1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_METHODDATA_HPP 26 #define SHARE_OOPS_METHODDATA_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "interpreter/invocationCounter.hpp" 30 #include "oops/metadata.hpp" 31 #include "oops/method.hpp" 32 #include "oops/oop.hpp" 33 #include "runtime/atomic.hpp" 34 #include "runtime/deoptimization.hpp" 35 #include "runtime/mutex.hpp" 36 #include "utilities/align.hpp" 37 #include "utilities/copy.hpp" 38 39 class BytecodeStream; 40 41 // The MethodData object collects counts and other profile information 42 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling) 43 // execution. 44 // 45 // The profile is used later by compilation heuristics. Some heuristics 46 // enable use of aggressive (or "heroic") optimizations. An aggressive 47 // optimization often has a down-side, a corner case that it handles 48 // poorly, but which is thought to be rare. The profile provides 49 // evidence of this rarity for a given method or even BCI. It allows 50 // the compiler to back out of the optimization at places where it 51 // has historically been a poor choice. Other heuristics try to use 52 // specific information gathered about types observed at a given site. 53 // 54 // All data in the profile is approximate. It is expected to be accurate 55 // on the whole, but the system expects occasional inaccuraces, due to 56 // counter overflow, multiprocessor races during data collection, space 57 // limitations, missing MDO blocks, etc. Bad or missing data will degrade 58 // optimization quality but will not affect correctness. Also, each MDO 59 // can be checked for its "maturity" by calling is_mature(). 60 // 61 // Short (<32-bit) counters are designed to overflow to a known "saturated" 62 // state. Also, certain recorded per-BCI events are given one-bit counters 63 // which overflow to a saturated state which applied to all counters at 64 // that BCI. In other words, there is a small lattice which approximates 65 // the ideal of an infinite-precision counter for each event at each BCI, 66 // and the lattice quickly "bottoms out" in a state where all counters 67 // are taken to be indefinitely large. 68 // 69 // The reader will find many data races in profile gathering code, starting 70 // with invocation counter incrementation. None of these races harm correct 71 // execution of the compiled code. 72 73 // forward decl 74 class ProfileData; 75 76 // DataLayout 77 // 78 // Overlay for generic profiling data. 79 class DataLayout { 80 friend class VMStructs; 81 friend class JVMCIVMStructs; 82 83 private: 84 // Every data layout begins with a header. This header 85 // contains a tag, which is used to indicate the size/layout 86 // of the data, 8 bits of flags, which can be used in any way, 87 // 32 bits of trap history (none/one reason/many reasons), 88 // and a bci, which is used to tie this piece of data to a 89 // specific bci in the bytecodes. 90 union { 91 u8 _bits; 92 struct { 93 u1 _tag; 94 u1 _flags; 95 u2 _bci; 96 u4 _traps; 97 } _struct; 98 } _header; 99 100 // The data layout has an arbitrary number of cells, each sized 101 // to accommodate a pointer or an integer. 102 intptr_t _cells[1]; 103 104 // Some types of data layouts need a length field. 105 static bool needs_array_len(u1 tag); 106 107 public: 108 enum { 109 counter_increment = 1 110 }; 111 112 enum { 113 cell_size = sizeof(intptr_t) 114 }; 115 116 // Tag values 117 enum : u1 { 118 no_tag, 119 bit_data_tag, 120 counter_data_tag, 121 jump_data_tag, 122 receiver_type_data_tag, 123 virtual_call_data_tag, 124 ret_data_tag, 125 branch_data_tag, 126 multi_branch_data_tag, 127 arg_info_data_tag, 128 call_type_data_tag, 129 virtual_call_type_data_tag, 130 parameters_type_data_tag, 131 speculative_trap_data_tag 132 }; 133 134 enum { 135 // The trap state breaks down as [recompile:1 | reason:31]. 136 // This further breakdown is defined in deoptimization.cpp. 137 // See Deoptimization::trap_state_reason for an assert that 138 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. 139 // 140 // The trap_state is collected only if ProfileTraps is true. 141 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT]. 142 trap_mask = -1, 143 first_flag = 0 144 }; 145 146 // Size computation 147 static int header_size_in_bytes() { 148 return header_size_in_cells() * cell_size; 149 } 150 static int header_size_in_cells() { 151 return LP64_ONLY(1) NOT_LP64(2); 152 } 153 154 static int compute_size_in_bytes(int cell_count) { 155 return header_size_in_bytes() + cell_count * cell_size; 156 } 157 158 // Initialization 159 void initialize(u1 tag, u2 bci, int cell_count); 160 161 // Accessors 162 u1 tag() { 163 return _header._struct._tag; 164 } 165 166 // Return 32 bits of trap state. 167 // The state tells if traps with zero, one, or many reasons have occurred. 168 // It also tells whether zero or many recompilations have occurred. 169 // The associated trap histogram in the MDO itself tells whether 170 // traps are common or not. If a BCI shows that a trap X has 171 // occurred, and the MDO shows N occurrences of X, we make the 172 // simplifying assumption that all N occurrences can be blamed 173 // on that BCI. 174 uint trap_state() const { 175 return _header._struct._traps; 176 } 177 178 void set_trap_state(uint new_state) { 179 assert(ProfileTraps, "used only under +ProfileTraps"); 180 uint old_flags = _header._struct._traps; 181 _header._struct._traps = new_state | old_flags; 182 } 183 184 u1 flags() const { 185 return Atomic::load_acquire(&_header._struct._flags); 186 } 187 188 u2 bci() const { 189 return _header._struct._bci; 190 } 191 192 void set_header(u8 value) { 193 _header._bits = value; 194 } 195 u8 header() { 196 return _header._bits; 197 } 198 void set_cell_at(int index, intptr_t value) { 199 _cells[index] = value; 200 } 201 void release_set_cell_at(int index, intptr_t value); 202 intptr_t cell_at(int index) const { 203 return _cells[index]; 204 } 205 206 bool set_flag_at(u1 flag_number) { 207 const u1 bit = 1 << flag_number; 208 u1 compare_value; 209 do { 210 compare_value = _header._struct._flags; 211 if ((compare_value & bit) == bit) { 212 // already set. 213 return false; 214 } 215 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, static_cast<u1>(compare_value | bit))); 216 return true; 217 } 218 219 bool clear_flag_at(u1 flag_number) { 220 const u1 bit = 1 << flag_number; 221 u1 compare_value; 222 u1 exchange_value; 223 do { 224 compare_value = _header._struct._flags; 225 if ((compare_value & bit) == 0) { 226 // already cleaed. 227 return false; 228 } 229 exchange_value = compare_value & ~bit; 230 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, exchange_value)); 231 return true; 232 } 233 234 bool flag_at(u1 flag_number) const { 235 return (flags() & (1 << flag_number)) != 0; 236 } 237 238 // Low-level support for code generation. 239 static ByteSize header_offset() { 240 return byte_offset_of(DataLayout, _header); 241 } 242 static ByteSize tag_offset() { 243 return byte_offset_of(DataLayout, _header._struct._tag); 244 } 245 static ByteSize flags_offset() { 246 return byte_offset_of(DataLayout, _header._struct._flags); 247 } 248 static ByteSize bci_offset() { 249 return byte_offset_of(DataLayout, _header._struct._bci); 250 } 251 static ByteSize cell_offset(int index) { 252 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size); 253 } 254 // Return a value which, when or-ed as a byte into _flags, sets the flag. 255 static u1 flag_number_to_constant(u1 flag_number) { 256 DataLayout temp; temp.set_header(0); 257 temp.set_flag_at(flag_number); 258 return temp._header._struct._flags; 259 } 260 // Return a value which, when or-ed as a word into _header, sets the flag. 261 static u8 flag_mask_to_header_mask(u1 byte_constant) { 262 DataLayout temp; temp.set_header(0); 263 temp._header._struct._flags = byte_constant; 264 return temp._header._bits; 265 } 266 267 ProfileData* data_in(); 268 269 int size_in_bytes() { 270 int cells = cell_count(); 271 assert(cells >= 0, "invalid number of cells"); 272 return DataLayout::compute_size_in_bytes(cells); 273 } 274 int cell_count(); 275 276 // GC support 277 void clean_weak_klass_links(bool always_clean); 278 }; 279 280 281 // ProfileData class hierarchy 282 class ProfileData; 283 class BitData; 284 class CounterData; 285 class ReceiverTypeData; 286 class VirtualCallData; 287 class VirtualCallTypeData; 288 class RetData; 289 class CallTypeData; 290 class JumpData; 291 class BranchData; 292 class ArrayData; 293 class MultiBranchData; 294 class ArgInfoData; 295 class ParametersTypeData; 296 class SpeculativeTrapData; 297 298 // ProfileData 299 // 300 // A ProfileData object is created to refer to a section of profiling 301 // data in a structured way. 302 class ProfileData : public ResourceObj { 303 friend class TypeEntries; 304 friend class ReturnTypeEntry; 305 friend class TypeStackSlotEntries; 306 private: 307 enum { 308 tab_width_one = 16, 309 tab_width_two = 36 310 }; 311 312 // This is a pointer to a section of profiling data. 313 DataLayout* _data; 314 315 char* print_data_on_helper(const MethodData* md) const; 316 317 protected: 318 DataLayout* data() { return _data; } 319 const DataLayout* data() const { return _data; } 320 321 enum { 322 cell_size = DataLayout::cell_size 323 }; 324 325 public: 326 // How many cells are in this? 327 virtual int cell_count() const { 328 ShouldNotReachHere(); 329 return -1; 330 } 331 332 // Return the size of this data. 333 int size_in_bytes() { 334 return DataLayout::compute_size_in_bytes(cell_count()); 335 } 336 337 protected: 338 // Low-level accessors for underlying data 339 void set_intptr_at(int index, intptr_t value) { 340 assert(0 <= index && index < cell_count(), "oob"); 341 data()->set_cell_at(index, value); 342 } 343 void release_set_intptr_at(int index, intptr_t value); 344 intptr_t intptr_at(int index) const { 345 assert(0 <= index && index < cell_count(), "oob"); 346 return data()->cell_at(index); 347 } 348 void set_uint_at(int index, uint value) { 349 set_intptr_at(index, (intptr_t) value); 350 } 351 void release_set_uint_at(int index, uint value); 352 uint uint_at(int index) const { 353 return (uint)intptr_at(index); 354 } 355 void set_int_at(int index, int value) { 356 set_intptr_at(index, (intptr_t) value); 357 } 358 void release_set_int_at(int index, int value); 359 int int_at(int index) const { 360 return (int)intptr_at(index); 361 } 362 int int_at_unchecked(int index) const { 363 return (int)data()->cell_at(index); 364 } 365 void set_oop_at(int index, oop value) { 366 set_intptr_at(index, cast_from_oop<intptr_t>(value)); 367 } 368 oop oop_at(int index) const { 369 return cast_to_oop(intptr_at(index)); 370 } 371 372 void set_flag_at(u1 flag_number) { 373 data()->set_flag_at(flag_number); 374 } 375 bool flag_at(u1 flag_number) const { 376 return data()->flag_at(flag_number); 377 } 378 379 // two convenient imports for use by subclasses: 380 static ByteSize cell_offset(int index) { 381 return DataLayout::cell_offset(index); 382 } 383 static u1 flag_number_to_constant(u1 flag_number) { 384 return DataLayout::flag_number_to_constant(flag_number); 385 } 386 387 ProfileData(DataLayout* data) { 388 _data = data; 389 } 390 391 public: 392 // Constructor for invalid ProfileData. 393 ProfileData(); 394 395 u2 bci() const { 396 return data()->bci(); 397 } 398 399 address dp() { 400 return (address)_data; 401 } 402 403 int trap_state() const { 404 return data()->trap_state(); 405 } 406 void set_trap_state(int new_state) { 407 data()->set_trap_state(new_state); 408 } 409 410 // Type checking 411 virtual bool is_BitData() const { return false; } 412 virtual bool is_CounterData() const { return false; } 413 virtual bool is_JumpData() const { return false; } 414 virtual bool is_ReceiverTypeData()const { return false; } 415 virtual bool is_VirtualCallData() const { return false; } 416 virtual bool is_RetData() const { return false; } 417 virtual bool is_BranchData() const { return false; } 418 virtual bool is_ArrayData() const { return false; } 419 virtual bool is_MultiBranchData() const { return false; } 420 virtual bool is_ArgInfoData() const { return false; } 421 virtual bool is_CallTypeData() const { return false; } 422 virtual bool is_VirtualCallTypeData()const { return false; } 423 virtual bool is_ParametersTypeData() const { return false; } 424 virtual bool is_SpeculativeTrapData()const { return false; } 425 426 427 BitData* as_BitData() const { 428 assert(is_BitData(), "wrong type"); 429 return is_BitData() ? (BitData*) this : nullptr; 430 } 431 CounterData* as_CounterData() const { 432 assert(is_CounterData(), "wrong type"); 433 return is_CounterData() ? (CounterData*) this : nullptr; 434 } 435 JumpData* as_JumpData() const { 436 assert(is_JumpData(), "wrong type"); 437 return is_JumpData() ? (JumpData*) this : nullptr; 438 } 439 ReceiverTypeData* as_ReceiverTypeData() const { 440 assert(is_ReceiverTypeData(), "wrong type"); 441 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr; 442 } 443 VirtualCallData* as_VirtualCallData() const { 444 assert(is_VirtualCallData(), "wrong type"); 445 return is_VirtualCallData() ? (VirtualCallData*)this : nullptr; 446 } 447 RetData* as_RetData() const { 448 assert(is_RetData(), "wrong type"); 449 return is_RetData() ? (RetData*) this : nullptr; 450 } 451 BranchData* as_BranchData() const { 452 assert(is_BranchData(), "wrong type"); 453 return is_BranchData() ? (BranchData*) this : nullptr; 454 } 455 ArrayData* as_ArrayData() const { 456 assert(is_ArrayData(), "wrong type"); 457 return is_ArrayData() ? (ArrayData*) this : nullptr; 458 } 459 MultiBranchData* as_MultiBranchData() const { 460 assert(is_MultiBranchData(), "wrong type"); 461 return is_MultiBranchData() ? (MultiBranchData*)this : nullptr; 462 } 463 ArgInfoData* as_ArgInfoData() const { 464 assert(is_ArgInfoData(), "wrong type"); 465 return is_ArgInfoData() ? (ArgInfoData*)this : nullptr; 466 } 467 CallTypeData* as_CallTypeData() const { 468 assert(is_CallTypeData(), "wrong type"); 469 return is_CallTypeData() ? (CallTypeData*)this : nullptr; 470 } 471 VirtualCallTypeData* as_VirtualCallTypeData() const { 472 assert(is_VirtualCallTypeData(), "wrong type"); 473 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr; 474 } 475 ParametersTypeData* as_ParametersTypeData() const { 476 assert(is_ParametersTypeData(), "wrong type"); 477 return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr; 478 } 479 SpeculativeTrapData* as_SpeculativeTrapData() const { 480 assert(is_SpeculativeTrapData(), "wrong type"); 481 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr; 482 } 483 484 485 // Subclass specific initialization 486 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {} 487 488 // GC support 489 virtual void clean_weak_klass_links(bool always_clean) {} 490 491 // CI translation: ProfileData can represent both MethodDataOop data 492 // as well as CIMethodData data. This function is provided for translating 493 // an oop in a ProfileData to the ci equivalent. Generally speaking, 494 // most ProfileData don't require any translation, so we provide the null 495 // translation here, and the required translators are in the ci subclasses. 496 virtual void translate_from(const ProfileData* data) {} 497 498 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const { 499 ShouldNotReachHere(); 500 } 501 502 void print_data_on(outputStream* st, const MethodData* md) const; 503 504 void print_shared(outputStream* st, const char* name, const char* extra) const; 505 void tab(outputStream* st, bool first = false) const; 506 }; 507 508 // BitData 509 // 510 // A BitData holds a flag or two in its header. 511 class BitData : public ProfileData { 512 friend class VMStructs; 513 friend class JVMCIVMStructs; 514 protected: 515 enum : u1 { 516 // null_seen: 517 // saw a null operand (cast/aastore/instanceof) 518 null_seen_flag = DataLayout::first_flag + 0, 519 exception_handler_entered_flag = null_seen_flag + 1, 520 deprecated_method_callsite_flag = exception_handler_entered_flag + 1 521 #if INCLUDE_JVMCI 522 // bytecode threw any exception 523 , exception_seen_flag = deprecated_method_callsite_flag + 1 524 #endif 525 }; 526 enum { bit_cell_count = 0 }; // no additional data fields needed. 527 public: 528 BitData(DataLayout* layout) : ProfileData(layout) { 529 } 530 531 virtual bool is_BitData() const { return true; } 532 533 static int static_cell_count() { 534 return bit_cell_count; 535 } 536 537 virtual int cell_count() const { 538 return static_cell_count(); 539 } 540 541 // Accessor 542 543 // The null_seen flag bit is specially known to the interpreter. 544 // Consulting it allows the compiler to avoid setting up null_check traps. 545 bool null_seen() { return flag_at(null_seen_flag); } 546 void set_null_seen() { set_flag_at(null_seen_flag); } 547 bool deprecated_method_call_site() const { return flag_at(deprecated_method_callsite_flag); } 548 bool set_deprecated_method_call_site() { return data()->set_flag_at(deprecated_method_callsite_flag); } 549 bool clear_deprecated_method_call_site() { return data()->clear_flag_at(deprecated_method_callsite_flag); } 550 551 #if INCLUDE_JVMCI 552 // true if an exception was thrown at the specific BCI 553 bool exception_seen() { return flag_at(exception_seen_flag); } 554 void set_exception_seen() { set_flag_at(exception_seen_flag); } 555 #endif 556 557 // true if a ex handler block at this bci was entered 558 bool exception_handler_entered() { return flag_at(exception_handler_entered_flag); } 559 void set_exception_handler_entered() { set_flag_at(exception_handler_entered_flag); } 560 561 // Code generation support 562 static u1 null_seen_byte_constant() { 563 return flag_number_to_constant(null_seen_flag); 564 } 565 566 static ByteSize bit_data_size() { 567 return cell_offset(bit_cell_count); 568 } 569 570 void print_data_on(outputStream* st, const char* extra = nullptr) const; 571 }; 572 573 // CounterData 574 // 575 // A CounterData corresponds to a simple counter. 576 class CounterData : public BitData { 577 friend class VMStructs; 578 friend class JVMCIVMStructs; 579 protected: 580 enum { 581 count_off, 582 counter_cell_count 583 }; 584 public: 585 CounterData(DataLayout* layout) : BitData(layout) {} 586 587 virtual bool is_CounterData() const { return true; } 588 589 static int static_cell_count() { 590 return counter_cell_count; 591 } 592 593 virtual int cell_count() const { 594 return static_cell_count(); 595 } 596 597 // Direct accessor 598 int count() const { 599 intptr_t raw_data = intptr_at(count_off); 600 if (raw_data > max_jint) { 601 raw_data = max_jint; 602 } else if (raw_data < min_jint) { 603 raw_data = min_jint; 604 } 605 return int(raw_data); 606 } 607 608 // Code generation support 609 static ByteSize count_offset() { 610 return cell_offset(count_off); 611 } 612 static ByteSize counter_data_size() { 613 return cell_offset(counter_cell_count); 614 } 615 616 void set_count(int count) { 617 set_int_at(count_off, count); 618 } 619 620 void print_data_on(outputStream* st, const char* extra = nullptr) const; 621 }; 622 623 // JumpData 624 // 625 // A JumpData is used to access profiling information for a direct 626 // branch. It is a counter, used for counting the number of branches, 627 // plus a data displacement, used for realigning the data pointer to 628 // the corresponding target bci. 629 class JumpData : public ProfileData { 630 friend class VMStructs; 631 friend class JVMCIVMStructs; 632 protected: 633 enum { 634 taken_off_set, 635 displacement_off_set, 636 jump_cell_count 637 }; 638 639 void set_displacement(int displacement) { 640 set_int_at(displacement_off_set, displacement); 641 } 642 643 public: 644 JumpData(DataLayout* layout) : ProfileData(layout) { 645 assert(layout->tag() == DataLayout::jump_data_tag || 646 layout->tag() == DataLayout::branch_data_tag, "wrong type"); 647 } 648 649 virtual bool is_JumpData() const { return true; } 650 651 static int static_cell_count() { 652 return jump_cell_count; 653 } 654 655 virtual int cell_count() const { 656 return static_cell_count(); 657 } 658 659 // Direct accessor 660 uint taken() const { 661 return uint_at(taken_off_set); 662 } 663 664 void set_taken(uint cnt) { 665 set_uint_at(taken_off_set, cnt); 666 } 667 668 // Saturating counter 669 uint inc_taken() { 670 uint cnt = taken() + 1; 671 // Did we wrap? Will compiler screw us?? 672 if (cnt == 0) cnt--; 673 set_uint_at(taken_off_set, cnt); 674 return cnt; 675 } 676 677 int displacement() const { 678 return int_at(displacement_off_set); 679 } 680 681 // Code generation support 682 static ByteSize taken_offset() { 683 return cell_offset(taken_off_set); 684 } 685 686 static ByteSize displacement_offset() { 687 return cell_offset(displacement_off_set); 688 } 689 690 // Specific initialization. 691 void post_initialize(BytecodeStream* stream, MethodData* mdo); 692 693 void print_data_on(outputStream* st, const char* extra = nullptr) const; 694 }; 695 696 // Entries in a ProfileData object to record types: it can either be 697 // none (no profile), unknown (conflicting profile data) or a klass if 698 // a single one is seen. Whether a null reference was seen is also 699 // recorded. No counter is associated with the type and a single type 700 // is tracked (unlike VirtualCallData). 701 class TypeEntries { 702 703 public: 704 705 // A single cell is used to record information for a type: 706 // - the cell is initialized to 0 707 // - when a type is discovered it is stored in the cell 708 // - bit zero of the cell is used to record whether a null reference 709 // was encountered or not 710 // - bit 1 is set to record a conflict in the type information 711 712 enum { 713 null_seen = 1, 714 type_mask = ~null_seen, 715 type_unknown = 2, 716 status_bits = null_seen | type_unknown, 717 type_klass_mask = ~status_bits 718 }; 719 720 // what to initialize a cell to 721 static intptr_t type_none() { 722 return 0; 723 } 724 725 // null seen = bit 0 set? 726 static bool was_null_seen(intptr_t v) { 727 return (v & null_seen) != 0; 728 } 729 730 // conflicting type information = bit 1 set? 731 static bool is_type_unknown(intptr_t v) { 732 return (v & type_unknown) != 0; 733 } 734 735 // not type information yet = all bits cleared, ignoring bit 0? 736 static bool is_type_none(intptr_t v) { 737 return (v & type_mask) == 0; 738 } 739 740 // recorded type: cell without bit 0 and 1 741 static intptr_t klass_part(intptr_t v) { 742 intptr_t r = v & type_klass_mask; 743 return r; 744 } 745 746 // type recorded 747 static Klass* valid_klass(intptr_t k) { 748 if (!is_type_none(k) && 749 !is_type_unknown(k)) { 750 Klass* res = (Klass*)klass_part(k); 751 assert(res != nullptr, "invalid"); 752 return res; 753 } else { 754 return nullptr; 755 } 756 } 757 758 static intptr_t with_status(intptr_t k, intptr_t in) { 759 return k | (in & status_bits); 760 } 761 762 static intptr_t with_status(Klass* k, intptr_t in) { 763 return with_status((intptr_t)k, in); 764 } 765 766 static void print_klass(outputStream* st, intptr_t k); 767 768 protected: 769 // ProfileData object these entries are part of 770 ProfileData* _pd; 771 // offset within the ProfileData object where the entries start 772 const int _base_off; 773 774 TypeEntries(int base_off) 775 : _pd(nullptr), _base_off(base_off) {} 776 777 void set_intptr_at(int index, intptr_t value) { 778 _pd->set_intptr_at(index, value); 779 } 780 781 intptr_t intptr_at(int index) const { 782 return _pd->intptr_at(index); 783 } 784 785 public: 786 void set_profile_data(ProfileData* pd) { 787 _pd = pd; 788 } 789 }; 790 791 // Type entries used for arguments passed at a call and parameters on 792 // method entry. 2 cells per entry: one for the type encoded as in 793 // TypeEntries and one initialized with the stack slot where the 794 // profiled object is to be found so that the interpreter can locate 795 // it quickly. 796 class TypeStackSlotEntries : public TypeEntries { 797 798 private: 799 enum { 800 stack_slot_entry, 801 type_entry, 802 per_arg_cell_count 803 }; 804 805 // offset of cell for stack slot for entry i within ProfileData object 806 int stack_slot_offset(int i) const { 807 return _base_off + stack_slot_local_offset(i); 808 } 809 810 const int _number_of_entries; 811 812 // offset of cell for type for entry i within ProfileData object 813 int type_offset_in_cells(int i) const { 814 return _base_off + type_local_offset(i); 815 } 816 817 public: 818 819 TypeStackSlotEntries(int base_off, int nb_entries) 820 : TypeEntries(base_off), _number_of_entries(nb_entries) {} 821 822 static int compute_cell_count(Symbol* signature, bool include_receiver, int max); 823 824 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver); 825 826 int number_of_entries() const { return _number_of_entries; } 827 828 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries 829 static int stack_slot_local_offset(int i) { 830 return i * per_arg_cell_count + stack_slot_entry; 831 } 832 833 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries 834 static int type_local_offset(int i) { 835 return i * per_arg_cell_count + type_entry; 836 } 837 838 // stack slot for entry i 839 uint stack_slot(int i) const { 840 assert(i >= 0 && i < _number_of_entries, "oob"); 841 return _pd->uint_at(stack_slot_offset(i)); 842 } 843 844 // set stack slot for entry i 845 void set_stack_slot(int i, uint num) { 846 assert(i >= 0 && i < _number_of_entries, "oob"); 847 _pd->set_uint_at(stack_slot_offset(i), num); 848 } 849 850 // type for entry i 851 intptr_t type(int i) const { 852 assert(i >= 0 && i < _number_of_entries, "oob"); 853 return _pd->intptr_at(type_offset_in_cells(i)); 854 } 855 856 // set type for entry i 857 void set_type(int i, intptr_t k) { 858 assert(i >= 0 && i < _number_of_entries, "oob"); 859 _pd->set_intptr_at(type_offset_in_cells(i), k); 860 } 861 862 static ByteSize per_arg_size() { 863 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size); 864 } 865 866 static int per_arg_count() { 867 return per_arg_cell_count; 868 } 869 870 ByteSize type_offset(int i) const { 871 return DataLayout::cell_offset(type_offset_in_cells(i)); 872 } 873 874 // GC support 875 void clean_weak_klass_links(bool always_clean); 876 877 void print_data_on(outputStream* st) const; 878 }; 879 880 // Type entry used for return from a call. A single cell to record the 881 // type. 882 class ReturnTypeEntry : public TypeEntries { 883 884 private: 885 enum { 886 cell_count = 1 887 }; 888 889 public: 890 ReturnTypeEntry(int base_off) 891 : TypeEntries(base_off) {} 892 893 void post_initialize() { 894 set_type(type_none()); 895 } 896 897 intptr_t type() const { 898 return _pd->intptr_at(_base_off); 899 } 900 901 void set_type(intptr_t k) { 902 _pd->set_intptr_at(_base_off, k); 903 } 904 905 static int static_cell_count() { 906 return cell_count; 907 } 908 909 static ByteSize size() { 910 return in_ByteSize(cell_count * DataLayout::cell_size); 911 } 912 913 ByteSize type_offset() { 914 return DataLayout::cell_offset(_base_off); 915 } 916 917 // GC support 918 void clean_weak_klass_links(bool always_clean); 919 920 void print_data_on(outputStream* st) const; 921 }; 922 923 // Entries to collect type information at a call: contains arguments 924 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a 925 // number of cells. Because the number of cells for the return type is 926 // smaller than the number of cells for the type of an arguments, the 927 // number of cells is used to tell how many arguments are profiled and 928 // whether a return value is profiled. See has_arguments() and 929 // has_return(). 930 class TypeEntriesAtCall { 931 private: 932 static int stack_slot_local_offset(int i) { 933 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i); 934 } 935 936 static int argument_type_local_offset(int i) { 937 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i); 938 } 939 940 public: 941 942 static int header_cell_count() { 943 return 1; 944 } 945 946 static int cell_count_local_offset() { 947 return 0; 948 } 949 950 static int compute_cell_count(BytecodeStream* stream); 951 952 static void initialize(DataLayout* dl, int base, int cell_count) { 953 int off = base + cell_count_local_offset(); 954 dl->set_cell_at(off, cell_count - base - header_cell_count()); 955 } 956 957 static bool arguments_profiling_enabled(); 958 static bool return_profiling_enabled(); 959 960 // Code generation support 961 static ByteSize cell_count_offset() { 962 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size); 963 } 964 965 static ByteSize args_data_offset() { 966 return in_ByteSize(header_cell_count() * DataLayout::cell_size); 967 } 968 969 static ByteSize stack_slot_offset(int i) { 970 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size); 971 } 972 973 static ByteSize argument_type_offset(int i) { 974 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size); 975 } 976 977 static ByteSize return_only_size() { 978 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size); 979 } 980 981 }; 982 983 // CallTypeData 984 // 985 // A CallTypeData is used to access profiling information about a non 986 // virtual call for which we collect type information about arguments 987 // and return value. 988 class CallTypeData : public CounterData { 989 private: 990 // entries for arguments if any 991 TypeStackSlotEntries _args; 992 // entry for return type if any 993 ReturnTypeEntry _ret; 994 995 int cell_count_global_offset() const { 996 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 997 } 998 999 // number of cells not counting the header 1000 int cell_count_no_header() const { 1001 return uint_at(cell_count_global_offset()); 1002 } 1003 1004 void check_number_of_arguments(int total) { 1005 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1006 } 1007 1008 public: 1009 CallTypeData(DataLayout* layout) : 1010 CounterData(layout), 1011 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1012 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1013 { 1014 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type"); 1015 // Some compilers (VC++) don't want this passed in member initialization list 1016 _args.set_profile_data(this); 1017 _ret.set_profile_data(this); 1018 } 1019 1020 const TypeStackSlotEntries* args() const { 1021 assert(has_arguments(), "no profiling of arguments"); 1022 return &_args; 1023 } 1024 1025 const ReturnTypeEntry* ret() const { 1026 assert(has_return(), "no profiling of return value"); 1027 return &_ret; 1028 } 1029 1030 virtual bool is_CallTypeData() const { return true; } 1031 1032 static int static_cell_count() { 1033 return -1; 1034 } 1035 1036 static int compute_cell_count(BytecodeStream* stream) { 1037 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1038 } 1039 1040 static void initialize(DataLayout* dl, int cell_count) { 1041 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count); 1042 } 1043 1044 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1045 1046 virtual int cell_count() const { 1047 return CounterData::static_cell_count() + 1048 TypeEntriesAtCall::header_cell_count() + 1049 int_at_unchecked(cell_count_global_offset()); 1050 } 1051 1052 int number_of_arguments() const { 1053 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1054 } 1055 1056 void set_argument_type(int i, Klass* k) { 1057 assert(has_arguments(), "no arguments!"); 1058 intptr_t current = _args.type(i); 1059 _args.set_type(i, TypeEntries::with_status(k, current)); 1060 } 1061 1062 void set_return_type(Klass* k) { 1063 assert(has_return(), "no return!"); 1064 intptr_t current = _ret.type(); 1065 _ret.set_type(TypeEntries::with_status(k, current)); 1066 } 1067 1068 // An entry for a return value takes less space than an entry for an 1069 // argument so if the number of cells exceeds the number of cells 1070 // needed for an argument, this object contains type information for 1071 // at least one argument. 1072 bool has_arguments() const { 1073 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1074 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1075 return res; 1076 } 1077 1078 // An entry for a return value takes less space than an entry for an 1079 // argument, so if the remainder of the number of cells divided by 1080 // the number of cells for an argument is not null, a return value 1081 // is profiled in this object. 1082 bool has_return() const { 1083 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1084 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1085 return res; 1086 } 1087 1088 // Code generation support 1089 static ByteSize args_data_offset() { 1090 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1091 } 1092 1093 ByteSize argument_type_offset(int i) { 1094 return _args.type_offset(i); 1095 } 1096 1097 ByteSize return_type_offset() { 1098 return _ret.type_offset(); 1099 } 1100 1101 // GC support 1102 virtual void clean_weak_klass_links(bool always_clean) { 1103 if (has_arguments()) { 1104 _args.clean_weak_klass_links(always_clean); 1105 } 1106 if (has_return()) { 1107 _ret.clean_weak_klass_links(always_clean); 1108 } 1109 } 1110 1111 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1112 }; 1113 1114 // ReceiverTypeData 1115 // 1116 // A ReceiverTypeData is used to access profiling information about a 1117 // dynamic type check. It consists of a series of (Klass*, count) 1118 // pairs which are used to store a type profile for the receiver of 1119 // the check, the associated count is incremented every time the type 1120 // is seen. A per ReceiverTypeData counter is incremented on type 1121 // overflow (when there's no more room for a not yet profiled Klass*). 1122 // 1123 class ReceiverTypeData : public CounterData { 1124 friend class VMStructs; 1125 friend class JVMCIVMStructs; 1126 protected: 1127 enum { 1128 receiver0_offset = counter_cell_count, 1129 count0_offset, 1130 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset 1131 }; 1132 1133 public: 1134 ReceiverTypeData(DataLayout* layout) : CounterData(layout) { 1135 assert(layout->tag() == DataLayout::receiver_type_data_tag || 1136 layout->tag() == DataLayout::virtual_call_data_tag || 1137 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1138 } 1139 1140 virtual bool is_ReceiverTypeData() const { return true; } 1141 1142 static int static_cell_count() { 1143 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count; 1144 } 1145 1146 virtual int cell_count() const { 1147 return static_cell_count(); 1148 } 1149 1150 // Direct accessors 1151 static uint row_limit() { 1152 return (uint) TypeProfileWidth; 1153 } 1154 static int receiver_cell_index(uint row) { 1155 return receiver0_offset + row * receiver_type_row_cell_count; 1156 } 1157 static int receiver_count_cell_index(uint row) { 1158 return count0_offset + row * receiver_type_row_cell_count; 1159 } 1160 1161 Klass* receiver(uint row) const { 1162 assert(row < row_limit(), "oob"); 1163 1164 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row)); 1165 assert(recv == nullptr || recv->is_klass(), "wrong type"); 1166 return recv; 1167 } 1168 1169 void set_receiver(uint row, Klass* k) { 1170 assert((uint)row < row_limit(), "oob"); 1171 set_intptr_at(receiver_cell_index(row), (uintptr_t)k); 1172 } 1173 1174 uint receiver_count(uint row) const { 1175 assert(row < row_limit(), "oob"); 1176 return uint_at(receiver_count_cell_index(row)); 1177 } 1178 1179 void set_receiver_count(uint row, uint count) { 1180 assert(row < row_limit(), "oob"); 1181 set_uint_at(receiver_count_cell_index(row), count); 1182 } 1183 1184 void clear_row(uint row) { 1185 assert(row < row_limit(), "oob"); 1186 // Clear total count - indicator of polymorphic call site. 1187 // The site may look like as monomorphic after that but 1188 // it allow to have more accurate profiling information because 1189 // there was execution phase change since klasses were unloaded. 1190 // If the site is still polymorphic then MDO will be updated 1191 // to reflect it. But it could be the case that the site becomes 1192 // only bimorphic. Then keeping total count not 0 will be wrong. 1193 // Even if we use monomorphic (when it is not) for compilation 1194 // we will only have trap, deoptimization and recompile again 1195 // with updated MDO after executing method in Interpreter. 1196 // An additional receiver will be recorded in the cleaned row 1197 // during next call execution. 1198 // 1199 // Note: our profiling logic works with empty rows in any slot. 1200 // We do sorting a profiling info (ciCallProfile) for compilation. 1201 // 1202 set_count(0); 1203 set_receiver(row, nullptr); 1204 set_receiver_count(row, 0); 1205 } 1206 1207 // Code generation support 1208 static ByteSize receiver_offset(uint row) { 1209 return cell_offset(receiver_cell_index(row)); 1210 } 1211 static ByteSize receiver_count_offset(uint row) { 1212 return cell_offset(receiver_count_cell_index(row)); 1213 } 1214 static ByteSize receiver_type_data_size() { 1215 return cell_offset(static_cell_count()); 1216 } 1217 1218 // GC support 1219 virtual void clean_weak_klass_links(bool always_clean); 1220 1221 void print_receiver_data_on(outputStream* st) const; 1222 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1223 }; 1224 1225 // VirtualCallData 1226 // 1227 // A VirtualCallData is used to access profiling information about a 1228 // virtual call. For now, it has nothing more than a ReceiverTypeData. 1229 class VirtualCallData : public ReceiverTypeData { 1230 public: 1231 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { 1232 assert(layout->tag() == DataLayout::virtual_call_data_tag || 1233 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1234 } 1235 1236 virtual bool is_VirtualCallData() const { return true; } 1237 1238 static int static_cell_count() { 1239 // At this point we could add more profile state, e.g., for arguments. 1240 // But for now it's the same size as the base record type. 1241 return ReceiverTypeData::static_cell_count(); 1242 } 1243 1244 virtual int cell_count() const { 1245 return static_cell_count(); 1246 } 1247 1248 // Direct accessors 1249 static ByteSize virtual_call_data_size() { 1250 return cell_offset(static_cell_count()); 1251 } 1252 1253 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN; 1254 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1255 }; 1256 1257 // VirtualCallTypeData 1258 // 1259 // A VirtualCallTypeData is used to access profiling information about 1260 // a virtual call for which we collect type information about 1261 // arguments and return value. 1262 class VirtualCallTypeData : public VirtualCallData { 1263 private: 1264 // entries for arguments if any 1265 TypeStackSlotEntries _args; 1266 // entry for return type if any 1267 ReturnTypeEntry _ret; 1268 1269 int cell_count_global_offset() const { 1270 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1271 } 1272 1273 // number of cells not counting the header 1274 int cell_count_no_header() const { 1275 return uint_at(cell_count_global_offset()); 1276 } 1277 1278 void check_number_of_arguments(int total) { 1279 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1280 } 1281 1282 public: 1283 VirtualCallTypeData(DataLayout* layout) : 1284 VirtualCallData(layout), 1285 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1286 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1287 { 1288 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1289 // Some compilers (VC++) don't want this passed in member initialization list 1290 _args.set_profile_data(this); 1291 _ret.set_profile_data(this); 1292 } 1293 1294 const TypeStackSlotEntries* args() const { 1295 assert(has_arguments(), "no profiling of arguments"); 1296 return &_args; 1297 } 1298 1299 const ReturnTypeEntry* ret() const { 1300 assert(has_return(), "no profiling of return value"); 1301 return &_ret; 1302 } 1303 1304 virtual bool is_VirtualCallTypeData() const { return true; } 1305 1306 static int static_cell_count() { 1307 return -1; 1308 } 1309 1310 static int compute_cell_count(BytecodeStream* stream) { 1311 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1312 } 1313 1314 static void initialize(DataLayout* dl, int cell_count) { 1315 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count); 1316 } 1317 1318 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1319 1320 virtual int cell_count() const { 1321 return VirtualCallData::static_cell_count() + 1322 TypeEntriesAtCall::header_cell_count() + 1323 int_at_unchecked(cell_count_global_offset()); 1324 } 1325 1326 int number_of_arguments() const { 1327 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1328 } 1329 1330 void set_argument_type(int i, Klass* k) { 1331 assert(has_arguments(), "no arguments!"); 1332 intptr_t current = _args.type(i); 1333 _args.set_type(i, TypeEntries::with_status(k, current)); 1334 } 1335 1336 void set_return_type(Klass* k) { 1337 assert(has_return(), "no return!"); 1338 intptr_t current = _ret.type(); 1339 _ret.set_type(TypeEntries::with_status(k, current)); 1340 } 1341 1342 // An entry for a return value takes less space than an entry for an 1343 // argument, so if the remainder of the number of cells divided by 1344 // the number of cells for an argument is not null, a return value 1345 // is profiled in this object. 1346 bool has_return() const { 1347 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1348 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1349 return res; 1350 } 1351 1352 // An entry for a return value takes less space than an entry for an 1353 // argument so if the number of cells exceeds the number of cells 1354 // needed for an argument, this object contains type information for 1355 // at least one argument. 1356 bool has_arguments() const { 1357 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1358 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1359 return res; 1360 } 1361 1362 // Code generation support 1363 static ByteSize args_data_offset() { 1364 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1365 } 1366 1367 ByteSize argument_type_offset(int i) { 1368 return _args.type_offset(i); 1369 } 1370 1371 ByteSize return_type_offset() { 1372 return _ret.type_offset(); 1373 } 1374 1375 // GC support 1376 virtual void clean_weak_klass_links(bool always_clean) { 1377 ReceiverTypeData::clean_weak_klass_links(always_clean); 1378 if (has_arguments()) { 1379 _args.clean_weak_klass_links(always_clean); 1380 } 1381 if (has_return()) { 1382 _ret.clean_weak_klass_links(always_clean); 1383 } 1384 } 1385 1386 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1387 }; 1388 1389 // RetData 1390 // 1391 // A RetData is used to access profiling information for a ret bytecode. 1392 // It is composed of a count of the number of times that the ret has 1393 // been executed, followed by a series of triples of the form 1394 // (bci, count, di) which count the number of times that some bci was the 1395 // target of the ret and cache a corresponding data displacement. 1396 class RetData : public CounterData { 1397 protected: 1398 enum { 1399 bci0_offset = counter_cell_count, 1400 count0_offset, 1401 displacement0_offset, 1402 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset 1403 }; 1404 1405 void set_bci(uint row, int bci) { 1406 assert((uint)row < row_limit(), "oob"); 1407 set_int_at(bci0_offset + row * ret_row_cell_count, bci); 1408 } 1409 void release_set_bci(uint row, int bci); 1410 void set_bci_count(uint row, uint count) { 1411 assert((uint)row < row_limit(), "oob"); 1412 set_uint_at(count0_offset + row * ret_row_cell_count, count); 1413 } 1414 void set_bci_displacement(uint row, int disp) { 1415 set_int_at(displacement0_offset + row * ret_row_cell_count, disp); 1416 } 1417 1418 public: 1419 RetData(DataLayout* layout) : CounterData(layout) { 1420 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); 1421 } 1422 1423 virtual bool is_RetData() const { return true; } 1424 1425 enum { 1426 no_bci = -1 // value of bci when bci1/2 are not in use. 1427 }; 1428 1429 static int static_cell_count() { 1430 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; 1431 } 1432 1433 virtual int cell_count() const { 1434 return static_cell_count(); 1435 } 1436 1437 static uint row_limit() { 1438 return (uint) BciProfileWidth; 1439 } 1440 static int bci_cell_index(uint row) { 1441 return bci0_offset + row * ret_row_cell_count; 1442 } 1443 static int bci_count_cell_index(uint row) { 1444 return count0_offset + row * ret_row_cell_count; 1445 } 1446 static int bci_displacement_cell_index(uint row) { 1447 return displacement0_offset + row * ret_row_cell_count; 1448 } 1449 1450 // Direct accessors 1451 int bci(uint row) const { 1452 return int_at(bci_cell_index(row)); 1453 } 1454 uint bci_count(uint row) const { 1455 return uint_at(bci_count_cell_index(row)); 1456 } 1457 int bci_displacement(uint row) const { 1458 return int_at(bci_displacement_cell_index(row)); 1459 } 1460 1461 // Interpreter Runtime support 1462 address fixup_ret(int return_bci, MethodData* mdo); 1463 1464 // Code generation support 1465 static ByteSize bci_offset(uint row) { 1466 return cell_offset(bci_cell_index(row)); 1467 } 1468 static ByteSize bci_count_offset(uint row) { 1469 return cell_offset(bci_count_cell_index(row)); 1470 } 1471 static ByteSize bci_displacement_offset(uint row) { 1472 return cell_offset(bci_displacement_cell_index(row)); 1473 } 1474 1475 // Specific initialization. 1476 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1477 1478 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1479 }; 1480 1481 // BranchData 1482 // 1483 // A BranchData is used to access profiling data for a two-way branch. 1484 // It consists of taken and not_taken counts as well as a data displacement 1485 // for the taken case. 1486 class BranchData : public JumpData { 1487 friend class VMStructs; 1488 friend class JVMCIVMStructs; 1489 protected: 1490 enum { 1491 not_taken_off_set = jump_cell_count, 1492 branch_cell_count 1493 }; 1494 1495 void set_displacement(int displacement) { 1496 set_int_at(displacement_off_set, displacement); 1497 } 1498 1499 public: 1500 BranchData(DataLayout* layout) : JumpData(layout) { 1501 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type"); 1502 } 1503 1504 virtual bool is_BranchData() const { return true; } 1505 1506 static int static_cell_count() { 1507 return branch_cell_count; 1508 } 1509 1510 virtual int cell_count() const { 1511 return static_cell_count(); 1512 } 1513 1514 // Direct accessor 1515 uint not_taken() const { 1516 return uint_at(not_taken_off_set); 1517 } 1518 1519 void set_not_taken(uint cnt) { 1520 set_uint_at(not_taken_off_set, cnt); 1521 } 1522 1523 uint inc_not_taken() { 1524 uint cnt = not_taken() + 1; 1525 // Did we wrap? Will compiler screw us?? 1526 if (cnt == 0) cnt--; 1527 set_uint_at(not_taken_off_set, cnt); 1528 return cnt; 1529 } 1530 1531 // Code generation support 1532 static ByteSize not_taken_offset() { 1533 return cell_offset(not_taken_off_set); 1534 } 1535 static ByteSize branch_data_size() { 1536 return cell_offset(branch_cell_count); 1537 } 1538 1539 // Specific initialization. 1540 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1541 1542 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1543 }; 1544 1545 // ArrayData 1546 // 1547 // A ArrayData is a base class for accessing profiling data which does 1548 // not have a statically known size. It consists of an array length 1549 // and an array start. 1550 class ArrayData : public ProfileData { 1551 friend class VMStructs; 1552 friend class JVMCIVMStructs; 1553 protected: 1554 friend class DataLayout; 1555 1556 enum { 1557 array_len_off_set, 1558 array_start_off_set 1559 }; 1560 1561 uint array_uint_at(int index) const { 1562 int aindex = index + array_start_off_set; 1563 return uint_at(aindex); 1564 } 1565 int array_int_at(int index) const { 1566 int aindex = index + array_start_off_set; 1567 return int_at(aindex); 1568 } 1569 oop array_oop_at(int index) const { 1570 int aindex = index + array_start_off_set; 1571 return oop_at(aindex); 1572 } 1573 void array_set_int_at(int index, int value) { 1574 int aindex = index + array_start_off_set; 1575 set_int_at(aindex, value); 1576 } 1577 1578 // Code generation support for subclasses. 1579 static ByteSize array_element_offset(int index) { 1580 return cell_offset(array_start_off_set + index); 1581 } 1582 1583 public: 1584 ArrayData(DataLayout* layout) : ProfileData(layout) {} 1585 1586 virtual bool is_ArrayData() const { return true; } 1587 1588 static int static_cell_count() { 1589 return -1; 1590 } 1591 1592 int array_len() const { 1593 return int_at_unchecked(array_len_off_set); 1594 } 1595 1596 virtual int cell_count() const { 1597 return array_len() + 1; 1598 } 1599 1600 // Code generation support 1601 static ByteSize array_len_offset() { 1602 return cell_offset(array_len_off_set); 1603 } 1604 static ByteSize array_start_offset() { 1605 return cell_offset(array_start_off_set); 1606 } 1607 }; 1608 1609 // MultiBranchData 1610 // 1611 // A MultiBranchData is used to access profiling information for 1612 // a multi-way branch (*switch bytecodes). It consists of a series 1613 // of (count, displacement) pairs, which count the number of times each 1614 // case was taken and specify the data displacement for each branch target. 1615 class MultiBranchData : public ArrayData { 1616 friend class VMStructs; 1617 friend class JVMCIVMStructs; 1618 protected: 1619 enum { 1620 default_count_off_set, 1621 default_disaplacement_off_set, 1622 case_array_start 1623 }; 1624 enum { 1625 relative_count_off_set, 1626 relative_displacement_off_set, 1627 per_case_cell_count 1628 }; 1629 1630 void set_default_displacement(int displacement) { 1631 array_set_int_at(default_disaplacement_off_set, displacement); 1632 } 1633 void set_displacement_at(int index, int displacement) { 1634 array_set_int_at(case_array_start + 1635 index * per_case_cell_count + 1636 relative_displacement_off_set, 1637 displacement); 1638 } 1639 1640 public: 1641 MultiBranchData(DataLayout* layout) : ArrayData(layout) { 1642 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); 1643 } 1644 1645 virtual bool is_MultiBranchData() const { return true; } 1646 1647 static int compute_cell_count(BytecodeStream* stream); 1648 1649 int number_of_cases() const { 1650 int alen = array_len() - 2; // get rid of default case here. 1651 assert(alen % per_case_cell_count == 0, "must be even"); 1652 return (alen / per_case_cell_count); 1653 } 1654 1655 uint default_count() const { 1656 return array_uint_at(default_count_off_set); 1657 } 1658 int default_displacement() const { 1659 return array_int_at(default_disaplacement_off_set); 1660 } 1661 1662 uint count_at(int index) const { 1663 return array_uint_at(case_array_start + 1664 index * per_case_cell_count + 1665 relative_count_off_set); 1666 } 1667 int displacement_at(int index) const { 1668 return array_int_at(case_array_start + 1669 index * per_case_cell_count + 1670 relative_displacement_off_set); 1671 } 1672 1673 // Code generation support 1674 static ByteSize default_count_offset() { 1675 return array_element_offset(default_count_off_set); 1676 } 1677 static ByteSize default_displacement_offset() { 1678 return array_element_offset(default_disaplacement_off_set); 1679 } 1680 static ByteSize case_count_offset(int index) { 1681 return case_array_offset() + 1682 (per_case_size() * index) + 1683 relative_count_offset(); 1684 } 1685 static ByteSize case_array_offset() { 1686 return array_element_offset(case_array_start); 1687 } 1688 static ByteSize per_case_size() { 1689 return in_ByteSize(per_case_cell_count) * cell_size; 1690 } 1691 static ByteSize relative_count_offset() { 1692 return in_ByteSize(relative_count_off_set) * cell_size; 1693 } 1694 static ByteSize relative_displacement_offset() { 1695 return in_ByteSize(relative_displacement_off_set) * cell_size; 1696 } 1697 1698 // Specific initialization. 1699 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1700 1701 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1702 }; 1703 1704 class ArgInfoData : public ArrayData { 1705 1706 public: 1707 ArgInfoData(DataLayout* layout) : ArrayData(layout) { 1708 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); 1709 } 1710 1711 virtual bool is_ArgInfoData() const { return true; } 1712 1713 1714 int number_of_args() const { 1715 return array_len(); 1716 } 1717 1718 uint arg_modified(int arg) const { 1719 return array_uint_at(arg); 1720 } 1721 1722 void set_arg_modified(int arg, uint val) { 1723 array_set_int_at(arg, val); 1724 } 1725 1726 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1727 }; 1728 1729 // ParametersTypeData 1730 // 1731 // A ParametersTypeData is used to access profiling information about 1732 // types of parameters to a method 1733 class ParametersTypeData : public ArrayData { 1734 1735 private: 1736 TypeStackSlotEntries _parameters; 1737 1738 static int stack_slot_local_offset(int i) { 1739 assert_profiling_enabled(); 1740 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i); 1741 } 1742 1743 static int type_local_offset(int i) { 1744 assert_profiling_enabled(); 1745 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i); 1746 } 1747 1748 static bool profiling_enabled(); 1749 static void assert_profiling_enabled() { 1750 assert(profiling_enabled(), "method parameters profiling should be on"); 1751 } 1752 1753 public: 1754 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) { 1755 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type"); 1756 // Some compilers (VC++) don't want this passed in member initialization list 1757 _parameters.set_profile_data(this); 1758 } 1759 1760 static int compute_cell_count(Method* m); 1761 1762 virtual bool is_ParametersTypeData() const { return true; } 1763 1764 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1765 1766 int number_of_parameters() const { 1767 return array_len() / TypeStackSlotEntries::per_arg_count(); 1768 } 1769 1770 const TypeStackSlotEntries* parameters() const { return &_parameters; } 1771 1772 uint stack_slot(int i) const { 1773 return _parameters.stack_slot(i); 1774 } 1775 1776 void set_type(int i, Klass* k) { 1777 intptr_t current = _parameters.type(i); 1778 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current)); 1779 } 1780 1781 virtual void clean_weak_klass_links(bool always_clean) { 1782 _parameters.clean_weak_klass_links(always_clean); 1783 } 1784 1785 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1786 1787 static ByteSize stack_slot_offset(int i) { 1788 return cell_offset(stack_slot_local_offset(i)); 1789 } 1790 1791 static ByteSize type_offset(int i) { 1792 return cell_offset(type_local_offset(i)); 1793 } 1794 }; 1795 1796 // SpeculativeTrapData 1797 // 1798 // A SpeculativeTrapData is used to record traps due to type 1799 // speculation. It records the root of the compilation: that type 1800 // speculation is wrong in the context of one compilation (for 1801 // method1) doesn't mean it's wrong in the context of another one (for 1802 // method2). Type speculation could have more/different data in the 1803 // context of the compilation of method2 and it's worthwhile to try an 1804 // optimization that failed for compilation of method1 in the context 1805 // of compilation of method2. 1806 // Space for SpeculativeTrapData entries is allocated from the extra 1807 // data space in the MDO. If we run out of space, the trap data for 1808 // the ProfileData at that bci is updated. 1809 class SpeculativeTrapData : public ProfileData { 1810 protected: 1811 enum { 1812 speculative_trap_method, 1813 #ifndef _LP64 1814 // The size of the area for traps is a multiple of the header 1815 // size, 2 cells on 32 bits. Packed at the end of this area are 1816 // argument info entries (with tag 1817 // DataLayout::arg_info_data_tag). The logic in 1818 // MethodData::bci_to_extra_data() that guarantees traps don't 1819 // overflow over argument info entries assumes the size of a 1820 // SpeculativeTrapData is twice the header size. On 32 bits, a 1821 // SpeculativeTrapData must be 4 cells. 1822 padding, 1823 #endif 1824 speculative_trap_cell_count 1825 }; 1826 public: 1827 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) { 1828 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type"); 1829 } 1830 1831 virtual bool is_SpeculativeTrapData() const { return true; } 1832 1833 static int static_cell_count() { 1834 return speculative_trap_cell_count; 1835 } 1836 1837 virtual int cell_count() const { 1838 return static_cell_count(); 1839 } 1840 1841 // Direct accessor 1842 Method* method() const { 1843 return (Method*)intptr_at(speculative_trap_method); 1844 } 1845 1846 void set_method(Method* m) { 1847 assert(!m->is_old(), "cannot add old methods"); 1848 set_intptr_at(speculative_trap_method, (intptr_t)m); 1849 } 1850 1851 static ByteSize method_offset() { 1852 return cell_offset(speculative_trap_method); 1853 } 1854 1855 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1856 }; 1857 1858 // MethodData* 1859 // 1860 // A MethodData* holds information which has been collected about 1861 // a method. Its layout looks like this: 1862 // 1863 // ----------------------------- 1864 // | header | 1865 // | klass | 1866 // ----------------------------- 1867 // | method | 1868 // | size of the MethodData* | 1869 // ----------------------------- 1870 // | Data entries... | 1871 // | (variable size) | 1872 // | | 1873 // . . 1874 // . . 1875 // . . 1876 // | | 1877 // ----------------------------- 1878 // 1879 // The data entry area is a heterogeneous array of DataLayouts. Each 1880 // DataLayout in the array corresponds to a specific bytecode in the 1881 // method. The entries in the array are sorted by the corresponding 1882 // bytecode. Access to the data is via resource-allocated ProfileData, 1883 // which point to the underlying blocks of DataLayout structures. 1884 // 1885 // During interpretation, if profiling in enabled, the interpreter 1886 // maintains a method data pointer (mdp), which points at the entry 1887 // in the array corresponding to the current bci. In the course of 1888 // interpretation, when a bytecode is encountered that has profile data 1889 // associated with it, the entry pointed to by mdp is updated, then the 1890 // mdp is adjusted to point to the next appropriate DataLayout. If mdp 1891 // is null to begin with, the interpreter assumes that the current method 1892 // is not (yet) being profiled. 1893 // 1894 // In MethodData* parlance, "dp" is a "data pointer", the actual address 1895 // of a DataLayout element. A "di" is a "data index", the offset in bytes 1896 // from the base of the data entry array. A "displacement" is the byte offset 1897 // in certain ProfileData objects that indicate the amount the mdp must be 1898 // adjusted in the event of a change in control flow. 1899 // 1900 1901 class CleanExtraDataClosure : public StackObj { 1902 public: 1903 virtual bool is_live(Method* m) = 0; 1904 }; 1905 1906 1907 #if INCLUDE_JVMCI 1908 // Encapsulates an encoded speculation reason. These are linked together in 1909 // a list that is atomically appended to during deoptimization. Entries are 1910 // never removed from the list. 1911 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding 1912 class FailedSpeculation: public CHeapObj<mtCompiler> { 1913 private: 1914 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself 1915 // is an array embedded at the end of this object. 1916 int _data_len; 1917 1918 // Next entry in a linked list. 1919 FailedSpeculation* _next; 1920 1921 FailedSpeculation(address data, int data_len); 1922 1923 FailedSpeculation** next_adr() { return &_next; } 1924 1925 // Placement new operator for inlining the speculation data into 1926 // the FailedSpeculation object. 1927 void* operator new(size_t size, size_t fs_size) throw(); 1928 1929 public: 1930 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); } 1931 int data_len() const { return _data_len; } 1932 FailedSpeculation* next() const { return _next; } 1933 1934 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address). 1935 // Returns false if the FailedSpeculation object could not be allocated. 1936 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len); 1937 1938 // Frees all entries in the linked list whose head is at (*failed_speculations_address). 1939 static void free_failed_speculations(FailedSpeculation** failed_speculations_address); 1940 }; 1941 #endif 1942 1943 class ciMethodData; 1944 1945 class MethodData : public Metadata { 1946 friend class VMStructs; 1947 friend class JVMCIVMStructs; 1948 friend class ProfileData; 1949 friend class TypeEntriesAtCall; 1950 friend class ciMethodData; 1951 friend class VM_ReinitializeMDO; 1952 1953 // If you add a new field that points to any metaspace object, you 1954 // must add this field to MethodData::metaspace_pointers_do(). 1955 1956 // Back pointer to the Method* 1957 Method* _method; 1958 1959 // Size of this oop in bytes 1960 int _size; 1961 1962 // Cached hint for bci_to_dp and bci_to_data 1963 int _hint_di; 1964 1965 Mutex _extra_data_lock; 1966 1967 MethodData(const methodHandle& method); 1968 1969 void initialize(); 1970 1971 public: 1972 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS); 1973 1974 virtual bool is_methodData() const { return true; } 1975 1976 // Safely reinitialize the data in the MDO. This is intended as a testing facility as the 1977 // reinitialization is performed at a safepoint so it's isn't cheap and it doesn't ensure that all 1978 // readers will see consistent profile data. 1979 void reinitialize(); 1980 1981 // Whole-method sticky bits and flags 1982 enum { 1983 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH, 1984 _trap_hist_mask = max_jubyte, 1985 _extra_data_count = 4 // extra DataLayout headers, for trap history 1986 }; // Public flag values 1987 1988 // Compiler-related counters. 1989 class CompilerCounters { 1990 friend class VMStructs; 1991 friend class JVMCIVMStructs; 1992 1993 uint _nof_decompiles; // count of all nmethod removals 1994 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits 1995 uint _nof_overflow_traps; // trap count, excluding _trap_hist 1996 union { 1997 intptr_t _align; 1998 // JVMCI separates trap history for OSR compilations from normal compilations 1999 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit]; 2000 } _trap_hist; 2001 2002 public: 2003 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) { 2004 #ifndef ZERO 2005 // Some Zero platforms do not have expected alignment, and do not use 2006 // this code. static_assert would still fire and fail for them. 2007 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align"); 2008 #endif 2009 uint size_in_words = sizeof(_trap_hist) / HeapWordSize; 2010 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words); 2011 } 2012 2013 // Return (uint)-1 for overflow. 2014 uint trap_count(int reason) const { 2015 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2016 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; 2017 } 2018 2019 uint inc_trap_count(int reason) { 2020 // Count another trap, anywhere in this method. 2021 assert(reason >= 0, "must be single trap"); 2022 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2023 uint cnt1 = 1 + _trap_hist._array[reason]; 2024 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... 2025 _trap_hist._array[reason] = (u1)cnt1; 2026 return cnt1; 2027 } else { 2028 return _trap_hist_mask + (++_nof_overflow_traps); 2029 } 2030 } 2031 2032 uint overflow_trap_count() const { 2033 return _nof_overflow_traps; 2034 } 2035 uint overflow_recompile_count() const { 2036 return _nof_overflow_recompiles; 2037 } 2038 uint inc_overflow_recompile_count() { 2039 return ++_nof_overflow_recompiles; 2040 } 2041 uint decompile_count() const { 2042 return _nof_decompiles; 2043 } 2044 uint inc_decompile_count() { 2045 return ++_nof_decompiles; 2046 } 2047 2048 // Support for code generation 2049 static ByteSize trap_history_offset() { 2050 return byte_offset_of(CompilerCounters, _trap_hist._array); 2051 } 2052 }; 2053 2054 private: 2055 CompilerCounters _compiler_counters; 2056 2057 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2058 intx _eflags; // flags on escape information 2059 intx _arg_local; // bit set of non-escaping arguments 2060 intx _arg_stack; // bit set of stack-allocatable arguments 2061 intx _arg_returned; // bit set of returned arguments 2062 2063 // How many invocations has this MDO seen? 2064 // These counters are used to determine the exact age of MDO. 2065 // We need those because in tiered a method can be concurrently 2066 // executed at different levels. 2067 InvocationCounter _invocation_counter; 2068 // Same for backedges. 2069 InvocationCounter _backedge_counter; 2070 // Counter values at the time profiling started. 2071 int _invocation_counter_start; 2072 int _backedge_counter_start; 2073 uint _tenure_traps; 2074 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog 2075 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog 2076 2077 // Number of loops and blocks is computed when compiling the first 2078 // time with C1. It is used to determine if method is trivial. 2079 short _num_loops; 2080 short _num_blocks; 2081 // Does this method contain anything worth profiling? 2082 enum WouldProfile {unknown, no_profile, profile}; 2083 WouldProfile _would_profile; 2084 2085 #if INCLUDE_JVMCI 2086 // Support for HotSpotMethodData.setCompiledIRSize(int) 2087 FailedSpeculation* _failed_speculations; 2088 int _jvmci_ir_size; 2089 #endif 2090 2091 // Size of _data array in bytes. (Excludes header and extra_data fields.) 2092 int _data_size; 2093 2094 // data index for the area dedicated to parameters. -1 if no 2095 // parameter profiling. 2096 enum { no_parameters = -2, parameters_uninitialized = -1 }; 2097 int _parameters_type_data_di; 2098 2099 // data index of exception handler profiling data 2100 int _exception_handler_data_di; 2101 2102 // Beginning of the data entries 2103 // See comment in ciMethodData::load_data 2104 intptr_t _data[1]; 2105 2106 // Helper for size computation 2107 static int compute_data_size(BytecodeStream* stream); 2108 static int bytecode_cell_count(Bytecodes::Code code); 2109 static bool is_speculative_trap_bytecode(Bytecodes::Code code); 2110 enum { no_profile_data = -1, variable_cell_count = -2 }; 2111 2112 // Helper for initialization 2113 DataLayout* data_layout_at(int data_index) const { 2114 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 2115 return (DataLayout*) (((address)_data) + data_index); 2116 } 2117 2118 static int single_exception_handler_data_cell_count() { 2119 return BitData::static_cell_count(); 2120 } 2121 2122 static int single_exception_handler_data_size() { 2123 return DataLayout::compute_size_in_bytes(single_exception_handler_data_cell_count()); 2124 } 2125 2126 DataLayout* exception_handler_data_at(int exception_handler_index) const { 2127 return data_layout_at(_exception_handler_data_di + (exception_handler_index * single_exception_handler_data_size())); 2128 } 2129 2130 int num_exception_handler_data() const { 2131 return exception_handlers_data_size() / single_exception_handler_data_size(); 2132 } 2133 2134 // Initialize an individual data segment. Returns the size of 2135 // the segment in bytes. 2136 int initialize_data(BytecodeStream* stream, int data_index); 2137 2138 // Helper for data_at 2139 DataLayout* limit_data_position() const { 2140 return data_layout_at(_data_size); 2141 } 2142 bool out_of_bounds(int data_index) const { 2143 return data_index >= data_size(); 2144 } 2145 2146 // Give each of the data entries a chance to perform specific 2147 // data initialization. 2148 void post_initialize(BytecodeStream* stream); 2149 2150 // hint accessors 2151 int hint_di() const { return _hint_di; } 2152 void set_hint_di(int di) { 2153 assert(!out_of_bounds(di), "hint_di out of bounds"); 2154 _hint_di = di; 2155 } 2156 2157 DataLayout* data_layout_before(int bci) { 2158 // avoid SEGV on this edge case 2159 if (data_size() == 0) 2160 return nullptr; 2161 DataLayout* layout = data_layout_at(hint_di()); 2162 if (layout->bci() <= bci) 2163 return layout; 2164 return data_layout_at(first_di()); 2165 } 2166 2167 // What is the index of the first data entry? 2168 int first_di() const { return 0; } 2169 2170 ProfileData* bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp); 2171 // Find or create an extra ProfileData: 2172 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing); 2173 2174 // return the argument info cell 2175 ArgInfoData *arg_info(); 2176 2177 enum { 2178 no_type_profile = 0, 2179 type_profile_jsr292 = 1, 2180 type_profile_all = 2 2181 }; 2182 2183 static bool profile_jsr292(const methodHandle& m, int bci); 2184 static bool profile_unsafe(const methodHandle& m, int bci); 2185 static bool profile_memory_access(const methodHandle& m, int bci); 2186 static int profile_arguments_flag(); 2187 static bool profile_all_arguments(); 2188 static bool profile_arguments_for_invoke(const methodHandle& m, int bci); 2189 static int profile_return_flag(); 2190 static bool profile_all_return(); 2191 static bool profile_return_for_invoke(const methodHandle& m, int bci); 2192 static int profile_parameters_flag(); 2193 static bool profile_parameters_jsr292_only(); 2194 static bool profile_all_parameters(); 2195 2196 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false); 2197 void verify_extra_data_clean(CleanExtraDataClosure* cl); 2198 2199 DataLayout* exception_handler_bci_to_data_helper(int bci); 2200 2201 public: 2202 void clean_extra_data(CleanExtraDataClosure* cl); 2203 2204 static int header_size() { 2205 return sizeof(MethodData)/wordSize; 2206 } 2207 2208 // Compute the size of a MethodData* before it is created. 2209 static int compute_allocation_size_in_bytes(const methodHandle& method); 2210 static int compute_allocation_size_in_words(const methodHandle& method); 2211 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps); 2212 2213 // Determine if a given bytecode can have profile information. 2214 static bool bytecode_has_profile(Bytecodes::Code code) { 2215 return bytecode_cell_count(code) != no_profile_data; 2216 } 2217 2218 // reset into original state 2219 void init(); 2220 2221 // My size 2222 int size_in_bytes() const { return _size; } 2223 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); } 2224 2225 int invocation_count() { 2226 if (invocation_counter()->carry()) { 2227 return InvocationCounter::count_limit; 2228 } 2229 return invocation_counter()->count(); 2230 } 2231 int backedge_count() { 2232 if (backedge_counter()->carry()) { 2233 return InvocationCounter::count_limit; 2234 } 2235 return backedge_counter()->count(); 2236 } 2237 2238 int invocation_count_start() { 2239 if (invocation_counter()->carry()) { 2240 return 0; 2241 } 2242 return _invocation_counter_start; 2243 } 2244 2245 int backedge_count_start() { 2246 if (backedge_counter()->carry()) { 2247 return 0; 2248 } 2249 return _backedge_counter_start; 2250 } 2251 2252 int invocation_count_delta() { return invocation_count() - invocation_count_start(); } 2253 int backedge_count_delta() { return backedge_count() - backedge_count_start(); } 2254 2255 void reset_start_counters() { 2256 _invocation_counter_start = invocation_count(); 2257 _backedge_counter_start = backedge_count(); 2258 } 2259 2260 InvocationCounter* invocation_counter() { return &_invocation_counter; } 2261 InvocationCounter* backedge_counter() { return &_backedge_counter; } 2262 2263 #if INCLUDE_JVMCI 2264 FailedSpeculation** get_failed_speculations_address() { 2265 return &_failed_speculations; 2266 } 2267 #endif 2268 2269 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; } 2270 bool would_profile() const { return _would_profile != no_profile; } 2271 2272 int num_loops() const { return _num_loops; } 2273 void set_num_loops(short n) { _num_loops = n; } 2274 int num_blocks() const { return _num_blocks; } 2275 void set_num_blocks(short n) { _num_blocks = n; } 2276 2277 bool is_mature() const; 2278 2279 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2280 enum EscapeFlag { 2281 estimated = 1 << 0, 2282 return_local = 1 << 1, 2283 return_allocated = 1 << 2, 2284 allocated_escapes = 1 << 3, 2285 unknown_modified = 1 << 4 2286 }; 2287 2288 intx eflags() { return _eflags; } 2289 intx arg_local() { return _arg_local; } 2290 intx arg_stack() { return _arg_stack; } 2291 intx arg_returned() { return _arg_returned; } 2292 uint arg_modified(int a); 2293 void set_eflags(intx v) { _eflags = v; } 2294 void set_arg_local(intx v) { _arg_local = v; } 2295 void set_arg_stack(intx v) { _arg_stack = v; } 2296 void set_arg_returned(intx v) { _arg_returned = v; } 2297 void set_arg_modified(int a, uint v); 2298 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } 2299 2300 // Location and size of data area 2301 address data_base() const { 2302 return (address) _data; 2303 } 2304 int data_size() const { 2305 return _data_size; 2306 } 2307 2308 int parameters_size_in_bytes() const { 2309 return pointer_delta_as_int((address) parameters_data_limit(), (address) parameters_data_base()); 2310 } 2311 2312 int exception_handlers_data_size() const { 2313 return pointer_delta_as_int((address) exception_handler_data_limit(), (address) exception_handler_data_base()); 2314 } 2315 2316 // Accessors 2317 Method* method() const { return _method; } 2318 2319 // Get the data at an arbitrary (sort of) data index. 2320 ProfileData* data_at(int data_index) const; 2321 2322 // Walk through the data in order. 2323 ProfileData* first_data() const { return data_at(first_di()); } 2324 ProfileData* next_data(ProfileData* current) const; 2325 DataLayout* next_data_layout(DataLayout* current) const; 2326 bool is_valid(ProfileData* current) const { return current != nullptr; } 2327 bool is_valid(DataLayout* current) const { return current != nullptr; } 2328 2329 // Convert a dp (data pointer) to a di (data index). 2330 int dp_to_di(address dp) const { 2331 return (int)(dp - ((address)_data)); 2332 } 2333 2334 // bci to di/dp conversion. 2335 address bci_to_dp(int bci); 2336 int bci_to_di(int bci) { 2337 return dp_to_di(bci_to_dp(bci)); 2338 } 2339 2340 // Get the data at an arbitrary bci, or null if there is none. 2341 ProfileData* bci_to_data(int bci); 2342 2343 // Same, but try to create an extra_data record if one is needed: 2344 ProfileData* allocate_bci_to_data(int bci, Method* m) { 2345 check_extra_data_locked(); 2346 2347 ProfileData* data = nullptr; 2348 // If m not null, try to allocate a SpeculativeTrapData entry 2349 if (m == nullptr) { 2350 data = bci_to_data(bci); 2351 } 2352 if (data != nullptr) { 2353 return data; 2354 } 2355 data = bci_to_extra_data(bci, m, true); 2356 if (data != nullptr) { 2357 return data; 2358 } 2359 // If SpeculativeTrapData allocation fails try to allocate a 2360 // regular entry 2361 data = bci_to_data(bci); 2362 if (data != nullptr) { 2363 return data; 2364 } 2365 return bci_to_extra_data(bci, nullptr, true); 2366 } 2367 2368 BitData* exception_handler_bci_to_data_or_null(int bci); 2369 BitData exception_handler_bci_to_data(int bci); 2370 2371 // Add a handful of extra data records, for trap tracking. 2372 // Only valid after 'set_size' is called at the end of MethodData::initialize 2373 DataLayout* extra_data_base() const { 2374 check_extra_data_locked(); 2375 return limit_data_position(); 2376 } 2377 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); } 2378 // pointers to sections in extra data 2379 DataLayout* args_data_limit() const { return parameters_data_base(); } 2380 DataLayout* parameters_data_base() const { 2381 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2382 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di) : parameters_data_limit(); 2383 } 2384 DataLayout* parameters_data_limit() const { 2385 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2386 return exception_handler_data_base(); 2387 } 2388 DataLayout* exception_handler_data_base() const { return data_layout_at(_exception_handler_data_di); } 2389 DataLayout* exception_handler_data_limit() const { return extra_data_limit(); } 2390 2391 int extra_data_size() const { return (int)((address)extra_data_limit() - (address)limit_data_position()); } 2392 static DataLayout* next_extra(DataLayout* dp); 2393 2394 // Return (uint)-1 for overflow. 2395 uint trap_count(int reason) const { 2396 return _compiler_counters.trap_count(reason); 2397 } 2398 // For loops: 2399 static uint trap_reason_limit() { return _trap_hist_limit; } 2400 static uint trap_count_limit() { return _trap_hist_mask; } 2401 uint inc_trap_count(int reason) { 2402 return _compiler_counters.inc_trap_count(reason); 2403 } 2404 2405 uint overflow_trap_count() const { 2406 return _compiler_counters.overflow_trap_count(); 2407 } 2408 uint overflow_recompile_count() const { 2409 return _compiler_counters.overflow_recompile_count(); 2410 } 2411 uint inc_overflow_recompile_count() { 2412 return _compiler_counters.inc_overflow_recompile_count(); 2413 } 2414 uint decompile_count() const { 2415 return _compiler_counters.decompile_count(); 2416 } 2417 uint inc_decompile_count() { 2418 uint dec_count = _compiler_counters.inc_decompile_count(); 2419 if (dec_count > (uint)PerMethodRecompilationCutoff) { 2420 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization); 2421 } 2422 return dec_count; 2423 } 2424 uint tenure_traps() const { 2425 return _tenure_traps; 2426 } 2427 void inc_tenure_traps() { 2428 _tenure_traps += 1; 2429 } 2430 2431 // Return pointer to area dedicated to parameters in MDO 2432 ParametersTypeData* parameters_type_data() const { 2433 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2434 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr; 2435 } 2436 2437 int parameters_type_data_di() const { 2438 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2439 return _parameters_type_data_di != no_parameters ? _parameters_type_data_di : exception_handlers_data_di(); 2440 } 2441 2442 int exception_handlers_data_di() const { 2443 return _exception_handler_data_di; 2444 } 2445 2446 // Support for code generation 2447 static ByteSize data_offset() { 2448 return byte_offset_of(MethodData, _data[0]); 2449 } 2450 2451 static ByteSize trap_history_offset() { 2452 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset(); 2453 } 2454 2455 static ByteSize invocation_counter_offset() { 2456 return byte_offset_of(MethodData, _invocation_counter); 2457 } 2458 2459 static ByteSize backedge_counter_offset() { 2460 return byte_offset_of(MethodData, _backedge_counter); 2461 } 2462 2463 static ByteSize invoke_mask_offset() { 2464 return byte_offset_of(MethodData, _invoke_mask); 2465 } 2466 2467 static ByteSize backedge_mask_offset() { 2468 return byte_offset_of(MethodData, _backedge_mask); 2469 } 2470 2471 static ByteSize parameters_type_data_di_offset() { 2472 return byte_offset_of(MethodData, _parameters_type_data_di); 2473 } 2474 2475 virtual void metaspace_pointers_do(MetaspaceClosure* iter); 2476 virtual MetaspaceObj::Type type() const { return MethodDataType; } 2477 2478 // Deallocation support 2479 void deallocate_contents(ClassLoaderData* loader_data); 2480 void release_C_heap_structures(); 2481 2482 // GC support 2483 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; } 2484 2485 // Printing 2486 void print_on (outputStream* st) const; 2487 void print_value_on(outputStream* st) const; 2488 2489 // printing support for method data 2490 void print_data_on(outputStream* st) const; 2491 2492 const char* internal_name() const { return "{method data}"; } 2493 2494 // verification 2495 void verify_on(outputStream* st); 2496 void verify_data_on(outputStream* st); 2497 2498 static bool profile_parameters_for_method(const methodHandle& m); 2499 static bool profile_arguments(); 2500 static bool profile_arguments_jsr292_only(); 2501 static bool profile_return(); 2502 static bool profile_parameters(); 2503 static bool profile_return_jsr292_only(); 2504 2505 void clean_method_data(bool always_clean); 2506 void clean_weak_method_links(); 2507 Mutex* extra_data_lock() const { return const_cast<Mutex*>(&_extra_data_lock); } 2508 void check_extra_data_locked() const NOT_DEBUG_RETURN; 2509 }; 2510 2511 #endif // SHARE_OOPS_METHODDATA_HPP