1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_BLOCK_HPP
 26 #define SHARE_OPTO_BLOCK_HPP
 27 
 28 #include "opto/multnode.hpp"
 29 #include "opto/node.hpp"
 30 #include "opto/phase.hpp"
 31 #include "utilities/powerOfTwo.hpp"
 32 
 33 // Optimization - Graph Style
 34 
 35 class Block;
 36 class CFGLoop;
 37 class MachCallNode;
 38 class Matcher;
 39 class RootNode;
 40 class VectorSet;
 41 class PhaseChaitin;
 42 struct Tarjan;
 43 
 44 //------------------------------Block_Array------------------------------------
 45 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
 46 // Abstractly provides an infinite array of Block*'s, initialized to null.
 47 // Note that the constructor just zeros things, and since I use Arena
 48 // allocation I do not need a destructor to reclaim storage.
 49 class Block_Array : public ArenaObj {
 50   uint _size;                   // allocated size, as opposed to formal limit
 51   DEBUG_ONLY(uint _limit;)      // limit to formal domain
 52   Arena *_arena;                // Arena to allocate in
 53   ReallocMark _nesting;         // Safety checks for arena reallocation
 54 protected:
 55   Block **_blocks;
 56   void grow( uint i );          // Grow array node to fit
 57 
 58 public:
 59   Block_Array(Arena *a) : _size(OptoBlockListSize), _arena(a) {
 60     DEBUG_ONLY(_limit=0);
 61     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
 62     for( int i = 0; i < OptoBlockListSize; i++ ) {
 63       _blocks[i] = nullptr;
 64     }
 65   }
 66   Block *lookup( uint i ) const // Lookup, or null for not mapped
 67   { return (i<Max()) ? _blocks[i] : (Block*)nullptr; }
 68   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
 69   { assert( i < Max(), "oob" ); return _blocks[i]; }
 70   // Extend the mapping: index i maps to Block *n.
 71   void map( uint i, Block *n ) { grow(i); _blocks[i] = n; }
 72   uint Max() const { DEBUG_ONLY(return _limit); return _size; }
 73 };
 74 
 75 
 76 class Block_List : public Block_Array {
 77 public:
 78   uint _cnt;
 79   Block_List() : Block_List(Thread::current()->resource_area()) { }
 80   Block_List(Arena* a) : Block_Array(a), _cnt(0) { }
 81 
 82   void push( Block *b ) {  map(_cnt++,b); }
 83   Block *pop() { return _blocks[--_cnt]; }
 84   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
 85   void remove( uint i );
 86   void insert( uint i, Block *n );
 87   uint size() const { return _cnt; }
 88   void reset() { _cnt = 0; }
 89   void print();
 90 };
 91 
 92 
 93 class CFGElement : public AnyObj {
 94  public:
 95   double _freq; // Execution frequency (estimate)
 96 
 97   CFGElement() : _freq(0.0) {}
 98   virtual bool is_block() { return false; }
 99   virtual bool is_loop()  { return false; }
100   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
101   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
102 };
103 
104 //------------------------------Block------------------------------------------
105 // This class defines a Basic Block.
106 // Basic blocks are used during the output routines, and are not used during
107 // any optimization pass.  They are created late in the game.
108 class Block : public CFGElement {
109 
110 private:
111   // Nodes in this block, in order
112   Node_List _nodes;
113 
114 public:
115 
116   // Get the node at index 'at_index', if 'at_index' is out of bounds return null
117   Node* get_node(uint at_index) const {
118     return _nodes[at_index];
119   }
120 
121   // Get the number of nodes in this block
122   uint number_of_nodes() const {
123     return _nodes.size();
124   }
125 
126   // Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
127   void map_node(Node* node, uint to_index) {
128     _nodes.map(to_index, node);
129   }
130 
131   // Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
132   void insert_node(Node* node, uint at_index) {
133     _nodes.insert(at_index, node);
134   }
135 
136   // Remove a node at index 'at_index'
137   void remove_node(uint at_index) {
138     _nodes.remove(at_index);
139   }
140 
141   // Push a node 'node' onto the node list
142   void push_node(Node* node) {
143     _nodes.push(node);
144   }
145 
146   // Pop the last node off the node list
147   Node* pop_node() {
148     return _nodes.pop();
149   }
150 
151   // Basic blocks have a Node which defines Control for all Nodes pinned in
152   // this block.  This Node is a RegionNode.  Exception-causing Nodes
153   // (division, subroutines) and Phi functions are always pinned.  Later,
154   // every Node will get pinned to some block.
155   Node *head() const { return get_node(0); }
156 
157   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
158   // input edges to Regions and Phis.
159   uint num_preds() const { return head()->req(); }
160   Node *pred(uint i) const { return head()->in(i); }
161 
162   // Array of successor blocks, same size as projs array
163   Block_Array _succs;
164 
165   // Basic blocks have some number of Nodes which split control to all
166   // following blocks.  These Nodes are always Projections.  The field in
167   // the Projection and the block-ending Node determine which Block follows.
168   uint _num_succs;
169 
170   // Basic blocks also carry all sorts of good old fashioned DFS information
171   // used to find loops, loop nesting depth, dominators, etc.
172   uint _pre_order;              // Pre-order DFS number
173 
174   // Dominator tree
175   uint _dom_depth;              // Depth in dominator tree for fast LCA
176   Block* _idom;                 // Immediate dominator block
177 
178   CFGLoop *_loop;               // Loop to which this block belongs
179   uint _rpo;                    // Number in reverse post order walk
180 
181   virtual bool is_block() { return true; }
182   float succ_prob(uint i);      // return probability of i'th successor
183   int num_fall_throughs();      // How many fall-through candidate this block has
184   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
185   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
186   Block* lone_fall_through();   // Return lone fall-through Block or null
187 
188   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
189 
190   bool dominates(Block* that) {
191     int dom_diff = this->_dom_depth - that->_dom_depth;
192     if (dom_diff > 0)  return false;
193     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
194     return this == that;
195   }
196 
197   // Report the alignment required by this block.  Must be a power of 2.
198   // The previous block will insert nops to get this alignment.
199   uint code_alignment() const;
200   uint compute_loop_alignment();
201 
202   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
203   // It is currently also used to scale such frequencies relative to
204   // FreqCountInvocations relative to the old value of 1500.
205 #define BLOCK_FREQUENCY(f) ((f * (double) 1500) / FreqCountInvocations)
206 
207   // Register Pressure (estimate) for Splitting heuristic
208   uint _reg_pressure;
209   uint _ihrp_index;
210   uint _freg_pressure;
211   uint _fhrp_index;
212 
213   // Mark and visited bits for an LCA calculation in raise_above_anti_dependences.
214   // Since they hold unique node indexes, they do not need reinitialization.
215   node_idx_t _raise_LCA_mark;
216   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
217   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
218   node_idx_t _raise_LCA_visited;
219   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
220   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
221 
222   // Estimated size in bytes of first instructions in a loop.
223   uint _first_inst_size;
224   uint first_inst_size() const     { return _first_inst_size; }
225   void set_first_inst_size(uint s) { _first_inst_size = s; }
226 
227   // Compute the size of first instructions in this block.
228   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
229 
230   // Compute alignment padding if the block needs it.
231   // Align a loop if loop's padding is less or equal to padding limit
232   // or the size of first instructions in the loop > padding.
233   uint alignment_padding(int current_offset) {
234     int block_alignment = code_alignment();
235     int max_pad = block_alignment-relocInfo::addr_unit();
236     if( max_pad > 0 ) {
237       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
238       int current_alignment = current_offset & max_pad;
239       if( current_alignment != 0 ) {
240         uint padding = (block_alignment-current_alignment) & max_pad;
241         if( has_loop_alignment() &&
242             padding > (uint)MaxLoopPad &&
243             first_inst_size() <= padding ) {
244           return 0;
245         }
246         return padding;
247       }
248     }
249     return 0;
250   }
251 
252   // Connector blocks. Connector blocks are basic blocks devoid of
253   // instructions, but may have relevant non-instruction Nodes, such as
254   // Phis or MergeMems. Such blocks are discovered and marked during the
255   // RemoveEmpty phase, and elided during Output.
256   bool _connector;
257   void set_connector() { _connector = true; }
258   bool is_connector() const { return _connector; };
259 
260   // Loop_alignment will be set for blocks which are at the top of loops.
261   // The block layout pass may rotate loops such that the loop head may not
262   // be the sequentially first block of the loop encountered in the linear
263   // list of blocks.  If the layout pass is not run, loop alignment is set
264   // for each block which is the head of a loop.
265   uint _loop_alignment;
266   void set_loop_alignment(Block *loop_top) {
267     uint new_alignment = loop_top->compute_loop_alignment();
268     if (new_alignment > _loop_alignment) {
269       _loop_alignment = new_alignment;
270     }
271   }
272   uint loop_alignment() const { return _loop_alignment; }
273   bool has_loop_alignment() const { return loop_alignment() > 0; }
274 
275   // Create a new Block with given head Node.
276   // Creates the (empty) predecessor arrays.
277   Block( Arena *a, Node *headnode )
278     : CFGElement(),
279       _nodes(a),
280       _succs(a),
281       _num_succs(0),
282       _pre_order(0),
283       _idom(nullptr),
284       _loop(nullptr),
285       _reg_pressure(0),
286       _ihrp_index(1),
287       _freg_pressure(0),
288       _fhrp_index(1),
289       _raise_LCA_mark(0),
290       _raise_LCA_visited(0),
291       _first_inst_size(999999),
292       _connector(false),
293       _loop_alignment(0) {
294     _nodes.push(headnode);
295   }
296 
297   // Index of 'end' Node
298   uint end_idx() const {
299     // %%%%% add a proj after every goto
300     // so (last->is_block_proj() != last) always, then simplify this code
301     // This will not give correct end_idx for block 0 when it only contains root.
302     int last_idx = _nodes.size() - 1;
303     Node *last  = _nodes[last_idx];
304     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
305     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
306   }
307 
308   // Basic blocks have a Node which ends them.  This Node determines which
309   // basic block follows this one in the program flow.  This Node is either an
310   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
311   Node *end() const { return _nodes[end_idx()]; }
312 
313   // Add an instruction to an existing block.  It must go after the head
314   // instruction and before the end instruction.
315   void add_inst( Node *n ) { insert_node(n, end_idx()); }
316   // Find node in block. Fails if node not in block.
317   uint find_node( const Node *n ) const;
318   // Find and remove n from block list
319   void find_remove( const Node *n );
320   // Check whether the node is in the block.
321   bool contains (const Node *n) const;
322 
323   // Whether the block is not root-like and does not have any predecessors.
324   bool is_trivially_unreachable() const;
325 
326   // Return the empty status of a block
327   enum { not_empty, empty_with_goto, completely_empty };
328   int is_Empty() const;
329 
330   // Forward through connectors
331   Block* non_connector() {
332     Block* s = this;
333     while (s->is_connector()) {
334       s = s->_succs[0];
335     }
336     return s;
337   }
338 
339   // Return true if b is a successor of this block
340   bool has_successor(Block* b) const {
341     for (uint i = 0; i < _num_succs; i++ ) {
342       if (non_connector_successor(i) == b) {
343         return true;
344       }
345     }
346     return false;
347   }
348 
349   // Successor block, after forwarding through connectors
350   Block* non_connector_successor(int i) const {
351     return _succs[i]->non_connector();
352   }
353 
354   // Examine block's code shape to predict if it is not commonly executed.
355   bool has_uncommon_code() const;
356 
357 #ifndef PRODUCT
358   // Debugging print of basic block
359   void dump_bidx(const Block* orig, outputStream* st = tty) const;
360   void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
361   void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
362   void dump() const;
363   void dump(const PhaseCFG* cfg) const;
364 #endif
365 };
366 
367 
368 //------------------------------PhaseCFG---------------------------------------
369 // Build an array of Basic Block pointers, one per Node.
370 class PhaseCFG : public Phase {
371  private:
372   // Root of whole program
373   RootNode* _root;
374 
375   // The block containing the root node
376   Block* _root_block;
377 
378   // List of basic blocks that are created during CFG creation
379   Block_List _blocks;
380 
381   // Count of basic blocks
382   uint _number_of_blocks;
383 
384   // Arena for the blocks to be stored in
385   Arena* _block_arena;
386 
387   // Info used for scheduling
388   PhaseChaitin* _regalloc;
389 
390   // Register pressure heuristic used?
391   bool _scheduling_for_pressure;
392 
393   // The matcher for this compilation
394   Matcher& _matcher;
395 
396   // Map nodes to owning basic block
397   Block_Array _node_to_block_mapping;
398 
399   // Loop from the root
400   CFGLoop* _root_loop;
401 
402   // Outmost loop frequency
403   double _outer_loop_frequency;
404 
405   // Per node latency estimation, valid only during GCM
406   GrowableArray<uint>* _node_latency;
407 
408   // Build a proper looking cfg.  Return count of basic blocks
409   uint build_cfg();
410 
411   // Build the dominator tree so that we know where we can move instructions
412   void build_dominator_tree();
413 
414   // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
415   void estimate_block_frequency();
416 
417   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
418   // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
419   // Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
420   void global_code_motion();
421 
422   // Schedule Nodes early in their basic blocks.
423   bool schedule_early(VectorSet &visited, Node_Stack &roots);
424 
425   // For each node, find the latest block it can be scheduled into
426   // and then select the cheapest block between the latest and earliest
427   // block to place the node.
428   void schedule_late(VectorSet &visited, Node_Stack &stack);
429 
430   // Compute the (backwards) latency of a node from a single use
431   int latency_from_use(Node *n, const Node *def, Node *use);
432 
433   // Compute the (backwards) latency of a node from the uses of this instruction
434   void partial_latency_of_defs(Node *n);
435 
436   // Compute the instruction global latency with a backwards walk
437   void compute_latencies_backwards(VectorSet &visited, Node_Stack &stack);
438 
439   // Check if a block between early and LCA block of uses is cheaper by
440   // frequency-based policy, latency-based policy and random-based policy
441   bool is_cheaper_block(Block* LCA, Node* self, uint target_latency,
442                         uint end_latency, double least_freq,
443                         int cand_cnt, bool in_latency);
444 
445   // Pick a block between early and late that is a cheaper alternative
446   // to late. Helper for schedule_late.
447   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
448 
449   bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t* recacl_pressure_nodes);
450   void set_next_call(const Block* block, Node* n, VectorSet& next_call) const;
451   void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
452 
453   // Perform basic-block local scheduling
454   Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot,
455                intptr_t* recacl_pressure_nodes);
456   void adjust_register_pressure(Node* n, Block* block, intptr_t *recalc_pressure_nodes, bool finalize_mode);
457 
458   // Schedule a call next in the block
459   uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
460 
461   // Cleanup if any code lands between a Call and his Catch
462   void call_catch_cleanup(Block* block);
463 
464   Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
465   void  catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
466 
467   // Detect implicit-null-check opportunities.  Basically, find null checks
468   // with suitable memory ops nearby.  Use the memory op to do the null check.
469   // I can generate a memory op if there is not one nearby.
470   void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
471 
472   // Perform a Depth First Search (DFS).
473   // Setup 'vertex' as DFS to vertex mapping.
474   // Setup 'semi' as vertex to DFS mapping.
475   // Set 'parent' to DFS parent.
476   uint do_DFS(Tarjan* tarjan, uint rpo_counter);
477 
478   // Helper function to insert a node into a block
479   void schedule_node_into_block( Node *n, Block *b );
480 
481   void replace_block_proj_ctrl( Node *n );
482 
483   // Set the basic block for pinned Nodes
484   void schedule_pinned_nodes( VectorSet &visited );
485 
486   // I'll need a few machine-specific GotoNodes.  Clone from this one.
487   // Used when building the CFG and creating end nodes for blocks.
488   MachNode* _goto;
489 
490   Block* raise_above_anti_dependences(Block* LCA, Node* load, bool verify = false);
491   void verify_anti_dependences(Block* LCA, Node* load) const {
492     assert(LCA == get_block_for_node(load), "should already be scheduled");
493     const_cast<PhaseCFG*>(this)->raise_above_anti_dependences(LCA, load, true);
494   }
495 
496   bool move_to_next(Block* bx, uint b_index);
497   void move_to_end(Block* bx, uint b_index);
498 
499   void insert_goto_at(uint block_no, uint succ_no);
500 
501   // Check for NeverBranch at block end.  This needs to become a GOTO to the
502   // true target.  NeverBranch are treated as a conditional branch that always
503   // goes the same direction for most of the optimizer and are used to give a
504   // fake exit path to infinite loops.  At this late stage they need to turn
505   // into Goto's so that when you enter the infinite loop you indeed hang.
506   void convert_NeverBranch_to_Goto(Block *b);
507 
508   CFGLoop* create_loop_tree();
509   bool is_dominator(Node* dom_node, Node* node);
510   bool is_CFG(Node* n);
511   bool is_control_proj_or_safepoint(Node* n) const;
512   Block* find_block_for_node(Node* n) const;
513   bool is_dominating_control(Node* dom_ctrl, Node* n);
514   #ifndef PRODUCT
515   bool _trace_opto_pipelining;  // tracing flag
516   #endif
517 
518  public:
519   PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
520 
521   void set_latency_for_node(Node* node, int latency) {
522     _node_latency->at_put_grow(node->_idx, latency);
523   }
524 
525   uint get_latency_for_node(Node* node) {
526     return _node_latency->at_grow(node->_idx);
527   }
528 
529   // Get the outer most frequency
530   double get_outer_loop_frequency() const {
531     return _outer_loop_frequency;
532   }
533 
534   // Get the root node of the CFG
535   RootNode* get_root_node() const {
536     return _root;
537   }
538 
539   // Get the block of the root node
540   Block* get_root_block() const {
541     return _root_block;
542   }
543 
544   // Add a block at a position and moves the later ones one step
545   void add_block_at(uint pos, Block* block) {
546     _blocks.insert(pos, block);
547     _number_of_blocks++;
548   }
549 
550   // Adds a block to the top of the block list
551   void add_block(Block* block) {
552     _blocks.push(block);
553     _number_of_blocks++;
554   }
555 
556   // Clear the list of blocks
557   void clear_blocks() {
558     _blocks.reset();
559     _number_of_blocks = 0;
560   }
561 
562   // Get the block at position pos in _blocks
563   Block* get_block(uint pos) const {
564     return _blocks[pos];
565   }
566 
567   // Number of blocks
568   uint number_of_blocks() const {
569     return _number_of_blocks;
570   }
571 
572   // set which block this node should reside in
573   void map_node_to_block(const Node* node, Block* block) {
574     _node_to_block_mapping.map(node->_idx, block);
575   }
576 
577   // removes the mapping from a node to a block
578   void unmap_node_from_block(const Node* node) {
579     _node_to_block_mapping.map(node->_idx, nullptr);
580   }
581 
582   // get the block in which this node resides
583   Block* get_block_for_node(const Node* node) const {
584     return _node_to_block_mapping[node->_idx];
585   }
586 
587   // does this node reside in a block; return true
588   bool has_block(const Node* node) const {
589     return (_node_to_block_mapping.lookup(node->_idx) != nullptr);
590   }
591 
592   // Use frequency calculations and code shape to predict if the block
593   // is uncommon.
594   bool is_uncommon(const Block* block);
595 
596 #ifdef ASSERT
597   Unique_Node_List _raw_oops;
598 #endif
599 
600   // Do global code motion by first building dominator tree and estimate block frequency
601   // Returns true on success
602   bool do_global_code_motion();
603 
604   // Compute the (backwards) latency of a node from the uses
605   void latency_from_uses(Node *n);
606 
607   // Set loop alignment
608   void set_loop_alignment();
609 
610   // Remove empty basic blocks
611   void remove_empty_blocks();
612   Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext);
613   void fixup_flow();
614   // Remove all blocks that are transitively unreachable. Such blocks can be
615   // found e.g. after PhaseCFG::convert_NeverBranch_to_Goto(). This function
616   // assumes post-fixup_flow() block indices (Block::_pre_order, Block::_rpo).
617   void remove_unreachable_blocks();
618 
619   // Insert a node into a block at index and map the node to the block
620   void insert(Block *b, uint idx, Node *n) {
621     b->insert_node(n , idx);
622     map_node_to_block(n, b);
623   }
624 
625   // Check all nodes and postalloc_expand them if necessary.
626   void postalloc_expand(PhaseRegAlloc* _ra);
627 
628 #ifndef PRODUCT
629   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
630 
631   // Debugging print of CFG
632   void dump( ) const;           // CFG only
633   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
634   void dump_headers();
635 #else
636   bool trace_opto_pipelining() const { return false; }
637 #endif
638 
639   bool unrelated_load_in_store_null_block(Node* store, Node* load);
640 
641   // Check that block b is in the home loop (or an ancestor) of n, if n is a
642   // memory writer.
643   void verify_memory_writer_placement(const Block* b, const Node* n) const NOT_DEBUG_RETURN;
644   // Check local dominator tree invariants.
645   void verify_dominator_tree() const NOT_DEBUG_RETURN;
646   void verify() const NOT_DEBUG_RETURN;
647 };
648 
649 
650 //------------------------------UnionFind--------------------------------------
651 // Map Block indices to a block-index for a cfg-cover.
652 // Array lookup in the optimized case.
653 class UnionFind : public ResourceObj {
654   uint _cnt, _max;
655   uint* _indices;
656   ReallocMark _nesting; // Safety checks for arena reallocation
657 public:
658   UnionFind( uint max );
659   void reset( uint max );  // Reset to identity map for [0..max]
660 
661   uint lookup( uint nidx ) const {
662     return _indices[nidx];
663   }
664   uint operator[] (uint nidx) const { return lookup(nidx); }
665 
666   void map( uint from_idx, uint to_idx ) {
667     assert( from_idx < _cnt, "oob" );
668     _indices[from_idx] = to_idx;
669   }
670   void extend( uint from_idx, uint to_idx );
671 
672   uint Size() const { return _cnt; }
673 
674   uint Find( uint idx ) {
675     assert( idx < 65536, "Must fit into uint");
676     uint uf_idx = lookup(idx);
677     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
678   }
679   uint Find_compress( uint idx );
680   uint Find_const( uint idx ) const;
681   void Union( uint idx1, uint idx2 );
682 
683 };
684 
685 //----------------------------BlockProbPair---------------------------
686 // Ordered pair of Node*.
687 class BlockProbPair {
688 protected:
689   Block* _target;      // block target
690   double  _prob;        // probability of edge to block
691 public:
692   BlockProbPair() : _target(nullptr), _prob(0.0) {}
693   BlockProbPair(Block* b, double p) : _target(b), _prob(p) {}
694 
695   Block* get_target() const { return _target; }
696   double get_prob() const { return _prob; }
697 };
698 
699 //------------------------------CFGLoop-------------------------------------------
700 class CFGLoop : public CFGElement {
701   int _id;
702   int _depth;
703   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
704   CFGLoop *_sibling;     // null terminated list
705   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
706   GrowableArray<CFGElement*> _members; // list of members of loop
707   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
708   double _exit_prob;       // probability any loop exit is taken on a single loop iteration
709   void update_succ_freq(Block* b, double freq);
710 
711  public:
712   CFGLoop(int id) :
713     CFGElement(),
714     _id(id),
715     _depth(0),
716     _parent(nullptr),
717     _sibling(nullptr),
718     _child(nullptr),
719     _exit_prob(1.0f) {}
720   CFGLoop* parent() { return _parent; }
721   void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
722   void add_member(CFGElement *s) { _members.push(s); }
723   void add_nested_loop(CFGLoop* cl);
724   Block* head() {
725     assert(_members.at(0)->is_block(), "head must be a block");
726     Block* hd = _members.at(0)->as_Block();
727     assert(hd->_loop == this, "just checking");
728     assert(hd->head()->is_Loop(), "must begin with loop head node");
729     return hd;
730   }
731   Block* backedge_block(); // Return the block on the backedge of the loop (else null)
732   void compute_loop_depth(int depth);
733   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
734   void scale_freq();   // scale frequency by loop trip count (including outer loops)
735   double outer_loop_freq() const; // frequency of outer loop
736   bool in_loop_nest(Block* b);
737   double trip_count() const { return 1.0 / _exit_prob; }
738   virtual bool is_loop()  { return true; }
739   int id() { return _id; }
740   int depth() { return _depth; }
741 
742 #ifndef PRODUCT
743   void dump( ) const;
744   void dump_tree() const;
745 #endif
746 };
747 
748 
749 //----------------------------------CFGEdge------------------------------------
750 // A edge between two basic blocks that will be embodied by a branch or a
751 // fall-through.
752 class CFGEdge : public ResourceObj {
753  private:
754   Block * _from;        // Source basic block
755   Block * _to;          // Destination basic block
756   double _freq;          // Execution frequency (estimate)
757   int   _state;
758   bool  _infrequent;
759   int   _from_pct;
760   int   _to_pct;
761 
762   // Private accessors
763   int  from_pct() const { return _from_pct; }
764   int  to_pct()   const { return _to_pct;   }
765   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
766   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
767 
768  public:
769   enum {
770     open,               // initial edge state; unprocessed
771     connected,          // edge used to connect two traces together
772     interior            // edge is interior to trace (could be backedge)
773   };
774 
775   CFGEdge(Block *from, Block *to, double freq, int from_pct, int to_pct) :
776     _from(from), _to(to), _freq(freq),
777     _state(open), _from_pct(from_pct), _to_pct(to_pct) {
778     _infrequent = from_infrequent() || to_infrequent();
779   }
780 
781   double  freq() const { return _freq; }
782   Block* from() const { return _from; }
783   Block* to  () const { return _to;   }
784   int  infrequent() const { return _infrequent; }
785   int state() const { return _state; }
786 
787   void set_state(int state) { _state = state; }
788 
789 #ifndef PRODUCT
790   void dump( ) const;
791 #endif
792 };
793 
794 
795 //-----------------------------------Trace-------------------------------------
796 // An ordered list of basic blocks.
797 class Trace : public ResourceObj {
798  private:
799   uint _id;             // Unique Trace id (derived from initial block)
800   Block ** _next_list;  // Array mapping index to next block
801   Block ** _prev_list;  // Array mapping index to previous block
802   Block * _first;       // First block in the trace
803   Block * _last;        // Last block in the trace
804 
805   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
806 
807   // Return the block that precedes "b" in the trace.
808   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
809   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
810 
811   // We've discovered a loop in this trace. Reset last to be "b", and first as
812   // the block following "b
813   void break_loop_after(Block *b) {
814     _last = b;
815     _first = next(b);
816     set_prev(_first, nullptr);
817     set_next(_last, nullptr);
818   }
819 
820  public:
821 
822   Trace(Block *b, Block **next_list, Block **prev_list) :
823     _id(b->_pre_order),
824     _next_list(next_list),
825     _prev_list(prev_list),
826     _first(b),
827     _last(b) {
828     set_next(b, nullptr);
829     set_prev(b, nullptr);
830   };
831 
832   // Return the id number
833   uint id() const { return _id; }
834   void set_id(uint id) { _id = id; }
835 
836   // Return the first block in the trace
837   Block * first_block() const { return _first; }
838 
839   // Return the last block in the trace
840   Block * last_block() const { return _last; }
841 
842   // Return the block that follows "b" in the trace.
843   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
844 
845   // Insert a trace in the middle of this one after b
846   void insert_after(Block *b, Trace *tr) {
847     set_next(tr->last_block(), next(b));
848     if (next(b) != nullptr) {
849       set_prev(next(b), tr->last_block());
850     }
851 
852     set_next(b, tr->first_block());
853     set_prev(tr->first_block(), b);
854 
855     if (b == _last) {
856       _last = tr->last_block();
857     }
858   }
859 
860   void insert_before(Block *b, Trace *tr) {
861     Block *p = prev(b);
862     assert(p != nullptr, "use append instead");
863     insert_after(p, tr);
864   }
865 
866   // Append another trace to this one.
867   void append(Trace *tr) {
868     insert_after(_last, tr);
869   }
870 
871   // Append a block at the end of this trace
872   void append(Block *b) {
873     set_next(_last, b);
874     set_prev(b, _last);
875     _last = b;
876   }
877 
878   bool backedge(CFGEdge *e);
879 
880 #ifndef PRODUCT
881   void dump( ) const;
882 #endif
883 };
884 
885 //------------------------------PhaseBlockLayout-------------------------------
886 // Rearrange blocks into some canonical order, based on edges and their frequencies
887 class PhaseBlockLayout : public Phase {
888   PhaseCFG &_cfg;               // Control flow graph
889 
890   GrowableArray<CFGEdge *> *edges;
891   Trace **traces;
892   Block **next;
893   Block **prev;
894   UnionFind *uf;
895 
896   // Given a block, find its encompassing Trace
897   Trace * trace(Block *b) {
898     return traces[uf->Find_compress(b->_pre_order)];
899   }
900  public:
901   PhaseBlockLayout(PhaseCFG &cfg);
902 
903   void find_edges();
904   void grow_traces();
905   void merge_traces(bool loose_connections);
906   void reorder_traces(int count);
907   void union_traces(Trace* from, Trace* to);
908 };
909 
910 #endif // SHARE_OPTO_BLOCK_HPP