1 /* 2 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 #include "precompiled.hpp" 25 #include "classfile/javaClasses.inline.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/memAllocator.hpp" 32 #include "gc/shared/oopStorage.inline.hpp" 33 #include "jvmci/jniAccessMark.inline.hpp" 34 #include "jvmci/jvmciCompilerToVM.hpp" 35 #include "jvmci/jvmciCodeInstaller.hpp" 36 #include "jvmci/jvmciRuntime.hpp" 37 #include "jvmci/metadataHandles.hpp" 38 #include "logging/log.hpp" 39 #include "logging/logStream.hpp" 40 #include "memory/oopFactory.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/constantPool.inline.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/method.inline.hpp" 45 #include "oops/objArrayKlass.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "oops/typeArrayOop.inline.hpp" 48 #include "prims/jvmtiExport.hpp" 49 #include "prims/methodHandles.hpp" 50 #include "runtime/arguments.hpp" 51 #include "runtime/atomic.hpp" 52 #include "runtime/deoptimization.hpp" 53 #include "runtime/fieldDescriptor.inline.hpp" 54 #include "runtime/frame.inline.hpp" 55 #include "runtime/java.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/mutex.hpp" 58 #include "runtime/reflection.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/synchronizer.hpp" 61 #if INCLUDE_G1GC 62 #include "gc/g1/g1BarrierSetRuntime.hpp" 63 #endif // INCLUDE_G1GC 64 65 // Simple helper to see if the caller of a runtime stub which 66 // entered the VM has been deoptimized 67 68 static bool caller_is_deopted() { 69 JavaThread* thread = JavaThread::current(); 70 RegisterMap reg_map(thread, 71 RegisterMap::UpdateMap::skip, 72 RegisterMap::ProcessFrames::include, 73 RegisterMap::WalkContinuation::skip); 74 frame runtime_frame = thread->last_frame(); 75 frame caller_frame = runtime_frame.sender(®_map); 76 assert(caller_frame.is_compiled_frame(), "must be compiled"); 77 return caller_frame.is_deoptimized_frame(); 78 } 79 80 // Stress deoptimization 81 static void deopt_caller() { 82 if ( !caller_is_deopted()) { 83 JavaThread* thread = JavaThread::current(); 84 RegisterMap reg_map(thread, 85 RegisterMap::UpdateMap::skip, 86 RegisterMap::ProcessFrames::include, 87 RegisterMap::WalkContinuation::skip); 88 frame runtime_frame = thread->last_frame(); 89 frame caller_frame = runtime_frame.sender(®_map); 90 Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); 91 assert(caller_is_deopted(), "Must be deoptimized"); 92 } 93 } 94 95 // Manages a scope for a JVMCI runtime call that attempts a heap allocation. 96 // If there is a pending OutOfMemoryError upon closing the scope and the runtime 97 // call is of the variety where allocation failure returns null without an 98 // exception, the following action is taken: 99 // 1. The pending OutOfMemoryError is cleared 100 // 2. null is written to JavaThread::_vm_result 101 class RetryableAllocationMark { 102 private: 103 InternalOOMEMark _iom; 104 public: 105 RetryableAllocationMark(JavaThread* thread) : _iom(thread) {} 106 ~RetryableAllocationMark() { 107 JavaThread* THREAD = _iom.thread(); // For exception macros. 108 if (THREAD != nullptr) { 109 if (HAS_PENDING_EXCEPTION) { 110 oop ex = PENDING_EXCEPTION; 111 THREAD->set_vm_result(nullptr); 112 if (ex->is_a(vmClasses::OutOfMemoryError_klass())) { 113 CLEAR_PENDING_EXCEPTION; 114 } 115 } 116 } 117 } 118 }; 119 120 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass)) 121 JRT_BLOCK; 122 assert(klass->is_klass(), "not a class"); 123 Handle holder(current, klass->klass_holder()); // keep the klass alive 124 InstanceKlass* h = InstanceKlass::cast(klass); 125 { 126 RetryableAllocationMark ram(current); 127 h->check_valid_for_instantiation(true, CHECK); 128 if (!h->is_initialized()) { 129 // Cannot re-execute class initialization without side effects 130 // so return without attempting the initialization 131 current->set_vm_result(nullptr); 132 return; 133 } 134 // allocate instance and return via TLS 135 oop obj = h->allocate_instance(CHECK); 136 current->set_vm_result(obj); 137 } 138 JRT_BLOCK_END; 139 SharedRuntime::on_slowpath_allocation_exit(current); 140 JRT_END 141 142 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length)) 143 JRT_BLOCK; 144 // Note: no handle for klass needed since they are not used 145 // anymore after new_objArray() and no GC can happen before. 146 // (This may have to change if this code changes!) 147 assert(array_klass->is_klass(), "not a class"); 148 oop obj; 149 if (array_klass->is_typeArray_klass()) { 150 BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); 151 RetryableAllocationMark ram(current); 152 obj = oopFactory::new_typeArray(elt_type, length, CHECK); 153 } else { 154 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 155 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 156 RetryableAllocationMark ram(current); 157 obj = oopFactory::new_objArray(elem_klass, length, CHECK); 158 } 159 // This is pretty rare but this runtime patch is stressful to deoptimization 160 // if we deoptimize here so force a deopt to stress the path. 161 if (DeoptimizeALot) { 162 static int deopts = 0; 163 if (deopts++ % 2 == 0) { 164 // Drop the allocation 165 obj = nullptr; 166 } else { 167 deopt_caller(); 168 } 169 } 170 current->set_vm_result(obj); 171 JRT_BLOCK_END; 172 SharedRuntime::on_slowpath_allocation_exit(current); 173 JRT_END 174 175 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims)) 176 assert(klass->is_klass(), "not a class"); 177 assert(rank >= 1, "rank must be nonzero"); 178 Handle holder(current, klass->klass_holder()); // keep the klass alive 179 RetryableAllocationMark ram(current); 180 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 181 current->set_vm_result(obj); 182 JRT_END 183 184 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length)) 185 RetryableAllocationMark ram(current); 186 oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); 187 current->set_vm_result(obj); 188 JRT_END 189 190 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror)) 191 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror)); 192 193 if (klass == nullptr) { 194 ResourceMark rm(current); 195 THROW(vmSymbols::java_lang_InstantiationException()); 196 } 197 RetryableAllocationMark ram(current); 198 199 // Create new instance (the receiver) 200 klass->check_valid_for_instantiation(false, CHECK); 201 202 if (!klass->is_initialized()) { 203 // Cannot re-execute class initialization without side effects 204 // so return without attempting the initialization 205 current->set_vm_result(nullptr); 206 return; 207 } 208 209 oop obj = klass->allocate_instance(CHECK); 210 current->set_vm_result(obj); 211 JRT_END 212 213 extern void vm_exit(int code); 214 215 // Enter this method from compiled code handler below. This is where we transition 216 // to VM mode. This is done as a helper routine so that the method called directly 217 // from compiled code does not have to transition to VM. This allows the entry 218 // method to see if the nmethod that we have just looked up a handler for has 219 // been deoptimized while we were in the vm. This simplifies the assembly code 220 // cpu directories. 221 // 222 // We are entering here from exception stub (via the entry method below) 223 // If there is a compiled exception handler in this method, we will continue there; 224 // otherwise we will unwind the stack and continue at the caller of top frame method 225 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 226 // control the area where we can allow a safepoint. After we exit the safepoint area we can 227 // check to see if the handler we are going to return is now in a nmethod that has 228 // been deoptimized. If that is the case we return the deopt blob 229 // unpack_with_exception entry instead. This makes life for the exception blob easier 230 // because making that same check and diverting is painful from assembly language. 231 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 232 // Reset method handle flag. 233 current->set_is_method_handle_return(false); 234 235 Handle exception(current, ex); 236 237 // The frame we rethrow the exception to might not have been processed by the GC yet. 238 // The stack watermark barrier takes care of detecting that and ensuring the frame 239 // has updated oops. 240 StackWatermarkSet::after_unwind(current); 241 242 nm = CodeCache::find_nmethod(pc); 243 assert(nm != nullptr, "did not find nmethod"); 244 // Adjust the pc as needed/ 245 if (nm->is_deopt_pc(pc)) { 246 RegisterMap map(current, 247 RegisterMap::UpdateMap::skip, 248 RegisterMap::ProcessFrames::include, 249 RegisterMap::WalkContinuation::skip); 250 frame exception_frame = current->last_frame().sender(&map); 251 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 252 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 253 pc = exception_frame.pc(); 254 } 255 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 256 assert(oopDesc::is_oop(exception()), "just checking"); 257 // Check that exception is a subclass of Throwable 258 assert(exception->is_a(vmClasses::Throwable_klass()), 259 "Exception not subclass of Throwable"); 260 261 // debugging support 262 // tracing 263 if (log_is_enabled(Info, exceptions)) { 264 ResourceMark rm; 265 stringStream tempst; 266 assert(nm->method() != nullptr, "Unexpected null method()"); 267 tempst.print("JVMCI compiled method <%s>\n" 268 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 269 nm->method()->print_value_string(), p2i(pc), p2i(current)); 270 Exceptions::log_exception(exception, tempst.as_string()); 271 } 272 // for AbortVMOnException flag 273 Exceptions::debug_check_abort(exception); 274 275 // Check the stack guard pages and re-enable them if necessary and there is 276 // enough space on the stack to do so. Use fast exceptions only if the guard 277 // pages are enabled. 278 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 279 280 if (JvmtiExport::can_post_on_exceptions()) { 281 // To ensure correct notification of exception catches and throws 282 // we have to deoptimize here. If we attempted to notify the 283 // catches and throws during this exception lookup it's possible 284 // we could deoptimize on the way out of the VM and end back in 285 // the interpreter at the throw site. This would result in double 286 // notifications since the interpreter would also notify about 287 // these same catches and throws as it unwound the frame. 288 289 RegisterMap reg_map(current, 290 RegisterMap::UpdateMap::include, 291 RegisterMap::ProcessFrames::include, 292 RegisterMap::WalkContinuation::skip); 293 frame stub_frame = current->last_frame(); 294 frame caller_frame = stub_frame.sender(®_map); 295 296 // We don't really want to deoptimize the nmethod itself since we 297 // can actually continue in the exception handler ourselves but I 298 // don't see an easy way to have the desired effect. 299 Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint); 300 assert(caller_is_deopted(), "Must be deoptimized"); 301 302 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 303 } 304 305 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 306 if (guard_pages_enabled) { 307 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 308 if (fast_continuation != nullptr) { 309 // Set flag if return address is a method handle call site. 310 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 311 return fast_continuation; 312 } 313 } 314 315 // If the stack guard pages are enabled, check whether there is a handler in 316 // the current method. Otherwise (guard pages disabled), force an unwind and 317 // skip the exception cache update (i.e., just leave continuation==nullptr). 318 address continuation = nullptr; 319 if (guard_pages_enabled) { 320 321 // New exception handling mechanism can support inlined methods 322 // with exception handlers since the mappings are from PC to PC 323 324 // Clear out the exception oop and pc since looking up an 325 // exception handler can cause class loading, which might throw an 326 // exception and those fields are expected to be clear during 327 // normal bytecode execution. 328 current->clear_exception_oop_and_pc(); 329 330 bool recursive_exception = false; 331 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 332 // If an exception was thrown during exception dispatch, the exception oop may have changed 333 current->set_exception_oop(exception()); 334 current->set_exception_pc(pc); 335 336 // The exception cache is used only for non-implicit exceptions 337 // Update the exception cache only when another exception did 338 // occur during the computation of the compiled exception handler 339 // (e.g., when loading the class of the catch type). 340 // Checking for exception oop equality is not 341 // sufficient because some exceptions are pre-allocated and reused. 342 if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) { 343 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 344 } 345 } 346 347 // Set flag if return address is a method handle call site. 348 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 349 350 if (log_is_enabled(Info, exceptions)) { 351 ResourceMark rm; 352 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 353 " for exception thrown at PC " PTR_FORMAT, 354 p2i(current), p2i(continuation), p2i(pc)); 355 } 356 357 return continuation; 358 JRT_END 359 360 // Enter this method from compiled code only if there is a Java exception handler 361 // in the method handling the exception. 362 // We are entering here from exception stub. We don't do a normal VM transition here. 363 // We do it in a helper. This is so we can check to see if the nmethod we have just 364 // searched for an exception handler has been deoptimized in the meantime. 365 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) { 366 oop exception = current->exception_oop(); 367 address pc = current->exception_pc(); 368 // Still in Java mode 369 DEBUG_ONLY(NoHandleMark nhm); 370 nmethod* nm = nullptr; 371 address continuation = nullptr; 372 { 373 // Enter VM mode by calling the helper 374 ResetNoHandleMark rnhm; 375 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 376 } 377 // Back in JAVA, use no oops DON'T safepoint 378 379 // Now check to see if the compiled method we were called from is now deoptimized. 380 // If so we must return to the deopt blob and deoptimize the nmethod 381 if (nm != nullptr && caller_is_deopted()) { 382 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 383 } 384 385 assert(continuation != nullptr, "no handler found"); 386 return continuation; 387 } 388 389 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock)) 390 SharedRuntime::monitor_enter_helper(obj, lock, current); 391 JRT_END 392 393 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock)) 394 assert(current == JavaThread::current(), "pre-condition"); 395 assert(current->last_Java_sp(), "last_Java_sp must be set"); 396 assert(oopDesc::is_oop(obj), "invalid lock object pointer dected"); 397 SharedRuntime::monitor_exit_helper(obj, lock, current); 398 JRT_END 399 400 // Object.notify() fast path, caller does slow path 401 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj)) 402 assert(current == JavaThread::current(), "pre-condition"); 403 404 // Very few notify/notifyAll operations find any threads on the waitset, so 405 // the dominant fast-path is to simply return. 406 // Relatedly, it's critical that notify/notifyAll be fast in order to 407 // reduce lock hold times. 408 if (!SafepointSynchronize::is_synchronizing()) { 409 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 410 return true; 411 } 412 } 413 return false; // caller must perform slow path 414 415 JRT_END 416 417 // Object.notifyAll() fast path, caller does slow path 418 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj)) 419 assert(current == JavaThread::current(), "pre-condition"); 420 421 if (!SafepointSynchronize::is_synchronizing() ) { 422 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 423 return true; 424 } 425 } 426 return false; // caller must perform slow path 427 428 JRT_END 429 430 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message)) 431 JRT_BLOCK; 432 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 433 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 434 JRT_BLOCK_END; 435 return caller_is_deopted(); 436 JRT_END 437 438 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass)) 439 JRT_BLOCK; 440 ResourceMark rm(current); 441 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 442 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name()); 443 JRT_BLOCK_END; 444 return caller_is_deopted(); 445 JRT_END 446 447 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass)) 448 JRT_BLOCK; 449 ResourceMark rm(current); 450 const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass); 451 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 452 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 453 JRT_BLOCK_END; 454 return caller_is_deopted(); 455 JRT_END 456 457 class ArgumentPusher : public SignatureIterator { 458 protected: 459 JavaCallArguments* _jca; 460 jlong _argument; 461 bool _pushed; 462 463 jlong next_arg() { 464 guarantee(!_pushed, "one argument"); 465 _pushed = true; 466 return _argument; 467 } 468 469 float next_float() { 470 guarantee(!_pushed, "one argument"); 471 _pushed = true; 472 jvalue v; 473 v.i = (jint) _argument; 474 return v.f; 475 } 476 477 double next_double() { 478 guarantee(!_pushed, "one argument"); 479 _pushed = true; 480 jvalue v; 481 v.j = _argument; 482 return v.d; 483 } 484 485 Handle next_object() { 486 guarantee(!_pushed, "one argument"); 487 _pushed = true; 488 return Handle(Thread::current(), cast_to_oop(_argument)); 489 } 490 491 public: 492 ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) { 493 this->_return_type = T_ILLEGAL; 494 _jca = jca; 495 _argument = argument; 496 _pushed = false; 497 do_parameters_on(this); 498 } 499 500 void do_type(BasicType type) { 501 switch (type) { 502 case T_OBJECT: 503 case T_ARRAY: _jca->push_oop(next_object()); break; 504 case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break; 505 case T_CHAR: _jca->push_int((jchar) next_arg()); break; 506 case T_SHORT: _jca->push_int((jint) next_arg()); break; 507 case T_BYTE: _jca->push_int((jbyte) next_arg()); break; 508 case T_INT: _jca->push_int((jint) next_arg()); break; 509 case T_LONG: _jca->push_long((jlong) next_arg()); break; 510 case T_FLOAT: _jca->push_float(next_float()); break; 511 case T_DOUBLE: _jca->push_double(next_double()); break; 512 default: fatal("Unexpected type %s", type2name(type)); 513 } 514 } 515 }; 516 517 518 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument)) 519 ResourceMark rm; 520 HandleMark hm(current); 521 522 methodHandle mh(current, method); 523 if (mh->size_of_parameters() > 1 && !mh->is_static()) { 524 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument"); 525 } 526 527 Symbol* signature = mh->signature(); 528 JavaCallArguments jca(mh->size_of_parameters()); 529 ArgumentPusher jap(signature, &jca, argument); 530 BasicType return_type = jap.return_type(); 531 JavaValue result(return_type); 532 JavaCalls::call(&result, mh, &jca, CHECK_0); 533 534 if (return_type == T_VOID) { 535 return 0; 536 } else if (return_type == T_OBJECT || return_type == T_ARRAY) { 537 current->set_vm_result(result.get_oop()); 538 return 0; 539 } else { 540 jvalue *value = (jvalue *) result.get_value_addr(); 541 // Narrow the value down if required (Important on big endian machines) 542 switch (return_type) { 543 case T_BOOLEAN: 544 return (jboolean) value->i; 545 case T_BYTE: 546 return (jbyte) value->i; 547 case T_CHAR: 548 return (jchar) value->i; 549 case T_SHORT: 550 return (jshort) value->i; 551 case T_INT: 552 case T_FLOAT: 553 return value->i; 554 case T_LONG: 555 case T_DOUBLE: 556 return value->j; 557 default: 558 fatal("Unexpected type %s", type2name(return_type)); 559 return 0; 560 } 561 } 562 JRT_END 563 564 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline)) 565 ttyLocker ttyl; 566 567 if (obj == nullptr) { 568 tty->print("null"); 569 } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) { 570 if (oopDesc::is_oop_or_null(obj, true)) { 571 char buf[O_BUFLEN]; 572 tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); 573 } else { 574 tty->print(INTPTR_FORMAT, p2i(obj)); 575 } 576 } else { 577 ResourceMark rm; 578 assert(obj != nullptr && java_lang_String::is_instance(obj), "must be"); 579 char *buf = java_lang_String::as_utf8_string(obj); 580 tty->print_raw(buf); 581 } 582 if (newline) { 583 tty->cr(); 584 } 585 JRT_END 586 587 #if INCLUDE_G1GC 588 589 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) { 590 G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread); 591 } 592 593 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) { 594 G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread); 595 } 596 597 #endif // INCLUDE_G1GC 598 599 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) 600 bool ret = true; 601 if(!Universe::heap()->is_in(parent)) { 602 tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); 603 parent->print(); 604 ret=false; 605 } 606 if(!Universe::heap()->is_in(child)) { 607 tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); 608 child->print(); 609 ret=false; 610 } 611 return (jint)ret; 612 JRT_END 613 614 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value)) 615 ResourceMark rm(current); 616 const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where; 617 char *detail_msg = nullptr; 618 if (format != 0L) { 619 const char* buf = (char*) (address) format; 620 size_t detail_msg_length = strlen(buf) * 2; 621 detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); 622 jio_snprintf(detail_msg, detail_msg_length, buf, value); 623 } 624 report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); 625 JRT_END 626 627 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) 628 oop exception = thread->exception_oop(); 629 assert(exception != nullptr, "npe"); 630 thread->set_exception_oop(nullptr); 631 thread->set_exception_pc(nullptr); 632 return exception; 633 JRT_END 634 635 PRAGMA_DIAG_PUSH 636 PRAGMA_FORMAT_NONLITERAL_IGNORED 637 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3)) 638 ResourceMark rm; 639 tty->print(format, v1, v2, v3); 640 JRT_END 641 PRAGMA_DIAG_POP 642 643 static void decipher(jlong v, bool ignoreZero) { 644 if (v != 0 || !ignoreZero) { 645 void* p = (void *)(address) v; 646 CodeBlob* cb = CodeCache::find_blob(p); 647 if (cb) { 648 if (cb->is_nmethod()) { 649 char buf[O_BUFLEN]; 650 tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); 651 return; 652 } 653 cb->print_value_on(tty); 654 return; 655 } 656 if (Universe::heap()->is_in(p)) { 657 oop obj = cast_to_oop(p); 658 obj->print_value_on(tty); 659 return; 660 } 661 tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); 662 } 663 } 664 665 PRAGMA_DIAG_PUSH 666 PRAGMA_FORMAT_NONLITERAL_IGNORED 667 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) 668 ResourceMark rm; 669 const char *buf = (const char*) (address) format; 670 if (vmError) { 671 if (buf != nullptr) { 672 fatal(buf, v1, v2, v3); 673 } else { 674 fatal("<anonymous error>"); 675 } 676 } else if (buf != nullptr) { 677 tty->print(buf, v1, v2, v3); 678 } else { 679 assert(v2 == 0, "v2 != 0"); 680 assert(v3 == 0, "v3 != 0"); 681 decipher(v1, false); 682 } 683 JRT_END 684 PRAGMA_DIAG_POP 685 686 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) 687 union { 688 jlong l; 689 jdouble d; 690 jfloat f; 691 } uu; 692 uu.l = value; 693 switch (typeChar) { 694 case 'Z': tty->print(value == 0 ? "false" : "true"); break; 695 case 'B': tty->print("%d", (jbyte) value); break; 696 case 'C': tty->print("%c", (jchar) value); break; 697 case 'S': tty->print("%d", (jshort) value); break; 698 case 'I': tty->print("%d", (jint) value); break; 699 case 'F': tty->print("%f", uu.f); break; 700 case 'J': tty->print(JLONG_FORMAT, value); break; 701 case 'D': tty->print("%lf", uu.d); break; 702 default: assert(false, "unknown typeChar"); break; 703 } 704 if (newline) { 705 tty->cr(); 706 } 707 JRT_END 708 709 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj)) 710 return (jint) obj->identity_hash(); 711 JRT_END 712 713 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value)) 714 deopt_caller(); 715 return (jint) value; 716 JRT_END 717 718 719 // Implementation of JVMCI.initializeRuntime() 720 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 721 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c)) 722 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 723 if (!EnableJVMCI) { 724 JVMCI_THROW_MSG_NULL(InternalError, "JVMCI is not enabled"); 725 } 726 JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 727 JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 728 return JVMCIENV->get_jobject(runtime); 729 JVM_END 730 731 // Implementation of Services.readSystemPropertiesInfo(int[] offsets) 732 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV. 733 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle)) 734 JVMCIENV_FROM_JNI(thread, env); 735 if (!EnableJVMCI) { 736 JVMCI_THROW_MSG_0(InternalError, "JVMCI is not enabled"); 737 } 738 JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle); 739 JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes()); 740 JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes()); 741 JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes()); 742 743 return (jlong) Arguments::system_properties(); 744 JVM_END 745 746 747 void JVMCIRuntime::call_getCompiler(TRAPS) { 748 JVMCIENV_FROM_THREAD(THREAD); 749 JVMCIENV->check_init(CHECK); 750 JVMCIObject jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_CHECK); 751 initialize(JVMCI_CHECK); 752 JVMCIENV->call_HotSpotJVMCIRuntime_getCompiler(jvmciRuntime, JVMCI_CHECK); 753 } 754 755 void JVMCINMethodData::initialize(int nmethod_mirror_index, 756 int nmethod_entry_patch_offset, 757 const char* nmethod_mirror_name, 758 FailedSpeculation** failed_speculations) 759 { 760 _failed_speculations = failed_speculations; 761 _nmethod_mirror_index = nmethod_mirror_index; 762 guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier"); 763 _nmethod_entry_patch_offset = nmethod_entry_patch_offset; 764 if (nmethod_mirror_name != nullptr) { 765 _has_name = true; 766 char* dest = (char*) name(); 767 strcpy(dest, nmethod_mirror_name); 768 } else { 769 _has_name = false; 770 } 771 } 772 773 void JVMCINMethodData::copy(JVMCINMethodData* data) { 774 initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations); 775 } 776 777 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) { 778 jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS; 779 guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index); 780 int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK; 781 if (index + length > (uint) nm->speculations_size()) { 782 fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size()); 783 } 784 address data = nm->speculations_begin() + index; 785 FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length); 786 } 787 788 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) { 789 if (_nmethod_mirror_index == -1) { 790 return nullptr; 791 } 792 if (phantom_ref) { 793 return nm->oop_at_phantom(_nmethod_mirror_index); 794 } else { 795 return nm->oop_at(_nmethod_mirror_index); 796 } 797 } 798 799 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) { 800 guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod"); 801 oop* addr = nm->oop_addr_at(_nmethod_mirror_index); 802 guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror"); 803 guarantee(*addr == nullptr, "cannot overwrite non-null mirror"); 804 805 *addr = new_mirror; 806 807 // Since we've patched some oops in the nmethod, 808 // (re)register it with the heap. 809 MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag); 810 Universe::heap()->register_nmethod(nm); 811 } 812 813 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) { 814 oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false); 815 if (nmethod_mirror == nullptr) { 816 return; 817 } 818 819 // Update the values in the mirror if it still refers to nm. 820 // We cannot use JVMCIObject to wrap the mirror as this is called 821 // during GC, forbidding the creation of JNIHandles. 822 JVMCIEnv* jvmciEnv = nullptr; 823 nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror); 824 if (nm == current) { 825 if (nm->is_unloading()) { 826 // Break the link from the mirror to nm such that 827 // future invocations via the mirror will result in 828 // an InvalidInstalledCodeException. 829 HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0); 830 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 831 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 832 } else if (nm->is_not_entrant()) { 833 // Zero the entry point so any new invocation will fail but keep 834 // the address link around that so that existing activations can 835 // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code). 836 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 837 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 838 } 839 } 840 841 if (_nmethod_mirror_index != -1 && nm->is_unloading()) { 842 // Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise 843 // it would appear that the nmethod didn't need to be unloaded in the first place. 844 _nmethod_mirror_index = -1; 845 } 846 } 847 848 // Handles to objects in the Hotspot heap. 849 static OopStorage* object_handles() { 850 return Universe::vm_global(); 851 } 852 853 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) { 854 assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause"); 855 assert(oopDesc::is_oop(obj()), "not an oop"); 856 857 oop* ptr = OopHandle(object_handles(), obj()).ptr_raw(); 858 MutexLocker ml(_lock); 859 _oop_handles.append(ptr); 860 return reinterpret_cast<jlong>(ptr); 861 } 862 863 #ifdef ASSERT 864 bool JVMCIRuntime::is_oop_handle(jlong handle) { 865 const oop* ptr = (oop*) handle; 866 return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY; 867 } 868 #endif 869 870 int JVMCIRuntime::release_and_clear_oop_handles() { 871 guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown"); 872 int released = release_cleared_oop_handles(); 873 if (_oop_handles.length() != 0) { 874 for (int i = 0; i < _oop_handles.length(); i++) { 875 oop* oop_ptr = _oop_handles.at(i); 876 guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles"); 877 guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle"); 878 // Satisfy OopHandles::release precondition that all 879 // handles being released are null. 880 NativeAccess<>::oop_store(oop_ptr, (oop) nullptr); 881 } 882 883 // Do the bulk release 884 object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length()); 885 released += _oop_handles.length(); 886 } 887 _oop_handles.clear(); 888 return released; 889 } 890 891 static bool is_referent_non_null(oop* handle) { 892 return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr; 893 } 894 895 // Swaps the elements in `array` at index `a` and index `b` 896 static void swap(GrowableArray<oop*>* array, int a, int b) { 897 oop* tmp = array->at(a); 898 array->at_put(a, array->at(b)); 899 array->at_put(b, tmp); 900 } 901 902 int JVMCIRuntime::release_cleared_oop_handles() { 903 // Despite this lock, it's possible for another thread 904 // to clear a handle's referent concurrently (e.g., a thread 905 // executing IndirectHotSpotObjectConstantImpl.clear()). 906 // This is benign - it means there can still be cleared 907 // handles in _oop_handles when this method returns. 908 MutexLocker ml(_lock); 909 910 int next = 0; 911 if (_oop_handles.length() != 0) { 912 // Key for _oop_handles contents in example below: 913 // H: handle with non-null referent 914 // h: handle with clear (i.e., null) referent 915 // -: null entry 916 917 // Shuffle all handles with non-null referents to the front of the list 918 // Example: Before: 0HHh-Hh- 919 // After: HHHh--h- 920 for (int i = 0; i < _oop_handles.length(); i++) { 921 oop* handle = _oop_handles.at(i); 922 if (is_referent_non_null(handle)) { 923 if (i != next && !is_referent_non_null(_oop_handles.at(next))) { 924 // Swap elements at index `next` and `i` 925 swap(&_oop_handles, next, i); 926 } 927 next++; 928 } 929 } 930 931 // `next` is now the index of the first null handle or handle with a null referent 932 int num_alive = next; 933 934 // Shuffle all null handles to the end of the list 935 // Example: Before: HHHh--h- 936 // After: HHHhh--- 937 // num_alive: 3 938 for (int i = next; i < _oop_handles.length(); i++) { 939 oop* handle = _oop_handles.at(i); 940 if (handle != nullptr) { 941 if (i != next && _oop_handles.at(next) == nullptr) { 942 // Swap elements at index `next` and `i` 943 swap(&_oop_handles, next, i); 944 } 945 next++; 946 } 947 } 948 if (next != num_alive) { 949 int to_release = next - num_alive; 950 951 // `next` is now the index of the first null handle 952 // Example: to_release: 2 953 954 // Bulk release the handles with a null referent 955 object_handles()->release(_oop_handles.adr_at(num_alive), to_release); 956 957 // Truncate oop handles to only those with a non-null referent 958 JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive); 959 _oop_handles.trunc_to(num_alive); 960 // Example: HHH 961 962 return to_release; 963 } 964 } 965 return 0; 966 } 967 968 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) { 969 MutexLocker ml(_lock); 970 return _metadata_handles->allocate_handle(handle); 971 } 972 973 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) { 974 MutexLocker ml(_lock); 975 return _metadata_handles->allocate_handle(handle); 976 } 977 978 void JVMCIRuntime::release_handle(jmetadata handle) { 979 MutexLocker ml(_lock); 980 _metadata_handles->chain_free_list(handle); 981 } 982 983 // Function for redirecting shared library JavaVM output to tty 984 static void _log(const char* buf, size_t count) { 985 tty->write((char*) buf, count); 986 } 987 988 // Function for redirecting shared library JavaVM fatal error data to a log file. 989 // The log file is opened on first call to this function. 990 static void _fatal_log(const char* buf, size_t count) { 991 JVMCI::fatal_log(buf, count); 992 } 993 994 // Function for shared library JavaVM to flush tty 995 static void _flush_log() { 996 tty->flush(); 997 } 998 999 // Function for shared library JavaVM to exit HotSpot on a fatal error 1000 static void _fatal() { 1001 Thread* thread = Thread::current_or_null_safe(); 1002 if (thread != nullptr && thread->is_Java_thread()) { 1003 JavaThread* jthread = JavaThread::cast(thread); 1004 JVMCIRuntime* runtime = jthread->libjvmci_runtime(); 1005 if (runtime != nullptr) { 1006 int javaVM_id = runtime->get_shared_library_javavm_id(); 1007 fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id()); 1008 } 1009 } 1010 intx current_thread_id = os::current_thread_id(); 1011 fatal("thread " INTX_FORMAT ": Fatal error in JVMCI shared library", current_thread_id); 1012 } 1013 1014 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) : 1015 _init_state(uninitialized), 1016 _shared_library_javavm(nullptr), 1017 _shared_library_javavm_id(0), 1018 _id(id), 1019 _next(next), 1020 _metadata_handles(new MetadataHandles()), 1021 _oop_handles(100, mtJVMCI), 1022 _num_attached_threads(0), 1023 _for_compile_broker(for_compile_broker) 1024 { 1025 if (id == -1) { 1026 _lock = JVMCIRuntime_lock; 1027 } else { 1028 stringStream lock_name; 1029 lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id); 1030 Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint); 1031 _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true)); 1032 } 1033 JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")", 1034 id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this)); 1035 } 1036 1037 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) { 1038 assert(JVMCI_lock->owner() == thread, "must be"); 1039 // When shutting down, use the first available runtime. 1040 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1041 if (runtime->_num_attached_threads != cannot_be_attached) { 1042 runtime->pre_attach_thread(thread); 1043 JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id()); 1044 return runtime; 1045 } 1046 } 1047 // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to 1048 // do here since JVMCI_lock is locked. 1049 if (JVMCI::_shutdown_compiler_runtime == nullptr) { 1050 JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true); 1051 } 1052 JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime; 1053 JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id()); 1054 return runtime; 1055 } 1056 1057 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) { 1058 assert(JVMCI_lock->owner() == thread, "must be"); 1059 bool for_compile_broker = thread->is_Compiler_thread(); 1060 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1061 if (count != nullptr) { 1062 (*count)++; 1063 } 1064 if (for_compile_broker == runtime->_for_compile_broker) { 1065 int count = runtime->_num_attached_threads; 1066 if (count == cannot_be_attached || runtime == skip) { 1067 // Cannot attach to rt 1068 continue; 1069 } 1070 // If selecting for repacking, ignore a runtime without an existing JavaVM 1071 if (skip != nullptr && !runtime->has_shared_library_javavm()) { 1072 continue; 1073 } 1074 1075 // Select first runtime with sufficient capacity 1076 if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) { 1077 runtime->pre_attach_thread(thread); 1078 return runtime; 1079 } 1080 } 1081 } 1082 return nullptr; 1083 } 1084 1085 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) { 1086 assert(JVMCI_lock->owner() == thread, "must be"); 1087 int id = 0; 1088 JVMCIRuntime* runtime; 1089 if (JVMCI::using_singleton_shared_library_runtime()) { 1090 runtime = JVMCI::_compiler_runtimes; 1091 guarantee(runtime != nullptr, "must be"); 1092 while (runtime->_num_attached_threads == cannot_be_attached) { 1093 // Since there is only a singleton JVMCIRuntime, we 1094 // need to wait for it to be available for attaching. 1095 JVMCI_lock->wait(); 1096 } 1097 runtime->pre_attach_thread(thread); 1098 } else { 1099 runtime = select_runtime(thread, nullptr, &id); 1100 } 1101 if (runtime == nullptr) { 1102 runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread()); 1103 JVMCI::_compiler_runtimes = runtime; 1104 runtime->pre_attach_thread(thread); 1105 } 1106 return runtime; 1107 } 1108 1109 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) { 1110 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1111 // Find the runtime with fewest attached threads 1112 JVMCIRuntime* runtime = nullptr; 1113 { 1114 MutexLocker locker(JVMCI_lock); 1115 runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread); 1116 } 1117 runtime->attach_thread(thread); 1118 return runtime; 1119 } 1120 1121 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) { 1122 MutexLocker locker(JVMCI_lock); 1123 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1124 if (runtime->_shared_library_javavm == javaVM) { 1125 if (runtime->_num_attached_threads == cannot_be_attached) { 1126 return "Cannot attach to JVMCI runtime that is shutting down"; 1127 } 1128 runtime->pre_attach_thread(thread); 1129 runtime->attach_thread(thread); 1130 return nullptr; 1131 } 1132 } 1133 return "Cannot find JVMCI runtime"; 1134 } 1135 1136 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) { 1137 assert(JVMCI_lock->owner() == thread, "must be"); 1138 _num_attached_threads++; 1139 } 1140 1141 void JVMCIRuntime::attach_thread(JavaThread* thread) { 1142 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1143 thread->set_libjvmci_runtime(this); 1144 guarantee(this == JVMCI::_shutdown_compiler_runtime || 1145 _num_attached_threads > 0, 1146 "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads); 1147 JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : ""); 1148 } 1149 1150 void JVMCIRuntime::repack(JavaThread* thread) { 1151 JVMCIRuntime* new_runtime = nullptr; 1152 { 1153 MutexLocker locker(JVMCI_lock); 1154 if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) { 1155 return; 1156 } 1157 new_runtime = select_runtime(thread, this, nullptr); 1158 } 1159 if (new_runtime != nullptr) { 1160 JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1); 1161 detach_thread(thread, "moving thread to another JVMCI runtime"); 1162 new_runtime->attach_thread(thread); 1163 } 1164 } 1165 1166 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) { 1167 if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) { 1168 // Do minimal work when shutting down JVMCI 1169 thread->set_libjvmci_runtime(nullptr); 1170 return false; 1171 } 1172 bool should_shutdown; 1173 bool destroyed_javavm = false; 1174 { 1175 MutexLocker locker(JVMCI_lock); 1176 _num_attached_threads--; 1177 JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads); 1178 should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown(); 1179 if (should_shutdown && !can_destroy_javavm) { 1180 // If it's not possible to destroy the JavaVM on this thread then the VM must 1181 // not be shutdown. This can happen when a shared library thread is the last 1182 // thread to detach from a shared library JavaVM (e.g. GraalServiceThread). 1183 JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id); 1184 should_shutdown = false; 1185 } 1186 if (should_shutdown) { 1187 // Prevent other threads from attaching to this runtime 1188 // while it is shutting down and destroying its JavaVM 1189 _num_attached_threads = cannot_be_attached; 1190 } 1191 } 1192 if (should_shutdown) { 1193 // Release the JavaVM resources associated with this 1194 // runtime once there are no threads attached to it. 1195 shutdown(); 1196 if (can_destroy_javavm) { 1197 destroyed_javavm = destroy_shared_library_javavm(); 1198 if (destroyed_javavm) { 1199 // Can release all handles now that there's no code executing 1200 // that could be using them. Handles for the Java JVMCI runtime 1201 // are never released as we cannot guarantee all compiler threads 1202 // using it have been stopped. 1203 int released = release_and_clear_oop_handles(); 1204 JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}", 1205 _id, 1206 released, 1207 _metadata_handles->num_handles(), 1208 _metadata_handles->num_handles() - _metadata_handles->num_free_handles(), 1209 _metadata_handles->num_blocks()); 1210 1211 // No need to acquire _lock since this is the only thread accessing this runtime 1212 _metadata_handles->clear(); 1213 } 1214 } 1215 // Allow other threads to attach to this runtime now 1216 MutexLocker locker(JVMCI_lock); 1217 _num_attached_threads = 0; 1218 if (JVMCI::using_singleton_shared_library_runtime()) { 1219 // Notify any thread waiting to attach to the 1220 // singleton JVMCIRuntime 1221 JVMCI_lock->notify(); 1222 } 1223 } 1224 thread->set_libjvmci_runtime(nullptr); 1225 JVMCI_event_1("detached from JVMCI runtime %d", _id); 1226 return destroyed_javavm; 1227 } 1228 1229 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) { 1230 MutexLocker locker(_lock); 1231 JavaVM* javaVM = _shared_library_javavm; 1232 if (javaVM == nullptr) { 1233 #ifdef ASSERT 1234 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit"); 1235 if (val != nullptr && strcmp(val, "true") == 0) { 1236 *create_JavaVM_err = JNI_ENOMEM; 1237 return nullptr; 1238 } 1239 #endif 1240 1241 char* sl_path; 1242 void* sl_handle = JVMCI::get_shared_library(sl_path, true); 1243 1244 jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args); 1245 typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args); 1246 1247 JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM")); 1248 if (JNI_CreateJavaVM == nullptr) { 1249 fatal("Unable to find JNI_CreateJavaVM in %s", sl_path); 1250 } 1251 1252 ResourceMark rm; 1253 JavaVMInitArgs vm_args; 1254 vm_args.version = JNI_VERSION_1_2; 1255 vm_args.ignoreUnrecognized = JNI_TRUE; 1256 JavaVMOption options[6]; 1257 jlong javaVM_id = 0; 1258 1259 // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id" 1260 // option whose extraInfo info field is a pointer to which a unique id for the 1261 // JavaVM should be written. 1262 options[0].optionString = (char*) "_javavm_id"; 1263 options[0].extraInfo = &javaVM_id; 1264 1265 options[1].optionString = (char*) "_log"; 1266 options[1].extraInfo = (void*) _log; 1267 options[2].optionString = (char*) "_flush_log"; 1268 options[2].extraInfo = (void*) _flush_log; 1269 options[3].optionString = (char*) "_fatal"; 1270 options[3].extraInfo = (void*) _fatal; 1271 options[4].optionString = (char*) "_fatal_log"; 1272 options[4].extraInfo = (void*) _fatal_log; 1273 options[5].optionString = (char*) "_createvm_errorstr"; 1274 options[5].extraInfo = (void*) err_msg; 1275 1276 vm_args.version = JNI_VERSION_1_2; 1277 vm_args.options = options; 1278 vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption); 1279 1280 JNIEnv* env = nullptr; 1281 int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args); 1282 if (result == JNI_OK) { 1283 guarantee(env != nullptr, "missing env"); 1284 _shared_library_javavm_id = javaVM_id; 1285 _shared_library_javavm = javaVM; 1286 JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1287 return env; 1288 } else { 1289 *create_JavaVM_err = result; 1290 } 1291 } 1292 return nullptr; 1293 } 1294 1295 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) { 1296 if (info != nullptr) { 1297 typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info); 1298 if (info_oop->length() < 4) { 1299 JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length())); 1300 } 1301 JavaVM* javaVM = _shared_library_javavm; 1302 info_oop->long_at_put(0, (jlong) (address) javaVM); 1303 info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0); 1304 info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1); 1305 info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2); 1306 } 1307 } 1308 1309 #define JAVAVM_CALL_BLOCK \ 1310 guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \ 1311 ThreadToNativeFromVM ttnfv(thread); \ 1312 JavaVM* javavm = _shared_library_javavm; 1313 1314 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) { 1315 JAVAVM_CALL_BLOCK 1316 return javavm->AttachCurrentThread(penv, args); 1317 } 1318 1319 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) { 1320 JAVAVM_CALL_BLOCK 1321 return javavm->AttachCurrentThreadAsDaemon(penv, args); 1322 } 1323 1324 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) { 1325 JAVAVM_CALL_BLOCK 1326 return javavm->DetachCurrentThread(); 1327 } 1328 1329 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) { 1330 JAVAVM_CALL_BLOCK 1331 return javavm->GetEnv(penv, version); 1332 } 1333 #undef JAVAVM_CALL_BLOCK \ 1334 1335 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1336 if (is_HotSpotJVMCIRuntime_initialized()) { 1337 if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) { 1338 JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library"); 1339 } 1340 } 1341 1342 initialize(JVMCI_CHECK); 1343 1344 // This should only be called in the context of the JVMCI class being initialized 1345 JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK); 1346 result = JVMCIENV->make_global(result); 1347 1348 OrderAccess::storestore(); // Ensure handle is fully constructed before publishing 1349 _HotSpotJVMCIRuntime_instance = result; 1350 1351 JVMCI::_is_initialized = true; 1352 } 1353 1354 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1355 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1356 1357 class JavaVMRefsInitialization: public StackObj { 1358 JVMCIRuntime::InitState *_state; 1359 int _id; 1360 public: 1361 JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) { 1362 _state = state; 1363 _id = id; 1364 // All classes, methods and fields in the JVMCI shared library 1365 // are in the read-only part of the image. As such, these 1366 // values (and any global handle derived from them via NewGlobalRef) 1367 // are the same for all JavaVM instances created in the 1368 // shared library which means they only need to be initialized 1369 // once. In non-product mode, we check this invariant. 1370 // See com.oracle.svm.jni.JNIImageHeapHandles. 1371 // The same is true for Klass* and field offsets in HotSpotJVMCI. 1372 if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) { 1373 *state = JVMCIRuntime::being_initialized; 1374 JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id); 1375 } else { 1376 while (*state != JVMCIRuntime::fully_initialized) { 1377 JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id); 1378 JVMCI_lock->wait(); 1379 } 1380 JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id); 1381 } 1382 } 1383 1384 ~JavaVMRefsInitialization() { 1385 if (*_state == JVMCIRuntime::being_initialized) { 1386 *_state = JVMCIRuntime::fully_initialized; 1387 JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id); 1388 JVMCI_lock->notify_all(); 1389 } 1390 } 1391 1392 bool should_init() { 1393 return *_state == JVMCIRuntime::being_initialized; 1394 } 1395 }; 1396 1397 void JVMCIRuntime::initialize(JVMCI_TRAPS) { 1398 // Check first without _lock 1399 if (_init_state == fully_initialized) { 1400 return; 1401 } 1402 1403 JavaThread* THREAD = JavaThread::current(); 1404 1405 MutexLocker locker(_lock); 1406 // Check again under _lock 1407 if (_init_state == fully_initialized) { 1408 return; 1409 } 1410 1411 while (_init_state == being_initialized) { 1412 JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id); 1413 _lock->wait(); 1414 if (_init_state == fully_initialized) { 1415 JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id); 1416 return; 1417 } 1418 } 1419 1420 JVMCI_event_1("initializing JVMCI runtime %d", _id); 1421 _init_state = being_initialized; 1422 1423 { 1424 MutexUnlocker unlock(_lock); 1425 1426 HandleMark hm(THREAD); 1427 ResourceMark rm(THREAD); 1428 { 1429 MutexLocker lock_jvmci(JVMCI_lock); 1430 if (JVMCIENV->is_hotspot()) { 1431 JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id); 1432 if (initialization.should_init()) { 1433 MutexUnlocker unlock_jvmci(JVMCI_lock); 1434 HotSpotJVMCI::compute_offsets(CHECK_EXIT); 1435 } 1436 } else { 1437 JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id); 1438 if (initialization.should_init()) { 1439 MutexUnlocker unlock_jvmci(JVMCI_lock); 1440 JNIAccessMark jni(JVMCIENV, THREAD); 1441 1442 JNIJVMCI::initialize_ids(jni.env()); 1443 if (jni()->ExceptionCheck()) { 1444 jni()->ExceptionDescribe(); 1445 fatal("JNI exception during init"); 1446 } 1447 // _lock is re-locked at this point 1448 } 1449 } 1450 } 1451 1452 if (!JVMCIENV->is_hotspot()) { 1453 JNIAccessMark jni(JVMCIENV, THREAD); 1454 JNIJVMCI::register_natives(jni.env()); 1455 } 1456 create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0)); 1457 create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0)); 1458 create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0)); 1459 create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0)); 1460 create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0)); 1461 create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0)); 1462 create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0)); 1463 create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0)); 1464 create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0)); 1465 1466 DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);) 1467 } 1468 1469 _init_state = fully_initialized; 1470 JVMCI_event_1("initialized JVMCI runtime %d", _id); 1471 _lock->notify_all(); 1472 } 1473 1474 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) { 1475 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1476 // These primitive types are long lived and are created before the runtime is fully set up 1477 // so skip registering them for scanning. 1478 JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true); 1479 if (JVMCIENV->is_hotspot()) { 1480 JavaValue result(T_OBJECT); 1481 JavaCallArguments args; 1482 args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror))); 1483 args.push_int(type2char(type)); 1484 JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject())); 1485 1486 return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop())); 1487 } else { 1488 JNIAccessMark jni(JVMCIENV); 1489 jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(), 1490 JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(), 1491 mirror.as_jobject(), type2char(type)); 1492 if (jni()->ExceptionCheck()) { 1493 return JVMCIObject(); 1494 } 1495 return JVMCIENV->wrap(result); 1496 } 1497 } 1498 1499 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) { 1500 if (!is_HotSpotJVMCIRuntime_initialized()) { 1501 initialize(JVMCI_CHECK); 1502 JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK); 1503 guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id); 1504 } 1505 } 1506 1507 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1508 initialize(JVMCI_CHECK_(JVMCIObject())); 1509 initialize_JVMCI(JVMCI_CHECK_(JVMCIObject())); 1510 return _HotSpotJVMCIRuntime_instance; 1511 } 1512 1513 // Implementation of CompilerToVM.registerNatives() 1514 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 1515 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass)) 1516 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 1517 1518 if (!EnableJVMCI) { 1519 JVMCI_THROW_MSG(InternalError, "JVMCI is not enabled"); 1520 } 1521 1522 JVMCIENV->runtime()->initialize(JVMCIENV); 1523 1524 { 1525 ResourceMark rm(thread); 1526 HandleMark hm(thread); 1527 ThreadToNativeFromVM trans(thread); 1528 1529 // Ensure _non_oop_bits is initialized 1530 Universe::non_oop_word(); 1531 JNIEnv *env = libjvmciOrHotspotEnv; 1532 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) { 1533 if (!env->ExceptionCheck()) { 1534 for (int i = 0; i < CompilerToVM::methods_count(); i++) { 1535 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) { 1536 guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature); 1537 break; 1538 } 1539 } 1540 } else { 1541 env->ExceptionDescribe(); 1542 } 1543 guarantee(false, "Failed registering CompilerToVM native methods"); 1544 } 1545 } 1546 JVM_END 1547 1548 1549 void JVMCIRuntime::shutdown() { 1550 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1551 JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id); 1552 JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__); 1553 JVMCIEnv* JVMCIENV = &__stack_jvmci_env__; 1554 if (JVMCIENV->init_error() == JNI_OK) { 1555 JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance); 1556 } else { 1557 JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error()); 1558 } 1559 if (_num_attached_threads == cannot_be_attached) { 1560 // Only when no other threads are attached to this runtime 1561 // is it safe to reset these fields. 1562 _HotSpotJVMCIRuntime_instance = JVMCIObject(); 1563 _init_state = uninitialized; 1564 JVMCI_event_1("shut down JVMCI runtime %d", _id); 1565 } 1566 } 1567 } 1568 1569 bool JVMCIRuntime::destroy_shared_library_javavm() { 1570 guarantee(_num_attached_threads == cannot_be_attached, 1571 "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads); 1572 JavaVM* javaVM; 1573 int javaVM_id = _shared_library_javavm_id; 1574 { 1575 // Exactly one thread can destroy the JavaVM 1576 // and release the handle to it. 1577 MutexLocker only_one(_lock); 1578 javaVM = _shared_library_javavm; 1579 if (javaVM != nullptr) { 1580 _shared_library_javavm = nullptr; 1581 _shared_library_javavm_id = 0; 1582 } 1583 } 1584 if (javaVM != nullptr) { 1585 int result; 1586 { 1587 // Must transition into native before calling into libjvmci 1588 ThreadToNativeFromVM ttnfv(JavaThread::current()); 1589 result = javaVM->DestroyJavaVM(); 1590 } 1591 if (result == JNI_OK) { 1592 JVMCI_event_1("destroyed JavaVM[%d]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1593 } else { 1594 warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[%d]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM)); 1595 } 1596 return true; 1597 } 1598 return false; 1599 } 1600 1601 void JVMCIRuntime::bootstrap_finished(TRAPS) { 1602 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1603 JVMCIENV_FROM_THREAD(THREAD); 1604 JVMCIENV->check_init(CHECK); 1605 JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV); 1606 } 1607 } 1608 1609 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) { 1610 if (HAS_PENDING_EXCEPTION) { 1611 Handle exception(THREAD, PENDING_EXCEPTION); 1612 CLEAR_PENDING_EXCEPTION; 1613 java_lang_Throwable::print_stack_trace(exception, tty); 1614 1615 // Clear and ignore any exceptions raised during printing 1616 CLEAR_PENDING_EXCEPTION; 1617 } 1618 } 1619 1620 1621 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) { 1622 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1623 1624 static volatile int report_error = 0; 1625 if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) { 1626 // Only report an error once 1627 tty->print_raw_cr(message); 1628 if (JVMCIENV != nullptr) { 1629 JVMCIENV->describe_pending_exception(tty); 1630 } else { 1631 describe_pending_hotspot_exception(THREAD); 1632 } 1633 } else { 1634 // Allow error reporting thread time to print the stack trace. 1635 THREAD->sleep(200); 1636 } 1637 fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message); 1638 } 1639 1640 // ------------------------------------------------------------------ 1641 // Note: the logic of this method should mirror the logic of 1642 // constantPoolOopDesc::verify_constant_pool_resolve. 1643 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) { 1644 if (accessing_klass->is_objArray_klass()) { 1645 accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass(); 1646 } 1647 if (!accessing_klass->is_instance_klass()) { 1648 return true; 1649 } 1650 1651 if (resolved_klass->is_objArray_klass()) { 1652 // Find the element klass, if this is an array. 1653 resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass(); 1654 } 1655 if (resolved_klass->is_instance_klass()) { 1656 Reflection::VerifyClassAccessResults result = 1657 Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true); 1658 return result == Reflection::ACCESS_OK; 1659 } 1660 return true; 1661 } 1662 1663 // ------------------------------------------------------------------ 1664 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass, 1665 const constantPoolHandle& cpool, 1666 Symbol* sym, 1667 bool require_local) { 1668 JVMCI_EXCEPTION_CONTEXT; 1669 1670 // Now we need to check the SystemDictionary 1671 if (sym->char_at(0) == JVM_SIGNATURE_CLASS && 1672 sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) { 1673 // This is a name from a signature. Strip off the trimmings. 1674 // Call recursive to keep scope of strippedsym. 1675 TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1, 1676 sym->utf8_length()-2); 1677 return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local); 1678 } 1679 1680 Handle loader; 1681 Handle domain; 1682 if (accessing_klass != nullptr) { 1683 loader = Handle(THREAD, accessing_klass->class_loader()); 1684 domain = Handle(THREAD, accessing_klass->protection_domain()); 1685 } 1686 1687 Klass* found_klass = require_local ? 1688 SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader, domain) : 1689 SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader); 1690 1691 // If we fail to find an array klass, look again for its element type. 1692 // The element type may be available either locally or via constraints. 1693 // In either case, if we can find the element type in the system dictionary, 1694 // we must build an array type around it. The CI requires array klasses 1695 // to be loaded if their element klasses are loaded, except when memory 1696 // is exhausted. 1697 if (sym->char_at(0) == JVM_SIGNATURE_ARRAY && 1698 (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) { 1699 // We have an unloaded array. 1700 // Build it on the fly if the element class exists. 1701 TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1, 1702 sym->utf8_length()-1); 1703 1704 // Get element Klass recursively. 1705 Klass* elem_klass = 1706 get_klass_by_name_impl(accessing_klass, 1707 cpool, 1708 elem_sym, 1709 require_local); 1710 if (elem_klass != nullptr) { 1711 // Now make an array for it 1712 return elem_klass->array_klass(THREAD); 1713 } 1714 } 1715 1716 if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) { 1717 // Look inside the constant pool for pre-resolved class entries. 1718 for (int i = cpool->length() - 1; i >= 1; i--) { 1719 if (cpool->tag_at(i).is_klass()) { 1720 Klass* kls = cpool->resolved_klass_at(i); 1721 if (kls->name() == sym) { 1722 return kls; 1723 } 1724 } 1725 } 1726 } 1727 1728 return found_klass; 1729 } 1730 1731 // ------------------------------------------------------------------ 1732 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass, 1733 Symbol* klass_name, 1734 bool require_local) { 1735 ResourceMark rm; 1736 constantPoolHandle cpool; 1737 return get_klass_by_name_impl(accessing_klass, 1738 cpool, 1739 klass_name, 1740 require_local); 1741 } 1742 1743 // ------------------------------------------------------------------ 1744 // Implementation of get_klass_by_index. 1745 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool, 1746 int index, 1747 bool& is_accessible, 1748 Klass* accessor) { 1749 JVMCI_EXCEPTION_CONTEXT; 1750 Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index); 1751 Symbol* klass_name = nullptr; 1752 if (klass == nullptr) { 1753 klass_name = cpool->klass_name_at(index); 1754 } 1755 1756 if (klass == nullptr) { 1757 // Not found in constant pool. Use the name to do the lookup. 1758 Klass* k = get_klass_by_name_impl(accessor, 1759 cpool, 1760 klass_name, 1761 false); 1762 // Calculate accessibility the hard way. 1763 if (k == nullptr) { 1764 is_accessible = false; 1765 } else if (k->class_loader() != accessor->class_loader() && 1766 get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) { 1767 // Loaded only remotely. Not linked yet. 1768 is_accessible = false; 1769 } else { 1770 // Linked locally, and we must also check public/private, etc. 1771 is_accessible = check_klass_accessibility(accessor, k); 1772 } 1773 if (!is_accessible) { 1774 return nullptr; 1775 } 1776 return k; 1777 } 1778 1779 // It is known to be accessible, since it was found in the constant pool. 1780 is_accessible = true; 1781 return klass; 1782 } 1783 1784 // ------------------------------------------------------------------ 1785 // Get a klass from the constant pool. 1786 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool, 1787 int index, 1788 bool& is_accessible, 1789 Klass* accessor) { 1790 ResourceMark rm; 1791 Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor); 1792 return result; 1793 } 1794 1795 // ------------------------------------------------------------------ 1796 // Perform an appropriate method lookup based on accessor, holder, 1797 // name, signature, and bytecode. 1798 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor, 1799 Klass* holder, 1800 Symbol* name, 1801 Symbol* sig, 1802 Bytecodes::Code bc, 1803 constantTag tag) { 1804 // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl(). 1805 assert(check_klass_accessibility(accessor, holder), "holder not accessible"); 1806 1807 LinkInfo link_info(holder, name, sig, accessor, 1808 LinkInfo::AccessCheck::required, 1809 LinkInfo::LoaderConstraintCheck::required, 1810 tag); 1811 switch (bc) { 1812 case Bytecodes::_invokestatic: 1813 return LinkResolver::resolve_static_call_or_null(link_info); 1814 case Bytecodes::_invokespecial: 1815 return LinkResolver::resolve_special_call_or_null(link_info); 1816 case Bytecodes::_invokeinterface: 1817 return LinkResolver::linktime_resolve_interface_method_or_null(link_info); 1818 case Bytecodes::_invokevirtual: 1819 return LinkResolver::linktime_resolve_virtual_method_or_null(link_info); 1820 default: 1821 fatal("Unhandled bytecode: %s", Bytecodes::name(bc)); 1822 return nullptr; // silence compiler warnings 1823 } 1824 } 1825 1826 1827 // ------------------------------------------------------------------ 1828 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool, 1829 int index, Bytecodes::Code bc, 1830 InstanceKlass* accessor) { 1831 if (bc == Bytecodes::_invokedynamic) { 1832 if (cpool->resolved_indy_entry_at(index)->is_resolved()) { 1833 return cpool->resolved_indy_entry_at(index)->method(); 1834 } 1835 1836 return nullptr; 1837 } 1838 1839 int holder_index = cpool->klass_ref_index_at(index, bc); 1840 bool holder_is_accessible; 1841 Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor); 1842 1843 // Get the method's name and signature. 1844 Symbol* name_sym = cpool->name_ref_at(index, bc); 1845 Symbol* sig_sym = cpool->signature_ref_at(index, bc); 1846 1847 if (cpool->has_preresolution() 1848 || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) && 1849 MethodHandles::is_signature_polymorphic_name(holder, name_sym))) { 1850 // Short-circuit lookups for JSR 292-related call sites. 1851 // That is, do not rely only on name-based lookups, because they may fail 1852 // if the names are not resolvable in the boot class loader (7056328). 1853 switch (bc) { 1854 case Bytecodes::_invokevirtual: 1855 case Bytecodes::_invokeinterface: 1856 case Bytecodes::_invokespecial: 1857 case Bytecodes::_invokestatic: 1858 { 1859 Method* m = ConstantPool::method_at_if_loaded(cpool, index); 1860 if (m != nullptr) { 1861 return m; 1862 } 1863 } 1864 break; 1865 default: 1866 break; 1867 } 1868 } 1869 1870 if (holder_is_accessible) { // Our declared holder is loaded. 1871 constantTag tag = cpool->tag_ref_at(index, bc); 1872 Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag); 1873 if (m != nullptr) { 1874 // We found the method. 1875 return m; 1876 } 1877 } 1878 1879 // Either the declared holder was not loaded, or the method could 1880 // not be found. 1881 1882 return nullptr; 1883 } 1884 1885 // ------------------------------------------------------------------ 1886 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) { 1887 // For the case of <array>.clone(), the method holder can be an ArrayKlass* 1888 // instead of an InstanceKlass*. For that case simply pretend that the 1889 // declared holder is Object.clone since that's where the call will bottom out. 1890 if (method_holder->is_instance_klass()) { 1891 return InstanceKlass::cast(method_holder); 1892 } else if (method_holder->is_array_klass()) { 1893 return vmClasses::Object_klass(); 1894 } else { 1895 ShouldNotReachHere(); 1896 } 1897 return nullptr; 1898 } 1899 1900 1901 // ------------------------------------------------------------------ 1902 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool, 1903 int index, Bytecodes::Code bc, 1904 InstanceKlass* accessor) { 1905 ResourceMark rm; 1906 return get_method_by_index_impl(cpool, index, bc, accessor); 1907 } 1908 1909 // ------------------------------------------------------------------ 1910 // Check for changes to the system dictionary during compilation 1911 // class loads, evolution, breakpoints 1912 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies, 1913 JVMCICompileState* compile_state, 1914 char** failure_detail, 1915 bool& failing_dep_is_call_site) 1916 { 1917 failing_dep_is_call_site = false; 1918 // If JVMTI capabilities were enabled during compile, the compilation is invalidated. 1919 if (compile_state != nullptr && compile_state->jvmti_state_changed()) { 1920 *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies"; 1921 return JVMCI::dependencies_failed; 1922 } 1923 1924 CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task(); 1925 Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail); 1926 1927 if (result == Dependencies::end_marker) { 1928 return JVMCI::ok; 1929 } 1930 if (result == Dependencies::call_site_target_value) { 1931 failing_dep_is_call_site = true; 1932 } 1933 return JVMCI::dependencies_failed; 1934 } 1935 1936 // Called after an upcall to `function` while compiling `method`. 1937 // If an exception occurred, it is cleared, the compilation state 1938 // is updated with the failure and this method returns true. 1939 // Otherwise, it returns false. 1940 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) { 1941 if (JVMCIENV->has_pending_exception()) { 1942 ResourceMark rm; 1943 bool reason_on_C_heap = true; 1944 const char* pending_string = nullptr; 1945 const char* pending_stack_trace = nullptr; 1946 JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace); 1947 if (pending_string == nullptr) pending_string = "null"; 1948 // Using stringStream instead of err_msg to avoid truncation 1949 stringStream st; 1950 st.print("uncaught exception in %s [%s]", function, pending_string); 1951 const char* failure_reason = os::strdup(st.freeze(), mtJVMCI); 1952 if (failure_reason == nullptr) { 1953 failure_reason = "uncaught exception"; 1954 reason_on_C_heap = false; 1955 } 1956 JVMCI_event_1("%s", failure_reason); 1957 Log(jit, compilation) log; 1958 if (log.is_info()) { 1959 log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string()); 1960 if (pending_stack_trace != nullptr) { 1961 LogStream ls(log.info()); 1962 ls.print_raw_cr(pending_stack_trace); 1963 } 1964 } 1965 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1966 compile_state->set_failure(true, failure_reason, reason_on_C_heap); 1967 compiler->on_upcall(failure_reason, compile_state); 1968 return true; 1969 } 1970 return false; 1971 } 1972 1973 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) { 1974 JVMCI_EXCEPTION_CONTEXT 1975 1976 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1977 1978 bool is_osr = entry_bci != InvocationEntryBci; 1979 if (compiler->is_bootstrapping() && is_osr) { 1980 // no OSR compilations during bootstrap - the compiler is just too slow at this point, 1981 // and we know that there are no endless loops 1982 compile_state->set_failure(true, "No OSR during bootstrap"); 1983 return; 1984 } 1985 if (JVMCI::in_shutdown()) { 1986 if (UseJVMCINativeLibrary) { 1987 JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false); 1988 if (runtime != nullptr) { 1989 runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation"); 1990 } 1991 } 1992 compile_state->set_failure(false, "Avoiding compilation during shutdown"); 1993 return; 1994 } 1995 1996 HandleMark hm(thread); 1997 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 1998 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) { 1999 return; 2000 } 2001 JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV); 2002 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) { 2003 return; 2004 } 2005 2006 JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci, 2007 (jlong) compile_state, compile_state->task()->compile_id()); 2008 #ifdef ASSERT 2009 if (JVMCIENV->has_pending_exception()) { 2010 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal"); 2011 if (val != nullptr && strcmp(val, "true") == 0) { 2012 fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling"); 2013 } 2014 } 2015 #endif 2016 2017 if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) { 2018 return; 2019 } 2020 compiler->on_upcall(nullptr); 2021 guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null"); 2022 JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object); 2023 if (failure_message.is_non_null()) { 2024 // Copy failure reason into resource memory first ... 2025 const char* failure_reason = JVMCIENV->as_utf8_string(failure_message); 2026 // ... and then into the C heap. 2027 failure_reason = os::strdup(failure_reason, mtJVMCI); 2028 bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0; 2029 compile_state->set_failure(retryable, failure_reason, true); 2030 } else { 2031 if (!compile_state->task()->is_success()) { 2032 compile_state->set_failure(true, "no nmethod produced"); 2033 } else { 2034 compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object)); 2035 compiler->inc_methods_compiled(); 2036 } 2037 } 2038 if (compiler->is_bootstrapping()) { 2039 compiler->set_bootstrap_compilation_request_handled(); 2040 } 2041 } 2042 2043 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) { 2044 JVMCI_EXCEPTION_CONTEXT 2045 2046 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2047 if (JVMCIENV->has_pending_exception()) { 2048 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2049 } 2050 return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name); 2051 } 2052 2053 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) { 2054 JVMCI_EXCEPTION_CONTEXT 2055 2056 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2057 if (JVMCIENV->has_pending_exception()) { 2058 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2059 } 2060 return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id); 2061 } 2062 2063 // ------------------------------------------------------------------ 2064 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV, 2065 const methodHandle& method, 2066 nmethod*& nm, 2067 int entry_bci, 2068 CodeOffsets* offsets, 2069 int orig_pc_offset, 2070 CodeBuffer* code_buffer, 2071 int frame_words, 2072 OopMapSet* oop_map_set, 2073 ExceptionHandlerTable* handler_table, 2074 ImplicitExceptionTable* implicit_exception_table, 2075 AbstractCompiler* compiler, 2076 DebugInformationRecorder* debug_info, 2077 Dependencies* dependencies, 2078 int compile_id, 2079 bool has_monitors, 2080 bool has_unsafe_access, 2081 bool has_scoped_access, 2082 bool has_wide_vector, 2083 JVMCIObject compiled_code, 2084 JVMCIObject nmethod_mirror, 2085 FailedSpeculation** failed_speculations, 2086 char* speculations, 2087 int speculations_len, 2088 int nmethod_entry_patch_offset) { 2089 JVMCI_EXCEPTION_CONTEXT; 2090 CompLevel comp_level = CompLevel_full_optimization; 2091 char* failure_detail = nullptr; 2092 2093 bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0; 2094 assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be"); 2095 JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror); 2096 const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name); 2097 int nmethod_mirror_index; 2098 if (!install_default) { 2099 // Reserve or initialize mirror slot in the oops table. 2100 OopRecorder* oop_recorder = debug_info->oop_recorder(); 2101 nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr); 2102 } else { 2103 // A default HotSpotNmethod mirror is never tracked by the nmethod 2104 nmethod_mirror_index = -1; 2105 } 2106 2107 JVMCI::CodeInstallResult result(JVMCI::ok); 2108 2109 // We require method counters to store some method state (max compilation levels) required by the compilation policy. 2110 if (method->get_method_counters(THREAD) == nullptr) { 2111 result = JVMCI::cache_full; 2112 failure_detail = (char*) "can't create method counters"; 2113 } 2114 2115 if (result == JVMCI::ok) { 2116 // Check if memory should be freed before allocation 2117 CodeCache::gc_on_allocation(); 2118 2119 // To prevent compile queue updates. 2120 MutexLocker locker(THREAD, MethodCompileQueue_lock); 2121 2122 // Prevent InstanceKlass::add_to_hierarchy from running 2123 // and invalidating our dependencies until we install this method. 2124 MutexLocker ml(Compile_lock); 2125 2126 // Encode the dependencies now, so we can check them right away. 2127 dependencies->encode_content_bytes(); 2128 2129 // Record the dependencies for the current compile in the log 2130 if (LogCompilation) { 2131 for (Dependencies::DepStream deps(dependencies); deps.next(); ) { 2132 deps.log_dependency(); 2133 } 2134 } 2135 2136 // Check for {class loads, evolution, breakpoints} during compilation 2137 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 2138 bool failing_dep_is_call_site; 2139 result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site); 2140 if (result != JVMCI::ok) { 2141 // While not a true deoptimization, it is a preemptive decompile. 2142 MethodData* mdp = method()->method_data(); 2143 if (mdp != nullptr && !failing_dep_is_call_site) { 2144 mdp->inc_decompile_count(); 2145 #ifdef ASSERT 2146 if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) { 2147 ResourceMark m; 2148 tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string()); 2149 } 2150 #endif 2151 } 2152 2153 // All buffers in the CodeBuffer are allocated in the CodeCache. 2154 // If the code buffer is created on each compile attempt 2155 // as in C2, then it must be freed. 2156 //code_buffer->free_blob(); 2157 } else { 2158 JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index, 2159 nmethod_entry_patch_offset, 2160 nmethod_mirror_name, 2161 failed_speculations); 2162 nm = nmethod::new_nmethod(method, 2163 compile_id, 2164 entry_bci, 2165 offsets, 2166 orig_pc_offset, 2167 debug_info, dependencies, code_buffer, 2168 frame_words, oop_map_set, 2169 handler_table, implicit_exception_table, 2170 compiler, comp_level, nullptr /* SCCEntry */, 2171 speculations, speculations_len, data); 2172 2173 2174 // Free codeBlobs 2175 if (nm == nullptr) { 2176 // The CodeCache is full. Print out warning and disable compilation. 2177 { 2178 MutexUnlocker ml(Compile_lock); 2179 MutexUnlocker locker(MethodCompileQueue_lock); 2180 CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level)); 2181 } 2182 result = JVMCI::cache_full; 2183 } else { 2184 nm->set_has_unsafe_access(has_unsafe_access); 2185 nm->set_has_wide_vectors(has_wide_vector); 2186 nm->set_has_monitors(has_monitors); 2187 nm->set_has_scoped_access(has_scoped_access); 2188 2189 JVMCINMethodData* data = nm->jvmci_nmethod_data(); 2190 assert(data != nullptr, "must be"); 2191 if (install_default) { 2192 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == nullptr, "must be"); 2193 if (entry_bci == InvocationEntryBci) { 2194 // If there is an old version we're done with it 2195 nmethod* old = method->code(); 2196 if (TraceMethodReplacement && old != nullptr) { 2197 ResourceMark rm; 2198 char *method_name = method->name_and_sig_as_C_string(); 2199 tty->print_cr("Replacing method %s", method_name); 2200 } 2201 if (old != nullptr ) { 2202 old->make_not_entrant(); 2203 } 2204 2205 LogTarget(Info, nmethod, install) lt; 2206 if (lt.is_enabled()) { 2207 ResourceMark rm; 2208 char *method_name = method->name_and_sig_as_C_string(); 2209 lt.print("Installing method (%d) %s [entry point: %p]", 2210 comp_level, method_name, nm->entry_point()); 2211 } 2212 // Allow the code to be executed 2213 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2214 if (nm->make_in_use()) { 2215 method->set_code(method, nm); 2216 } else { 2217 result = JVMCI::nmethod_reclaimed; 2218 } 2219 } else { 2220 LogTarget(Info, nmethod, install) lt; 2221 if (lt.is_enabled()) { 2222 ResourceMark rm; 2223 char *method_name = method->name_and_sig_as_C_string(); 2224 lt.print("Installing osr method (%d) %s @ %d", 2225 comp_level, method_name, entry_bci); 2226 } 2227 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2228 if (nm->make_in_use()) { 2229 InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm); 2230 } else { 2231 result = JVMCI::nmethod_reclaimed; 2232 } 2233 } 2234 } else { 2235 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be"); 2236 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2237 if (!nm->make_in_use()) { 2238 result = JVMCI::nmethod_reclaimed; 2239 } 2240 } 2241 } 2242 } 2243 } 2244 2245 // String creation must be done outside lock 2246 if (failure_detail != nullptr) { 2247 // A failure to allocate the string is silently ignored. 2248 JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV); 2249 JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message); 2250 } 2251 2252 if (result == JVMCI::ok) { 2253 JVMCICompileState* state = JVMCIENV->compile_state(); 2254 if (state != nullptr) { 2255 // Compilation succeeded, post what we know about it 2256 nm->post_compiled_method(state->task()); 2257 } 2258 } 2259 2260 return result; 2261 } 2262 2263 void JVMCIRuntime::post_compile(JavaThread* thread) { 2264 if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) { 2265 if (thread->libjvmci_runtime() != nullptr) { 2266 detach_thread(thread, "single use JavaVM"); 2267 } else { 2268 // JVMCI shutdown may have already detached the thread 2269 } 2270 } 2271 }