1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "compiler/compilationPolicy.hpp" 29 #include "compiler/compilerDefinitions.inline.hpp" 30 #include "compiler/compilerOracle.hpp" 31 #include "interpreter/bytecode.hpp" 32 #include "interpreter/bytecodeStream.hpp" 33 #include "interpreter/linkResolver.hpp" 34 #include "memory/metaspaceClosure.hpp" 35 #include "memory/resourceArea.hpp" 36 #include "oops/klass.inline.hpp" 37 #include "oops/methodData.inline.hpp" 38 #include "prims/jvmtiRedefineClasses.hpp" 39 #include "runtime/atomic.hpp" 40 #include "runtime/deoptimization.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/orderAccess.hpp" 43 #include "runtime/safepointVerifiers.hpp" 44 #include "runtime/signature.hpp" 45 #include "utilities/align.hpp" 46 #include "utilities/checkedCast.hpp" 47 #include "utilities/copy.hpp" 48 49 // ================================================================== 50 // DataLayout 51 // 52 // Overlay for generic profiling data. 53 54 // Some types of data layouts need a length field. 55 bool DataLayout::needs_array_len(u1 tag) { 56 return (tag == multi_branch_data_tag) || (tag == arg_info_data_tag) || (tag == parameters_type_data_tag); 57 } 58 59 // Perform generic initialization of the data. More specific 60 // initialization occurs in overrides of ProfileData::post_initialize. 61 void DataLayout::initialize(u1 tag, u2 bci, int cell_count) { 62 DataLayout temp; 63 temp._header._bits = (intptr_t)0; 64 temp._header._struct._tag = tag; 65 temp._header._struct._bci = bci; 66 // Write the header using a single intptr_t write. This ensures that if the layout is 67 // reinitialized readers will never see the transient state where the header is 0. 68 _header = temp._header; 69 70 for (int i = 0; i < cell_count; i++) { 71 set_cell_at(i, (intptr_t)0); 72 } 73 if (needs_array_len(tag)) { 74 set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header. 75 } 76 if (tag == call_type_data_tag) { 77 CallTypeData::initialize(this, cell_count); 78 } else if (tag == virtual_call_type_data_tag) { 79 VirtualCallTypeData::initialize(this, cell_count); 80 } 81 } 82 83 void DataLayout::clean_weak_klass_links(bool always_clean) { 84 ResourceMark m; 85 data_in()->clean_weak_klass_links(always_clean); 86 } 87 88 89 // ================================================================== 90 // ProfileData 91 // 92 // A ProfileData object is created to refer to a section of profiling 93 // data in a structured way. 94 95 // Constructor for invalid ProfileData. 96 ProfileData::ProfileData() { 97 _data = nullptr; 98 } 99 100 char* ProfileData::print_data_on_helper(const MethodData* md) const { 101 DataLayout* dp = md->extra_data_base(); 102 DataLayout* end = md->args_data_limit(); 103 stringStream ss; 104 for (;; dp = MethodData::next_extra(dp)) { 105 assert(dp < end, "moved past end of extra data"); 106 switch(dp->tag()) { 107 case DataLayout::speculative_trap_data_tag: 108 if (dp->bci() == bci()) { 109 SpeculativeTrapData* data = new SpeculativeTrapData(dp); 110 int trap = data->trap_state(); 111 char buf[100]; 112 ss.print("trap/"); 113 data->method()->print_short_name(&ss); 114 ss.print("(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap)); 115 } 116 break; 117 case DataLayout::bit_data_tag: 118 break; 119 case DataLayout::no_tag: 120 case DataLayout::arg_info_data_tag: 121 return ss.as_string(); 122 break; 123 default: 124 fatal("unexpected tag %d", dp->tag()); 125 } 126 } 127 return nullptr; 128 } 129 130 void ProfileData::print_data_on(outputStream* st, const MethodData* md) const { 131 print_data_on(st, print_data_on_helper(md)); 132 } 133 134 void ProfileData::print_shared(outputStream* st, const char* name, const char* extra) const { 135 st->print("bci: %d ", bci()); 136 st->fill_to(tab_width_one + 1); 137 st->print("%s", name); 138 tab(st); 139 int trap = trap_state(); 140 if (trap != 0) { 141 char buf[100]; 142 st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap)); 143 } 144 if (extra != nullptr) { 145 st->print("%s", extra); 146 } 147 int flags = data()->flags(); 148 if (flags != 0) { 149 st->print("flags(%d) ", flags); 150 } 151 } 152 153 void ProfileData::tab(outputStream* st, bool first) const { 154 st->fill_to(first ? tab_width_one : tab_width_two); 155 } 156 157 // ================================================================== 158 // BitData 159 // 160 // A BitData corresponds to a one-bit flag. This is used to indicate 161 // whether a checkcast bytecode has seen a null value. 162 163 164 void BitData::print_data_on(outputStream* st, const char* extra) const { 165 print_shared(st, "BitData", extra); 166 st->cr(); 167 } 168 169 // ================================================================== 170 // CounterData 171 // 172 // A CounterData corresponds to a simple counter. 173 174 void CounterData::print_data_on(outputStream* st, const char* extra) const { 175 print_shared(st, "CounterData", extra); 176 st->print_cr("count(%u)", count()); 177 } 178 179 // ================================================================== 180 // JumpData 181 // 182 // A JumpData is used to access profiling information for a direct 183 // branch. It is a counter, used for counting the number of branches, 184 // plus a data displacement, used for realigning the data pointer to 185 // the corresponding target bci. 186 187 void JumpData::post_initialize(BytecodeStream* stream, MethodData* mdo) { 188 assert(stream->bci() == bci(), "wrong pos"); 189 int target; 190 Bytecodes::Code c = stream->code(); 191 if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) { 192 target = stream->dest_w(); 193 } else { 194 target = stream->dest(); 195 } 196 int my_di = mdo->dp_to_di(dp()); 197 int target_di = mdo->bci_to_di(target); 198 int offset = target_di - my_di; 199 set_displacement(offset); 200 } 201 202 void JumpData::print_data_on(outputStream* st, const char* extra) const { 203 print_shared(st, "JumpData", extra); 204 st->print_cr("taken(%u) displacement(%d)", taken(), displacement()); 205 } 206 207 int TypeStackSlotEntries::compute_cell_count(Symbol* signature, bool include_receiver, int max) { 208 // Parameter profiling include the receiver 209 int args_count = include_receiver ? 1 : 0; 210 ResourceMark rm; 211 ReferenceArgumentCount rac(signature); 212 args_count += rac.count(); 213 args_count = MIN2(args_count, max); 214 return args_count * per_arg_cell_count; 215 } 216 217 int TypeEntriesAtCall::compute_cell_count(BytecodeStream* stream) { 218 assert(Bytecodes::is_invoke(stream->code()), "should be invoke"); 219 assert(TypeStackSlotEntries::per_arg_count() > ReturnTypeEntry::static_cell_count(), "code to test for arguments/results broken"); 220 const methodHandle m = stream->method(); 221 int bci = stream->bci(); 222 Bytecode_invoke inv(m, bci); 223 int args_cell = 0; 224 if (MethodData::profile_arguments_for_invoke(m, bci)) { 225 args_cell = TypeStackSlotEntries::compute_cell_count(inv.signature(), false, TypeProfileArgsLimit); 226 } 227 int ret_cell = 0; 228 if (MethodData::profile_return_for_invoke(m, bci) && is_reference_type(inv.result_type())) { 229 ret_cell = ReturnTypeEntry::static_cell_count(); 230 } 231 int header_cell = 0; 232 if (args_cell + ret_cell > 0) { 233 header_cell = header_cell_count(); 234 } 235 236 return header_cell + args_cell + ret_cell; 237 } 238 239 class ArgumentOffsetComputer : public SignatureIterator { 240 private: 241 int _max; 242 int _offset; 243 GrowableArray<int> _offsets; 244 245 friend class SignatureIterator; // so do_parameters_on can call do_type 246 void do_type(BasicType type) { 247 if (is_reference_type(type) && _offsets.length() < _max) { 248 _offsets.push(_offset); 249 } 250 _offset += parameter_type_word_count(type); 251 } 252 253 public: 254 ArgumentOffsetComputer(Symbol* signature, int max) 255 : SignatureIterator(signature), 256 _max(max), _offset(0), 257 _offsets(max) { 258 do_parameters_on(this); // non-virtual template execution 259 } 260 261 int off_at(int i) const { return _offsets.at(i); } 262 }; 263 264 void TypeStackSlotEntries::post_initialize(Symbol* signature, bool has_receiver, bool include_receiver) { 265 ResourceMark rm; 266 int start = 0; 267 // Parameter profiling include the receiver 268 if (include_receiver && has_receiver) { 269 set_stack_slot(0, 0); 270 set_type(0, type_none()); 271 start += 1; 272 } 273 ArgumentOffsetComputer aos(signature, _number_of_entries-start); 274 for (int i = start; i < _number_of_entries; i++) { 275 set_stack_slot(i, aos.off_at(i-start) + (has_receiver ? 1 : 0)); 276 set_type(i, type_none()); 277 } 278 } 279 280 void CallTypeData::post_initialize(BytecodeStream* stream, MethodData* mdo) { 281 assert(Bytecodes::is_invoke(stream->code()), "should be invoke"); 282 Bytecode_invoke inv(stream->method(), stream->bci()); 283 284 if (has_arguments()) { 285 #ifdef ASSERT 286 ResourceMark rm; 287 ReferenceArgumentCount rac(inv.signature()); 288 int count = MIN2(rac.count(), (int)TypeProfileArgsLimit); 289 assert(count > 0, "room for args type but none found?"); 290 check_number_of_arguments(count); 291 #endif 292 _args.post_initialize(inv.signature(), inv.has_receiver(), false); 293 } 294 295 if (has_return()) { 296 assert(is_reference_type(inv.result_type()), "room for a ret type but doesn't return obj?"); 297 _ret.post_initialize(); 298 } 299 } 300 301 void VirtualCallTypeData::post_initialize(BytecodeStream* stream, MethodData* mdo) { 302 assert(Bytecodes::is_invoke(stream->code()), "should be invoke"); 303 Bytecode_invoke inv(stream->method(), stream->bci()); 304 305 if (has_arguments()) { 306 #ifdef ASSERT 307 ResourceMark rm; 308 ReferenceArgumentCount rac(inv.signature()); 309 int count = MIN2(rac.count(), (int)TypeProfileArgsLimit); 310 assert(count > 0, "room for args type but none found?"); 311 check_number_of_arguments(count); 312 #endif 313 _args.post_initialize(inv.signature(), inv.has_receiver(), false); 314 } 315 316 if (has_return()) { 317 assert(is_reference_type(inv.result_type()), "room for a ret type but doesn't return obj?"); 318 _ret.post_initialize(); 319 } 320 } 321 322 void TypeStackSlotEntries::clean_weak_klass_links(bool always_clean) { 323 for (int i = 0; i < _number_of_entries; i++) { 324 intptr_t p = type(i); 325 Klass* k = (Klass*)klass_part(p); 326 if (k != nullptr && (always_clean || !k->is_loader_alive())) { 327 set_type(i, with_status((Klass*)nullptr, p)); 328 } 329 } 330 } 331 332 void ReturnTypeEntry::clean_weak_klass_links(bool always_clean) { 333 intptr_t p = type(); 334 Klass* k = (Klass*)klass_part(p); 335 if (k != nullptr && (always_clean || !k->is_loader_alive())) { 336 set_type(with_status((Klass*)nullptr, p)); 337 } 338 } 339 340 bool TypeEntriesAtCall::return_profiling_enabled() { 341 return MethodData::profile_return(); 342 } 343 344 bool TypeEntriesAtCall::arguments_profiling_enabled() { 345 return MethodData::profile_arguments(); 346 } 347 348 void TypeEntries::print_klass(outputStream* st, intptr_t k) { 349 if (is_type_none(k)) { 350 st->print("none"); 351 } else if (is_type_unknown(k)) { 352 st->print("unknown"); 353 } else { 354 valid_klass(k)->print_value_on(st); 355 } 356 if (was_null_seen(k)) { 357 st->print(" (null seen)"); 358 } 359 } 360 361 void TypeStackSlotEntries::print_data_on(outputStream* st) const { 362 for (int i = 0; i < _number_of_entries; i++) { 363 _pd->tab(st); 364 st->print("%d: stack(%u) ", i, stack_slot(i)); 365 print_klass(st, type(i)); 366 st->cr(); 367 } 368 } 369 370 void ReturnTypeEntry::print_data_on(outputStream* st) const { 371 _pd->tab(st); 372 print_klass(st, type()); 373 st->cr(); 374 } 375 376 void CallTypeData::print_data_on(outputStream* st, const char* extra) const { 377 CounterData::print_data_on(st, extra); 378 if (has_arguments()) { 379 tab(st, true); 380 st->print("argument types"); 381 _args.print_data_on(st); 382 } 383 if (has_return()) { 384 tab(st, true); 385 st->print("return type"); 386 _ret.print_data_on(st); 387 } 388 } 389 390 void VirtualCallTypeData::print_data_on(outputStream* st, const char* extra) const { 391 VirtualCallData::print_data_on(st, extra); 392 if (has_arguments()) { 393 tab(st, true); 394 st->print("argument types"); 395 _args.print_data_on(st); 396 } 397 if (has_return()) { 398 tab(st, true); 399 st->print("return type"); 400 _ret.print_data_on(st); 401 } 402 } 403 404 // ================================================================== 405 // ReceiverTypeData 406 // 407 // A ReceiverTypeData is used to access profiling information about a 408 // dynamic type check. It consists of a counter which counts the total times 409 // that the check is reached, and a series of (Klass*, count) pairs 410 // which are used to store a type profile for the receiver of the check. 411 412 void ReceiverTypeData::clean_weak_klass_links(bool always_clean) { 413 for (uint row = 0; row < row_limit(); row++) { 414 Klass* p = receiver(row); 415 if (p != nullptr && (always_clean || !p->is_loader_alive())) { 416 clear_row(row); 417 } 418 } 419 } 420 421 void ReceiverTypeData::print_receiver_data_on(outputStream* st) const { 422 uint row; 423 int entries = 0; 424 for (row = 0; row < row_limit(); row++) { 425 if (receiver(row) != nullptr) entries++; 426 } 427 st->print_cr("count(%u) entries(%u)", count(), entries); 428 int total = count(); 429 for (row = 0; row < row_limit(); row++) { 430 if (receiver(row) != nullptr) { 431 total += receiver_count(row); 432 } 433 } 434 for (row = 0; row < row_limit(); row++) { 435 if (receiver(row) != nullptr) { 436 tab(st); 437 receiver(row)->print_value_on(st); 438 st->print_cr("(%u %4.2f)", receiver_count(row), (float) receiver_count(row) / (float) total); 439 } 440 } 441 } 442 void ReceiverTypeData::print_data_on(outputStream* st, const char* extra) const { 443 print_shared(st, "ReceiverTypeData", extra); 444 print_receiver_data_on(st); 445 } 446 447 void VirtualCallData::print_data_on(outputStream* st, const char* extra) const { 448 print_shared(st, "VirtualCallData", extra); 449 print_receiver_data_on(st); 450 } 451 452 // ================================================================== 453 // RetData 454 // 455 // A RetData is used to access profiling information for a ret bytecode. 456 // It is composed of a count of the number of times that the ret has 457 // been executed, followed by a series of triples of the form 458 // (bci, count, di) which count the number of times that some bci was the 459 // target of the ret and cache a corresponding displacement. 460 461 void RetData::post_initialize(BytecodeStream* stream, MethodData* mdo) { 462 for (uint row = 0; row < row_limit(); row++) { 463 set_bci_displacement(row, -1); 464 set_bci(row, no_bci); 465 } 466 // release so other threads see a consistent state. bci is used as 467 // a valid flag for bci_displacement. 468 OrderAccess::release(); 469 } 470 471 // This routine needs to atomically update the RetData structure, so the 472 // caller needs to hold the RetData_lock before it gets here. Since taking 473 // the lock can block (and allow GC) and since RetData is a ProfileData is a 474 // wrapper around a derived oop, taking the lock in _this_ method will 475 // basically cause the 'this' pointer's _data field to contain junk after the 476 // lock. We require the caller to take the lock before making the ProfileData 477 // structure. Currently the only caller is InterpreterRuntime::update_mdp_for_ret 478 address RetData::fixup_ret(int return_bci, MethodData* h_mdo) { 479 // First find the mdp which corresponds to the return bci. 480 address mdp = h_mdo->bci_to_dp(return_bci); 481 482 // Now check to see if any of the cache slots are open. 483 for (uint row = 0; row < row_limit(); row++) { 484 if (bci(row) == no_bci) { 485 set_bci_displacement(row, checked_cast<int>(mdp - dp())); 486 set_bci_count(row, DataLayout::counter_increment); 487 // Barrier to ensure displacement is written before the bci; allows 488 // the interpreter to read displacement without fear of race condition. 489 release_set_bci(row, return_bci); 490 break; 491 } 492 } 493 return mdp; 494 } 495 496 void RetData::print_data_on(outputStream* st, const char* extra) const { 497 print_shared(st, "RetData", extra); 498 uint row; 499 int entries = 0; 500 for (row = 0; row < row_limit(); row++) { 501 if (bci(row) != no_bci) entries++; 502 } 503 st->print_cr("count(%u) entries(%u)", count(), entries); 504 for (row = 0; row < row_limit(); row++) { 505 if (bci(row) != no_bci) { 506 tab(st); 507 st->print_cr("bci(%d: count(%u) displacement(%d))", 508 bci(row), bci_count(row), bci_displacement(row)); 509 } 510 } 511 } 512 513 // ================================================================== 514 // BranchData 515 // 516 // A BranchData is used to access profiling data for a two-way branch. 517 // It consists of taken and not_taken counts as well as a data displacement 518 // for the taken case. 519 520 void BranchData::post_initialize(BytecodeStream* stream, MethodData* mdo) { 521 assert(stream->bci() == bci(), "wrong pos"); 522 int target = stream->dest(); 523 int my_di = mdo->dp_to_di(dp()); 524 int target_di = mdo->bci_to_di(target); 525 int offset = target_di - my_di; 526 set_displacement(offset); 527 } 528 529 void BranchData::print_data_on(outputStream* st, const char* extra) const { 530 print_shared(st, "BranchData", extra); 531 st->print_cr("taken(%u) displacement(%d)", 532 taken(), displacement()); 533 tab(st); 534 st->print_cr("not taken(%u)", not_taken()); 535 } 536 537 // ================================================================== 538 // MultiBranchData 539 // 540 // A MultiBranchData is used to access profiling information for 541 // a multi-way branch (*switch bytecodes). It consists of a series 542 // of (count, displacement) pairs, which count the number of times each 543 // case was taken and specify the data displacement for each branch target. 544 545 int MultiBranchData::compute_cell_count(BytecodeStream* stream) { 546 int cell_count = 0; 547 if (stream->code() == Bytecodes::_tableswitch) { 548 Bytecode_tableswitch sw(stream->method()(), stream->bcp()); 549 cell_count = 1 + per_case_cell_count * (1 + sw.length()); // 1 for default 550 } else { 551 Bytecode_lookupswitch sw(stream->method()(), stream->bcp()); 552 cell_count = 1 + per_case_cell_count * (sw.number_of_pairs() + 1); // 1 for default 553 } 554 return cell_count; 555 } 556 557 void MultiBranchData::post_initialize(BytecodeStream* stream, 558 MethodData* mdo) { 559 assert(stream->bci() == bci(), "wrong pos"); 560 int target; 561 int my_di; 562 int target_di; 563 int offset; 564 if (stream->code() == Bytecodes::_tableswitch) { 565 Bytecode_tableswitch sw(stream->method()(), stream->bcp()); 566 int len = sw.length(); 567 assert(array_len() == per_case_cell_count * (len + 1), "wrong len"); 568 for (int count = 0; count < len; count++) { 569 target = sw.dest_offset_at(count) + bci(); 570 my_di = mdo->dp_to_di(dp()); 571 target_di = mdo->bci_to_di(target); 572 offset = target_di - my_di; 573 set_displacement_at(count, offset); 574 } 575 target = sw.default_offset() + bci(); 576 my_di = mdo->dp_to_di(dp()); 577 target_di = mdo->bci_to_di(target); 578 offset = target_di - my_di; 579 set_default_displacement(offset); 580 581 } else { 582 Bytecode_lookupswitch sw(stream->method()(), stream->bcp()); 583 int npairs = sw.number_of_pairs(); 584 assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len"); 585 for (int count = 0; count < npairs; count++) { 586 LookupswitchPair pair = sw.pair_at(count); 587 target = pair.offset() + bci(); 588 my_di = mdo->dp_to_di(dp()); 589 target_di = mdo->bci_to_di(target); 590 offset = target_di - my_di; 591 set_displacement_at(count, offset); 592 } 593 target = sw.default_offset() + bci(); 594 my_di = mdo->dp_to_di(dp()); 595 target_di = mdo->bci_to_di(target); 596 offset = target_di - my_di; 597 set_default_displacement(offset); 598 } 599 } 600 601 void MultiBranchData::print_data_on(outputStream* st, const char* extra) const { 602 print_shared(st, "MultiBranchData", extra); 603 st->print_cr("default_count(%u) displacement(%d)", 604 default_count(), default_displacement()); 605 int cases = number_of_cases(); 606 for (int i = 0; i < cases; i++) { 607 tab(st); 608 st->print_cr("count(%u) displacement(%d)", 609 count_at(i), displacement_at(i)); 610 } 611 } 612 613 void ArgInfoData::print_data_on(outputStream* st, const char* extra) const { 614 print_shared(st, "ArgInfoData", extra); 615 int nargs = number_of_args(); 616 for (int i = 0; i < nargs; i++) { 617 st->print(" 0x%x", arg_modified(i)); 618 } 619 st->cr(); 620 } 621 622 int ParametersTypeData::compute_cell_count(Method* m) { 623 if (!MethodData::profile_parameters_for_method(methodHandle(Thread::current(), m))) { 624 return 0; 625 } 626 int max = TypeProfileParmsLimit == -1 ? INT_MAX : TypeProfileParmsLimit; 627 int obj_args = TypeStackSlotEntries::compute_cell_count(m->signature(), !m->is_static(), max); 628 if (obj_args > 0) { 629 return obj_args + 1; // 1 cell for array len 630 } 631 return 0; 632 } 633 634 void ParametersTypeData::post_initialize(BytecodeStream* stream, MethodData* mdo) { 635 _parameters.post_initialize(mdo->method()->signature(), !mdo->method()->is_static(), true); 636 } 637 638 bool ParametersTypeData::profiling_enabled() { 639 return MethodData::profile_parameters(); 640 } 641 642 void ParametersTypeData::print_data_on(outputStream* st, const char* extra) const { 643 print_shared(st, "ParametersTypeData", extra); 644 tab(st); 645 _parameters.print_data_on(st); 646 st->cr(); 647 } 648 649 void SpeculativeTrapData::print_data_on(outputStream* st, const char* extra) const { 650 print_shared(st, "SpeculativeTrapData", extra); 651 tab(st); 652 method()->print_short_name(st); 653 st->cr(); 654 } 655 656 // ================================================================== 657 // MethodData* 658 // 659 // A MethodData* holds information which has been collected about 660 // a method. 661 662 MethodData* MethodData::allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS) { 663 assert(!THREAD->owns_locks(), "Should not own any locks"); 664 int size = MethodData::compute_allocation_size_in_words(method); 665 666 return new (loader_data, size, MetaspaceObj::MethodDataType, THREAD) 667 MethodData(method); 668 } 669 670 int MethodData::bytecode_cell_count(Bytecodes::Code code) { 671 switch (code) { 672 case Bytecodes::_checkcast: 673 case Bytecodes::_instanceof: 674 case Bytecodes::_aastore: 675 if (TypeProfileCasts) { 676 return ReceiverTypeData::static_cell_count(); 677 } else { 678 return BitData::static_cell_count(); 679 } 680 case Bytecodes::_invokespecial: 681 case Bytecodes::_invokestatic: 682 if (MethodData::profile_arguments() || MethodData::profile_return()) { 683 return variable_cell_count; 684 } else { 685 return CounterData::static_cell_count(); 686 } 687 case Bytecodes::_goto: 688 case Bytecodes::_goto_w: 689 case Bytecodes::_jsr: 690 case Bytecodes::_jsr_w: 691 return JumpData::static_cell_count(); 692 case Bytecodes::_invokevirtual: 693 case Bytecodes::_invokeinterface: 694 if (MethodData::profile_arguments() || MethodData::profile_return()) { 695 return variable_cell_count; 696 } else { 697 return VirtualCallData::static_cell_count(); 698 } 699 case Bytecodes::_invokedynamic: 700 if (MethodData::profile_arguments() || MethodData::profile_return()) { 701 return variable_cell_count; 702 } else { 703 return CounterData::static_cell_count(); 704 } 705 case Bytecodes::_ret: 706 return RetData::static_cell_count(); 707 case Bytecodes::_ifeq: 708 case Bytecodes::_ifne: 709 case Bytecodes::_iflt: 710 case Bytecodes::_ifge: 711 case Bytecodes::_ifgt: 712 case Bytecodes::_ifle: 713 case Bytecodes::_if_icmpeq: 714 case Bytecodes::_if_icmpne: 715 case Bytecodes::_if_icmplt: 716 case Bytecodes::_if_icmpge: 717 case Bytecodes::_if_icmpgt: 718 case Bytecodes::_if_icmple: 719 case Bytecodes::_if_acmpeq: 720 case Bytecodes::_if_acmpne: 721 case Bytecodes::_ifnull: 722 case Bytecodes::_ifnonnull: 723 return BranchData::static_cell_count(); 724 case Bytecodes::_lookupswitch: 725 case Bytecodes::_tableswitch: 726 return variable_cell_count; 727 default: 728 return no_profile_data; 729 } 730 } 731 732 // Compute the size of the profiling information corresponding to 733 // the current bytecode. 734 int MethodData::compute_data_size(BytecodeStream* stream) { 735 int cell_count = bytecode_cell_count(stream->code()); 736 if (cell_count == no_profile_data) { 737 return 0; 738 } 739 if (cell_count == variable_cell_count) { 740 switch (stream->code()) { 741 case Bytecodes::_lookupswitch: 742 case Bytecodes::_tableswitch: 743 cell_count = MultiBranchData::compute_cell_count(stream); 744 break; 745 case Bytecodes::_invokespecial: 746 case Bytecodes::_invokestatic: 747 case Bytecodes::_invokedynamic: 748 assert(MethodData::profile_arguments() || MethodData::profile_return(), "should be collecting args profile"); 749 if (profile_arguments_for_invoke(stream->method(), stream->bci()) || 750 profile_return_for_invoke(stream->method(), stream->bci())) { 751 cell_count = CallTypeData::compute_cell_count(stream); 752 } else { 753 cell_count = CounterData::static_cell_count(); 754 } 755 break; 756 case Bytecodes::_invokevirtual: 757 case Bytecodes::_invokeinterface: { 758 assert(MethodData::profile_arguments() || MethodData::profile_return(), "should be collecting args profile"); 759 if (profile_arguments_for_invoke(stream->method(), stream->bci()) || 760 profile_return_for_invoke(stream->method(), stream->bci())) { 761 cell_count = VirtualCallTypeData::compute_cell_count(stream); 762 } else { 763 cell_count = VirtualCallData::static_cell_count(); 764 } 765 break; 766 } 767 default: 768 fatal("unexpected bytecode for var length profile data"); 769 } 770 } 771 // Note: cell_count might be zero, meaning that there is just 772 // a DataLayout header, with no extra cells. 773 assert(cell_count >= 0, "sanity"); 774 return DataLayout::compute_size_in_bytes(cell_count); 775 } 776 777 bool MethodData::is_speculative_trap_bytecode(Bytecodes::Code code) { 778 // Bytecodes for which we may use speculation 779 switch (code) { 780 case Bytecodes::_checkcast: 781 case Bytecodes::_instanceof: 782 case Bytecodes::_aastore: 783 case Bytecodes::_invokevirtual: 784 case Bytecodes::_invokeinterface: 785 case Bytecodes::_if_acmpeq: 786 case Bytecodes::_if_acmpne: 787 case Bytecodes::_ifnull: 788 case Bytecodes::_ifnonnull: 789 case Bytecodes::_invokestatic: 790 #ifdef COMPILER2 791 if (CompilerConfig::is_c2_enabled()) { 792 return UseTypeSpeculation; 793 } 794 #endif 795 default: 796 return false; 797 } 798 return false; 799 } 800 801 #if INCLUDE_JVMCI 802 803 void* FailedSpeculation::operator new(size_t size, size_t fs_size) throw() { 804 return CHeapObj<mtCompiler>::operator new(fs_size, std::nothrow); 805 } 806 807 FailedSpeculation::FailedSpeculation(address speculation, int speculation_len) : _data_len(speculation_len), _next(nullptr) { 808 memcpy(data(), speculation, speculation_len); 809 } 810 811 // A heuristic check to detect nmethods that outlive a failed speculations list. 812 static void guarantee_failed_speculations_alive(nmethod* nm, FailedSpeculation** failed_speculations_address) { 813 jlong head = (jlong)(address) *failed_speculations_address; 814 if ((head & 0x1) == 0x1) { 815 stringStream st; 816 if (nm != nullptr) { 817 st.print("%d", nm->compile_id()); 818 Method* method = nm->method(); 819 st.print_raw("{"); 820 if (method != nullptr) { 821 method->print_name(&st); 822 } else { 823 const char* jvmci_name = nm->jvmci_name(); 824 if (jvmci_name != nullptr) { 825 st.print_raw(jvmci_name); 826 } 827 } 828 st.print_raw("}"); 829 } else { 830 st.print("<unknown>"); 831 } 832 fatal("Adding to failed speculations list that appears to have been freed. Source: %s", st.as_string()); 833 } 834 } 835 836 bool FailedSpeculation::add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len) { 837 assert(failed_speculations_address != nullptr, "must be"); 838 size_t fs_size = sizeof(FailedSpeculation) + speculation_len; 839 840 guarantee_failed_speculations_alive(nm, failed_speculations_address); 841 842 FailedSpeculation** cursor = failed_speculations_address; 843 FailedSpeculation* fs = nullptr; 844 do { 845 if (*cursor == nullptr) { 846 if (fs == nullptr) { 847 // lazily allocate FailedSpeculation 848 fs = new (fs_size) FailedSpeculation(speculation, speculation_len); 849 if (fs == nullptr) { 850 // no memory -> ignore failed speculation 851 return false; 852 } 853 guarantee(is_aligned(fs, sizeof(FailedSpeculation*)), "FailedSpeculation objects must be pointer aligned"); 854 } 855 FailedSpeculation* old_fs = Atomic::cmpxchg(cursor, (FailedSpeculation*) nullptr, fs); 856 if (old_fs == nullptr) { 857 // Successfully appended fs to end of the list 858 return true; 859 } 860 } 861 guarantee(*cursor != nullptr, "cursor must point to non-null FailedSpeculation"); 862 // check if the current entry matches this thread's failed speculation 863 if ((*cursor)->data_len() == speculation_len && memcmp(speculation, (*cursor)->data(), speculation_len) == 0) { 864 if (fs != nullptr) { 865 delete fs; 866 } 867 return false; 868 } 869 cursor = (*cursor)->next_adr(); 870 } while (true); 871 } 872 873 void FailedSpeculation::free_failed_speculations(FailedSpeculation** failed_speculations_address) { 874 assert(failed_speculations_address != nullptr, "must be"); 875 FailedSpeculation* fs = *failed_speculations_address; 876 while (fs != nullptr) { 877 FailedSpeculation* next = fs->next(); 878 delete fs; 879 fs = next; 880 } 881 882 // Write an unaligned value to failed_speculations_address to denote 883 // that it is no longer a valid pointer. This is allows for the check 884 // in add_failed_speculation against adding to a freed failed 885 // speculations list. 886 long* head = (long*) failed_speculations_address; 887 (*head) = (*head) | 0x1; 888 } 889 #endif // INCLUDE_JVMCI 890 891 int MethodData::compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps) { 892 #if INCLUDE_JVMCI 893 if (ProfileTraps) { 894 // Assume that up to 30% of the possibly trapping BCIs with no MDP will need to allocate one. 895 int extra_data_count = MIN2(empty_bc_count, MAX2(4, (empty_bc_count * 30) / 100)); 896 897 // Make sure we have a minimum number of extra data slots to 898 // allocate SpeculativeTrapData entries. We would want to have one 899 // entry per compilation that inlines this method and for which 900 // some type speculation assumption fails. So the room we need for 901 // the SpeculativeTrapData entries doesn't directly depend on the 902 // size of the method. Because it's hard to estimate, we reserve 903 // space for an arbitrary number of entries. 904 int spec_data_count = (needs_speculative_traps ? SpecTrapLimitExtraEntries : 0) * 905 (SpeculativeTrapData::static_cell_count() + DataLayout::header_size_in_cells()); 906 907 return MAX2(extra_data_count, spec_data_count); 908 } else { 909 return 0; 910 } 911 #else // INCLUDE_JVMCI 912 if (ProfileTraps) { 913 // Assume that up to 3% of BCIs with no MDP will need to allocate one. 914 int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1; 915 // If the method is large, let the extra BCIs grow numerous (to ~1%). 916 int one_percent_of_data 917 = (uint)data_size / (DataLayout::header_size_in_bytes()*128); 918 if (extra_data_count < one_percent_of_data) 919 extra_data_count = one_percent_of_data; 920 if (extra_data_count > empty_bc_count) 921 extra_data_count = empty_bc_count; // no need for more 922 923 // Make sure we have a minimum number of extra data slots to 924 // allocate SpeculativeTrapData entries. We would want to have one 925 // entry per compilation that inlines this method and for which 926 // some type speculation assumption fails. So the room we need for 927 // the SpeculativeTrapData entries doesn't directly depend on the 928 // size of the method. Because it's hard to estimate, we reserve 929 // space for an arbitrary number of entries. 930 int spec_data_count = (needs_speculative_traps ? SpecTrapLimitExtraEntries : 0) * 931 (SpeculativeTrapData::static_cell_count() + DataLayout::header_size_in_cells()); 932 933 return MAX2(extra_data_count, spec_data_count); 934 } else { 935 return 0; 936 } 937 #endif // INCLUDE_JVMCI 938 } 939 940 // Compute the size of the MethodData* necessary to store 941 // profiling information about a given method. Size is in bytes. 942 int MethodData::compute_allocation_size_in_bytes(const methodHandle& method) { 943 int data_size = 0; 944 BytecodeStream stream(method); 945 Bytecodes::Code c; 946 int empty_bc_count = 0; // number of bytecodes lacking data 947 bool needs_speculative_traps = false; 948 while ((c = stream.next()) >= 0) { 949 int size_in_bytes = compute_data_size(&stream); 950 data_size += size_in_bytes; 951 if (size_in_bytes == 0 JVMCI_ONLY(&& Bytecodes::can_trap(c))) empty_bc_count += 1; 952 needs_speculative_traps = needs_speculative_traps || is_speculative_trap_bytecode(c); 953 } 954 int object_size = in_bytes(data_offset()) + data_size; 955 956 // Add some extra DataLayout cells (at least one) to track stray traps. 957 int extra_data_count = compute_extra_data_count(data_size, empty_bc_count, needs_speculative_traps); 958 object_size += extra_data_count * DataLayout::compute_size_in_bytes(0); 959 960 // Add a cell to record information about modified arguments. 961 int arg_size = method->size_of_parameters(); 962 object_size += DataLayout::compute_size_in_bytes(arg_size+1); 963 964 // Reserve room for an area of the MDO dedicated to profiling of 965 // parameters 966 int args_cell = ParametersTypeData::compute_cell_count(method()); 967 if (args_cell > 0) { 968 object_size += DataLayout::compute_size_in_bytes(args_cell); 969 } 970 971 if (ProfileExceptionHandlers && method()->has_exception_handler()) { 972 int num_exception_handlers = method()->exception_table_length(); 973 object_size += num_exception_handlers * single_exception_handler_data_size(); 974 } 975 976 return object_size; 977 } 978 979 // Compute the size of the MethodData* necessary to store 980 // profiling information about a given method. Size is in words 981 int MethodData::compute_allocation_size_in_words(const methodHandle& method) { 982 int byte_size = compute_allocation_size_in_bytes(method); 983 int word_size = align_up(byte_size, BytesPerWord) / BytesPerWord; 984 return align_metadata_size(word_size); 985 } 986 987 // Initialize an individual data segment. Returns the size of 988 // the segment in bytes. 989 int MethodData::initialize_data(BytecodeStream* stream, 990 int data_index) { 991 int cell_count = -1; 992 u1 tag = DataLayout::no_tag; 993 DataLayout* data_layout = data_layout_at(data_index); 994 Bytecodes::Code c = stream->code(); 995 switch (c) { 996 case Bytecodes::_checkcast: 997 case Bytecodes::_instanceof: 998 case Bytecodes::_aastore: 999 if (TypeProfileCasts) { 1000 cell_count = ReceiverTypeData::static_cell_count(); 1001 tag = DataLayout::receiver_type_data_tag; 1002 } else { 1003 cell_count = BitData::static_cell_count(); 1004 tag = DataLayout::bit_data_tag; 1005 } 1006 break; 1007 case Bytecodes::_invokespecial: 1008 case Bytecodes::_invokestatic: { 1009 int counter_data_cell_count = CounterData::static_cell_count(); 1010 if (profile_arguments_for_invoke(stream->method(), stream->bci()) || 1011 profile_return_for_invoke(stream->method(), stream->bci())) { 1012 cell_count = CallTypeData::compute_cell_count(stream); 1013 } else { 1014 cell_count = counter_data_cell_count; 1015 } 1016 if (cell_count > counter_data_cell_count) { 1017 tag = DataLayout::call_type_data_tag; 1018 } else { 1019 tag = DataLayout::counter_data_tag; 1020 } 1021 break; 1022 } 1023 case Bytecodes::_goto: 1024 case Bytecodes::_goto_w: 1025 case Bytecodes::_jsr: 1026 case Bytecodes::_jsr_w: 1027 cell_count = JumpData::static_cell_count(); 1028 tag = DataLayout::jump_data_tag; 1029 break; 1030 case Bytecodes::_invokevirtual: 1031 case Bytecodes::_invokeinterface: { 1032 int virtual_call_data_cell_count = VirtualCallData::static_cell_count(); 1033 if (profile_arguments_for_invoke(stream->method(), stream->bci()) || 1034 profile_return_for_invoke(stream->method(), stream->bci())) { 1035 cell_count = VirtualCallTypeData::compute_cell_count(stream); 1036 } else { 1037 cell_count = virtual_call_data_cell_count; 1038 } 1039 if (cell_count > virtual_call_data_cell_count) { 1040 tag = DataLayout::virtual_call_type_data_tag; 1041 } else { 1042 tag = DataLayout::virtual_call_data_tag; 1043 } 1044 break; 1045 } 1046 case Bytecodes::_invokedynamic: { 1047 // %%% should make a type profile for any invokedynamic that takes a ref argument 1048 int counter_data_cell_count = CounterData::static_cell_count(); 1049 if (profile_arguments_for_invoke(stream->method(), stream->bci()) || 1050 profile_return_for_invoke(stream->method(), stream->bci())) { 1051 cell_count = CallTypeData::compute_cell_count(stream); 1052 } else { 1053 cell_count = counter_data_cell_count; 1054 } 1055 if (cell_count > counter_data_cell_count) { 1056 tag = DataLayout::call_type_data_tag; 1057 } else { 1058 tag = DataLayout::counter_data_tag; 1059 } 1060 break; 1061 } 1062 case Bytecodes::_ret: 1063 cell_count = RetData::static_cell_count(); 1064 tag = DataLayout::ret_data_tag; 1065 break; 1066 case Bytecodes::_ifeq: 1067 case Bytecodes::_ifne: 1068 case Bytecodes::_iflt: 1069 case Bytecodes::_ifge: 1070 case Bytecodes::_ifgt: 1071 case Bytecodes::_ifle: 1072 case Bytecodes::_if_icmpeq: 1073 case Bytecodes::_if_icmpne: 1074 case Bytecodes::_if_icmplt: 1075 case Bytecodes::_if_icmpge: 1076 case Bytecodes::_if_icmpgt: 1077 case Bytecodes::_if_icmple: 1078 case Bytecodes::_if_acmpeq: 1079 case Bytecodes::_if_acmpne: 1080 case Bytecodes::_ifnull: 1081 case Bytecodes::_ifnonnull: 1082 cell_count = BranchData::static_cell_count(); 1083 tag = DataLayout::branch_data_tag; 1084 break; 1085 case Bytecodes::_lookupswitch: 1086 case Bytecodes::_tableswitch: 1087 cell_count = MultiBranchData::compute_cell_count(stream); 1088 tag = DataLayout::multi_branch_data_tag; 1089 break; 1090 default: 1091 break; 1092 } 1093 assert(tag == DataLayout::multi_branch_data_tag || 1094 ((MethodData::profile_arguments() || MethodData::profile_return()) && 1095 (tag == DataLayout::call_type_data_tag || 1096 tag == DataLayout::counter_data_tag || 1097 tag == DataLayout::virtual_call_type_data_tag || 1098 tag == DataLayout::virtual_call_data_tag)) || 1099 cell_count == bytecode_cell_count(c), "cell counts must agree"); 1100 if (cell_count >= 0) { 1101 assert(tag != DataLayout::no_tag, "bad tag"); 1102 assert(bytecode_has_profile(c), "agree w/ BHP"); 1103 data_layout->initialize(tag, checked_cast<u2>(stream->bci()), cell_count); 1104 return DataLayout::compute_size_in_bytes(cell_count); 1105 } else { 1106 assert(!bytecode_has_profile(c), "agree w/ !BHP"); 1107 return 0; 1108 } 1109 } 1110 1111 // Get the data at an arbitrary (sort of) data index. 1112 ProfileData* MethodData::data_at(int data_index) const { 1113 if (out_of_bounds(data_index)) { 1114 return nullptr; 1115 } 1116 DataLayout* data_layout = data_layout_at(data_index); 1117 return data_layout->data_in(); 1118 } 1119 1120 int DataLayout::cell_count() { 1121 switch (tag()) { 1122 case DataLayout::no_tag: 1123 default: 1124 ShouldNotReachHere(); 1125 return 0; 1126 case DataLayout::bit_data_tag: 1127 return BitData::static_cell_count(); 1128 case DataLayout::counter_data_tag: 1129 return CounterData::static_cell_count(); 1130 case DataLayout::jump_data_tag: 1131 return JumpData::static_cell_count(); 1132 case DataLayout::receiver_type_data_tag: 1133 return ReceiverTypeData::static_cell_count(); 1134 case DataLayout::virtual_call_data_tag: 1135 return VirtualCallData::static_cell_count(); 1136 case DataLayout::ret_data_tag: 1137 return RetData::static_cell_count(); 1138 case DataLayout::branch_data_tag: 1139 return BranchData::static_cell_count(); 1140 case DataLayout::multi_branch_data_tag: 1141 return ((new MultiBranchData(this))->cell_count()); 1142 case DataLayout::arg_info_data_tag: 1143 return ((new ArgInfoData(this))->cell_count()); 1144 case DataLayout::call_type_data_tag: 1145 return ((new CallTypeData(this))->cell_count()); 1146 case DataLayout::virtual_call_type_data_tag: 1147 return ((new VirtualCallTypeData(this))->cell_count()); 1148 case DataLayout::parameters_type_data_tag: 1149 return ((new ParametersTypeData(this))->cell_count()); 1150 case DataLayout::speculative_trap_data_tag: 1151 return SpeculativeTrapData::static_cell_count(); 1152 } 1153 } 1154 ProfileData* DataLayout::data_in() { 1155 switch (tag()) { 1156 case DataLayout::no_tag: 1157 default: 1158 ShouldNotReachHere(); 1159 return nullptr; 1160 case DataLayout::bit_data_tag: 1161 return new BitData(this); 1162 case DataLayout::counter_data_tag: 1163 return new CounterData(this); 1164 case DataLayout::jump_data_tag: 1165 return new JumpData(this); 1166 case DataLayout::receiver_type_data_tag: 1167 return new ReceiverTypeData(this); 1168 case DataLayout::virtual_call_data_tag: 1169 return new VirtualCallData(this); 1170 case DataLayout::ret_data_tag: 1171 return new RetData(this); 1172 case DataLayout::branch_data_tag: 1173 return new BranchData(this); 1174 case DataLayout::multi_branch_data_tag: 1175 return new MultiBranchData(this); 1176 case DataLayout::arg_info_data_tag: 1177 return new ArgInfoData(this); 1178 case DataLayout::call_type_data_tag: 1179 return new CallTypeData(this); 1180 case DataLayout::virtual_call_type_data_tag: 1181 return new VirtualCallTypeData(this); 1182 case DataLayout::parameters_type_data_tag: 1183 return new ParametersTypeData(this); 1184 case DataLayout::speculative_trap_data_tag: 1185 return new SpeculativeTrapData(this); 1186 } 1187 } 1188 1189 // Iteration over data. 1190 ProfileData* MethodData::next_data(ProfileData* current) const { 1191 int current_index = dp_to_di(current->dp()); 1192 int next_index = current_index + current->size_in_bytes(); 1193 ProfileData* next = data_at(next_index); 1194 return next; 1195 } 1196 1197 DataLayout* MethodData::next_data_layout(DataLayout* current) const { 1198 int current_index = dp_to_di((address)current); 1199 int next_index = current_index + current->size_in_bytes(); 1200 if (out_of_bounds(next_index)) { 1201 return nullptr; 1202 } 1203 DataLayout* next = data_layout_at(next_index); 1204 return next; 1205 } 1206 1207 // Give each of the data entries a chance to perform specific 1208 // data initialization. 1209 void MethodData::post_initialize(BytecodeStream* stream) { 1210 ResourceMark rm; 1211 ProfileData* data; 1212 for (data = first_data(); is_valid(data); data = next_data(data)) { 1213 stream->set_start(data->bci()); 1214 stream->next(); 1215 data->post_initialize(stream, this); 1216 } 1217 if (_parameters_type_data_di != no_parameters) { 1218 parameters_type_data()->post_initialize(nullptr, this); 1219 } 1220 } 1221 1222 // Initialize the MethodData* corresponding to a given method. 1223 MethodData::MethodData(const methodHandle& method) 1224 : _method(method()), 1225 // Holds Compile_lock 1226 _extra_data_lock(Mutex::nosafepoint, "MDOExtraData_lock"), 1227 _compiler_counters(), 1228 _parameters_type_data_di(parameters_uninitialized) { 1229 initialize(); 1230 } 1231 1232 // Reinitialize the storage of an existing MDO at a safepoint. Doing it this way will ensure it's 1233 // not being accessed while the contents are being rewritten. 1234 class VM_ReinitializeMDO: public VM_Operation { 1235 private: 1236 MethodData* _mdo; 1237 public: 1238 VM_ReinitializeMDO(MethodData* mdo): _mdo(mdo) {} 1239 VMOp_Type type() const { return VMOp_ReinitializeMDO; } 1240 void doit() { 1241 // The extra data is being zero'd, we'd like to acquire the extra_data_lock but it can't be held 1242 // over a safepoint. This means that we don't actually need to acquire the lock. 1243 _mdo->initialize(); 1244 } 1245 bool allow_nested_vm_operations() const { return true; } 1246 }; 1247 1248 void MethodData::reinitialize() { 1249 VM_ReinitializeMDO op(this); 1250 VMThread::execute(&op); 1251 } 1252 1253 1254 void MethodData::initialize() { 1255 Thread* thread = Thread::current(); 1256 NoSafepointVerifier no_safepoint; // init function atomic wrt GC 1257 ResourceMark rm(thread); 1258 1259 init(); 1260 set_creation_mileage(mileage_of(method())); 1261 1262 // Go through the bytecodes and allocate and initialize the 1263 // corresponding data cells. 1264 int data_size = 0; 1265 int empty_bc_count = 0; // number of bytecodes lacking data 1266 _data[0] = 0; // apparently not set below. 1267 BytecodeStream stream(methodHandle(thread, method())); 1268 Bytecodes::Code c; 1269 bool needs_speculative_traps = false; 1270 while ((c = stream.next()) >= 0) { 1271 int size_in_bytes = initialize_data(&stream, data_size); 1272 data_size += size_in_bytes; 1273 if (size_in_bytes == 0 JVMCI_ONLY(&& Bytecodes::can_trap(c))) empty_bc_count += 1; 1274 needs_speculative_traps = needs_speculative_traps || is_speculative_trap_bytecode(c); 1275 } 1276 _data_size = data_size; 1277 int object_size = in_bytes(data_offset()) + data_size; 1278 1279 // Add some extra DataLayout cells (at least one) to track stray traps. 1280 int extra_data_count = compute_extra_data_count(data_size, empty_bc_count, needs_speculative_traps); 1281 int extra_size = extra_data_count * DataLayout::compute_size_in_bytes(0); 1282 1283 // Let's zero the space for the extra data 1284 if (extra_size > 0) { 1285 Copy::zero_to_bytes(((address)_data) + data_size, extra_size); 1286 } 1287 1288 // Add a cell to record information about modified arguments. 1289 // Set up _args_modified array after traps cells so that 1290 // the code for traps cells works. 1291 DataLayout *dp = data_layout_at(data_size + extra_size); 1292 1293 int arg_size = method()->size_of_parameters(); 1294 dp->initialize(DataLayout::arg_info_data_tag, 0, arg_size+1); 1295 1296 int arg_data_size = DataLayout::compute_size_in_bytes(arg_size+1); 1297 object_size += extra_size + arg_data_size; 1298 1299 int parms_cell = ParametersTypeData::compute_cell_count(method()); 1300 // If we are profiling parameters, we reserved an area near the end 1301 // of the MDO after the slots for bytecodes (because there's no bci 1302 // for method entry so they don't fit with the framework for the 1303 // profiling of bytecodes). We store the offset within the MDO of 1304 // this area (or -1 if no parameter is profiled) 1305 int parm_data_size = 0; 1306 if (parms_cell > 0) { 1307 parm_data_size = DataLayout::compute_size_in_bytes(parms_cell); 1308 object_size += parm_data_size; 1309 _parameters_type_data_di = data_size + extra_size + arg_data_size; 1310 DataLayout *dp = data_layout_at(data_size + extra_size + arg_data_size); 1311 dp->initialize(DataLayout::parameters_type_data_tag, 0, parms_cell); 1312 } else { 1313 _parameters_type_data_di = no_parameters; 1314 } 1315 1316 _exception_handler_data_di = data_size + extra_size + arg_data_size + parm_data_size; 1317 if (ProfileExceptionHandlers && method()->has_exception_handler()) { 1318 int num_exception_handlers = method()->exception_table_length(); 1319 object_size += num_exception_handlers * single_exception_handler_data_size(); 1320 ExceptionTableElement* exception_handlers = method()->exception_table_start(); 1321 for (int i = 0; i < num_exception_handlers; i++) { 1322 DataLayout *dp = exception_handler_data_at(i); 1323 dp->initialize(DataLayout::bit_data_tag, exception_handlers[i].handler_pc, single_exception_handler_data_cell_count()); 1324 } 1325 } 1326 1327 // Set an initial hint. Don't use set_hint_di() because 1328 // first_di() may be out of bounds if data_size is 0. 1329 // In that situation, _hint_di is never used, but at 1330 // least well-defined. 1331 _hint_di = first_di(); 1332 1333 post_initialize(&stream); 1334 1335 assert(object_size == compute_allocation_size_in_bytes(methodHandle(thread, _method)), "MethodData: computed size != initialized size"); 1336 set_size(object_size); 1337 } 1338 1339 void MethodData::init() { 1340 _compiler_counters = CompilerCounters(); // reset compiler counters 1341 _invocation_counter.init(); 1342 _backedge_counter.init(); 1343 _invocation_counter_start = 0; 1344 _backedge_counter_start = 0; 1345 1346 // Set per-method invoke- and backedge mask. 1347 double scale = 1.0; 1348 methodHandle mh(Thread::current(), _method); 1349 CompilerOracle::has_option_value(mh, CompileCommandEnum::CompileThresholdScaling, scale); 1350 _invoke_mask = (int)right_n_bits(CompilerConfig::scaled_freq_log(Tier0InvokeNotifyFreqLog, scale)) << InvocationCounter::count_shift; 1351 _backedge_mask = (int)right_n_bits(CompilerConfig::scaled_freq_log(Tier0BackedgeNotifyFreqLog, scale)) << InvocationCounter::count_shift; 1352 1353 _tenure_traps = 0; 1354 _num_loops = 0; 1355 _num_blocks = 0; 1356 _would_profile = unknown; 1357 1358 #if INCLUDE_JVMCI 1359 _jvmci_ir_size = 0; 1360 _failed_speculations = nullptr; 1361 #endif 1362 1363 // Initialize escape flags. 1364 clear_escape_info(); 1365 } 1366 1367 // Get a measure of how much mileage the method has on it. 1368 int MethodData::mileage_of(Method* method) { 1369 return MAX2(method->invocation_count(), method->backedge_count()); 1370 } 1371 1372 bool MethodData::is_mature() const { 1373 return CompilationPolicy::is_mature(_method); 1374 } 1375 1376 // Translate a bci to its corresponding data index (di). 1377 address MethodData::bci_to_dp(int bci) { 1378 ResourceMark rm; 1379 DataLayout* data = data_layout_before(bci); 1380 DataLayout* prev = nullptr; 1381 for ( ; is_valid(data); data = next_data_layout(data)) { 1382 if (data->bci() >= bci) { 1383 if (data->bci() == bci) set_hint_di(dp_to_di((address)data)); 1384 else if (prev != nullptr) set_hint_di(dp_to_di((address)prev)); 1385 return (address)data; 1386 } 1387 prev = data; 1388 } 1389 return (address)limit_data_position(); 1390 } 1391 1392 // Translate a bci to its corresponding data, or null. 1393 ProfileData* MethodData::bci_to_data(int bci) { 1394 check_extra_data_locked(); 1395 1396 DataLayout* data = data_layout_before(bci); 1397 for ( ; is_valid(data); data = next_data_layout(data)) { 1398 if (data->bci() == bci) { 1399 set_hint_di(dp_to_di((address)data)); 1400 return data->data_in(); 1401 } else if (data->bci() > bci) { 1402 break; 1403 } 1404 } 1405 return bci_to_extra_data(bci, nullptr, false); 1406 } 1407 1408 DataLayout* MethodData::exception_handler_bci_to_data_helper(int bci) { 1409 assert(ProfileExceptionHandlers, "not profiling"); 1410 for (int i = 0; i < num_exception_handler_data(); i++) { 1411 DataLayout* exception_handler_data = exception_handler_data_at(i); 1412 if (exception_handler_data->bci() == bci) { 1413 return exception_handler_data; 1414 } 1415 } 1416 return nullptr; 1417 } 1418 1419 BitData* MethodData::exception_handler_bci_to_data_or_null(int bci) { 1420 DataLayout* data = exception_handler_bci_to_data_helper(bci); 1421 return data != nullptr ? new BitData(data) : nullptr; 1422 } 1423 1424 BitData MethodData::exception_handler_bci_to_data(int bci) { 1425 DataLayout* data = exception_handler_bci_to_data_helper(bci); 1426 assert(data != nullptr, "invalid bci"); 1427 return BitData(data); 1428 } 1429 1430 DataLayout* MethodData::next_extra(DataLayout* dp) { 1431 int nb_cells = 0; 1432 switch(dp->tag()) { 1433 case DataLayout::bit_data_tag: 1434 case DataLayout::no_tag: 1435 nb_cells = BitData::static_cell_count(); 1436 break; 1437 case DataLayout::speculative_trap_data_tag: 1438 nb_cells = SpeculativeTrapData::static_cell_count(); 1439 break; 1440 default: 1441 fatal("unexpected tag %d", dp->tag()); 1442 } 1443 return (DataLayout*)((address)dp + DataLayout::compute_size_in_bytes(nb_cells)); 1444 } 1445 1446 ProfileData* MethodData::bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp) { 1447 check_extra_data_locked(); 1448 1449 DataLayout* end = args_data_limit(); 1450 1451 for (;; dp = next_extra(dp)) { 1452 assert(dp < end, "moved past end of extra data"); 1453 // No need for "Atomic::load_acquire" ops, 1454 // since the data structure is monotonic. 1455 switch(dp->tag()) { 1456 case DataLayout::no_tag: 1457 return nullptr; 1458 case DataLayout::arg_info_data_tag: 1459 dp = end; 1460 return nullptr; // ArgInfoData is at the end of extra data section. 1461 case DataLayout::bit_data_tag: 1462 if (m == nullptr && dp->bci() == bci) { 1463 return new BitData(dp); 1464 } 1465 break; 1466 case DataLayout::speculative_trap_data_tag: 1467 if (m != nullptr) { 1468 SpeculativeTrapData* data = new SpeculativeTrapData(dp); 1469 if (dp->bci() == bci) { 1470 assert(data->method() != nullptr, "method must be set"); 1471 if (data->method() == m) { 1472 return data; 1473 } 1474 } 1475 } 1476 break; 1477 default: 1478 fatal("unexpected tag %d", dp->tag()); 1479 } 1480 } 1481 return nullptr; 1482 } 1483 1484 1485 // Translate a bci to its corresponding extra data, or null. 1486 ProfileData* MethodData::bci_to_extra_data(int bci, Method* m, bool create_if_missing) { 1487 check_extra_data_locked(); 1488 1489 // This code assumes an entry for a SpeculativeTrapData is 2 cells 1490 assert(2*DataLayout::compute_size_in_bytes(BitData::static_cell_count()) == 1491 DataLayout::compute_size_in_bytes(SpeculativeTrapData::static_cell_count()), 1492 "code needs to be adjusted"); 1493 1494 // Do not create one of these if method has been redefined. 1495 if (m != nullptr && m->is_old()) { 1496 return nullptr; 1497 } 1498 1499 DataLayout* dp = extra_data_base(); 1500 DataLayout* end = args_data_limit(); 1501 1502 // Find if already exists 1503 ProfileData* result = bci_to_extra_data_find(bci, m, dp); 1504 if (result != nullptr || dp >= end) { 1505 return result; 1506 } 1507 1508 if (create_if_missing) { 1509 // Not found -> Allocate 1510 assert(dp->tag() == DataLayout::no_tag || (dp->tag() == DataLayout::speculative_trap_data_tag && m != nullptr), "should be free"); 1511 assert(next_extra(dp)->tag() == DataLayout::no_tag || next_extra(dp)->tag() == DataLayout::arg_info_data_tag, "should be free or arg info"); 1512 u1 tag = m == nullptr ? DataLayout::bit_data_tag : DataLayout::speculative_trap_data_tag; 1513 // SpeculativeTrapData is 2 slots. Make sure we have room. 1514 if (m != nullptr && next_extra(dp)->tag() != DataLayout::no_tag) { 1515 return nullptr; 1516 } 1517 DataLayout temp; 1518 temp.initialize(tag, checked_cast<u2>(bci), 0); 1519 1520 dp->set_header(temp.header()); 1521 assert(dp->tag() == tag, "sane"); 1522 assert(dp->bci() == bci, "no concurrent allocation"); 1523 if (tag == DataLayout::bit_data_tag) { 1524 return new BitData(dp); 1525 } else { 1526 SpeculativeTrapData* data = new SpeculativeTrapData(dp); 1527 data->set_method(m); 1528 return data; 1529 } 1530 } 1531 return nullptr; 1532 } 1533 1534 ArgInfoData *MethodData::arg_info() { 1535 DataLayout* dp = extra_data_base(); 1536 DataLayout* end = args_data_limit(); 1537 for (; dp < end; dp = next_extra(dp)) { 1538 if (dp->tag() == DataLayout::arg_info_data_tag) 1539 return new ArgInfoData(dp); 1540 } 1541 return nullptr; 1542 } 1543 1544 // Printing 1545 1546 void MethodData::print_on(outputStream* st) const { 1547 assert(is_methodData(), "should be method data"); 1548 st->print("method data for "); 1549 method()->print_value_on(st); 1550 st->cr(); 1551 print_data_on(st); 1552 } 1553 1554 void MethodData::print_value_on(outputStream* st) const { 1555 assert(is_methodData(), "should be method data"); 1556 st->print("method data for "); 1557 method()->print_value_on(st); 1558 } 1559 1560 void MethodData::print_data_on(outputStream* st) const { 1561 ConditionalMutexLocker ml(extra_data_lock(), !extra_data_lock()->owned_by_self(), 1562 Mutex::_no_safepoint_check_flag); 1563 ResourceMark rm; 1564 ProfileData* data = first_data(); 1565 if (_parameters_type_data_di != no_parameters) { 1566 parameters_type_data()->print_data_on(st); 1567 } 1568 for ( ; is_valid(data); data = next_data(data)) { 1569 st->print("%d", dp_to_di(data->dp())); 1570 st->fill_to(6); 1571 data->print_data_on(st, this); 1572 } 1573 1574 st->print_cr("--- Extra data:"); 1575 DataLayout* dp = extra_data_base(); 1576 DataLayout* end = args_data_limit(); 1577 for (;; dp = next_extra(dp)) { 1578 assert(dp < end, "moved past end of extra data"); 1579 // No need for "Atomic::load_acquire" ops, 1580 // since the data structure is monotonic. 1581 switch(dp->tag()) { 1582 case DataLayout::no_tag: 1583 continue; 1584 case DataLayout::bit_data_tag: 1585 data = new BitData(dp); 1586 break; 1587 case DataLayout::speculative_trap_data_tag: 1588 data = new SpeculativeTrapData(dp); 1589 break; 1590 case DataLayout::arg_info_data_tag: 1591 data = new ArgInfoData(dp); 1592 dp = end; // ArgInfoData is at the end of extra data section. 1593 break; 1594 default: 1595 fatal("unexpected tag %d", dp->tag()); 1596 } 1597 st->print("%d", dp_to_di(data->dp())); 1598 st->fill_to(6); 1599 data->print_data_on(st); 1600 if (dp >= end) return; 1601 } 1602 } 1603 1604 // Verification 1605 1606 void MethodData::verify_on(outputStream* st) { 1607 guarantee(is_methodData(), "object must be method data"); 1608 // guarantee(m->is_perm(), "should be in permspace"); 1609 this->verify_data_on(st); 1610 } 1611 1612 void MethodData::verify_data_on(outputStream* st) { 1613 NEEDS_CLEANUP; 1614 // not yet implemented. 1615 } 1616 1617 bool MethodData::profile_jsr292(const methodHandle& m, int bci) { 1618 if (m->is_compiled_lambda_form()) { 1619 return true; 1620 } 1621 1622 Bytecode_invoke inv(m , bci); 1623 return inv.is_invokedynamic() || inv.is_invokehandle(); 1624 } 1625 1626 bool MethodData::profile_unsafe(const methodHandle& m, int bci) { 1627 Bytecode_invoke inv(m , bci); 1628 if (inv.is_invokevirtual()) { 1629 Symbol* klass = inv.klass(); 1630 if (klass == vmSymbols::jdk_internal_misc_Unsafe() || 1631 klass == vmSymbols::sun_misc_Unsafe() || 1632 klass == vmSymbols::jdk_internal_misc_ScopedMemoryAccess()) { 1633 Symbol* name = inv.name(); 1634 if (name->starts_with("get") || name->starts_with("put")) { 1635 return true; 1636 } 1637 } 1638 } 1639 return false; 1640 } 1641 1642 int MethodData::profile_arguments_flag() { 1643 return TypeProfileLevel % 10; 1644 } 1645 1646 bool MethodData::profile_arguments() { 1647 return profile_arguments_flag() > no_type_profile && profile_arguments_flag() <= type_profile_all && TypeProfileArgsLimit > 0; 1648 } 1649 1650 bool MethodData::profile_arguments_jsr292_only() { 1651 return profile_arguments_flag() == type_profile_jsr292; 1652 } 1653 1654 bool MethodData::profile_all_arguments() { 1655 return profile_arguments_flag() == type_profile_all; 1656 } 1657 1658 bool MethodData::profile_arguments_for_invoke(const methodHandle& m, int bci) { 1659 if (!profile_arguments()) { 1660 return false; 1661 } 1662 1663 if (profile_all_arguments()) { 1664 return true; 1665 } 1666 1667 if (profile_unsafe(m, bci)) { 1668 return true; 1669 } 1670 1671 assert(profile_arguments_jsr292_only(), "inconsistent"); 1672 return profile_jsr292(m, bci); 1673 } 1674 1675 int MethodData::profile_return_flag() { 1676 return (TypeProfileLevel % 100) / 10; 1677 } 1678 1679 bool MethodData::profile_return() { 1680 return profile_return_flag() > no_type_profile && profile_return_flag() <= type_profile_all; 1681 } 1682 1683 bool MethodData::profile_return_jsr292_only() { 1684 return profile_return_flag() == type_profile_jsr292; 1685 } 1686 1687 bool MethodData::profile_all_return() { 1688 return profile_return_flag() == type_profile_all; 1689 } 1690 1691 bool MethodData::profile_return_for_invoke(const methodHandle& m, int bci) { 1692 if (!profile_return()) { 1693 return false; 1694 } 1695 1696 if (profile_all_return()) { 1697 return true; 1698 } 1699 1700 assert(profile_return_jsr292_only(), "inconsistent"); 1701 return profile_jsr292(m, bci); 1702 } 1703 1704 int MethodData::profile_parameters_flag() { 1705 return TypeProfileLevel / 100; 1706 } 1707 1708 bool MethodData::profile_parameters() { 1709 return profile_parameters_flag() > no_type_profile && profile_parameters_flag() <= type_profile_all; 1710 } 1711 1712 bool MethodData::profile_parameters_jsr292_only() { 1713 return profile_parameters_flag() == type_profile_jsr292; 1714 } 1715 1716 bool MethodData::profile_all_parameters() { 1717 return profile_parameters_flag() == type_profile_all; 1718 } 1719 1720 bool MethodData::profile_parameters_for_method(const methodHandle& m) { 1721 if (!profile_parameters()) { 1722 return false; 1723 } 1724 1725 if (profile_all_parameters()) { 1726 return true; 1727 } 1728 1729 assert(profile_parameters_jsr292_only(), "inconsistent"); 1730 return m->is_compiled_lambda_form(); 1731 } 1732 1733 void MethodData::metaspace_pointers_do(MetaspaceClosure* it) { 1734 log_trace(cds)("Iter(MethodData): %p", this); 1735 it->push(&_method); 1736 } 1737 1738 void MethodData::clean_extra_data_helper(DataLayout* dp, int shift, bool reset) { 1739 check_extra_data_locked(); 1740 1741 if (shift == 0) { 1742 return; 1743 } 1744 if (!reset) { 1745 // Move all cells of trap entry at dp left by "shift" cells 1746 intptr_t* start = (intptr_t*)dp; 1747 intptr_t* end = (intptr_t*)next_extra(dp); 1748 for (intptr_t* ptr = start; ptr < end; ptr++) { 1749 *(ptr-shift) = *ptr; 1750 } 1751 } else { 1752 // Reset "shift" cells stopping at dp 1753 intptr_t* start = ((intptr_t*)dp) - shift; 1754 intptr_t* end = (intptr_t*)dp; 1755 for (intptr_t* ptr = start; ptr < end; ptr++) { 1756 *ptr = 0; 1757 } 1758 } 1759 } 1760 1761 // Check for entries that reference an unloaded method 1762 class CleanExtraDataKlassClosure : public CleanExtraDataClosure { 1763 bool _always_clean; 1764 public: 1765 CleanExtraDataKlassClosure(bool always_clean) : _always_clean(always_clean) {} 1766 bool is_live(Method* m) { 1767 return !(_always_clean) && m->method_holder()->is_loader_alive(); 1768 } 1769 }; 1770 1771 // Check for entries that reference a redefined method 1772 class CleanExtraDataMethodClosure : public CleanExtraDataClosure { 1773 public: 1774 CleanExtraDataMethodClosure() {} 1775 bool is_live(Method* m) { return !m->is_old(); } 1776 }; 1777 1778 1779 // Remove SpeculativeTrapData entries that reference an unloaded or 1780 // redefined method 1781 void MethodData::clean_extra_data(CleanExtraDataClosure* cl) { 1782 check_extra_data_locked(); 1783 1784 DataLayout* dp = extra_data_base(); 1785 DataLayout* end = args_data_limit(); 1786 1787 int shift = 0; 1788 for (; dp < end; dp = next_extra(dp)) { 1789 switch(dp->tag()) { 1790 case DataLayout::speculative_trap_data_tag: { 1791 SpeculativeTrapData* data = new SpeculativeTrapData(dp); 1792 Method* m = data->method(); 1793 assert(m != nullptr, "should have a method"); 1794 if (!cl->is_live(m)) { 1795 // "shift" accumulates the number of cells for dead 1796 // SpeculativeTrapData entries that have been seen so 1797 // far. Following entries must be shifted left by that many 1798 // cells to remove the dead SpeculativeTrapData entries. 1799 shift += (int)((intptr_t*)next_extra(dp) - (intptr_t*)dp); 1800 } else { 1801 // Shift this entry left if it follows dead 1802 // SpeculativeTrapData entries 1803 clean_extra_data_helper(dp, shift); 1804 } 1805 break; 1806 } 1807 case DataLayout::bit_data_tag: 1808 // Shift this entry left if it follows dead SpeculativeTrapData 1809 // entries 1810 clean_extra_data_helper(dp, shift); 1811 continue; 1812 case DataLayout::no_tag: 1813 case DataLayout::arg_info_data_tag: 1814 // We are at end of the live trap entries. The previous "shift" 1815 // cells contain entries that are either dead or were shifted 1816 // left. They need to be reset to no_tag 1817 clean_extra_data_helper(dp, shift, true); 1818 return; 1819 default: 1820 fatal("unexpected tag %d", dp->tag()); 1821 } 1822 } 1823 } 1824 1825 // Verify there's no unloaded or redefined method referenced by a 1826 // SpeculativeTrapData entry 1827 void MethodData::verify_extra_data_clean(CleanExtraDataClosure* cl) { 1828 check_extra_data_locked(); 1829 1830 #ifdef ASSERT 1831 DataLayout* dp = extra_data_base(); 1832 DataLayout* end = args_data_limit(); 1833 1834 for (; dp < end; dp = next_extra(dp)) { 1835 switch(dp->tag()) { 1836 case DataLayout::speculative_trap_data_tag: { 1837 SpeculativeTrapData* data = new SpeculativeTrapData(dp); 1838 Method* m = data->method(); 1839 assert(m != nullptr && cl->is_live(m), "Method should exist"); 1840 break; 1841 } 1842 case DataLayout::bit_data_tag: 1843 continue; 1844 case DataLayout::no_tag: 1845 case DataLayout::arg_info_data_tag: 1846 return; 1847 default: 1848 fatal("unexpected tag %d", dp->tag()); 1849 } 1850 } 1851 #endif 1852 } 1853 1854 void MethodData::clean_method_data(bool always_clean) { 1855 ResourceMark rm; 1856 for (ProfileData* data = first_data(); 1857 is_valid(data); 1858 data = next_data(data)) { 1859 data->clean_weak_klass_links(always_clean); 1860 } 1861 ParametersTypeData* parameters = parameters_type_data(); 1862 if (parameters != nullptr) { 1863 parameters->clean_weak_klass_links(always_clean); 1864 } 1865 1866 CleanExtraDataKlassClosure cl(always_clean); 1867 1868 // Lock to modify extra data, and prevent Safepoint from breaking the lock 1869 MutexLocker ml(extra_data_lock(), Mutex::_no_safepoint_check_flag); 1870 1871 clean_extra_data(&cl); 1872 verify_extra_data_clean(&cl); 1873 } 1874 1875 // This is called during redefinition to clean all "old" redefined 1876 // methods out of MethodData for all methods. 1877 void MethodData::clean_weak_method_links() { 1878 ResourceMark rm; 1879 CleanExtraDataMethodClosure cl; 1880 1881 // Lock to modify extra data, and prevent Safepoint from breaking the lock 1882 MutexLocker ml(extra_data_lock(), Mutex::_no_safepoint_check_flag); 1883 1884 clean_extra_data(&cl); 1885 verify_extra_data_clean(&cl); 1886 } 1887 1888 void MethodData::deallocate_contents(ClassLoaderData* loader_data) { 1889 release_C_heap_structures(); 1890 } 1891 1892 void MethodData::release_C_heap_structures() { 1893 #if INCLUDE_JVMCI 1894 FailedSpeculation::free_failed_speculations(get_failed_speculations_address()); 1895 #endif 1896 } 1897 1898 #ifdef ASSERT 1899 void MethodData::check_extra_data_locked() const { 1900 // Cast const away, just to be able to verify the lock 1901 // Usually we only want non-const accesses on the lock, 1902 // so this here is an exception. 1903 MethodData* self = (MethodData*)this; 1904 assert(self->extra_data_lock()->owned_by_self(), "must have lock"); 1905 assert(!Thread::current()->is_Java_thread() || 1906 JavaThread::current()->is_in_no_safepoint_scope(), 1907 "JavaThread must have NoSafepointVerifier inside lock scope"); 1908 } 1909 #endif