1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_BLOCK_HPP
 26 #define SHARE_OPTO_BLOCK_HPP
 27 
 28 #include "opto/multnode.hpp"
 29 #include "opto/node.hpp"
 30 #include "opto/phase.hpp"
 31 #include "utilities/powerOfTwo.hpp"
 32 
 33 // Optimization - Graph Style
 34 
 35 class Block;
 36 class CFGLoop;
 37 class MachCallNode;
 38 class Matcher;
 39 class RootNode;
 40 class VectorSet;
 41 class PhaseChaitin;
 42 struct Tarjan;
 43 
 44 //------------------------------Block_Array------------------------------------
 45 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
 46 // Abstractly provides an infinite array of Block*'s, initialized to null.
 47 // Note that the constructor just zeros things, and since I use Arena
 48 // allocation I do not need a destructor to reclaim storage.
 49 class Block_Array : public ArenaObj {
 50   uint _size;                   // allocated size, as opposed to formal limit
 51   DEBUG_ONLY(uint _limit;)      // limit to formal domain
 52   Arena *_arena;                // Arena to allocate in
 53   ReallocMark _nesting;         // Safety checks for arena reallocation
 54 protected:
 55   Block **_blocks;
 56   void maybe_grow(uint i) {
 57     _nesting.check(_arena);     // Check if a potential reallocation in the arena is safe
 58     if (i >= Max()) {
 59       grow(i);
 60     }
 61   }
 62   void grow(uint i);            // Grow array node to fit
 63 
 64 public:
 65   Block_Array(Arena *a) : _size(OptoBlockListSize), _arena(a) {
 66     DEBUG_ONLY(_limit=0);
 67     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
 68     for( int i = 0; i < OptoBlockListSize; i++ ) {
 69       _blocks[i] = nullptr;
 70     }
 71   }
 72   Block *lookup( uint i ) const // Lookup, or null for not mapped
 73   { return (i<Max()) ? _blocks[i] : (Block*)nullptr; }
 74   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
 75   { assert( i < Max(), "oob" ); return _blocks[i]; }
 76   // Extend the mapping: index i maps to Block *n.
 77   void map( uint i, Block *n ) { maybe_grow(i); _blocks[i] = n; }
 78   uint Max() const { DEBUG_ONLY(return _limit); return _size; }
 79 };
 80 
 81 
 82 class Block_List : public Block_Array {
 83 public:
 84   uint _cnt;
 85   Block_List() : Block_List(Thread::current()->resource_area()) { }
 86   Block_List(Arena* a) : Block_Array(a), _cnt(0) { }
 87 
 88   void push( Block *b ) {  map(_cnt++,b); }
 89   Block *pop() { return _blocks[--_cnt]; }
 90   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
 91   void remove( uint i );
 92   void insert( uint i, Block *n );
 93   uint size() const { return _cnt; }
 94   void reset() { _cnt = 0; }
 95   void print();
 96 };
 97 
 98 
 99 class CFGElement : public AnyObj {
100  public:
101   double _freq; // Execution frequency (estimate)
102 
103   CFGElement() : _freq(0.0) {}
104   virtual bool is_block() { return false; }
105   virtual bool is_loop()  { return false; }
106   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
107   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
108 };
109 
110 //------------------------------Block------------------------------------------
111 // This class defines a Basic Block.
112 // Basic blocks are used during the output routines, and are not used during
113 // any optimization pass.  They are created late in the game.
114 class Block : public CFGElement {
115 
116 private:
117   // Nodes in this block, in order
118   Node_List _nodes;
119 
120 public:
121 
122   // Get the node at index 'at_index', if 'at_index' is out of bounds return null
123   Node* get_node(uint at_index) const {
124     return _nodes[at_index];
125   }
126 
127   // Get the number of nodes in this block
128   uint number_of_nodes() const {
129     return _nodes.size();
130   }
131 
132   // Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
133   void map_node(Node* node, uint to_index) {
134     _nodes.map(to_index, node);
135   }
136 
137   // Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
138   void insert_node(Node* node, uint at_index) {
139     _nodes.insert(at_index, node);
140   }
141 
142   // Remove a node at index 'at_index'
143   void remove_node(uint at_index) {
144     _nodes.remove(at_index);
145   }
146 
147   // Push a node 'node' onto the node list
148   void push_node(Node* node) {
149     _nodes.push(node);
150   }
151 
152   // Pop the last node off the node list
153   Node* pop_node() {
154     return _nodes.pop();
155   }
156 
157   // Basic blocks have a Node which defines Control for all Nodes pinned in
158   // this block.  This Node is a RegionNode.  Exception-causing Nodes
159   // (division, subroutines) and Phi functions are always pinned.  Later,
160   // every Node will get pinned to some block.
161   Node *head() const { return get_node(0); }
162 
163   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
164   // input edges to Regions and Phis.
165   uint num_preds() const { return head()->req(); }
166   Node *pred(uint i) const { return head()->in(i); }
167 
168   // Array of successor blocks, same size as projs array
169   Block_Array _succs;
170 
171   // Basic blocks have some number of Nodes which split control to all
172   // following blocks.  These Nodes are always Projections.  The field in
173   // the Projection and the block-ending Node determine which Block follows.
174   uint _num_succs;
175 
176   // Basic blocks also carry all sorts of good old fashioned DFS information
177   // used to find loops, loop nesting depth, dominators, etc.
178   uint _pre_order;              // Pre-order DFS number
179 
180   // Dominator tree
181   uint _dom_depth;              // Depth in dominator tree for fast LCA
182   Block* _idom;                 // Immediate dominator block
183 
184   CFGLoop *_loop;               // Loop to which this block belongs
185   uint _rpo;                    // Number in reverse post order walk
186 
187   virtual bool is_block() { return true; }
188   float succ_prob(uint i);      // return probability of i'th successor
189   int num_fall_throughs();      // How many fall-through candidate this block has
190   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
191   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
192   Block* lone_fall_through();   // Return lone fall-through Block or null
193 
194   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
195 
196   bool dominates(Block* that) {
197     int dom_diff = this->_dom_depth - that->_dom_depth;
198     if (dom_diff > 0)  return false;
199     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
200     return this == that;
201   }
202 
203   // Report the alignment required by this block.  Must be a power of 2.
204   // The previous block will insert nops to get this alignment.
205   uint code_alignment() const;
206   uint compute_loop_alignment();
207 
208   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
209   // It is currently also used to scale such frequencies relative to
210   // FreqCountInvocations relative to the old value of 1500.
211 #define BLOCK_FREQUENCY(f) ((f * (double) 1500) / FreqCountInvocations)
212 
213   // Register Pressure (estimate) for Splitting heuristic
214   uint _reg_pressure;
215   uint _ihrp_index;
216   uint _freg_pressure;
217   uint _fhrp_index;
218 
219   // Mark and visited bits for an LCA calculation in raise_above_anti_dependences.
220   // Since they hold unique node indexes, they do not need reinitialization.
221   node_idx_t _raise_LCA_mark;
222   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
223   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
224   node_idx_t _raise_LCA_visited;
225   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
226   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
227 
228   // Estimated size in bytes of first instructions in a loop.
229   uint _first_inst_size;
230   uint first_inst_size() const     { return _first_inst_size; }
231   void set_first_inst_size(uint s) { _first_inst_size = s; }
232 
233   // Compute the size of first instructions in this block.
234   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
235 
236   // Compute alignment padding if the block needs it.
237   // Align a loop if loop's padding is less or equal to padding limit
238   // or the size of first instructions in the loop > padding.
239   uint alignment_padding(int current_offset) {
240     int block_alignment = code_alignment();
241     int max_pad = block_alignment-relocInfo::addr_unit();
242     if( max_pad > 0 ) {
243       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
244       int current_alignment = current_offset & max_pad;
245       if( current_alignment != 0 ) {
246         uint padding = (block_alignment-current_alignment) & max_pad;
247         if( has_loop_alignment() &&
248             padding > (uint)MaxLoopPad &&
249             first_inst_size() <= padding ) {
250           return 0;
251         }
252         return padding;
253       }
254     }
255     return 0;
256   }
257 
258   // Connector blocks. Connector blocks are basic blocks devoid of
259   // instructions, but may have relevant non-instruction Nodes, such as
260   // Phis or MergeMems. Such blocks are discovered and marked during the
261   // RemoveEmpty phase, and elided during Output.
262   bool _connector;
263   void set_connector() { _connector = true; }
264   bool is_connector() const { return _connector; };
265 
266   // Loop_alignment will be set for blocks which are at the top of loops.
267   // The block layout pass may rotate loops such that the loop head may not
268   // be the sequentially first block of the loop encountered in the linear
269   // list of blocks.  If the layout pass is not run, loop alignment is set
270   // for each block which is the head of a loop.
271   uint _loop_alignment;
272   void set_loop_alignment(Block *loop_top) {
273     uint new_alignment = loop_top->compute_loop_alignment();
274     if (new_alignment > _loop_alignment) {
275       _loop_alignment = new_alignment;
276     }
277   }
278   uint loop_alignment() const { return _loop_alignment; }
279   bool has_loop_alignment() const { return loop_alignment() > 0; }
280 
281   // Create a new Block with given head Node.
282   // Creates the (empty) predecessor arrays.
283   Block( Arena *a, Node *headnode )
284     : CFGElement(),
285       _nodes(a),
286       _succs(a),
287       _num_succs(0),
288       _pre_order(0),
289       _idom(nullptr),
290       _loop(nullptr),
291       _reg_pressure(0),
292       _ihrp_index(1),
293       _freg_pressure(0),
294       _fhrp_index(1),
295       _raise_LCA_mark(0),
296       _raise_LCA_visited(0),
297       _first_inst_size(999999),
298       _connector(false),
299       _loop_alignment(0) {
300     _nodes.push(headnode);
301   }
302 
303   // Index of 'end' Node
304   uint end_idx() const {
305     // %%%%% add a proj after every goto
306     // so (last->is_block_proj() != last) always, then simplify this code
307     // This will not give correct end_idx for block 0 when it only contains root.
308     int last_idx = _nodes.size() - 1;
309     Node *last  = _nodes[last_idx];
310     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
311     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
312   }
313 
314   // Basic blocks have a Node which ends them.  This Node determines which
315   // basic block follows this one in the program flow.  This Node is either an
316   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
317   Node *end() const { return _nodes[end_idx()]; }
318 
319   // Add an instruction to an existing block.  It must go after the head
320   // instruction and before the end instruction.
321   void add_inst( Node *n ) { insert_node(n, end_idx()); }
322   // Find node in block. Fails if node not in block.
323   uint find_node( const Node *n ) const;
324   // Find and remove n from block list
325   void find_remove( const Node *n );
326   // Check whether the node is in the block.
327   bool contains (const Node *n) const;
328 
329   // Whether the block is not root-like and does not have any predecessors.
330   bool is_trivially_unreachable() const;
331 
332   // Return the empty status of a block
333   enum { not_empty, empty_with_goto, completely_empty };
334   int is_Empty() const;
335 
336   // Forward through connectors
337   Block* non_connector() {
338     Block* s = this;
339     while (s->is_connector()) {
340       s = s->_succs[0];
341     }
342     return s;
343   }
344 
345   // Return true if b is a successor of this block
346   bool has_successor(Block* b) const {
347     for (uint i = 0; i < _num_succs; i++ ) {
348       if (non_connector_successor(i) == b) {
349         return true;
350       }
351     }
352     return false;
353   }
354 
355   // Successor block, after forwarding through connectors
356   Block* non_connector_successor(int i) const {
357     return _succs[i]->non_connector();
358   }
359 
360   // Examine block's code shape to predict if it is not commonly executed.
361   bool has_uncommon_code() const;
362 
363 #ifndef PRODUCT
364   // Debugging print of basic block
365   void dump_bidx(const Block* orig, outputStream* st = tty) const;
366   void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
367   void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
368   void dump() const;
369   void dump(const PhaseCFG* cfg) const;
370 #endif
371 };
372 
373 
374 //------------------------------PhaseCFG---------------------------------------
375 // Build an array of Basic Block pointers, one per Node.
376 class PhaseCFG : public Phase {
377  private:
378   // Root of whole program
379   RootNode* _root;
380 
381   // The block containing the root node
382   Block* _root_block;
383 
384   // List of basic blocks that are created during CFG creation
385   Block_List _blocks;
386 
387   // Count of basic blocks
388   uint _number_of_blocks;
389 
390   // Arena for the blocks to be stored in
391   Arena* _block_arena;
392 
393   // Info used for scheduling
394   PhaseChaitin* _regalloc;
395 
396   // Register pressure heuristic used?
397   bool _scheduling_for_pressure;
398 
399   // The matcher for this compilation
400   Matcher& _matcher;
401 
402   // Map nodes to owning basic block
403   Block_Array _node_to_block_mapping;
404 
405   // Loop from the root
406   CFGLoop* _root_loop;
407 
408   // Outmost loop frequency
409   double _outer_loop_frequency;
410 
411   // Per node latency estimation, valid only during GCM
412   GrowableArray<uint>* _node_latency;
413 
414   // Build a proper looking cfg.  Return count of basic blocks
415   uint build_cfg();
416 
417   // Build the dominator tree so that we know where we can move instructions
418   void build_dominator_tree();
419 
420   // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
421   void estimate_block_frequency();
422 
423   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
424   // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
425   // Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
426   void global_code_motion();
427 
428   // Schedule Nodes early in their basic blocks.
429   bool schedule_early(VectorSet &visited, Node_Stack &roots);
430 
431   // For each node, find the latest block it can be scheduled into
432   // and then select the cheapest block between the latest and earliest
433   // block to place the node.
434   void schedule_late(VectorSet &visited, Node_Stack &stack);
435 
436   // Compute the (backwards) latency of a node from a single use
437   int latency_from_use(Node *n, const Node *def, Node *use);
438 
439   // Compute the (backwards) latency of a node from the uses of this instruction
440   void partial_latency_of_defs(Node *n);
441 
442   // Compute the instruction global latency with a backwards walk
443   void compute_latencies_backwards(VectorSet &visited, Node_Stack &stack);
444 
445   // Check if a block between early and LCA block of uses is cheaper by
446   // frequency-based policy, latency-based policy and random-based policy
447   bool is_cheaper_block(Block* LCA, Node* self, uint target_latency,
448                         uint end_latency, double least_freq,
449                         int cand_cnt, bool in_latency);
450 
451   // Pick a block between early and late that is a cheaper alternative
452   // to late. Helper for schedule_late.
453   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
454 
455   bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t* recacl_pressure_nodes);
456   void set_next_call(const Block* block, Node* n, VectorSet& next_call) const;
457   void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
458 
459   // Perform basic-block local scheduling
460   Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot,
461                intptr_t* recacl_pressure_nodes);
462   void adjust_register_pressure(Node* n, Block* block, intptr_t *recalc_pressure_nodes, bool finalize_mode);
463 
464   // Schedule a call next in the block
465   uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
466 
467   // Cleanup if any code lands between a Call and his Catch
468   void call_catch_cleanup(Block* block);
469 
470   Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
471   void  catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
472 
473   // Detect implicit-null-check opportunities.  Basically, find null checks
474   // with suitable memory ops nearby.  Use the memory op to do the null check.
475   // I can generate a memory op if there is not one nearby.
476   void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
477 
478   // Perform a Depth First Search (DFS).
479   // Setup 'vertex' as DFS to vertex mapping.
480   // Setup 'semi' as vertex to DFS mapping.
481   // Set 'parent' to DFS parent.
482   uint do_DFS(Tarjan* tarjan, uint rpo_counter);
483 
484   // Helper function to insert a node into a block
485   void schedule_node_into_block( Node *n, Block *b );
486 
487   void replace_block_proj_ctrl( Node *n );
488 
489   // Set the basic block for pinned Nodes
490   void schedule_pinned_nodes( VectorSet &visited );
491 
492   // I'll need a few machine-specific GotoNodes.  Clone from this one.
493   // Used when building the CFG and creating end nodes for blocks.
494   MachNode* _goto;
495 
496   Block* raise_above_anti_dependences(Block* LCA, Node* load, bool verify = false);
497   void verify_anti_dependences(Block* LCA, Node* load) const {
498     assert(LCA == get_block_for_node(load), "should already be scheduled");
499     const_cast<PhaseCFG*>(this)->raise_above_anti_dependences(LCA, load, true);
500   }
501 
502   bool move_to_next(Block* bx, uint b_index);
503   void move_to_end(Block* bx, uint b_index);
504 
505   void insert_goto_at(uint block_no, uint succ_no);
506 
507   // Check for NeverBranch at block end.  This needs to become a GOTO to the
508   // true target.  NeverBranch are treated as a conditional branch that always
509   // goes the same direction for most of the optimizer and are used to give a
510   // fake exit path to infinite loops.  At this late stage they need to turn
511   // into Goto's so that when you enter the infinite loop you indeed hang.
512   void convert_NeverBranch_to_Goto(Block *b);
513 
514   CFGLoop* create_loop_tree();
515   bool is_dominator(Node* dom_node, Node* node);
516   bool is_CFG(Node* n);
517   bool is_control_proj_or_safepoint(Node* n) const;
518   Block* find_block_for_node(Node* n) const;
519   bool is_dominating_control(Node* dom_ctrl, Node* n);
520   #ifndef PRODUCT
521   bool _trace_opto_pipelining;  // tracing flag
522   #endif
523 
524  public:
525   PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
526 
527   void set_latency_for_node(Node* node, int latency) {
528     _node_latency->at_put_grow(node->_idx, latency);
529   }
530 
531   uint get_latency_for_node(Node* node) {
532     return _node_latency->at_grow(node->_idx);
533   }
534 
535   // Get the outer most frequency
536   double get_outer_loop_frequency() const {
537     return _outer_loop_frequency;
538   }
539 
540   // Get the root node of the CFG
541   RootNode* get_root_node() const {
542     return _root;
543   }
544 
545   // Get the block of the root node
546   Block* get_root_block() const {
547     return _root_block;
548   }
549 
550   // Add a block at a position and moves the later ones one step
551   void add_block_at(uint pos, Block* block) {
552     _blocks.insert(pos, block);
553     _number_of_blocks++;
554   }
555 
556   // Adds a block to the top of the block list
557   void add_block(Block* block) {
558     _blocks.push(block);
559     _number_of_blocks++;
560   }
561 
562   // Clear the list of blocks
563   void clear_blocks() {
564     _blocks.reset();
565     _number_of_blocks = 0;
566   }
567 
568   // Get the block at position pos in _blocks
569   Block* get_block(uint pos) const {
570     return _blocks[pos];
571   }
572 
573   // Number of blocks
574   uint number_of_blocks() const {
575     return _number_of_blocks;
576   }
577 
578   // set which block this node should reside in
579   void map_node_to_block(const Node* node, Block* block) {
580     _node_to_block_mapping.map(node->_idx, block);
581   }
582 
583   // removes the mapping from a node to a block
584   void unmap_node_from_block(const Node* node) {
585     _node_to_block_mapping.map(node->_idx, nullptr);
586   }
587 
588   // get the block in which this node resides
589   Block* get_block_for_node(const Node* node) const {
590     return _node_to_block_mapping[node->_idx];
591   }
592 
593   // does this node reside in a block; return true
594   bool has_block(const Node* node) const {
595     return (_node_to_block_mapping.lookup(node->_idx) != nullptr);
596   }
597 
598   // Use frequency calculations and code shape to predict if the block
599   // is uncommon.
600   bool is_uncommon(const Block* block);
601 
602 #ifdef ASSERT
603   Unique_Node_List _raw_oops;
604 #endif
605 
606   // Do global code motion by first building dominator tree and estimate block frequency
607   // Returns true on success
608   bool do_global_code_motion();
609 
610   // Compute the (backwards) latency of a node from the uses
611   void latency_from_uses(Node *n);
612 
613   // Set loop alignment
614   void set_loop_alignment();
615 
616   // Remove empty basic blocks
617   void remove_empty_blocks();
618   Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext);
619   void fixup_flow();
620   // Remove all blocks that are transitively unreachable. Such blocks can be
621   // found e.g. after PhaseCFG::convert_NeverBranch_to_Goto(). This function
622   // assumes post-fixup_flow() block indices (Block::_pre_order, Block::_rpo).
623   void remove_unreachable_blocks();
624 
625   // Insert a node into a block at index and map the node to the block
626   void insert(Block *b, uint idx, Node *n) {
627     b->insert_node(n , idx);
628     map_node_to_block(n, b);
629   }
630 
631   // Check all nodes and postalloc_expand them if necessary.
632   void postalloc_expand(PhaseRegAlloc* _ra);
633 
634 #ifndef PRODUCT
635   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
636 
637   // Debugging print of CFG
638   void dump( ) const;           // CFG only
639   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
640   void dump_headers();
641 #else
642   bool trace_opto_pipelining() const { return false; }
643 #endif
644 
645   bool unrelated_load_in_store_null_block(Node* store, Node* load);
646 
647   // Check that block b is in the home loop (or an ancestor) of n, if n is a
648   // memory writer.
649   void verify_memory_writer_placement(const Block* b, const Node* n) const NOT_DEBUG_RETURN;
650   // Check local dominator tree invariants.
651   void verify_dominator_tree() const NOT_DEBUG_RETURN;
652   void verify() const NOT_DEBUG_RETURN;
653 };
654 
655 
656 //------------------------------UnionFind--------------------------------------
657 // Map Block indices to a block-index for a cfg-cover.
658 // Array lookup in the optimized case.
659 class UnionFind : public ResourceObj {
660   uint _cnt, _max;
661   uint* _indices;
662   ReallocMark _nesting; // Safety checks for arena reallocation
663 public:
664   UnionFind( uint max );
665   void reset( uint max );  // Reset to identity map for [0..max]
666 
667   uint lookup( uint nidx ) const {
668     return _indices[nidx];
669   }
670   uint operator[] (uint nidx) const { return lookup(nidx); }
671 
672   void map( uint from_idx, uint to_idx ) {
673     assert( from_idx < _cnt, "oob" );
674     _indices[from_idx] = to_idx;
675   }
676   void extend( uint from_idx, uint to_idx );
677 
678   uint Size() const { return _cnt; }
679 
680   uint Find( uint idx ) {
681     assert( idx < 65536, "Must fit into uint");
682     uint uf_idx = lookup(idx);
683     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
684   }
685   uint Find_compress( uint idx );
686   uint Find_const( uint idx ) const;
687   void Union( uint idx1, uint idx2 );
688 
689 };
690 
691 //----------------------------BlockProbPair---------------------------
692 // Ordered pair of Node*.
693 class BlockProbPair {
694 protected:
695   Block* _target;      // block target
696   double  _prob;        // probability of edge to block
697 public:
698   BlockProbPair() : _target(nullptr), _prob(0.0) {}
699   BlockProbPair(Block* b, double p) : _target(b), _prob(p) {}
700 
701   Block* get_target() const { return _target; }
702   double get_prob() const { return _prob; }
703 };
704 
705 //------------------------------CFGLoop-------------------------------------------
706 class CFGLoop : public CFGElement {
707   int _id;
708   int _depth;
709   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
710   CFGLoop *_sibling;     // null terminated list
711   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
712   GrowableArray<CFGElement*> _members; // list of members of loop
713   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
714   double _exit_prob;       // probability any loop exit is taken on a single loop iteration
715   void update_succ_freq(Block* b, double freq);
716 
717  public:
718   CFGLoop(int id) :
719     CFGElement(),
720     _id(id),
721     _depth(0),
722     _parent(nullptr),
723     _sibling(nullptr),
724     _child(nullptr),
725     _exit_prob(1.0f) {}
726   CFGLoop* parent() { return _parent; }
727   void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
728   void add_member(CFGElement *s) { _members.push(s); }
729   void add_nested_loop(CFGLoop* cl);
730   Block* head() {
731     assert(_members.at(0)->is_block(), "head must be a block");
732     Block* hd = _members.at(0)->as_Block();
733     assert(hd->_loop == this, "just checking");
734     assert(hd->head()->is_Loop(), "must begin with loop head node");
735     return hd;
736   }
737   Block* backedge_block(); // Return the block on the backedge of the loop (else null)
738   void compute_loop_depth(int depth);
739   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
740   void scale_freq();   // scale frequency by loop trip count (including outer loops)
741   double outer_loop_freq() const; // frequency of outer loop
742   bool in_loop_nest(Block* b);
743   double trip_count() const { return 1.0 / _exit_prob; }
744   virtual bool is_loop()  { return true; }
745   int id() { return _id; }
746   int depth() { return _depth; }
747 
748 #ifndef PRODUCT
749   void dump( ) const;
750   void dump_tree() const;
751 #endif
752 };
753 
754 
755 //----------------------------------CFGEdge------------------------------------
756 // A edge between two basic blocks that will be embodied by a branch or a
757 // fall-through.
758 class CFGEdge : public ResourceObj {
759  private:
760   Block * _from;        // Source basic block
761   Block * _to;          // Destination basic block
762   double _freq;          // Execution frequency (estimate)
763   int   _state;
764   bool  _infrequent;
765   int   _from_pct;
766   int   _to_pct;
767 
768   // Private accessors
769   int  from_pct() const { return _from_pct; }
770   int  to_pct()   const { return _to_pct;   }
771   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
772   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
773 
774  public:
775   enum {
776     open,               // initial edge state; unprocessed
777     connected,          // edge used to connect two traces together
778     interior            // edge is interior to trace (could be backedge)
779   };
780 
781   CFGEdge(Block *from, Block *to, double freq, int from_pct, int to_pct) :
782     _from(from), _to(to), _freq(freq),
783     _state(open), _from_pct(from_pct), _to_pct(to_pct) {
784     _infrequent = from_infrequent() || to_infrequent();
785   }
786 
787   double  freq() const { return _freq; }
788   Block* from() const { return _from; }
789   Block* to  () const { return _to;   }
790   int  infrequent() const { return _infrequent; }
791   int state() const { return _state; }
792 
793   void set_state(int state) { _state = state; }
794 
795 #ifndef PRODUCT
796   void dump( ) const;
797 #endif
798 };
799 
800 
801 //-----------------------------------Trace-------------------------------------
802 // An ordered list of basic blocks.
803 class Trace : public ResourceObj {
804  private:
805   uint _id;             // Unique Trace id (derived from initial block)
806   Block ** _next_list;  // Array mapping index to next block
807   Block ** _prev_list;  // Array mapping index to previous block
808   Block * _first;       // First block in the trace
809   Block * _last;        // Last block in the trace
810 
811   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
812 
813   // Return the block that precedes "b" in the trace.
814   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
815   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
816 
817   // We've discovered a loop in this trace. Reset last to be "b", and first as
818   // the block following "b
819   void break_loop_after(Block *b) {
820     _last = b;
821     _first = next(b);
822     set_prev(_first, nullptr);
823     set_next(_last, nullptr);
824   }
825 
826  public:
827 
828   Trace(Block *b, Block **next_list, Block **prev_list) :
829     _id(b->_pre_order),
830     _next_list(next_list),
831     _prev_list(prev_list),
832     _first(b),
833     _last(b) {
834     set_next(b, nullptr);
835     set_prev(b, nullptr);
836   };
837 
838   // Return the id number
839   uint id() const { return _id; }
840   void set_id(uint id) { _id = id; }
841 
842   // Return the first block in the trace
843   Block * first_block() const { return _first; }
844 
845   // Return the last block in the trace
846   Block * last_block() const { return _last; }
847 
848   // Return the block that follows "b" in the trace.
849   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
850 
851   // Insert a trace in the middle of this one after b
852   void insert_after(Block *b, Trace *tr) {
853     set_next(tr->last_block(), next(b));
854     if (next(b) != nullptr) {
855       set_prev(next(b), tr->last_block());
856     }
857 
858     set_next(b, tr->first_block());
859     set_prev(tr->first_block(), b);
860 
861     if (b == _last) {
862       _last = tr->last_block();
863     }
864   }
865 
866   void insert_before(Block *b, Trace *tr) {
867     Block *p = prev(b);
868     assert(p != nullptr, "use append instead");
869     insert_after(p, tr);
870   }
871 
872   // Append another trace to this one.
873   void append(Trace *tr) {
874     insert_after(_last, tr);
875   }
876 
877   // Append a block at the end of this trace
878   void append(Block *b) {
879     set_next(_last, b);
880     set_prev(b, _last);
881     _last = b;
882   }
883 
884   bool backedge(CFGEdge *e);
885 
886 #ifndef PRODUCT
887   void dump( ) const;
888 #endif
889 };
890 
891 //------------------------------PhaseBlockLayout-------------------------------
892 // Rearrange blocks into some canonical order, based on edges and their frequencies
893 class PhaseBlockLayout : public Phase {
894   PhaseCFG &_cfg;               // Control flow graph
895 
896   GrowableArray<CFGEdge *> *edges;
897   Trace **traces;
898   Block **next;
899   Block **prev;
900   UnionFind *uf;
901 
902   // Given a block, find its encompassing Trace
903   Trace * trace(Block *b) {
904     return traces[uf->Find_compress(b->_pre_order)];
905   }
906  public:
907   PhaseBlockLayout(PhaseCFG &cfg);
908 
909   void find_edges();
910   void grow_traces();
911   void merge_traces(bool loose_connections);
912   void reorder_traces(int count);
913   void union_traces(Trace* from, Trace* to);
914 };
915 
916 #endif // SHARE_OPTO_BLOCK_HPP