM ttnfv(JavaThread::current()); 1588 result = javaVM->DestroyJavaVM(); 1589 } 1590 if (result == JNI_OK) { 1591 JVMCI_event_1("destroyed JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1592 } else { 1593 warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM)); 1594 } 1595 return true; 1596 } 1597 return false; 1598 } 1599 1600 void JVMCIRuntime::bootstrap_finished(TRAPS) { 1601 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1602 JVMCIENV_FROM_THREAD(THREAD); 1603 JVMCIENV->check_init(CHECK); 1604 JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV); 1605 } 1606 } 1607 1608 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) { 1609 if (HAS_PENDING_EXCEPTION) { 1610 Handle exception(THREAD, PENDING_EXCEPTION); 1611 CLEAR_PENDING_EXCEPTION; 1612 java_lang_Throwable::print_stack_trace(exception, tty); 1613 1614 // Clear and ignore any exceptions raised during printing 1615 CLEAR_PENDING_EXCEPTION; 1616 } 1617 } 1618 1619 1620 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) { 1621 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1622 1623 static volatile int report_error = 0; 1624 if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) { 1625 // Only report an error once 1626 tty->print_raw_cr(message); 1627 if (JVMCIENV != nullptr) { 1628 JVMCIENV->describe_pending_exception(tty); 1629 } else { 1630 describe_pending_hotspot_exception(THREAD); 1631 } 1632 } else { 1633 // Allow error reporting thread time to print the stack trace. 1634 THREAD->sleep(200); 1635 } 1636 fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message); 1637 } 1638 1639 // ------------------------------------------------------------------ 1640 // Note: the logic of this method should mirror the logic of 1641 // constantPoolOopDesc::verify_constant_pool_resolve. 1642 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) { 1643 if (accessing_klass->is_objArray_klass()) { 1644 accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass(); 1645 } 1646 if (!accessing_klass->is_instance_klass()) { 1647 return true; 1648 } 1649 1650 if (resolved_klass->is_objArray_klass()) { 1651 // Find the element klass, if this is an array. 1652 resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass(); 1653 } 1654 if (resolved_klass->is_instance_klass()) { 1655 Reflection::VerifyClassAccessResults result = 1656 Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true); 1657 return result == Reflection::ACCESS_OK; 1658 } 1659 return true; 1660 } 1661 1662 // ------------------------------------------------------------------ 1663 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass, 1664 const constantPoolHandle& cpool, 1665 Symbol* sym, 1666 bool require_local) { 1667 JVMCI_EXCEPTION_CONTEXT; 1668 1669 // Now we need to check the SystemDictionary 1670 if (sym->char_at(0) == JVM_SIGNATURE_CLASS && 1671 sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) { 1672 // This is a name from a signature. Strip off the trimmings. 1673 // Call recursive to keep scope of strippedsym. 1674 TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1, 1675 sym->utf8_length()-2); 1676 return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local); 1677 } 1678 1679 Handle loader; 1680 if (accessing_klass != nullptr) { 1681 loader = Handle(THREAD, accessing_klass->class_loader()); 1682 } 1683 1684 Klass* found_klass = require_local ? 1685 SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader) : 1686 SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader); 1687 1688 // If we fail to find an array klass, look again for its element type. 1689 // The element type may be available either locally or via constraints. 1690 // In either case, if we can find the element type in the system dictionary, 1691 // we must build an array type around it. The CI requires array klasses 1692 // to be loaded if their element klasses are loaded, except when memory 1693 // is exhausted. 1694 if (sym->char_at(0) == JVM_SIGNATURE_ARRAY && 1695 (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) { 1696 // We have an unloaded array. 1697 // Build it on the fly if the element class exists. 1698 TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1, 1699 sym->utf8_length()-1); 1700 1701 // Get element Klass recursively. 1702 Klass* elem_klass = 1703 get_klass_by_name_impl(accessing_klass, 1704 cpool, 1705 elem_sym, 1706 require_local); 1707 if (elem_klass != nullptr) { 1708 // Now make an array for it 1709 return elem_klass->array_klass(THREAD); 1710 } 1711 } 1712 1713 if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) { 1714 // Look inside the constant pool for pre-resolved class entries. 1715 for (int i = cpool->length() - 1; i >= 1; i--) { 1716 if (cpool->tag_at(i).is_klass()) { 1717 Klass* kls = cpool->resolved_klass_at(i); 1718 if (kls->name() == sym) { 1719 return kls; 1720 } 1721 } 1722 } 1723 } 1724 1725 return found_klass; 1726 } 1727 1728 // ------------------------------------------------------------------ 1729 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass, 1730 Symbol* klass_name, 1731 bool require_local) { 1732 ResourceMark rm; 1733 constantPoolHandle cpool; 1734 return get_klass_by_name_impl(accessing_klass, 1735 cpool, 1736 klass_name, 1737 require_local); 1738 } 1739 1740 // ------------------------------------------------------------------ 1741 // Implementation of get_klass_by_index. 1742 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool, 1743 int index, 1744 bool& is_accessible, 1745 Klass* accessor) { 1746 JVMCI_EXCEPTION_CONTEXT; 1747 Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index); 1748 Symbol* klass_name = nullptr; 1749 if (klass == nullptr) { 1750 klass_name = cpool->klass_name_at(index); 1751 } 1752 1753 if (klass == nullptr) { 1754 // Not found in constant pool. Use the name to do the lookup. 1755 Klass* k = get_klass_by_name_impl(accessor, 1756 cpool, 1757 klass_name, 1758 false); 1759 // Calculate accessibility the hard way. 1760 if (k == nullptr) { 1761 is_accessible = false; 1762 } else if (k->class_loader() != accessor->class_loader() && 1763 get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) { 1764 // Loaded only remotely. Not linked yet. 1765 is_accessible = false; 1766 } else { 1767 // Linked locally, and we must also check public/private, etc. 1768 is_accessible = check_klass_accessibility(accessor, k); 1769 } 1770 if (!is_accessible) { 1771 return nullptr; 1772 } 1773 return k; 1774 } 1775 1776 // It is known to be accessible, since it was found in the constant pool. 1777 is_accessible = true; 1778 return klass; 1779 } 1780 1781 // ------------------------------------------------------------------ 1782 // Get a klass from the constant pool. 1783 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool, 1784 int index, 1785 bool& is_accessible, 1786 Klass* accessor) { 1787 ResourceMark rm; 1788 Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor); 1789 return result; 1790 } 1791 1792 // ------------------------------------------------------------------ 1793 // Perform an appropriate method lookup based on accessor, holder, 1794 // name, signature, and bytecode. 1795 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor, 1796 Klass* holder, 1797 Symbol* name, 1798 Symbol* sig, 1799 Bytecodes::Code bc, 1800 constantTag tag) { 1801 // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl(). 1802 assert(check_klass_accessibility(accessor, holder), "holder not accessible"); 1803 1804 LinkInfo link_info(holder, name, sig, accessor, 1805 LinkInfo::AccessCheck::required, 1806 LinkInfo::LoaderConstraintCheck::required, 1807 tag); 1808 switch (bc) { 1809 case Bytecodes::_invokestatic: 1810 return LinkResolver::resolve_static_call_or_null(link_info); 1811 case Bytecodes::_invokespecial: 1812 return LinkResolver::resolve_special_call_or_null(link_info); 1813 case Bytecodes::_invokeinterface: 1814 return LinkResolver::linktime_resolve_interface_method_or_null(link_info); 1815 case Bytecodes::_invokevirtual: 1816 return LinkResolver::linktime_resolve_virtual_method_or_null(link_info); 1817 default: 1818 fatal("Unhandled bytecode: %s", Bytecodes::name(bc)); 1819 return nullptr; // silence compiler warnings 1820 } 1821 } 1822 1823 1824 // ------------------------------------------------------------------ 1825 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool, 1826 int index, Bytecodes::Code bc, 1827 InstanceKlass* accessor) { 1828 if (bc == Bytecodes::_invokedynamic) { 1829 if (cpool->resolved_indy_entry_at(index)->is_resolved()) { 1830 return cpool->resolved_indy_entry_at(index)->method(); 1831 } 1832 1833 return nullptr; 1834 } 1835 1836 int holder_index = cpool->klass_ref_index_at(index, bc); 1837 bool holder_is_accessible; 1838 Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor); 1839 1840 // Get the method's name and signature. 1841 Symbol* name_sym = cpool->name_ref_at(index, bc); 1842 Symbol* sig_sym = cpool->signature_ref_at(index, bc); 1843 1844 if (cpool->has_preresolution() 1845 || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) && 1846 MethodHandles::is_signature_polymorphic_name(holder, name_sym))) { 1847 // Short-circuit lookups for JSR 292-related call sites. 1848 // That is, do not rely only on name-based lookups, because they may fail 1849 // if the names are not resolvable in the boot class loader (7056328). 1850 switch (bc) { 1851 case Bytecodes::_invokevirtual: 1852 case Bytecodes::_invokeinterface: 1853 case Bytecodes::_invokespecial: 1854 case Bytecodes::_invokestatic: 1855 { 1856 Method* m = ConstantPool::method_at_if_loaded(cpool, index); 1857 if (m != nullptr) { 1858 return m; 1859 } 1860 } 1861 break; 1862 default: 1863 break; 1864 } 1865 } 1866 1867 if (holder_is_accessible) { // Our declared holder is loaded. 1868 constantTag tag = cpool->tag_ref_at(index, bc); 1869 Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag); 1870 if (m != nullptr) { 1871 // We found the method. 1872 return m; 1873 } 1874 } 1875 1876 // Either the declared holder was not loaded, or the method could 1877 // not be found. 1878 1879 return nullptr; 1880 } 1881 1882 // ------------------------------------------------------------------ 1883 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) { 1884 // For the case of <array>.clone(), the method holder can be an ArrayKlass* 1885 // instead of an InstanceKlass*. For that case simply pretend that the 1886 // declared holder is Object.clone since that's where the call will bottom out. 1887 if (method_holder->is_instance_klass()) { 1888 return InstanceKlass::cast(method_holder); 1889 } else if (method_holder->is_array_klass()) { 1890 return vmClasses::Object_klass(); 1891 } else { 1892 ShouldNotReachHere(); 1893 } 1894 return nullptr; 1895 } 1896 1897 1898 // ------------------------------------------------------------------ 1899 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool, 1900 int index, Bytecodes::Code bc, 1901 InstanceKlass* accessor) { 1902 ResourceMark rm; 1903 return get_method_by_index_impl(cpool, index, bc, accessor); 1904 } 1905 1906 // ------------------------------------------------------------------ 1907 // Check for changes to the system dictionary during compilation 1908 // class loads, evolution, breakpoints 1909 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies, 1910 JVMCICompileState* compile_state, 1911 char** failure_detail, 1912 bool& failing_dep_is_call_site) 1913 { 1914 failing_dep_is_call_site = false; 1915 // If JVMTI capabilities were enabled during compile, the compilation is invalidated. 1916 if (compile_state != nullptr && compile_state->jvmti_state_changed()) { 1917 *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies"; 1918 return JVMCI::dependencies_failed; 1919 } 1920 1921 CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task(); 1922 Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail); 1923 1924 if (result == Dependencies::end_marker) { 1925 return JVMCI::ok; 1926 } 1927 if (result == Dependencies::call_site_target_value) { 1928 failing_dep_is_call_site = true; 1929 } 1930 return JVMCI::dependencies_failed; 1931 } 1932 1933 // Called after an upcall to `function` while compiling `method`. 1934 // If an exception occurred, it is cleared, the compilation state 1935 // is updated with the failure and this method returns true. 1936 // Otherwise, it returns false. 1937 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) { 1938 if (JVMCIENV->has_pending_exception()) { 1939 ResourceMark rm; 1940 bool reason_on_C_heap = true; 1941 const char* pending_string = nullptr; 1942 const char* pending_stack_trace = nullptr; 1943 JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace); 1944 if (pending_string == nullptr) pending_string = "null"; 1945 // Using stringStream instead of err_msg to avoid truncation 1946 stringStream st; 1947 st.print("uncaught exception in %s [%s]", function, pending_string); 1948 const char* failure_reason = os::strdup(st.freeze(), mtJVMCI); 1949 if (failure_reason == nullptr) { 1950 failure_reason = "uncaught exception"; 1951 reason_on_C_heap = false; 1952 } 1953 JVMCI_event_1("%s", failure_reason); 1954 Log(jit, compilation) log; 1955 if (log.is_info()) { 1956 log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string()); 1957 if (pending_stack_trace != nullptr) { 1958 LogStream ls(log.info()); 1959 ls.print_raw_cr(pending_stack_trace); 1960 } 1961 } 1962 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1963 compile_state->set_failure(true, failure_reason, reason_on_C_heap); 1964 compiler->on_upcall(failure_reason, compile_state); 1965 return true; 1966 } 1967 return false; 1968 } 1969 1970 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) { 1971 JVMCI_EXCEPTION_CONTEXT 1972 1973 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1974 1975 bool is_osr = entry_bci != InvocationEntryBci; 1976 if (compiler->is_bootstrapping() && is_osr) { 1977 // no OSR compilations during bootstrap - the compiler is just too slow at this point, 1978 // and we know that there are no endless loops 1979 compile_state->set_failure(true, "No OSR during bootstrap"); 1980 return; 1981 } 1982 if (JVMCI::in_shutdown()) { 1983 if (UseJVMCINativeLibrary) { 1984 JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false); 1985 if (runtime != nullptr) { 1986 runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation"); 1987 } 1988 } 1989 compile_state->set_failure(false, "Avoiding compilation during shutdown"); 1990 return; 1991 } 1992 1993 HandleMark hm(thread); 1994 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 1995 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) { 1996 return; 1997 } 1998 JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV); 1999 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) { 2000 return; 2001 } 2002 2003 JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci, 2004 (jlong) compile_state, compile_state->task()->compile_id()); 2005 #ifdef ASSERT 2006 if (JVMCIENV->has_pending_exception()) { 2007 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal"); 2008 if (val != nullptr && strcmp(val, "true") == 0) { 2009 fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling"); 2010 } 2011 } 2012 #endif 2013 2014 if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) { 2015 return; 2016 } 2017 compiler->on_upcall(nullptr); 2018 guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null"); 2019 JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object); 2020 if (failure_message.is_non_null()) { 2021 // Copy failure reason into resource memory first ... 2022 const char* failure_reason = JVMCIENV->as_utf8_string(failure_message); 2023 // ... and then into the C heap. 2024 failure_reason = os::strdup(failure_reason, mtJVMCI); 2025 bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0; 2026 compile_state->set_failure(retryable, failure_reason, true); 2027 } else { 2028 if (!compile_state->task()->is_success()) { 2029 compile_state->set_failure(true, "no nmethod produced"); 2030 } else { 2031 compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object)); 2032 compiler->inc_methods_compiled(); 2033 } 2034 } 2035 if (compiler->is_bootstrapping()) { 2036 compiler->set_bootstrap_compilation_request_handled(); 2037 } 2038 } 2039 2040 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) { 2041 JVMCI_EXCEPTION_CONTEXT 2042 2043 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2044 if (JVMCIENV->has_pending_exception()) { 2045 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2046 } 2047 return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name); 2048 } 2049 2050 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) { 2051 JVMCI_EXCEPTION_CONTEXT 2052 2053 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2054 if (JVMCIENV->has_pending_exception()) { 2055 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2056 } 2057 return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id); 2058 } 2059 2060 // ------------------------------------------------------------------ 2061 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV, 2062 const methodHandle& method, 2063 nmethod*& nm, 2064 int entry_bci, 2065 CodeOffsets* offsets, 2066 int orig_pc_offset, 2067 CodeBuffer* code_buffer, 2068 int frame_words, 2069 OopMapSet* oop_map_set, 2070 ExceptionHandlerTable* handler_table, 2071 ImplicitExceptionTable* implicit_exception_table, 2072 AbstractCompiler* compiler, 2073 DebugInformationRecorder* debug_info, 2074 Dependencies* dependencies, 2075 int compile_id, 2076 bool has_monitors, 2077 bool has_unsafe_access, 2078 bool has_scoped_access, 2079 bool has_wide_vector, 2080 JVMCIObject compiled_code, 2081 JVMCIObject nmethod_mirror, 2082 FailedSpeculation** failed_speculations, 2083 char* speculations, 2084 int speculations_len, 2085 int nmethod_entry_patch_offset) { 2086 JVMCI_EXCEPTION_CONTEXT; 2087 CompLevel comp_level = CompLevel_full_optimization; 2088 char* failure_detail = nullptr; 2089 2090 bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0; 2091 assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be"); 2092 JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror); 2093 const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name); 2094 int nmethod_mirror_index; 2095 if (!install_default) { 2096 // Reserve or initialize mirror slot in the oops table. 2097 OopRecorder* oop_recorder = debug_info->oop_recorder(); 2098 nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr); 2099 } else { 2100 // A default HotSpotNmethod mirror is never tracked by the nmethod 2101 nmethod_mirror_index = -1; 2102 } 2103 2104 JVMCI::CodeInstallResult result(JVMCI::ok); 2105 2106 // We require method counters to store some method state (max compilation levels) required by the compilation policy. 2107 if (method->get_method_counters(THREAD) == nullptr) { 2108 result = JVMCI::cache_full; 2109 failure_detail = (char*) "can't create method counters"; 2110 } 2111 2112 if (result == JVMCI::ok) { 2113 // Check if memory should be freed before allocation 2114 CodeCache::gc_on_allocation(); 2115 2116 // To prevent compile queue updates. 2117 MutexLocker locker(THREAD, MethodCompileQueue_lock); 2118 2119 // Prevent InstanceKlass::add_to_hierarchy from running 2120 // and invalidating our dependencies until we install this method. 2121 MutexLocker ml(Compile_lock); 2122 2123 // Encode the dependencies now, so we can check them right away. 2124 dependencies->encode_content_bytes(); 2125 2126 // Record the dependencies for the current compile in the log 2127 if (LogCompilation) { 2128 for (Dependencies::DepStream deps(dependencies); deps.next(); ) { 2129 deps.log_dependency(); 2130 } 2131 } 2132 2133 // Check for {class loads, evolution, breakpoints} during compilation 2134 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 2135 bool failing_dep_is_call_site; 2136 result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site); 2137 if (result != JVMCI::ok) { 2138 // While not a true deoptimization, it is a preemptive decompile. 2139 MethodData* mdp = method()->method_data(); 2140 if (mdp != nullptr && !failing_dep_is_call_site) { 2141 mdp->inc_decompile_count(); 2142 #ifdef ASSERT 2143 if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) { 2144 ResourceMark m; 2145 tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string()); 2146 } 2147 #endif 2148 } 2149 2150 // All buffers in the CodeBuffer are allocated in the CodeCache. 2151 // If the code buffer is created on each compile attempt 2152 // as in C2, then it must be freed. 2153 //code_buffer->free_blob(); 2154 } else { 2155 JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index, 2156 nmethod_entry_patch_offset, 2157 nmethod_mirror_name, 2158 failed_speculations); 2159 nm = nmethod::new_nmethod(method, 2160 compile_id, 2161 entry_bci, 2162 offsets, 2163 orig_pc_offset, 2164 debug_info, dependencies, code_buffer, 2165 frame_words, oop_map_set, 2166 handler_table, implicit_exception_table, 2167 compiler, comp_level, nullptr /* SCCEntry */, 2168 speculations, speculations_len, data); 2169 2170 2171 // Free codeBlobs 2172 if (nm == nullptr) { 2173 // The CodeCache is full. Print out warning and disable compilation. 2174 { 2175 MutexUnlocker ml(Compile_lock); 2176 MutexUnlocker locker(MethodCompileQueue_lock); 2177 CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level)); 2178 } 2179 result = JVMCI::cache_full; 2180 } else { 2181 nm->set_has_unsafe_access(has_unsafe_access); 2182 nm->set_has_wide_vectors(has_wide_vector); 2183 nm->set_has_monitors(has_monitors); 2184 nm->set_has_scoped_access(has_scoped_access); 2185 2186 JVMCINMethodData* data = nm->jvmci_nmethod_data(); 2187 assert(data != nullptr, "must be"); 2188 if (install_default) { 2189 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == nullptr, "must be"); 2190 if (entry_bci == InvocationEntryBci) { 2191 // If there is an old version we're done with it 2192 nmethod* old = method->code(); 2193 if (TraceMethodReplacement && old != nullptr) { 2194 ResourceMark rm; 2195 char *method_name = method->name_and_sig_as_C_string(); 2196 tty->print_cr("Replacing method %s", method_name); 2197 } 2198 if (old != nullptr ) { 2199 old->make_not_entrant(); 2200 } 2201 2202 LogTarget(Info, nmethod, install) lt; 2203 if (lt.is_enabled()) { 2204 ResourceMark rm; 2205 char *method_name = method->name_and_sig_as_C_string(); 2206 lt.print("Installing method (%d) %s [entry point: %p]", 2207 comp_level, method_name, nm->entry_point()); 2208 } 2209 // Allow the code to be executed 2210 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2211 if (nm->make_in_use()) { 2212 method->set_code(method, nm); 2213 } else { 2214 result = JVMCI::nmethod_reclaimed; 2215 } 2216 } else { 2217 LogTarget(Info, nmethod, install) lt; 2218 if (lt.is_enabled()) { 2219 ResourceMark rm; 2220 char *method_name = method->name_and_sig_as_C_string(); 2221 lt.print("Installing osr method (%d) %s @ %d", 2222 comp_level, method_name, entry_bci); 2223 } 2224 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2225 if (nm->make_in_use()) { 2226 InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm); 2227 } else { 2228 result = JVMCI::nmethod_reclaimed; 2229 } 2230 } 2231 } else { 2232 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be"); 2233 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2234 if (!nm->make_in_use()) { 2235 result = JVMCI::nmethod_reclaimed; 2236 } 2237 } 2238 } 2239 } 2240 } 2241 2242 // String creation must be done outside lock 2243 if (failure_detail != nullptr) { 2244 // A failure to allocate the string is silently ignored. 2245 JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV); 2246 JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message); 2247 } 2248 2249 if (result == JVMCI::ok) { 2250 JVMCICompileState* state = JVMCIENV->compile_state(); 2251 if (state != nullptr) { 2252 // Compilation succeeded, post what we know about it 2253 nm->post_compiled_method(state->task()); 2254 } 2255 } 2256 2257 return result; 2258 } 2259 2260 void JVMCIRuntime::post_compile(JavaThread* thread) { 2261 if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) { 2262 if (thread->libjvmci_runtime() != nullptr) { 2263 detach_thread(thread, "single use JavaVM"); 2264 } else { 2265 // JVMCI shutdown may have already detached the thread 2266 } 2267 } 2268 }