1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_METHODDATA_HPP 26 #define SHARE_OOPS_METHODDATA_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "interpreter/invocationCounter.hpp" 30 #include "oops/metadata.hpp" 31 #include "oops/method.hpp" 32 #include "runtime/atomic.hpp" 33 #include "runtime/deoptimization.hpp" 34 #include "runtime/mutex.hpp" 35 #include "utilities/align.hpp" 36 #include "utilities/copy.hpp" 37 38 class BytecodeStream; 39 40 // The MethodData object collects counts and other profile information 41 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling) 42 // execution. 43 // 44 // The profile is used later by compilation heuristics. Some heuristics 45 // enable use of aggressive (or "heroic") optimizations. An aggressive 46 // optimization often has a down-side, a corner case that it handles 47 // poorly, but which is thought to be rare. The profile provides 48 // evidence of this rarity for a given method or even BCI. It allows 49 // the compiler to back out of the optimization at places where it 50 // has historically been a poor choice. Other heuristics try to use 51 // specific information gathered about types observed at a given site. 52 // 53 // All data in the profile is approximate. It is expected to be accurate 54 // on the whole, but the system expects occasional inaccuraces, due to 55 // counter overflow, multiprocessor races during data collection, space 56 // limitations, missing MDO blocks, etc. Bad or missing data will degrade 57 // optimization quality but will not affect correctness. Also, each MDO 58 // is marked with its birth-date ("creation_mileage") which can be used 59 // to assess the quality ("maturity") of its data. 60 // 61 // Short (<32-bit) counters are designed to overflow to a known "saturated" 62 // state. Also, certain recorded per-BCI events are given one-bit counters 63 // which overflow to a saturated state which applied to all counters at 64 // that BCI. In other words, there is a small lattice which approximates 65 // the ideal of an infinite-precision counter for each event at each BCI, 66 // and the lattice quickly "bottoms out" in a state where all counters 67 // are taken to be indefinitely large. 68 // 69 // The reader will find many data races in profile gathering code, starting 70 // with invocation counter incrementation. None of these races harm correct 71 // execution of the compiled code. 72 73 // forward decl 74 class ProfileData; 75 76 // DataLayout 77 // 78 // Overlay for generic profiling data. 79 class DataLayout { 80 friend class VMStructs; 81 friend class JVMCIVMStructs; 82 83 private: 84 // Every data layout begins with a header. This header 85 // contains a tag, which is used to indicate the size/layout 86 // of the data, 8 bits of flags, which can be used in any way, 87 // 32 bits of trap history (none/one reason/many reasons), 88 // and a bci, which is used to tie this piece of data to a 89 // specific bci in the bytecodes. 90 union { 91 u8 _bits; 92 struct { 93 u1 _tag; 94 u1 _flags; 95 u2 _bci; 96 u4 _traps; 97 } _struct; 98 } _header; 99 100 // The data layout has an arbitrary number of cells, each sized 101 // to accommodate a pointer or an integer. 102 intptr_t _cells[1]; 103 104 // Some types of data layouts need a length field. 105 static bool needs_array_len(u1 tag); 106 107 public: 108 enum { 109 counter_increment = 1 110 }; 111 112 enum { 113 cell_size = sizeof(intptr_t) 114 }; 115 116 // Tag values 117 enum : u1 { 118 no_tag, 119 bit_data_tag, 120 counter_data_tag, 121 jump_data_tag, 122 receiver_type_data_tag, 123 virtual_call_data_tag, 124 ret_data_tag, 125 branch_data_tag, 126 multi_branch_data_tag, 127 arg_info_data_tag, 128 call_type_data_tag, 129 virtual_call_type_data_tag, 130 parameters_type_data_tag, 131 speculative_trap_data_tag 132 }; 133 134 enum { 135 // The trap state breaks down as [recompile:1 | reason:31]. 136 // This further breakdown is defined in deoptimization.cpp. 137 // See Deoptimization::trap_state_reason for an assert that 138 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. 139 // 140 // The trap_state is collected only if ProfileTraps is true. 141 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT]. 142 trap_mask = -1, 143 first_flag = 0 144 }; 145 146 // Size computation 147 static int header_size_in_bytes() { 148 return header_size_in_cells() * cell_size; 149 } 150 static int header_size_in_cells() { 151 return LP64_ONLY(1) NOT_LP64(2); 152 } 153 154 static int compute_size_in_bytes(int cell_count) { 155 return header_size_in_bytes() + cell_count * cell_size; 156 } 157 158 // Initialization 159 void initialize(u1 tag, u2 bci, int cell_count); 160 161 // Accessors 162 u1 tag() { 163 return _header._struct._tag; 164 } 165 166 // Return 32 bits of trap state. 167 // The state tells if traps with zero, one, or many reasons have occurred. 168 // It also tells whether zero or many recompilations have occurred. 169 // The associated trap histogram in the MDO itself tells whether 170 // traps are common or not. If a BCI shows that a trap X has 171 // occurred, and the MDO shows N occurrences of X, we make the 172 // simplifying assumption that all N occurrences can be blamed 173 // on that BCI. 174 uint trap_state() const { 175 return _header._struct._traps; 176 } 177 178 void set_trap_state(uint new_state) { 179 assert(ProfileTraps, "used only under +ProfileTraps"); 180 uint old_flags = _header._struct._traps; 181 _header._struct._traps = new_state | old_flags; 182 } 183 184 u1 flags() const { 185 return Atomic::load_acquire(&_header._struct._flags); 186 } 187 188 u2 bci() const { 189 return _header._struct._bci; 190 } 191 192 void set_header(u8 value) { 193 _header._bits = value; 194 } 195 u8 header() { 196 return _header._bits; 197 } 198 void set_cell_at(int index, intptr_t value) { 199 _cells[index] = value; 200 } 201 void release_set_cell_at(int index, intptr_t value); 202 intptr_t cell_at(int index) const { 203 return _cells[index]; 204 } 205 intptr_t* cell_at_adr(int index) const { 206 return const_cast<intptr_t*>(&_cells[index]); 207 } 208 209 bool set_flag_at(u1 flag_number) { 210 const u1 bit = 1 << flag_number; 211 u1 compare_value; 212 do { 213 compare_value = _header._struct._flags; 214 if ((compare_value & bit) == bit) { 215 // already set. 216 return false; 217 } 218 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, static_cast<u1>(compare_value | bit))); 219 return true; 220 } 221 222 bool clear_flag_at(u1 flag_number) { 223 const u1 bit = 1 << flag_number; 224 u1 compare_value; 225 u1 exchange_value; 226 do { 227 compare_value = _header._struct._flags; 228 if ((compare_value & bit) == 0) { 229 // already cleaed. 230 return false; 231 } 232 exchange_value = compare_value & ~bit; 233 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, exchange_value)); 234 return true; 235 } 236 237 bool flag_at(u1 flag_number) const { 238 return (flags() & (1 << flag_number)) != 0; 239 } 240 241 // Low-level support for code generation. 242 static ByteSize header_offset() { 243 return byte_offset_of(DataLayout, _header); 244 } 245 static ByteSize tag_offset() { 246 return byte_offset_of(DataLayout, _header._struct._tag); 247 } 248 static ByteSize flags_offset() { 249 return byte_offset_of(DataLayout, _header._struct._flags); 250 } 251 static ByteSize bci_offset() { 252 return byte_offset_of(DataLayout, _header._struct._bci); 253 } 254 static ByteSize cell_offset(int index) { 255 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size); 256 } 257 // Return a value which, when or-ed as a byte into _flags, sets the flag. 258 static u1 flag_number_to_constant(u1 flag_number) { 259 DataLayout temp; temp.set_header(0); 260 temp.set_flag_at(flag_number); 261 return temp._header._struct._flags; 262 } 263 // Return a value which, when or-ed as a word into _header, sets the flag. 264 static u8 flag_mask_to_header_mask(u1 byte_constant) { 265 DataLayout temp; temp.set_header(0); 266 temp._header._struct._flags = byte_constant; 267 return temp._header._bits; 268 } 269 270 ProfileData* data_in(); 271 272 int size_in_bytes() { 273 int cells = cell_count(); 274 assert(cells >= 0, "invalid number of cells"); 275 return DataLayout::compute_size_in_bytes(cells); 276 } 277 int cell_count(); 278 279 // GC support 280 void clean_weak_klass_links(bool always_clean); 281 }; 282 283 284 // ProfileData class hierarchy 285 class ProfileData; 286 class BitData; 287 class CounterData; 288 class ReceiverTypeData; 289 class VirtualCallData; 290 class VirtualCallTypeData; 291 class RetData; 292 class CallTypeData; 293 class JumpData; 294 class BranchData; 295 class ArrayData; 296 class MultiBranchData; 297 class ArgInfoData; 298 class ParametersTypeData; 299 class SpeculativeTrapData; 300 301 // ProfileData 302 // 303 // A ProfileData object is created to refer to a section of profiling 304 // data in a structured way. 305 class ProfileData : public ResourceObj { 306 friend class TypeEntries; 307 friend class ReturnTypeEntry; 308 friend class TypeStackSlotEntries; 309 private: 310 enum { 311 tab_width_one = 16, 312 tab_width_two = 36 313 }; 314 315 // This is a pointer to a section of profiling data. 316 DataLayout* _data; 317 318 char* print_data_on_helper(const MethodData* md) const; 319 320 protected: 321 DataLayout* data() { return _data; } 322 const DataLayout* data() const { return _data; } 323 324 enum { 325 cell_size = DataLayout::cell_size 326 }; 327 328 public: 329 // How many cells are in this? 330 virtual int cell_count() const { 331 ShouldNotReachHere(); 332 return -1; 333 } 334 335 // Return the size of this data. 336 int size_in_bytes() { 337 return DataLayout::compute_size_in_bytes(cell_count()); 338 } 339 340 protected: 341 // Low-level accessors for underlying data 342 void set_intptr_at(int index, intptr_t value) { 343 assert(0 <= index && index < cell_count(), "oob"); 344 data()->set_cell_at(index, value); 345 } 346 void release_set_intptr_at(int index, intptr_t value); 347 intptr_t intptr_at(int index) const { 348 assert(0 <= index && index < cell_count(), "oob"); 349 return data()->cell_at(index); 350 } 351 intptr_t* intptr_at_adr(int index) const { 352 assert(0 <= index && index < cell_count(), "oob"); 353 return data()->cell_at_adr(index); 354 } 355 void set_uint_at(int index, uint value) { 356 set_intptr_at(index, (intptr_t) value); 357 } 358 void release_set_uint_at(int index, uint value); 359 uint uint_at(int index) const { 360 return (uint)intptr_at(index); 361 } 362 void set_int_at(int index, int value) { 363 set_intptr_at(index, (intptr_t) value); 364 } 365 void release_set_int_at(int index, int value); 366 int int_at(int index) const { 367 return (int)intptr_at(index); 368 } 369 int int_at_unchecked(int index) const { 370 return (int)data()->cell_at(index); 371 } 372 373 void set_flag_at(u1 flag_number) { 374 data()->set_flag_at(flag_number); 375 } 376 bool flag_at(u1 flag_number) const { 377 return data()->flag_at(flag_number); 378 } 379 380 // two convenient imports for use by subclasses: 381 static ByteSize cell_offset(int index) { 382 return DataLayout::cell_offset(index); 383 } 384 static u1 flag_number_to_constant(u1 flag_number) { 385 return DataLayout::flag_number_to_constant(flag_number); 386 } 387 388 ProfileData(DataLayout* data) { 389 _data = data; 390 } 391 392 public: 393 // Constructor for invalid ProfileData. 394 ProfileData(); 395 396 u2 bci() const { 397 return data()->bci(); 398 } 399 400 address dp() { 401 return (address)_data; 402 } 403 404 int trap_state() const { 405 return data()->trap_state(); 406 } 407 void set_trap_state(int new_state) { 408 data()->set_trap_state(new_state); 409 } 410 411 // Type checking 412 virtual bool is_BitData() const { return false; } 413 virtual bool is_CounterData() const { return false; } 414 virtual bool is_JumpData() const { return false; } 415 virtual bool is_ReceiverTypeData()const { return false; } 416 virtual bool is_VirtualCallData() const { return false; } 417 virtual bool is_RetData() const { return false; } 418 virtual bool is_BranchData() const { return false; } 419 virtual bool is_ArrayData() const { return false; } 420 virtual bool is_MultiBranchData() const { return false; } 421 virtual bool is_ArgInfoData() const { return false; } 422 virtual bool is_CallTypeData() const { return false; } 423 virtual bool is_VirtualCallTypeData()const { return false; } 424 virtual bool is_ParametersTypeData() const { return false; } 425 virtual bool is_SpeculativeTrapData()const { return false; } 426 427 428 BitData* as_BitData() const { 429 assert(is_BitData(), "wrong type"); 430 return is_BitData() ? (BitData*) this : nullptr; 431 } 432 CounterData* as_CounterData() const { 433 assert(is_CounterData(), "wrong type"); 434 return is_CounterData() ? (CounterData*) this : nullptr; 435 } 436 JumpData* as_JumpData() const { 437 assert(is_JumpData(), "wrong type"); 438 return is_JumpData() ? (JumpData*) this : nullptr; 439 } 440 ReceiverTypeData* as_ReceiverTypeData() const { 441 assert(is_ReceiverTypeData(), "wrong type"); 442 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr; 443 } 444 VirtualCallData* as_VirtualCallData() const { 445 assert(is_VirtualCallData(), "wrong type"); 446 return is_VirtualCallData() ? (VirtualCallData*)this : nullptr; 447 } 448 RetData* as_RetData() const { 449 assert(is_RetData(), "wrong type"); 450 return is_RetData() ? (RetData*) this : nullptr; 451 } 452 BranchData* as_BranchData() const { 453 assert(is_BranchData(), "wrong type"); 454 return is_BranchData() ? (BranchData*) this : nullptr; 455 } 456 ArrayData* as_ArrayData() const { 457 assert(is_ArrayData(), "wrong type"); 458 return is_ArrayData() ? (ArrayData*) this : nullptr; 459 } 460 MultiBranchData* as_MultiBranchData() const { 461 assert(is_MultiBranchData(), "wrong type"); 462 return is_MultiBranchData() ? (MultiBranchData*)this : nullptr; 463 } 464 ArgInfoData* as_ArgInfoData() const { 465 assert(is_ArgInfoData(), "wrong type"); 466 return is_ArgInfoData() ? (ArgInfoData*)this : nullptr; 467 } 468 CallTypeData* as_CallTypeData() const { 469 assert(is_CallTypeData(), "wrong type"); 470 return is_CallTypeData() ? (CallTypeData*)this : nullptr; 471 } 472 VirtualCallTypeData* as_VirtualCallTypeData() const { 473 assert(is_VirtualCallTypeData(), "wrong type"); 474 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr; 475 } 476 ParametersTypeData* as_ParametersTypeData() const { 477 assert(is_ParametersTypeData(), "wrong type"); 478 return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr; 479 } 480 SpeculativeTrapData* as_SpeculativeTrapData() const { 481 assert(is_SpeculativeTrapData(), "wrong type"); 482 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr; 483 } 484 485 486 // Subclass specific initialization 487 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {} 488 489 // GC support 490 virtual void clean_weak_klass_links(bool always_clean) {} 491 492 // CDS support 493 virtual void metaspace_pointers_do(MetaspaceClosure* it) {} 494 495 // CI translation: ProfileData can represent both MethodDataOop data 496 // as well as CIMethodData data. This function is provided for translating 497 // an oop in a ProfileData to the ci equivalent. Generally speaking, 498 // most ProfileData don't require any translation, so we provide the null 499 // translation here, and the required translators are in the ci subclasses. 500 virtual void translate_from(const ProfileData* data) {} 501 502 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const { 503 ShouldNotReachHere(); 504 } 505 506 void print_data_on(outputStream* st, const MethodData* md) const; 507 508 void print_shared(outputStream* st, const char* name, const char* extra) const; 509 void tab(outputStream* st, bool first = false) const; 510 }; 511 512 // BitData 513 // 514 // A BitData holds a flag or two in its header. 515 class BitData : public ProfileData { 516 friend class VMStructs; 517 friend class JVMCIVMStructs; 518 protected: 519 enum : u1 { 520 // null_seen: 521 // saw a null operand (cast/aastore/instanceof) 522 null_seen_flag = DataLayout::first_flag + 0, 523 exception_handler_entered_flag = null_seen_flag + 1, 524 deprecated_method_callsite_flag = exception_handler_entered_flag + 1 525 #if INCLUDE_JVMCI 526 // bytecode threw any exception 527 , exception_seen_flag = deprecated_method_callsite_flag + 1 528 #endif 529 }; 530 enum { bit_cell_count = 0 }; // no additional data fields needed. 531 public: 532 BitData(DataLayout* layout) : ProfileData(layout) { 533 } 534 535 virtual bool is_BitData() const { return true; } 536 537 static int static_cell_count() { 538 return bit_cell_count; 539 } 540 541 virtual int cell_count() const { 542 return static_cell_count(); 543 } 544 545 // Accessor 546 547 // The null_seen flag bit is specially known to the interpreter. 548 // Consulting it allows the compiler to avoid setting up null_check traps. 549 bool null_seen() { return flag_at(null_seen_flag); } 550 void set_null_seen() { set_flag_at(null_seen_flag); } 551 bool deprecated_method_call_site() const { return flag_at(deprecated_method_callsite_flag); } 552 bool set_deprecated_method_call_site() { return data()->set_flag_at(deprecated_method_callsite_flag); } 553 bool clear_deprecated_method_call_site() { return data()->clear_flag_at(deprecated_method_callsite_flag); } 554 555 #if INCLUDE_JVMCI 556 // true if an exception was thrown at the specific BCI 557 bool exception_seen() { return flag_at(exception_seen_flag); } 558 void set_exception_seen() { set_flag_at(exception_seen_flag); } 559 #endif 560 561 // true if a ex handler block at this bci was entered 562 bool exception_handler_entered() { return flag_at(exception_handler_entered_flag); } 563 void set_exception_handler_entered() { set_flag_at(exception_handler_entered_flag); } 564 565 // Code generation support 566 static u1 null_seen_byte_constant() { 567 return flag_number_to_constant(null_seen_flag); 568 } 569 570 static ByteSize bit_data_size() { 571 return cell_offset(bit_cell_count); 572 } 573 574 void print_data_on(outputStream* st, const char* extra = nullptr) const; 575 }; 576 577 // CounterData 578 // 579 // A CounterData corresponds to a simple counter. 580 class CounterData : public BitData { 581 friend class VMStructs; 582 friend class JVMCIVMStructs; 583 protected: 584 enum { 585 count_off, 586 counter_cell_count 587 }; 588 public: 589 CounterData(DataLayout* layout) : BitData(layout) {} 590 591 virtual bool is_CounterData() const { return true; } 592 593 static int static_cell_count() { 594 return counter_cell_count; 595 } 596 597 virtual int cell_count() const { 598 return static_cell_count(); 599 } 600 601 // Direct accessor 602 int count() const { 603 intptr_t raw_data = intptr_at(count_off); 604 if (raw_data > max_jint) { 605 raw_data = max_jint; 606 } else if (raw_data < min_jint) { 607 raw_data = min_jint; 608 } 609 return int(raw_data); 610 } 611 612 // Code generation support 613 static ByteSize count_offset() { 614 return cell_offset(count_off); 615 } 616 static ByteSize counter_data_size() { 617 return cell_offset(counter_cell_count); 618 } 619 620 void set_count(int count) { 621 set_int_at(count_off, count); 622 } 623 624 void print_data_on(outputStream* st, const char* extra = nullptr) const; 625 }; 626 627 // JumpData 628 // 629 // A JumpData is used to access profiling information for a direct 630 // branch. It is a counter, used for counting the number of branches, 631 // plus a data displacement, used for realigning the data pointer to 632 // the corresponding target bci. 633 class JumpData : public ProfileData { 634 friend class VMStructs; 635 friend class JVMCIVMStructs; 636 protected: 637 enum { 638 taken_off_set, 639 displacement_off_set, 640 jump_cell_count 641 }; 642 643 void set_displacement(int displacement) { 644 set_int_at(displacement_off_set, displacement); 645 } 646 647 public: 648 JumpData(DataLayout* layout) : ProfileData(layout) { 649 assert(layout->tag() == DataLayout::jump_data_tag || 650 layout->tag() == DataLayout::branch_data_tag, "wrong type"); 651 } 652 653 virtual bool is_JumpData() const { return true; } 654 655 static int static_cell_count() { 656 return jump_cell_count; 657 } 658 659 virtual int cell_count() const { 660 return static_cell_count(); 661 } 662 663 // Direct accessor 664 uint taken() const { 665 return uint_at(taken_off_set); 666 } 667 668 void set_taken(uint cnt) { 669 set_uint_at(taken_off_set, cnt); 670 } 671 672 // Saturating counter 673 uint inc_taken() { 674 uint cnt = taken() + 1; 675 // Did we wrap? Will compiler screw us?? 676 if (cnt == 0) cnt--; 677 set_uint_at(taken_off_set, cnt); 678 return cnt; 679 } 680 681 int displacement() const { 682 return int_at(displacement_off_set); 683 } 684 685 // Code generation support 686 static ByteSize taken_offset() { 687 return cell_offset(taken_off_set); 688 } 689 690 static ByteSize displacement_offset() { 691 return cell_offset(displacement_off_set); 692 } 693 694 // Specific initialization. 695 void post_initialize(BytecodeStream* stream, MethodData* mdo); 696 697 void print_data_on(outputStream* st, const char* extra = nullptr) const; 698 }; 699 700 // Entries in a ProfileData object to record types: it can either be 701 // none (no profile), unknown (conflicting profile data) or a klass if 702 // a single one is seen. Whether a null reference was seen is also 703 // recorded. No counter is associated with the type and a single type 704 // is tracked (unlike VirtualCallData). 705 class TypeEntries { 706 707 public: 708 709 // A single cell is used to record information for a type: 710 // - the cell is initialized to 0 711 // - when a type is discovered it is stored in the cell 712 // - bit zero of the cell is used to record whether a null reference 713 // was encountered or not 714 // - bit 1 is set to record a conflict in the type information 715 716 enum { 717 null_seen = 1, 718 type_mask = ~null_seen, 719 type_unknown = 2, 720 status_bits = null_seen | type_unknown, 721 type_klass_mask = ~status_bits 722 }; 723 724 // what to initialize a cell to 725 static intptr_t type_none() { 726 return 0; 727 } 728 729 // null seen = bit 0 set? 730 static bool was_null_seen(intptr_t v) { 731 return (v & null_seen) != 0; 732 } 733 734 // conflicting type information = bit 1 set? 735 static bool is_type_unknown(intptr_t v) { 736 return (v & type_unknown) != 0; 737 } 738 739 // not type information yet = all bits cleared, ignoring bit 0? 740 static bool is_type_none(intptr_t v) { 741 return (v & type_mask) == 0; 742 } 743 744 // recorded type: cell without bit 0 and 1 745 static intptr_t klass_part(intptr_t v) { 746 intptr_t r = v & type_klass_mask; 747 return r; 748 } 749 750 // type recorded 751 static Klass* valid_klass(intptr_t k) { 752 if (!is_type_none(k) && 753 !is_type_unknown(k)) { 754 Klass* res = (Klass*)klass_part(k); 755 assert(res != nullptr, "invalid"); 756 return res; 757 } else { 758 return nullptr; 759 } 760 } 761 762 static intptr_t with_status(intptr_t k, intptr_t in) { 763 return k | (in & status_bits); 764 } 765 766 static intptr_t with_status(Klass* k, intptr_t in) { 767 return with_status((intptr_t)k, in); 768 } 769 770 static void print_klass(outputStream* st, intptr_t k); 771 772 protected: 773 // ProfileData object these entries are part of 774 ProfileData* _pd; 775 // offset within the ProfileData object where the entries start 776 const int _base_off; 777 778 TypeEntries(int base_off) 779 : _pd(nullptr), _base_off(base_off) {} 780 781 void set_intptr_at(int index, intptr_t value) { 782 _pd->set_intptr_at(index, value); 783 } 784 785 intptr_t intptr_at(int index) const { 786 return _pd->intptr_at(index); 787 } 788 789 public: 790 void set_profile_data(ProfileData* pd) { 791 _pd = pd; 792 } 793 }; 794 795 // Type entries used for arguments passed at a call and parameters on 796 // method entry. 2 cells per entry: one for the type encoded as in 797 // TypeEntries and one initialized with the stack slot where the 798 // profiled object is to be found so that the interpreter can locate 799 // it quickly. 800 class TypeStackSlotEntries : public TypeEntries { 801 802 private: 803 enum { 804 stack_slot_entry, 805 type_entry, 806 per_arg_cell_count 807 }; 808 809 // offset of cell for stack slot for entry i within ProfileData object 810 int stack_slot_offset(int i) const { 811 return _base_off + stack_slot_local_offset(i); 812 } 813 814 const int _number_of_entries; 815 816 // offset of cell for type for entry i within ProfileData object 817 int type_offset_in_cells(int i) const { 818 return _base_off + type_local_offset(i); 819 } 820 821 public: 822 823 TypeStackSlotEntries(int base_off, int nb_entries) 824 : TypeEntries(base_off), _number_of_entries(nb_entries) {} 825 826 static int compute_cell_count(Symbol* signature, bool include_receiver, int max); 827 828 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver); 829 830 int number_of_entries() const { return _number_of_entries; } 831 832 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries 833 static int stack_slot_local_offset(int i) { 834 return i * per_arg_cell_count + stack_slot_entry; 835 } 836 837 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries 838 static int type_local_offset(int i) { 839 return i * per_arg_cell_count + type_entry; 840 } 841 842 // stack slot for entry i 843 uint stack_slot(int i) const { 844 assert(i >= 0 && i < _number_of_entries, "oob"); 845 return _pd->uint_at(stack_slot_offset(i)); 846 } 847 848 // set stack slot for entry i 849 void set_stack_slot(int i, uint num) { 850 assert(i >= 0 && i < _number_of_entries, "oob"); 851 _pd->set_uint_at(stack_slot_offset(i), num); 852 } 853 854 // type for entry i 855 intptr_t type(int i) const { 856 assert(i >= 0 && i < _number_of_entries, "oob"); 857 return _pd->intptr_at(type_offset_in_cells(i)); 858 } 859 860 intptr_t* type_adr(int i) const { 861 assert(i >= 0 && i < _number_of_entries, "oob"); 862 return _pd->intptr_at_adr(type_offset_in_cells(i)); 863 } 864 865 // set type for entry i 866 void set_type(int i, intptr_t k) { 867 assert(i >= 0 && i < _number_of_entries, "oob"); 868 _pd->set_intptr_at(type_offset_in_cells(i), k); 869 } 870 871 static ByteSize per_arg_size() { 872 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size); 873 } 874 875 static int per_arg_count() { 876 return per_arg_cell_count; 877 } 878 879 ByteSize type_offset(int i) const { 880 return DataLayout::cell_offset(type_offset_in_cells(i)); 881 } 882 883 // GC support 884 void clean_weak_klass_links(bool always_clean); 885 886 // CDS support 887 virtual void metaspace_pointers_do(MetaspaceClosure* it); 888 889 void print_data_on(outputStream* st) const; 890 }; 891 892 // Type entry used for return from a call. A single cell to record the 893 // type. 894 class ReturnTypeEntry : public TypeEntries { 895 896 private: 897 enum { 898 cell_count = 1 899 }; 900 901 public: 902 ReturnTypeEntry(int base_off) 903 : TypeEntries(base_off) {} 904 905 void post_initialize() { 906 set_type(type_none()); 907 } 908 909 intptr_t type() const { 910 return _pd->intptr_at(_base_off); 911 } 912 913 intptr_t* type_adr() const { 914 return _pd->intptr_at_adr(_base_off); 915 } 916 917 void set_type(intptr_t k) { 918 _pd->set_intptr_at(_base_off, k); 919 } 920 921 static int static_cell_count() { 922 return cell_count; 923 } 924 925 static ByteSize size() { 926 return in_ByteSize(cell_count * DataLayout::cell_size); 927 } 928 929 ByteSize type_offset() { 930 return DataLayout::cell_offset(_base_off); 931 } 932 933 // GC support 934 void clean_weak_klass_links(bool always_clean); 935 936 // CDS support 937 virtual void metaspace_pointers_do(MetaspaceClosure* it); 938 939 void print_data_on(outputStream* st) const; 940 }; 941 942 // Entries to collect type information at a call: contains arguments 943 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a 944 // number of cells. Because the number of cells for the return type is 945 // smaller than the number of cells for the type of an arguments, the 946 // number of cells is used to tell how many arguments are profiled and 947 // whether a return value is profiled. See has_arguments() and 948 // has_return(). 949 class TypeEntriesAtCall { 950 private: 951 static int stack_slot_local_offset(int i) { 952 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i); 953 } 954 955 static int argument_type_local_offset(int i) { 956 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i); 957 } 958 959 public: 960 961 static int header_cell_count() { 962 return 1; 963 } 964 965 static int cell_count_local_offset() { 966 return 0; 967 } 968 969 static int compute_cell_count(BytecodeStream* stream); 970 971 static void initialize(DataLayout* dl, int base, int cell_count) { 972 int off = base + cell_count_local_offset(); 973 dl->set_cell_at(off, cell_count - base - header_cell_count()); 974 } 975 976 static bool arguments_profiling_enabled(); 977 static bool return_profiling_enabled(); 978 979 // Code generation support 980 static ByteSize cell_count_offset() { 981 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size); 982 } 983 984 static ByteSize args_data_offset() { 985 return in_ByteSize(header_cell_count() * DataLayout::cell_size); 986 } 987 988 static ByteSize stack_slot_offset(int i) { 989 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size); 990 } 991 992 static ByteSize argument_type_offset(int i) { 993 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size); 994 } 995 996 static ByteSize return_only_size() { 997 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size); 998 } 999 1000 }; 1001 1002 // CallTypeData 1003 // 1004 // A CallTypeData is used to access profiling information about a non 1005 // virtual call for which we collect type information about arguments 1006 // and return value. 1007 class CallTypeData : public CounterData { 1008 private: 1009 // entries for arguments if any 1010 TypeStackSlotEntries _args; 1011 // entry for return type if any 1012 ReturnTypeEntry _ret; 1013 1014 int cell_count_global_offset() const { 1015 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1016 } 1017 1018 // number of cells not counting the header 1019 int cell_count_no_header() const { 1020 return uint_at(cell_count_global_offset()); 1021 } 1022 1023 void check_number_of_arguments(int total) { 1024 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1025 } 1026 1027 public: 1028 CallTypeData(DataLayout* layout) : 1029 CounterData(layout), 1030 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1031 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1032 { 1033 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type"); 1034 // Some compilers (VC++) don't want this passed in member initialization list 1035 _args.set_profile_data(this); 1036 _ret.set_profile_data(this); 1037 } 1038 1039 const TypeStackSlotEntries* args() const { 1040 assert(has_arguments(), "no profiling of arguments"); 1041 return &_args; 1042 } 1043 1044 const ReturnTypeEntry* ret() const { 1045 assert(has_return(), "no profiling of return value"); 1046 return &_ret; 1047 } 1048 1049 virtual bool is_CallTypeData() const { return true; } 1050 1051 static int static_cell_count() { 1052 return -1; 1053 } 1054 1055 static int compute_cell_count(BytecodeStream* stream) { 1056 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1057 } 1058 1059 static void initialize(DataLayout* dl, int cell_count) { 1060 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count); 1061 } 1062 1063 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1064 1065 virtual int cell_count() const { 1066 return CounterData::static_cell_count() + 1067 TypeEntriesAtCall::header_cell_count() + 1068 int_at_unchecked(cell_count_global_offset()); 1069 } 1070 1071 int number_of_arguments() const { 1072 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1073 } 1074 1075 void set_argument_type(int i, Klass* k) { 1076 assert(has_arguments(), "no arguments!"); 1077 intptr_t current = _args.type(i); 1078 _args.set_type(i, TypeEntries::with_status(k, current)); 1079 } 1080 1081 void set_return_type(Klass* k) { 1082 assert(has_return(), "no return!"); 1083 intptr_t current = _ret.type(); 1084 _ret.set_type(TypeEntries::with_status(k, current)); 1085 } 1086 1087 // An entry for a return value takes less space than an entry for an 1088 // argument so if the number of cells exceeds the number of cells 1089 // needed for an argument, this object contains type information for 1090 // at least one argument. 1091 bool has_arguments() const { 1092 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1093 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1094 return res; 1095 } 1096 1097 // An entry for a return value takes less space than an entry for an 1098 // argument, so if the remainder of the number of cells divided by 1099 // the number of cells for an argument is not null, a return value 1100 // is profiled in this object. 1101 bool has_return() const { 1102 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1103 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1104 return res; 1105 } 1106 1107 // Code generation support 1108 static ByteSize args_data_offset() { 1109 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1110 } 1111 1112 ByteSize argument_type_offset(int i) { 1113 return _args.type_offset(i); 1114 } 1115 1116 ByteSize return_type_offset() { 1117 return _ret.type_offset(); 1118 } 1119 1120 // GC support 1121 virtual void clean_weak_klass_links(bool always_clean) { 1122 if (has_arguments()) { 1123 _args.clean_weak_klass_links(always_clean); 1124 } 1125 if (has_return()) { 1126 _ret.clean_weak_klass_links(always_clean); 1127 } 1128 } 1129 1130 // CDS support 1131 virtual void metaspace_pointers_do(MetaspaceClosure* it) { 1132 if (has_arguments()) { 1133 _args.metaspace_pointers_do(it); 1134 } 1135 if (has_return()) { 1136 _ret.metaspace_pointers_do(it); 1137 } 1138 } 1139 1140 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1141 }; 1142 1143 // ReceiverTypeData 1144 // 1145 // A ReceiverTypeData is used to access profiling information about a 1146 // dynamic type check. It consists of a series of (Klass*, count) 1147 // pairs which are used to store a type profile for the receiver of 1148 // the check, the associated count is incremented every time the type 1149 // is seen. A per ReceiverTypeData counter is incremented on type 1150 // overflow (when there's no more room for a not yet profiled Klass*). 1151 // 1152 class ReceiverTypeData : public CounterData { 1153 friend class VMStructs; 1154 friend class JVMCIVMStructs; 1155 protected: 1156 enum { 1157 receiver0_offset = counter_cell_count, 1158 count0_offset, 1159 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset 1160 }; 1161 1162 public: 1163 ReceiverTypeData(DataLayout* layout) : CounterData(layout) { 1164 assert(layout->tag() == DataLayout::receiver_type_data_tag || 1165 layout->tag() == DataLayout::virtual_call_data_tag || 1166 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1167 } 1168 1169 virtual bool is_ReceiverTypeData() const { return true; } 1170 1171 static int static_cell_count() { 1172 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count; 1173 } 1174 1175 virtual int cell_count() const { 1176 return static_cell_count(); 1177 } 1178 1179 // Direct accessors 1180 static uint row_limit() { 1181 return (uint) TypeProfileWidth; 1182 } 1183 static int receiver_cell_index(uint row) { 1184 return receiver0_offset + row * receiver_type_row_cell_count; 1185 } 1186 static int receiver_count_cell_index(uint row) { 1187 return count0_offset + row * receiver_type_row_cell_count; 1188 } 1189 1190 Klass* receiver(uint row) const { 1191 assert(row < row_limit(), "oob"); 1192 1193 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row)); 1194 assert(recv == nullptr || recv->is_klass(), "wrong type"); 1195 return recv; 1196 } 1197 1198 void set_receiver(uint row, Klass* k) { 1199 assert((uint)row < row_limit(), "oob"); 1200 set_intptr_at(receiver_cell_index(row), (uintptr_t)k); 1201 } 1202 1203 uint receiver_count(uint row) const { 1204 assert(row < row_limit(), "oob"); 1205 return uint_at(receiver_count_cell_index(row)); 1206 } 1207 1208 void set_receiver_count(uint row, uint count) { 1209 assert(row < row_limit(), "oob"); 1210 set_uint_at(receiver_count_cell_index(row), count); 1211 } 1212 1213 void clear_row(uint row) { 1214 assert(row < row_limit(), "oob"); 1215 // Clear total count - indicator of polymorphic call site. 1216 // The site may look like as monomorphic after that but 1217 // it allow to have more accurate profiling information because 1218 // there was execution phase change since klasses were unloaded. 1219 // If the site is still polymorphic then MDO will be updated 1220 // to reflect it. But it could be the case that the site becomes 1221 // only bimorphic. Then keeping total count not 0 will be wrong. 1222 // Even if we use monomorphic (when it is not) for compilation 1223 // we will only have trap, deoptimization and recompile again 1224 // with updated MDO after executing method in Interpreter. 1225 // An additional receiver will be recorded in the cleaned row 1226 // during next call execution. 1227 // 1228 // Note: our profiling logic works with empty rows in any slot. 1229 // We do sorting a profiling info (ciCallProfile) for compilation. 1230 // 1231 set_count(0); 1232 set_receiver(row, nullptr); 1233 set_receiver_count(row, 0); 1234 } 1235 1236 // Code generation support 1237 static ByteSize receiver_offset(uint row) { 1238 return cell_offset(receiver_cell_index(row)); 1239 } 1240 static ByteSize receiver_count_offset(uint row) { 1241 return cell_offset(receiver_count_cell_index(row)); 1242 } 1243 static ByteSize receiver_type_data_size() { 1244 return cell_offset(static_cell_count()); 1245 } 1246 1247 // GC support 1248 virtual void clean_weak_klass_links(bool always_clean); 1249 1250 // CDS support 1251 virtual void metaspace_pointers_do(MetaspaceClosure* it); 1252 1253 void print_receiver_data_on(outputStream* st) const; 1254 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1255 }; 1256 1257 // VirtualCallData 1258 // 1259 // A VirtualCallData is used to access profiling information about a 1260 // virtual call. For now, it has nothing more than a ReceiverTypeData. 1261 class VirtualCallData : public ReceiverTypeData { 1262 public: 1263 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { 1264 assert(layout->tag() == DataLayout::virtual_call_data_tag || 1265 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1266 } 1267 1268 virtual bool is_VirtualCallData() const { return true; } 1269 1270 static int static_cell_count() { 1271 // At this point we could add more profile state, e.g., for arguments. 1272 // But for now it's the same size as the base record type. 1273 return ReceiverTypeData::static_cell_count(); 1274 } 1275 1276 virtual int cell_count() const { 1277 return static_cell_count(); 1278 } 1279 1280 // Direct accessors 1281 static ByteSize virtual_call_data_size() { 1282 return cell_offset(static_cell_count()); 1283 } 1284 1285 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN; 1286 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1287 }; 1288 1289 // VirtualCallTypeData 1290 // 1291 // A VirtualCallTypeData is used to access profiling information about 1292 // a virtual call for which we collect type information about 1293 // arguments and return value. 1294 class VirtualCallTypeData : public VirtualCallData { 1295 private: 1296 // entries for arguments if any 1297 TypeStackSlotEntries _args; 1298 // entry for return type if any 1299 ReturnTypeEntry _ret; 1300 1301 int cell_count_global_offset() const { 1302 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1303 } 1304 1305 // number of cells not counting the header 1306 int cell_count_no_header() const { 1307 return uint_at(cell_count_global_offset()); 1308 } 1309 1310 void check_number_of_arguments(int total) { 1311 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1312 } 1313 1314 public: 1315 VirtualCallTypeData(DataLayout* layout) : 1316 VirtualCallData(layout), 1317 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1318 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1319 { 1320 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1321 // Some compilers (VC++) don't want this passed in member initialization list 1322 _args.set_profile_data(this); 1323 _ret.set_profile_data(this); 1324 } 1325 1326 const TypeStackSlotEntries* args() const { 1327 assert(has_arguments(), "no profiling of arguments"); 1328 return &_args; 1329 } 1330 1331 const ReturnTypeEntry* ret() const { 1332 assert(has_return(), "no profiling of return value"); 1333 return &_ret; 1334 } 1335 1336 virtual bool is_VirtualCallTypeData() const { return true; } 1337 1338 static int static_cell_count() { 1339 return -1; 1340 } 1341 1342 static int compute_cell_count(BytecodeStream* stream) { 1343 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1344 } 1345 1346 static void initialize(DataLayout* dl, int cell_count) { 1347 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count); 1348 } 1349 1350 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1351 1352 virtual int cell_count() const { 1353 return VirtualCallData::static_cell_count() + 1354 TypeEntriesAtCall::header_cell_count() + 1355 int_at_unchecked(cell_count_global_offset()); 1356 } 1357 1358 int number_of_arguments() const { 1359 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1360 } 1361 1362 void set_argument_type(int i, Klass* k) { 1363 assert(has_arguments(), "no arguments!"); 1364 intptr_t current = _args.type(i); 1365 _args.set_type(i, TypeEntries::with_status(k, current)); 1366 } 1367 1368 void set_return_type(Klass* k) { 1369 assert(has_return(), "no return!"); 1370 intptr_t current = _ret.type(); 1371 _ret.set_type(TypeEntries::with_status(k, current)); 1372 } 1373 1374 // An entry for a return value takes less space than an entry for an 1375 // argument, so if the remainder of the number of cells divided by 1376 // the number of cells for an argument is not null, a return value 1377 // is profiled in this object. 1378 bool has_return() const { 1379 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1380 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1381 return res; 1382 } 1383 1384 // An entry for a return value takes less space than an entry for an 1385 // argument so if the number of cells exceeds the number of cells 1386 // needed for an argument, this object contains type information for 1387 // at least one argument. 1388 bool has_arguments() const { 1389 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1390 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1391 return res; 1392 } 1393 1394 // Code generation support 1395 static ByteSize args_data_offset() { 1396 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1397 } 1398 1399 ByteSize argument_type_offset(int i) { 1400 return _args.type_offset(i); 1401 } 1402 1403 ByteSize return_type_offset() { 1404 return _ret.type_offset(); 1405 } 1406 1407 // GC support 1408 virtual void clean_weak_klass_links(bool always_clean) { 1409 ReceiverTypeData::clean_weak_klass_links(always_clean); 1410 if (has_arguments()) { 1411 _args.clean_weak_klass_links(always_clean); 1412 } 1413 if (has_return()) { 1414 _ret.clean_weak_klass_links(always_clean); 1415 } 1416 } 1417 1418 // CDS support 1419 virtual void metaspace_pointers_do(MetaspaceClosure* it) { 1420 ReceiverTypeData::metaspace_pointers_do(it); 1421 if (has_arguments()) { 1422 _args.metaspace_pointers_do(it); 1423 } 1424 if (has_return()) { 1425 _ret.metaspace_pointers_do(it); 1426 } 1427 } 1428 1429 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1430 }; 1431 1432 // RetData 1433 // 1434 // A RetData is used to access profiling information for a ret bytecode. 1435 // It is composed of a count of the number of times that the ret has 1436 // been executed, followed by a series of triples of the form 1437 // (bci, count, di) which count the number of times that some bci was the 1438 // target of the ret and cache a corresponding data displacement. 1439 class RetData : public CounterData { 1440 protected: 1441 enum { 1442 bci0_offset = counter_cell_count, 1443 count0_offset, 1444 displacement0_offset, 1445 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset 1446 }; 1447 1448 void set_bci(uint row, int bci) { 1449 assert((uint)row < row_limit(), "oob"); 1450 set_int_at(bci0_offset + row * ret_row_cell_count, bci); 1451 } 1452 void release_set_bci(uint row, int bci); 1453 void set_bci_count(uint row, uint count) { 1454 assert((uint)row < row_limit(), "oob"); 1455 set_uint_at(count0_offset + row * ret_row_cell_count, count); 1456 } 1457 void set_bci_displacement(uint row, int disp) { 1458 set_int_at(displacement0_offset + row * ret_row_cell_count, disp); 1459 } 1460 1461 public: 1462 RetData(DataLayout* layout) : CounterData(layout) { 1463 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); 1464 } 1465 1466 virtual bool is_RetData() const { return true; } 1467 1468 enum { 1469 no_bci = -1 // value of bci when bci1/2 are not in use. 1470 }; 1471 1472 static int static_cell_count() { 1473 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; 1474 } 1475 1476 virtual int cell_count() const { 1477 return static_cell_count(); 1478 } 1479 1480 static uint row_limit() { 1481 return (uint) BciProfileWidth; 1482 } 1483 static int bci_cell_index(uint row) { 1484 return bci0_offset + row * ret_row_cell_count; 1485 } 1486 static int bci_count_cell_index(uint row) { 1487 return count0_offset + row * ret_row_cell_count; 1488 } 1489 static int bci_displacement_cell_index(uint row) { 1490 return displacement0_offset + row * ret_row_cell_count; 1491 } 1492 1493 // Direct accessors 1494 int bci(uint row) const { 1495 return int_at(bci_cell_index(row)); 1496 } 1497 uint bci_count(uint row) const { 1498 return uint_at(bci_count_cell_index(row)); 1499 } 1500 int bci_displacement(uint row) const { 1501 return int_at(bci_displacement_cell_index(row)); 1502 } 1503 1504 // Interpreter Runtime support 1505 address fixup_ret(int return_bci, MethodData* mdo); 1506 1507 // Code generation support 1508 static ByteSize bci_offset(uint row) { 1509 return cell_offset(bci_cell_index(row)); 1510 } 1511 static ByteSize bci_count_offset(uint row) { 1512 return cell_offset(bci_count_cell_index(row)); 1513 } 1514 static ByteSize bci_displacement_offset(uint row) { 1515 return cell_offset(bci_displacement_cell_index(row)); 1516 } 1517 1518 // Specific initialization. 1519 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1520 1521 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1522 }; 1523 1524 // BranchData 1525 // 1526 // A BranchData is used to access profiling data for a two-way branch. 1527 // It consists of taken and not_taken counts as well as a data displacement 1528 // for the taken case. 1529 class BranchData : public JumpData { 1530 friend class VMStructs; 1531 friend class JVMCIVMStructs; 1532 protected: 1533 enum { 1534 not_taken_off_set = jump_cell_count, 1535 branch_cell_count 1536 }; 1537 1538 void set_displacement(int displacement) { 1539 set_int_at(displacement_off_set, displacement); 1540 } 1541 1542 public: 1543 BranchData(DataLayout* layout) : JumpData(layout) { 1544 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type"); 1545 } 1546 1547 virtual bool is_BranchData() const { return true; } 1548 1549 static int static_cell_count() { 1550 return branch_cell_count; 1551 } 1552 1553 virtual int cell_count() const { 1554 return static_cell_count(); 1555 } 1556 1557 // Direct accessor 1558 uint not_taken() const { 1559 return uint_at(not_taken_off_set); 1560 } 1561 1562 void set_not_taken(uint cnt) { 1563 set_uint_at(not_taken_off_set, cnt); 1564 } 1565 1566 uint inc_not_taken() { 1567 uint cnt = not_taken() + 1; 1568 // Did we wrap? Will compiler screw us?? 1569 if (cnt == 0) cnt--; 1570 set_uint_at(not_taken_off_set, cnt); 1571 return cnt; 1572 } 1573 1574 // Code generation support 1575 static ByteSize not_taken_offset() { 1576 return cell_offset(not_taken_off_set); 1577 } 1578 static ByteSize branch_data_size() { 1579 return cell_offset(branch_cell_count); 1580 } 1581 1582 // Specific initialization. 1583 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1584 1585 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1586 }; 1587 1588 // ArrayData 1589 // 1590 // A ArrayData is a base class for accessing profiling data which does 1591 // not have a statically known size. It consists of an array length 1592 // and an array start. 1593 class ArrayData : public ProfileData { 1594 friend class VMStructs; 1595 friend class JVMCIVMStructs; 1596 protected: 1597 friend class DataLayout; 1598 1599 enum { 1600 array_len_off_set, 1601 array_start_off_set 1602 }; 1603 1604 uint array_uint_at(int index) const { 1605 int aindex = index + array_start_off_set; 1606 return uint_at(aindex); 1607 } 1608 int array_int_at(int index) const { 1609 int aindex = index + array_start_off_set; 1610 return int_at(aindex); 1611 } 1612 void array_set_int_at(int index, int value) { 1613 int aindex = index + array_start_off_set; 1614 set_int_at(aindex, value); 1615 } 1616 1617 // Code generation support for subclasses. 1618 static ByteSize array_element_offset(int index) { 1619 return cell_offset(array_start_off_set + index); 1620 } 1621 1622 public: 1623 ArrayData(DataLayout* layout) : ProfileData(layout) {} 1624 1625 virtual bool is_ArrayData() const { return true; } 1626 1627 static int static_cell_count() { 1628 return -1; 1629 } 1630 1631 int array_len() const { 1632 return int_at_unchecked(array_len_off_set); 1633 } 1634 1635 virtual int cell_count() const { 1636 return array_len() + 1; 1637 } 1638 1639 // Code generation support 1640 static ByteSize array_len_offset() { 1641 return cell_offset(array_len_off_set); 1642 } 1643 static ByteSize array_start_offset() { 1644 return cell_offset(array_start_off_set); 1645 } 1646 }; 1647 1648 // MultiBranchData 1649 // 1650 // A MultiBranchData is used to access profiling information for 1651 // a multi-way branch (*switch bytecodes). It consists of a series 1652 // of (count, displacement) pairs, which count the number of times each 1653 // case was taken and specify the data displacement for each branch target. 1654 class MultiBranchData : public ArrayData { 1655 friend class VMStructs; 1656 friend class JVMCIVMStructs; 1657 protected: 1658 enum { 1659 default_count_off_set, 1660 default_disaplacement_off_set, 1661 case_array_start 1662 }; 1663 enum { 1664 relative_count_off_set, 1665 relative_displacement_off_set, 1666 per_case_cell_count 1667 }; 1668 1669 void set_default_displacement(int displacement) { 1670 array_set_int_at(default_disaplacement_off_set, displacement); 1671 } 1672 void set_displacement_at(int index, int displacement) { 1673 array_set_int_at(case_array_start + 1674 index * per_case_cell_count + 1675 relative_displacement_off_set, 1676 displacement); 1677 } 1678 1679 public: 1680 MultiBranchData(DataLayout* layout) : ArrayData(layout) { 1681 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); 1682 } 1683 1684 virtual bool is_MultiBranchData() const { return true; } 1685 1686 static int compute_cell_count(BytecodeStream* stream); 1687 1688 int number_of_cases() const { 1689 int alen = array_len() - 2; // get rid of default case here. 1690 assert(alen % per_case_cell_count == 0, "must be even"); 1691 return (alen / per_case_cell_count); 1692 } 1693 1694 uint default_count() const { 1695 return array_uint_at(default_count_off_set); 1696 } 1697 int default_displacement() const { 1698 return array_int_at(default_disaplacement_off_set); 1699 } 1700 1701 uint count_at(int index) const { 1702 return array_uint_at(case_array_start + 1703 index * per_case_cell_count + 1704 relative_count_off_set); 1705 } 1706 int displacement_at(int index) const { 1707 return array_int_at(case_array_start + 1708 index * per_case_cell_count + 1709 relative_displacement_off_set); 1710 } 1711 1712 // Code generation support 1713 static ByteSize default_count_offset() { 1714 return array_element_offset(default_count_off_set); 1715 } 1716 static ByteSize default_displacement_offset() { 1717 return array_element_offset(default_disaplacement_off_set); 1718 } 1719 static ByteSize case_count_offset(int index) { 1720 return case_array_offset() + 1721 (per_case_size() * index) + 1722 relative_count_offset(); 1723 } 1724 static ByteSize case_array_offset() { 1725 return array_element_offset(case_array_start); 1726 } 1727 static ByteSize per_case_size() { 1728 return in_ByteSize(per_case_cell_count) * cell_size; 1729 } 1730 static ByteSize relative_count_offset() { 1731 return in_ByteSize(relative_count_off_set) * cell_size; 1732 } 1733 static ByteSize relative_displacement_offset() { 1734 return in_ByteSize(relative_displacement_off_set) * cell_size; 1735 } 1736 1737 // Specific initialization. 1738 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1739 1740 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1741 }; 1742 1743 class ArgInfoData : public ArrayData { 1744 1745 public: 1746 ArgInfoData(DataLayout* layout) : ArrayData(layout) { 1747 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); 1748 } 1749 1750 virtual bool is_ArgInfoData() const { return true; } 1751 1752 1753 int number_of_args() const { 1754 return array_len(); 1755 } 1756 1757 uint arg_modified(int arg) const { 1758 return array_uint_at(arg); 1759 } 1760 1761 void set_arg_modified(int arg, uint val) { 1762 array_set_int_at(arg, val); 1763 } 1764 1765 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1766 }; 1767 1768 // ParametersTypeData 1769 // 1770 // A ParametersTypeData is used to access profiling information about 1771 // types of parameters to a method 1772 class ParametersTypeData : public ArrayData { 1773 1774 private: 1775 TypeStackSlotEntries _parameters; 1776 1777 static int stack_slot_local_offset(int i) { 1778 assert_profiling_enabled(); 1779 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i); 1780 } 1781 1782 static int type_local_offset(int i) { 1783 assert_profiling_enabled(); 1784 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i); 1785 } 1786 1787 static bool profiling_enabled(); 1788 static void assert_profiling_enabled() { 1789 assert(profiling_enabled(), "method parameters profiling should be on"); 1790 } 1791 1792 public: 1793 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) { 1794 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type"); 1795 // Some compilers (VC++) don't want this passed in member initialization list 1796 _parameters.set_profile_data(this); 1797 } 1798 1799 static int compute_cell_count(Method* m); 1800 1801 virtual bool is_ParametersTypeData() const { return true; } 1802 1803 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1804 1805 int number_of_parameters() const { 1806 return array_len() / TypeStackSlotEntries::per_arg_count(); 1807 } 1808 1809 const TypeStackSlotEntries* parameters() const { return &_parameters; } 1810 1811 uint stack_slot(int i) const { 1812 return _parameters.stack_slot(i); 1813 } 1814 1815 void set_type(int i, Klass* k) { 1816 intptr_t current = _parameters.type(i); 1817 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current)); 1818 } 1819 1820 virtual void clean_weak_klass_links(bool always_clean) { 1821 _parameters.clean_weak_klass_links(always_clean); 1822 } 1823 1824 // CDS support 1825 virtual void metaspace_pointers_do(MetaspaceClosure* it) { 1826 _parameters.metaspace_pointers_do(it); 1827 } 1828 1829 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1830 1831 static ByteSize stack_slot_offset(int i) { 1832 return cell_offset(stack_slot_local_offset(i)); 1833 } 1834 1835 static ByteSize type_offset(int i) { 1836 return cell_offset(type_local_offset(i)); 1837 } 1838 }; 1839 1840 // SpeculativeTrapData 1841 // 1842 // A SpeculativeTrapData is used to record traps due to type 1843 // speculation. It records the root of the compilation: that type 1844 // speculation is wrong in the context of one compilation (for 1845 // method1) doesn't mean it's wrong in the context of another one (for 1846 // method2). Type speculation could have more/different data in the 1847 // context of the compilation of method2 and it's worthwhile to try an 1848 // optimization that failed for compilation of method1 in the context 1849 // of compilation of method2. 1850 // Space for SpeculativeTrapData entries is allocated from the extra 1851 // data space in the MDO. If we run out of space, the trap data for 1852 // the ProfileData at that bci is updated. 1853 class SpeculativeTrapData : public ProfileData { 1854 protected: 1855 enum { 1856 speculative_trap_method, 1857 #ifndef _LP64 1858 // The size of the area for traps is a multiple of the header 1859 // size, 2 cells on 32 bits. Packed at the end of this area are 1860 // argument info entries (with tag 1861 // DataLayout::arg_info_data_tag). The logic in 1862 // MethodData::bci_to_extra_data() that guarantees traps don't 1863 // overflow over argument info entries assumes the size of a 1864 // SpeculativeTrapData is twice the header size. On 32 bits, a 1865 // SpeculativeTrapData must be 4 cells. 1866 padding, 1867 #endif 1868 speculative_trap_cell_count 1869 }; 1870 public: 1871 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) { 1872 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type"); 1873 } 1874 1875 virtual bool is_SpeculativeTrapData() const { return true; } 1876 1877 static int static_cell_count() { 1878 return speculative_trap_cell_count; 1879 } 1880 1881 virtual int cell_count() const { 1882 return static_cell_count(); 1883 } 1884 1885 // Direct accessor 1886 Method* method() const { 1887 return (Method*)intptr_at(speculative_trap_method); 1888 } 1889 1890 void set_method(Method* m) { 1891 assert(!m->is_old(), "cannot add old methods"); 1892 set_intptr_at(speculative_trap_method, (intptr_t)m); 1893 } 1894 1895 static ByteSize method_offset() { 1896 return cell_offset(speculative_trap_method); 1897 } 1898 1899 // CDS support 1900 virtual void metaspace_pointers_do(MetaspaceClosure* it); 1901 1902 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1903 }; 1904 1905 // MethodData* 1906 // 1907 // A MethodData* holds information which has been collected about 1908 // a method. Its layout looks like this: 1909 // 1910 // ----------------------------- 1911 // | header | 1912 // | klass | 1913 // ----------------------------- 1914 // | method | 1915 // | size of the MethodData* | 1916 // ----------------------------- 1917 // | Data entries... | 1918 // | (variable size) | 1919 // | | 1920 // . . 1921 // . . 1922 // . . 1923 // | | 1924 // ----------------------------- 1925 // 1926 // The data entry area is a heterogeneous array of DataLayouts. Each 1927 // DataLayout in the array corresponds to a specific bytecode in the 1928 // method. The entries in the array are sorted by the corresponding 1929 // bytecode. Access to the data is via resource-allocated ProfileData, 1930 // which point to the underlying blocks of DataLayout structures. 1931 // 1932 // During interpretation, if profiling in enabled, the interpreter 1933 // maintains a method data pointer (mdp), which points at the entry 1934 // in the array corresponding to the current bci. In the course of 1935 // interpretation, when a bytecode is encountered that has profile data 1936 // associated with it, the entry pointed to by mdp is updated, then the 1937 // mdp is adjusted to point to the next appropriate DataLayout. If mdp 1938 // is null to begin with, the interpreter assumes that the current method 1939 // is not (yet) being profiled. 1940 // 1941 // In MethodData* parlance, "dp" is a "data pointer", the actual address 1942 // of a DataLayout element. A "di" is a "data index", the offset in bytes 1943 // from the base of the data entry array. A "displacement" is the byte offset 1944 // in certain ProfileData objects that indicate the amount the mdp must be 1945 // adjusted in the event of a change in control flow. 1946 // 1947 1948 class CleanExtraDataClosure : public StackObj { 1949 public: 1950 virtual bool is_live(Method* m) = 0; 1951 }; 1952 1953 1954 #if INCLUDE_JVMCI 1955 // Encapsulates an encoded speculation reason. These are linked together in 1956 // a list that is atomically appended to during deoptimization. Entries are 1957 // never removed from the list. 1958 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding 1959 class FailedSpeculation: public CHeapObj<mtCompiler> { 1960 private: 1961 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself 1962 // is an array embedded at the end of this object. 1963 int _data_len; 1964 1965 // Next entry in a linked list. 1966 FailedSpeculation* _next; 1967 1968 FailedSpeculation(address data, int data_len); 1969 1970 FailedSpeculation** next_adr() { return &_next; } 1971 1972 // Placement new operator for inlining the speculation data into 1973 // the FailedSpeculation object. 1974 void* operator new(size_t size, size_t fs_size) throw(); 1975 1976 public: 1977 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); } 1978 int data_len() const { return _data_len; } 1979 FailedSpeculation* next() const { return _next; } 1980 1981 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address). 1982 // Returns false if the FailedSpeculation object could not be allocated. 1983 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len); 1984 1985 // Frees all entries in the linked list whose head is at (*failed_speculations_address). 1986 static void free_failed_speculations(FailedSpeculation** failed_speculations_address); 1987 }; 1988 #endif 1989 1990 class ciMethodData; 1991 1992 class MethodData : public Metadata { 1993 friend class VMStructs; 1994 friend class JVMCIVMStructs; 1995 friend class ProfileData; 1996 friend class TypeEntriesAtCall; 1997 friend class ciMethodData; 1998 1999 // If you add a new field that points to any metaspace object, you 2000 // must add this field to MethodData::metaspace_pointers_do(). 2001 2002 // Back pointer to the Method* 2003 Method* _method; 2004 2005 // Size of this oop in bytes 2006 int _size; 2007 2008 // Cached hint for bci_to_dp and bci_to_data 2009 int _hint_di; 2010 2011 Mutex* volatile _extra_data_lock; // FIXME: CDS support 2012 2013 MethodData(const methodHandle& method); 2014 public: 2015 MethodData(); 2016 2017 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS); 2018 2019 virtual bool is_methodData() const { return true; } 2020 void initialize(); 2021 2022 // Whole-method sticky bits and flags 2023 enum { 2024 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH, 2025 _trap_hist_mask = max_jubyte, 2026 _extra_data_count = 4 // extra DataLayout headers, for trap history 2027 }; // Public flag values 2028 2029 // Compiler-related counters. 2030 class CompilerCounters { 2031 friend class VMStructs; 2032 friend class JVMCIVMStructs; 2033 2034 uint _nof_decompiles; // count of all nmethod removals 2035 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits 2036 uint _nof_overflow_traps; // trap count, excluding _trap_hist 2037 uint __gap; 2038 union { 2039 intptr_t _align; 2040 // JVMCI separates trap history for OSR compilations from normal compilations 2041 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit]; 2042 } _trap_hist; 2043 2044 public: 2045 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0), __gap(0) { 2046 #ifndef ZERO 2047 // Some Zero platforms do not have expected alignment, and do not use 2048 // this code. static_assert would still fire and fail for them. 2049 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align"); 2050 #endif 2051 uint size_in_words = sizeof(_trap_hist) / HeapWordSize; 2052 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words); 2053 } 2054 2055 // Return (uint)-1 for overflow. 2056 uint trap_count(int reason) const { 2057 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2058 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; 2059 } 2060 2061 uint inc_trap_count(int reason) { 2062 // Count another trap, anywhere in this method. 2063 assert(reason >= 0, "must be single trap"); 2064 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2065 uint cnt1 = 1 + _trap_hist._array[reason]; 2066 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... 2067 _trap_hist._array[reason] = (u1)cnt1; 2068 return cnt1; 2069 } else { 2070 return _trap_hist_mask + (++_nof_overflow_traps); 2071 } 2072 } 2073 2074 uint overflow_trap_count() const { 2075 return _nof_overflow_traps; 2076 } 2077 uint overflow_recompile_count() const { 2078 return _nof_overflow_recompiles; 2079 } 2080 uint inc_overflow_recompile_count() { 2081 return ++_nof_overflow_recompiles; 2082 } 2083 uint decompile_count() const { 2084 return _nof_decompiles; 2085 } 2086 uint inc_decompile_count() { 2087 return ++_nof_decompiles; 2088 } 2089 2090 // Support for code generation 2091 static ByteSize trap_history_offset() { 2092 return byte_offset_of(CompilerCounters, _trap_hist._array); 2093 } 2094 }; 2095 2096 private: 2097 CompilerCounters _compiler_counters; 2098 2099 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2100 intx _eflags; // flags on escape information 2101 intx _arg_local; // bit set of non-escaping arguments 2102 intx _arg_stack; // bit set of stack-allocatable arguments 2103 intx _arg_returned; // bit set of returned arguments 2104 2105 int _creation_mileage; // method mileage at MDO creation 2106 2107 // How many invocations has this MDO seen? 2108 // These counters are used to determine the exact age of MDO. 2109 // We need those because in tiered a method can be concurrently 2110 // executed at different levels. 2111 InvocationCounter _invocation_counter; 2112 // Same for backedges. 2113 InvocationCounter _backedge_counter; 2114 // Counter values at the time profiling started. 2115 int _invocation_counter_start; 2116 int _backedge_counter_start; 2117 uint _tenure_traps; 2118 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog 2119 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog 2120 2121 // Number of loops and blocks is computed when compiling the first 2122 // time with C1. It is used to determine if method is trivial. 2123 short _num_loops; 2124 short _num_blocks; 2125 // Does this method contain anything worth profiling? 2126 enum WouldProfile {unknown, no_profile, profile}; 2127 WouldProfile _would_profile; 2128 2129 #if INCLUDE_JVMCI 2130 // Support for HotSpotMethodData.setCompiledIRSize(int) 2131 FailedSpeculation* _failed_speculations; 2132 int _jvmci_ir_size; 2133 #endif 2134 2135 // Size of _data array in bytes. (Excludes header and extra_data fields.) 2136 int _data_size; 2137 2138 // data index for the area dedicated to parameters. -1 if no 2139 // parameter profiling. 2140 enum { no_parameters = -2, parameters_uninitialized = -1 }; 2141 int _parameters_type_data_di; 2142 2143 // data index of exception handler profiling data 2144 int _exception_handler_data_di; 2145 2146 // Beginning of the data entries 2147 // See comment in ciMethodData::load_data 2148 intptr_t _data[1]; 2149 2150 // Helper for size computation 2151 static int compute_data_size(BytecodeStream* stream); 2152 static int bytecode_cell_count(Bytecodes::Code code); 2153 static bool is_speculative_trap_bytecode(Bytecodes::Code code); 2154 enum { no_profile_data = -1, variable_cell_count = -2 }; 2155 2156 // Helper for initialization 2157 DataLayout* data_layout_at(int data_index) const { 2158 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 2159 return (DataLayout*) (((address)_data) + data_index); 2160 } 2161 2162 static int single_exception_handler_data_cell_count() { 2163 return BitData::static_cell_count(); 2164 } 2165 2166 static int single_exception_handler_data_size() { 2167 return DataLayout::compute_size_in_bytes(single_exception_handler_data_cell_count()); 2168 } 2169 2170 DataLayout* exception_handler_data_at(int exception_handler_index) const { 2171 return data_layout_at(_exception_handler_data_di + (exception_handler_index * single_exception_handler_data_size())); 2172 } 2173 2174 int num_exception_handler_data() const { 2175 return exception_handlers_data_size() / single_exception_handler_data_size(); 2176 } 2177 2178 // Initialize an individual data segment. Returns the size of 2179 // the segment in bytes. 2180 int initialize_data(BytecodeStream* stream, int data_index); 2181 2182 // Helper for data_at 2183 DataLayout* limit_data_position() const { 2184 return data_layout_at(_data_size); 2185 } 2186 bool out_of_bounds(int data_index) const { 2187 return data_index >= data_size(); 2188 } 2189 2190 // Give each of the data entries a chance to perform specific 2191 // data initialization. 2192 void post_initialize(BytecodeStream* stream); 2193 2194 // hint accessors 2195 int hint_di() const { return _hint_di; } 2196 void set_hint_di(int di) { 2197 assert(!out_of_bounds(di), "hint_di out of bounds"); 2198 _hint_di = di; 2199 } 2200 2201 DataLayout* data_layout_before(int bci) { 2202 // avoid SEGV on this edge case 2203 if (data_size() == 0) 2204 return nullptr; 2205 DataLayout* layout = data_layout_at(hint_di()); 2206 if (layout->bci() <= bci) 2207 return layout; 2208 return data_layout_at(first_di()); 2209 } 2210 2211 // What is the index of the first data entry? 2212 int first_di() const { return 0; } 2213 2214 ProfileData* bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp); 2215 // Find or create an extra ProfileData: 2216 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing); 2217 2218 // return the argument info cell 2219 ArgInfoData *arg_info(); 2220 2221 enum { 2222 no_type_profile = 0, 2223 type_profile_jsr292 = 1, 2224 type_profile_all = 2 2225 }; 2226 2227 static bool profile_jsr292(const methodHandle& m, int bci); 2228 static bool profile_unsafe(const methodHandle& m, int bci); 2229 static bool profile_memory_access(const methodHandle& m, int bci); 2230 static int profile_arguments_flag(); 2231 static bool profile_all_arguments(); 2232 static bool profile_arguments_for_invoke(const methodHandle& m, int bci); 2233 static int profile_return_flag(); 2234 static bool profile_all_return(); 2235 static bool profile_return_for_invoke(const methodHandle& m, int bci); 2236 static int profile_parameters_flag(); 2237 static bool profile_parameters_jsr292_only(); 2238 static bool profile_all_parameters(); 2239 2240 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false); 2241 void verify_extra_data_clean(CleanExtraDataClosure* cl); 2242 2243 DataLayout* exception_handler_bci_to_data_helper(int bci); 2244 2245 public: 2246 void clean_extra_data(CleanExtraDataClosure* cl); 2247 2248 static int header_size() { 2249 return sizeof(MethodData)/wordSize; 2250 } 2251 2252 // Compute the size of a MethodData* before it is created. 2253 static int compute_allocation_size_in_bytes(const methodHandle& method); 2254 static int compute_allocation_size_in_words(const methodHandle& method); 2255 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps); 2256 2257 // Determine if a given bytecode can have profile information. 2258 static bool bytecode_has_profile(Bytecodes::Code code) { 2259 return bytecode_cell_count(code) != no_profile_data; 2260 } 2261 2262 // reset into original state 2263 void init(); 2264 2265 // My size 2266 int size_in_bytes() const { return _size; } 2267 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); } 2268 2269 int creation_mileage() const { return _creation_mileage; } 2270 void set_creation_mileage(int x) { _creation_mileage = x; } 2271 2272 int invocation_count() { 2273 if (invocation_counter()->carry()) { 2274 return InvocationCounter::count_limit; 2275 } 2276 return invocation_counter()->count(); 2277 } 2278 int backedge_count() { 2279 if (backedge_counter()->carry()) { 2280 return InvocationCounter::count_limit; 2281 } 2282 return backedge_counter()->count(); 2283 } 2284 2285 int invocation_count_start() { 2286 if (invocation_counter()->carry()) { 2287 return 0; 2288 } 2289 return _invocation_counter_start; 2290 } 2291 2292 int backedge_count_start() { 2293 if (backedge_counter()->carry()) { 2294 return 0; 2295 } 2296 return _backedge_counter_start; 2297 } 2298 2299 int invocation_count_delta() { return invocation_count() - invocation_count_start(); } 2300 int backedge_count_delta() { return backedge_count() - backedge_count_start(); } 2301 2302 void reset_start_counters() { 2303 _invocation_counter_start = invocation_count(); 2304 _backedge_counter_start = backedge_count(); 2305 } 2306 2307 InvocationCounter* invocation_counter() { return &_invocation_counter; } 2308 InvocationCounter* backedge_counter() { return &_backedge_counter; } 2309 2310 #if INCLUDE_JVMCI 2311 FailedSpeculation** get_failed_speculations_address() { 2312 return &_failed_speculations; 2313 } 2314 #endif 2315 2316 #if INCLUDE_CDS 2317 void remove_unshareable_info(); 2318 void restore_unshareable_info(TRAPS); 2319 #endif 2320 2321 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; } 2322 bool would_profile() const { return _would_profile != no_profile; } 2323 2324 int num_loops() const { return _num_loops; } 2325 void set_num_loops(short n) { _num_loops = n; } 2326 int num_blocks() const { return _num_blocks; } 2327 void set_num_blocks(short n) { _num_blocks = n; } 2328 2329 bool is_mature() const; // consult mileage and ProfileMaturityPercentage 2330 static int mileage_of(Method* m); 2331 2332 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2333 enum EscapeFlag { 2334 estimated = 1 << 0, 2335 return_local = 1 << 1, 2336 return_allocated = 1 << 2, 2337 allocated_escapes = 1 << 3, 2338 unknown_modified = 1 << 4 2339 }; 2340 2341 intx eflags() { return _eflags; } 2342 intx arg_local() { return _arg_local; } 2343 intx arg_stack() { return _arg_stack; } 2344 intx arg_returned() { return _arg_returned; } 2345 uint arg_modified(int a); 2346 void set_eflags(intx v) { _eflags = v; } 2347 void set_arg_local(intx v) { _arg_local = v; } 2348 void set_arg_stack(intx v) { _arg_stack = v; } 2349 void set_arg_returned(intx v) { _arg_returned = v; } 2350 void set_arg_modified(int a, uint v); 2351 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } 2352 2353 // Location and size of data area 2354 address data_base() const { 2355 return (address) _data; 2356 } 2357 int data_size() const { 2358 return _data_size; 2359 } 2360 2361 int parameters_size_in_bytes() const { 2362 return pointer_delta_as_int((address) parameters_data_limit(), (address) parameters_data_base()); 2363 } 2364 2365 int exception_handlers_data_size() const { 2366 return pointer_delta_as_int((address) exception_handler_data_limit(), (address) exception_handler_data_base()); 2367 } 2368 2369 // Accessors 2370 Method* method() const { return _method; } 2371 2372 // Get the data at an arbitrary (sort of) data index. 2373 ProfileData* data_at(int data_index) const; 2374 2375 // Walk through the data in order. 2376 ProfileData* first_data() const { return data_at(first_di()); } 2377 ProfileData* next_data(ProfileData* current) const; 2378 DataLayout* next_data_layout(DataLayout* current) const; 2379 bool is_valid(ProfileData* current) const { return current != nullptr; } 2380 bool is_valid(DataLayout* current) const { return current != nullptr; } 2381 2382 // Convert a dp (data pointer) to a di (data index). 2383 int dp_to_di(address dp) const { 2384 return (int)(dp - ((address)_data)); 2385 } 2386 2387 // bci to di/dp conversion. 2388 address bci_to_dp(int bci); 2389 int bci_to_di(int bci) { 2390 return dp_to_di(bci_to_dp(bci)); 2391 } 2392 2393 // Get the data at an arbitrary bci, or null if there is none. 2394 ProfileData* bci_to_data(int bci); 2395 2396 // Same, but try to create an extra_data record if one is needed: 2397 ProfileData* allocate_bci_to_data(int bci, Method* m) { 2398 check_extra_data_locked(); 2399 2400 ProfileData* data = nullptr; 2401 // If m not null, try to allocate a SpeculativeTrapData entry 2402 if (m == nullptr) { 2403 data = bci_to_data(bci); 2404 } 2405 if (data != nullptr) { 2406 return data; 2407 } 2408 data = bci_to_extra_data(bci, m, true); 2409 if (data != nullptr) { 2410 return data; 2411 } 2412 // If SpeculativeTrapData allocation fails try to allocate a 2413 // regular entry 2414 data = bci_to_data(bci); 2415 if (data != nullptr) { 2416 return data; 2417 } 2418 return bci_to_extra_data(bci, nullptr, true); 2419 } 2420 2421 BitData* exception_handler_bci_to_data_or_null(int bci); 2422 BitData exception_handler_bci_to_data(int bci); 2423 2424 // Add a handful of extra data records, for trap tracking. 2425 // Only valid after 'set_size' is called at the end of MethodData::initialize 2426 DataLayout* extra_data_base() const { 2427 check_extra_data_locked(); 2428 return limit_data_position(); 2429 } 2430 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); } 2431 // pointers to sections in extra data 2432 DataLayout* args_data_limit() const { return parameters_data_base(); } 2433 DataLayout* parameters_data_base() const { 2434 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2435 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di) : parameters_data_limit(); 2436 } 2437 DataLayout* parameters_data_limit() const { 2438 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2439 return exception_handler_data_base(); 2440 } 2441 DataLayout* exception_handler_data_base() const { return data_layout_at(_exception_handler_data_di); } 2442 DataLayout* exception_handler_data_limit() const { return extra_data_limit(); } 2443 2444 int extra_data_size() const { return (int)((address)extra_data_limit() - (address)limit_data_position()); } 2445 static DataLayout* next_extra(DataLayout* dp); 2446 2447 // Return (uint)-1 for overflow. 2448 uint trap_count(int reason) const { 2449 return _compiler_counters.trap_count(reason); 2450 } 2451 // For loops: 2452 static uint trap_reason_limit() { return _trap_hist_limit; } 2453 static uint trap_count_limit() { return _trap_hist_mask; } 2454 uint inc_trap_count(int reason) { 2455 return _compiler_counters.inc_trap_count(reason); 2456 } 2457 2458 uint overflow_trap_count() const { 2459 return _compiler_counters.overflow_trap_count(); 2460 } 2461 uint overflow_recompile_count() const { 2462 return _compiler_counters.overflow_recompile_count(); 2463 } 2464 uint inc_overflow_recompile_count() { 2465 return _compiler_counters.inc_overflow_recompile_count(); 2466 } 2467 uint decompile_count() const { 2468 return _compiler_counters.decompile_count(); 2469 } 2470 uint inc_decompile_count() { 2471 uint dec_count = _compiler_counters.inc_decompile_count(); 2472 if (dec_count > (uint)PerMethodRecompilationCutoff) { 2473 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization); 2474 } 2475 return dec_count; 2476 } 2477 uint tenure_traps() const { 2478 return _tenure_traps; 2479 } 2480 void inc_tenure_traps() { 2481 _tenure_traps += 1; 2482 } 2483 2484 // Return pointer to area dedicated to parameters in MDO 2485 ParametersTypeData* parameters_type_data() const { 2486 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2487 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr; 2488 } 2489 2490 int parameters_type_data_di() const { 2491 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2492 return _parameters_type_data_di != no_parameters ? _parameters_type_data_di : exception_handlers_data_di(); 2493 } 2494 2495 int exception_handlers_data_di() const { 2496 return _exception_handler_data_di; 2497 } 2498 2499 // Support for code generation 2500 static ByteSize data_offset() { 2501 return byte_offset_of(MethodData, _data[0]); 2502 } 2503 2504 static ByteSize trap_history_offset() { 2505 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset(); 2506 } 2507 2508 static ByteSize invocation_counter_offset() { 2509 return byte_offset_of(MethodData, _invocation_counter); 2510 } 2511 2512 static ByteSize backedge_counter_offset() { 2513 return byte_offset_of(MethodData, _backedge_counter); 2514 } 2515 2516 static ByteSize invoke_mask_offset() { 2517 return byte_offset_of(MethodData, _invoke_mask); 2518 } 2519 2520 static ByteSize backedge_mask_offset() { 2521 return byte_offset_of(MethodData, _backedge_mask); 2522 } 2523 2524 static ByteSize parameters_type_data_di_offset() { 2525 return byte_offset_of(MethodData, _parameters_type_data_di); 2526 } 2527 2528 virtual void metaspace_pointers_do(MetaspaceClosure* iter); 2529 virtual MetaspaceObj::Type type() const { return MethodDataType; } 2530 2531 // Deallocation support 2532 void deallocate_contents(ClassLoaderData* loader_data); 2533 void release_C_heap_structures(); 2534 2535 // GC support 2536 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; } 2537 2538 // Printing 2539 void print_on (outputStream* st) const; 2540 void print_value_on(outputStream* st) const; 2541 2542 // printing support for method data 2543 void print_data_on(outputStream* st) const; 2544 2545 const char* internal_name() const { return "{method data}"; } 2546 2547 // verification 2548 void verify_on(outputStream* st); 2549 void verify_data_on(outputStream* st); 2550 2551 static bool profile_parameters_for_method(const methodHandle& m); 2552 static bool profile_arguments(); 2553 static bool profile_arguments_jsr292_only(); 2554 static bool profile_return(); 2555 static bool profile_parameters(); 2556 static bool profile_return_jsr292_only(); 2557 2558 void clean_method_data(bool always_clean); 2559 void clean_weak_method_links(); 2560 Mutex* extra_data_lock(); 2561 void check_extra_data_locked() const NOT_DEBUG_RETURN; 2562 }; 2563 2564 #endif // SHARE_OOPS_METHODDATA_HPP