1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/cdsConfig.hpp"
26 #include "cds/heapShared.inline.hpp"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/classLoaderData.inline.hpp"
29 #include "classfile/classLoaderDataGraph.inline.hpp"
30 #include "classfile/javaClasses.inline.hpp"
31 #include "classfile/moduleEntry.hpp"
32 #include "classfile/systemDictionary.hpp"
33 #include "classfile/systemDictionaryShared.hpp"
34 #include "classfile/vmClasses.hpp"
35 #include "classfile/vmSymbols.hpp"
36 #include "gc/shared/collectedHeap.inline.hpp"
37 #include "jvm_io.h"
38 #include "logging/log.hpp"
39 #include "memory/metadataFactory.hpp"
40 #include "memory/metaspaceClosure.hpp"
41 #include "memory/oopFactory.hpp"
42 #include "memory/resourceArea.hpp"
43 #include "memory/universe.hpp"
44 #include "oops/compressedKlass.inline.hpp"
45 #include "oops/compressedOops.inline.hpp"
46 #include "oops/instanceKlass.hpp"
47 #include "oops/klass.inline.hpp"
48 #include "oops/objArrayKlass.hpp"
49 #include "oops/oop.inline.hpp"
50 #include "oops/oopHandle.inline.hpp"
51 #include "prims/jvmtiExport.hpp"
52 #include "runtime/atomicAccess.hpp"
53 #include "runtime/handles.inline.hpp"
54 #include "runtime/perfData.hpp"
55 #include "utilities/macros.hpp"
56 #include "utilities/powerOfTwo.hpp"
57 #include "utilities/rotate_bits.hpp"
58 #include "utilities/stack.inline.hpp"
59
60 void Klass::set_java_mirror(Handle m) {
61 assert(!m.is_null(), "New mirror should never be null.");
62 assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
63 _java_mirror = class_loader_data()->add_handle(m);
64 }
65
66 bool Klass::is_cloneable() const {
67 return _misc_flags.is_cloneable_fast() ||
68 is_subtype_of(vmClasses::Cloneable_klass());
69 }
70
71 void Klass::set_is_cloneable() {
72 if (name() == vmSymbols::java_lang_invoke_MemberName()) {
73 assert(is_final(), "no subclasses allowed");
74 // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
75 } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
76 // Reference cloning should not be intrinsified and always happen in JVM_Clone.
77 } else {
78 _misc_flags.set_is_cloneable_fast(true);
79 }
80 }
81
82 uint8_t Klass::compute_hash_slot(Symbol* n) {
83 uint hash_code;
84 // Special cases for the two superclasses of all Array instances.
85 // Code elsewhere assumes, for all instances of ArrayKlass, that
86 // these two interfaces will be in this order.
87
88 // We ensure there are some empty slots in the hash table between
89 // these two very common interfaces because if they were adjacent
90 // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
91 // would result in a probe length of 3.
92 if (n == vmSymbols::java_lang_Cloneable()) {
93 hash_code = 0;
94 } else if (n == vmSymbols::java_io_Serializable()) {
95 hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
96 } else {
97 auto s = (const jbyte*) n->bytes();
98 hash_code = java_lang_String::hash_code(s, n->utf8_length());
99 // We use String::hash_code here (rather than e.g.
100 // Symbol::identity_hash()) in order to have a hash code that
101 // does not change from run to run. We want that because the
102 // hash value for a secondary superclass appears in generated
103 // code as a constant.
104
105 // This constant is magic: see Knuth, "Fibonacci Hashing".
106 constexpr uint multiplier
107 = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
108 constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
109 // The leading bits of the least significant half of the product.
110 hash_code = (hash_code * multiplier) >> hash_shift;
111
112 if (StressSecondarySupers) {
113 // Generate many hash collisions in order to stress-test the
114 // linear search fallback.
115 hash_code = hash_code % 3;
116 hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
117 }
118 }
119
120 return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
121 }
122
123 void Klass::set_name(Symbol* n) {
124 _name = n;
125
126 if (_name != nullptr) {
127 _name->increment_refcount();
128 }
129
130 {
131 elapsedTimer selftime;
132 selftime.start();
133
134 _hash_slot = compute_hash_slot(n);
135 assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
136
137 selftime.stop();
138 if (UsePerfData) {
139 ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
140 }
141 }
142
143 if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
144 SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
145 }
146 }
147
148 bool Klass::is_subclass_of(const Klass* k) const {
149 // Run up the super chain and check
150 if (this == k) return true;
151
152 Klass* t = const_cast<Klass*>(this)->super();
153
154 while (t != nullptr) {
155 if (t == k) return true;
156 t = t->super();
157 }
158 return false;
159 }
160
161 void Klass::release_C_heap_structures(bool release_constant_pool) {
162 if (_name != nullptr) _name->decrement_refcount();
163 }
164
165 bool Klass::linear_search_secondary_supers(const Klass* k) const {
166 // Scan the array-of-objects for a match
167 // FIXME: We could do something smarter here, maybe a vectorized
168 // comparison or a binary search, but is that worth any added
169 // complexity?
170 int cnt = secondary_supers()->length();
171 for (int i = 0; i < cnt; i++) {
172 if (secondary_supers()->at(i) == k) {
173 return true;
174 }
175 }
176 return false;
177 }
178
179 // Given a secondary superklass k, an initial array index, and an
180 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
181 // search for k.
182 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
183 // Once the occupancy bitmap is almost full, it's faster to use a
184 // linear search.
185 if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
186 return linear_search_secondary_supers(k);
187 }
188
189 // This is conventional linear probing, but instead of terminating
190 // when a null entry is found in the table, we maintain a bitmap
191 // in which a 0 indicates missing entries.
192
193 precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
194
195 // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
196 // at the start of this function guarantees there are 0s in the
197 // bitmap, so this loop eventually terminates.
198 while ((rotated_bitmap & 2) != 0) {
199 if (++index == secondary_supers()->length()) {
200 index = 0;
201 }
202 if (secondary_supers()->at(index) == k) {
203 return true;
204 }
205 rotated_bitmap = rotate_right(rotated_bitmap, 1);
206 }
207 return false;
208 }
209
210 // Return self, except for abstract classes with exactly 1
211 // implementor. Then return the 1 concrete implementation.
212 Klass *Klass::up_cast_abstract() {
213 Klass *r = this;
214 while( r->is_abstract() ) { // Receiver is abstract?
215 Klass *s = r->subklass(); // Check for exactly 1 subklass
216 if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
217 return this; // Return 'this' as a no-progress flag
218 r = s; // Loop till find concrete class
219 }
220 return r; // Return the 1 concrete class
221 }
222
223 // Find LCA in class hierarchy
224 Klass *Klass::LCA( Klass *k2 ) {
225 Klass *k1 = this;
226 while( 1 ) {
227 if( k1->is_subtype_of(k2) ) return k2;
228 if( k2->is_subtype_of(k1) ) return k1;
229 k1 = k1->super();
230 k2 = k2->super();
231 }
232 }
233
234
235 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
236 ResourceMark rm(THREAD);
237 THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
238 : vmSymbols::java_lang_InstantiationException(), external_name());
239 }
240
241
242 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
243 ResourceMark rm(THREAD);
244 assert(s != nullptr, "Throw NPE!");
245 THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
246 err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
247 }
248
249
250 void Klass::initialize(TRAPS) {
251 ShouldNotReachHere();
252 }
253
254 void Klass::initialize_preemptable(TRAPS) {
255 ShouldNotReachHere();
256 }
257
258 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
259 #ifdef ASSERT
260 tty->print_cr("Error: find_field called on a klass oop."
261 " Likely error: reflection method does not correctly"
262 " wrap return value in a mirror object.");
263 #endif
264 ShouldNotReachHere();
265 return nullptr;
266 }
267
268 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
269 OverpassLookupMode overpass_mode,
270 PrivateLookupMode private_mode) const {
271 #ifdef ASSERT
272 tty->print_cr("Error: uncached_lookup_method called on a klass oop."
273 " Likely error: reflection method does not correctly"
274 " wrap return value in a mirror object.");
275 #endif
276 ShouldNotReachHere();
277 return nullptr;
278 }
279
280 static markWord make_prototype(const Klass* kls) {
281 markWord prototype = markWord::prototype();
282 #ifdef _LP64
283 if (UseCompactObjectHeaders) {
284 // With compact object headers, the narrow Klass ID is part of the mark word.
285 // We therefore seed the mark word with the narrow Klass ID.
286 precond(CompressedKlassPointers::is_encodable(kls));
287 const narrowKlass nk = CompressedKlassPointers::encode(const_cast<Klass*>(kls));
288 prototype = prototype.set_narrow_klass(nk);
289 }
290 #endif
291 return prototype;
292 }
293
294 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() {
295 return Metaspace::allocate(loader_data, word_size, MetaspaceObj::ClassType, THREAD);
296 }
297
298 Klass::Klass() : _kind(UnknownKlassKind) {
299 assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
300 }
301
302 // "Normal" instantiation is preceded by a MetaspaceObj allocation
303 // which zeros out memory - calloc equivalent.
304 // The constructor is also used from CppVtableCloner,
305 // which doesn't zero out the memory before calling the constructor.
306 Klass::Klass(KlassKind kind) : _kind(kind),
307 _prototype_header(make_prototype(this)),
308 _shared_class_path_index(-1) {
309 CDS_ONLY(_aot_class_flags = 0;)
310 CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
311 _primary_supers[0] = this;
312 set_super_check_offset(in_bytes(primary_supers_offset()));
313 }
314
315 jint Klass::array_layout_helper(BasicType etype) {
316 assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
317 // Note that T_ARRAY is not allowed here.
318 int hsize = arrayOopDesc::base_offset_in_bytes(etype);
319 int esize = type2aelembytes(etype);
320 bool isobj = (etype == T_OBJECT);
321 int tag = isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
322 int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
323
324 assert(lh < (int)_lh_neutral_value, "must look like an array layout");
325 assert(layout_helper_is_array(lh), "correct kind");
326 assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
327 assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
328 assert(layout_helper_header_size(lh) == hsize, "correct decode");
329 assert(layout_helper_element_type(lh) == etype, "correct decode");
330 assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
331
332 return lh;
333 }
334
335 int Klass::modifier_flags() const {
336 int mods = java_lang_Class::modifiers(java_mirror());
337 assert(mods == compute_modifier_flags(), "should be same");
338 return mods;
339 }
340
341 bool Klass::can_be_primary_super_slow() const {
342 if (super() == nullptr)
343 return true;
344 else if (super()->super_depth() >= primary_super_limit()-1)
345 return false;
346 else
347 return true;
348 }
349
350 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
351 #ifdef ASSERT
352 if (secondaries != nullptr) {
353 uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
354 assert(bitmap == real_bitmap, "must be");
355 assert(secondaries->length() >= (int)population_count(bitmap), "must be");
356 }
357 #endif
358 _secondary_supers_bitmap = bitmap;
359 _secondary_supers = secondaries;
360
361 if (secondaries != nullptr) {
362 LogMessage(class, load) msg;
363 NonInterleavingLogStream log {LogLevel::Debug, msg};
364 if (log.is_enabled()) {
365 ResourceMark rm;
366 log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
367 print_secondary_supers_on(&log);
368 }
369 }
370 }
371
372 // Hashed secondary superclasses
373 //
374 // We use a compressed 64-entry hash table with linear probing. We
375 // start by creating a hash table in the usual way, followed by a pass
376 // that removes all the null entries. To indicate which entries would
377 // have been null we use a bitmap that contains a 1 in each position
378 // where an entry is present, 0 otherwise. This bitmap also serves as
379 // a kind of Bloom filter, which in many cases allows us quickly to
380 // eliminate the possibility that something is a member of a set of
381 // secondaries.
382 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
383 const int length = secondaries->length();
384
385 if (length == 0) {
386 return SECONDARY_SUPERS_BITMAP_EMPTY;
387 }
388
389 if (length == 1) {
390 int hash_slot = secondaries->at(0)->hash_slot();
391 return uintx(1) << hash_slot;
392 }
393
394 // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
395
396 // Don't attempt to hash a table that's completely full, because in
397 // the case of an absent interface linear probing would not
398 // terminate.
399 if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
400 return SECONDARY_SUPERS_BITMAP_FULL;
401 }
402
403 {
404 //PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time()); // Leyden FIXME
405
406 ResourceMark rm;
407 uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
408 auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
409 SECONDARY_SUPERS_TABLE_SIZE, nullptr);
410
411 for (int j = 0; j < length; j++) {
412 Klass* k = secondaries->at(j);
413 hash_insert(k, hashed_secondaries, bitmap);
414 }
415
416 // Pack the hashed secondaries array by copying it into the
417 // secondaries array, sans nulls, if modification is allowed.
418 // Otherwise, validate the order.
419 int i = 0;
420 for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
421 bool has_element = ((bitmap >> slot) & 1) != 0;
422 assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
423 if (has_element) {
424 Klass* k = hashed_secondaries->at(slot);
425 if (rewrite) {
426 secondaries->at_put(i, k);
427 } else if (secondaries->at(i) != k) {
428 assert(false, "broken secondary supers hash table");
429 return SECONDARY_SUPERS_BITMAP_FULL;
430 }
431 i++;
432 }
433 }
434 assert(i == secondaries->length(), "mismatch");
435 postcond((int)population_count(bitmap) == secondaries->length());
436
437 return bitmap;
438 }
439 }
440
441 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
442 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
443
444 int dist = 0;
445 for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
446 Klass* existing = secondaries->at(slot);
447 assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
448 if (existing == nullptr) { // no conflict
449 secondaries->at_put(slot, klass);
450 bitmap |= uintx(1) << slot;
451 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
452 return;
453 } else {
454 // Use Robin Hood hashing to minimize the worst case search.
455 // Also, every permutation of the insertion sequence produces
456 // the same final Robin Hood hash table, provided that a
457 // consistent tie breaker is used.
458 int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
459 if (existing_dist < dist
460 // This tie breaker ensures that the hash order is maintained.
461 || ((existing_dist == dist)
462 && (uintptr_t(existing) < uintptr_t(klass)))) {
463 Klass* tmp = secondaries->at(slot);
464 secondaries->at_put(slot, klass);
465 klass = tmp;
466 dist = existing_dist;
467 }
468 ++dist;
469 }
470 }
471 }
472
473 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
474 GrowableArray<Klass*>* primaries,
475 GrowableArray<Klass*>* secondaries,
476 uintx& bitmap, TRAPS) {
477 int new_length = primaries->length() + secondaries->length();
478 Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
479
480 // Combine the two arrays into a metadata object to pack the array.
481 // The primaries are added in the reverse order, then the secondaries.
482 int fill_p = primaries->length();
483 for (int j = 0; j < fill_p; j++) {
484 secondary_supers->at_put(j, primaries->pop()); // add primaries in reverse order.
485 }
486 for( int j = 0; j < secondaries->length(); j++ ) {
487 secondary_supers->at_put(j+fill_p, secondaries->at(j)); // add secondaries on the end.
488 }
489 #ifdef ASSERT
490 // We must not copy any null placeholders left over from bootstrap.
491 for (int j = 0; j < secondary_supers->length(); j++) {
492 assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
493 }
494 #endif
495
496 bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
497 return secondary_supers;
498 }
499
500 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
501 return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
502 }
503
504 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
505 uint8_t hash = k->hash_slot();
506 if (hash > 0) {
507 return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
508 }
509 return 0;
510 }
511
512
513 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
514 if (k == nullptr) {
515 set_super(nullptr);
516 _primary_supers[0] = this;
517 assert(super_depth() == 0, "Object must already be initialized properly");
518 } else if (k != super() || k == vmClasses::Object_klass()) {
519 assert(super() == nullptr || super() == vmClasses::Object_klass(),
520 "initialize this only once to a non-trivial value");
521 set_super(k);
522 Klass* sup = k;
523 int sup_depth = sup->super_depth();
524 juint my_depth = MIN2(sup_depth + 1, (int)primary_super_limit());
525 if (!can_be_primary_super_slow())
526 my_depth = primary_super_limit();
527 for (juint i = 0; i < my_depth; i++) {
528 _primary_supers[i] = sup->_primary_supers[i];
529 }
530 Klass* *super_check_cell;
531 if (my_depth < primary_super_limit()) {
532 _primary_supers[my_depth] = this;
533 super_check_cell = &_primary_supers[my_depth];
534 } else {
535 // Overflow of the primary_supers array forces me to be secondary.
536 super_check_cell = &_secondary_super_cache;
537 }
538 set_super_check_offset(u4((address)super_check_cell - (address) this));
539
540 #ifdef ASSERT
541 {
542 juint j = super_depth();
543 assert(j == my_depth, "computed accessor gets right answer");
544 Klass* t = this;
545 while (!t->can_be_primary_super()) {
546 t = t->super();
547 j = t->super_depth();
548 }
549 for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
550 assert(primary_super_of_depth(j1) == nullptr, "super list padding");
551 }
552 while (t != nullptr) {
553 assert(primary_super_of_depth(j) == t, "super list initialization");
554 t = t->super();
555 --j;
556 }
557 assert(j == (juint)-1, "correct depth count");
558 }
559 #endif
560 }
561
562 if (secondary_supers() == nullptr) {
563
564 // Now compute the list of secondary supertypes.
565 // Secondaries can occasionally be on the super chain,
566 // if the inline "_primary_supers" array overflows.
567 int extras = 0;
568 Klass* p;
569 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
570 ++extras;
571 }
572
573 ResourceMark rm(THREAD); // need to reclaim GrowableArrays allocated below
574
575 // Compute the "real" non-extra secondaries.
576 GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
577 if (secondaries == nullptr) {
578 // secondary_supers set by compute_secondary_supers
579 return;
580 }
581
582 GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
583
584 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
585 int i; // Scan for overflow primaries being duplicates of 2nd'arys
586
587 // This happens frequently for very deeply nested arrays: the
588 // primary superclass chain overflows into the secondary. The
589 // secondary list contains the element_klass's secondaries with
590 // an extra array dimension added. If the element_klass's
591 // secondary list already contains some primary overflows, they
592 // (with the extra level of array-ness) will collide with the
593 // normal primary superclass overflows.
594 for( i = 0; i < secondaries->length(); i++ ) {
595 if( secondaries->at(i) == p )
596 break;
597 }
598 if( i < secondaries->length() )
599 continue; // It's a dup, don't put it in
600 primaries->push(p);
601 }
602 // Combine the two arrays into a metadata object to pack the array.
603 uintx bitmap = 0;
604 Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
605 set_secondary_supers(s2, bitmap);
606 }
607 }
608
609 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
610 Array<InstanceKlass*>* transitive_interfaces) {
611 assert(num_extra_slots == 0, "override for complex klasses");
612 assert(transitive_interfaces == nullptr, "sanity");
613 set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
614 return nullptr;
615 }
616
617
618 // subklass links. Used by the compiler (and vtable initialization)
619 // May be cleaned concurrently, so must use the Compile_lock.
620 Klass* Klass::subklass() const {
621 // Need load_acquire on the _subklass, because it races with inserts that
622 // publishes freshly initialized data.
623 for (Klass* chain = AtomicAccess::load_acquire(&_subklass);
624 chain != nullptr;
625 // Do not need load_acquire on _next_sibling, because inserts never
626 // create _next_sibling edges to dead data.
627 chain = AtomicAccess::load(&chain->_next_sibling))
628 {
629 if (chain->is_loader_alive()) {
630 return chain;
631 }
632 }
633 return nullptr;
634 }
635
636 Klass* Klass::next_sibling(bool log) const {
637 // Do not need load_acquire on _next_sibling, because inserts never
638 // create _next_sibling edges to dead data.
639 for (Klass* chain = AtomicAccess::load(&_next_sibling);
640 chain != nullptr;
641 chain = AtomicAccess::load(&chain->_next_sibling)) {
642 // Only return alive klass, there may be stale klass
643 // in this chain if cleaned concurrently.
644 if (chain->is_loader_alive()) {
645 return chain;
646 } else if (log) {
647 if (log_is_enabled(Trace, class, unload)) {
648 ResourceMark rm;
649 log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
650 }
651 }
652 }
653 return nullptr;
654 }
655
656 void Klass::set_subklass(Klass* s) {
657 assert(s != this, "sanity check");
658 AtomicAccess::release_store(&_subklass, s);
659 }
660
661 void Klass::set_next_sibling(Klass* s) {
662 assert(s != this, "sanity check");
663 // Does not need release semantics. If used by cleanup, it will link to
664 // already safely published data, and if used by inserts, will be published
665 // safely using cmpxchg.
666 AtomicAccess::store(&_next_sibling, s);
667 }
668
669 void Klass::append_to_sibling_list() {
670 if (Universe::is_fully_initialized()) {
671 assert_locked_or_safepoint(Compile_lock);
672 }
673 DEBUG_ONLY(verify();)
674 // add ourselves to super' subklass list
675 InstanceKlass* super = java_super();
676 if (super == nullptr) return; // special case: class Object
677 assert((!super->is_interface() // interfaces cannot be supers
678 && (super->java_super() == nullptr || !is_interface())),
679 "an interface can only be a subklass of Object");
680
681 // Make sure there is no stale subklass head
682 super->clean_subklass();
683
684 for (;;) {
685 Klass* prev_first_subklass = AtomicAccess::load_acquire(&_super->_subklass);
686 if (prev_first_subklass != nullptr) {
687 // set our sibling to be the super' previous first subklass
688 assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
689 set_next_sibling(prev_first_subklass);
690 }
691 // Note that the prev_first_subklass is always alive, meaning no sibling_next links
692 // are ever created to not alive klasses. This is an important invariant of the lock-free
693 // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
694 if (AtomicAccess::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
695 return;
696 }
697 }
698 DEBUG_ONLY(verify();)
699 }
700
701 // The log parameter is for clean_weak_klass_links to report unlinked classes.
702 Klass* Klass::clean_subklass(bool log) {
703 for (;;) {
704 // Need load_acquire, due to contending with concurrent inserts
705 Klass* subklass = AtomicAccess::load_acquire(&_subklass);
706 if (subklass == nullptr || subklass->is_loader_alive()) {
707 return subklass;
708 }
709 if (log && log_is_enabled(Trace, class, unload)) {
710 ResourceMark rm;
711 log_trace(class, unload)("unlinking class (subclass): %s", subklass->external_name());
712 }
713 // Try to fix _subklass until it points at something not dead.
714 AtomicAccess::cmpxchg(&_subklass, subklass, subklass->next_sibling(log));
715 }
716 }
717
718 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
719 if (!ClassUnloading || !unloading_occurred) {
720 return;
721 }
722
723 Klass* root = vmClasses::Object_klass();
724 Stack<Klass*, mtGC> stack;
725
726 stack.push(root);
727 while (!stack.is_empty()) {
728 Klass* current = stack.pop();
729
730 assert(current->is_loader_alive(), "just checking, this should be live");
731
732 // Find and set the first alive subklass
733 Klass* sub = current->clean_subklass(true);
734 if (sub != nullptr) {
735 stack.push(sub);
736 }
737
738 // Find and set the first alive sibling
739 Klass* sibling = current->next_sibling(true);
740 current->set_next_sibling(sibling);
741 if (sibling != nullptr) {
742 stack.push(sibling);
743 }
744
745 // Clean the implementors list and method data.
746 if (clean_alive_klasses && current->is_instance_klass()) {
747 InstanceKlass* ik = InstanceKlass::cast(current);
748 clean_weak_instanceklass_links(ik);
749 }
750 }
751 }
752
753 void Klass::clean_weak_instanceklass_links(InstanceKlass* ik) {
754 ik->clean_weak_instanceklass_links();
755 // JVMTI RedefineClasses creates previous versions that are not in
756 // the class hierarchy, so process them here.
757 while ((ik = ik->previous_versions()) != nullptr) {
758 ik->clean_weak_instanceklass_links();
759 }
760 }
761
762 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
763 if (log_is_enabled(Trace, aot)) {
764 ResourceMark rm;
765 log_trace(aot)("Iter(Klass): %p (%s)", this, external_name());
766 }
767
768 it->push(&_name);
769 it->push(&_secondary_supers);
770 for (int i = 0; i < _primary_super_limit; i++) {
771 it->push(&_primary_supers[i]);
772 }
773 it->push(&_super);
774 if (!CDSConfig::is_dumping_archive()) {
775 // If dumping archive, these may point to excluded classes. There's no need
776 // to follow these pointers anyway, as they will be set to null in
777 // remove_unshareable_info().
778 it->push((Klass**)&_subklass);
779 it->push((Klass**)&_next_sibling);
780 it->push(&_next_link);
781 }
782
783 vtableEntry* vt = start_of_vtable();
784 for (int i=0; i<vtable_length(); i++) {
785 it->push(vt[i].method_addr());
786 }
787 }
788
789 #if INCLUDE_CDS
790 void Klass::remove_unshareable_info() {
791 assert(CDSConfig::is_dumping_archive(),
792 "only called during CDS dump time");
793 JFR_ONLY(REMOVE_ID(this);)
794 if (log_is_enabled(Trace, aot, unshareable)) {
795 ResourceMark rm;
796 log_trace(aot, unshareable)("remove: %s", external_name());
797 }
798
799 // _secondary_super_cache may be updated by an is_subtype_of() call
800 // while ArchiveBuilder is copying metaspace objects. Let's reset it to
801 // null and let it be repopulated at runtime.
802 set_secondary_super_cache(nullptr);
803
804 set_subklass(nullptr);
805 set_next_sibling(nullptr);
806 set_next_link(nullptr);
807
808 // Null out class_loader_data because we don't share that yet.
809 set_class_loader_data(nullptr);
810 set_in_aot_cache();
811
812 if (CDSConfig::is_dumping_classic_static_archive()) {
813 // "Classic" static archives are required to have deterministic contents.
814 // The elements in _secondary_supers are addresses in the ArchiveBuilder
815 // output buffer, so they should have deterministic values. If we rehash
816 // _secondary_supers, its elements will appear in a deterministic order.
817 //
818 // Note that the bitmap is guaranteed to be deterministic, regardless of the
819 // actual addresses of the elements in _secondary_supers. So rehashing shouldn't
820 // change it.
821 uintx bitmap = hash_secondary_supers(secondary_supers(), true);
822 assert(bitmap == _secondary_supers_bitmap, "bitmap should not be changed due to rehashing");
823 }
824 }
825
826 void Klass::remove_java_mirror() {
827 assert(CDSConfig::is_dumping_archive(), "sanity");
828 if (log_is_enabled(Trace, aot, unshareable)) {
829 ResourceMark rm;
830 log_trace(aot, unshareable)("remove java_mirror: %s", external_name());
831 }
832
833 #if INCLUDE_CDS_JAVA_HEAP
834 _archived_mirror_index = -1;
835 if (CDSConfig::is_dumping_heap()) {
836 Klass* src_k = ArchiveBuilder::current()->get_source_addr(this);
837 oop orig_mirror = src_k->java_mirror();
838 if (orig_mirror == nullptr) {
839 assert(CDSConfig::is_dumping_final_static_archive(), "sanity");
840 if (is_instance_klass()) {
841 assert(InstanceKlass::cast(this)->defined_by_other_loaders(), "sanity");
842 } else {
843 precond(is_objArray_klass());
844 Klass *k = ObjArrayKlass::cast(this)->bottom_klass();
845 precond(k->is_instance_klass());
846 assert(InstanceKlass::cast(k)->defined_by_other_loaders(), "sanity");
847 }
848 } else {
849 oop scratch_mirror = HeapShared::scratch_java_mirror(orig_mirror);
850 if (scratch_mirror != nullptr) {
851 _archived_mirror_index = HeapShared::append_root(scratch_mirror);
852 }
853 }
854 }
855 #endif
856
857 // Just null out the mirror. The class_loader_data() no longer exists.
858 clear_java_mirror_handle();
859 }
860
861 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
862 assert(is_klass(), "ensure C++ vtable is restored");
863 assert(in_aot_cache(), "must be set");
864 assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
865 JFR_ONLY(RESTORE_ID(this);)
866 if (log_is_enabled(Trace, aot, unshareable)) {
867 ResourceMark rm(THREAD);
868 oop class_loader = loader_data->class_loader();
869 log_trace(aot, unshareable)("restore: %s with class loader: %s", external_name(),
870 class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
871 }
872
873 // If an exception happened during CDS restore, some of these fields may already be
874 // set. We leave the class on the CLD list, even if incomplete so that we don't
875 // modify the CLD list outside a safepoint.
876 if (class_loader_data() == nullptr) {
877 set_class_loader_data(loader_data);
878 }
879 // Add to class loader list first before creating the mirror
880 // (same order as class file parsing)
881 loader_data->add_class(this);
882
883 Handle loader(THREAD, loader_data->class_loader());
884 ModuleEntry* module_entry = nullptr;
885 Klass* k = this;
886 if (k->is_objArray_klass()) {
887 k = ObjArrayKlass::cast(k)->bottom_klass();
888 }
889 // Obtain klass' module.
890 if (k->is_instance_klass()) {
891 InstanceKlass* ik = (InstanceKlass*) k;
892 module_entry = ik->module();
893 } else {
894 module_entry = ModuleEntryTable::javabase_moduleEntry();
895 }
896 // Obtain java.lang.Module, if available
897 Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module_oop() : (oop)nullptr));
898
899 if (this->has_archived_mirror_index()) {
900 ResourceMark rm(THREAD);
901 log_debug(aot, mirror)("%s has raw archived mirror", external_name());
902 if (HeapShared::is_archived_heap_in_use()) {
903 bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
904 protection_domain,
905 CHECK);
906 if (present) {
907 return;
908 }
909 }
910
911 // No archived mirror data
912 log_debug(aot, mirror)("No archived mirror data for %s", external_name());
913 clear_java_mirror_handle();
914 this->clear_archived_mirror_index();
915 }
916
917 // Only recreate it if not present. A previous attempt to restore may have
918 // gotten an OOM later but keep the mirror if it was created.
919 if (java_mirror() == nullptr) {
920 ResourceMark rm(THREAD);
921 log_trace(aot, mirror)("Recreate mirror for %s", external_name());
922 java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
923 }
924 }
925 #endif // INCLUDE_CDS
926
927 #if INCLUDE_CDS_JAVA_HEAP
928 oop Klass::archived_java_mirror() {
929 assert(has_archived_mirror_index(), "must have archived mirror");
930 return HeapShared::get_root(_archived_mirror_index);
931 }
932
933 void Klass::clear_archived_mirror_index() {
934 if (_archived_mirror_index >= 0) {
935 HeapShared::clear_root(_archived_mirror_index);
936 }
937 _archived_mirror_index = -1;
938 }
939 #endif // INCLUDE_CDS_JAVA_HEAP
940
941 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
942 if (length > max_length) {
943 if (!THREAD->is_in_internal_oome_mark()) {
944 report_java_out_of_memory("Requested array size exceeds VM limit");
945 JvmtiExport::post_array_size_exhausted();
946 THROW_OOP(Universe::out_of_memory_error_array_size());
947 } else {
948 THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
949 }
950 } else if (length < 0) {
951 THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
952 }
953 }
954
955 // Replace the last '+' char with '/'.
956 static char* convert_hidden_name_to_java(Symbol* name) {
957 size_t name_len = name->utf8_length();
958 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
959 name->as_klass_external_name(result, (int)name_len + 1);
960 for (int index = (int)name_len; index > 0; index--) {
961 if (result[index] == '+') {
962 result[index] = JVM_SIGNATURE_SLASH;
963 break;
964 }
965 }
966 return result;
967 }
968
969 // In product mode, this function doesn't have virtual function calls so
970 // there might be some performance advantage to handling InstanceKlass here.
971 const char* Klass::external_name() const {
972 if (is_instance_klass()) {
973 const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
974 if (ik->is_hidden()) {
975 char* result = convert_hidden_name_to_java(name());
976 return result;
977 }
978 } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
979 char* result = convert_hidden_name_to_java(name());
980 return result;
981 }
982 if (name() == nullptr) return "<unknown>";
983 return name()->as_klass_external_name();
984 }
985
986 const char* Klass::signature_name() const {
987 if (name() == nullptr) return "<unknown>";
988 if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
989 size_t name_len = name()->utf8_length();
990 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
991 name()->as_C_string(result, (int)name_len + 1);
992 for (int index = (int)name_len; index > 0; index--) {
993 if (result[index] == '+') {
994 result[index] = JVM_SIGNATURE_DOT;
995 break;
996 }
997 }
998 return result;
999 }
1000 return name()->as_C_string();
1001 }
1002
1003 const char* Klass::external_kind() const {
1004 if (is_interface()) return "interface";
1005 if (is_abstract()) return "abstract class";
1006 return "class";
1007 }
1008
1009 // Unless overridden, jvmti_class_status has no flags set.
1010 jint Klass::jvmti_class_status() const {
1011 return 0;
1012 }
1013
1014
1015 // Printing
1016
1017 void Klass::print_on(outputStream* st) const {
1018 ResourceMark rm;
1019 // print title
1020 st->print("%s", internal_name());
1021 print_address_on(st);
1022 st->cr();
1023 }
1024
1025 #define BULLET " - "
1026
1027 // Caller needs ResourceMark
1028 void Klass::oop_print_on(oop obj, outputStream* st) {
1029 // print title
1030 st->print_cr("%s ", internal_name());
1031 obj->print_address_on(st);
1032
1033 if (WizardMode) {
1034 // print header
1035 obj->mark().print_on(st);
1036 st->cr();
1037 if (UseCompactObjectHeaders) {
1038 st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value());
1039 st->cr();
1040 }
1041 }
1042
1043 // print class
1044 st->print(BULLET"klass: ");
1045 obj->klass()->print_value_on(st);
1046 st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
1047 st->cr();
1048 }
1049
1050 void Klass::oop_print_value_on(oop obj, outputStream* st) {
1051 // print title
1052 ResourceMark rm; // Cannot print in debug mode without this
1053 st->print("%s", internal_name());
1054 obj->print_address_on(st);
1055 }
1056
1057 // Verification
1058
1059 void Klass::verify_on(outputStream* st) {
1060
1061 // This can be expensive, but it is worth checking that this klass is actually
1062 // in the CLD graph but not in production.
1063 #ifdef ASSERT
1064 if (UseCompressedClassPointers) {
1065 // Stricter checks for both correct alignment and placement
1066 CompressedKlassPointers::check_encodable(this);
1067 } else {
1068 assert(Metaspace::contains((address)this), "Should be");
1069 }
1070 #endif // ASSERT
1071
1072 guarantee(this->is_klass(),"should be klass");
1073
1074 if (super() != nullptr) {
1075 guarantee(super()->is_klass(), "should be klass");
1076 }
1077 if (secondary_super_cache() != nullptr) {
1078 Klass* ko = secondary_super_cache();
1079 guarantee(ko->is_klass(), "should be klass");
1080 }
1081 for ( uint i = 0; i < primary_super_limit(); i++ ) {
1082 Klass* ko = _primary_supers[i];
1083 if (ko != nullptr) {
1084 guarantee(ko->is_klass(), "should be klass");
1085 }
1086 }
1087
1088 if (java_mirror_no_keepalive() != nullptr) {
1089 guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1090 }
1091 }
1092
1093 void Klass::oop_verify_on(oop obj, outputStream* st) {
1094 guarantee(oopDesc::is_oop(obj), "should be oop");
1095 guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1096 }
1097
1098 // Note: this function is called with an address that may or may not be a Klass.
1099 // The point is not to assert it is but to check if it could be.
1100 bool Klass::is_valid(Klass* k) {
1101 if (!is_aligned(k, sizeof(MetaWord))) return false;
1102 if ((size_t)k < os::min_page_size()) return false;
1103
1104 if (!os::is_readable_range(k, k + 1)) return false;
1105 if (!Metaspace::contains(k)) return false;
1106
1107 if (!Symbol::is_valid(k->name())) return false;
1108 return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1109 }
1110
1111 Method* Klass::method_at_vtable(int index) {
1112 #ifndef PRODUCT
1113 assert(index >= 0, "valid vtable index");
1114 if (DebugVtables) {
1115 verify_vtable_index(index);
1116 }
1117 #endif
1118 return start_of_vtable()[index].method();
1119 }
1120
1121
1122 #ifndef PRODUCT
1123
1124 bool Klass::verify_vtable_index(int i) {
1125 int limit = vtable_length()/vtableEntry::size();
1126 assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1127 return true;
1128 }
1129
1130 #endif // PRODUCT
1131
1132 // Caller needs ResourceMark
1133 // joint_in_module_of_loader provides an optimization if 2 classes are in
1134 // the same module to succinctly print out relevant information about their
1135 // module name and class loader's name_and_id for error messages.
1136 // Format:
1137 // <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1138 // are in module <module-name>[@<version>]
1139 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1140 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1141 assert(module() == class2->module(), "classes do not have the same module");
1142 const char* class1_name = external_name();
1143 size_t len = strlen(class1_name) + 1;
1144
1145 const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1146 len += strlen(class2_description);
1147
1148 len += strlen(" and ");
1149
1150 char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1151
1152 // Just return the FQN if error when allocating string
1153 if (joint_description == nullptr) {
1154 return class1_name;
1155 }
1156
1157 jio_snprintf(joint_description, len, "%s and %s",
1158 class1_name,
1159 class2_description);
1160
1161 return joint_description;
1162 }
1163
1164 // Caller needs ResourceMark
1165 // class_in_module_of_loader provides a standard way to include
1166 // relevant information about a class, such as its module name as
1167 // well as its class loader's name_and_id, in error messages and logging.
1168 // Format:
1169 // <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1170 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1171 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1172 // 1. fully qualified external name of class
1173 const char* klass_name = external_name();
1174 size_t len = strlen(klass_name) + 1;
1175
1176 // 2. module name + @version
1177 const char* module_name = "";
1178 const char* version = "";
1179 bool has_version = false;
1180 bool module_is_named = false;
1181 const char* module_name_phrase = "";
1182 const Klass* bottom_klass = is_objArray_klass() ?
1183 ObjArrayKlass::cast(this)->bottom_klass() : this;
1184 if (bottom_klass->is_instance_klass()) {
1185 ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1186 if (module->is_named()) {
1187 module_is_named = true;
1188 module_name_phrase = "module ";
1189 module_name = module->name()->as_C_string();
1190 len += strlen(module_name);
1191 // Use version if exists and is not a jdk module
1192 if (module->should_show_version()) {
1193 has_version = true;
1194 version = module->version()->as_C_string();
1195 // Include stlen(version) + 1 for the "@"
1196 len += strlen(version) + 1;
1197 }
1198 } else {
1199 module_name = UNNAMED_MODULE;
1200 len += UNNAMED_MODULE_LEN;
1201 }
1202 } else {
1203 // klass is an array of primitives, module is java.base
1204 module_is_named = true;
1205 module_name_phrase = "module ";
1206 module_name = JAVA_BASE_NAME;
1207 len += JAVA_BASE_NAME_LEN;
1208 }
1209
1210 // 3. class loader's name_and_id
1211 ClassLoaderData* cld = class_loader_data();
1212 assert(cld != nullptr, "class_loader_data should not be null");
1213 const char* loader_name_and_id = cld->loader_name_and_id();
1214 len += strlen(loader_name_and_id);
1215
1216 // 4. include parent loader information
1217 const char* parent_loader_phrase = "";
1218 const char* parent_loader_name_and_id = "";
1219 if (include_parent_loader &&
1220 !cld->is_builtin_class_loader_data()) {
1221 oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1222 ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1223 // The parent loader's ClassLoaderData could be null if it is
1224 // a delegating class loader that has never defined a class.
1225 // In this case the loader's name must be obtained via the parent loader's oop.
1226 if (parent_cld == nullptr) {
1227 oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1228 if (cl_name_and_id != nullptr) {
1229 parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1230 }
1231 } else {
1232 parent_loader_name_and_id = parent_cld->loader_name_and_id();
1233 }
1234 parent_loader_phrase = ", parent loader ";
1235 len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1236 }
1237
1238 // Start to construct final full class description string
1239 len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1240 len += strlen(module_name_phrase) + strlen(" of loader ");
1241
1242 char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1243
1244 // Just return the FQN if error when allocating string
1245 if (class_description == nullptr) {
1246 return klass_name;
1247 }
1248
1249 jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1250 klass_name,
1251 (use_are) ? "are" : "is",
1252 module_name_phrase,
1253 module_name,
1254 (has_version) ? "@" : "",
1255 (has_version) ? version : "",
1256 loader_name_and_id,
1257 parent_loader_phrase,
1258 parent_loader_name_and_id);
1259
1260 return class_description;
1261 }
1262
1263 class LookupStats : StackObj {
1264 private:
1265 uint _no_of_samples;
1266 uint _worst;
1267 uint _worst_count;
1268 uint _average;
1269 uint _best;
1270 uint _best_count;
1271 public:
1272 LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1273
1274 ~LookupStats() {
1275 assert(_best <= _worst || _no_of_samples == 0, "sanity");
1276 }
1277
1278 void sample(uint value) {
1279 ++_no_of_samples;
1280 _average += value;
1281
1282 if (_worst < value) {
1283 _worst = value;
1284 _worst_count = 1;
1285 } else if (_worst == value) {
1286 ++_worst_count;
1287 }
1288
1289 if (_best > value) {
1290 _best = value;
1291 _best_count = 1;
1292 } else if (_best == value) {
1293 ++_best_count;
1294 }
1295 }
1296
1297 void print_on(outputStream* st) const {
1298 st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1299 if (_best_count < _no_of_samples) {
1300 st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1301 (1.0 * _average) / _no_of_samples,
1302 _worst, (100.0 * _worst_count) / _no_of_samples);
1303 }
1304 }
1305 };
1306
1307 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1308 int num_of_supers = secondary_supers->length();
1309
1310 LookupStats s;
1311 for (int i = 0; i < num_of_supers; i++) {
1312 Klass* secondary_super = secondary_supers->at(i);
1313 int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1314 uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1315 s.sample(score);
1316 }
1317 st->print("positive_lookup: "); s.print_on(st);
1318 }
1319
1320 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1321 assert(~bitmap != 0, "no zeroes");
1322 uintx start = rotate_right(bitmap, slot);
1323 return count_trailing_zeros(~start);
1324 }
1325
1326 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1327 LookupStats s;
1328 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1329 uint score = compute_distance_to_nearest_zero(slot, bitmap);
1330 s.sample(score);
1331 }
1332 st->print("negative_lookup: "); s.print_on(st);
1333 }
1334
1335 void Klass::print_secondary_supers_on(outputStream* st) const {
1336 if (secondary_supers() != nullptr) {
1337 st->print(" - "); st->print("%d elements;", _secondary_supers->length());
1338 st->print_cr(" bitmap: " UINTX_FORMAT_X_0, _secondary_supers_bitmap);
1339 if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1340 _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1341 st->print(" - "); print_positive_lookup_stats(secondary_supers(),
1342 _secondary_supers_bitmap, st); st->cr();
1343 st->print(" - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1344 }
1345 } else {
1346 st->print("null");
1347 }
1348 }
1349
1350 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1351 ResourceMark rm;
1352 super->print();
1353 sub->print();
1354 fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1355 msg, sub->external_name(), super->external_name(), linear_result, table_result);
1356 }