1 /*
   2  * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "classfile/javaClasses.inline.hpp"
  25 #include "classfile/symbolTable.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmClasses.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/memAllocator.hpp"
  31 #include "gc/shared/oopStorage.inline.hpp"
  32 #include "jvmci/jniAccessMark.inline.hpp"
  33 #include "jvmci/jvmciCompilerToVM.hpp"
  34 #include "jvmci/jvmciCodeInstaller.hpp"
  35 #include "jvmci/jvmciRuntime.hpp"
  36 #include "jvmci/metadataHandles.hpp"
  37 #include "logging/log.hpp"
  38 #include "logging/logStream.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.inline.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/method.inline.hpp"
  44 #include "oops/objArrayKlass.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/typeArrayOop.inline.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/methodHandles.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fieldDescriptor.inline.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/jniHandles.inline.hpp"
  56 #include "runtime/mutex.hpp"
  57 #include "runtime/reflection.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/synchronizer.hpp"
  60 #if INCLUDE_G1GC
  61 #include "gc/g1/g1BarrierSetRuntime.hpp"
  62 #endif // INCLUDE_G1GC
  63 
  64 // Simple helper to see if the caller of a runtime stub which
  65 // entered the VM has been deoptimized
  66 
  67 static bool caller_is_deopted() {
  68   JavaThread* thread = JavaThread::current();
  69   RegisterMap reg_map(thread,
  70                       RegisterMap::UpdateMap::skip,
  71                       RegisterMap::ProcessFrames::include,
  72                       RegisterMap::WalkContinuation::skip);
  73   frame runtime_frame = thread->last_frame();
  74   frame caller_frame = runtime_frame.sender(&reg_map);
  75   assert(caller_frame.is_compiled_frame(), "must be compiled");
  76   return caller_frame.is_deoptimized_frame();
  77 }
  78 
  79 // Stress deoptimization
  80 static void deopt_caller() {
  81   if ( !caller_is_deopted()) {
  82     JavaThread* thread = JavaThread::current();
  83     RegisterMap reg_map(thread,
  84                         RegisterMap::UpdateMap::skip,
  85                         RegisterMap::ProcessFrames::include,
  86                         RegisterMap::WalkContinuation::skip);
  87     frame runtime_frame = thread->last_frame();
  88     frame caller_frame = runtime_frame.sender(&reg_map);
  89     Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
  90     assert(caller_is_deopted(), "Must be deoptimized");
  91   }
  92 }
  93 
  94 // Manages a scope for a JVMCI runtime call that attempts a heap allocation.
  95 // If there is a pending OutOfMemoryError upon closing the scope and the runtime
  96 // call is of the variety where allocation failure returns null without an
  97 // exception, the following action is taken:
  98 //   1. The pending OutOfMemoryError is cleared
  99 //   2. null is written to JavaThread::_vm_result
 100 class RetryableAllocationMark {
 101  private:
 102    InternalOOMEMark _iom;
 103  public:
 104   RetryableAllocationMark(JavaThread* thread) : _iom(thread) {}
 105   ~RetryableAllocationMark() {
 106     JavaThread* THREAD = _iom.thread(); // For exception macros.
 107     if (THREAD != nullptr) {
 108       if (HAS_PENDING_EXCEPTION) {
 109         oop ex = PENDING_EXCEPTION;
 110         THREAD->set_vm_result(nullptr);
 111         if (ex->is_a(vmClasses::OutOfMemoryError_klass())) {
 112           CLEAR_PENDING_EXCEPTION;
 113         }
 114       }
 115     }
 116   }
 117 };
 118 
 119 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass))
 120   JRT_BLOCK;
 121   assert(klass->is_klass(), "not a class");
 122   Handle holder(current, klass->klass_holder()); // keep the klass alive
 123   InstanceKlass* h = InstanceKlass::cast(klass);
 124   {
 125     RetryableAllocationMark ram(current);
 126     h->check_valid_for_instantiation(true, CHECK);
 127     if (!h->is_initialized()) {
 128       // Cannot re-execute class initialization without side effects
 129       // so return without attempting the initialization
 130       current->set_vm_result(nullptr);
 131       return;
 132     }
 133     // allocate instance and return via TLS
 134     oop obj = h->allocate_instance(CHECK);
 135     current->set_vm_result(obj);
 136   }
 137   JRT_BLOCK_END;
 138   SharedRuntime::on_slowpath_allocation_exit(current);
 139 JRT_END
 140 
 141 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length))
 142   JRT_BLOCK;
 143   // Note: no handle for klass needed since they are not used
 144   //       anymore after new_objArray() and no GC can happen before.
 145   //       (This may have to change if this code changes!)
 146   assert(array_klass->is_klass(), "not a class");
 147   oop obj;
 148   if (array_klass->is_typeArray_klass()) {
 149     BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
 150     RetryableAllocationMark ram(current);
 151     obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 152   } else {
 153     Handle holder(current, array_klass->klass_holder()); // keep the klass alive
 154     Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 155     RetryableAllocationMark ram(current);
 156     obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 157   }
 158   // This is pretty rare but this runtime patch is stressful to deoptimization
 159   // if we deoptimize here so force a deopt to stress the path.
 160   if (DeoptimizeALot) {
 161     static int deopts = 0;
 162     if (deopts++ % 2 == 0) {
 163       // Drop the allocation
 164       obj = nullptr;
 165     } else {
 166       deopt_caller();
 167     }
 168   }
 169   current->set_vm_result(obj);
 170   JRT_BLOCK_END;
 171   SharedRuntime::on_slowpath_allocation_exit(current);
 172 JRT_END
 173 
 174 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims))
 175   assert(klass->is_klass(), "not a class");
 176   assert(rank >= 1, "rank must be nonzero");
 177   Handle holder(current, klass->klass_holder()); // keep the klass alive
 178   RetryableAllocationMark ram(current);
 179   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 180   current->set_vm_result(obj);
 181 JRT_END
 182 
 183 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length))
 184   RetryableAllocationMark ram(current);
 185   oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
 186   current->set_vm_result(obj);
 187 JRT_END
 188 
 189 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror))
 190   InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror));
 191 
 192   if (klass == nullptr) {
 193     ResourceMark rm(current);
 194     THROW(vmSymbols::java_lang_InstantiationException());
 195   }
 196   RetryableAllocationMark ram(current);
 197 
 198   // Create new instance (the receiver)
 199   klass->check_valid_for_instantiation(false, CHECK);
 200 
 201   if (!klass->is_initialized()) {
 202     // Cannot re-execute class initialization without side effects
 203     // so return without attempting the initialization
 204     current->set_vm_result(nullptr);
 205     return;
 206   }
 207 
 208   oop obj = klass->allocate_instance(CHECK);
 209   current->set_vm_result(obj);
 210 JRT_END
 211 
 212 extern void vm_exit(int code);
 213 
 214 // Enter this method from compiled code handler below. This is where we transition
 215 // to VM mode. This is done as a helper routine so that the method called directly
 216 // from compiled code does not have to transition to VM. This allows the entry
 217 // method to see if the nmethod that we have just looked up a handler for has
 218 // been deoptimized while we were in the vm. This simplifies the assembly code
 219 // cpu directories.
 220 //
 221 // We are entering here from exception stub (via the entry method below)
 222 // If there is a compiled exception handler in this method, we will continue there;
 223 // otherwise we will unwind the stack and continue at the caller of top frame method
 224 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 225 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 226 // check to see if the handler we are going to return is now in a nmethod that has
 227 // been deoptimized. If that is the case we return the deopt blob
 228 // unpack_with_exception entry instead. This makes life for the exception blob easier
 229 // because making that same check and diverting is painful from assembly language.
 230 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
 231   // Reset method handle flag.
 232   current->set_is_method_handle_return(false);
 233 
 234   Handle exception(current, ex);
 235 
 236   // The frame we rethrow the exception to might not have been processed by the GC yet.
 237   // The stack watermark barrier takes care of detecting that and ensuring the frame
 238   // has updated oops.
 239   StackWatermarkSet::after_unwind(current);
 240 
 241   nm = CodeCache::find_nmethod(pc);
 242   assert(nm != nullptr, "did not find nmethod");
 243   // Adjust the pc as needed/
 244   if (nm->is_deopt_pc(pc)) {
 245     RegisterMap map(current,
 246                     RegisterMap::UpdateMap::skip,
 247                     RegisterMap::ProcessFrames::include,
 248                     RegisterMap::WalkContinuation::skip);
 249     frame exception_frame = current->last_frame().sender(&map);
 250     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 251     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 252     pc = exception_frame.pc();
 253   }
 254   assert(exception.not_null(), "null exceptions should be handled by throw_exception");
 255   assert(oopDesc::is_oop(exception()), "just checking");
 256   // Check that exception is a subclass of Throwable
 257   assert(exception->is_a(vmClasses::Throwable_klass()),
 258          "Exception not subclass of Throwable");
 259 
 260   // debugging support
 261   // tracing
 262   if (log_is_enabled(Info, exceptions)) {
 263     ResourceMark rm;
 264     stringStream tempst;
 265     assert(nm->method() != nullptr, "Unexpected null method()");
 266     tempst.print("JVMCI compiled method <%s>\n"
 267                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 268                  nm->method()->print_value_string(), p2i(pc), p2i(current));
 269     Exceptions::log_exception(exception, tempst.as_string());
 270   }
 271   // for AbortVMOnException flag
 272   Exceptions::debug_check_abort(exception);
 273 
 274   // Check the stack guard pages and re-enable them if necessary and there is
 275   // enough space on the stack to do so.  Use fast exceptions only if the guard
 276   // pages are enabled.
 277   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
 278 
 279   if (JvmtiExport::can_post_on_exceptions()) {
 280     // To ensure correct notification of exception catches and throws
 281     // we have to deoptimize here.  If we attempted to notify the
 282     // catches and throws during this exception lookup it's possible
 283     // we could deoptimize on the way out of the VM and end back in
 284     // the interpreter at the throw site.  This would result in double
 285     // notifications since the interpreter would also notify about
 286     // these same catches and throws as it unwound the frame.
 287 
 288     RegisterMap reg_map(current,
 289                         RegisterMap::UpdateMap::include,
 290                         RegisterMap::ProcessFrames::include,
 291                         RegisterMap::WalkContinuation::skip);
 292     frame stub_frame = current->last_frame();
 293     frame caller_frame = stub_frame.sender(&reg_map);
 294 
 295     // We don't really want to deoptimize the nmethod itself since we
 296     // can actually continue in the exception handler ourselves but I
 297     // don't see an easy way to have the desired effect.
 298     Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint);
 299     assert(caller_is_deopted(), "Must be deoptimized");
 300 
 301     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 302   }
 303 
 304   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 305   if (guard_pages_enabled) {
 306     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 307     if (fast_continuation != nullptr) {
 308       // Set flag if return address is a method handle call site.
 309       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 310       return fast_continuation;
 311     }
 312   }
 313 
 314   // If the stack guard pages are enabled, check whether there is a handler in
 315   // the current method.  Otherwise (guard pages disabled), force an unwind and
 316   // skip the exception cache update (i.e., just leave continuation==nullptr).
 317   address continuation = nullptr;
 318   if (guard_pages_enabled) {
 319 
 320     // New exception handling mechanism can support inlined methods
 321     // with exception handlers since the mappings are from PC to PC
 322 
 323     // Clear out the exception oop and pc since looking up an
 324     // exception handler can cause class loading, which might throw an
 325     // exception and those fields are expected to be clear during
 326     // normal bytecode execution.
 327     current->clear_exception_oop_and_pc();
 328 
 329     bool recursive_exception = false;
 330     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 331     // If an exception was thrown during exception dispatch, the exception oop may have changed
 332     current->set_exception_oop(exception());
 333     current->set_exception_pc(pc);
 334 
 335     // The exception cache is used only for non-implicit exceptions
 336     // Update the exception cache only when another exception did
 337     // occur during the computation of the compiled exception handler
 338     // (e.g., when loading the class of the catch type).
 339     // Checking for exception oop equality is not
 340     // sufficient because some exceptions are pre-allocated and reused.
 341     if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) {
 342       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 343     }
 344   }
 345 
 346   // Set flag if return address is a method handle call site.
 347   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
 348 
 349   if (log_is_enabled(Info, exceptions)) {
 350     ResourceMark rm;
 351     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 352                          " for exception thrown at PC " PTR_FORMAT,
 353                          p2i(current), p2i(continuation), p2i(pc));
 354   }
 355 
 356   return continuation;
 357 JRT_END
 358 
 359 // Enter this method from compiled code only if there is a Java exception handler
 360 // in the method handling the exception.
 361 // We are entering here from exception stub. We don't do a normal VM transition here.
 362 // We do it in a helper. This is so we can check to see if the nmethod we have just
 363 // searched for an exception handler has been deoptimized in the meantime.
 364 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) {
 365   oop exception = current->exception_oop();
 366   address pc = current->exception_pc();
 367   // Still in Java mode
 368   DEBUG_ONLY(NoHandleMark nhm);
 369   nmethod* nm = nullptr;
 370   address continuation = nullptr;
 371   {
 372     // Enter VM mode by calling the helper
 373     ResetNoHandleMark rnhm;
 374     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
 375   }
 376   // Back in JAVA, use no oops DON'T safepoint
 377 
 378   // Now check to see if the compiled method we were called from is now deoptimized.
 379   // If so we must return to the deopt blob and deoptimize the nmethod
 380   if (nm != nullptr && caller_is_deopted()) {
 381     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 382   }
 383 
 384   assert(continuation != nullptr, "no handler found");
 385   return continuation;
 386 }
 387 
 388 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock))
 389   SharedRuntime::monitor_enter_helper(obj, lock, current);
 390 JRT_END
 391 
 392 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock))
 393   assert(current == JavaThread::current(), "pre-condition");
 394   assert(current->last_Java_sp(), "last_Java_sp must be set");
 395   assert(oopDesc::is_oop(obj), "invalid lock object pointer dected");
 396   SharedRuntime::monitor_exit_helper(obj, lock, current);
 397 JRT_END
 398 
 399 // Object.notify() fast path, caller does slow path
 400 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj))
 401   assert(current == JavaThread::current(), "pre-condition");
 402 
 403   // Very few notify/notifyAll operations find any threads on the waitset, so
 404   // the dominant fast-path is to simply return.
 405   // Relatedly, it's critical that notify/notifyAll be fast in order to
 406   // reduce lock hold times.
 407   if (!SafepointSynchronize::is_synchronizing()) {
 408     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 409       return true;
 410     }
 411   }
 412   return false; // caller must perform slow path
 413 
 414 JRT_END
 415 
 416 // Object.notifyAll() fast path, caller does slow path
 417 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj))
 418   assert(current == JavaThread::current(), "pre-condition");
 419 
 420   if (!SafepointSynchronize::is_synchronizing() ) {
 421     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 422       return true;
 423     }
 424   }
 425   return false; // caller must perform slow path
 426 
 427 JRT_END
 428 
 429 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message))
 430   JRT_BLOCK;
 431   TempNewSymbol symbol = SymbolTable::new_symbol(exception);
 432   SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
 433   JRT_BLOCK_END;
 434   return caller_is_deopted();
 435 JRT_END
 436 
 437 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass))
 438   JRT_BLOCK;
 439   ResourceMark rm(current);
 440   TempNewSymbol symbol = SymbolTable::new_symbol(exception);
 441   SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name());
 442   JRT_BLOCK_END;
 443   return caller_is_deopted();
 444 JRT_END
 445 
 446 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass))
 447   JRT_BLOCK;
 448   ResourceMark rm(current);
 449   const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass);
 450   TempNewSymbol symbol = SymbolTable::new_symbol(exception);
 451   SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
 452   JRT_BLOCK_END;
 453   return caller_is_deopted();
 454 JRT_END
 455 
 456 class ArgumentPusher : public SignatureIterator {
 457  protected:
 458   JavaCallArguments*  _jca;
 459   jlong _argument;
 460   bool _pushed;
 461 
 462   jlong next_arg() {
 463     guarantee(!_pushed, "one argument");
 464     _pushed = true;
 465     return _argument;
 466   }
 467 
 468   float next_float() {
 469     guarantee(!_pushed, "one argument");
 470     _pushed = true;
 471     jvalue v;
 472     v.i = (jint) _argument;
 473     return v.f;
 474   }
 475 
 476   double next_double() {
 477     guarantee(!_pushed, "one argument");
 478     _pushed = true;
 479     jvalue v;
 480     v.j = _argument;
 481     return v.d;
 482   }
 483 
 484   Handle next_object() {
 485     guarantee(!_pushed, "one argument");
 486     _pushed = true;
 487     return Handle(Thread::current(), cast_to_oop(_argument));
 488   }
 489 
 490  public:
 491   ArgumentPusher(Symbol* signature, JavaCallArguments*  jca, jlong argument) : SignatureIterator(signature) {
 492     this->_return_type = T_ILLEGAL;
 493     _jca = jca;
 494     _argument = argument;
 495     _pushed = false;
 496     do_parameters_on(this);
 497   }
 498 
 499   void do_type(BasicType type) {
 500     switch (type) {
 501       case T_OBJECT:
 502       case T_ARRAY:   _jca->push_oop(next_object());         break;
 503       case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break;
 504       case T_CHAR:    _jca->push_int((jchar) next_arg());    break;
 505       case T_SHORT:   _jca->push_int((jint)  next_arg());    break;
 506       case T_BYTE:    _jca->push_int((jbyte) next_arg());    break;
 507       case T_INT:     _jca->push_int((jint)  next_arg());    break;
 508       case T_LONG:    _jca->push_long((jlong) next_arg());   break;
 509       case T_FLOAT:   _jca->push_float(next_float());        break;
 510       case T_DOUBLE:  _jca->push_double(next_double());      break;
 511       default:        fatal("Unexpected type %s", type2name(type));
 512     }
 513   }
 514 };
 515 
 516 
 517 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument))
 518   ResourceMark rm;
 519   HandleMark hm(current);
 520 
 521   methodHandle mh(current, method);
 522   if (mh->size_of_parameters() > 1 && !mh->is_static()) {
 523     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument");
 524   }
 525 
 526   Symbol* signature = mh->signature();
 527   JavaCallArguments jca(mh->size_of_parameters());
 528   ArgumentPusher jap(signature, &jca, argument);
 529   BasicType return_type = jap.return_type();
 530   JavaValue result(return_type);
 531   JavaCalls::call(&result, mh, &jca, CHECK_0);
 532 
 533   if (return_type == T_VOID) {
 534     return 0;
 535   } else if (return_type == T_OBJECT || return_type == T_ARRAY) {
 536     current->set_vm_result(result.get_oop());
 537     return 0;
 538   } else {
 539     jvalue *value = (jvalue *) result.get_value_addr();
 540     // Narrow the value down if required (Important on big endian machines)
 541     switch (return_type) {
 542       case T_BOOLEAN:
 543         return (jboolean) value->i;
 544       case T_BYTE:
 545         return (jbyte) value->i;
 546       case T_CHAR:
 547         return (jchar) value->i;
 548       case T_SHORT:
 549         return (jshort) value->i;
 550       case T_INT:
 551       case T_FLOAT:
 552         return value->i;
 553       case T_LONG:
 554       case T_DOUBLE:
 555         return value->j;
 556       default:
 557         fatal("Unexpected type %s", type2name(return_type));
 558         return 0;
 559     }
 560   }
 561 JRT_END
 562 
 563 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
 564   ttyLocker ttyl;
 565 
 566   if (obj == nullptr) {
 567     tty->print("null");
 568   } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) {
 569     if (oopDesc::is_oop_or_null(obj, true)) {
 570       char buf[O_BUFLEN];
 571       tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
 572     } else {
 573       tty->print(INTPTR_FORMAT, p2i(obj));
 574     }
 575   } else {
 576     ResourceMark rm;
 577     assert(obj != nullptr && java_lang_String::is_instance(obj), "must be");
 578     char *buf = java_lang_String::as_utf8_string(obj);
 579     tty->print_raw(buf);
 580   }
 581   if (newline) {
 582     tty->cr();
 583   }
 584 JRT_END
 585 
 586 #if INCLUDE_G1GC
 587 
 588 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) {
 589   G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread);
 590 }
 591 
 592 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) {
 593   G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread);
 594 }
 595 
 596 #endif // INCLUDE_G1GC
 597 
 598 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
 599   bool ret = true;
 600   if(!Universe::heap()->is_in(parent)) {
 601     tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
 602     parent->print();
 603     ret=false;
 604   }
 605   if(!Universe::heap()->is_in(child)) {
 606     tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
 607     child->print();
 608     ret=false;
 609   }
 610   return (jint)ret;
 611 JRT_END
 612 
 613 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value))
 614   ResourceMark rm(current);
 615   const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where;
 616   char *detail_msg = nullptr;
 617   if (format != 0L) {
 618     const char* buf = (char*) (address) format;
 619     size_t detail_msg_length = strlen(buf) * 2;
 620     detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
 621     jio_snprintf(detail_msg, detail_msg_length, buf, value);
 622   }
 623   report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
 624 JRT_END
 625 
 626 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
 627   oop exception = thread->exception_oop();
 628   assert(exception != nullptr, "npe");
 629   thread->set_exception_oop(nullptr);
 630   thread->set_exception_pc(nullptr);
 631   return exception;
 632 JRT_END
 633 
 634 PRAGMA_DIAG_PUSH
 635 PRAGMA_FORMAT_NONLITERAL_IGNORED
 636 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3))
 637   ResourceMark rm;
 638   tty->print(format, v1, v2, v3);
 639 JRT_END
 640 PRAGMA_DIAG_POP
 641 
 642 static void decipher(jlong v, bool ignoreZero) {
 643   if (v != 0 || !ignoreZero) {
 644     void* p = (void *)(address) v;
 645     CodeBlob* cb = CodeCache::find_blob(p);
 646     if (cb) {
 647       if (cb->is_nmethod()) {
 648         char buf[O_BUFLEN];
 649         tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
 650         return;
 651       }
 652       cb->print_value_on(tty);
 653       return;
 654     }
 655     if (Universe::heap()->is_in(p)) {
 656       oop obj = cast_to_oop(p);
 657       obj->print_value_on(tty);
 658       return;
 659     }
 660     tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
 661   }
 662 }
 663 
 664 PRAGMA_DIAG_PUSH
 665 PRAGMA_FORMAT_NONLITERAL_IGNORED
 666 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
 667   ResourceMark rm;
 668   const char *buf = (const char*) (address) format;
 669   if (vmError) {
 670     if (buf != nullptr) {
 671       fatal(buf, v1, v2, v3);
 672     } else {
 673       fatal("<anonymous error>");
 674     }
 675   } else if (buf != nullptr) {
 676     tty->print(buf, v1, v2, v3);
 677   } else {
 678     assert(v2 == 0, "v2 != 0");
 679     assert(v3 == 0, "v3 != 0");
 680     decipher(v1, false);
 681   }
 682 JRT_END
 683 PRAGMA_DIAG_POP
 684 
 685 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
 686   union {
 687       jlong l;
 688       jdouble d;
 689       jfloat f;
 690   } uu;
 691   uu.l = value;
 692   switch (typeChar) {
 693     case 'Z': tty->print(value == 0 ? "false" : "true"); break;
 694     case 'B': tty->print("%d", (jbyte) value); break;
 695     case 'C': tty->print("%c", (jchar) value); break;
 696     case 'S': tty->print("%d", (jshort) value); break;
 697     case 'I': tty->print("%d", (jint) value); break;
 698     case 'F': tty->print("%f", uu.f); break;
 699     case 'J': tty->print(JLONG_FORMAT, value); break;
 700     case 'D': tty->print("%lf", uu.d); break;
 701     default: assert(false, "unknown typeChar"); break;
 702   }
 703   if (newline) {
 704     tty->cr();
 705   }
 706 JRT_END
 707 
 708 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj))
 709   return (jint) obj->identity_hash();
 710 JRT_END
 711 
 712 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value))
 713   deopt_caller();
 714   return (jint) value;
 715 JRT_END
 716 
 717 
 718 // Implementation of JVMCI.initializeRuntime()
 719 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
 720 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c))
 721   JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
 722   if (!EnableJVMCI) {
 723     JVMCI_THROW_MSG_NULL(InternalError, "JVMCI is not enabled");
 724   }
 725   JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
 726   JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
 727   return JVMCIENV->get_jobject(runtime);
 728 JVM_END
 729 
 730 // Implementation of Services.readSystemPropertiesInfo(int[] offsets)
 731 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV.
 732 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle))
 733   JVMCIENV_FROM_JNI(thread, env);
 734   if (!EnableJVMCI) {
 735     JVMCI_THROW_MSG_0(InternalError, "JVMCI is not enabled");
 736   }
 737   JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle);
 738   JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes());
 739   JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes());
 740   JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes());
 741 
 742   return (jlong) Arguments::system_properties();
 743 JVM_END
 744 
 745 
 746 void JVMCIRuntime::call_getCompiler(TRAPS) {
 747   JVMCIENV_FROM_THREAD(THREAD);
 748   JVMCIENV->check_init(CHECK);
 749   JVMCIObject jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_CHECK);
 750   initialize(JVMCI_CHECK);
 751   JVMCIENV->call_HotSpotJVMCIRuntime_getCompiler(jvmciRuntime, JVMCI_CHECK);
 752 }
 753 
 754 void JVMCINMethodData::initialize(int nmethod_mirror_index,
 755                                   int nmethod_entry_patch_offset,
 756                                   const char* nmethod_mirror_name,
 757                                   FailedSpeculation** failed_speculations)
 758 {
 759   _failed_speculations = failed_speculations;
 760   _nmethod_mirror_index = nmethod_mirror_index;
 761   guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier");
 762   _nmethod_entry_patch_offset = nmethod_entry_patch_offset;
 763   if (nmethod_mirror_name != nullptr) {
 764     _has_name = true;
 765     char* dest = (char*) name();
 766     strcpy(dest, nmethod_mirror_name);
 767   } else {
 768     _has_name = false;
 769   }
 770 }
 771 
 772 void JVMCINMethodData::copy(JVMCINMethodData* data) {
 773   initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations);
 774 }
 775 
 776 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) {
 777   jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS;
 778   guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index);
 779   int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK;
 780   if (index + length > (uint) nm->speculations_size()) {
 781     fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size());
 782   }
 783   address data = nm->speculations_begin() + index;
 784   FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length);
 785 }
 786 
 787 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) {
 788   if (_nmethod_mirror_index == -1) {
 789     return nullptr;
 790   }
 791   if (phantom_ref) {
 792     return nm->oop_at_phantom(_nmethod_mirror_index);
 793   } else {
 794     return nm->oop_at(_nmethod_mirror_index);
 795   }
 796 }
 797 
 798 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) {
 799   guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod");
 800   oop* addr = nm->oop_addr_at(_nmethod_mirror_index);
 801   guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror");
 802   guarantee(*addr == nullptr, "cannot overwrite non-null mirror");
 803 
 804   *addr = new_mirror;
 805 
 806   // Since we've patched some oops in the nmethod,
 807   // (re)register it with the heap.
 808   MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 809   Universe::heap()->register_nmethod(nm);
 810 }
 811 
 812 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) {
 813   oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false);
 814   if (nmethod_mirror == nullptr) {
 815     return;
 816   }
 817 
 818   // Update the values in the mirror if it still refers to nm.
 819   // We cannot use JVMCIObject to wrap the mirror as this is called
 820   // during GC, forbidding the creation of JNIHandles.
 821   JVMCIEnv* jvmciEnv = nullptr;
 822   nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror);
 823   if (nm == current) {
 824     if (nm->is_unloading()) {
 825       // Break the link from the mirror to nm such that
 826       // future invocations via the mirror will result in
 827       // an InvalidInstalledCodeException.
 828       HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0);
 829       HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
 830       HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
 831     } else if (nm->is_not_entrant()) {
 832       // Zero the entry point so any new invocation will fail but keep
 833       // the address link around that so that existing activations can
 834       // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code).
 835       HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
 836       HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
 837     }
 838   }
 839 
 840   if (_nmethod_mirror_index != -1 && nm->is_unloading()) {
 841     // Drop the reference to the nmethod mirror object but don't clear the actual oop reference.  Otherwise
 842     // it would appear that the nmethod didn't need to be unloaded in the first place.
 843     _nmethod_mirror_index = -1;
 844   }
 845 }
 846 
 847 // Handles to objects in the Hotspot heap.
 848 static OopStorage* object_handles() {
 849   return Universe::vm_global();
 850 }
 851 
 852 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) {
 853   assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause");
 854   assert(oopDesc::is_oop(obj()), "not an oop");
 855 
 856   oop* ptr = OopHandle(object_handles(), obj()).ptr_raw();
 857   MutexLocker ml(_lock);
 858   _oop_handles.append(ptr);
 859   return reinterpret_cast<jlong>(ptr);
 860 }
 861 
 862 #ifdef ASSERT
 863 bool JVMCIRuntime::is_oop_handle(jlong handle) {
 864   const oop* ptr = (oop*) handle;
 865   return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY;
 866 }
 867 #endif
 868 
 869 int JVMCIRuntime::release_and_clear_oop_handles() {
 870   guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown");
 871   int released = release_cleared_oop_handles();
 872   if (_oop_handles.length() != 0) {
 873     for (int i = 0; i < _oop_handles.length(); i++) {
 874       oop* oop_ptr = _oop_handles.at(i);
 875       guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles");
 876       guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle");
 877       // Satisfy OopHandles::release precondition that all
 878       // handles being released are null.
 879       NativeAccess<>::oop_store(oop_ptr, (oop) nullptr);
 880     }
 881 
 882     // Do the bulk release
 883     object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length());
 884     released += _oop_handles.length();
 885   }
 886   _oop_handles.clear();
 887   return released;
 888 }
 889 
 890 static bool is_referent_non_null(oop* handle) {
 891   return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr;
 892 }
 893 
 894 // Swaps the elements in `array` at index `a` and index `b`
 895 static void swap(GrowableArray<oop*>* array, int a, int b) {
 896   oop* tmp = array->at(a);
 897   array->at_put(a, array->at(b));
 898   array->at_put(b, tmp);
 899 }
 900 
 901 int JVMCIRuntime::release_cleared_oop_handles() {
 902   // Despite this lock, it's possible for another thread
 903   // to clear a handle's referent concurrently (e.g., a thread
 904   // executing IndirectHotSpotObjectConstantImpl.clear()).
 905   // This is benign - it means there can still be cleared
 906   // handles in _oop_handles when this method returns.
 907   MutexLocker ml(_lock);
 908 
 909   int next = 0;
 910   if (_oop_handles.length() != 0) {
 911     // Key for _oop_handles contents in example below:
 912     //   H: handle with non-null referent
 913     //   h: handle with clear (i.e., null) referent
 914     //   -: null entry
 915 
 916     // Shuffle all handles with non-null referents to the front of the list
 917     // Example: Before: 0HHh-Hh-
 918     //           After: HHHh--h-
 919     for (int i = 0; i < _oop_handles.length(); i++) {
 920       oop* handle = _oop_handles.at(i);
 921       if (is_referent_non_null(handle)) {
 922         if (i != next && !is_referent_non_null(_oop_handles.at(next))) {
 923           // Swap elements at index `next` and `i`
 924           swap(&_oop_handles, next, i);
 925         }
 926         next++;
 927       }
 928     }
 929 
 930     // `next` is now the index of the first null handle or handle with a null referent
 931     int num_alive = next;
 932 
 933     // Shuffle all null handles to the end of the list
 934     // Example: Before: HHHh--h-
 935     //           After: HHHhh---
 936     //       num_alive: 3
 937     for (int i = next; i < _oop_handles.length(); i++) {
 938       oop* handle = _oop_handles.at(i);
 939       if (handle != nullptr) {
 940         if (i != next && _oop_handles.at(next) == nullptr) {
 941           // Swap elements at index `next` and `i`
 942           swap(&_oop_handles, next, i);
 943         }
 944         next++;
 945       }
 946     }
 947     if (next != num_alive) {
 948       int to_release = next - num_alive;
 949 
 950       // `next` is now the index of the first null handle
 951       // Example: to_release: 2
 952 
 953       // Bulk release the handles with a null referent
 954       object_handles()->release(_oop_handles.adr_at(num_alive), to_release);
 955 
 956       // Truncate oop handles to only those with a non-null referent
 957       JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive);
 958       _oop_handles.trunc_to(num_alive);
 959       // Example: HHH
 960 
 961       return to_release;
 962     }
 963   }
 964   return 0;
 965 }
 966 
 967 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) {
 968   MutexLocker ml(_lock);
 969   return _metadata_handles->allocate_handle(handle);
 970 }
 971 
 972 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) {
 973   MutexLocker ml(_lock);
 974   return _metadata_handles->allocate_handle(handle);
 975 }
 976 
 977 void JVMCIRuntime::release_handle(jmetadata handle) {
 978   MutexLocker ml(_lock);
 979   _metadata_handles->chain_free_list(handle);
 980 }
 981 
 982 // Function for redirecting shared library JavaVM output to tty
 983 static void _log(const char* buf, size_t count) {
 984   tty->write((char*) buf, count);
 985 }
 986 
 987 // Function for redirecting shared library JavaVM fatal error data to a log file.
 988 // The log file is opened on first call to this function.
 989 static void _fatal_log(const char* buf, size_t count) {
 990   JVMCI::fatal_log(buf, count);
 991 }
 992 
 993 // Function for shared library JavaVM to flush tty
 994 static void _flush_log() {
 995   tty->flush();
 996 }
 997 
 998 // Function for shared library JavaVM to exit HotSpot on a fatal error
 999 static void _fatal() {
1000   Thread* thread = Thread::current_or_null_safe();
1001   if (thread != nullptr && thread->is_Java_thread()) {
1002     JavaThread* jthread = JavaThread::cast(thread);
1003     JVMCIRuntime* runtime = jthread->libjvmci_runtime();
1004     if (runtime != nullptr) {
1005       int javaVM_id = runtime->get_shared_library_javavm_id();
1006       fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id());
1007     }
1008   }
1009   intx current_thread_id = os::current_thread_id();
1010   fatal("thread %zd: Fatal error in JVMCI shared library", current_thread_id);
1011 }
1012 
1013 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) :
1014   _init_state(uninitialized),
1015   _shared_library_javavm(nullptr),
1016   _shared_library_javavm_id(0),
1017   _id(id),
1018   _next(next),
1019   _metadata_handles(new MetadataHandles()),
1020   _oop_handles(100, mtJVMCI),
1021   _num_attached_threads(0),
1022   _for_compile_broker(for_compile_broker)
1023 {
1024   if (id == -1) {
1025     _lock = JVMCIRuntime_lock;
1026   } else {
1027     stringStream lock_name;
1028     lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id);
1029     Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint);
1030     _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true));
1031   }
1032   JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")",
1033       id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this));
1034 }
1035 
1036 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) {
1037   assert(JVMCI_lock->owner() == thread, "must be");
1038   // When shutting down, use the first available runtime.
1039   for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1040     if (runtime->_num_attached_threads != cannot_be_attached) {
1041       runtime->pre_attach_thread(thread);
1042       JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id());
1043       return runtime;
1044     }
1045   }
1046   // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to
1047   // do here since JVMCI_lock is locked.
1048   if (JVMCI::_shutdown_compiler_runtime == nullptr) {
1049     JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true);
1050   }
1051   JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime;
1052   JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id());
1053   return runtime;
1054 }
1055 
1056 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) {
1057   assert(JVMCI_lock->owner() == thread, "must be");
1058   bool for_compile_broker = thread->is_Compiler_thread();
1059   for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1060     if (count != nullptr) {
1061       (*count)++;
1062     }
1063     if (for_compile_broker == runtime->_for_compile_broker) {
1064       int count = runtime->_num_attached_threads;
1065       if (count == cannot_be_attached || runtime == skip) {
1066         // Cannot attach to rt
1067         continue;
1068       }
1069       // If selecting for repacking, ignore a runtime without an existing JavaVM
1070       if (skip != nullptr && !runtime->has_shared_library_javavm()) {
1071         continue;
1072       }
1073 
1074       // Select first runtime with sufficient capacity
1075       if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) {
1076         runtime->pre_attach_thread(thread);
1077         return runtime;
1078       }
1079     }
1080   }
1081   return nullptr;
1082 }
1083 
1084 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) {
1085   assert(JVMCI_lock->owner() == thread, "must be");
1086   int id = 0;
1087   JVMCIRuntime* runtime;
1088   if (JVMCI::using_singleton_shared_library_runtime()) {
1089     runtime = JVMCI::_compiler_runtimes;
1090     guarantee(runtime != nullptr, "must be");
1091     while (runtime->_num_attached_threads == cannot_be_attached) {
1092       // Since there is only a singleton JVMCIRuntime, we
1093       // need to wait for it to be available for attaching.
1094       JVMCI_lock->wait();
1095     }
1096     runtime->pre_attach_thread(thread);
1097   } else {
1098     runtime = select_runtime(thread, nullptr, &id);
1099   }
1100   if (runtime == nullptr) {
1101     runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread());
1102     JVMCI::_compiler_runtimes = runtime;
1103     runtime->pre_attach_thread(thread);
1104   }
1105   return runtime;
1106 }
1107 
1108 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) {
1109   assert(thread->libjvmci_runtime() == nullptr, "must be");
1110   // Find the runtime with fewest attached threads
1111   JVMCIRuntime* runtime = nullptr;
1112   {
1113     MutexLocker locker(JVMCI_lock);
1114     runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread);
1115   }
1116   runtime->attach_thread(thread);
1117   return runtime;
1118 }
1119 
1120 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) {
1121   MutexLocker locker(JVMCI_lock);
1122   for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1123     if (runtime->_shared_library_javavm == javaVM) {
1124       if (runtime->_num_attached_threads == cannot_be_attached) {
1125         return "Cannot attach to JVMCI runtime that is shutting down";
1126       }
1127       runtime->pre_attach_thread(thread);
1128       runtime->attach_thread(thread);
1129       return nullptr;
1130     }
1131   }
1132   return "Cannot find JVMCI runtime";
1133 }
1134 
1135 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) {
1136   assert(JVMCI_lock->owner() == thread, "must be");
1137   _num_attached_threads++;
1138 }
1139 
1140 void JVMCIRuntime::attach_thread(JavaThread* thread) {
1141   assert(thread->libjvmci_runtime() == nullptr, "must be");
1142   thread->set_libjvmci_runtime(this);
1143   guarantee(this == JVMCI::_shutdown_compiler_runtime ||
1144             _num_attached_threads > 0,
1145             "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads);
1146   JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : "");
1147 }
1148 
1149 void JVMCIRuntime::repack(JavaThread* thread) {
1150   JVMCIRuntime* new_runtime = nullptr;
1151   {
1152     MutexLocker locker(JVMCI_lock);
1153     if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) {
1154       return;
1155     }
1156     new_runtime = select_runtime(thread, this, nullptr);
1157   }
1158   if (new_runtime != nullptr) {
1159     JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1);
1160     detach_thread(thread, "moving thread to another JVMCI runtime");
1161     new_runtime->attach_thread(thread);
1162   }
1163 }
1164 
1165 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) {
1166   if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) {
1167     // Do minimal work when shutting down JVMCI
1168     thread->set_libjvmci_runtime(nullptr);
1169     return false;
1170   }
1171   bool should_shutdown;
1172   bool destroyed_javavm = false;
1173   {
1174     MutexLocker locker(JVMCI_lock);
1175     _num_attached_threads--;
1176     JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads);
1177     should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown();
1178     if (should_shutdown && !can_destroy_javavm) {
1179       // If it's not possible to destroy the JavaVM on this thread then the VM must
1180       // not be shutdown. This can happen when a shared library thread is the last
1181       // thread to detach from a shared library JavaVM (e.g. GraalServiceThread).
1182       JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id);
1183       should_shutdown = false;
1184     }
1185     if (should_shutdown) {
1186       // Prevent other threads from attaching to this runtime
1187       // while it is shutting down and destroying its JavaVM
1188       _num_attached_threads = cannot_be_attached;
1189     }
1190   }
1191   if (should_shutdown) {
1192     // Release the JavaVM resources associated with this
1193     // runtime once there are no threads attached to it.
1194     shutdown();
1195     if (can_destroy_javavm) {
1196       destroyed_javavm = destroy_shared_library_javavm();
1197       if (destroyed_javavm) {
1198         // Can release all handles now that there's no code executing
1199         // that could be using them. Handles for the Java JVMCI runtime
1200         // are never released as we cannot guarantee all compiler threads
1201         // using it have been stopped.
1202         int released = release_and_clear_oop_handles();
1203         JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}",
1204             _id,
1205             released,
1206             _metadata_handles->num_handles(),
1207             _metadata_handles->num_handles() - _metadata_handles->num_free_handles(),
1208             _metadata_handles->num_blocks());
1209 
1210         // No need to acquire _lock since this is the only thread accessing this runtime
1211         _metadata_handles->clear();
1212       }
1213     }
1214     // Allow other threads to attach to this runtime now
1215     MutexLocker locker(JVMCI_lock);
1216     _num_attached_threads = 0;
1217     if (JVMCI::using_singleton_shared_library_runtime()) {
1218       // Notify any thread waiting to attach to the
1219       // singleton JVMCIRuntime
1220       JVMCI_lock->notify();
1221     }
1222   }
1223   thread->set_libjvmci_runtime(nullptr);
1224   JVMCI_event_1("detached from JVMCI runtime %d", _id);
1225   return destroyed_javavm;
1226 }
1227 
1228 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) {
1229   MutexLocker locker(_lock);
1230   JavaVM* javaVM = _shared_library_javavm;
1231   if (javaVM == nullptr) {
1232 #ifdef ASSERT
1233     const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit");
1234     if (val != nullptr && strcmp(val, "true") == 0) {
1235       *create_JavaVM_err = JNI_ENOMEM;
1236       return nullptr;
1237     }
1238 #endif
1239 
1240     char* sl_path;
1241     void* sl_handle = JVMCI::get_shared_library(sl_path, true);
1242 
1243     jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args);
1244     typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args);
1245 
1246     JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM"));
1247     if (JNI_CreateJavaVM == nullptr) {
1248       fatal("Unable to find JNI_CreateJavaVM in %s", sl_path);
1249     }
1250 
1251     ResourceMark rm;
1252     JavaVMInitArgs vm_args;
1253     vm_args.version = JNI_VERSION_1_2;
1254     vm_args.ignoreUnrecognized = JNI_TRUE;
1255     JavaVMOption options[6];
1256     jlong javaVM_id = 0;
1257 
1258     // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id"
1259     // option whose extraInfo info field is a pointer to which a unique id for the
1260     // JavaVM should be written.
1261     options[0].optionString = (char*) "_javavm_id";
1262     options[0].extraInfo = &javaVM_id;
1263 
1264     options[1].optionString = (char*) "_log";
1265     options[1].extraInfo = (void*) _log;
1266     options[2].optionString = (char*) "_flush_log";
1267     options[2].extraInfo = (void*) _flush_log;
1268     options[3].optionString = (char*) "_fatal";
1269     options[3].extraInfo = (void*) _fatal;
1270     options[4].optionString = (char*) "_fatal_log";
1271     options[4].extraInfo = (void*) _fatal_log;
1272     options[5].optionString = (char*) "_createvm_errorstr";
1273     options[5].extraInfo = (void*) err_msg;
1274 
1275     vm_args.version = JNI_VERSION_1_2;
1276     vm_args.options = options;
1277     vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption);
1278 
1279     JNIEnv* env = nullptr;
1280     int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args);
1281     if (result == JNI_OK) {
1282       guarantee(env != nullptr, "missing env");
1283       _shared_library_javavm_id = javaVM_id;
1284       _shared_library_javavm = javaVM;
1285       JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1286       return env;
1287     } else {
1288       *create_JavaVM_err = result;
1289     }
1290   }
1291   return nullptr;
1292 }
1293 
1294 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) {
1295   if (info != nullptr) {
1296     typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info);
1297     if (info_oop->length() < 4) {
1298       JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length()));
1299     }
1300     JavaVM* javaVM = _shared_library_javavm;
1301     info_oop->long_at_put(0, (jlong) (address) javaVM);
1302     info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0);
1303     info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1);
1304     info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2);
1305   }
1306 }
1307 
1308 #define JAVAVM_CALL_BLOCK                                             \
1309   guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \
1310   ThreadToNativeFromVM ttnfv(thread);                                 \
1311   JavaVM* javavm = _shared_library_javavm;
1312 
1313 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) {
1314   JAVAVM_CALL_BLOCK
1315   return javavm->AttachCurrentThread(penv, args);
1316 }
1317 
1318 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) {
1319   JAVAVM_CALL_BLOCK
1320   return javavm->AttachCurrentThreadAsDaemon(penv, args);
1321 }
1322 
1323 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) {
1324   JAVAVM_CALL_BLOCK
1325   return javavm->DetachCurrentThread();
1326 }
1327 
1328 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) {
1329   JAVAVM_CALL_BLOCK
1330   return javavm->GetEnv(penv, version);
1331 }
1332 #undef JAVAVM_CALL_BLOCK                                             \
1333 
1334 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1335   if (is_HotSpotJVMCIRuntime_initialized()) {
1336     if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) {
1337       JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library");
1338     }
1339   }
1340 
1341   initialize(JVMCI_CHECK);
1342 
1343   // This should only be called in the context of the JVMCI class being initialized
1344   JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK);
1345   result = JVMCIENV->make_global(result);
1346 
1347   OrderAccess::storestore();  // Ensure handle is fully constructed before publishing
1348   _HotSpotJVMCIRuntime_instance = result;
1349 
1350   JVMCI::_is_initialized = true;
1351 }
1352 
1353 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1354 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1355 
1356 class JavaVMRefsInitialization: public StackObj {
1357   JVMCIRuntime::InitState *_state;
1358   int _id;
1359  public:
1360   JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) {
1361     _state = state;
1362     _id = id;
1363     // All classes, methods and fields in the JVMCI shared library
1364     // are in the read-only part of the image. As such, these
1365     // values (and any global handle derived from them via NewGlobalRef)
1366     // are the same for all JavaVM instances created in the
1367     // shared library which means they only need to be initialized
1368     // once. In non-product mode, we check this invariant.
1369     // See com.oracle.svm.jni.JNIImageHeapHandles.
1370     // The same is true for Klass* and field offsets in HotSpotJVMCI.
1371     if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) {
1372       *state = JVMCIRuntime::being_initialized;
1373       JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id);
1374     } else {
1375       while (*state != JVMCIRuntime::fully_initialized) {
1376         JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id);
1377         JVMCI_lock->wait();
1378       }
1379       JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id);
1380     }
1381   }
1382 
1383   ~JavaVMRefsInitialization() {
1384     if (*_state == JVMCIRuntime::being_initialized) {
1385       *_state = JVMCIRuntime::fully_initialized;
1386       JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id);
1387       JVMCI_lock->notify_all();
1388     }
1389   }
1390 
1391   bool should_init() {
1392     return *_state == JVMCIRuntime::being_initialized;
1393   }
1394 };
1395 
1396 void JVMCIRuntime::initialize(JVMCI_TRAPS) {
1397   // Check first without _lock
1398   if (_init_state == fully_initialized) {
1399     return;
1400   }
1401 
1402   JavaThread* THREAD = JavaThread::current();
1403 
1404   MutexLocker locker(_lock);
1405   // Check again under _lock
1406   if (_init_state == fully_initialized) {
1407     return;
1408   }
1409 
1410   while (_init_state == being_initialized) {
1411     JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id);
1412     _lock->wait();
1413     if (_init_state == fully_initialized) {
1414       JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id);
1415       return;
1416     }
1417   }
1418 
1419   JVMCI_event_1("initializing JVMCI runtime %d", _id);
1420   _init_state = being_initialized;
1421 
1422   {
1423     MutexUnlocker unlock(_lock);
1424 
1425     HandleMark hm(THREAD);
1426     ResourceMark rm(THREAD);
1427     {
1428       MutexLocker lock_jvmci(JVMCI_lock);
1429       if (JVMCIENV->is_hotspot()) {
1430         JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id);
1431         if (initialization.should_init()) {
1432           MutexUnlocker unlock_jvmci(JVMCI_lock);
1433           HotSpotJVMCI::compute_offsets(CHECK_EXIT);
1434         }
1435       } else {
1436         JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id);
1437         if (initialization.should_init()) {
1438           MutexUnlocker unlock_jvmci(JVMCI_lock);
1439           JNIAccessMark jni(JVMCIENV, THREAD);
1440 
1441           JNIJVMCI::initialize_ids(jni.env());
1442           if (jni()->ExceptionCheck()) {
1443             jni()->ExceptionDescribe();
1444             fatal("JNI exception during init");
1445           }
1446           // _lock is re-locked at this point
1447         }
1448       }
1449     }
1450 
1451     if (!JVMCIENV->is_hotspot()) {
1452       JNIAccessMark jni(JVMCIENV, THREAD);
1453       JNIJVMCI::register_natives(jni.env());
1454     }
1455     create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0));
1456     create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0));
1457     create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0));
1458     create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0));
1459     create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0));
1460     create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0));
1461     create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0));
1462     create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0));
1463     create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0));
1464 
1465     DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);)
1466   }
1467 
1468   _init_state = fully_initialized;
1469   JVMCI_event_1("initialized JVMCI runtime %d", _id);
1470   _lock->notify_all();
1471 }
1472 
1473 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) {
1474   JavaThread* THREAD = JavaThread::current(); // For exception macros.
1475   // These primitive types are long lived and are created before the runtime is fully set up
1476   // so skip registering them for scanning.
1477   JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true);
1478   if (JVMCIENV->is_hotspot()) {
1479     JavaValue result(T_OBJECT);
1480     JavaCallArguments args;
1481     args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror)));
1482     args.push_int(type2char(type));
1483     JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject()));
1484 
1485     return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop()));
1486   } else {
1487     JNIAccessMark jni(JVMCIENV);
1488     jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(),
1489                                            JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(),
1490                                            mirror.as_jobject(), type2char(type));
1491     if (jni()->ExceptionCheck()) {
1492       return JVMCIObject();
1493     }
1494     return JVMCIENV->wrap(result);
1495   }
1496 }
1497 
1498 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) {
1499   if (!is_HotSpotJVMCIRuntime_initialized()) {
1500     initialize(JVMCI_CHECK);
1501     JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK);
1502     guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id);
1503   }
1504 }
1505 
1506 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1507   initialize(JVMCI_CHECK_(JVMCIObject()));
1508   initialize_JVMCI(JVMCI_CHECK_(JVMCIObject()));
1509   return _HotSpotJVMCIRuntime_instance;
1510 }
1511 
1512 // Implementation of CompilerToVM.registerNatives()
1513 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
1514 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass))
1515   JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
1516 
1517   if (!EnableJVMCI) {
1518     JVMCI_THROW_MSG(InternalError, "JVMCI is not enabled");
1519   }
1520 
1521   JVMCIENV->runtime()->initialize(JVMCIENV);
1522 
1523   {
1524     ResourceMark rm(thread);
1525     HandleMark hm(thread);
1526     ThreadToNativeFromVM trans(thread);
1527 
1528     // Ensure _non_oop_bits is initialized
1529     Universe::non_oop_word();
1530     JNIEnv *env = libjvmciOrHotspotEnv;
1531     if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) {
1532       if (!env->ExceptionCheck()) {
1533         for (int i = 0; i < CompilerToVM::methods_count(); i++) {
1534           if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) {
1535             guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature);
1536             break;
1537           }
1538         }
1539       } else {
1540         env->ExceptionDescribe();
1541       }
1542       guarantee(false, "Failed registering CompilerToVM native methods");
1543     }
1544   }
1545 JVM_END
1546 
1547 
1548 void JVMCIRuntime::shutdown() {
1549   if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1550     JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id);
1551     JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__);
1552     JVMCIEnv* JVMCIENV = &__stack_jvmci_env__;
1553     if (JVMCIENV->init_error() == JNI_OK) {
1554       JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance);
1555     } else {
1556       JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error());
1557     }
1558     if (_num_attached_threads == cannot_be_attached) {
1559       // Only when no other threads are attached to this runtime
1560       // is it safe to reset these fields.
1561       _HotSpotJVMCIRuntime_instance = JVMCIObject();
1562       _init_state = uninitialized;
1563       JVMCI_event_1("shut down JVMCI runtime %d", _id);
1564     }
1565   }
1566 }
1567 
1568 bool JVMCIRuntime::destroy_shared_library_javavm() {
1569   guarantee(_num_attached_threads == cannot_be_attached,
1570       "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads);
1571   JavaVM* javaVM;
1572   jlong javaVM_id = _shared_library_javavm_id;
1573   {
1574     // Exactly one thread can destroy the JavaVM
1575     // and release the handle to it.
1576     MutexLocker only_one(_lock);
1577     javaVM = _shared_library_javavm;
1578     if (javaVM != nullptr) {
1579       _shared_library_javavm = nullptr;
1580       _shared_library_javavm_id = 0;
1581     }
1582   }
1583   if (javaVM != nullptr) {
1584     int result;
1585     {
1586       // Must transition into native before calling into libjvmci
1587       ThreadToNativeFromVM ttnfv(JavaThread::current());
1588       result = javaVM->DestroyJavaVM();
1589     }
1590     if (result == JNI_OK) {
1591       JVMCI_event_1("destroyed JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1592     } else {
1593       warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM));
1594     }
1595     return true;
1596   }
1597   return false;
1598 }
1599 
1600 void JVMCIRuntime::bootstrap_finished(TRAPS) {
1601   if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1602     JVMCIENV_FROM_THREAD(THREAD);
1603     JVMCIENV->check_init(CHECK);
1604     JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV);
1605   }
1606 }
1607 
1608 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) {
1609   if (HAS_PENDING_EXCEPTION) {
1610     Handle exception(THREAD, PENDING_EXCEPTION);
1611     CLEAR_PENDING_EXCEPTION;
1612     java_lang_Throwable::print_stack_trace(exception, tty);
1613 
1614     // Clear and ignore any exceptions raised during printing
1615     CLEAR_PENDING_EXCEPTION;
1616   }
1617 }
1618 
1619 
1620 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) {
1621   JavaThread* THREAD = JavaThread::current(); // For exception macros.
1622 
1623   static volatile int report_error = 0;
1624   if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) {
1625     // Only report an error once
1626     tty->print_raw_cr(message);
1627     if (JVMCIENV != nullptr) {
1628       JVMCIENV->describe_pending_exception(tty);
1629     } else {
1630       describe_pending_hotspot_exception(THREAD);
1631     }
1632   } else {
1633     // Allow error reporting thread time to print the stack trace.
1634     THREAD->sleep(200);
1635   }
1636   fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message);
1637 }
1638 
1639 // ------------------------------------------------------------------
1640 // Note: the logic of this method should mirror the logic of
1641 // constantPoolOopDesc::verify_constant_pool_resolve.
1642 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) {
1643   if (accessing_klass->is_objArray_klass()) {
1644     accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass();
1645   }
1646   if (!accessing_klass->is_instance_klass()) {
1647     return true;
1648   }
1649 
1650   if (resolved_klass->is_objArray_klass()) {
1651     // Find the element klass, if this is an array.
1652     resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass();
1653   }
1654   if (resolved_klass->is_instance_klass()) {
1655     Reflection::VerifyClassAccessResults result =
1656       Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true);
1657     return result == Reflection::ACCESS_OK;
1658   }
1659   return true;
1660 }
1661 
1662 // ------------------------------------------------------------------
1663 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass,
1664                                           const constantPoolHandle& cpool,
1665                                           Symbol* sym,
1666                                           bool require_local) {
1667   JVMCI_EXCEPTION_CONTEXT;
1668 
1669   // Now we need to check the SystemDictionary
1670   if (sym->char_at(0) == JVM_SIGNATURE_CLASS &&
1671       sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) {
1672     // This is a name from a signature.  Strip off the trimmings.
1673     // Call recursive to keep scope of strippedsym.
1674     TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1,
1675                                                         sym->utf8_length()-2);
1676     return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local);
1677   }
1678 
1679   Handle loader;
1680   if (accessing_klass != nullptr) {
1681     loader = Handle(THREAD, accessing_klass->class_loader());
1682   }
1683 
1684   Klass* found_klass = require_local ?
1685                          SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader) :
1686                          SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader);
1687 
1688   // If we fail to find an array klass, look again for its element type.
1689   // The element type may be available either locally or via constraints.
1690   // In either case, if we can find the element type in the system dictionary,
1691   // we must build an array type around it.  The CI requires array klasses
1692   // to be loaded if their element klasses are loaded, except when memory
1693   // is exhausted.
1694   if (sym->char_at(0) == JVM_SIGNATURE_ARRAY &&
1695       (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) {
1696     // We have an unloaded array.
1697     // Build it on the fly if the element class exists.
1698     TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1,
1699                                                      sym->utf8_length()-1);
1700 
1701     // Get element Klass recursively.
1702     Klass* elem_klass =
1703       get_klass_by_name_impl(accessing_klass,
1704                              cpool,
1705                              elem_sym,
1706                              require_local);
1707     if (elem_klass != nullptr) {
1708       // Now make an array for it
1709       return elem_klass->array_klass(THREAD);
1710     }
1711   }
1712 
1713   if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) {
1714     // Look inside the constant pool for pre-resolved class entries.
1715     for (int i = cpool->length() - 1; i >= 1; i--) {
1716       if (cpool->tag_at(i).is_klass()) {
1717         Klass*  kls = cpool->resolved_klass_at(i);
1718         if (kls->name() == sym) {
1719           return kls;
1720         }
1721       }
1722     }
1723   }
1724 
1725   return found_klass;
1726 }
1727 
1728 // ------------------------------------------------------------------
1729 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass,
1730                                   Symbol* klass_name,
1731                                   bool require_local) {
1732   ResourceMark rm;
1733   constantPoolHandle cpool;
1734   return get_klass_by_name_impl(accessing_klass,
1735                                                  cpool,
1736                                                  klass_name,
1737                                                  require_local);
1738 }
1739 
1740 // ------------------------------------------------------------------
1741 // Implementation of get_klass_by_index.
1742 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool,
1743                                         int index,
1744                                         bool& is_accessible,
1745                                         Klass* accessor) {
1746   JVMCI_EXCEPTION_CONTEXT;
1747   Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index);
1748   Symbol* klass_name = nullptr;
1749   if (klass == nullptr) {
1750     klass_name = cpool->klass_name_at(index);
1751   }
1752 
1753   if (klass == nullptr) {
1754     // Not found in constant pool.  Use the name to do the lookup.
1755     Klass* k = get_klass_by_name_impl(accessor,
1756                                         cpool,
1757                                         klass_name,
1758                                         false);
1759     // Calculate accessibility the hard way.
1760     if (k == nullptr) {
1761       is_accessible = false;
1762     } else if (k->class_loader() != accessor->class_loader() &&
1763                get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) {
1764       // Loaded only remotely.  Not linked yet.
1765       is_accessible = false;
1766     } else {
1767       // Linked locally, and we must also check public/private, etc.
1768       is_accessible = check_klass_accessibility(accessor, k);
1769     }
1770     if (!is_accessible) {
1771       return nullptr;
1772     }
1773     return k;
1774   }
1775 
1776   // It is known to be accessible, since it was found in the constant pool.
1777   is_accessible = true;
1778   return klass;
1779 }
1780 
1781 // ------------------------------------------------------------------
1782 // Get a klass from the constant pool.
1783 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool,
1784                                    int index,
1785                                    bool& is_accessible,
1786                                    Klass* accessor) {
1787   ResourceMark rm;
1788   Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor);
1789   return result;
1790 }
1791 
1792 // ------------------------------------------------------------------
1793 // Perform an appropriate method lookup based on accessor, holder,
1794 // name, signature, and bytecode.
1795 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor,
1796                                     Klass*        holder,
1797                                     Symbol*       name,
1798                                     Symbol*       sig,
1799                                     Bytecodes::Code bc,
1800                                     constantTag   tag) {
1801   // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl().
1802   assert(check_klass_accessibility(accessor, holder), "holder not accessible");
1803 
1804   LinkInfo link_info(holder, name, sig, accessor,
1805                      LinkInfo::AccessCheck::required,
1806                      LinkInfo::LoaderConstraintCheck::required,
1807                      tag);
1808   switch (bc) {
1809     case Bytecodes::_invokestatic:
1810       return LinkResolver::resolve_static_call_or_null(link_info);
1811     case Bytecodes::_invokespecial:
1812       return LinkResolver::resolve_special_call_or_null(link_info);
1813     case Bytecodes::_invokeinterface:
1814       return LinkResolver::linktime_resolve_interface_method_or_null(link_info);
1815     case Bytecodes::_invokevirtual:
1816       return LinkResolver::linktime_resolve_virtual_method_or_null(link_info);
1817     default:
1818       fatal("Unhandled bytecode: %s", Bytecodes::name(bc));
1819       return nullptr; // silence compiler warnings
1820   }
1821 }
1822 
1823 
1824 // ------------------------------------------------------------------
1825 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool,
1826                                                int index, Bytecodes::Code bc,
1827                                                InstanceKlass* accessor) {
1828   if (bc == Bytecodes::_invokedynamic) {
1829     if (cpool->resolved_indy_entry_at(index)->is_resolved()) {
1830       return cpool->resolved_indy_entry_at(index)->method();
1831     }
1832 
1833     return nullptr;
1834   }
1835 
1836   int holder_index = cpool->klass_ref_index_at(index, bc);
1837   bool holder_is_accessible;
1838   Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor);
1839 
1840   // Get the method's name and signature.
1841   Symbol* name_sym = cpool->name_ref_at(index, bc);
1842   Symbol* sig_sym  = cpool->signature_ref_at(index, bc);
1843 
1844   if (cpool->has_preresolution()
1845       || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) &&
1846           MethodHandles::is_signature_polymorphic_name(holder, name_sym))) {
1847     // Short-circuit lookups for JSR 292-related call sites.
1848     // That is, do not rely only on name-based lookups, because they may fail
1849     // if the names are not resolvable in the boot class loader (7056328).
1850     switch (bc) {
1851     case Bytecodes::_invokevirtual:
1852     case Bytecodes::_invokeinterface:
1853     case Bytecodes::_invokespecial:
1854     case Bytecodes::_invokestatic:
1855       {
1856         Method* m = ConstantPool::method_at_if_loaded(cpool, index);
1857         if (m != nullptr) {
1858           return m;
1859         }
1860       }
1861       break;
1862     default:
1863       break;
1864     }
1865   }
1866 
1867   if (holder_is_accessible) { // Our declared holder is loaded.
1868     constantTag tag = cpool->tag_ref_at(index, bc);
1869     Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag);
1870     if (m != nullptr) {
1871       // We found the method.
1872       return m;
1873     }
1874   }
1875 
1876   // Either the declared holder was not loaded, or the method could
1877   // not be found.
1878 
1879   return nullptr;
1880 }
1881 
1882 // ------------------------------------------------------------------
1883 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) {
1884   // For the case of <array>.clone(), the method holder can be an ArrayKlass*
1885   // instead of an InstanceKlass*.  For that case simply pretend that the
1886   // declared holder is Object.clone since that's where the call will bottom out.
1887   if (method_holder->is_instance_klass()) {
1888     return InstanceKlass::cast(method_holder);
1889   } else if (method_holder->is_array_klass()) {
1890     return vmClasses::Object_klass();
1891   } else {
1892     ShouldNotReachHere();
1893   }
1894   return nullptr;
1895 }
1896 
1897 
1898 // ------------------------------------------------------------------
1899 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool,
1900                                      int index, Bytecodes::Code bc,
1901                                      InstanceKlass* accessor) {
1902   ResourceMark rm;
1903   return get_method_by_index_impl(cpool, index, bc, accessor);
1904 }
1905 
1906 // ------------------------------------------------------------------
1907 // Check for changes to the system dictionary during compilation
1908 // class loads, evolution, breakpoints
1909 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies,
1910                                                                           JVMCICompileState* compile_state,
1911                                                                           char** failure_detail,
1912                                                                           bool& failing_dep_is_call_site)
1913 {
1914   failing_dep_is_call_site = false;
1915   // If JVMTI capabilities were enabled during compile, the compilation is invalidated.
1916   if (compile_state != nullptr && compile_state->jvmti_state_changed()) {
1917     *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies";
1918     return JVMCI::dependencies_failed;
1919   }
1920 
1921   CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task();
1922   Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail);
1923 
1924   if (result == Dependencies::end_marker) {
1925     return JVMCI::ok;
1926   }
1927   if (result == Dependencies::call_site_target_value) {
1928     failing_dep_is_call_site = true;
1929   }
1930   return JVMCI::dependencies_failed;
1931 }
1932 
1933 // Called after an upcall to `function` while compiling `method`.
1934 // If an exception occurred, it is cleared, the compilation state
1935 // is updated with the failure and this method returns true.
1936 // Otherwise, it returns false.
1937 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) {
1938   if (JVMCIENV->has_pending_exception()) {
1939     ResourceMark rm;
1940     bool reason_on_C_heap = true;
1941     const char* pending_string = nullptr;
1942     const char* pending_stack_trace = nullptr;
1943     JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace);
1944     if (pending_string == nullptr) pending_string = "null";
1945     // Using stringStream instead of err_msg to avoid truncation
1946     stringStream st;
1947     st.print("uncaught exception in %s [%s]", function, pending_string);
1948     const char* failure_reason = os::strdup(st.freeze(), mtJVMCI);
1949     if (failure_reason == nullptr) {
1950       failure_reason = "uncaught exception";
1951       reason_on_C_heap = false;
1952     }
1953     JVMCI_event_1("%s", failure_reason);
1954     Log(jit, compilation) log;
1955     if (log.is_info()) {
1956       log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string());
1957       if (pending_stack_trace != nullptr) {
1958         LogStream ls(log.info());
1959         ls.print_raw_cr(pending_stack_trace);
1960       }
1961     }
1962     JVMCICompileState* compile_state = JVMCIENV->compile_state();
1963     compile_state->set_failure(true, failure_reason, reason_on_C_heap);
1964     compiler->on_upcall(failure_reason, compile_state);
1965     return true;
1966   }
1967   return false;
1968 }
1969 
1970 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) {
1971   JVMCI_EXCEPTION_CONTEXT
1972 
1973   JVMCICompileState* compile_state = JVMCIENV->compile_state();
1974 
1975   bool is_osr = entry_bci != InvocationEntryBci;
1976   if (compiler->is_bootstrapping() && is_osr) {
1977     // no OSR compilations during bootstrap - the compiler is just too slow at this point,
1978     // and we know that there are no endless loops
1979     compile_state->set_failure(true, "No OSR during bootstrap");
1980     return;
1981   }
1982   if (JVMCI::in_shutdown()) {
1983     if (UseJVMCINativeLibrary) {
1984       JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false);
1985       if (runtime != nullptr) {
1986         runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation");
1987       }
1988     }
1989     compile_state->set_failure(false, "Avoiding compilation during shutdown");
1990     return;
1991   }
1992 
1993   HandleMark hm(thread);
1994   JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
1995   if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) {
1996     return;
1997   }
1998   JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV);
1999   if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) {
2000     return;
2001   }
2002 
2003   JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci,
2004                                                                      (jlong) compile_state, compile_state->task()->compile_id());
2005 #ifdef ASSERT
2006   if (JVMCIENV->has_pending_exception()) {
2007     const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal");
2008     if (val != nullptr && strcmp(val, "true") == 0) {
2009       fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling");
2010     }
2011   }
2012 #endif
2013 
2014   if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) {
2015     return;
2016   }
2017   compiler->on_upcall(nullptr);
2018   guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null");
2019   JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object);
2020   if (failure_message.is_non_null()) {
2021     // Copy failure reason into resource memory first ...
2022     const char* failure_reason = JVMCIENV->as_utf8_string(failure_message);
2023     // ... and then into the C heap.
2024     failure_reason = os::strdup(failure_reason, mtJVMCI);
2025     bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0;
2026     compile_state->set_failure(retryable, failure_reason, true);
2027   } else {
2028     if (!compile_state->task()->is_success()) {
2029       compile_state->set_failure(true, "no nmethod produced");
2030     } else {
2031       compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object));
2032       compiler->inc_methods_compiled();
2033     }
2034   }
2035   if (compiler->is_bootstrapping()) {
2036     compiler->set_bootstrap_compilation_request_handled();
2037   }
2038 }
2039 
2040 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) {
2041   JVMCI_EXCEPTION_CONTEXT
2042 
2043   JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2044   if (JVMCIENV->has_pending_exception()) {
2045     fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2046   }
2047   return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name);
2048 }
2049 
2050 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) {
2051   JVMCI_EXCEPTION_CONTEXT
2052 
2053   JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2054   if (JVMCIENV->has_pending_exception()) {
2055     fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2056   }
2057   return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id);
2058 }
2059 
2060 // ------------------------------------------------------------------
2061 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV,
2062                                                        const methodHandle& method,
2063                                                        nmethod*& nm,
2064                                                        int entry_bci,
2065                                                        CodeOffsets* offsets,
2066                                                        int orig_pc_offset,
2067                                                        CodeBuffer* code_buffer,
2068                                                        int frame_words,
2069                                                        OopMapSet* oop_map_set,
2070                                                        ExceptionHandlerTable* handler_table,
2071                                                        ImplicitExceptionTable* implicit_exception_table,
2072                                                        AbstractCompiler* compiler,
2073                                                        DebugInformationRecorder* debug_info,
2074                                                        Dependencies* dependencies,
2075                                                        int compile_id,
2076                                                        bool has_monitors,
2077                                                        bool has_unsafe_access,
2078                                                        bool has_scoped_access,
2079                                                        bool has_wide_vector,
2080                                                        JVMCIObject compiled_code,
2081                                                        JVMCIObject nmethod_mirror,
2082                                                        FailedSpeculation** failed_speculations,
2083                                                        char* speculations,
2084                                                        int speculations_len,
2085                                                        int nmethod_entry_patch_offset) {
2086   JVMCI_EXCEPTION_CONTEXT;
2087   CompLevel comp_level = CompLevel_full_optimization;
2088   char* failure_detail = nullptr;
2089 
2090   bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0;
2091   assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be");
2092   JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror);
2093   const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name);
2094   int nmethod_mirror_index;
2095   if (!install_default) {
2096     // Reserve or initialize mirror slot in the oops table.
2097     OopRecorder* oop_recorder = debug_info->oop_recorder();
2098     nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr);
2099   } else {
2100     // A default HotSpotNmethod mirror is never tracked by the nmethod
2101     nmethod_mirror_index = -1;
2102   }
2103 
2104   JVMCI::CodeInstallResult result(JVMCI::ok);
2105 
2106   // We require method counters to store some method state (max compilation levels) required by the compilation policy.
2107   if (method->get_method_counters(THREAD) == nullptr) {
2108     result = JVMCI::cache_full;
2109     failure_detail = (char*) "can't create method counters";
2110   }
2111 
2112   if (result == JVMCI::ok) {
2113     // Check if memory should be freed before allocation
2114     CodeCache::gc_on_allocation();
2115 
2116     // To prevent compile queue updates.
2117     MutexLocker locker(THREAD, MethodCompileQueue_lock);
2118 
2119     // Prevent InstanceKlass::add_to_hierarchy from running
2120     // and invalidating our dependencies until we install this method.
2121     MutexLocker ml(Compile_lock);
2122 
2123     // Encode the dependencies now, so we can check them right away.
2124     dependencies->encode_content_bytes();
2125 
2126     // Record the dependencies for the current compile in the log
2127     if (LogCompilation) {
2128       for (Dependencies::DepStream deps(dependencies); deps.next(); ) {
2129         deps.log_dependency();
2130       }
2131     }
2132 
2133     // Check for {class loads, evolution, breakpoints} during compilation
2134     JVMCICompileState* compile_state = JVMCIENV->compile_state();
2135     bool failing_dep_is_call_site;
2136     result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site);
2137     if (result != JVMCI::ok) {
2138       // While not a true deoptimization, it is a preemptive decompile.
2139       MethodData* mdp = method()->method_data();
2140       if (mdp != nullptr && !failing_dep_is_call_site) {
2141         mdp->inc_decompile_count();
2142 #ifdef ASSERT
2143         if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) {
2144           ResourceMark m;
2145           tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string());
2146         }
2147 #endif
2148       }
2149 
2150       // All buffers in the CodeBuffer are allocated in the CodeCache.
2151       // If the code buffer is created on each compile attempt
2152       // as in C2, then it must be freed.
2153       //code_buffer->free_blob();
2154     } else {
2155       JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index,
2156                                                         nmethod_entry_patch_offset,
2157                                                         nmethod_mirror_name,
2158                                                         failed_speculations);
2159       nm =  nmethod::new_nmethod(method,
2160                                  compile_id,
2161                                  entry_bci,
2162                                  offsets,
2163                                  orig_pc_offset,
2164                                  debug_info, dependencies, code_buffer,
2165                                  frame_words, oop_map_set,
2166                                  handler_table, implicit_exception_table,
2167                                  compiler, comp_level, nullptr /* SCCEntry */,
2168                                  speculations, speculations_len, data);
2169 
2170 
2171       // Free codeBlobs
2172       if (nm == nullptr) {
2173         // The CodeCache is full.  Print out warning and disable compilation.
2174         {
2175           MutexUnlocker ml(Compile_lock);
2176           MutexUnlocker locker(MethodCompileQueue_lock);
2177           CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level));
2178         }
2179         result = JVMCI::cache_full;
2180       } else {
2181         nm->set_has_unsafe_access(has_unsafe_access);
2182         nm->set_has_wide_vectors(has_wide_vector);
2183         nm->set_has_monitors(has_monitors);
2184         nm->set_has_scoped_access(has_scoped_access);
2185 
2186         JVMCINMethodData* data = nm->jvmci_nmethod_data();
2187         assert(data != nullptr, "must be");
2188         if (install_default) {
2189           assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == nullptr, "must be");
2190           if (entry_bci == InvocationEntryBci) {
2191             // If there is an old version we're done with it
2192             nmethod* old = method->code();
2193             if (TraceMethodReplacement && old != nullptr) {
2194               ResourceMark rm;
2195               char *method_name = method->name_and_sig_as_C_string();
2196               tty->print_cr("Replacing method %s", method_name);
2197             }
2198             if (old != nullptr ) {
2199               old->make_not_entrant();
2200             }
2201 
2202             LogTarget(Info, nmethod, install) lt;
2203             if (lt.is_enabled()) {
2204               ResourceMark rm;
2205               char *method_name = method->name_and_sig_as_C_string();
2206               lt.print("Installing method (%d) %s [entry point: %p]",
2207                         comp_level, method_name, nm->entry_point());
2208             }
2209             // Allow the code to be executed
2210             MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2211             if (nm->make_in_use()) {
2212               method->set_code(method, nm);
2213             } else {
2214               result = JVMCI::nmethod_reclaimed;
2215             }
2216           } else {
2217             LogTarget(Info, nmethod, install) lt;
2218             if (lt.is_enabled()) {
2219               ResourceMark rm;
2220               char *method_name = method->name_and_sig_as_C_string();
2221               lt.print("Installing osr method (%d) %s @ %d",
2222                         comp_level, method_name, entry_bci);
2223             }
2224             MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2225             if (nm->make_in_use()) {
2226               InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm);
2227             } else {
2228               result = JVMCI::nmethod_reclaimed;
2229             }
2230           }
2231         } else {
2232           assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be");
2233           MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2234           if (!nm->make_in_use()) {
2235             result = JVMCI::nmethod_reclaimed;
2236           }
2237         }
2238       }
2239     }
2240   }
2241 
2242   // String creation must be done outside lock
2243   if (failure_detail != nullptr) {
2244     // A failure to allocate the string is silently ignored.
2245     JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV);
2246     JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message);
2247   }
2248 
2249   if (result == JVMCI::ok) {
2250     JVMCICompileState* state = JVMCIENV->compile_state();
2251     if (state != nullptr) {
2252       // Compilation succeeded, post what we know about it
2253       nm->post_compiled_method(state->task());
2254     }
2255   }
2256 
2257   return result;
2258 }
2259 
2260 void JVMCIRuntime::post_compile(JavaThread* thread) {
2261   if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) {
2262     if (thread->libjvmci_runtime() != nullptr) {
2263       detach_thread(thread, "single use JavaVM");
2264     } else {
2265       // JVMCI shutdown may have already detached the thread
2266     }
2267   }
2268 }