1 /* 2 * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 #include "classfile/javaClasses.inline.hpp" 25 #include "classfile/symbolTable.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmClasses.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/memAllocator.hpp" 31 #include "gc/shared/oopStorage.inline.hpp" 32 #include "jvmci/jniAccessMark.inline.hpp" 33 #include "jvmci/jvmciCodeInstaller.hpp" 34 #include "jvmci/jvmciCompilerToVM.hpp" 35 #include "jvmci/jvmciRuntime.hpp" 36 #include "jvmci/metadataHandles.hpp" 37 #include "logging/log.hpp" 38 #include "logging/logStream.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/constantPool.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "oops/objArrayKlass.hpp" 45 #include "oops/oop.inline.hpp" 46 #include "oops/typeArrayOop.inline.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/methodHandles.hpp" 49 #include "runtime/arguments.hpp" 50 #include "runtime/atomic.hpp" 51 #include "runtime/deoptimization.hpp" 52 #include "runtime/fieldDescriptor.inline.hpp" 53 #include "runtime/frame.inline.hpp" 54 #include "runtime/java.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/mutex.hpp" 57 #include "runtime/reflection.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/synchronizer.hpp" 60 #if INCLUDE_G1GC 61 #include "gc/g1/g1BarrierSetRuntime.hpp" 62 #endif // INCLUDE_G1GC 63 64 // Simple helper to see if the caller of a runtime stub which 65 // entered the VM has been deoptimized 66 67 static bool caller_is_deopted() { 68 JavaThread* thread = JavaThread::current(); 69 RegisterMap reg_map(thread, 70 RegisterMap::UpdateMap::skip, 71 RegisterMap::ProcessFrames::include, 72 RegisterMap::WalkContinuation::skip); 73 frame runtime_frame = thread->last_frame(); 74 frame caller_frame = runtime_frame.sender(®_map); 75 assert(caller_frame.is_compiled_frame(), "must be compiled"); 76 return caller_frame.is_deoptimized_frame(); 77 } 78 79 // Stress deoptimization 80 static void deopt_caller() { 81 if ( !caller_is_deopted()) { 82 JavaThread* thread = JavaThread::current(); 83 RegisterMap reg_map(thread, 84 RegisterMap::UpdateMap::skip, 85 RegisterMap::ProcessFrames::include, 86 RegisterMap::WalkContinuation::skip); 87 frame runtime_frame = thread->last_frame(); 88 frame caller_frame = runtime_frame.sender(®_map); 89 Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); 90 assert(caller_is_deopted(), "Must be deoptimized"); 91 } 92 } 93 94 // Manages a scope for a JVMCI runtime call that attempts a heap allocation. 95 // If there is a pending OutOfMemoryError upon closing the scope and the runtime 96 // call is of the variety where allocation failure returns null without an 97 // exception, the following action is taken: 98 // 1. The pending OutOfMemoryError is cleared 99 // 2. null is written to JavaThread::_vm_result_oop 100 class RetryableAllocationMark { 101 private: 102 InternalOOMEMark _iom; 103 public: 104 RetryableAllocationMark(JavaThread* thread) : _iom(thread) {} 105 ~RetryableAllocationMark() { 106 JavaThread* THREAD = _iom.thread(); // For exception macros. 107 if (THREAD != nullptr) { 108 if (HAS_PENDING_EXCEPTION) { 109 oop ex = PENDING_EXCEPTION; 110 THREAD->set_vm_result_oop(nullptr); 111 if (ex->is_a(vmClasses::OutOfMemoryError_klass())) { 112 CLEAR_PENDING_EXCEPTION; 113 } 114 } 115 } 116 } 117 }; 118 119 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass)) 120 JRT_BLOCK; 121 assert(klass->is_klass(), "not a class"); 122 Handle holder(current, klass->klass_holder()); // keep the klass alive 123 InstanceKlass* h = InstanceKlass::cast(klass); 124 { 125 RetryableAllocationMark ram(current); 126 h->check_valid_for_instantiation(true, CHECK); 127 if (!h->is_initialized()) { 128 // Cannot re-execute class initialization without side effects 129 // so return without attempting the initialization 130 current->set_vm_result_oop(nullptr); 131 return; 132 } 133 // allocate instance and return via TLS 134 oop obj = h->allocate_instance(CHECK); 135 current->set_vm_result_oop(obj); 136 } 137 JRT_BLOCK_END; 138 SharedRuntime::on_slowpath_allocation_exit(current); 139 JRT_END 140 141 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length)) 142 JRT_BLOCK; 143 // Note: no handle for klass needed since they are not used 144 // anymore after new_objArray() and no GC can happen before. 145 // (This may have to change if this code changes!) 146 assert(array_klass->is_klass(), "not a class"); 147 oop obj; 148 if (array_klass->is_typeArray_klass()) { 149 BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); 150 RetryableAllocationMark ram(current); 151 obj = oopFactory::new_typeArray(elt_type, length, CHECK); 152 } else { 153 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 154 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 155 RetryableAllocationMark ram(current); 156 obj = oopFactory::new_objArray(elem_klass, length, CHECK); 157 } 158 // This is pretty rare but this runtime patch is stressful to deoptimization 159 // if we deoptimize here so force a deopt to stress the path. 160 if (DeoptimizeALot) { 161 static int deopts = 0; 162 if (deopts++ % 2 == 0) { 163 // Drop the allocation 164 obj = nullptr; 165 } else { 166 deopt_caller(); 167 } 168 } 169 current->set_vm_result_oop(obj); 170 JRT_BLOCK_END; 171 SharedRuntime::on_slowpath_allocation_exit(current); 172 JRT_END 173 174 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims)) 175 assert(klass->is_klass(), "not a class"); 176 assert(rank >= 1, "rank must be nonzero"); 177 Handle holder(current, klass->klass_holder()); // keep the klass alive 178 RetryableAllocationMark ram(current); 179 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 180 current->set_vm_result_oop(obj); 181 JRT_END 182 183 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length)) 184 RetryableAllocationMark ram(current); 185 oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); 186 current->set_vm_result_oop(obj); 187 JRT_END 188 189 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror)) 190 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror)); 191 192 if (klass == nullptr) { 193 ResourceMark rm(current); 194 THROW(vmSymbols::java_lang_InstantiationException()); 195 } 196 RetryableAllocationMark ram(current); 197 198 // Create new instance (the receiver) 199 klass->check_valid_for_instantiation(false, CHECK); 200 201 if (!klass->is_initialized()) { 202 // Cannot re-execute class initialization without side effects 203 // so return without attempting the initialization 204 current->set_vm_result_oop(nullptr); 205 return; 206 } 207 208 oop obj = klass->allocate_instance(CHECK); 209 current->set_vm_result_oop(obj); 210 JRT_END 211 212 extern void vm_exit(int code); 213 214 // Enter this method from compiled code handler below. This is where we transition 215 // to VM mode. This is done as a helper routine so that the method called directly 216 // from compiled code does not have to transition to VM. This allows the entry 217 // method to see if the nmethod that we have just looked up a handler for has 218 // been deoptimized while we were in the vm. This simplifies the assembly code 219 // cpu directories. 220 // 221 // We are entering here from exception stub (via the entry method below) 222 // If there is a compiled exception handler in this method, we will continue there; 223 // otherwise we will unwind the stack and continue at the caller of top frame method 224 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 225 // control the area where we can allow a safepoint. After we exit the safepoint area we can 226 // check to see if the handler we are going to return is now in a nmethod that has 227 // been deoptimized. If that is the case we return the deopt blob 228 // unpack_with_exception entry instead. This makes life for the exception blob easier 229 // because making that same check and diverting is painful from assembly language. 230 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 231 // Reset method handle flag. 232 current->set_is_method_handle_return(false); 233 234 Handle exception(current, ex); 235 236 // The frame we rethrow the exception to might not have been processed by the GC yet. 237 // The stack watermark barrier takes care of detecting that and ensuring the frame 238 // has updated oops. 239 StackWatermarkSet::after_unwind(current); 240 241 nm = CodeCache::find_nmethod(pc); 242 assert(nm != nullptr, "did not find nmethod"); 243 // Adjust the pc as needed/ 244 if (nm->is_deopt_pc(pc)) { 245 RegisterMap map(current, 246 RegisterMap::UpdateMap::skip, 247 RegisterMap::ProcessFrames::include, 248 RegisterMap::WalkContinuation::skip); 249 frame exception_frame = current->last_frame().sender(&map); 250 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 251 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 252 pc = exception_frame.pc(); 253 } 254 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 255 assert(oopDesc::is_oop(exception()), "just checking"); 256 // Check that exception is a subclass of Throwable 257 assert(exception->is_a(vmClasses::Throwable_klass()), 258 "Exception not subclass of Throwable"); 259 260 // debugging support 261 // tracing 262 if (log_is_enabled(Info, exceptions)) { 263 ResourceMark rm; 264 stringStream tempst; 265 assert(nm->method() != nullptr, "Unexpected null method()"); 266 tempst.print("JVMCI compiled method <%s>\n" 267 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 268 nm->method()->print_value_string(), p2i(pc), p2i(current)); 269 Exceptions::log_exception(exception, tempst.as_string()); 270 } 271 // for AbortVMOnException flag 272 Exceptions::debug_check_abort(exception); 273 274 // Check the stack guard pages and re-enable them if necessary and there is 275 // enough space on the stack to do so. Use fast exceptions only if the guard 276 // pages are enabled. 277 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 278 279 if (JvmtiExport::can_post_on_exceptions()) { 280 // To ensure correct notification of exception catches and throws 281 // we have to deoptimize here. If we attempted to notify the 282 // catches and throws during this exception lookup it's possible 283 // we could deoptimize on the way out of the VM and end back in 284 // the interpreter at the throw site. This would result in double 285 // notifications since the interpreter would also notify about 286 // these same catches and throws as it unwound the frame. 287 288 RegisterMap reg_map(current, 289 RegisterMap::UpdateMap::include, 290 RegisterMap::ProcessFrames::include, 291 RegisterMap::WalkContinuation::skip); 292 frame stub_frame = current->last_frame(); 293 frame caller_frame = stub_frame.sender(®_map); 294 295 // We don't really want to deoptimize the nmethod itself since we 296 // can actually continue in the exception handler ourselves but I 297 // don't see an easy way to have the desired effect. 298 Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint); 299 assert(caller_is_deopted(), "Must be deoptimized"); 300 301 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 302 } 303 304 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 305 if (guard_pages_enabled) { 306 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 307 if (fast_continuation != nullptr) { 308 // Set flag if return address is a method handle call site. 309 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 310 return fast_continuation; 311 } 312 } 313 314 // If the stack guard pages are enabled, check whether there is a handler in 315 // the current method. Otherwise (guard pages disabled), force an unwind and 316 // skip the exception cache update (i.e., just leave continuation==nullptr). 317 address continuation = nullptr; 318 if (guard_pages_enabled) { 319 320 // New exception handling mechanism can support inlined methods 321 // with exception handlers since the mappings are from PC to PC 322 323 // Clear out the exception oop and pc since looking up an 324 // exception handler can cause class loading, which might throw an 325 // exception and those fields are expected to be clear during 326 // normal bytecode execution. 327 current->clear_exception_oop_and_pc(); 328 329 bool recursive_exception = false; 330 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 331 // If an exception was thrown during exception dispatch, the exception oop may have changed 332 current->set_exception_oop(exception()); 333 current->set_exception_pc(pc); 334 335 // The exception cache is used only for non-implicit exceptions 336 // Update the exception cache only when another exception did 337 // occur during the computation of the compiled exception handler 338 // (e.g., when loading the class of the catch type). 339 // Checking for exception oop equality is not 340 // sufficient because some exceptions are pre-allocated and reused. 341 if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) { 342 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 343 } 344 } 345 346 // Set flag if return address is a method handle call site. 347 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 348 349 if (log_is_enabled(Info, exceptions)) { 350 ResourceMark rm; 351 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 352 " for exception thrown at PC " PTR_FORMAT, 353 p2i(current), p2i(continuation), p2i(pc)); 354 } 355 356 return continuation; 357 JRT_END 358 359 // Enter this method from compiled code only if there is a Java exception handler 360 // in the method handling the exception. 361 // We are entering here from exception stub. We don't do a normal VM transition here. 362 // We do it in a helper. This is so we can check to see if the nmethod we have just 363 // searched for an exception handler has been deoptimized in the meantime. 364 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) { 365 oop exception = current->exception_oop(); 366 address pc = current->exception_pc(); 367 // Still in Java mode 368 DEBUG_ONLY(NoHandleMark nhm); 369 nmethod* nm = nullptr; 370 address continuation = nullptr; 371 { 372 // Enter VM mode by calling the helper 373 ResetNoHandleMark rnhm; 374 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 375 } 376 // Back in JAVA, use no oops DON'T safepoint 377 378 // Now check to see if the compiled method we were called from is now deoptimized. 379 // If so we must return to the deopt blob and deoptimize the nmethod 380 if (nm != nullptr && caller_is_deopted()) { 381 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 382 } 383 384 assert(continuation != nullptr, "no handler found"); 385 return continuation; 386 } 387 388 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock)) 389 SharedRuntime::monitor_enter_helper(obj, lock, current); 390 JRT_END 391 392 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock)) 393 assert(current == JavaThread::current(), "pre-condition"); 394 assert(current->last_Java_sp(), "last_Java_sp must be set"); 395 assert(oopDesc::is_oop(obj), "invalid lock object pointer dected"); 396 SharedRuntime::monitor_exit_helper(obj, lock, current); 397 JRT_END 398 399 // Object.notify() fast path, caller does slow path 400 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj)) 401 assert(current == JavaThread::current(), "pre-condition"); 402 403 // Very few notify/notifyAll operations find any threads on the waitset, so 404 // the dominant fast-path is to simply return. 405 // Relatedly, it's critical that notify/notifyAll be fast in order to 406 // reduce lock hold times. 407 if (!SafepointSynchronize::is_synchronizing()) { 408 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 409 return true; 410 } 411 } 412 return false; // caller must perform slow path 413 414 JRT_END 415 416 // Object.notifyAll() fast path, caller does slow path 417 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj)) 418 assert(current == JavaThread::current(), "pre-condition"); 419 420 if (!SafepointSynchronize::is_synchronizing() ) { 421 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 422 return true; 423 } 424 } 425 return false; // caller must perform slow path 426 427 JRT_END 428 429 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message)) 430 JRT_BLOCK; 431 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 432 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 433 JRT_BLOCK_END; 434 return caller_is_deopted(); 435 JRT_END 436 437 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass)) 438 JRT_BLOCK; 439 ResourceMark rm(current); 440 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 441 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name()); 442 JRT_BLOCK_END; 443 return caller_is_deopted(); 444 JRT_END 445 446 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass)) 447 JRT_BLOCK; 448 ResourceMark rm(current); 449 const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass); 450 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 451 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 452 JRT_BLOCK_END; 453 return caller_is_deopted(); 454 JRT_END 455 456 class ArgumentPusher : public SignatureIterator { 457 protected: 458 JavaCallArguments* _jca; 459 jlong _argument; 460 bool _pushed; 461 462 jlong next_arg() { 463 guarantee(!_pushed, "one argument"); 464 _pushed = true; 465 return _argument; 466 } 467 468 float next_float() { 469 guarantee(!_pushed, "one argument"); 470 _pushed = true; 471 jvalue v; 472 v.i = (jint) _argument; 473 return v.f; 474 } 475 476 double next_double() { 477 guarantee(!_pushed, "one argument"); 478 _pushed = true; 479 jvalue v; 480 v.j = _argument; 481 return v.d; 482 } 483 484 Handle next_object() { 485 guarantee(!_pushed, "one argument"); 486 _pushed = true; 487 return Handle(Thread::current(), cast_to_oop(_argument)); 488 } 489 490 public: 491 ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) { 492 this->_return_type = T_ILLEGAL; 493 _jca = jca; 494 _argument = argument; 495 _pushed = false; 496 do_parameters_on(this); 497 } 498 499 void do_type(BasicType type) { 500 switch (type) { 501 case T_OBJECT: 502 case T_ARRAY: _jca->push_oop(next_object()); break; 503 case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break; 504 case T_CHAR: _jca->push_int((jchar) next_arg()); break; 505 case T_SHORT: _jca->push_int((jint) next_arg()); break; 506 case T_BYTE: _jca->push_int((jbyte) next_arg()); break; 507 case T_INT: _jca->push_int((jint) next_arg()); break; 508 case T_LONG: _jca->push_long((jlong) next_arg()); break; 509 case T_FLOAT: _jca->push_float(next_float()); break; 510 case T_DOUBLE: _jca->push_double(next_double()); break; 511 default: fatal("Unexpected type %s", type2name(type)); 512 } 513 } 514 }; 515 516 517 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument)) 518 ResourceMark rm; 519 HandleMark hm(current); 520 521 methodHandle mh(current, method); 522 if (mh->size_of_parameters() > 1 && !mh->is_static()) { 523 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument"); 524 } 525 526 Symbol* signature = mh->signature(); 527 JavaCallArguments jca(mh->size_of_parameters()); 528 ArgumentPusher jap(signature, &jca, argument); 529 BasicType return_type = jap.return_type(); 530 JavaValue result(return_type); 531 JavaCalls::call(&result, mh, &jca, CHECK_0); 532 533 if (return_type == T_VOID) { 534 return 0; 535 } else if (return_type == T_OBJECT || return_type == T_ARRAY) { 536 current->set_vm_result_oop(result.get_oop()); 537 return 0; 538 } else { 539 jvalue *value = (jvalue *) result.get_value_addr(); 540 // Narrow the value down if required (Important on big endian machines) 541 switch (return_type) { 542 case T_BOOLEAN: 543 return (jboolean) value->i; 544 case T_BYTE: 545 return (jbyte) value->i; 546 case T_CHAR: 547 return (jchar) value->i; 548 case T_SHORT: 549 return (jshort) value->i; 550 case T_INT: 551 case T_FLOAT: 552 return value->i; 553 case T_LONG: 554 case T_DOUBLE: 555 return value->j; 556 default: 557 fatal("Unexpected type %s", type2name(return_type)); 558 return 0; 559 } 560 } 561 JRT_END 562 563 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline)) 564 ttyLocker ttyl; 565 566 if (obj == nullptr) { 567 tty->print("null"); 568 } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) { 569 if (oopDesc::is_oop_or_null(obj, true)) { 570 char buf[O_BUFLEN]; 571 tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); 572 } else { 573 tty->print(INTPTR_FORMAT, p2i(obj)); 574 } 575 } else { 576 ResourceMark rm; 577 assert(obj != nullptr && java_lang_String::is_instance(obj), "must be"); 578 char *buf = java_lang_String::as_utf8_string(obj); 579 tty->print_raw(buf); 580 } 581 if (newline) { 582 tty->cr(); 583 } 584 JRT_END 585 586 #if INCLUDE_G1GC 587 588 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) { 589 G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread); 590 } 591 592 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) { 593 G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread); 594 } 595 596 #endif // INCLUDE_G1GC 597 598 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) 599 bool ret = true; 600 if(!Universe::heap()->is_in(parent)) { 601 tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); 602 parent->print(); 603 ret=false; 604 } 605 if(!Universe::heap()->is_in(child)) { 606 tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); 607 child->print(); 608 ret=false; 609 } 610 return (jint)ret; 611 JRT_END 612 613 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value)) 614 ResourceMark rm(current); 615 const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where; 616 char *detail_msg = nullptr; 617 if (format != 0L) { 618 const char* buf = (char*) (address) format; 619 size_t detail_msg_length = strlen(buf) * 2; 620 detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); 621 jio_snprintf(detail_msg, detail_msg_length, buf, value); 622 } 623 report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); 624 JRT_END 625 626 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) 627 oop exception = thread->exception_oop(); 628 assert(exception != nullptr, "npe"); 629 thread->set_exception_oop(nullptr); 630 thread->set_exception_pc(nullptr); 631 return exception; 632 JRT_END 633 634 PRAGMA_DIAG_PUSH 635 PRAGMA_FORMAT_NONLITERAL_IGNORED 636 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3)) 637 ResourceMark rm; 638 tty->print(format, v1, v2, v3); 639 JRT_END 640 PRAGMA_DIAG_POP 641 642 static void decipher(jlong v, bool ignoreZero) { 643 if (v != 0 || !ignoreZero) { 644 void* p = (void *)(address) v; 645 CodeBlob* cb = CodeCache::find_blob(p); 646 if (cb) { 647 if (cb->is_nmethod()) { 648 char buf[O_BUFLEN]; 649 tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); 650 return; 651 } 652 cb->print_value_on(tty); 653 return; 654 } 655 if (Universe::heap()->is_in(p)) { 656 oop obj = cast_to_oop(p); 657 obj->print_value_on(tty); 658 return; 659 } 660 tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); 661 } 662 } 663 664 PRAGMA_DIAG_PUSH 665 PRAGMA_FORMAT_NONLITERAL_IGNORED 666 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) 667 ResourceMark rm; 668 const char *buf = (const char*) (address) format; 669 if (vmError) { 670 if (buf != nullptr) { 671 fatal(buf, v1, v2, v3); 672 } else { 673 fatal("<anonymous error>"); 674 } 675 } else if (buf != nullptr) { 676 tty->print(buf, v1, v2, v3); 677 } else { 678 assert(v2 == 0, "v2 != 0"); 679 assert(v3 == 0, "v3 != 0"); 680 decipher(v1, false); 681 } 682 JRT_END 683 PRAGMA_DIAG_POP 684 685 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) 686 union { 687 jlong l; 688 jdouble d; 689 jfloat f; 690 } uu; 691 uu.l = value; 692 switch (typeChar) { 693 case 'Z': tty->print(value == 0 ? "false" : "true"); break; 694 case 'B': tty->print("%d", (jbyte) value); break; 695 case 'C': tty->print("%c", (jchar) value); break; 696 case 'S': tty->print("%d", (jshort) value); break; 697 case 'I': tty->print("%d", (jint) value); break; 698 case 'F': tty->print("%f", uu.f); break; 699 case 'J': tty->print(JLONG_FORMAT, value); break; 700 case 'D': tty->print("%lf", uu.d); break; 701 default: assert(false, "unknown typeChar"); break; 702 } 703 if (newline) { 704 tty->cr(); 705 } 706 JRT_END 707 708 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj)) 709 return (jint) obj->identity_hash(); 710 JRT_END 711 712 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value)) 713 deopt_caller(); 714 return (jint) value; 715 JRT_END 716 717 718 // Implementation of JVMCI.initializeRuntime() 719 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 720 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c)) 721 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 722 if (!EnableJVMCI) { 723 JVMCI_THROW_MSG_NULL(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 724 } 725 JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 726 JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 727 return JVMCIENV->get_jobject(runtime); 728 JVM_END 729 730 // Implementation of Services.readSystemPropertiesInfo(int[] offsets) 731 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV. 732 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle)) 733 JVMCIENV_FROM_JNI(thread, env); 734 if (!EnableJVMCI) { 735 JVMCI_THROW_MSG_0(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 736 } 737 JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle); 738 JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes()); 739 JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes()); 740 JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes()); 741 742 return (jlong) Arguments::system_properties(); 743 JVM_END 744 745 746 void JVMCINMethodData::initialize(int nmethod_mirror_index, 747 int nmethod_entry_patch_offset, 748 const char* nmethod_mirror_name, 749 FailedSpeculation** failed_speculations) 750 { 751 _failed_speculations = failed_speculations; 752 _nmethod_mirror_index = nmethod_mirror_index; 753 guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier"); 754 _nmethod_entry_patch_offset = nmethod_entry_patch_offset; 755 if (nmethod_mirror_name != nullptr) { 756 _has_name = true; 757 char* dest = (char*) name(); 758 strcpy(dest, nmethod_mirror_name); 759 } else { 760 _has_name = false; 761 } 762 } 763 764 void JVMCINMethodData::copy(JVMCINMethodData* data) { 765 initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations); 766 } 767 768 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) { 769 jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS; 770 guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index); 771 int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK; 772 if (index + length > (uint) nm->speculations_size()) { 773 fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size()); 774 } 775 address data = nm->speculations_begin() + index; 776 FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length); 777 } 778 779 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) { 780 if (_nmethod_mirror_index == -1) { 781 return nullptr; 782 } 783 if (phantom_ref) { 784 return nm->oop_at_phantom(_nmethod_mirror_index); 785 } else { 786 return nm->oop_at(_nmethod_mirror_index); 787 } 788 } 789 790 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) { 791 guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod"); 792 oop* addr = nm->oop_addr_at(_nmethod_mirror_index); 793 guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror"); 794 guarantee(*addr == nullptr, "cannot overwrite non-null mirror"); 795 796 *addr = new_mirror; 797 798 // Since we've patched some oops in the nmethod, 799 // (re)register it with the heap. 800 MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag); 801 Universe::heap()->register_nmethod(nm); 802 } 803 804 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) { 805 oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false); 806 if (nmethod_mirror == nullptr) { 807 return; 808 } 809 810 // Update the values in the mirror if it still refers to nm. 811 // We cannot use JVMCIObject to wrap the mirror as this is called 812 // during GC, forbidding the creation of JNIHandles. 813 JVMCIEnv* jvmciEnv = nullptr; 814 nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror); 815 if (nm == current) { 816 if (nm->is_unloading()) { 817 // Break the link from the mirror to nm such that 818 // future invocations via the mirror will result in 819 // an InvalidInstalledCodeException. 820 HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0); 821 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 822 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 823 } else if (nm->is_not_entrant()) { 824 // Zero the entry point so any new invocation will fail but keep 825 // the address link around that so that existing activations can 826 // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code). 827 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 828 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 829 } 830 } 831 832 if (_nmethod_mirror_index != -1 && nm->is_unloading()) { 833 // Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise 834 // it would appear that the nmethod didn't need to be unloaded in the first place. 835 _nmethod_mirror_index = -1; 836 } 837 } 838 839 // Handles to objects in the Hotspot heap. 840 static OopStorage* object_handles() { 841 return Universe::vm_global(); 842 } 843 844 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) { 845 assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause"); 846 assert(oopDesc::is_oop(obj()), "not an oop"); 847 848 oop* ptr = OopHandle(object_handles(), obj()).ptr_raw(); 849 MutexLocker ml(_lock); 850 _oop_handles.append(ptr); 851 return reinterpret_cast<jlong>(ptr); 852 } 853 854 #ifdef ASSERT 855 bool JVMCIRuntime::is_oop_handle(jlong handle) { 856 const oop* ptr = (oop*) handle; 857 return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY; 858 } 859 #endif 860 861 int JVMCIRuntime::release_and_clear_oop_handles() { 862 guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown"); 863 int released = release_cleared_oop_handles(); 864 if (_oop_handles.length() != 0) { 865 for (int i = 0; i < _oop_handles.length(); i++) { 866 oop* oop_ptr = _oop_handles.at(i); 867 guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles"); 868 guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle"); 869 // Satisfy OopHandles::release precondition that all 870 // handles being released are null. 871 NativeAccess<>::oop_store(oop_ptr, (oop) nullptr); 872 } 873 874 // Do the bulk release 875 object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length()); 876 released += _oop_handles.length(); 877 } 878 _oop_handles.clear(); 879 return released; 880 } 881 882 static bool is_referent_non_null(oop* handle) { 883 return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr; 884 } 885 886 // Swaps the elements in `array` at index `a` and index `b` 887 static void swap(GrowableArray<oop*>* array, int a, int b) { 888 oop* tmp = array->at(a); 889 array->at_put(a, array->at(b)); 890 array->at_put(b, tmp); 891 } 892 893 int JVMCIRuntime::release_cleared_oop_handles() { 894 // Despite this lock, it's possible for another thread 895 // to clear a handle's referent concurrently (e.g., a thread 896 // executing IndirectHotSpotObjectConstantImpl.clear()). 897 // This is benign - it means there can still be cleared 898 // handles in _oop_handles when this method returns. 899 MutexLocker ml(_lock); 900 901 int next = 0; 902 if (_oop_handles.length() != 0) { 903 // Key for _oop_handles contents in example below: 904 // H: handle with non-null referent 905 // h: handle with clear (i.e., null) referent 906 // -: null entry 907 908 // Shuffle all handles with non-null referents to the front of the list 909 // Example: Before: 0HHh-Hh- 910 // After: HHHh--h- 911 for (int i = 0; i < _oop_handles.length(); i++) { 912 oop* handle = _oop_handles.at(i); 913 if (is_referent_non_null(handle)) { 914 if (i != next && !is_referent_non_null(_oop_handles.at(next))) { 915 // Swap elements at index `next` and `i` 916 swap(&_oop_handles, next, i); 917 } 918 next++; 919 } 920 } 921 922 // `next` is now the index of the first null handle or handle with a null referent 923 int num_alive = next; 924 925 // Shuffle all null handles to the end of the list 926 // Example: Before: HHHh--h- 927 // After: HHHhh--- 928 // num_alive: 3 929 for (int i = next; i < _oop_handles.length(); i++) { 930 oop* handle = _oop_handles.at(i); 931 if (handle != nullptr) { 932 if (i != next && _oop_handles.at(next) == nullptr) { 933 // Swap elements at index `next` and `i` 934 swap(&_oop_handles, next, i); 935 } 936 next++; 937 } 938 } 939 if (next != num_alive) { 940 int to_release = next - num_alive; 941 942 // `next` is now the index of the first null handle 943 // Example: to_release: 2 944 945 // Bulk release the handles with a null referent 946 object_handles()->release(_oop_handles.adr_at(num_alive), to_release); 947 948 // Truncate oop handles to only those with a non-null referent 949 JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive); 950 _oop_handles.trunc_to(num_alive); 951 // Example: HHH 952 953 return to_release; 954 } 955 } 956 return 0; 957 } 958 959 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) { 960 MutexLocker ml(_lock); 961 return _metadata_handles->allocate_handle(handle); 962 } 963 964 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) { 965 MutexLocker ml(_lock); 966 return _metadata_handles->allocate_handle(handle); 967 } 968 969 void JVMCIRuntime::release_handle(jmetadata handle) { 970 MutexLocker ml(_lock); 971 _metadata_handles->chain_free_list(handle); 972 } 973 974 // Function for redirecting shared library JavaVM output to tty 975 static void _log(const char* buf, size_t count) { 976 tty->write((char*) buf, count); 977 } 978 979 // Function for redirecting shared library JavaVM fatal error data to a log file. 980 // The log file is opened on first call to this function. 981 static void _fatal_log(const char* buf, size_t count) { 982 JVMCI::fatal_log(buf, count); 983 } 984 985 // Function for shared library JavaVM to flush tty 986 static void _flush_log() { 987 tty->flush(); 988 } 989 990 // Function for shared library JavaVM to exit HotSpot on a fatal error 991 static void _fatal() { 992 Thread* thread = Thread::current_or_null_safe(); 993 if (thread != nullptr && thread->is_Java_thread()) { 994 JavaThread* jthread = JavaThread::cast(thread); 995 JVMCIRuntime* runtime = jthread->libjvmci_runtime(); 996 if (runtime != nullptr) { 997 int javaVM_id = runtime->get_shared_library_javavm_id(); 998 fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id()); 999 } 1000 } 1001 intx current_thread_id = os::current_thread_id(); 1002 fatal("thread %zd: Fatal error in JVMCI shared library", current_thread_id); 1003 } 1004 1005 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) : 1006 _init_state(uninitialized), 1007 _shared_library_javavm(nullptr), 1008 _shared_library_javavm_id(0), 1009 _id(id), 1010 _next(next), 1011 _metadata_handles(new MetadataHandles()), 1012 _oop_handles(100, mtJVMCI), 1013 _num_attached_threads(0), 1014 _for_compile_broker(for_compile_broker) 1015 { 1016 if (id == -1) { 1017 _lock = JVMCIRuntime_lock; 1018 } else { 1019 stringStream lock_name; 1020 lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id); 1021 Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint); 1022 _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true)); 1023 } 1024 JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")", 1025 id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this)); 1026 } 1027 1028 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) { 1029 assert(JVMCI_lock->owner() == thread, "must be"); 1030 // When shutting down, use the first available runtime. 1031 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1032 if (runtime->_num_attached_threads != cannot_be_attached) { 1033 runtime->pre_attach_thread(thread); 1034 JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id()); 1035 return runtime; 1036 } 1037 } 1038 // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to 1039 // do here since JVMCI_lock is locked. 1040 if (JVMCI::_shutdown_compiler_runtime == nullptr) { 1041 JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true); 1042 } 1043 JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime; 1044 JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id()); 1045 return runtime; 1046 } 1047 1048 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) { 1049 assert(JVMCI_lock->owner() == thread, "must be"); 1050 bool for_compile_broker = thread->is_Compiler_thread(); 1051 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1052 if (count != nullptr) { 1053 (*count)++; 1054 } 1055 if (for_compile_broker == runtime->_for_compile_broker) { 1056 int count = runtime->_num_attached_threads; 1057 if (count == cannot_be_attached || runtime == skip) { 1058 // Cannot attach to rt 1059 continue; 1060 } 1061 // If selecting for repacking, ignore a runtime without an existing JavaVM 1062 if (skip != nullptr && !runtime->has_shared_library_javavm()) { 1063 continue; 1064 } 1065 1066 // Select first runtime with sufficient capacity 1067 if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) { 1068 runtime->pre_attach_thread(thread); 1069 return runtime; 1070 } 1071 } 1072 } 1073 return nullptr; 1074 } 1075 1076 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) { 1077 assert(JVMCI_lock->owner() == thread, "must be"); 1078 int id = 0; 1079 JVMCIRuntime* runtime; 1080 if (JVMCI::using_singleton_shared_library_runtime()) { 1081 runtime = JVMCI::_compiler_runtimes; 1082 guarantee(runtime != nullptr, "must be"); 1083 while (runtime->_num_attached_threads == cannot_be_attached) { 1084 // Since there is only a singleton JVMCIRuntime, we 1085 // need to wait for it to be available for attaching. 1086 JVMCI_lock->wait(); 1087 } 1088 runtime->pre_attach_thread(thread); 1089 } else { 1090 runtime = select_runtime(thread, nullptr, &id); 1091 } 1092 if (runtime == nullptr) { 1093 runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread()); 1094 JVMCI::_compiler_runtimes = runtime; 1095 runtime->pre_attach_thread(thread); 1096 } 1097 return runtime; 1098 } 1099 1100 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) { 1101 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1102 // Find the runtime with fewest attached threads 1103 JVMCIRuntime* runtime = nullptr; 1104 { 1105 MutexLocker locker(JVMCI_lock); 1106 runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread); 1107 } 1108 runtime->attach_thread(thread); 1109 return runtime; 1110 } 1111 1112 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) { 1113 MutexLocker locker(JVMCI_lock); 1114 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1115 if (runtime->_shared_library_javavm == javaVM) { 1116 if (runtime->_num_attached_threads == cannot_be_attached) { 1117 return "Cannot attach to JVMCI runtime that is shutting down"; 1118 } 1119 runtime->pre_attach_thread(thread); 1120 runtime->attach_thread(thread); 1121 return nullptr; 1122 } 1123 } 1124 return "Cannot find JVMCI runtime"; 1125 } 1126 1127 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) { 1128 assert(JVMCI_lock->owner() == thread, "must be"); 1129 _num_attached_threads++; 1130 } 1131 1132 void JVMCIRuntime::attach_thread(JavaThread* thread) { 1133 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1134 thread->set_libjvmci_runtime(this); 1135 guarantee(this == JVMCI::_shutdown_compiler_runtime || 1136 _num_attached_threads > 0, 1137 "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads); 1138 JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : ""); 1139 } 1140 1141 void JVMCIRuntime::repack(JavaThread* thread) { 1142 JVMCIRuntime* new_runtime = nullptr; 1143 { 1144 MutexLocker locker(JVMCI_lock); 1145 if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) { 1146 return; 1147 } 1148 new_runtime = select_runtime(thread, this, nullptr); 1149 } 1150 if (new_runtime != nullptr) { 1151 JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1); 1152 detach_thread(thread, "moving thread to another JVMCI runtime"); 1153 new_runtime->attach_thread(thread); 1154 } 1155 } 1156 1157 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) { 1158 if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) { 1159 // Do minimal work when shutting down JVMCI 1160 thread->set_libjvmci_runtime(nullptr); 1161 return false; 1162 } 1163 bool should_shutdown; 1164 bool destroyed_javavm = false; 1165 { 1166 MutexLocker locker(JVMCI_lock); 1167 _num_attached_threads--; 1168 JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads); 1169 should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown(); 1170 if (should_shutdown && !can_destroy_javavm) { 1171 // If it's not possible to destroy the JavaVM on this thread then the VM must 1172 // not be shutdown. This can happen when a shared library thread is the last 1173 // thread to detach from a shared library JavaVM (e.g. GraalServiceThread). 1174 JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id); 1175 should_shutdown = false; 1176 } 1177 if (should_shutdown) { 1178 // Prevent other threads from attaching to this runtime 1179 // while it is shutting down and destroying its JavaVM 1180 _num_attached_threads = cannot_be_attached; 1181 } 1182 } 1183 if (should_shutdown) { 1184 // Release the JavaVM resources associated with this 1185 // runtime once there are no threads attached to it. 1186 shutdown(); 1187 if (can_destroy_javavm) { 1188 destroyed_javavm = destroy_shared_library_javavm(); 1189 if (destroyed_javavm) { 1190 // Can release all handles now that there's no code executing 1191 // that could be using them. Handles for the Java JVMCI runtime 1192 // are never released as we cannot guarantee all compiler threads 1193 // using it have been stopped. 1194 int released = release_and_clear_oop_handles(); 1195 JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}", 1196 _id, 1197 released, 1198 _metadata_handles->num_handles(), 1199 _metadata_handles->num_handles() - _metadata_handles->num_free_handles(), 1200 _metadata_handles->num_blocks()); 1201 1202 // No need to acquire _lock since this is the only thread accessing this runtime 1203 _metadata_handles->clear(); 1204 } 1205 } 1206 // Allow other threads to attach to this runtime now 1207 MutexLocker locker(JVMCI_lock); 1208 _num_attached_threads = 0; 1209 if (JVMCI::using_singleton_shared_library_runtime()) { 1210 // Notify any thread waiting to attach to the 1211 // singleton JVMCIRuntime 1212 JVMCI_lock->notify(); 1213 } 1214 } 1215 thread->set_libjvmci_runtime(nullptr); 1216 JVMCI_event_1("detached from JVMCI runtime %d", _id); 1217 return destroyed_javavm; 1218 } 1219 1220 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) { 1221 MutexLocker locker(_lock); 1222 JavaVM* javaVM = _shared_library_javavm; 1223 if (javaVM == nullptr) { 1224 #ifdef ASSERT 1225 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit"); 1226 if (val != nullptr && strcmp(val, "true") == 0) { 1227 *create_JavaVM_err = JNI_ENOMEM; 1228 return nullptr; 1229 } 1230 #endif 1231 1232 char* sl_path; 1233 void* sl_handle = JVMCI::get_shared_library(sl_path, true); 1234 1235 jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args); 1236 typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args); 1237 1238 JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM")); 1239 if (JNI_CreateJavaVM == nullptr) { 1240 fatal("Unable to find JNI_CreateJavaVM in %s", sl_path); 1241 } 1242 1243 ResourceMark rm; 1244 JavaVMInitArgs vm_args; 1245 vm_args.version = JNI_VERSION_1_2; 1246 vm_args.ignoreUnrecognized = JNI_TRUE; 1247 JavaVMOption options[6]; 1248 jlong javaVM_id = 0; 1249 1250 // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id" 1251 // option whose extraInfo info field is a pointer to which a unique id for the 1252 // JavaVM should be written. 1253 options[0].optionString = (char*) "_javavm_id"; 1254 options[0].extraInfo = &javaVM_id; 1255 1256 options[1].optionString = (char*) "_log"; 1257 options[1].extraInfo = (void*) _log; 1258 options[2].optionString = (char*) "_flush_log"; 1259 options[2].extraInfo = (void*) _flush_log; 1260 options[3].optionString = (char*) "_fatal"; 1261 options[3].extraInfo = (void*) _fatal; 1262 options[4].optionString = (char*) "_fatal_log"; 1263 options[4].extraInfo = (void*) _fatal_log; 1264 options[5].optionString = (char*) "_createvm_errorstr"; 1265 options[5].extraInfo = (void*) err_msg; 1266 1267 vm_args.version = JNI_VERSION_1_2; 1268 vm_args.options = options; 1269 vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption); 1270 1271 JNIEnv* env = nullptr; 1272 int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args); 1273 if (result == JNI_OK) { 1274 guarantee(env != nullptr, "missing env"); 1275 _shared_library_javavm_id = javaVM_id; 1276 _shared_library_javavm = javaVM; 1277 JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1278 return env; 1279 } else { 1280 *create_JavaVM_err = result; 1281 } 1282 } 1283 return nullptr; 1284 } 1285 1286 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) { 1287 if (info != nullptr) { 1288 typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info); 1289 if (info_oop->length() < 4) { 1290 JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length())); 1291 } 1292 JavaVM* javaVM = _shared_library_javavm; 1293 info_oop->long_at_put(0, (jlong) (address) javaVM); 1294 info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0); 1295 info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1); 1296 info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2); 1297 } 1298 } 1299 1300 #define JAVAVM_CALL_BLOCK \ 1301 guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \ 1302 ThreadToNativeFromVM ttnfv(thread); \ 1303 JavaVM* javavm = _shared_library_javavm; 1304 1305 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) { 1306 JAVAVM_CALL_BLOCK 1307 return javavm->AttachCurrentThread(penv, args); 1308 } 1309 1310 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) { 1311 JAVAVM_CALL_BLOCK 1312 return javavm->AttachCurrentThreadAsDaemon(penv, args); 1313 } 1314 1315 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) { 1316 JAVAVM_CALL_BLOCK 1317 return javavm->DetachCurrentThread(); 1318 } 1319 1320 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) { 1321 JAVAVM_CALL_BLOCK 1322 return javavm->GetEnv(penv, version); 1323 } 1324 #undef JAVAVM_CALL_BLOCK \ 1325 1326 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1327 if (is_HotSpotJVMCIRuntime_initialized()) { 1328 if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) { 1329 JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library"); 1330 } 1331 } 1332 1333 initialize(JVMCI_CHECK); 1334 1335 // This should only be called in the context of the JVMCI class being initialized 1336 JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK); 1337 result = JVMCIENV->make_global(result); 1338 1339 OrderAccess::storestore(); // Ensure handle is fully constructed before publishing 1340 _HotSpotJVMCIRuntime_instance = result; 1341 1342 JVMCI::_is_initialized = true; 1343 } 1344 1345 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1346 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1347 1348 class JavaVMRefsInitialization: public StackObj { 1349 JVMCIRuntime::InitState *_state; 1350 int _id; 1351 public: 1352 JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) { 1353 _state = state; 1354 _id = id; 1355 // All classes, methods and fields in the JVMCI shared library 1356 // are in the read-only part of the image. As such, these 1357 // values (and any global handle derived from them via NewGlobalRef) 1358 // are the same for all JavaVM instances created in the 1359 // shared library which means they only need to be initialized 1360 // once. In non-product mode, we check this invariant. 1361 // See com.oracle.svm.jni.JNIImageHeapHandles. 1362 // The same is true for Klass* and field offsets in HotSpotJVMCI. 1363 if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) { 1364 *state = JVMCIRuntime::being_initialized; 1365 JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id); 1366 } else { 1367 while (*state != JVMCIRuntime::fully_initialized) { 1368 JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id); 1369 JVMCI_lock->wait(); 1370 } 1371 JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id); 1372 } 1373 } 1374 1375 ~JavaVMRefsInitialization() { 1376 if (*_state == JVMCIRuntime::being_initialized) { 1377 *_state = JVMCIRuntime::fully_initialized; 1378 JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id); 1379 JVMCI_lock->notify_all(); 1380 } 1381 } 1382 1383 bool should_init() { 1384 return *_state == JVMCIRuntime::being_initialized; 1385 } 1386 }; 1387 1388 void JVMCIRuntime::initialize(JVMCI_TRAPS) { 1389 // Check first without _lock 1390 if (_init_state == fully_initialized) { 1391 return; 1392 } 1393 1394 JavaThread* THREAD = JavaThread::current(); 1395 1396 MutexLocker locker(_lock); 1397 // Check again under _lock 1398 if (_init_state == fully_initialized) { 1399 return; 1400 } 1401 1402 while (_init_state == being_initialized) { 1403 JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id); 1404 _lock->wait(); 1405 if (_init_state == fully_initialized) { 1406 JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id); 1407 return; 1408 } 1409 } 1410 1411 JVMCI_event_1("initializing JVMCI runtime %d", _id); 1412 _init_state = being_initialized; 1413 1414 { 1415 MutexUnlocker unlock(_lock); 1416 1417 HandleMark hm(THREAD); 1418 ResourceMark rm(THREAD); 1419 { 1420 MutexLocker lock_jvmci(JVMCI_lock); 1421 if (JVMCIENV->is_hotspot()) { 1422 JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id); 1423 if (initialization.should_init()) { 1424 MutexUnlocker unlock_jvmci(JVMCI_lock); 1425 HotSpotJVMCI::compute_offsets(CHECK_EXIT); 1426 } 1427 } else { 1428 JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id); 1429 if (initialization.should_init()) { 1430 MutexUnlocker unlock_jvmci(JVMCI_lock); 1431 JNIAccessMark jni(JVMCIENV, THREAD); 1432 1433 JNIJVMCI::initialize_ids(jni.env()); 1434 if (jni()->ExceptionCheck()) { 1435 jni()->ExceptionDescribe(); 1436 fatal("JNI exception during init"); 1437 } 1438 // _lock is re-locked at this point 1439 } 1440 } 1441 } 1442 1443 if (!JVMCIENV->is_hotspot()) { 1444 JNIAccessMark jni(JVMCIENV, THREAD); 1445 JNIJVMCI::register_natives(jni.env()); 1446 } 1447 create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0)); 1448 create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0)); 1449 create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0)); 1450 create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0)); 1451 create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0)); 1452 create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0)); 1453 create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0)); 1454 create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0)); 1455 create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0)); 1456 1457 DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);) 1458 } 1459 1460 _init_state = fully_initialized; 1461 JVMCI_event_1("initialized JVMCI runtime %d", _id); 1462 _lock->notify_all(); 1463 } 1464 1465 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) { 1466 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1467 // These primitive types are long lived and are created before the runtime is fully set up 1468 // so skip registering them for scanning. 1469 JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true); 1470 if (JVMCIENV->is_hotspot()) { 1471 JavaValue result(T_OBJECT); 1472 JavaCallArguments args; 1473 args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror))); 1474 args.push_int(type2char(type)); 1475 JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject())); 1476 1477 return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop())); 1478 } else { 1479 JNIAccessMark jni(JVMCIENV); 1480 jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(), 1481 JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(), 1482 mirror.as_jobject(), type2char(type)); 1483 if (jni()->ExceptionCheck()) { 1484 return JVMCIObject(); 1485 } 1486 return JVMCIENV->wrap(result); 1487 } 1488 } 1489 1490 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) { 1491 if (!is_HotSpotJVMCIRuntime_initialized()) { 1492 initialize(JVMCI_CHECK); 1493 JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK); 1494 guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id); 1495 } 1496 } 1497 1498 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1499 initialize(JVMCI_CHECK_(JVMCIObject())); 1500 initialize_JVMCI(JVMCI_CHECK_(JVMCIObject())); 1501 return _HotSpotJVMCIRuntime_instance; 1502 } 1503 1504 // Implementation of CompilerToVM.registerNatives() 1505 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 1506 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass)) 1507 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 1508 1509 if (!EnableJVMCI) { 1510 JVMCI_THROW_MSG(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 1511 } 1512 1513 JVMCIENV->runtime()->initialize(JVMCIENV); 1514 1515 { 1516 ResourceMark rm(thread); 1517 HandleMark hm(thread); 1518 ThreadToNativeFromVM trans(thread); 1519 1520 // Ensure _non_oop_bits is initialized 1521 Universe::non_oop_word(); 1522 JNIEnv *env = libjvmciOrHotspotEnv; 1523 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) { 1524 if (!env->ExceptionCheck()) { 1525 for (int i = 0; i < CompilerToVM::methods_count(); i++) { 1526 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) { 1527 guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature); 1528 break; 1529 } 1530 } 1531 } else { 1532 env->ExceptionDescribe(); 1533 } 1534 guarantee(false, "Failed registering CompilerToVM native methods"); 1535 } 1536 } 1537 JVM_END 1538 1539 1540 void JVMCIRuntime::shutdown() { 1541 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1542 JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id); 1543 JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__); 1544 JVMCIEnv* JVMCIENV = &__stack_jvmci_env__; 1545 if (JVMCIENV->init_error() == JNI_OK) { 1546 JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance); 1547 } else { 1548 JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error()); 1549 } 1550 if (_num_attached_threads == cannot_be_attached) { 1551 // Only when no other threads are attached to this runtime 1552 // is it safe to reset these fields. 1553 _HotSpotJVMCIRuntime_instance = JVMCIObject(); 1554 _init_state = uninitialized; 1555 JVMCI_event_1("shut down JVMCI runtime %d", _id); 1556 } 1557 } 1558 } 1559 1560 bool JVMCIRuntime::destroy_shared_library_javavm() { 1561 guarantee(_num_attached_threads == cannot_be_attached, 1562 "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads); 1563 JavaVM* javaVM; 1564 jlong javaVM_id = _shared_library_javavm_id; 1565 { 1566 // Exactly one thread can destroy the JavaVM 1567 // and release the handle to it. 1568 MutexLocker only_one(_lock); 1569 javaVM = _shared_library_javavm; 1570 if (javaVM != nullptr) { 1571 _shared_library_javavm = nullptr; 1572 _shared_library_javavm_id = 0; 1573 } 1574 } 1575 if (javaVM != nullptr) { 1576 int result; 1577 { 1578 // Must transition into native before calling into libjvmci 1579 ThreadToNativeFromVM ttnfv(JavaThread::current()); 1580 result = javaVM->DestroyJavaVM(); 1581 } 1582 if (result == JNI_OK) { 1583 JVMCI_event_1("destroyed JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1584 } else { 1585 warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM)); 1586 } 1587 return true; 1588 } 1589 return false; 1590 } 1591 1592 void JVMCIRuntime::bootstrap_finished(TRAPS) { 1593 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1594 JVMCIENV_FROM_THREAD(THREAD); 1595 JVMCIENV->check_init(CHECK); 1596 JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV); 1597 } 1598 } 1599 1600 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) { 1601 if (HAS_PENDING_EXCEPTION) { 1602 Handle exception(THREAD, PENDING_EXCEPTION); 1603 CLEAR_PENDING_EXCEPTION; 1604 java_lang_Throwable::print_stack_trace(exception, tty); 1605 1606 // Clear and ignore any exceptions raised during printing 1607 CLEAR_PENDING_EXCEPTION; 1608 } 1609 } 1610 1611 1612 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) { 1613 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1614 1615 static volatile int report_error = 0; 1616 if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) { 1617 // Only report an error once 1618 tty->print_raw_cr(message); 1619 if (JVMCIENV != nullptr) { 1620 JVMCIENV->describe_pending_exception(tty); 1621 } else { 1622 describe_pending_hotspot_exception(THREAD); 1623 } 1624 } else { 1625 // Allow error reporting thread time to print the stack trace. 1626 THREAD->sleep(200); 1627 } 1628 fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message); 1629 } 1630 1631 // ------------------------------------------------------------------ 1632 // Note: the logic of this method should mirror the logic of 1633 // constantPoolOopDesc::verify_constant_pool_resolve. 1634 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) { 1635 if (accessing_klass->is_objArray_klass()) { 1636 accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass(); 1637 } 1638 if (!accessing_klass->is_instance_klass()) { 1639 return true; 1640 } 1641 1642 if (resolved_klass->is_objArray_klass()) { 1643 // Find the element klass, if this is an array. 1644 resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass(); 1645 } 1646 if (resolved_klass->is_instance_klass()) { 1647 Reflection::VerifyClassAccessResults result = 1648 Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true); 1649 return result == Reflection::ACCESS_OK; 1650 } 1651 return true; 1652 } 1653 1654 // ------------------------------------------------------------------ 1655 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass, 1656 const constantPoolHandle& cpool, 1657 Symbol* sym, 1658 bool require_local) { 1659 JVMCI_EXCEPTION_CONTEXT; 1660 1661 // Now we need to check the SystemDictionary 1662 if (sym->char_at(0) == JVM_SIGNATURE_CLASS && 1663 sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) { 1664 // This is a name from a signature. Strip off the trimmings. 1665 // Call recursive to keep scope of strippedsym. 1666 TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1, 1667 sym->utf8_length()-2); 1668 return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local); 1669 } 1670 1671 Handle loader; 1672 if (accessing_klass != nullptr) { 1673 loader = Handle(THREAD, accessing_klass->class_loader()); 1674 } 1675 1676 Klass* found_klass = require_local ? 1677 SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader) : 1678 SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader); 1679 1680 // If we fail to find an array klass, look again for its element type. 1681 // The element type may be available either locally or via constraints. 1682 // In either case, if we can find the element type in the system dictionary, 1683 // we must build an array type around it. The CI requires array klasses 1684 // to be loaded if their element klasses are loaded, except when memory 1685 // is exhausted. 1686 if (sym->char_at(0) == JVM_SIGNATURE_ARRAY && 1687 (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) { 1688 // We have an unloaded array. 1689 // Build it on the fly if the element class exists. 1690 TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1, 1691 sym->utf8_length()-1); 1692 1693 // Get element Klass recursively. 1694 Klass* elem_klass = 1695 get_klass_by_name_impl(accessing_klass, 1696 cpool, 1697 elem_sym, 1698 require_local); 1699 if (elem_klass != nullptr) { 1700 // Now make an array for it 1701 return elem_klass->array_klass(THREAD); 1702 } 1703 } 1704 1705 if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) { 1706 // Look inside the constant pool for pre-resolved class entries. 1707 for (int i = cpool->length() - 1; i >= 1; i--) { 1708 if (cpool->tag_at(i).is_klass()) { 1709 Klass* kls = cpool->resolved_klass_at(i); 1710 if (kls->name() == sym) { 1711 return kls; 1712 } 1713 } 1714 } 1715 } 1716 1717 return found_klass; 1718 } 1719 1720 // ------------------------------------------------------------------ 1721 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass, 1722 Symbol* klass_name, 1723 bool require_local) { 1724 ResourceMark rm; 1725 constantPoolHandle cpool; 1726 return get_klass_by_name_impl(accessing_klass, 1727 cpool, 1728 klass_name, 1729 require_local); 1730 } 1731 1732 // ------------------------------------------------------------------ 1733 // Implementation of get_klass_by_index. 1734 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool, 1735 int index, 1736 bool& is_accessible, 1737 Klass* accessor) { 1738 JVMCI_EXCEPTION_CONTEXT; 1739 Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index); 1740 Symbol* klass_name = nullptr; 1741 if (klass == nullptr) { 1742 klass_name = cpool->klass_name_at(index); 1743 } 1744 1745 if (klass == nullptr) { 1746 // Not found in constant pool. Use the name to do the lookup. 1747 Klass* k = get_klass_by_name_impl(accessor, 1748 cpool, 1749 klass_name, 1750 false); 1751 // Calculate accessibility the hard way. 1752 if (k == nullptr) { 1753 is_accessible = false; 1754 } else if (k->class_loader() != accessor->class_loader() && 1755 get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) { 1756 // Loaded only remotely. Not linked yet. 1757 is_accessible = false; 1758 } else { 1759 // Linked locally, and we must also check public/private, etc. 1760 is_accessible = check_klass_accessibility(accessor, k); 1761 } 1762 if (!is_accessible) { 1763 return nullptr; 1764 } 1765 return k; 1766 } 1767 1768 // It is known to be accessible, since it was found in the constant pool. 1769 is_accessible = true; 1770 return klass; 1771 } 1772 1773 // ------------------------------------------------------------------ 1774 // Get a klass from the constant pool. 1775 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool, 1776 int index, 1777 bool& is_accessible, 1778 Klass* accessor) { 1779 ResourceMark rm; 1780 Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor); 1781 return result; 1782 } 1783 1784 // ------------------------------------------------------------------ 1785 // Perform an appropriate method lookup based on accessor, holder, 1786 // name, signature, and bytecode. 1787 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor, 1788 Klass* holder, 1789 Symbol* name, 1790 Symbol* sig, 1791 Bytecodes::Code bc, 1792 constantTag tag) { 1793 // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl(). 1794 assert(check_klass_accessibility(accessor, holder), "holder not accessible"); 1795 1796 LinkInfo link_info(holder, name, sig, accessor, 1797 LinkInfo::AccessCheck::required, 1798 LinkInfo::LoaderConstraintCheck::required, 1799 tag); 1800 switch (bc) { 1801 case Bytecodes::_invokestatic: 1802 return LinkResolver::resolve_static_call_or_null(link_info); 1803 case Bytecodes::_invokespecial: 1804 return LinkResolver::resolve_special_call_or_null(link_info); 1805 case Bytecodes::_invokeinterface: 1806 return LinkResolver::linktime_resolve_interface_method_or_null(link_info); 1807 case Bytecodes::_invokevirtual: 1808 return LinkResolver::linktime_resolve_virtual_method_or_null(link_info); 1809 default: 1810 fatal("Unhandled bytecode: %s", Bytecodes::name(bc)); 1811 return nullptr; // silence compiler warnings 1812 } 1813 } 1814 1815 1816 // ------------------------------------------------------------------ 1817 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool, 1818 int index, Bytecodes::Code bc, 1819 InstanceKlass* accessor) { 1820 if (bc == Bytecodes::_invokedynamic) { 1821 if (cpool->resolved_indy_entry_at(index)->is_resolved()) { 1822 return cpool->resolved_indy_entry_at(index)->method(); 1823 } 1824 1825 return nullptr; 1826 } 1827 1828 int holder_index = cpool->klass_ref_index_at(index, bc); 1829 bool holder_is_accessible; 1830 Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor); 1831 1832 // Get the method's name and signature. 1833 Symbol* name_sym = cpool->name_ref_at(index, bc); 1834 Symbol* sig_sym = cpool->signature_ref_at(index, bc); 1835 1836 if (cpool->has_preresolution() 1837 || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) && 1838 MethodHandles::is_signature_polymorphic_name(holder, name_sym))) { 1839 // Short-circuit lookups for JSR 292-related call sites. 1840 // That is, do not rely only on name-based lookups, because they may fail 1841 // if the names are not resolvable in the boot class loader (7056328). 1842 switch (bc) { 1843 case Bytecodes::_invokevirtual: 1844 case Bytecodes::_invokeinterface: 1845 case Bytecodes::_invokespecial: 1846 case Bytecodes::_invokestatic: 1847 { 1848 Method* m = ConstantPool::method_at_if_loaded(cpool, index); 1849 if (m != nullptr) { 1850 return m; 1851 } 1852 } 1853 break; 1854 default: 1855 break; 1856 } 1857 } 1858 1859 if (holder_is_accessible) { // Our declared holder is loaded. 1860 constantTag tag = cpool->tag_ref_at(index, bc); 1861 Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag); 1862 if (m != nullptr) { 1863 // We found the method. 1864 return m; 1865 } 1866 } 1867 1868 // Either the declared holder was not loaded, or the method could 1869 // not be found. 1870 1871 return nullptr; 1872 } 1873 1874 // ------------------------------------------------------------------ 1875 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) { 1876 // For the case of <array>.clone(), the method holder can be an ArrayKlass* 1877 // instead of an InstanceKlass*. For that case simply pretend that the 1878 // declared holder is Object.clone since that's where the call will bottom out. 1879 if (method_holder->is_instance_klass()) { 1880 return InstanceKlass::cast(method_holder); 1881 } else if (method_holder->is_array_klass()) { 1882 return vmClasses::Object_klass(); 1883 } else { 1884 ShouldNotReachHere(); 1885 } 1886 return nullptr; 1887 } 1888 1889 1890 // ------------------------------------------------------------------ 1891 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool, 1892 int index, Bytecodes::Code bc, 1893 InstanceKlass* accessor) { 1894 ResourceMark rm; 1895 return get_method_by_index_impl(cpool, index, bc, accessor); 1896 } 1897 1898 // ------------------------------------------------------------------ 1899 // Check for changes to the system dictionary during compilation 1900 // class loads, evolution, breakpoints 1901 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies, 1902 JVMCICompileState* compile_state, 1903 char** failure_detail, 1904 bool& failing_dep_is_call_site) 1905 { 1906 failing_dep_is_call_site = false; 1907 // If JVMTI capabilities were enabled during compile, the compilation is invalidated. 1908 if (compile_state != nullptr && compile_state->jvmti_state_changed()) { 1909 *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies"; 1910 return JVMCI::dependencies_failed; 1911 } 1912 1913 CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task(); 1914 Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail); 1915 1916 if (result == Dependencies::end_marker) { 1917 return JVMCI::ok; 1918 } 1919 if (result == Dependencies::call_site_target_value) { 1920 failing_dep_is_call_site = true; 1921 } 1922 return JVMCI::dependencies_failed; 1923 } 1924 1925 // Called after an upcall to `function` while compiling `method`. 1926 // If an exception occurred, it is cleared, the compilation state 1927 // is updated with the failure and this method returns true. 1928 // Otherwise, it returns false. 1929 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) { 1930 if (JVMCIENV->has_pending_exception()) { 1931 ResourceMark rm; 1932 bool reason_on_C_heap = true; 1933 const char* pending_string = nullptr; 1934 const char* pending_stack_trace = nullptr; 1935 JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace); 1936 if (pending_string == nullptr) pending_string = "null"; 1937 // Using stringStream instead of err_msg to avoid truncation 1938 stringStream st; 1939 st.print("uncaught exception in %s [%s]", function, pending_string); 1940 const char* failure_reason = os::strdup(st.freeze(), mtJVMCI); 1941 if (failure_reason == nullptr) { 1942 failure_reason = "uncaught exception"; 1943 reason_on_C_heap = false; 1944 } 1945 JVMCI_event_1("%s", failure_reason); 1946 Log(jit, compilation) log; 1947 if (log.is_info()) { 1948 log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string()); 1949 if (pending_stack_trace != nullptr) { 1950 LogStream ls(log.info()); 1951 ls.print_raw_cr(pending_stack_trace); 1952 } 1953 } 1954 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1955 compile_state->set_failure(true, failure_reason, reason_on_C_heap); 1956 compiler->on_upcall(failure_reason, compile_state); 1957 return true; 1958 } 1959 return false; 1960 } 1961 1962 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) { 1963 JVMCI_EXCEPTION_CONTEXT 1964 1965 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1966 1967 bool is_osr = entry_bci != InvocationEntryBci; 1968 if (compiler->is_bootstrapping() && is_osr) { 1969 // no OSR compilations during bootstrap - the compiler is just too slow at this point, 1970 // and we know that there are no endless loops 1971 compile_state->set_failure(true, "No OSR during bootstrap"); 1972 return; 1973 } 1974 if (JVMCI::in_shutdown()) { 1975 if (UseJVMCINativeLibrary) { 1976 JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false); 1977 if (runtime != nullptr) { 1978 runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation"); 1979 } 1980 } 1981 compile_state->set_failure(false, "Avoiding compilation during shutdown"); 1982 return; 1983 } 1984 1985 HandleMark hm(thread); 1986 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 1987 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) { 1988 return; 1989 } 1990 JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV); 1991 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) { 1992 return; 1993 } 1994 1995 JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci, 1996 (jlong) compile_state, compile_state->task()->compile_id()); 1997 #ifdef ASSERT 1998 if (JVMCIENV->has_pending_exception()) { 1999 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal"); 2000 if (val != nullptr && strcmp(val, "true") == 0) { 2001 fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling"); 2002 } 2003 } 2004 #endif 2005 2006 if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) { 2007 return; 2008 } 2009 compiler->on_upcall(nullptr); 2010 guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null"); 2011 JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object); 2012 if (failure_message.is_non_null()) { 2013 // Copy failure reason into resource memory first ... 2014 const char* failure_reason = JVMCIENV->as_utf8_string(failure_message); 2015 // ... and then into the C heap. 2016 failure_reason = os::strdup(failure_reason, mtJVMCI); 2017 bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0; 2018 compile_state->set_failure(retryable, failure_reason, true); 2019 } else { 2020 if (!compile_state->task()->is_success()) { 2021 compile_state->set_failure(true, "no nmethod produced"); 2022 } else { 2023 compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object)); 2024 compiler->inc_methods_compiled(); 2025 } 2026 } 2027 if (compiler->is_bootstrapping()) { 2028 compiler->set_bootstrap_compilation_request_handled(); 2029 } 2030 } 2031 2032 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) { 2033 JVMCI_EXCEPTION_CONTEXT 2034 2035 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2036 if (JVMCIENV->has_pending_exception()) { 2037 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2038 } 2039 return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name); 2040 } 2041 2042 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) { 2043 JVMCI_EXCEPTION_CONTEXT 2044 2045 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2046 if (JVMCIENV->has_pending_exception()) { 2047 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2048 } 2049 return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id); 2050 } 2051 2052 // ------------------------------------------------------------------ 2053 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV, 2054 const methodHandle& method, 2055 nmethod*& nm, 2056 int entry_bci, 2057 CodeOffsets* offsets, 2058 int orig_pc_offset, 2059 CodeBuffer* code_buffer, 2060 int frame_words, 2061 OopMapSet* oop_map_set, 2062 ExceptionHandlerTable* handler_table, 2063 ImplicitExceptionTable* implicit_exception_table, 2064 AbstractCompiler* compiler, 2065 DebugInformationRecorder* debug_info, 2066 Dependencies* dependencies, 2067 int compile_id, 2068 bool has_monitors, 2069 bool has_unsafe_access, 2070 bool has_scoped_access, 2071 bool has_wide_vector, 2072 JVMCIObject compiled_code, 2073 JVMCIObject nmethod_mirror, 2074 FailedSpeculation** failed_speculations, 2075 char* speculations, 2076 int speculations_len, 2077 int nmethod_entry_patch_offset) { 2078 JVMCI_EXCEPTION_CONTEXT; 2079 CompLevel comp_level = CompLevel_full_optimization; 2080 char* failure_detail = nullptr; 2081 2082 bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0; 2083 assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be"); 2084 JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror); 2085 const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name); 2086 int nmethod_mirror_index; 2087 if (!install_default) { 2088 // Reserve or initialize mirror slot in the oops table. 2089 OopRecorder* oop_recorder = debug_info->oop_recorder(); 2090 nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr); 2091 } else { 2092 // A default HotSpotNmethod mirror is never tracked by the nmethod 2093 nmethod_mirror_index = -1; 2094 } 2095 2096 JVMCI::CodeInstallResult result(JVMCI::ok); 2097 2098 // We require method counters to store some method state (max compilation levels) required by the compilation policy. 2099 if (method->get_method_counters(THREAD) == nullptr) { 2100 result = JVMCI::cache_full; 2101 failure_detail = (char*) "can't create method counters"; 2102 } 2103 2104 if (result == JVMCI::ok) { 2105 // Check if memory should be freed before allocation 2106 CodeCache::gc_on_allocation(); 2107 2108 // To prevent compile queue updates. 2109 MutexLocker locker(THREAD, MethodCompileQueue_lock); 2110 2111 // Prevent InstanceKlass::add_to_hierarchy from running 2112 // and invalidating our dependencies until we install this method. 2113 MutexLocker ml(Compile_lock); 2114 2115 // Encode the dependencies now, so we can check them right away. 2116 dependencies->encode_content_bytes(); 2117 2118 // Record the dependencies for the current compile in the log 2119 if (LogCompilation) { 2120 for (Dependencies::DepStream deps(dependencies); deps.next(); ) { 2121 deps.log_dependency(); 2122 } 2123 } 2124 2125 // Check for {class loads, evolution, breakpoints} during compilation 2126 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 2127 bool failing_dep_is_call_site; 2128 result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site); 2129 if (result != JVMCI::ok) { 2130 // While not a true deoptimization, it is a preemptive decompile. 2131 MethodData* mdp = method()->method_data(); 2132 if (mdp != nullptr && !failing_dep_is_call_site) { 2133 mdp->inc_decompile_count(); 2134 #ifdef ASSERT 2135 if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) { 2136 ResourceMark m; 2137 tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string()); 2138 } 2139 #endif 2140 } 2141 2142 // All buffers in the CodeBuffer are allocated in the CodeCache. 2143 // If the code buffer is created on each compile attempt 2144 // as in C2, then it must be freed. 2145 //code_buffer->free_blob(); 2146 } else { 2147 JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index, 2148 nmethod_entry_patch_offset, 2149 nmethod_mirror_name, 2150 failed_speculations); 2151 nm = nmethod::new_nmethod(method, 2152 compile_id, 2153 entry_bci, 2154 offsets, 2155 orig_pc_offset, 2156 debug_info, dependencies, code_buffer, 2157 frame_words, oop_map_set, 2158 handler_table, implicit_exception_table, 2159 compiler, comp_level, nullptr /* AOTCodeEntry */, 2160 speculations, speculations_len, data); 2161 2162 2163 // Free codeBlobs 2164 if (nm == nullptr) { 2165 // The CodeCache is full. Print out warning and disable compilation. 2166 { 2167 MutexUnlocker ml(Compile_lock); 2168 MutexUnlocker locker(MethodCompileQueue_lock); 2169 CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level)); 2170 } 2171 result = JVMCI::cache_full; 2172 } else { 2173 nm->set_has_unsafe_access(has_unsafe_access); 2174 nm->set_has_wide_vectors(has_wide_vector); 2175 nm->set_has_monitors(has_monitors); 2176 nm->set_has_scoped_access(has_scoped_access); 2177 2178 JVMCINMethodData* data = nm->jvmci_nmethod_data(); 2179 assert(data != nullptr, "must be"); 2180 if (install_default) { 2181 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == nullptr, "must be"); 2182 if (entry_bci == InvocationEntryBci) { 2183 // If there is an old version we're done with it 2184 nmethod* old = method->code(); 2185 if (TraceMethodReplacement && old != nullptr) { 2186 ResourceMark rm; 2187 char *method_name = method->name_and_sig_as_C_string(); 2188 tty->print_cr("Replacing method %s", method_name); 2189 } 2190 if (old != nullptr) { 2191 old->make_not_entrant("JVMCI register method"); 2192 } 2193 2194 LogTarget(Info, nmethod, install) lt; 2195 if (lt.is_enabled()) { 2196 ResourceMark rm; 2197 char *method_name = method->name_and_sig_as_C_string(); 2198 lt.print("Installing method (%d) %s [entry point: %p]", 2199 comp_level, method_name, nm->entry_point()); 2200 } 2201 // Allow the code to be executed 2202 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2203 if (nm->make_in_use()) { 2204 method->set_code(method, nm); 2205 } else { 2206 result = JVMCI::nmethod_reclaimed; 2207 } 2208 } else { 2209 LogTarget(Info, nmethod, install) lt; 2210 if (lt.is_enabled()) { 2211 ResourceMark rm; 2212 char *method_name = method->name_and_sig_as_C_string(); 2213 lt.print("Installing osr method (%d) %s @ %d", 2214 comp_level, method_name, entry_bci); 2215 } 2216 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2217 if (nm->make_in_use()) { 2218 InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm); 2219 } else { 2220 result = JVMCI::nmethod_reclaimed; 2221 } 2222 } 2223 } else { 2224 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be"); 2225 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2226 if (!nm->make_in_use()) { 2227 result = JVMCI::nmethod_reclaimed; 2228 } 2229 } 2230 } 2231 } 2232 } 2233 2234 // String creation must be done outside lock 2235 if (failure_detail != nullptr) { 2236 // A failure to allocate the string is silently ignored. 2237 JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV); 2238 JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message); 2239 } 2240 2241 if (result == JVMCI::ok) { 2242 JVMCICompileState* state = JVMCIENV->compile_state(); 2243 if (state != nullptr) { 2244 // Compilation succeeded, post what we know about it 2245 nm->post_compiled_method(state->task()); 2246 } 2247 } 2248 2249 return result; 2250 } 2251 2252 void JVMCIRuntime::post_compile(JavaThread* thread) { 2253 if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) { 2254 if (thread->libjvmci_runtime() != nullptr) { 2255 detach_thread(thread, "single use JavaVM"); 2256 } else { 2257 // JVMCI shutdown may have already detached the thread 2258 } 2259 } 2260 }